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Abstract 

Modern monitoring systems for automated machines must be capable of operating on-line and 

interpret the working condition of machining process at a given point in time because it is an 

automated and unmanned system. But this has posed a challenge that lead to this research study. 

Generally, optimization of machining process can be categorized as minimization of tool wear, 

minimization of operating cost, maximization of process output and optimization of machine 

parameter.  

Tool wear is a complex phenomenon, capable of reducing surface quality, increases power 

consumption and increased reflection rate of machined parts. Tool wear has a direct effect on the 

quality of the surface finish for any given work-piece, dimensional precision and ultimately the 

cost of parts produced. Tool wear usually occur in combination with the principal wear mode 

which depends on cutting conditions, tool insert geometry, work piece and tool material. 

Therefore, there is a need to develop a continuous tool monitoring systems that would notify 

operator the state of tool to avoid tool failure or undesirable circumstances. 

Tool wear monitoring system for macro-milling has been studied using design and analysis of 

experiment (DOE) approach. Regression analysis, analysis of variance (ANOVA), Box Behnken 

and Response Surface Methodology (RSM). These analysis tools were used to model the tool wear. 

Hence, further investigations were carried out on the data acquired using signal processing and 

Neural networks frame work to validate the model. The effects of cutting parameters are evaluated 

and the optimal cutting conditions are determined. The interaction of cutting parameters is 

established to illustrate the intrinsic relationship between cutting parameters, tool wear and 

material removal rate. It was observed that when working with stainless steel 316, a maximum tool 

wear value of 0.29mm was achieved through optimization at low values of feed about 0.06mm/rev, 

speed of 4050mm/min and depth of cut about 2mm. 
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Chapter One 

1 Introduction 

1.1 Overview and background 

It was during the industrial revolution that people began to recognize manufacturing as a modern 

way of engineering. This term is now associated with mass production with modern process on a 

large scale. This is far better than the traditional way in which one man handles one craft in a shop. 

This consumes a lot of time and energy coupled with low productivity. 

In modern manufacturing industries, the use of automated processes has become the major way to 

create products rapidly and economically. Also, because of high demand for improved product 

quality, reliability and manufacturing efficiency degree, it has enforced inflexible requirements on 

automated product measurement and evaluation. These manufactured goods require high precision 

and accuracy. Interestingly, in recent years, elevated percentage of downtime has been attributed 

to tool failure in modern machining tools. Furthermore, manufacturing capability profiles require 

a healthy environment to meet market demand as well. Therefore, an automated monitoring 

process plays a vital role in ensuring products reliability, high quality product, machine efficiency 

and to avoid machine downtime that may occur because of excessive tool wear, tool breakage and 

chatter vibration. 

In modern machining, great interest has indicated that Computer Numerically Controlled (CNC) 

machine have dominated and become the major driver of modern manufacturing processes. The 

advent of this innovation still has limitations on modern machining process due to the inability of 

this automated machining system to monitor some manufacturing capabilities such as quality of 

products during milling processes. This phenomenon of tool life truncation wear or early breakage 

of tool edge due to chipping, is indeed a priority in the literature. 

However, modern monitoring systems for automated machines must be capable of operating on-

line to interpret real data from diverse working conditions of machining processes at any given 

point in time because they are automated and diverse unmanned systems. However, this has posed 

a challenge that has led to this research. Generally, optimization of machining process can be 

categorized as minimization of tool wear, minimization of operating cost, maximization of process 

output and optimization of machine parameters.  
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Therefore, the awareness of tool condition monitoring has gained tremendous importance in the 

manufacturing industry and this can be attributed to the fact that modern machines are no longer 

operating manually but automatically through the operation of CNC machining. 

All things being equal, tool wear is the most critical and influential feature to a successful 

maximization of manufacturing process in metal cutting processes. Characteristics of milling 

cutting operations such as cutting conditions, work-piece and tool materials must be considered 

for maximum output.  Recently, interest has been placed on monitoring system in the 

manufacturing industry due to recent inclinations and advances in machining operations and 

technologies. 

But the challenges are with reliability and applicability of sensor systems for tool condition 

monitoring. A high availability level of sophisticated manufacturing systems and high quality of 

manufactured parts can be achieved since the process will be unmanned. To achieve this, it is 

generally accepted that an intelligent sensor based manufacturing is highly required. Therefore, 

successful implementation of intelligent control system has become an area of interest in design 

of process control systems. Also, modern monitoring systems are required to operate on-line and 

must be capable of interpreting the working conditions of the process at any given point in time. 

1.2 Problem statement 

Tool wear is a complex phenomenon, generally, Tool wear reduces surface quality, increases 

power consumption, and causes rejection of machined parts. Tool wear has a direct effect on the 

quality of surface finish for any given work-piece, dimensional precision and ultimately the cost 

of the parts produced. Tool wear usually occur in combination with the principal wear mode which 

depends on cutting conditions, tool insert geometry, work piece and tool material. The challenges 

are with reliability and applicability of sensor systems for tool condition monitoring. When we 

combine work piece and cutting condition together, primarily for a milling process, the cutting 

speed of milling operation and chip dimension-thickness may be exclusively important together 

with other wear factors. Therefore, there is a need to develop a continuous tool monitoring system 

that would notify an operator about the state of a tool to avoid tool failure or undesirable 

circumstances. 
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1.3 Hypothesis  

The on-line tool wear monitoring of stainless steel machining using selected cutting tool material 

will validate a reliable wear model from design of experiment for a capable automated tool 

change schedule. 

1.4 Aim of the study 

The aim and purpose of this research is to develop a tool wear monitoring systems for a selected 

milling operation on stainless steel using on-line acoustic emission systems to capture and predict 

the tool wear stages. 

1.5 Objectives  

In the course of the study, the following objectives are expected to be achieved:  

i. To deploy in-process sensor successfully for tool condition monitoring during milling 

operations.  

ii. To analyze data generated during milling operation and determine the effect, productivity 

and Optimization of parameters selected. 

iii. To analyze and interpret data acquired during signal processing.  

iv. To develop a valid model that can be used to predict tool condition during industrial 

machining processes of stainless steel.  

v. To validate the model by using signal processing framework and Neural networks. 

1.6  Scope of the research work: 

The scope of this research work includes: 

i. Literature studies on various techniques used in tool wear and how  

ii. Data acquisition successfully during acoustic emission process  

iii. Investigate flank wear using various electron microscopes to validate authors 

measurements 

iv. To analyze data generated from the machining operations   

v. To develop and validate model that is deployable for tool wear using design and analysis 

of experiment approach and signal process respectively. 
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1.7 Delimitations 

The current research work is intended to provide a guide on how to use design of experiment to 

model a relevant tool wear while carrying out machining operation on stainless steel (Grade 316) 

using three machine parameters such as Feed, Speed and Depth of cut. Thereafter, signal 

processing and Artificial Neural networks will be employed to validate the flank wear generated 

during machining. 

1.8 Rationale  

Manufacturing is the wealth creating or wealth-producing sector in an economy, the economic 

values involved in automated manufacturing are very high. This is because of high investments in 

the manufacturing equipment. It would be in the interest of any manufacturing industry to benefit 

from the equipment in an optimal way especially with the use of unmanned automated production 

system with high availability. In Africa, South Africa has always been in the fore front of 

manufacturing such as automobile industry but still strife to be a major player globally. This means 

that South Africa could not meet global demand in terms of production, cost and time frame. 

Therefore, automated manufacturing with embedded tool condition monitoring can improve these 

short comings. Tool wear monitoring techniques can form a vital pivot to actualize tool condition 

monitoring in automated manufacturing in South Africa industries. Meanwhile, acoustic emission 

sensing parameters is far reaching to handle and generate adequate source of information that is 

required in tool wear monitoring. 

1.9 Purpose of the study 

The advantages of modern manufacturing process have confirmed the need for automated system 

over the traditional way of Manufacturing in terms of cost reduction, mass production, improved 

quality, increased competitive advantage, better management control and increased flexibility. On 

the other hands, if tool wear which mechanically leads to tool breakage or worn out is not properly 

addressed, then the listed above benefits will not be in view. Therefore, tool condition monitoring 

technique is employed. 

South Africa is among the leader in manufacturing industries in Africa. This implies that to 

enhance manufacturing competitiveness in South Africa among developing nations there is a need 

to improve production time and reduce production costs. In order for time loss due to tool wear, 

breakage and tool change to be optimized to their advantage by implementing and embedding tool 
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wear monitoring system into the manufacturing process. The result of this research work is 

intended be used to develop a fundamental model that can predict tool failure during cutting 

operations when working on any stainless-steel materials. 
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Chapter Two 

2 Literature Review 

2.1 Stainless Steel and Its Machinability Characteristics 

2.1.1 Introduction  

The purpose of this aspect is to lay some foundations for understanding about steel, stainless steel 

and its machinability characteristics. This aspect will highlight the characteristics of stainless steel, 

the wide use of stainless steel, the cutting behavior of stainless steel and the milling consideration 

of stainless steel. 

2.1.2 Steel 

In the world, we live today, there are two classes of metallic materials which are: ferrous and non-

ferrous metals. Steel belongs to the class of ferrous materials, ferrous, which simply means 

comprising iron. The iron base in a steel is about 90% [1] 

Although in some cases of some high alloy steel where alloy can form about 30-35% making the 

iron content to become 70-75% such as the popular 18cr-8Ni Austenitic stainless steel. Non-

ferrous materials on the other hand, do not contain an appreciable amount of iron i.e. it is not iron 

based. Sometimes it can contain a very small amount as alloy just to improve some design property. 

Examples of Ferrous materials can be pure iron, cast iron, wrought iron and steel. Steel can be 

ordinary plain carbon steel or alloy steel which are all iron based but differ in terms of proportion, 

concentration, properties and applications. 

In metallurgy, steel is a solid solution of iron and carbon where carbon atom is smaller compare 

to iron atoms that occupies the interstitial position in the iron crystal lattice. There are two crystal 

lattice structures Figure 2-1, in steel that describes their properties, the ferrite steel (α-steel) which 

has Body Centered Cubic (BCC) and Austenite steel (ϒ-steel) which has Face Centered Cubic 

(FCC) structured arrangement.  
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Figure 2-1: Atomic structure of Ferrite steel (α-steel) BCC and Austenite steel (ϒ-steel) FCC [2] 

Furthermore, when other elements are added to steel, such as carbon or manganese, they occupy a 

position within the respective atomic crystal structure in relation to their atomic size thereby 

forming solid solution. The solid solution formed in steel causes decrease in plasticity of steel, 

increase in electrical resistivity and increase in mechanical strength of steel. Looking closely at the 

addition composition of steel, appropriate design for other mechanical properties such as 

machinability, gain in strength and other fabrication can be achieved. However, in Table 2-1, this 

further explained that the difference in microstructure of steel will lead to variation of strength in 

low and high carbon steel which suggests that all mechanical properties of steel such as 

machinability property are structure dependent [2] 
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Table 2-1: Influence of microstructural constituent on properties of steel [2] 

 

2.1.3 Tool steel:  

The use of Tool steel for engineering purposes can be tailored into the following manufacturing 

operations: forming, Extruding, cutting, drawing, rolling, battening and shearing. So, that the 

combination of metallurgical characteristics such as hardness, wear resistance, toughness and a 

physical property are the requirements in Tool steel during these manufacturing operations to 

obtain an optimum performance. When tool is being selected, these considerations are very 

important. 
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According to SAE, Tool steel have been classified into six major groups which are: Water-

hardening, Shock-resisting, cold-work, hot-work, high speed and special purpose tool steel. These 

groups are based on their applications, quenching methods, special characteristics and the use in 

specific industries.   

2.1.4 Stainless steel 

stainless steels are iron-based alloys that contain minimum of about 12% of chromium. This alloy 

is used for wide industrial, chemical, architectural and general consumer purposes for so many 

years. Stainless steel is also recognized by American Iron and Steel Institute (AISI) as a standard 

alloy. Chromium is the alloying element that imparts to stainless steels their corrosion resistance 

qualities and in addition, it has a wide range of excellent mechanical properties that are not offered 

by another metal alloy. Only few stainless steels contain more than 30% of Cr and less 50% of 

iron. These stainless characteristics are achieved through the formation of an invisible and adherent 

Chromium rich oxide film.  Other elements can be added to improve a unique characteristic of the 

alloy, such elements are molybdenum, carbon, copper, aluminum, titanium, nickel, silicon, 

niobium, selenium, manganese and sulfur. The amount of carbon added can range from 0.03% to 

over 0.1% in certain ranges.  

2.2 Metallurgical structure of stainless steels: 

Stainless steels are categorized into five groups according to their metallurgical structures; these 

are; Austenitic, Martensitic, Ferritic, Duplex and Precipitation Hardening. These categories help 

us to have a better understanding of stainless steels usage and their machinability.  

2.2.1 Austenitic stainless steels: 

The most famous of all stainless steel is Austenitic alloy probably because of its ductility, ease to 

work on and corrosion resistance making up to 65-70% for the past years ( [3] [4]. All Austenitic 

categories are derived from 18Cr-8Ni stainless steels but the most often used of this category is 

AISI 200 and 300 series. However, consumers have recorded a constant machinability difficulty 

with this category of grade. This can be explained due to the work hardening of the material during 

machining operation [4]. Austenitic stainless steel alloys are non-magnetic that can be 

strengthened by cold work but through traditional heat treatment, it can be hardened [5] [3]. Abou 

and Yahya further identified that during machining operation of austenitic stainless steel, a lot of 

Built up Edge (BUE) and irregular wear difficulty are found on the tool flank face and the crater 
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face making the surface integrity of the work and tool wear rate to be worsened by this BUE impact 

in the process [5]. 

2.2.2 Martensitic stainless steels: 

These are stainless steels that are standard straight 400 series that contains 11-18% Cr, almost 

1.2% Carbon, small amount of manganese and Nickel. This series can be hardened by heat 

treatment which can be heat treated up to a tensile strength of 1379MPa (200,000psi) (design and 

guidelines page 4). Excellent wear or abrasion resistance are typically exhibited by martensitic 

steels but this series have low corrosion resistance than austenitic. 

2.2.3 Ferritic stainless steels: 

Ferritic stainless steels, Figure 2.2a are alloy of chromium that can be recognized by 400 series 

range. This stainless steel can only be reasonably hardened by cold work not by heat treatment. 

These series of stainless steels have good ductility, magnetic, resistance to corrosion and oxidation 

which can be improved by addition of chromium and molybdenum contents. Also, reducing the 

carbon and nitrogen contents the weldability, ductility and toughness can be improved. 

2.2.4 Duplex stainless steels: 

Duplex stainless steels, Figure 2-2b are almost 50-50 balanced dual phase materials of ferrite and 

austenitic. Meaning it is a mixed microstructure of ferrite and austenitic which has been in 

existence nearly 80 years ago. Most of its grades contain Molybdenum, Nickel and Chromium 

alloys [6].  

                    

(a) Ferritic Structure   (b) Duplex Structure        (c) Austenitic Structure 

Figure 2-2: The microstructure of stainless steels from ferritic to Duplex to Austenitic [6] [7] 
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According to IMO [6], the yield strength of a duplex stainless steel is as twice as that of non- 

nitrogen alloyed austenitic grades. For a higher alloyed grade, the chip morphology during 

machining of duplex stainless steel is strong and abrasive to tooling. Also, duplex stainless steels 

are produced with low Sulphur content which result in low chip breakage. This further defined the 

reason why duplex stainless steels are usually difficult to machine than the grade of 300 series-

austenitic stainless steel Figure 2-2c [6] [8]. According to Hsien-Lung Tsai [9], duplex stainless 

steels are found useful mostly in oil and gas platforms, and unique application in wastewater, 

marine engineering and chemical industries. 

2.2.5 Precipitation Hardness stainless steels: 

Nickel-chromium are the major alloys and some alloys such as copper and aluminum are 

commonly found in S13800, S15500, S17700 and S17400 grades of Precipitation Hardness 

stainless steels Figure 2-3. These grades can be achieved by combining a low temperature (9000F) 

aging treatment with cold working methods [8]. It was also discovered that prior to hardening of 

Precipitation hardness stainless steel, its machinability is slightly less or equal to type 304 

annealing condition [8] [10]. 

 

Figure 2-3: comparison of material stress – strain characteristics for different types of stainless 

steels [6] 



Page 13 
 

2.3 Characteristics of stainless steel 

Corrosion and Heat resistance: generally, depending on the alloy composition, stainless steels 

have good corrosion resistance to acid, moisture, atmospheric environment and other hostile 

environment at low and high temperatures. [8] 

Strength: as it can be seen in Fig above (write the fig) parts that are made by stainless steels are 

often stronger than non-ferrous steels and mild steels regardless of the environment expose to [8] 

Durability: due to enhanced manufactures reputations by products made from stainless steels, 

the combination of strength and corrosion resistance of this material has called for lifetime usage 

of products made from this material [8] [11] 

Low maintenance: most of the home equipment, chemical industry and domestic tools are 

stainless steels which does not require protective coatings or special surface treatment that will 

depreciate leading to constant or periodic maintenance.  

Fabrication flexibility: stainless steels can be welded, cold formed, forged, extruded and 

machined by different conventional fabrication techniques [8] [10]. Combining moderate and 

appropriate machining parameters, a desired part can be machined. 

2.4 Stainless steel in Industry  

According to Baddo [11], as at 2008, the annual consumption of stainless steels has gone up to 5% 

for two decades Figure 2-4. However, recent report by Engineering News [12], showed that 

stainless steel production has increase globally by 8.3% in 2015 [12]. It was estimated that in 2006, 

a total of about 4 million tons of stainless steels were used for construction purposes globally [11] 

[13]. This account for about 14% of total quantity used.  

Duplex grades are found mostly in construction industries for Facades, structural design and 

roofing than Austenitic due to high strength and corrosion resistance [11]. Also, X5 CrMnN 18 -

18 Austenitic stainless steels have become valuable in the area of Fossil fuel power plants because 

of its creep rupture features and high oxidation [14]. In heat resistance, stainless steels, which 

contains of 3%Co-12%Cr composition makes it suitable for critical part in ultra-super critical 

power plant equipment [14]. Ferritic stainless steels are used for rail transport, vehicle Chassis and 

frame [15], Mining and power generation due to its better atmospheric corrosion resistance and 

mechanical properties [15]. 



Page 14 
 

 

  

Figure 2-4: adapted from MCI [16] 

2.5 Cutting behavior of stainless steel 

2.5.1 Introduction 

Generally, stainless steels are hard to cut with a very short tool life and poor surface finish [14]. 

Many research works have been carried out on cutting behavior of stainless steels using various 

combinations of feeds and speeds to overcome different cutting challenges. According to Lin [17], 

access problem in drilling stainless steel is unavoidable due to impossible prevention of burr 

formation. According to Ihsan [18], turning test were carried out on AISI 304 Austenite stainless 

steel to determine the optimum parameter for machining of this material and he found out that tool 

flank wear decrease with increase in cutting speed. He also noticed that on this material, surface 

roughness values were also found to be decreased with increase in cutting speed which could be 

due to the influence of built up edge (BUE) [18]. 

2.5.2 Physical and chemical properties  

Physical properties: stainless steel has a wide range of physical properties. It must be noted that 

some of this wide range in properties are due to difference in Chromium percentage or content. 

Before I talk about some of stainless steel grades properties, I will highlight some general 

properties of stainless steels such as corrosion resistance which is usually between 13% - 26% 
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chromium depending on the environment. Work hardening comprises of cold wok and annealing 

which enhances its fabrication. Ductility in stainless steel helps to deform the material which can 

therefore be drawn into wire. Tensile Strength in stainless steel is considered to be very high 

compare to other mild steels. Other general properties include: acid resistance, base resistance, 

cryogenic resistance, hot strength, very poor heat and electricity conductivity [19]. 

2.5.3 Chemical contents and composition 

Table 2-2: compositions of an ideal stainless steel 

 Element Effect on stainless steels 

1 Chromium Oxidation resistance 

2 Nickel Austenite former-increase resistance to mineral acids 

Produce tightly adhering high temperature oxides 

3 Molybdenum Increase resistance to chlorides 

4 Copper Provide resistance to sulfuric acids 

Precipitation hardener together with Titanium and Aluminum 

5 Manganese Austenite former- combine with sulfur 

Increases the solubility of Nitrogen 

6 Sulfur Austenite former- improves resistance to chlorides 

Improves weldability of certain austenitic stainless steels 

Improves the machinability of certain austenitic stainless steels 

7 Titanium Stabilizes carbides to prevent formation of chromium chloride 

Precipitation hardener 

8 Niobium Carbide stabilizer- Precipitation hardener 

9 Aluminum Deoxidizer-Precipitation hardener 

10 carbon Carbide former and strengthener 

 

2.5.4 Chip formation 

In 1940, Ernst and Marchant [20] [21] [22] came up with analytical model of chip formation that 

was based on assumptions of shear angle and chip formation [22] forgetting to take in 

consideration other features such as thermal softening, phase transformation, shear localization 
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band formation and serrated chip formation [22], although it was suggested that these short 

comings came as a result of inadequate experimental technical knowhow.  

In drilling, cutting is considered to be a three-dimensional process involving complex mechanism 

due to complex edge geometrics [23]. This means that drilling will be made smooth and easy if it 

forms a well broken chip during this process but during drilling austenite stainless steels which are 

ductile materials, formation of a well broken chips was not experienced rather, continuous chip 

was formed [24]. 

 Biermann and Steiner [25] discovered in their investigation that because of mechanical machining 

challenges the tools are exposed to during machining, austenite stainless steels featured a high 

ductility and toughness thus promotes burr formation. They further explained that the tools are 

also exposed to adhesive wear that lead to the formation of built up edge [25].  

According to Denkana and Toenshoff [26], during cutting and abrasion processes, chip formation 

was described as a process whereby cutting edge penetrates the workpiece material which in turn 

deformed plastically and slides off along the rake faces of the cutting edge [26]. They further 

explained that this chip formation can be examined within orthogonal plane simply because 

important parts of the materials flow occurred along this plane.  

However, in chip formation, depending on the workpiece material. There are different mechanisms 

of chip formation depending on the deformation behavior which can results in either continuous 

or discontinuous work flow. This work flow mechanism can further be classified as [27]: 

▪ Discontinuous chip formation which is common in brittle materials at low cutting speed, 

high tool-chip friction, large feed and depth. 

▪ Continuous chip which is common in ductile materials, small feed and depth of cut. 

▪ Continuous chip with built up edge which can found in ductile material at low to medium 

speed. 

▪ Serrated chip which is found in difficult to machine metal at high cutting speed. [27] 

Generally during machining process, the cutter tooth shears from the surface of the work piece, 

giving it a define shape. This shear result is originated from friction of the chip hovering the surface 
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of the rake face Figure 2-5 (a and b) of the tool. Therefore, the built-up friction between the chip 

and the tool leads to the rake wear on the tool.  

 

Figure 2-5: (a). Mechanics of orthogonal cutting (b). theory of chip formation [27] [28]. 

Rake angle: α             Shear angle: ∅ 

           (2-1) 

            

      

           (2-2)  

Where r is always less than 1 

According to [29], in their study during milling stainless steel 3Cr13Cu, they discovered that 

boundary wear and serrated chip of cemented tool are closely related to mechanical fatigue crack 

formation. Furthermore, these chips provide more understanding into the machining process and 

can be used as an analytical tool into cutting speed, temperature, speed, tool geometry, material 

type, tool wear and overall process effectiveness. 
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2.6 Milling consideration for stainless steel 

2.6.1 Introduction:  

One of the most significant manufacturing process is milling. This type of manufacturing process 

is classified by the fact that the interruption of cut is almost unavoidable. Typically, there are four 

types of manufacturing processes that are primarily different in operations namely: 

 Material removal processing which includes: milling, drilling, grinding and turning, 

 Deformation process such as forging, rolling, Extrusion 

 Solidification process such as modelling and casting. 

 Particulate processing such as sintering and pressing. 

Material removal processing Table 2-7, which is the area of focus in this project for the author is 

further classified into three sub group namely: 

 Convectional process 

 Abrasive process 

 Non-traditional machining 

 

Figure 2-6: (a) orthogonal cutting (b) oblique cutting 
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The diagram below shows the trend for this project (highlighted in red) 

 

Figure 2-7: classification of material removal process 

Milling can basically be grouped into two types of operations such as up milling (conventional 

milling) Figure 2-8 (b) and down milling Figure 2-8 (a) (climb milling) [30]. In climb milling 

figure A, the operation usually starts from the top of the workpiece and experience maximum chip 

width that latter reduces.  

                

Figure 2-8: (a) Climbing milling (b) conventional milling [31] [32] 
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It was also noted that in climbing milling Figure 2-8 (a), less machine power is exerted as the force 

is acting downward on the workpiece in the direction of gravitational force thereby causing the 

operation to be cost effective and suitable to operate. [30] [31]. However, in conventional milling, 

the work piece and the tool meet at the bottom then figure 2-8 (b), up where the chip width starts 

from zero and then increases. In this type of milling, more power is needed to as a result of friction 

generated by the chip formation from small width size to big size. [31]. 

In the Figure 2-9, different forms of milling can be established as mechanical overload and thermal 

shock are the mechanism that can act in parallel while inserts will serve as the biggest component 

of mechanical load that will penetrate the cut and thermal shock will act as the inserts leaving the 

cut and go into the cutting fluid [31] [33]. 

 In addition, looking at the Figure 2-9, the radial engagement will represent the time of contact 

with the thermal load and the cutting speed will serve as the magnitude of the same thermal load 

[31]. Critical analysis from this figure shows that increase in the breakage resistance of the inserts 

due to this mechanical impact can increase the tool life for milling operations [31] [33]  

 

Figure 2-9: different milling operations [33] 

2.7 Influence of different cutting parameters 

Is well established that the variables that are easily changed by operator during machining or metal 

removal are feed rate, cutting speed, depth of cut- axial depth of cut and radial depth of cut. These 

parameters have direct impact on the surface roughness and the rate of metal removal. Several 
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Literatures have revealed that the two major variables among others that has most influence on 

tool life are cutting speed and feed rate commonly denoted by Vc and Fz respectively. Therefore, 

good understanding of these parameter in machining stainless steel is highly recommended.  

2.7.1 Cutting speed (VC) 

This can be defined as the largest of the relative velocity between the cutting tool and workpiece 

material [34]. According to Oosthuizen [31], cutting speed affects the tool tip temperature 

severely. He also added that a low speed can minimize tool edge temperature thereby increase tool 

life that are sensitive to high temperatures. In milling process, the cutter moves to generate cutting 

speed which is expressed in units of meter or feet per minute [34]. Equation 2 shows how to 

calculate cutting speed: 

           (2-3) 

 

where: V = Cutting speed (m/min) 

D = Tool diameter (min) 

n * = Spindle speed (rpm)                                                       

 

Figure 2-10: cutting speed and the parameters related to cutting process. [34] 

 (n*=spindle speed, V=cutting speed, fz=feed per tooth, D=tool diameter) 

2.7.2 Feed per tooth (FZ) 

During machining operation, the relative movement between the tool and the workpiece can be 

described as Feed Figure 2-10, [34]. This can be expressed in millimeters on inches per min, the 

author further said that Feed rate is less affected by temperature at the cutting edge. In machining, 

it is always advisable to use the highest feed rate because material removal rate is directly 

v =
π. D. n ∗

1000
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proportional to the feed rate [31]. It also worth noted that in milling operation, the capability of 

each tooth defines the limits for the tool [34]. This relationship can be shown in the equation? 

below:  

            (2-4) 

where:  

Fz = feed per tooth(mm/rev*teeth), Vf = feed speed (mm/min), N* = spindle speed(rpm), Z = 

number of cutting teeth. The figure below shows the feed and the related parameters. 

  

Figure 2-11: feed variable and the parameters [34] 

2.7.3 Influence of axial depth of cut (ap) 

This is depth the tool penetrates the workpiece usually measured along the axis [34] . According 

to machining guidelines [33], it was shown that a reduced tool life is faintly associated with an 

increase in axial engagement. Oosthuizen in his research said that therefore it is important that the 

depth of cut should be bigger than the work-hardened layer cut from the previous cut [31]. 

2.7.4 Influence of radial depth of cut (ae) 

This is the distance by which the tool covers the workpiece surface measured along the cutting 

tool diameter [34]. The radial cut influence the tool life and the removal rate mostly when it is 

deeply plunged into workpiece which ultimately increases the removal rate. It is also 

recommended that for every new insert, the best balance for good removal rate and a lasting tool 

life must be established because the relationship between radial cut and depth of cut is crucial [31].   

fz =
Vf

n ∗. z
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2.7.5 Coolant 

The common term used in industry to describe coolants and lubrications used in machining is 

“Cutting fluids” this can be made up of dissolved chemicals (such as sulfur, chloride, or 

phosphorous) usually water based fluids [35]. The goal of machining industries is essentially for 

high removal rate of material and the quality of the product machined, but there are problems 

associated with this which are caused by high temperature developed during machining [36].  They 

further said that due to this effect, premature tool failure and dimensional deviation cutting tools 

are always the result in machining.  

Currently what coolant does is to reduce these effects of heat generated at shear zone and friction 

zone which in turn elongate the tool life. Venugopal et al, investigated the tool wear and tool life 

of carbide inserts in turning of Ti- 6Al-4V alloy under dry, wet and cryogenic environments and 

came to conclusion that there were less tool wear parameters under the influence of cryogenic 

machining compare to dry machining [37].  

According to Domenico [38], in his work to understand the effects of cryogenic coolant application 

and machining surface alteration during orthogonal machining of hardened AISI5200 bearing 

steel, he found out that the white layer is partially reduced or it can be totally removed under certain 

process parameters and cryogenic cooling condition [38]. 

2.7.6 Temperature 

Cutting temperature is known to affect and influence the tool wear progressively both in cutting 

forces of milling operation and in the tool life [31]. According to Dar and Kamruzzaman [39], in 

their investigation on the role of cryogenic cooling by liquid nitrogen on cutting temperature shows 

that tool life improved substantially mainly by the reduction in cutting temperature. Childs et al  

[40] , estimated cutting edge temperatures in micro machining of Cu-Ni alloys with single crystal 

diamond tools and concluded that thermal activation depends on temperature with action energy 

53 plus or minus 6 KJ/mol [40]. Oosthuizen [31] further added that a cutting material that has a 

relative high transverse rupture strength and thermal conductivity can generate aptitudes for high 

temperature together with increase mechanical shock resistance. 

2.7.7 Cutting force 

This is the force acting on tool during machining under specific condition [41]. Good machinability 

is defined as an optimal combination of factors such as low cutting force, good surface finish, low 
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tool temperature and low power consumption [41]. Jitendra Thakkar et al results indicated that 

feed rate and depth of cut both have significant influence on cutting force as well as surface 

roughness  [42]. The cutting forces needed when machining stainless steels are slightly lower 

compare to the required cutting forces in Titanium [31]. 

2.8 Cutting materials and insert configuration 

Recently with the new development in technologies, we have witnessed an increase in the quality 

of cutting tools which has led to global increase in production [31] [43]. Cutting tool inserts are 

disposable attachments used in cutting tools that usually contain the real cutting edge.  

Applications of Cutting tool inserts includes boring, construction, cutoff and parting, drilling, 

grooving, hobbing, milling, mining, sawing, shearing and cutting, tapping, threading, turning, and 

brake rotor turning [44]. 

2.8.1 Geometries and Uses of cutting tool inserts 

Cutting tool inserts can have many different geometries. These geometries are based on 

dimensions and tolerance which can be denoted by ISO standards, ANSI (America) and JIS, CIS 

from Japan [31] . In Figure 2-12,  Round or circular inserts are used in applications such as button 

mills or in radius groove turning.  Some types are adjustable to employ unused edge portions once 

part of the edge is worn.  A diamond insert is a four-sided insert with two acute angles used for 

material removal.  Triangle inserts have a triangular shape; three equal sides and three tips with 

included angles of 60°.   

A trigon insert is a three-edged insert like a triangle, but with a reformed triangular shape, such as 

bowed sides or intermediate angles on either side, just to allow for higher built-in angles at the tips 

[44].  Square cutting tips have four equal sides [45] [44].  Rectangular inserts have four sides, two 

of which are longer than the other two.  These inserts are often used for grooving, etc., where the 

short sides contain the actual cutting edge.  Rhombic or parallelogram inserts are four-sided, with 

an angle on the sides for cutting point clearance.  A pentagon insert has five equal sides and angles.  

An octagonal insert has eight sides, typically Indexable in nature [44].    
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Figure 2-12: common insert geometry [31] 

2.8.2 Types of inserts tips 

In addition to inserts that are defined by their geometry, a few types are differentiated by their tip 

angles.  A ball nose mill is an insert with a hemispheric "ball nose" whose radius is one half of the 

cutter diameter, useful for machining female semicircles, grooves or radii.  A radius tip mill is a 

straight insert with ground radius on tips, typically for use on milling cutters.  In a chamfer tip mill 

the insert side or ends contain an angled section on tip to produce an angled cut or a chamfered 

edge on the workpiece, typically attached to milling cutter holders.  A dog bone is a two-edged 

insert with a narrow mounting center and, as the name implies, a broader cutting feature on both 

ends, often used for grooving. The following angles figure 2-13 can be found on the tips of an 

ordinary cutting tool inserts: 35°, 50°, 55°, 60°, 75°, 80°, 85°, 90°, 108°, 120°, and 135° [44]. 
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Figure 2-13: Typical insert shapes and Tip angles [44] 

2.8.3 Key Specifications in cutting tool inserts 

The diameter of the circle or The Inscribed Circle (I.C.), that fits completely within the insert 

geometry generally classifies insert size [45].  This is can be found mostly in Indexable inserts, 

except for rectangular and some parallelogram inserts, where length and width are commonly used.  

Important specifications for cutting tool inserts include thickness, radius if applicable, and chamfer 

angle if applicable. Common features for Cutting tool inserts include unground, Indexable, chip 

breaker, and dished [45]. Some common factors can also be considered when selecting tool inserts 

shapes Figure 2-3.  
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Table 2-3: factor affecting choice of insert shape [44] 

 

2.9 Material for cutting tools 

Generally, during machining process, different workpiece requires different cutting tool materials. 

But ideally a cutting tool material must have the following trade off characteristics [46]: 

 High temperature stability 

 Ability to resist wear and thermal shock to certain level 

 Impact resistance 

 Must be harder than the workpiece 

 Chemically inert to the work material and cutting fluid or coolants 

Inserts are usually made of carbide, micro grain carbide, CBN, ceramic, cermet, cobalt, diamond 

PCD, high-speed steel, and silicon nitride, Figure 2-14. Different coatings are used in cutting tool 
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inserts such as: titanium nitride, titanium carbo-nitride, titanium aluminum nitride, aluminum 

titanium nitride, aluminum oxide, chromium nitride, zirconium nitride, and diamond DLC. 

 

Figure 2-14: Cutting tool material chart [47] (source: Mitsubishi) 

2.9.1 High Speed Steel  

The High-Speed Steel (HSS) tools which form an important part category in metal cutting are so 

named because they were developed to cut at higher speeds. Developed around 1900 HSS are the 

most highly alloyed tool steels. The tungsten (T series) were developed first and typically contain 

12 - 18% tungsten, plus about 4% chromium and 1 - 5% vanadium [48]. 

 Most grades contain about 0.5% molybdenum and most grades contain 4 - 12% cobalt. HSS tools 

are tough and suitable for interrupted cutting and are used to manufacture tools of complex shape 

such as drills, reamers, taps, dies and gear cutters [48] [49]. Tools may also be coated to improve 

wear resistance. HSS accounts for the largest tonnage of tool materials currently used. Typical 

cutting speeds: 10 - 60 m/min. 

2.9.2 Cast Cobalt Alloy 

This material was made known to industries in early 1900s these alloys have compositions of about 

40 - 55% cobalt, 30% chromium and 10 - 20% tungsten and are not heat treatable. Maximum 
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hardness values of 55 - 64 Rc. Cast cobalt Alloys have good wear resistance but are not as tough 

as HSS but can be used at somewhat higher speeds than HSS. Now only in limited use [48]. 

2.9.3 Carbon Steel 

Since the 1880s, Carbon steels have been used for cutting tools. However, at 1800C temperature, 

carbon steels start to manifest a softness. This constraint means that such tools are hardly utilized 

for metal cutting operations. But the plain carbon steel tools, which contains about 0.9% carbon 

and about 1% manganese, hardened to about 62 Rc, are commonly used for woodworking and they 

can be used in a router to machine aluminum sheet up to about 3mm thick [31] [49]. 

2.9.4 Cemented Carbide or simply Carbide 

There are two groups used for machining which are tungsten carbide and titanium carbide, both 

types may be coated or uncoated [48]. It has high hardness over a wide range of temperatures, high 

thermal conductivity, high Young's modulus making them effective tool and die materials for a 

range of applications [50]. Tungsten carbide particles (1 to 5 micro-m) are bonded together in a 

cobalt matrix using powder metallurgy.  

The powder is pressed and sintered to the required insert shape. titanium and niobium carbides 

may also be included to impart special properties. A wide range of grades are available for different 

applications. Sintered carbide tips are the dominant type of material used in metal cutting [48].  

The proportion of cobalt (the usual matrix material) present has a significant effect on the 

properties of carbide tools. 3 - 6% matrix of cobalt gives greater hardness while 6 - 15% matrix of 

cobalt gives a greater toughness while decreasing the hardness, wear resistance and strength. 

Tungsten carbide tools are commonly used for machining steels, cast irons and abrasive non-

ferrous materials [46] [48]. 

 Titanium carbide has a higher wear resistance than tungsten but is not as tough. With a nickel-

molybdenum alloy as the matrix, TiC is suitable for machining at higher speeds than those which 

can be used for tungsten carbide. Typical cutting speeds are: 30 - 150 m/min or 100 - 250 when 

coated [46]. 

2.9.5 Coating 

Often times carbide tool tips are coated to improve tool life or to enable higher cutting speeds. 

Coated tips Figures 2-15, typically have lives 10 times greater than uncoated tips. Common coating 
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materials include titanium nitride, titanium carbide and aluminum oxide, usually 2 - 15 micro-m 

thick. Often several different layers may be applied, one on top of another, depending upon the 

intended application of the tip. The techniques used for applying coatings include chemical vapor 

deposition (CVD) plasma assisted CVD and physical vapor deposition (PVD). Diamond coatings 

are in high demand for metal cutting use and further development are still ongoing [50] [46] [32] 

[48]. Various methods of attaching carbide inserts to tool holder is shown in Figure 2-16. 

 

 

 

 

             

 

 

Figure 2-15: surface of a multi-layer coated carbide insert (b) different shapes of inserts [49]  

 

Figure 2-16: method of attaching carbide inserts to tool holder [49] 

 

2.10 Machining performance assessment 

2.10.1 Tool life 

  Generally, Tool wear can be regarded as a gradual failure of a tool due to constant operation as 

usage. While Tool life can be defined as the length of cutting time a tool can be used until the tool 

carbide insert t 

carbide insert t 

carbide insert t 

seat 

seat 
clam p 

tool holder tool holder 

lockup n 

braze 

Methods of attaching carbide  

inserts to tool holder:  

( a) clamping; (b) wing lock pins;  

and (c) brazing 
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reaches catastrophic failure.  According to [50] and [51], Tool life is usually defined by Flank wear 

because of its major influence this factor has on surface finish and dimensional accuracy of the 

part that is being machined. It is also noted that as the flank wear increases, surface roughness also 

increases. Therefore, a common way of quantifying the end of a tool life is by putting a limit to 

the maximum acceptable flank wear denoted as VB. See Table 2-4 below: 

Table 2-4: Typical VB [52] 

HSS tools, roughing 1.5 mm 

HSS tools, finishing 0.75 mm 

Carbide tools 0.7 mm 

Ceramic tools 0.6 mm 

 

 However, process reliability can be greatly influenced by crater wear as this factor leads to 

immediate breakage because of tool chipping [31]. A failed cutting tool mostly causes problem 

with surface quality of workpiece and it has been suggested and estimated according to literatures 

that a flank wear scar band width should be as high as 0.3mm for experimental purposes [31]. 

In the figure below, a typical wear growth curve can be grouped into three sections, the break-in-

section usually at the early stage of the tool usage which shows the sharp cutting edge wears 

quickly. Steady-state region is the second section with a relative uniform wear.  

According to the Figure 2-17, the part which indicates the first slope is highly dependent on the 

work material and cutting conditions. This simply means that the harder the workpiece the steeper 

the slope which eventually the beginning of the accelerated failure sections [31] [53].     
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Figure 2-17: Tool life [53] 

A widely known equation called Taylor equation has been established to determine tool life as a 

function of cutting speed. This can be expressed as:  

    VTn = C  

Where:  

   Table 2-5: Definition of Taylor’s equation  [50] [53] 

vc cutting speed 

T tool life 

n and C constants 

    

The constant c and n can be found for a tool material and specific workpiece while feed is extracted 

from experiment or from published data [48] [50] 

2.11 Factors affecting tool life 

There is a strong relationship between the rate of wear and the life span of a tool [54] [55]. This 

relationship can be largely affected by some influencing factors that are listed below; 

 Types of surface on the metal (scaly or smoothness) 

 Profile of the cutting tool 

Time of cutting (min)   

Steady - state wear region   
Break - in   

Uniform wear rate   

Failure   

Rapid initial wear   

Final failure   

Accelerating wear rate   
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 Speed, feed and depth of cut (axial or radial) 

 Material of cutting tool 

 Microstructure of the material 

 Type of material used 

 Hardness of the material 

 Type of machining operation being performed [54] [55]. 

According to Dimla and Lister work, they were able to established that irrespective of all these 

parameters the cutting speed still contribute the highest influence on tool wear [56]. 

2.12 Tool condition monitoring principles  

In modern manufacturing, tool condition is critically needed in manufacturing process for the 

following reasons: 

 Tool wear considerably affects production operation and thus should be carefully 

monitored to secure consistence product quality 

 The advantage of economically utilizing tool life cannot be achieved without a means for 

tool wear monitoring as a result of variations in tool life. 

 An automated high volume production cannot be sustained without an effective means for 

tool wear monitoring and tool breakage detection [57]. 

There are three major monitoring principles which are; 

 Direct and indirect monitoring 

 On-line and off-line monitoring 

 Contact and non-contact monitoring 

Direct and indirect monitoring: indirect monitoring method operates by measuring process 

variables such as vibration or acoustic emission from the process. Direct monitoring on the other 

hand measures physical geometry of the tool [50]. According to Shao et al [58], the direct method 

is the most accurate because the actual wear easily be measured while indirect method involves 

processing the signal and clear interpretation which may require an expert experience. Indirect 

method can also be referred to as in-process or on-line monitoring. 
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On-line and off-line monitoring:  on-line as the name implies continuously measures and 

interpret incoming signal [50]. This helps to detect any signs the represent gradual wear [50]. As 

for the off-line method, this is suitable when sensors are used to measure cutting edge geometry.  

Contact and non-contact method:  contact method is a system when the workpiece or the critical 

part in the system has a physical contact with measurement instrument. Non-contact does not have 

to be in touch with the critical part in machinery an example can be measurement of surface 

roughness using Electron microscopes. 

2.13 Tool condition monitoring system 

Condition monitoring can be defined as the process of monitoring physical parameters, associated 

with machinery operation, for the purpose of determining machinery integrity [59]. Literatures 

have revealed to us that a lot of researchers have published so many systems that has been 

established in the process of monitoring tool these are listed below: 

 Vibration monitoring system 

 Mathematical modelling – analytical and empirical system 

 Forced based monitoring system 

 Acoustic emission monitoring system 

 Sensor fusion and multiple sensors monitoring system 

 Motor current measurement  

 Vision (optical) measurement system 

 Ultrasonic system 

 Surface texture 

 Laser scatter method 

 Stereo imaging 

 But for the purpose of this research work, the author will focus on few monitoring systems that 

are of concern: 

2.13.1 Surface texture 

This method uses the surface roughness (Ra) of the work piece as the benchmark for tool wear. 

This system of measurement has been carried out both as an on-line and off-line system [50]. Dang 

and Wang concluded that the increase in Ra is caused as a result of waveform being copied by the 
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shape of the tool tip [60]. During experiment, surface roughness is commonly measured 

mechanically by using stylus device. In this process, the most widely used descriptor in 

engineering practice is Ra (average surface roughness) [50]. 

2.13.2 Vibration 

Vibration measurement is well known and a widely-used technique for condition monitoring. In 

Dan and Mathew review, they came to conclusion that vibration signals are vary with tool failure 

in some frequencies this described the relationship between changes in vibration and progressive 

tool wear [61]. Scheffer in his work said that piezoelectric accelerometers can be used to measure 

any vibration generated by oscillation of cutting force and that these accelerometers met the 

ambient requirements for tool wear monitoring because they generally develop resistance to the 

hostile media that exists in machining operation [62]. However, Scheffer identified a challenge 

that can be encounter while using vibration. He said that the main worries of monitoring tool life 

through vibration system is to detect the frequency range that is influencing the tool life because 

most machining process consist of many factors that generates vibration that are not relevant to 

tool wear [62]. 

2.13.3 Forced based monitoring system 

It is a well-known fact that an increase in cutting force components of a vibration is caused by 

worn tools  [63] [64]. Therefore, to develop a monitoring system that will take care of different 

directions for a number of processes, a forced based system is used. Examples of force based 

monitoring tool are: direct measurement dynamometers, piles and rings, pins extension sensors, 

measure of displacement, force measure bearings, force and torque at spindles [62].  

Sikdar and Chen described cutting forces as one of the most reliable methods used to monitor tool 

wear. The further explained into details that flank wear has been identified to increase the cutting 

forces in all the three components: radial, feed and tangential directions [65]. They concluded that 

all the three forces increase suddenly as soon as the tool begins to fail but Cakir and Isik added 

that only tangential force decreases consistently when the tool finally breaks [66]. 
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2.13.4 Acoustic Emission: 

Acoustic emission can be described as an elastic transient wave generated as a result of energy that 

is released from a localized source within a material [67]. According to Li review work, he 

highlighted some basic sources of acoustic emission during tool monitoring as listed below [68]: 

 Fractional contact between the tool flank face and the work piece which eventually leads 

to flank wear; 

 Plastic deformation during the cutting process in the work piece; 

 Plastic deformation in the chip; 

 fractional contact between the tool rack face and the chip which result in crater wear; 

 tool fracture; 

 chip breakage; 

 collision between chip and tool; 

Dan and Mathew [1990] came to conclusion in their review that the AE sensing technique appears 

to be more sensitive to tool fracture than cutting force and tool vibration measurements. This agrees 

with Dornfeld [1994] who indicated that the frequency-range experience during operation for the 

AE signal is far higher than the ambient noise and machine vibrations [61].  

In Kannatey-Asibu and Dornfeld work, they used statistical analysis this revealed a clear 

sensitivity to tool wear when using AE signals [69]. Dimla Snr [70] highlighted that AE is less 

dependent on the cutting tool than on the cutting material, with its signal showing the all the 

activities of the response right from the machine tool set-up. Dimla further highlighted that AE 

may not be an appropriate wear indicator in monitoring applications but could be used to detect 

tool-tip breakage in machining operations [70]. 

Liang and Dornfeld presented a signal-processing system, which uses an autoregressive time-

series to model the acoustic emission generated during cutting. This technique encodes the acoustic 

emission signal features into a time-varying model parameter vector [71].  Li [68], carried out a 

review and he came to conclusion that AE signals depend heavily on process parameters and sees 

the key issues as being how to reduce these effects in intelligent tool wear and fracture monitoring 

using AE signals in his work, he used an acoustic emission for cutting processes in turning which 

includes signal classification and correction; which are processing methodologies, such as time 
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series analysis wavelets and FFT, and finally pattern classification using a fuzzy classifier, a neural 

network and sensor and data fusion [68]. 

Dornfeld et al. [72] argue the accuracy of AE and concluded that AE has been introduced in the 

field of sources so far. Diei and Dornfeld [73]  and Hutton and Hu [74] used the RMS signals, 

(Root Mean Square), and concluded that the signal is a periodic signal which can be regarded as a 

periodic random signal. They used TDA (Time- Domain-Averaging) to decompose the signal into 

a periodic component and concluded that the TDA deviation can be used as a feature for the AE 

RMS signal to detect tool wear because the mean of TDA describes the dynamic component in AE 

RMS therefore this can be linked to tool wear [74]. 

2.14 Tool wear 

Tool wear can be described as the gradual failure of cutting tools due to regular operation. It is a 

term frequently associated with tipped tools, tool bits, or drill bits that are used with machine tools. 

This segment briefly describes mode of failures and types of tool wears. 

2.14.1 Failure mode 

Fracture: this is a mode of failure that are characterized by breakaway of material on the tool edge 

Figure 2-18. Fracture occur mostly when the feed rate is very high. Fracture can also be 

experienced when a very low fracture length is used as mechanical loading exceeds the fracture 

strength of the insert [62]. Temperature failure: this type of failure is encountered when the 

temperature of the tool tip reaches a certain value and plastic deformation is set in. this can also be 

explained that when the tool yield strength is lowered below the existed normal stress [62]. 

Ultimately Temperature failure is recognized by its thermal cracks that occur on the cutting edge 

[31] [53]. 

Gradual wear: this mode of wear manifest on top of rake face and flank. Gradual wear leads to 

reduction in cutting efficiency eventually loss of tool geometry. As the gradual wear scratch 

increases, as so also the tool becomes heavily worn-out [31]. 
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Figure 2-18: Causes, mechanism, types and consequences of tool wear [75] 

2.15 Types of tool wear 

2.15.1 Crater wear 

As stated in the ISO (1993) that crater wear occurs on the rake face and does not usually limit tool 

life although excessive crater wear reduces the cutting edge thereby leading to deformation [76]. 

Oosthuizen Figure 2-19, explained that this type of wear is made because of chips rubbing against 

the surface [31]. Scheffer also stated that the tool-chip interface temperature dominates this type 

of tool failure which serve because of feed rate and speed [62]. 

2.15.2 Flank wear 

The rubbing of the wear land against the machined surface causes damage to the surface, flank 

wear Figure 2-19, occurs on the relief face which results in the formation of the wear land [76]. 

Flank wear can also be a volumetric loss at the top of the tool tip edge that are mainly cause by 

abrasion, it also manifests at a very low operating speed [31]. 
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Figure 2-19: Types of tool wear [31] 

2.15.3 Notch wear 

An extreme case of flank wear can be term as Notch wear consequently reflect at the cutting edge. 

It was also found out that if the original surface is harder or more abrasive in nature than the 

internal material, notch can be experienced [31] [76].  

2.15.4 Nose radius wear 

This type of wear seems to resemble a combination of Notch wear and flank wear; it generally 

occurs on the nose radius of the tool that is on the trailing edge close to the end of the relief face 

[76]. At a high cutting speed, an entire nose may be lost due to the cutting edge deform plastically. 

The wear formed on the nose affects the quality of surface finish [77] [78]. 

2.16 Mechanism of tool wear 

In everyday life, wear of material is constantly experienced as a result of gradual removal of 

materials that are relatively in contact due to sliding motion. It has also been universally established 

that wear and friction has close link. Consequently, friction results in important energy losses, 

while wear is accompanied with increased maintenance costs and costly machine operation 

downtime [79]. He further said that wear, frictional heat, fracture and fatigue are the main factors 

which governs machine tool life time. 
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 Since wear cannot be completely eliminated, but reduced, there are methods used to accomplish 

this such as Lubrication, formation of sufficiently smooth surface, correct assembly and 

exploitation of fitted component part and modification of near-surface materials of frictional 

components [79]. However, different wear mechanisms have been identified in engineering 

practice according to their relative importance in order of wear types as follows: Abrasion, 

Adhesive, Diffusion, chemical reaction and Plastic deformation. 

2.16.1 Abrasion Wear 

Abrasion wear occurs when the softer metal may consist a substantial concentration of hard 

particles therefore, the friction that is created between the flank and the workpiece because of 

sliding chips in the shear leads to what is called abrasion [76] [31]. According to Silva [80], 

abrasion leads to loss of material by the activity of hard constituents as they are swept over the 

tool surface. This wear mechanism occurs progressively on the flank surface which enables us to 

measure and estimate the tool life. Crater wear can be accelerated by diffusion when the crater is 

weakened by diffusion [31]. 

2.16.2 Adhesion (Attrition) 

This can be described as when two materials are forced into contact under high pressure and 

temperatures until they are bonded together [31]. According to [76], at low temperature range and 

relatively low cutting speed, adhesion is the major factor that controls tool wear going through a 

maximum value of wear rate of about 6000C. He further highlighted that asides adhesion activity 

between the tool and the workpiece, resistance to micro-contact damage due to the periodic effect 

of local adhesion forces are the main characteristics determining the life of a tool material in this 

type of wear mechanism [76]. 

2.16.3 Diffusion 

According to Hoglund, when a metallic material glides over another metal causing the temperature 

at their point of contact high, the condition becomes favorable for atoms from the harder metal to 

diffuse into the softer metal therefore increase the hardness of the latter and its abrasiveness and 

vice versa to the extent that particles on both metals are dislodged, torn, or cut off, finally swept 

away by the flowing medium [76] [81]. 

 According to Hastings, Diffusion mechanism becomes a significant factor in tool life at a cutting 

temperature of about 8000C [82]. Loladaze suggests that “high temperature, large rate of 
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deformation and continuous contact at the interface zone facilitate the initiation of intermetallic 

diffusion between the tool and the work piece [83]. 

2.16.4 Chemical reaction 

The thermal activation process (oxidation) due to a chemical reaction between the tool or insert 

and the workpiece can be regarded as chemical wear [31]. The rate of this wear mechanism is 

directly proportional to the temperature of the cutting process.  

2.16.5 Plastic deformation 

The forces acting at the edge of cutting process at a very high temperature normally results to 

deformation plastically hence make it susceptible to abrasion [31]. This is being associated with 

the removal of shared layers resulting from excessive plastic deformation. 

2.17 Process monitoring 

2.17.1 Process monitoring with the use of sensors 

Currently different Sensors are widely used for process monitoring in the industries. Some 

common examples of sensors that are found in the industry are basically force based, power based 

and acoustic emission sensors. However, other sensors Table 2-6, that can be seen around are: 
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Table 2-6: Types of sensors [62] 

Smoke sensor Image sensor Flame sensor 

Sound sensor Tool wear sensor Temperature sensor 

Accelerometer or Vibration 

sensor 

Seismic sensor Tool damage sensor 

Current sensor Lubrication oil detector 

sensor 

Touch sensor 

Limit sensor Edge sensor Speed sensor 

Clamping Force Sensor Torque sensor Acoustic emission sensor 

pH sensor Machined surface 

roughness sensors 

Level meter 

Coolant temperature sensor Thermal deformation 

sensor 

Chip monitoring sensor 

Temperature distributor sensor Dust sensor Humidity sensor 

CO2 gas sensor Pressure sensor  

 

2.17.2 Areas of applications 

Modern manufacturing industries have made us to know that there is a wide range of tool wear 

and surface monitoring systems applications. One of the notable application is On-line monitoring 

of tool wear which permits timely tool replacement with minimum down time [62]. Examples of 

these areas are:  

 Manufacturing of machine components 

 Mass production of household items 

 The automobile industries 

 Electrical and Mechanical product manufacture 

 Computerized Numerical Control (CNC) machining optimization 
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2.18 Artificial/Intelligent monitoring systems 

According to [84], a system can be defined as “Automated/Intelligent monitoring system if it has 

capability of sensing, analyzing, knowledge learning, and error correction features, essential to 

machining tool condition when incorporated”. They further said that this AI system should be able 

to imitate humane capabilities as much as possible their operators. Therefore, for this to be carried 

out, the four components listed below must be included: 

2.18.1 Sensing Techniques 

This simply means indirect sensing techniques such as cutting forces, vibrations, and acoustic 

emission must be used. Although different types of sensors and sensory data from different areas 

are employed to yield optimum and valuable information [84] 

2.18.2 Feature Extraction systems 

Normally, signal from sensors contain the necessary information that are needed to separate 

between different process and tool conditions. Because the raw signals usually contain noise as 

such need further filtering and processing.  

2.18.3 Decision making systems 

Decision making strategies deal with processing of incoming signal features and perform a pattern 

association assignment, structure the features to proper classification of tool condition which 

depends on the target of the investigator.  

2.18.4 Knowledge learning systems 

“In order to make a correct decision, learning algorithms have to be provided. Such algorithms 

tune system parameters by observing the sample features corresponding to different tool 

conditions. Like human operators, automated monitoring systems should have the ability to learn 

from their experiences (past work) as well as from the new information generated from the 

machining process” [84]. 

2.19 Tool wear monitoring Techniques 

2.19.1 Direct and indirect monitoring technique 

There are two approaches that have been traditionally categorized as measuring techniques for the 

monitoring of machining operation; these are direct and indirect [85]. During direct approach, the 
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actual quantity of the variable such as tool wear is measured. According to Schaeffer, this deal 

with a measurement of volumetric loss at the tool tip [62].  

Examples of direct measurement are found in the use of radioactive isotope, laser beams, electrical 

resistance, cameras for visual inspection. It was also revealed by [85] direct technique is suitable 

for laboratory research work due to its high degree of accuracy and practical limitations caused by 

accessing problem during machining and the use of cutting fluid.  

However, indirect methods are less accurate than direct techniques but has its advantages over 

direct by having less complex process, cost effective and more suitable for practical applications 

in industries [62]. Indirect methods make use of a pattern in sensor data from process to detect 

failure mode therefore [62], both direct and Indirect method is greatly employed in this research 

work see Table 2-7. 
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Table 2-7: Examples for direct and indirect tool wear sensing methods [86] 

Wear or process parameters Examples for measurement procedures and 

transducers 

 Direct methods 

Shape or position of the cutting edge 

or the wear area 

Measurement with optical methods (e.g. CCD 

camera or fiber optic sensor) or integration of thin 

film sensors into the coating of a cutting tool 

Volumetric overall loss of the tool Measurement of size and concentration of wear 
particles in the coolant (and electrochemical 
analysis) or measurement of radioactivity (for 

specifically, prepared tools) 

Changes of the electrical resistance 

at the junction of tool and workpiece 

Voltage measurement at a specific, conductive 

tool coating 

Changes of workpiece dimensions Dimension measurement by means or 

micrometers or optical, pneumatic, ultrasonic, or 

electromagnetic transducers 

Change of distance between tool 

(or tool holder) and workpiece 

Distance measurement by means of micrometers, 
pneumatic gauges, displacement transducers (e.g. 
inductive or capacitive), or ultrasonic sensors 

Indirect methods 

Cutting forces Force measurement with strain gauges or 

piezoelectric sensors at the tool or at (or in) the 

tool holder, piezoelectric force measuring plates 

or rings at the turret, force-measuring bearings, 

torque measurement at the main spindle 

Vibration of tool or tool holder Vibration measurement with accelerometers 

Substrate-borne or airborne sound Acoustic emission (AE) measurement by means 

of transducers integrated in the tool 

holder or coupled via the coolant; measurement 

of acoustic (audible) signals with microphones 

Electrical current, power, or energy Measurement of current or power consumption of 

spindle or feed motors (e.g. ampere meter or 

dynamometer) 

Cutting temperature Temperature measurement by means of 

thermocouples or pyrometers, reflectance of chip 

surface or chip color 

Roughness of the machined surface Measurement with a mechanical stylus or optical 

methods (e.g. CCD camera or fibre optic sensor) 

2.19.2 Continuous and intermittent monitoring technique 

In continuous monitoring technique, the variables that are measured are available during the course 

of the machining process which assist in the online classification of the process and make sure that 

any unexpected changes can be responded to in time [62]. For intermittent monitoring methods, 
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the variables can only be recorded during intervals in the machining process. Clearly there are 

shortcoming attached to this starting from loss of time and high cost. A good example of this 

practice can be found in the application of an intermittent system to detect wear measurement on 

a periodical set of tools while machine is engaged with a different tool [62]. 

2.19.3 The use of sensors for tool wear monitoring  

The use of sensors for tool wear monitoring usually takes place in an uncomfortable environment 

this can be a harsh weather, cryogenic environment, superheat environment or in the sea. Sensors 

that are used for tool wear monitoring should therefore be simple, flexible to operate and robust. 

Often times the use of multiple sensors is required to improve the performance of tool wear 

monitoring system because each sensor is independently connected to the tool wear. 

2.20 Acoustic emission and sensors in tool wear monitoring 

2.20.1  Acoustic emission and tool wear monitoring 

Acoustic emission (AE) can be commonly defined as transient elastic waves that are released 

within a material caused by the discharge of localized stress energy. During metal cutting, the 

workpiece undergoes substantial plastic deformation associated with the generation of Acoustic 

emission.  During chip formation AE is linked to the plastic deformation process because of 

interaction between the workpiece and cutting tool [87]. According to Blum et al, AE is normal 

discovered to be more sensitive to tool wear than cutting forces [88]. 

 Chao et al, developed a real- time tool breakage detection system for turning by the sensor fusion 

of an acoustic emission sensor and a built-in-force sensor. They used an inbuilt piezoelectric force 

sensor was used to measure the cutting force without altering the characteristics of the machine 

tool dynamics. The experiment was carried out using carbide inserts that has two tips. They 

concluded that whenever a tool breakage is experienced a noticeable drop in AE burst was used to 

detect cutting force change [89] .  

Jemielniak and Otman used a statistical signal-processing algorithm to detect the root mean square, 

Kurtosis and skewness of the acquired AE signal in the detection of catastrophic tool failure [90]. 

In Lee research work [91], he cited that “Kakade et al applied AE analysis on the effect of tool 

wear and corresponding change in chip-form in face milling by selecting AE parameters namely 

ring-down count. Rise time was recorded simultaneously with the corresponding flank wear land 
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length measured at fixed intervals. The results concluded that AE may be readily used for in-

process monitoring of chip status and consequently tool monitoring” [91] [92]. 

Blum and Iwasaki carried out investigations to determine the influence of cutting conditions on 

the generation of AE signals during machining S45C steel. The AE signals and tool dynamometer 

signals provided extensive theoretical and data relationships between the energy packet of the AE 

and the deformation both in primary and secondary zone during cutting process [88].  

2.21  Acoustic Emission wave parameters 

The AE burst shown in Figure 2-20 can explained the parameters commonly found in in a typical 

AE signal. They are as follows: event, ring down count, event energy, duration, rise time, and 

event energy. 

 

Figure 2-20: definition of common AE waveform parameters [93] [94] [95] 

Ring down count: this is the number of times a signal exceeds a pre-set threshold. This is a 

measure of signal size therefore; a large signal will automatically present more count. 

AE RMS: Root Mean Square is a value of input signal and the energy content of the acoustic 

emission signals that are related to energy release as mention earlier that it is the attributed to the 

transient release of energy in a material [96]. It can simply be termed as a measure of signal 

intensity. 
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Signal amplitude: an important parameter that defines the detect ability of the event is signal 

amplitude. Therefore, the maximum value of amplitude of the received signal is called signal 

amplitude [96]. It is also the suitable variable to be used for attenuation dimension. 

Duration: the time between the point at which the event goes below the threshold and above the 

first threshold is called duration. This factor is closely correlated to the ring down count but most 

utilized for discrimination than measurement of emission variables. According to [96] signal from 

electromagnetic interference typically have very short durations, therefore, the duration is 

parameter can be used to filter them out. 

Rise time: Rise time can be described as the point at which the event first goes above the threshold 

level and the point at which the amplitude reaches peak value [96]. This parameter has similar 

features as Duration. 

Energy: this can be defined as the integral of the squared amplitude over time of signal duration.  

2.22 Acoustic emission and sensor in tool wear monitoring 

Acoustic emission technology has been discovered to be among the most suitable method to detect 

the rates of a very small energy release [70] [59]. AE has a very high sensitivity in detecting the 

loss of mechanical reliability when compare to the well-known vibration monitoring methods thus 

making it to have an edge over vibration techniques for tool wear monitoring [97] [98]. Because 

AE can provide effectiveness and superiority of a detectable indication from a minor defect, it has 

capability of giving early warning of emerging problems in other for proactive maintenance to be 

conveniently scheduled and carried out [59].  

During acoustic emission process, the emissions generated on the surface of the material is 

presented as Rayleigh waves and as such can be measured with an AE sensor [59]. Other types of 

waves that can be found associated with this propagation are: Longitudinal, Lamb and shear waves 

[98].  

There are two types of AE signals, transient(burst) and continuous signal. In AE burst signal, signal 

diverge completely from the background noise while in continuous AE signals, clear distinctions 

of amplitude and frequency can be seen and there is no ending for the signals [59]. The idea of AE 

technology is based on processing and detecting of these high frequencies elastic waves into 

electrical signals which can be applied by connecting sensitive AE sensors on the surface structure 
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[59] under test and applying an external inducement. Further processing can be done by amplifying 

sensor outputs using low-noise preamplifier then carry out filtering possible unwanted noise.  

2.22.1 AE Sensors in tool wear monitoring 

One of the fundamental success in tool wear monitoring process is the right choice of sensors. To 

carry out a successful and healthy machine monitoring, a wide range of sensors are used. These 

sensors are attached to the surface of the object or workpiece to detect dynamic motion generated 

as a result of acoustic emission activities thereby transforming this detected dynamic motion into 

voltage-time signal see Figure 2-21 for basic set of an AE sensor. This signal can be subsequently 

used in acoustic emission measurements for further processing. Further explanation will be carried 

out under signal processing. 

 

 Figure 2-21: Basic set of an AE sensor [93] 

2.23 Surface roughness  

The surface nature and the features of a metal can be revealed in a circular, radial lays or straight 

patterns once the surface of a workpiece is newly machined Figure 2-22. According to [34], 

engineered components must fulfill surface texture requirements such as: roughness and waviness, 

which is the major method to access quality. Therefore, using surface integrity (SI) to describe the 

quality and the condition of the surface area of a component will be a great idea.  “The SI did not 

just describe the geometric features of surfaces and their physical and chemical properties but their 
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mechanical and metallurgical and characteristics also” [34]. In addition, the defect generated form 

machining processes may practically affect the efficiency of the final component. 

 According to Edwards and Endean, the texture of the surface of a component is shown because of 

how component was processed [99]. The measurable geometric quantities for surface texture are: 

flaw or defect, Waviness, Roughness, Lay or directionality. 

Flaws or defects: are irregularities, such as cracks, scratches, hole, depression, inclusions, seams 

and tears [100]. 

Waviness: this is a form of regular deviation from flat surface. This may be caused by deflections 

of tools, dies or work-piece [99]. 

Roughness: this consists of close spaced, irregular deviation on a small scale than waviness [100]. 

Lay or directionality: it is described as the predominant surface pattern which can be seen with 

naked eye [100]. 

 

Figure 2-22: Details of workpiece surface texture [100] 
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According to Boothroyd [101], surface roughness can be defined as results from irregularities in 

the cutting operations such vibration, machining movement, cutting parameters etc which is often 

described by two parameters namely: arithmetic mean value (Ra) and root-mean-square average 

(RMS) Figure 2-23 below. 

Arithmetic mean: is the value obtained by measuring the mean deviation of the peaks from the 

Centre-line of a trace. The Centre-line is the line in-between two lines of one above and the other 

below that has equal area between them. According to Shaw [102],   

      

     (2-5) 

 

 

Figure 2-23: Arithmetic surface roughness average, Ra and geometric root mean square (RMS) 

[34] 

Root mean square: Lindberg described RMS as being sensitive to occasional highs and lows 

making it more reasonable to complement Ra [103]: 

 

     (2-6)  
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Factors affecting surface roughness: the parameters such as the shape, arrangement, height and 

direction of all surface irregularities on the workpiece depend on the following factors [34]: 

 The tool geometry such as rake angle, nose radius and cutting edge 

 The quality and the type of machine tool 

 The combination tool material and workpiece 

 The machine variables such as Cutting speed, feed, and the depth of cut. 

2.24  Surface roughness in milling operation  

Many researchers have carried out studies to establish the relationship between surface roughness 

and cutting parameters. Although in reality other influences which may have an effect on surface 

roughness are not limited to vibration and inaccuracies in the machine tool, irregularities in feed 

mechanism, workpiece structure imperfection, surface damage caused by chip morphology [101].  

2.24.1 Categories of surface roughness 

surface roughness measurements are divided into two categories namely direct and indirect 

measurement. 

Direct measurement- this involves directly the use of light scattering, ring field capacitance or 

Ultrasonic sensing, stylus type gauge are the most popular types of direct surface roughness 

measurement. 

Indirect surface measurement- this method makes use of parameters of machining process such 

as acceleration, voltage, temperature, pressure. This type of measurement is common in in-process 

measurement. The data capture can be modelled and predicted to correlate with the expected 

surface roughness. Furthermore, to monitor surface roughness it is widely convenient using 

manual inspection of workpiece otherwise because of accuracy indirect measurement require and 

expert still [1, 16]. 

2.25 Relationship between Surface roughness and wear  

In Wilkinson et al study, they argued that the key indicators of tool wear are the precision and 

surface shape of the machined profile of the machined surface [104]. Matsunmura et al, have 

suggested that when considering tool wear and surface roughness at the same time, to minimize 

cost, machining operations are improved by predicting flank wear using analytical method on 

metal cutting theory and using predicting surface roughness with the use of a neural network [105]. 



Page 53 
 

With this approach, flank wear will consider the initial wear and using surface roughness, tool 

wear can be modeled through adaptive prediction. 

Goller et al, established that the surface roughness produced during turning operation, is influenced 

by a number of factors and it is therefore a challenge to predict in reality [106]. They further stated 

that the progressive dynamism that was experienced on the tool peripheral surface can be largely 

attributed to the roughness of the machine surfaces which in turn depends on the wear resistance 

of the tool materials. However, Komaraiah et al discovered that the harder the tool material, The 

lower the surface roughness [107]. On the contrary, Wada et al, suggested that the finished surface 

roughness of the workpiece may be affected if the wear occurs on the cutting edge [108] [76] . But 

Yang et al, state that the change seen in surface roughness is essentially caused by cutting flank 

wear [109].  

According to [110] emphasis was placed on the surface roughness and profile in high-speed end 

milling, they presented a method using simulation of machine surface where accelerated signal 

was used rather than cutting force. They provided an argument that the vibration encountered by 

high speed of the spindle suddenly depreciates the geometric accuracy of the machined surface. In 

the end, they concluded that the generated surface data, surface roughness could be calculated and 

profile be plotted. 

 Ehmann et al, in their study introduced a method to represent the surface generation process, they 

called it “surface-shaping” the method comprises of two parts, the first part modelled the machine 

tool kinematics and the second part modelled the cutting tool geometry. The latter descried the 

intersection of the tools face and the flank surface along with the respective angles. [111] 
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Chapter Three 

3 Review of Signal Processing and Design of Experiment 

3.1 Review of Signal processing  

3.1.1 Signal Processing 

Signals are measurable quantities used to transfer data about time-changing physical phenomena. 

Basic examples of signs are human speech, temperature, pressure, electrical signals and stock 

price. Electrical signals, ordinarily transferred in the form of voltage or current waveforms, are 

some of the most direct signals that can be generated and further processed. Scientifically, signals 

are modeled as function of one or more autonomous variables. Example of independent variables 

used to express to signals are time, frequency or spatial directions. 

Digital signal processing (DSP) innovation and its improvements have histrionically affected our 

cutting-edge society all over the place. Without DSP, we would not have digital/Internet sound or 

video; advanced recording; CD, DVD, and MP3 players; digital cameras; advanced mobile and 

cell phones; advanced satellite and TV; or wire and remote systems [112]. Medical instruments 

would be less efficient or not able to give valuable data to precisely analyze if there were no digital 

electrocardiography (ECG) analyzers or digitized x-beams and therapeutic image frameworks. We 

would likewise live in numerous less productive routes, since we would not be equipped with voice 

recognition systems, speech synthesis systems, and image and video editing systems [112]. 

Without DSP, scientists, engineers, and technologists would have no powerful tools to analyze and 

visualize data and perform their design, and so on. The concept of DSP is illustrated by the 

simplified block diagram in Figure 3.1, which consists of an analog filter, an analog-to-digital 

conversion (ADC) unit, a digital signal (DS) processor, a digital-to-analog conversion (DAC) unit, 

and a reconstruction (anti-image) filter. Usually a transducer (sensor) is used to convert the 

nonelectrical signal to the analog electrical signal (voltage). 
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Figure 3-1: Analog to Digital signal processing schemes [112] 

This analog signal is channel to an analog filter, which is used to limit the frequency range of 

analog signals before it gets to the sampling process. The reason behind filtering is to significantly 

attenuate aliasing bias, the band-limited signal which is set at the output of the analog filter is then 

sampled and converted passing through the ADC unit into the digital signal, which is discrete both 

in amplitude and in time [112]. The Digital signal processor then receives the digital signal and 

processes the digital data using DSP procedures such as low pass, high pass, and bandpass digital 

filtering, or different algorithms for different purposes. DSP rules can be implemented using 

software in general. With the Digital Signal processor and conforming software, a processed digital 

output signal is produced.  

Furthermore, as shown in Figure 3.1, DSP structures still require minimum analog processing such 

as the anti-aliasing and reconstruction filters, which are musts for converting real-world 

information into digital form and digital form back into real-world information [112].  

3.1.2 Feature model 

To understand the monitoring strategies proposed in this study, it is very important to understand 

the signal processing techniques and methods used to carry out the tool wear monitoring system. 

This study focused on the normal trend in Digital signal processing to acquire raw data that are 

later processed using another software Figure 3-2.  
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Figure 3-2: AE measurement chain; courtesy of Vallen-systeme, GmBH [113] 

3.1.3 Signal Features 

It is important to know that because signal features provide important information in the signal, 

therefore a good understanding of the process is required. This can be carried out by some 

characteristics of various model parameters in terms of data evaluation figure 3-3. The values of 

these parameters during analysis, has influence on the time of process, performance and the 

efficiency of the feature extraction process. Also, the choice of our parameters that will be used 

during selection will depend on the procedure employed. In figure 00, the procedure that will be 

followed to extract features is as follows: 

 

Figure 3-3: Signal Processing Features logical pattern [114]  
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3.1.4 Feature extractions  

Feature extraction begins from an initial set of measured data and builds derived values which are 

features proposed to be revealing and non-redundant, smoothing the successive learning and 

generalization steps, sometimes leading to better human interpretations. Feature extraction is 

associated with dimensionality reduction. It involves reducing the amount of resources required to 

describe a large set of data. 

3.1.4.1 Feature Domain  

According to Pentaris, it is important to identify the appropriate domain of a feature before it can 

be extracted [115]. Therefore, digital signal processing is determined by the domain where the 

measurements are performed and explored. Domain can be either based on time, which simply 

means signal measurements are presented based on the time in time series. Domain can also be 

based on the frequency (frequency domain commonly called spectral). This present frequency 

measurement as spectral based on the frequency that takes place in each measurement analyzed. 

Another domain representation is wavelet; this is where signal measurements are presented in 

three-dimensional form such as in time, the frequency spectral content and the Power density also 

called the strength of each measurement. The last domain is Z-domain, where measurements are 

represented in Z-plan and S-plane and presented as an argument of base (e) and (ln e). Z-transform 

is useful in the analysis of discrete time signals [116] [112] [117]. For the purpose of this research, 

the author will shed light briefly on Time-domain, frequency-domain and Wavelet-domain as 

follows: 

3.1.4.2 Time domain 

The method used to process raw signal directly from acquired (stored) or online data without being 

transformed is called time domain analysis. To view raw signals, time domain is the traditional 

way of detecting them. The time domain is a record of what has happened to a parameter of the 

system against time lapses. Time domain features are extracted directly from the calibrated time 

domain signals as recorded by the sensors and analyzers. The features from time domain can be 

calculated easily and fast which can therefore be used in an online monitoring system [118]. The 

following are the features that can be extracted from time domain: mean, RMS, crest factor, 

variance, skewness, kurtosis, Power, standard deviation, range, the burst rate, maximum and 

minimum [77, 118, 62, 119]. However, time series features base on models can also be used as a 
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tool to monitor a process while the model coefficients are used as features. These model 

coefficients represent the behavior of the signal in time series. Common time based models are: 

Auto regression (AR)model, Moving Average (MA) model and the Auto Regression Moving 

Average (ARMA) model [62]. A brief discussion shall be made to all the features and time series 

models based as follows: 

Arithmetic mean (μ): this is the mean of amplitude values of raw data signal. The mean of N 

amplitude values of a signal [ x1, x2, x3…. xn] is  

    

           (3-1) 

 

Standard deviation (𝛔): this measure the variation of the data from the average. It can be 

expressed as: 

            

           (3-2) 

Skewness (skew): this is the 3rd central moment and is a measure of the asymmetry of the 

probability distribution (Peak) of the raw data in the signal. Defined as: 

 

           (3-3) 

  

Kurtosis (Ku): this is the 4rd central moment and is a measure of the asymmetry of the probability 

distribution (Peak) of the raw data in the signal. Defined as: 

  

           (3-4) 

 

Root Mean Square (RMS): This is the collection of n-values in the raw data. Is defined as: 

    

           (3-5) 
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Crest factor (CF): The crest factor of any wave form can be defined as the ratio of the peak 

amplitude level to the RMS value. This value gives us an idea of the degree on how impacted a 

waveform is. It can be expressed as:  

           (3-6)  

     

Power (P): the power of a signal can be described as the measured area under the corrected signal 

envelope. The signal amplitude can also be measured power although it is very sensitive to 

amplitude as well as duration and the operating frequency of the signal does not depend on it. 

Mathematically defined as: 

           (3-7)  

         

 

Variance (σ): the variability of the raw data can be regarded as variance. Which can be defined 

as: 

           (3-8) 

The burst rate (Br): although burst rate is only applicable to AE and vibration. the burst rate 

which can also be called pulse rate is the number of times the signal exceeds the pre- set threshold 

per second.  

 Signal to noise ratio (SNR): this simply can be expressed as the value of the mean divided by 

standard deviation. 

3.1.5 Time series model based features 

 These are: Moving average, Auto Regression and Auto Regression Moving Average. According 

to Olufayo, models are different in their number of orders which means the higher the order of a 

model the more features can be extracted and the higher the model splits the signal into more 

distinct bands where embedded noise can be highly distinguished [77]. 

 Moving Average (MA): In a q-th order of Moving Average, the current 

measurement is defined as a linear combination of q pervious values from a sequence 

of independent identically distributed random variables with a certain probability 

density function. 

𝐂𝐅 =  
𝐏𝐞𝐚𝐤 𝐥𝐞𝐯𝐞𝐥

𝐑𝐌𝐒 𝐯𝐚𝐥𝐮𝐞
 

P =  
1

n
∑ xi

2

N

i=1

 

σ2 =
1

n

∑ (xi −  μ)2n
i=1

n − 1
 



Page 60 
 

 

where x(n)is the MA predicted value u(n), n=1,2, 3…. N is the time series (acoustic 

emission), q is the MA order, b1, b2…bp are MA coefficient parameters and the 

residual components is R(n) = U (n + q) – x (n + q), the first coefficient can be 

chosen as feature. 

 Auto Regression (AR): In a f-th order for a time series x(n), where n is the discrete 

time index, the value of the measurement is expressed as a linear combination of f 

previous values: 

 

 

the first AR coefficient can be chosen as feature. 

 Auto Regression Moving Average (ARMA): this can be defined as the 

combination of AR and MA Models.  

 

The first two coefficients from this model ca be chosen as features [62, 77]. 

3.1.6 Frequency domain 

Frequency domain analysis is used to extract relevant information that is hidden in time domain 

analysis therefore, in order for the frequency contents coming directly from the Time domain to 

be certain and regularly cleared, the analog signal has to be discretized into spectrum which 

provides additional information about time series data. According to [120], the parameters 

generated from frequency analysis are more reliable in damage detection than time domain 

analysis parameters. Theoretically, these signals can be represented as: 

            (3-11) 

 

            (3-12) 

Where: x(t) is raw signal,  X(w) is the transformed signal, w is the radian frequency and t is the 

time. To regenerate the time domain signal x(t) from the frequency domain signal X(w), an inverse 

Fourier transform must be computed equation (2). 

x(n) = b1u(n − 1) +  b2u(n − 2) + ⋯ . + bqu(n − q) 

x(n) = a1x(n − 1) +  a2x(n − 2) + ⋯ . + afx(n − f) 

x(n) = − ∑ ak(x(n − k)) +  ∑ bk(u(n − k))q
k=1

p

k=1
  

X(w) = ∫ x(t)e−jwt
∞

−∞

dt 

x(t) =
1

2π
∫ X(w)e−jwt

∞

−∞

dw 

(3-9) 

(3-9) 

(3-10) 
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However, because signals are usually acquired and stored digitally as just mention above as a set 

of data point in most application, it is necessary to discretize the Fourier transform. Therefore, a 

method called the Discrete Fourier Transform (DFT) algorithm is applied to discretized and 

exchange a digital Signal from time domain into a signal in frequency domain. This can be 

mathematically expressed as: 

                        (3-13) 

 

Where X[k] and x[n] represent discrete frequency and time signal respectively, k an n represents 

frequency and time indices and N represents the number of points that equally spaced in interval 

of 0 to 2π. 

Spectral energy is normally obtained by computing Power Spectral Density (PSD) of the signal 

PSD provides good information on the nature of machining process i.e. increase or decrease based 

on the level of tool wear [77]. This is carried out by an intensive computational algorithm that 

contains large number of mathematical operations. Due to the length of the signals, whenever the 

signal power is in the order of two, a Fast Fourier Transformation (FFT) technique can be applied 

to reduce the large computational rigors and primarily to speed up the operation of the DFT [120] 

[121]. The PSD can be experienced as a result of two scenarios. First, high PSD due to excessive 

vibration of the machine resulted from tool breakage from new to worn. A sharp spike is 

experienced in amplitude as a result of this effect which can be true for flank wear. Secondly, if 

there is a system shifts in the natural frequency of the tool holder and the tool resulting in a decrease 

in Spectral energy Figure 3-4. The normal failure mode is crater wear [62]. 

 The Fast Fourier Transformation (FFT) algorithm that is used for analyzing the spectral content 

of a stationary signal and transitory signals due to its constant time and frequency resolution can 

be defined mathematically as:  

                         (3-14) 

 

Where: 

For k = 0,1, 2, ……, N-1 

X[k] =
1

N
∑ x[n]e

−jk(
2π
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                      (3-15) 

        

3.1.7 Time-Frequency domain 

The unique features of Time-Frequency analysis techniques Figure 3-4, means that it is capable 

for non-stationary signals as well. The following time-frequency domain techniques are explained 

briefly: 

3.1.7.1 Short Time Frequency Transform (STFT) 

Furthermore, if the signal consists of non-stationary characteristics in frequency domain, the 

drawback of Fourier analysis about the missing time information may be overcome by using Short-

Time Fourier Transform (STFT). Meanwhile, this technique is still not flexible and is also limited 

in precision because this method is based on windowing the signal and later analyze each Short 

Time window independently from which the signal can be plotted on 2-dimensional display of 

frequency and time [62, 122]. According to [120] , though STFT provides both frequency and time 

evolution of the signal but it has a limitation which is a fixed resolution with respect to the time 

window size at all frequencies. This simply means that during FFT, only the frequency resolution 

(high) can be seen but no time resolution because window has covered the entire time interval 

from negative infinity (−∞) to positive infinity (+∞). On the contrary, when STFT is used, the 

frequency becomes very poor because the window has a finite length at this moment therefore only 

a small segment of the signal will be covered. However, to increase the frequency resolution, the 

window function must be wider or expanded. Again, if the frequency resolution is improved this 

will lead to missing time information which is contrary to the stationary assumption that requires 

small window. Therefore, to stay out of this trade off relationship between high frequency 

resolution with a wide window and poor time resolution in STFT. A technique called Discrete 

Wavelet Transform (DWT) Figure 3-5 was introduced to solve the resolution limitations. 

3.1.7.2 Wavelet 

During transformation process a short coming was established during Fourier Transformation from 

time domain to frequency domain, it was discovered that the time information part of the process 

was not revealed. This also explained why the exact time of an event that takes place in Frequency 

Spectrum was not feasible. It was this question that brought Wavelet onboard. 

WN = e
−j2π

N  
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Wavelet helps break the signal down into sub-signals or levels of different frequencies which 

clearly carries the time information require in further analysis. It has been applied successfully in 

some applications such as: image analysis, transient analysis, communication system and other 

monitoring of machining processes applications  [77, 62, 118]. Wavelet has the capability of 

revealing that part of a data other signal methods cannot unfold such as breakdown points, 

discontinuities in higher derivatives, trend and self-similarity [122].  

Scaling and shift of Wavelet: scaling a wavelet means stretching or compressing the signal. It 

can be represented by a scale factor a. the smaller the scale factors the more compressed the 

wavelet. This shows that the frequency of a signal has relationship with scale factor. Also, in 

wavelet analysis, the Low and High frequency contents of the signal are referred to as 

Approximation (A) and Detail (D) respectively. Shifting in wavelet can be regarded as delaying 

or speeding up its commencement. In summary, High scale or stretched wavelet or low frequency 

give Approximation (A) and Low scale or compressed wavelet or High frequency will give Detail 

(D) see Figure 3-5. mathematically it can be expressed as: 

 

                        (3-16) 

 

                       (3-17) 

 

Where x[n] is original signal, g[n] is high pass filter, h[n] is low pass filter, yhigh[k] and ylow[k] 

are the output of the high and low pass filter respectively. 

yhigh[k] = ∑ x[n]n ∗
n

 g[2k − n] 

ylow[k] = ∑ x[n]n ∗
n

 h[2k − n] 
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Figure 3-4: wavelet signal division graphical representations [77] 

 

Figure 3-5: signal decomposition using discrete wavelet transform [120] 

3.1.7.3 Discrete Wavelet Transform (DWT) 

 According to [123] the major difference between STFT and Wavelet transforms is that the latter 

has varying window length and represents the signal as a sum of wavelets at different scales.  
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3.1.7.4 Continuous Wavelet Transform (CWT) 

The continuous Wavelet Transform can be defined as the sum of overall time of the signal 

multiplied by scaled and shifted versions of the wavelet function. 

            

            

C is the coefficients of the wavelet which are functions of scale and position. 

3.1.8 Decomposition and Reconstruction 

Wavelet decomposition is a process whereby the successive approximations are being decomposed 

in turn, so that signal is broken down into many lower-resolution components. This wavelet 

decomposition tree can now be used to reconstruct the original which is called Inverse Wavelet 

Transform [62]. 

3.1.9 Wavelet Packet Analysis 

Wavelet packet decomposition (WPD) based technique has been widely used for transient and 

non-stationary signal analysis [124]. with normal wavelet analysis, only approximations are 

fragmented in every step also in wavelet packet decomposition tree, the signal can be reconstructed 

using any number and combination of packets on the wavelet packet decomposition tree [62]. 

3.2 Signal feature selections 

Feature selection is the process of selecting important features, or an applicant subset of features. 

To get the optimum feature subset, the evaluation criteria are used. In high-dimensional data 

(number of samples is usually less than number of features), finding the optimal feature subset is 

a demanding task. To use machine learning methods successfully, pre-processing of the data is 

crucial. Feature selection is one of the most common and important techniques in data pre-

processing, and has become a key component of the machine learning process. It is the process of 

detecting relevant features and removing irrelevant, redundant, or noisy data [125]. Feature 

selection methods can be look at from three different perspectives: (a) which search method is 

employed; (b) what evaluation criteria are used; (c) and which real-world applications are the 

feature selection exercised with [126]. To get the optimum feature subset, the evaluation criteria 

are used.   

C(Scale, Position) = ∫ f(t)φ(scale, position, t)dt
∞

−∞

  (3-18) 



Page 66 
 

a) Search methods – Subject to what type of search method is used, generally, feature 

selection methods can be classified into (i) optimal search (exhaustive search and branch 

& bound algorithms), (ii) heuristic search (sequential selection, floating selection, and 

decision tree methods, (iii) random search (genetic algorithms, simulated annealing, and 

Bayesian network algorithm), (iv) and weight based search (fuzzy set theory, fuzzy feature 

selection, neural networks, neuro-fuzzy approach, and relief). Compared to random search 

and weight based search, optimal search is more computationally expensive and therefore 

sometimes not feasible [126, 127].  

b) Evaluation criteria - Each search method of feature selection has to use evaluation criteria 

to measure the “goodness” of a particular subset of features which helps in the selection 

process. Widely used evaluation criteria include (a) distance based measures, such as 

Mahalanobis distance, Hausdorff distance, and metric approach; (b) entropy measures; (c) 

statistical measures; (d) correlation based heuristic measures; e) accuracy measures; and 

(f) relevance measures. With regard to how to implement the evaluation criteria, filter and 

wrapper are the two well-known approaches [126, 128, 129]. 

c) Real-world applications - Feature selection is a crucial element for applications in areas 

such as statistics, pattern recognition, machine learning, and data mining. Of particular 

interest to us are machine-tool condition monitoring and tool wear diagnosis [126, 130]. 

3.3 Strategies used in feature selection systems 

 Two basic strategies are common to feature selection. One is the sequential selection method that 

chooses one feature at a time [126]. The underlying assumption for this approach is that the 

features and their diagnostic power are independent. The second strategy makes use of the 

combinations which addressed the shortcomings of feature selection [126]. However, the 

following scheme are commonly found during feature selection: scatter matrix, Decision Tree, 

Cross correlation, Parallel Adaptive Neuro-Fuzzy System (ANFIS) and Sequential ANFIS [126] . 

3.4 General methodology for feature selection 

There are three general approaches for feature selection that are being used in condition monitoring 

system. First, is the filter approach which exploits the general characteristics of training data with 

independence of the mining algorithm. The second is the wrapper approach which explores the 

relationship between relevance and optimal feature subset selection. It searches for an optimal 
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feature subset adapted to the specific mining algorithm. While the third, is the embedded approach 

carried out with a specific learning algorithm that performs feature selection in the process of 

training [125, 126]. Other recent feature selection and classification techniques algorithm are 

Particle Swarm Optimization (PSO) and Ant Colony optimization (ACO). 

3.5 Decision making  

In tool condition monitoring, several artificial Intelligent (AI) methods have been adapted to make 

decisions. Pattern recognition techniques are significant part of intelligent systems and these 

techniques are used for both data pre-processing and decision making. According to Schalkoff, 

Pattern recognition is the science that is concerned with the description or classification 

(recognition) of measurements [131]. 

 Pattern recognition method has been applied to recognize the tool cutting states and to monitor 

the tool conditions in machining for years. The simplest and common algorithm is linear 

classifiers. The features for classifying the cutting states included cutting speed, feed and the power 

spectrum in different frequency bands. Also, the features used for the tool condition monitoring 

are usually feed rate, depth of cut, cutting force, cutting torque, sums of the magnitudes of spectral 

components at certain frequencies, and other signal features.  

During Pattern classification, an approach using linear discriminator function (LDF), was used by 

Emel and Kannatey-Asibu Jr. The LDF is a separation technique that was used to distinguish 

between clusters of feature data. Using AE spectral signals, the feature selection techniques 

considered three classification criteria which are: the class-mean scatter criterion, the class 

variance criterion and the Fisher weight criterion. These are also referred to as interclass distance 

measures. Two classifier designs were discussed, the minimum error and the minimum cost. 

Experiments revealed that the minimum cost design had the highest success rate for detecting a 

worn tool [132]. 

All through literatures it has been revealed that the number of features and the different 

combinations of features had great effects on the correct classification rates. A range of AI 

techniques that are commonly used in modelling environment and in condition monitoring system 

are: case-based reasoning, rule-based systems, artificial neural networks, genetic algorithms, 

cellular automata, fuzzy models, multi-agent systems, swarm intelligence, reinforcement learning 
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and hybrid systems [133]. But for the purpose of this research work the most common in tool 

condition monitoring will be briefly discussed: Artificial Neural Network (ANN), Fuzzy decision 

and the Hybrid (Neuro-Fuzzy). 

3.6 Artificial Neural Network (ANN) 

Artificial Neural Networks are effort to imitate the computational architecture of the human brain 

Figure 3-6, in electrical hardware. It consists of an interconnected group of artificial neurons and 

processes information using a connectionist approach to computation. In most cases an ANN is an 

adaptive system that changes its structure based on external or internal information that flows 

through the network during the learning phase.  

 

Figure 3-6: Typical Biological Neurons 

An ANN usually organizes its units into several layers. The first layer or input layer, the 

intermediate layers or hidden layers, which are not always present because they are sometimes not 

needed, and the last or output layer. The information to be analyzed is presented (or fed) to the 

neurons of the first layer and then propagated to the neurons of the second layer for further 

processing. There are different configurations for ANN, but as discussed above, the most common 

of all is the three-layered Feed Forward Perceptron Neural Network trained by Back Propagation 

normally commonly called Feed Forward Perceptron Back Propagation Neural network 

(FFPBPNN). [134]  
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Figure 3-7: A three-layer Feed Forward Artificial Neural Network [134] 

Where:  

Wij and W’jk are weights and Uj and U’k are biases respectively;  

These results are propagated through each layer, converting the information into the network 

output in the final layer. The goal of an ANN is to discover some association between input and 

output patterns. Many different neural network structures have been developed to achieve different 

learning and processing speed capabilities. 

The input of a neuron includes its bias and the sum of its weighted inputs as shown in Figure 3-7. 

The output of a neuron depends on its transfer function. Many transfer functions can be used and 

the three most commonly used functions are Hard Limit (Step function), Linear and Log-Sigmoid 

Figure 3-8. 

The option of a transfer function with or without bias can be chosen. A bias can be a constant or 

allowed to change like the weights with an appropriate learning rule. The backpropagation learning 

rule is used to train non-linear, multilayered networks to perform function approximation, pattern 

association, and pattern classification. It can be used to adjust the weights and biases of the 
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networks to minimize the sum of squared error of the network [96]. The sum of squared error is 

defined as: 

                         (3-19) 

 

Where: 

m = the number of output in the output layers 

n = the number of patterns 

Tpi = the ith component of the desired output vector 

𝐎𝐩𝐢 = the calculated output of the ith neuron 

 

 

 

 

 

 

 

 

             

Figure 3-8: A: Neural Network Transfer function, B: Activation functions 

3.7 Learning in Neural Networks — Back-Propagation 

The idea of a neural network is acquired from learning processes. Learning means that the 

processing element somehow changes its input and output characteristics in response to the 

surroundings. Based on experience, Learning provides a vital organism with the means to adapt to 
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and survive in a changing environment. For pattern classifiers, the learning produces reliable, 

enhanced and flexible performances. 

3.7.1 Types of Learning 

Learning in neural networks can be supervised or unsupervised 

• Supervised learning: this means that the network has some dependable inputs presented 

during training to instruct it what the correct output should be. The network then has a means to 

decide whether or not its output is wrong or correct and knows how to apply its particular learning 

rules to adjust its weights. 

• Unsupervised learning: this simply means that the network has no such pre-knowledge 

of the desired output hence, cannot know exactly what the correct response should be before the 

incoming. However, Supervised classification has been commonly applied to the tool condition 

monitoring in machining. 

A specific learning rule which is the most frequently used learning algorithm is the Delta rule or 

Least Mean Squared (LMS) training law. In learning, the rules provide guide on how to change 

the weights is subject to whether the output of classification was right or wrong. Firstly, the 

processing element must be modified so that it can monitor its own output, Then, it is enabled to 

compare its output to the desired output signal. Lastly, the researcher would calculate how to 

change the weights by using the Delta rule [135].  

Delta rule is a gradient-descent learning rule. The learning constant is a measure of the speed of 

convergence of the weight vector to the minimum error position. The back-propagation algorithm 

uses a gradient search technique to minimize a cost function equal to the mean square difference 

between the desired and the actual output. A backpropagation neural network is developed based 

on processing elements by using the Delta rule.  

The neural network is trained by first selecting smaller arbitrary weights and internal thresholds, 

and then presenting all training data recurrently. Weights are in sync after every trial using side 

information to state the correct class until weights converge and the cost function is reduced to a 

satisfactory level [135]. An important part of the algorithm is the iterative error method that 

propagates the error terms required to adapt weights back from the neurons in the output layer to 

neurons in a lower layer [136]. 
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The ability of ANN to learn in noisy environment is a key tool in TCM, therefore, the author 

engaged with a feed forward BPNN with one (two) hidden layer using on tests results.  By using 

this network design, lower mean square error was achieved. BPNN may not need further 

optimization algorithms such as genetic algorithm and particle swarm optimization due to the 

reverse process of computation and makes it quick and easy to use.  

Furthermore, ANN offers some benefits over other classification techniques. Some of these 

benefits can be noticed from their capability to classify data without former knowledge. Fuzzy 

logic models do not possess huge learning capabilities. The combination of these models in the 

neuro-fuzzy approach is confronted with the number of learning parameters employed in the 

classification. Though there are other techniques such as statistical, Bayesian models or ACO. 

Other Artificial Neural Networks that cannot be explained in this research work but do exists are: 

Auto-encoder, Deep Neural Network (DNN) also called Deep Learning, Recurrent Neural 

Network (RNN), Restricted Boltzmann Machine (RBM), Self-Organizing Map (SOM) and 

Convolutional Neural Network (CNN). 

3.8 Design of Experiment 

Design of experiment (DOE) is a structured and organized method Figure 3-9, that is used to define 

the correlation between the different factors or parameter or variables affecting a process and the 

output of that process [137]. This method was first developed in the 1920s and 1930s by Ronald 

A. Fisher. 

The objectives of any experiment are to: 

 find the factor settings that optimize the response (max./min. problem, or hitting a specific 

target) for example Rough Surface Modelling (RSM), Tool wear (TW), and Metal 

Removal Rate (MRR). 

 improve a process, in order to understand how certain factors (RSM, TW, MRR), influence 

the response.  

 find out what tradeoffs can be made in factor settings, while staying near the optimal 

response.  

 finding a model that describes the relationship between the vital factors and the response.  
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Figure 3-9: Design of Experiment framework [138] 

3.8.1 Common Design Techniques 

There are various DoE techniques that have been used for different experiment 

purposes Figure 3-9. The following list gives the commonly used design types [138] 

1. For comparison: 

 One factor design 

2. For variable screening: 

 2 level factorial design 

 Taguchi orthogonal array 

 Plackett-Burman design 

3. For transfer function identification and optimization: 

 Central composite design 

 Box-Behnken design 

4. For system robustness: 

 Taguchi robust design 

 

Design of Experiment 

Combine Design 

 D- optimal 

 User-

Defined 

RSM Design 

 Central composite 

 Box- Behnken 

 One factor 

 D-optimum 

 

 

Factorial Design 

 2-level 

factorial 

 Taguchi OA 

Mixture Design 

 simplex lattice 

 D-Optimal 

 Distance based 
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On the other hand, the designs used for transfer function identification and optimization are called 

Response Surface Method (RSM) designs. Therefore, Box-Behnken design (BBD) will be used in 

the experiment. Box–Behnken design, is frequently chosen, since interaction parameter estimates 

are not completely confused and in many cases, these designs are considerably smaller than 3p−s 

fractional factorial designs [139]. A BBD also requires only three-levels and is a more efficient 

alternative to the full three-level factorial. 

3.8.1.1 Rough Surface Modelling (RSM) 

Response Surface Approach is one of the useful tools in statistical analysis used to examine the 

relationship between one or more response variables and a set of quantitative experimental 

variables. It is common in industries when the data may not be manageable and un-structure leads 

to an impact in waste of energy and accuracy of components. RSM is a method of identifying the 

controllable and uncontrollable to find the optimum performance to optimize the response. In order 

to observe the relationship between the surface machine, tool wear and material removal rate 

towards process parameters, In this study, Optimization and parameter control will be analyzed 

from the relationship of response which will be taken for further analysis. 

3.8.1.2 Box-Behnken Design 

Box and Behnken recommended three level designs for fitting response surfaces. coded as -1, 0, 

and +1. Box-Behnken designs are available for 3 to 10 factors. These designs are formed by 

combining 2k factorials with incomplete block designs. Figure 3-10 (a) and (b) illustrates the three 

variable Box – Behnken design. It can be noticed that the Box-Behnken design is a spherical design 

with all points lying on a sphere of radius. Also, the Box – Behnken design does not contain any 

point at the vertices of the cubic region created by the upper and lower limits for each variable. 2. 



Page 75 
 

 

Figure 3-10: Box- Behnken design 

 This could be advantageous when the points on the corners of the cube represent factor level 

combinations that are impossible to test due to physical process constraints or prohibitively 

expensive. Its "missing corners" may be useful when the researcher should avoid combined factor 

extremes. This property prevents a potential loss of data in those cases. Box-Behnken designs 

require fewer treatment combinations than a CCD, in problems involving 3 or 4 factors. The Box-

Behnken design is rotatable (or nearly so) but it contains regions of poor prediction quality like 

the CCD Table 3-1, [139].  

Table 3-1: Comparison of the primary RSM [140] 

 Central Composite 

Design 

Box-Behnken 

Design 

D-optimal 

Design 

1 Created from a 2-level 

factorial design, 

augmented with center 

points and axial points 

Has specific positioning of 

design points 

 

Position of design points 

chosen mathematically 

according to the number of 

factors and the desired model, 

therefore the points are not at 

any specific positions - they 

are simply spread out in the 

design space to meet the D-

optimality criteria (see below) 

2 Regular central composite 

designs have 5 levels for 

each factor, although this 

can be modified by 

choosing alpha=1.0, a 

Always has 3 levels for each 

factor 

 

D-optimality mathematically 

chooses points to minimize 

the integrated variation of the 

coefficients for the model - 
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face-centered CCD. The 

face-centered design has 

only three levels for each 

factor. 

you get the most precise 

coefficients 

3 Created for estimating a 

quadratic model. 

Created for estimating a 

quadratic model 

 

Can be used to create a good 

design for fitting a linear, 

quadratic or cubic 

model.  You can also change 

the user preferences to get up 

to a 6th order model. 

4 Rather insensitive to 

missing data 

Provides strong coefficient 

estimates near the center of 

the design space (where the 

presumed optimum is), but 

weaker at the corners of the 

cube (where there weren't any 

design points) 

If you have subject matter 

knowledge, you can edit the 

desired model by removing 

terms that you know aren't 

significant or can't exist.  This 

will decrease the required 

number of runs. 

5 Replicated center point 

provides excellent 

prediction capability near 

the center of the design 

space (where the 

presumed optimum is.) 

If you end up missing any 

runs, the accuracy of the 

remaining runs becomes 

critical to the dependability of 

the model. We do not 

recommend Box-Behnken if it 

is common to have a bad run 

or have missing data. The 

central composite designs 

have more runs initially and 

this makes them more robust 

to problems. 

 

 

Generally, the D-optimal 

design has 1-2 more runs than 

a Box-Behnken, so this 

provides a little more 

protection for the model 

coefficients if you end up 

losing some data. 

6   Can add constraints to your 

design space, for instance to 

exclude a particular area that 

you can't get responses. 

7   For a quadratic model, factors 

may have either 3 or 4 levels 
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Chapter Four 

4  Experimental design and Machine set-up  

4.1  Introduction 

This chapter presents the experimental set-up and procedures, the stages and components of the 

implemented condition monitoring system in this research are covered in this Chapter. It further 

provides details regarding the machine tool, workpiece, cutting tool, sensors used, Data acquisition 

card and Data Card software. It also presents the surface roughness measuring device and the 

condition monitoring system set-up including the placement of sensors, the data acquisition system 

and programmed software. A brief description of sensors, signal processing methods and pattern 

recognition systems utilized for developing the proposed model is presented. 

4.2  Experiment Equipment 

4.2.1 Machine tool 

The research work was carried out on an industrial five axis Deckel Maho DMU 40 CNC machine. 

As shown in Figure 4.1 The DMU 40 CNC machine belongs to the set of innovative mono BLOCK 

series of CNC machining centers produced by Deckel Maho. This machine set presents improved 

performance in terms of dynamics, high precision, higher machined surface, enjoys quality and 

lower space requirements. The DMU 40 possesses a motor spindle with a speed up to 12000 rpm. 

Its extensive large range of expansion options, advanced CNC control and numerous software 

features makes this machine ideal for conducting machining tests. 
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Figure 4-1: CNC 5-axis Deckel Maho Milling machine  [141] 

The innovative mono-block design has numerous benefits such as greater sturdiness, better 

dynamics, more precision, high surface quality and lower space requirements. The table traverses 

only in the vertical direction and when combined with the large linear guide ways, leads to better 

sturdiness in order to produce superb surface quality, regardless of the application height. Some 

highlights of this machine are: optimal access and greater visibility into the work area, a 19” CNC 

screen, Machine foot print of 4.2 m2, accelerate up to 0.8g and a rapid travers of 30m/min, scraper-

belt chip conveyor, 250-l coolant or lubrication tank, geometric temperature compensation, fully 

enclosed safety cabin, energy supply integrated into the milling head and a trailing cable 

installation in the base, has a maximum load up to 1100kg with a fixed table up to 800g Figure4-

2a, with the NC rotary table, chain magazine with 60 tool pockets as an option, HSC motor spindle 

ranges from 12,000(optional), 24000 – 42000 rpm Figure 4-2b, for production package with 600-

l coolant tank. These features make this machine suitable for the research work experiment. 



Page 79 
 

 

  A      B 

Figure 4-2: A: maximum workpiece dimension/ weight (HSK-A63), B: machining of a long 

landing gear support beam with a b-axis and negative angles 

4.2.2 Work piece 

The workpiece that was used in this experiment is stainless steel 316 grade. This type of stainless 

steel belongs to the family of austenitic stainless steel 300-series which are generally difficult to 

machine. It is an austenitic chromium nickel stainless steel containing molybdenum. The steel 

Table 4-1, contains high percentage of Nickel than 304 stainless steel. The resultant composition 

of this material gives these steels much improved corrosion resistance in many aggressive 

environments. The molybdenum addition ensures more resistance to pitting and cavies’ corrosion 

in chloride-containing media, sea water and chemical environments such as sulfuric acid 

compounds, phosphoric and acetic acids. 316 stainless steel offers good strength and creep 

resistance and possess excellent mechanical and corrosion-resistant properties at sub-zero 

temperatures. 316L is a low carbon modification of 316. When machining 316 stainless steel, 

unlike other austenitic steels, it alloys group machines with a rough and stringy swarf., rigidly 

supported tools with as heavy a cut as possible is used to prevent glazing. Typical applications of 

316 SS includes exhaust manifolds, furnace parts, heat exchangers, jet engine parts, 

pharmaceutical and photographic equipment, valve and pump trim, chemical equipment, digesters, 
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tanks, evaporators, pulp, paper and textile processing equipment, parts exposed to marine 

architecture and tubing. Due to the above physical, chemical and commercial characteristics and 

features of 316 SS Table 4-1, it draws attention for the workpiece selection in this experiment.  

Table 4-1: General Chemical properties of 316 Stainless steel (%): 

 C Mn P S Si Cr Ni N Mo 

316 0.08max 2max 0.045max 0.03max 0.75max 16-18 10-14 0.1max 2-3 

 

Table 4-2: General Physical properties of Stainless steel 

 Tensile strength 

(min) 

Yield strength 

(min) 

Elongation 

(min) 

Hardness (max) 

316 75ksi 30ksi 40% 95 HRB 

 

 

 

   A      B 

Figure 4-3: A: microstructure of 316 SS; B: The dimension of the work piece is (200 x 55 x 25) 

mm 
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4.2.3 Cutting tool 

End milling cutting experiments were performed in this study. The cutting tests were conducted 

on using a 16mm diameter Indexable end-mill with two cutting edges.  Figure 4.4 shows a sample 

picture of the tool from Kennametal (Table 4.1). KC725M Grade Inserts Figure 4-4, utilized are 

composed of carbide grade with a TiAIN coating. A high-performance TiAlN-PVD-coated carbide 

grade for milling steel, stainless steel and ductile cast iron. KC725M Inserts can be identified with 

their shapes as highlighted in Table 4-3. The good thermal shock resistance of the substrate makes 

this grade ideal for both wet and dry machining. KC725M is primarily for use in general and heavy 

machining.  

 

 

 

 

 

 

Li=12.06, S=3.7, W=6.74, Bs=1.3, Re=1.19, hm=0.082 

Figure 4-4: Indexable tool inserts from Kennametal 

Table 4-3: Brief insert Identification 

 INSERTS CAT 

NO 

Insert shapes Clearance 

Angle 

Size Insert 

hand 

Rake 

angle 

1 ADPT150516ERHD Parallelogram 7 ° 06 R 7 ° 

2 ADPT150516ERGD Parallelogram 15° 15 R 15° 

 

Tool holders such as in figure 4-5 and 4-6, is manufactured from premium materials and meets or 

exceeds the latest ANSI B5.50 and ISO-1947 taper accuracy of AT3 specification standards Table 

4-4 and 4-5. The CV 40 tools are either pre-balanced to a high specification or balanced-by-design. 

For high speed applications Kennametal recommends that the complete toolholder assembly 

(toolholder, retention knobs, collets, hardware, and cutting tools) be balanced as one entity. Exact 
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RPM limits can only be determined by considering machine and spindle configurations in 

conjunction with tooling design and safety limits factored as a complete system Figure 4-6. With 

the Taper Face System, toolholders are axially supported on the taper and flange face, which brings 

about higher rigidity and precision than a conventional 7/24 toolholder. 

The system utilizes elastic deformation of the machine spindle to achieve simultaneous fitting of 

both the taper and flange face. Although the tapers are fit prior to clamping the mechanism, the 

faces are not yet secured because of a small amount of clearance between them. When the 

toolholder is pulled in by the drawbar mechanism, the machine spindle expands by elastic 

deformation and the faces are fit, completing the simultaneous fit between both taper and face. 

This synchronized fit prevents additional axial displacement of the taper providing high accuracy 

and superior surface finish in operations such as face milling, compared to the industry standard 

7/24 V-flange. 

Taper face tool’s axial position is maintained even at high rotational speed. This specification 

supports both the CAT (CV) ANSI B5.50 and BT JIS B6339 versions in 40 and 50 taper sizes: for 

two surface contact. higher static and dynamic stiffness. higher axial and radial accuracy and rigid 

system. 

 

 

 

 

 

 

 

Figure 4-5: Tool Holder from Kennametal 

Table 4-4: Kennametal tool showing manufacturer designation 

Tool End Mills —Weldon Shank from Kennametal  

16 mm diameter  16A02R025B16ED10  Tool manufacturers designation  

 

 

 

 

 

 

 

D1=16, D=16, L=74, L2= 25, Ap1 max= 10.06, 
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Figure 4-6: End Mill Adaptor from Kennametal 

Table 4-5: Kennametal adaptor tool showing manufacturer designation 

Tool End Mills — Adaptor Weldon EM BT3016 from Kennametal  

16 mm diameter  BT30EM16060M  Tool manufacturers designation  

 

4.2.4 Acoustic Emission Sensor and coupler 

In recent years, AE instruments have been adopted for use in structure integrity valuation, non-

destructive testing, and quality testing for advanced material industries. In this experiment, the 

acoustic emission signals are acquired and monitored using an AE-Piezotron Sensor (Kistler 

8152B) which is mounted on the tool holder and is connected to AE Piezotron Coupler (Kistler 

5125B) which gives the AE signals and the RMS of the AE signals. The continuous and burst type 

AE signals are acquired by Kistler 8152B AE piezotron sensors (Figure 4.8b). The coupler (Figure 

4.8a) is used for signal preprocessing and conditioning, the input of the power supply was set at 220V 

Figure 4-8c, with the output voltage stepped down to 24V which was grounded this was used to power 

and regulate the amount of current that goes into the energizer of the sensor.  Figure 4.7 shows the 

experimental workflow of the research.  

Figure 4-8d is BNC-2110 is an ideal simplifying connector or interface between raw data 

measurement apparatus and DAQ device during experiments. The BNC-2110 has the following 
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features (Figure 8-4d) 15 BNC connectors for analog input, analog output, trigger/counter 

functions, and user-defined signals, a spring terminal block with 30 pins for digital and timing I/O 

signal connections, a 68-pin I/O connector that connects to multifunction DAQ devices and can be 

used on a desktop or mounted on a DIN rail. 

An AE sensor basically consists of a sensor case, a piezoelectric measuring element and an integral 

impedance converter. In AE sensors, the diameter of the piezoelectric element is the main factor 

which defines the properties of that sensor. This piezoelectric measuring element is mounted onto 

a thin film steel diaphragm which is sensitive to elastic stress waves emitted during machining. It 

is however isolated from the metal case and other AE interference by design. Kistler AE sensors 

have a high sensitivity to surface and longitudinal waves over a wide frequency range. The type 

8152B (Figure 4.8B) covers the range of 50 KHz to 900 KHz and outputs a low impedance voltage. 

acquired signals from the sensors are then relayed for pre-processing to a Kistler piezotron coupler 

type 5125B for amplification, filtration and RMS conversion. Kistler coupler is equipped with a 

jumper connection for adjustment of the gain from X10 to X100 indicating a 20dB or 40dB 

amplification factor. A high pass filter with frequency range from 50 kHz to 700 kHz and low pass 

filter of frequency range from 100 kHz to 1 MHZ are configurable to remove noise embedded 

within the signal.  

 

Figure 4-7: AE coupler circuit framework  

The output signal of the filter can then be digitized via an inbuilt RMS compartment over a range 

of 0.12ms to 120ms time-constant. Figure 4.7 displays the operational workflow of the coupler. 
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The signals are then relayed to a data acquisition card via a NI BNC connection block and custom 

cable design. Finally, the signals are monitored using data acquisition card NI PCI-6071E from 

National Instruments using special data acquisition software written using the National Instrument 

CVI programming package and a computer. Matlab software is used for the complete analysis of 

this research. 
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Figure 4-8: (A) AE coupler (Kistler 5125B); (B) AE Sensor (Kistler 8125B); (C) Power 

source; (D) BNC 2110 
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4.2.5 Optical microscopic (Non-contact Image analyzer) 

4.2.5.1 Zeiss Stereo Microscope 

 The ZEISS stereo Microscope version 20 provides observation with a magnification as high as 

150X. It possesses three focal lenses with motorized zoom expansion and resolution adjustment. 

The panel combines buttons, joystick and touch screen in a compact design, allowing intelligent 

control of all microscope functions with real time display of main microscope parameters. In order 

to determine the inserts, wear state, the optical microscope and analysis software Figure 4.9 was 

utilized. 

 

Figure 4-9: ZEISS light microscope with image analyzer 
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4.2.5.2 Olympus DSX510 Digital Microscope 

To ensure accuracy during wear measurements, the author also used another digital microscope 

and image analyzer to validate the wear progress during machining. Olympus microscopy with 

the DSX 510 was used. A digital microscope system that has unique combination of time-tested 

and optics digital imaging technology, the Olympus DSX510 (Fig 4.10) digital microscopes 

allow even first-time users to immediately produce superior images and highly reliable results 

with the following features: 

 Efficient Observation: higher-quality optics and more advanced digital technology, the 

DSX510 delivers efficient observation, intuitive magnifying operation, a variety of 

observation methods, and reproducibility. 

 Easy Image Capturing: Various image capturing methods provide easy, intuitive operation. 

Options include EFI and 3D imaging, wide area image capturing, movie capturing, and 

programmed image capturing 

 Accurate Measurement: Live, 2D, and 3D measurement options are backed by guaranteed 

accuracy and repeatability, automatic calibration, and reproducibility self-check. 

Measurement can also be automated with a simple wizard function. 

 High-Resolution 18MP Images Reproduced with High-Performance CCD 

 Two lenses can be mounted at once for an even greater magnification range (70X to 9000X 

maximum range). 

 the DSX510 offers optical zoom of up to 13X and digital zoom of up to 30X. 

 Ideal for any industrial and experimental microscopic observation method, the DSX510 

offers a variety of observation modes that deliver the high-resolution images users expect 

from high-end optics. 

In Figure 4-11, it shows typical non-contact image analysis when using Olympus Digital 

Microscope to measure tool wear. 
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Figure 4-10: Olympus Digital Microscope (D S X 5 1 0) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11: images of wear measurement from Olympus DSX510 (Experiment round 4 Run 9 

and 11) 
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4.2.6  Data Acquisition Card 

The data acquisition card used in this study (Figure 4-12) is the NI PCI-6110E from National 

Instruments, a multifunction analogue, digital, and timing I/O boards for PC AT. The card has 12- 

bits ADCs with 64 analogue input single ended or 32 differentials with a guaranteed sampling rate 

up to 5MS/s Per channel. The analogue input used was configured as differential inputs because 

of the low voltage levels involved, the noisy environment, and long wires used in connecting the 

signals to the data acquisition card. The analogue channel is used to acquire the machining data 

using a sampling rate of 1M – 5M samples per channel. The card is used in a bipolar mode of 

+10V or -10V with a board gain of 0.5. Hence, for 12-bit data samples the resolution is up to 9.76 

mV.  

This PCI from National Instruments (PCI-6110E) has further capabilities such as 4-Channel, 

Simultaneous-Sampling Multifunction DAQ with Extended Input Ranges up to ±42 V, 4 

Simultaneously Sampled Analog Inputs, two 16-Bit Analog Outputs, 4 MS/s Single Channel, 2.5 

MS/s Dual Channel, 8 Digital I/O Lines; Two 24-Bit Counters; Analog and Digital Triggering. 

The DAQ card in the experiment is used to interface the voltage and frequency controller from the 

output of the amplifier to a personal computer. The interfacing is done by using LabVIEW 

graphical data logging software. 

 

Figure 4-12: DAQ card from the National Instrument 

4.2.7 Data Acquisition software and programme 

The data acquisition card is programmed using LabWindows from National Instruments, a 

developed software package for data acquisition and monitoring. The data acquisition software is 

flexible multipurpose data acquisition software using the LabWindows package from National 

Instruments. The software also has simple GUI panels which give the user a friendly and fast 
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interaction. The software loads the 119-acquired data to the computer memory first, draws it on 

the screen and then gives the user the option to save the data. Consequently, it gives the user more 

flexibility for data analysis, but at the same time, it limits the maximum number of samples which 

can be acquired. The Configuration Panel is used to choose the channels to monitor their color, 

save the configuration to a file and load any configuration file to the program. Figure 4-13 shows 

the Configuration Panel. Put live front panel 

 

Figure 4-13: Live LabVIEW® data acquisition instrument for acoustic emission measurement 
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4.3 Experimental Set Up and Procedure 

In this chapter, the experimental work is conducted to examine the behavior of the signals, material 

and monitor tools status (fresh and worn), and then to find the most sensitive sensory characteristic 

features to tool failures. Machining tests were conducted with coolant (soluble castor oil) 

machining conditions on the Deckel Maho 5-axis CNC machine. The acoustic sensor was mounted 

on the workpiece holder placed on the machine table via the use of the magnetic clamp. Figure 4-

14 describes experimental setup used to perform cutting tests on stainless steel 316 grade and the 

sensor position. The milling process was carried out at the conditions using the machine parameters 

as shown in the Table 4-6, castor oil mixed with water was also used as coolant as wet milling was 

adopted for this experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-14: Schematic diagram of experimental setup for the monitoring system. 

 

 

control panel 

wk./piece 



Page 92 
 

 

4.3.1 Machining Set Up and Procedure: 

The common procedure of machining for tool condition monitoring was employed for the 

acquisition of data during the different machining phases.  Enumerated below are the stages 

engaged to maintain reliability of data: 

 With the help of a magnetic clamp and M6 bolt, the AE sensor was fastened to the spindle 

mount at a distance of 4cm from the workpiece (Figure 4-14). The distance is close enough 

to detect surface and Rayleigh acoustic waves from the workpiece. 

 The AE coupler was attached directly above the set up to give room for the free rotation of 

the spindle on the B-axis and its travel on the x-axes without interference with the set up 

(Figure 4.14). This was also necessary to maintain the pre-processing unit as close to the 

acquisition point as possible and eliminate the effect of workpiece changing distance. 

 The use of gauge indicator was used to ensure that the edge of the workpiece is parallel to 

the axis of the machine. 

 The CNC G- codes were written for the parameters that will be used in the experimental 

work. 

 Pre-processed signals were channeled to the BNC board and to the NI data card for further 

processing and storage. 

 For clear results and consistent tests, the workpiece face was first cleaned and squared 

before conducting the primary tests with rough cutting inserts.   

 Before machining tests at each layer depth, a shoulder of at least 25 mm in radial direction 

was cut to allow the whole tool to be within the workpiece before experiments commenced 

in order to prevent the acquisition of high amplitude data from collision entry.  

 Machining tests were conducted with vertical and radial depth of 2mm.  

 Each experiment was represented with specific cutting inserts which were stopped every 

certain number of passes to examine the wear progression on the microscope.  

 Each machining test cutting pass were conducted along the length of the workpiece and the 

AE data of each pass was recorded.  

 Prior to every cutting phase, the tool wear formed was observed in the laboratory with the 

microscopes.  
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 Each cutting phase consists of various cutting passes based on the observed wear 

progression observed from the microscope.   

 AE raw data only was recorded over a time frame of 30 seconds over each cutting pass.  

4.3.2 Machine Parameters of the milling Process 

                        Table 4-6: Machine parameters 

Machine conditions Specifications 

 low medium high 

Feed rate (mm/min) 58 243 520 

Cutting speed (rpm) 2900 4050 5200 

Depth of Cut (mm) 1 2 3 

Coolant type Castor oil 

Diameter of tool 16mm 

Material of tool (Inserts) Indexable Solid Carbide (End mill Solid 

multi layered coated Carbide). 

Type of Tool End mill Tool (2 Flutes, uncoated) 
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Chapter Five 

5 Analysis of experiment, results, Conclusions and 

Recommendations  

5.1 Introduction  

This chapter of the research work is categorized into three major parts, the first section explains 

the Process optimization control that details the application of regression analysis to develop a 

response surface model for predicting the surface roughness values, Tool wear, Productivity, the 

volume of material removed and the investigation of the interactive terms of the model and its 

validation. The second section highlights the signal processing of acoustic emission data acquired 

during the research experiment. The researcher engaged the use of Bolls spectral subtraction 

technique, feature extraction and selection of relevant features in the time, frequency and time-

frequency domains, wavelet decomposition using relevant software listed below.  

Finally, details of the training and testing of supervised back propagation neural network using the 

selected features as inputs to predict targeted tool wear values are discussed. The analysis in this 

chapter was made possible using Excel, Minitab, Statistical, LabVIEW, Design Expert and Matlab 

software. The third section of this chapter focus on the concluding remarks and recommendation 

for future work on this research work. 

5.2 Process Optimization and Control 

The optimization of cutting parameters is the key component in the planning of machining 

processes. However, deep analysis of cutting involves certain costs, particularly in the case of 

small series. In the case of individual machining, it is particularly necessary to shorten as much as 

possible the procedure for determination of the optimum cutting parameters, otherwise the cost of 

analysis might exceed the economic efficiency which could be reached if working with optimum 

conditions. 

Optimum selection of cutting conditions importantly contributes to the increase of productivity 

and the reduction of costs, therefore utmost attention was paid to this problem as a contribution 

[142]. This section investigates the prediction of machinability of the process model and 

determines the optimal values of process parameters. The tools used are ANOVA, Box-Behnken 
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method and the Response surface methodology. This subject area is highly interesting for 

researchers and manufacturing engineers to control the production in a scientific manner. 

5.3 Design of Experiment (DoE) 

The Design of experiment (DOE) is a planned and organized method that is used to determine the 

relationship among the different factors or variables (Xs) affecting a process and the output of that 

process (Y) [143]. This method was first developed in the 1920s and 1930s by Ronald A. Fisher. 

DOE needed designing a set of multiple experiments where all the relevant factors (X‟s) are varied 

systematically. Through this process, it will be possible to analyze and identify optimal conditions, 

the factors that most influence the results, and those that do not, as well as details, for example the 

existence of interaction and synergies between factors.  

In this work, the researcher used experimental design in process development or process 

troubleshooting to improve process performance and to obtain a process that is robust or 

insensitive to external sources of variability. It also can be good as a guideline in establishing 

statistical control of a process and be used to identify all the process influence variables. This is a 

critical engineering tool required to improve manufacturing process. It also has extensive 

application in the development of these techniques early in process development, which can result 

in Improved yield, reduced variability and closer conformance, reduced development time and 

reduced overall cost. 

In this research work, a total of 17 machining trials were carried out to evaluate and validate the 

modelling approach and study the influences of linear and nonlinear factors under different 

operational conditions. There are three machining parameters that have been considered, which 

are Speed (rpm), feed rate (mm/min) and depth of cut (mm) The output is tool wear (mm) as shown 

in Table 5-2. There are three factors for the experiment and three levels for factors. These are 

divided under machining parameter (Table 5-1) into 3 levels which are level 1 (L1), level 2 (L2) 

and level 3 (L3) shown in under machining parameter Table 5-1. The speed for the three levels are 

L1= 2900rpm, L2 = 4050rpm and L3 = 5200rpm. The depths of cut are: 1mm, 2mm and 3mm. 

while the feed rates for the three level are also 0.02mm/min, 0.06mm/min and 0.1mm/min L1, L2 

L3 respectively. Design of Experiments (DOE) for machine parameters were designed using 

Designed expert software. 
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Table 5-1: Machining Parameters used in the study 

 

Machining variables 

Levels 

L1 (Low) L2 (Medium) L3 (High) 

Speed (rpm) 2900 4050 5200 

Feed (mm/min) 0.02 0.06 0.1 

Depth of Cut (mm) 1 2 3 

 

Table 5-2: Experimental Design of the experiment and results (using Box-Behnken Design)  

Insert 

Types 

Run Spindle 

Speed 

(rpm) 

Feed 

(mm/rev) 

Feed rate 

(mm/min 

Depth of 

cut (mm) 

Tool wear 

(mm) 

RGD 1 2900 0.02 58 2 0.43 

RGD 2 5200 0.1 520 2 0.29 

RGD 3 2900 0.1 290 2 0.18 

RGD 4 4050 0.1 405 1 0.17 

RGD 5 5200 0.02 104 2 0.29 

RGD 6 5200 0.06 312 3 0.32 

RGD 7 5200 0.06 312 1 0.20 

RGD 8 2900 0.06 174 1 0.10 

RGD 9 4050 0.02 81 1 0.33 

RGD 10 4050 0.1 405 3 0.23 

RHD 11 4050 0.06 243 2 0.30 

RHD 12 2900 0.06 174 3 0.29 

RHD 13 4050 0.06 243 2 0.26 

RHD 14 4050 0.02 81 3 0.29 

RHD 15 4050 0.06 243 2 0.36 
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RHD 16 4050 0.06 243 2 0.30 

RHD 17 4050 0.06 243 2 0.28 

 

5.4 ANOVA and Regression Analysis 

ANOVA is a statistical method used to identify the differences between two or more independent 

groups (speed, feed and depth of cut) of data collected as seen in Figure 5.2. Source of variation 

are explained in their degree of freedom (DF), total sum of square (SS), and the mean square (MS). 

The analysis will calculate the F-statistic and p-values which are to determine whether the predictor 

of factors is significant/dominant related to the response. In Figure 5-1 and Figure 5-3, predicted 

wear was plotted against experimental wear and data validation of the research was confirmed with 

a scattered plot around the curve fittings. 

Tool wear model 

Using design expert software, the design of experiment of a 3x3 Box Behnken design with 3 center 

points will reflect 10 coefficients in a quadratic and 2FI model as follows: 

𝑇𝑊 = 𝐴0 + 𝐴1𝐷 + 𝐴2𝐹 +  𝐴3𝑆 +  𝐴4𝐷2 + 𝐴5𝐹2 +  𝐴6𝑆2 + 𝐴7𝐷�̇� + 𝐴8𝐷�̇� +  𝐴9𝐹�̇� … …     (5.1)  

Where: 

𝑇𝑊 = 𝑇𝑜𝑜𝑙 𝑊𝑒𝑎𝑟  

𝐴0 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  

𝐷 = 𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝑐𝑢𝑡  

 𝐹 = 𝐹𝑒𝑒𝑑  

𝑆 = 𝑆𝑝𝑒𝑒𝑑  

= 𝐹𝑒𝑒𝑑  

𝐴1 −  𝐴3 = 𝐶𝑜𝑒𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙  

𝐴4 −  𝐴6 = 𝐶𝑜𝑒𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙  

𝐴7 −  𝐴9 = 𝐶𝑜𝑒𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓  𝑐𝑟𝑜𝑠𝑠 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙  

Predicted model: 

Tool Wear =  

+ 0.40 – 0.00007 * speed – 0.70 * feed + 0.27 * depth + 0.0014 * speed * feed - 0.057 * depth2 

            (5.2) 
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In Figure 5-8, Regression Summary for Tool wear as dependent variable was carried out using 

traditional approach from excel software. R is 0.8635, R2 is 0.745 this accounts for 75% of the 

experimental model, Adjusted R2 is 0.62938 and standard error of estimate was recorded as 0.05. 

Table 5-3: Regression table 

Regression Summary for Dependent Variable: TW  

R= .86325112, R²= .74520250, Adjusted R²= .62938545 

F (5,11) = 6.4343 p<.00496, Std. Error of estimate: .04736 

N = 17 b Std. Err. T (11) p-value 

Intercept 0.36010 0.166165 2.16712 0.053042 

Speed -0.00007 0.000034 -2.06891 0.062891 

Feed -6.97147 2.126639 -3.27816 0.007358 

Depth of Cut 0.27181 0.093569 2.90487 0.014320 

Depth squared -0.05764 0.023015 -2.50445 0.029274 

Speed * Depth of 

Cut 

0.00136 0.000515 2.63916 0.023028 

 

 

 

Figure 5-1: Data validation 
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Figure 5-2: Graphical representation of Experimental wear versus Number of runs 

 

Figure 5-3: Plot for Experimental wear versus Predicted 
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In Figure 5-4, an error of high percentage was experienced during the machining at speed of 

2900rpm, feed of 0.06 and depth of 1mm in run number 8. This could be as a result of machining 

parameter introduced in run number 8 as shown in Table 5-2, although runs number 8 and 12 are 

quite similar but looking at the depth of cut in 8, which was smaller could have accounted for low 

wear output. 

 

Figure 5-4: Plot of %error. 

a) Design evaluation results 

To ensure a valid test of Fit, further analysis was carried out using design expert software, a 

recommendation of a minimum of 3 lack of fit degree of freedom (dof) and 4 dof for pure error is 

always encouraged, because fewer dof will lead to a test that may not detect lack of fit. But in this 

research work, the following results were obtained Table 5-3: 

Table 5-4: Degrees of Freedom for Evaluation 

Model 5 

Residuals    11 
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To evaluate the variance inflation factor (VIF) Table5-4, which measures how much the variance 

of the model is inflated by lack of orthogonality in the design, this needed to verify if the factor is 

orthogonal to all the other factors in the model, by confirming that VIF is 1.0. Therefore, from the 

design, Table 5-4, below confirms VIF is 1.0. Furthermore, a VIF that exceeds 10 may not be 

appropriate hence indicating that there is excessive correlation between the regression coefficients. 

Table 5-5: Variance inflation factor (VIF) 

 

b) Analysis  

Table 5-6: Fit summary  

 

From observations in Table 5-7, which clearly explained why our model was chosen to be 

Quadratic. In Sequential Model Sum of Squares Table 5-7, P-value for quadratic is 0.2223 which 

 Std.  Adjusted Predicted   

Source Dev. R-Squared R-Squared R-Squared PRESS  

Linear 0.065 0.4386 0.3090 -0.0797 0.10 Suggested 

2FI 0.059 0.6384 0.4214 -0.4611 0.14  

Quadratic 0.053 0.7994 0.5415 -1.3744 0.23  

Terms Std Err** VIF Ri-

Squared 

0.5 Std. Dev. 1 Std. Dev. 2 Std. Dev. 

A 0.35 1.00 0.0000 9.9 % 25.3 % 73.1 % 

B 0.35 1.00 0.0000 9.9 % 25.3 % 73.1 % 

C 0.35 1.00 0.0000 9.9 % 25.3 % 73.1 % 

AB 0.50 1.00 0.0000 7.4 % 15.0 % 44.6 % 

C2 0.49 1.00 0.0000 15.6 % 46.7 % 96.2 % 
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is the highest. This is the probability associated with adding these additional terms to the model. 

Lack of Fit Tests is the probability associated with the Lack of Fit calculation for this model. This 

confirm quadratic with 0.1399 being the highest as an insignificant probability value of P>0.10. 

For Model Summary Statistics, this represents the amount of variation in new data explained by 

the model. A negative value of -1.3744 (Table 5- 4) Predicted R-Squared means that the overall 

mean is a better predictor model. Therefore, the model for this research work shall be quadratic. 

c) Model Summary Statistics 

The "Lack of Fit F-value" of 1.95 in Figure 5-9, implies the Lack of Fit is not significant relative 

to the pure error.  There is a 27.11% chance that a "Lack of Fit F-value" this large could occur due 

to noise.  Non-significant lack of fit is good so the researcher can model to fit. 

Table 5-7: Lack of fit 

Lack of Fit Tests 
     

Source Sum of 

Squares 

dof Mean 

Square 

F 

Value 

P-Value 

Prob > F 

 

Linear 0.049 9 5.42E-03 3.87 0.1026 Suggested 

2FI 0.029 6 4.90E-03 3.5 0.1227 
 

Quadratic 0.014 3 4.61E-03 3.29 0.1399 
 

Cubic 0 0  
  

Aliased 

Quartic 0 0  
  

Aliased 

Fifth 0 0  
  

Aliased 

Sixth 0 0  
  

Aliased 

Pure Error 5.60E-03 4 1.40E-03 
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Table 5-8: Sequential Model Sum of Squares 

Sum of Mean F p-value  

 Source Squares dof Square Value Prob > F  

Mean vs Total 1.26 1 1.26   Suggested 

Linear vs Mean 0.042 3 0.014 3.39 0.0510 Suggested 

2FI vs Linear 0.019 3 6.450E-003 1.84 0.2034  

Quadratic vs 2F 0.016 3 5.199E-003 1.87 0.2223  

 

Table 5-9: Analysis of variance table [Partial sum of squares - Type III] 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Model 0.072 5 0.014 6.43 0.0050 significant 

  A-speed 1.250E-003 1 1.250E-003 0.56 0.4710  

  B-feed 0.028 1 0.028 12.31 0.0049  

  C-depth 0.014 1 0.014 6.07 0.0315  

  AB 0.016 1 0.016 6.97 0.0230  

  C2 0.014 1 0.014 6.27 0.0293  

Residual 0.025 11 2.243E-003   

Lack of Fit 0.019 7 2.725E-003 1.95 0.2711 not significant 

Pure Error 5.600E-003 4 1.400E-003   

Cor Total 0.097 16    
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Table 5-10: ANOVA summary 

Std. Dev. 0.047 R-Squared 0.7452 

Mean 0.27 Adj R-Squared 0.6294 

C.V. % 17.43 Pred R-Squared 0.353 

PRESS 0.063 Adeq Precision 9.467 

 

In conclusion, the model explains 75% of the variation in the tool wear and the predicted effect of 

speed on the tool wear, is enhanced by increasing Feed. However, in Table 5-10, Pred R-Squared 

of 0.3530 is not as close to the Adj R-Squared of 0.6294 as one might normally expect. This 

indicates a large block effect due to model reduction and removal of outliers. Adeq Precision 

measures the signal to noise ratio in which according to leterature, a ratio greater than value of 4 

is desirable.  In this research work, a ratio of 9.467 indicates an adequate signal therefore, this 

model can be used to navigate the design space. 

Model Diagnostic Plots: 

Proceeding to Diagnostic Plots having ensure that the following are put into cosideration, Most of 

the plots display residuals, which shows how well the model satisfies the assumptions of the 

analysis of variance. Design experts’ software was used and showed the studentized form of 

residuals. A breakdown of all the model diagnostic plots are given below:  

 Normal probability plot of the studentized residuals to check for normality of residuals. 

The normal probability plot Figure 5-5, indicates whether the residuals follow a normal 

distribution, in which in this case the points will follow a straight line as expected some moderate 

scatter even with  normal data.  

 Externally Studentized Residuals to look for outliers, i.e., influential values. 

 Box-Cox plot for power transformations. 

 Studentized residuals versus predicted values to check for constant error. 
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i. Diagnostic 

 

Figure 5-5: Normal plot of residual 

Residuals vs Predicted: Figure 5- 6 is a plot of the residuals versus the ascending predicted 

response values. It tests the assumption of constant variance. Normally the plot should be a random 

scatter to satisfy good model that needs no transformation. From Figure 5-6, a constant range of 

residuals across the graph was satisfied. 

Actual vs Predicted: Figure 5-7 is a graph of the actual response values versus the predicted 

response values. It helps to detect a value, or group of values, that are not easily predicted by the 

this model. Figure 5-7, confirmed our data validation carried out with raw data in Figure 5-1. 
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Figure 5-6: Residual versus predicted 

 

 

Figure 5-7: Predicted versus Actual 
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Figure 5-8 is the Box Cox Plot for Power Transforms. This plot provides a guideline for selecting 

the correct power law transformation if needed in desingning a model. From Figure 5-8, no 

recommended transformation was stated as can be seen, based on the best lambda value, which is  

1 found at the minimum point of the curve generated by the natural log of the sum of squares of 

the residuals. Because the 95% confidence interval around this lambda includes 1 then the software 

does not recommend any transformation meaning our model does not require any transformation. 

The plot shows the minimum lambda values, as well as lambdas at the 95% confidence range low 

confidence interval as 0.16 and High confedence interval as 2.85. The plot also shows the current 

power transformation to be 1 so, the model fits. 

 

Figure 5-8: Box-cox plot 

  In the established model, above, there is little or no interaction between depth of cut and feed or 

speed but between feed and speed, therefore, the 3-D Contour plot of these two parameters are 

considered. In Figure 5-9, 3-D Contour plot of feed and speed practically explained what we have 

in Table 5-2. Looking at Figure 5-9, at a feed of 0.02mm/rev and a speed of 2900rpm a worst 

scenario was experienced in terms of Tool wear which is 0.43mm. this simply tells us that at the 

red portion of the plot that is at low speed and low feed, we may often experience constant tool 
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wear. But at the green to light blue part of the plot (top left corner) which represents low speed 

with high feed, our tool can be properly managed. However, a prediction was made at point 5 in 

the plot which says at about 4050rpm and about 0.06mm/rev, a maximum, optimal or allowable 

Tool wear of 0.298mm can be achieved. Generally, high feed with low speed will be good to work 

with in this regard. This explanation can also be seen in Figure 5-10, the 3-D Contour optimization 

plot. 

 

Figure 5-9: 3-D Contour Plot 
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Figure 5-10: 3-D Optimization surface plot 

ii. Model graphs 

 Perturbation plot in Figure 5- 11, shows how the response changes as each factor (speed, feed and 

depth of cut) moves from the chosen reference point, with all other factors held constant at the 

reference value. Perturbation plot helps us compare the effect of all the feed speed and depth of 

cut at a point in the design space. Feed, speed and depth of cut are plotted by changing only one 

factor over its range while holding of the other factors constant. A steep slope such as feed or 

curvature such as speed and depth of cut show that the Tool wear is sensitive to these factors. A 

relatively flat line shows insensitivity to change in that factor which we do not have in case of this 

experiment. The perturbation plot could be used to find those factors that most affect the Tool wear 

response. These influential factors are good choices for the axes on the contour plots. 
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Figure 5-11: Perturbation Plot (A= Speed, B = Feed and c = Depth) 

The plot of standard error in figure 5-12 of the mean shows how the error in the predicted Tool 

wear varies over the design space. It depends on the number and location of the design points as 

well as the standard error of the residuals from the ANOVA Table 5-8. Usually, to obtain the 

standard errors, we assume a sigma of one and the evaluation graph is based on this. When the 

estimate of sigma is obtained during the data analysis, it becomes a multiplier. 

 

Figure 5-12: Standard error of tool wear for surface plot 

Perturbation

Deviation from Reference Point (Coded Units)

T
o

o
l 

W
e

a
r

-1.000 -0.500 0.000 0.500 1.000

0.1

0.1825

0.265

0.3475

0.43

A

A

B

B

C

C

  2900.00

  3475.00

  4050.00

  4625.00

  5200.00

0.02  

0.04  

0.06  

0.08  

0.10  

0.015  

0.02075  

0.0265  

0.03225  

0.038  

 
 
S

t
d

E
r

r
 
o

f
 
T

o
o

l 
W

e
a

r
 
 

  A: speed    B: feed  

Tool Wear 



Page 111 
 

Desirability plot (Figure 5-14) using Design experts is a convenient way of carrying out a powerful 

parameter combinations that are derived from model. Looking at the Figure 5-14, the red portion 

are good to go area for right combination for machining stainless steel 316 especially the predicted 

spot 1.00. see Table 5-11 and Table 5-12 for actual points in the graph. 

 

Figure 5-13: Desirability plot 
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Table 5-12: Point Prediction 

 

5.5 Optimization   

Microsoft Excel was used to carry out profile plot for optimization as well. From Fig 5-15, the 

maximum depth of cut that is needed to have both maximum wear and minimum wear is about 

2.3mm. The combined speed and feed for minimum wear is 2900rpm and 0.1mm/rev, the worst 

case for tool wear can be expected at speed of 5200rpm and feed of 0.1mm/rev. 

 

 

Figure 5-14: Profile plot for depth 
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5.6 Effect of Spindle speed on Flank wear: 

The effects of spindle speed on the flank wear from Figure 5-16 to 5-18 have shown direct impact 

on the tool wear. In Figure 5-16, at constant feed of 0.02mm/rev regardless of the depth of cut 

between 1mm to 3mm, the higher the speed, the less Flank wear we experienced. However, 

opposite is the case when the feed rate is increased from 0.06 mm/rev to 0.1mm/rev. in the case, 

the higher the speed the faster we experience flank wear rate respectively. 

 

Figure 5-15: effect of spindle speed different depth of cut and flank wear at constant feed = 

0.02mm/rev 
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Figure 5-16: effect of spindle speed different depth of cut and flank wear at constant feed = 

0.06mm/rev 

 

Figure 5-17: effect of spindle speed different depth of cut and flank wear at constant feed = 

0.1mm/rev 
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feed rate of 0.1mm/rev, low speed of 146m/min and a depth of cut 2mm can enhance cutting 

length. 

 

Figure 5-18: cutting length versus Flank wear at Feed = 0.02mm/rev 
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Figure 5-19: cutting length versus Flank wear at Feed = 0.1mm/rev 

 

Figure 5-20: cutting length versus Flank wear at Feed = 0.06mm/rev 
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5.8 Effects of cutting Speed on Tool life 

closely, looking at Figure 5-22, Figure 5-23 and Figure 5-24, an increase in cutting speed reduces 

the tool life. It is noticeable that when at constant feed a reduction in tool life is also experienced. 

At high speeds of 146, 204, 261m/min and variable feeds of 0.02, 0.06 and 0.1mm/rev, almost no 

effect was observed on the tool for the first 9 mins of their life.  However, at low feed of 

0.06mm/rev, the tool life almost double at high speed of 310mm/min. this could be due to chip 

load at this feed rate. To conclude on the effect of cutting speed on tool life, one can say high-

speed end milling of AISI 316 should be carried out at low values of feed such as 0.02mm/rev 

(Figure 5-22). 

 

 

 

Figure 5-21: Cutting speed versus Tool life at feed = 0.02mm/rev 
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Figure 5-22: Cutting speed versus Tool life at feed = 0.06mm/rev 

 

Figure 5-23: Cutting speed versus Tool life at feed = 0.1mm/rev 
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5.9 Productivity: 

It is important to know that a very useful and remarkable pointer for performance of metal cutting 

operations is the volume of metal removed per unit time or popularly known as the productivity. 

In figure 5-25, 5-26 and 5-27, at constant feeds of 0.02, 0.06 and 0.1 mm/rev the relationships 

between Tool life and material removed shows the how the combinations of machine parameters 

can be maximized for productivity.  

At feed 0.02mm/rev, speed 58mm/min and depth of 2mm, a tool life of 72 mins was achieved and 

16200 mm3 volume of material was successfully removed. Also, at feed 0.06mm/rev, speed 

290mm/min and depth of 2mm, a tool life of 28mins was achieved and 33000 mm3 volume of 

material removed. But when the feed was increased to a high feed rate at 0.1mm/rev, speed 

174mm/min and depth of 1mm, a short tool life of 35mins and volume of 1200mm3 was achieved.   

From these observations, it seems that at low speed (58mm/min) and feed (0.02mm/rev), a lasting 

tool life can be achieved and at speed 290mm/min and feed 0.06mm/rev high volume of materials 

can be removed. Therefore, in conclusion, working on high-speed end milling of AISI 316, at 

elevated feed up to 0.06m/rev and high speed of 290mm/min, material removed can be maximized. 

Alternatively, at low feed of 0.02mm/rev and speed of 58mm/min, tool life can be optimized. 
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Figure 5-24: Tool life versus Material removal at feed 0.06mm/rev 

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

M
at

er
ia

 r
em

o
va

l (
m

m
3
)

Tool life (min)

Feed = 0.06mm/rev

V =520mm/min, DOC = 2mm

V =290mm/min, DOC = 2mm

V  =405mm/min, DOC = 1mm

V =405mm/min, DOC = 3mm



Page 121 
 

 

Figure 5-25: Tool life versus Material removal at feed 0.02mm/rev 

 

Figure 5-26: Tool life versus Material removal at feed 0.1mm/rev 
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5.10 Acoustic Emission, Signal Processing and Analysis 

5.10.1 Introduction 

Since monitoring the tool wear requires that process be classified into categories of three different 

levels. Based on the experimental runs and observed wear from the machining parameters selection 

which has a range from 0.01 to 0.3 mm was implemented. Although a maximum wear of 0.43 was 

reached in during the killing of the tools in the experiments, most tools were not machined to reach 

extreme levels in order to prevent a severe broken tool state for the purpose of modeling. A 

severely worn out tool was considered adequate for result processing. Table 5-13 indicates various 

wear classes. 

Table 5-13: wear classes 

Class Flank Wear (Vb) Tool State 

0 vb < 0.1 New tool 

1 0.1 < vb < 0.2 Moderately worn 

2 0.2 < vb < 0.4 Worn out Tool 

Based on the cutting parameters shown in Table 4.6, the cutting tool performed several passes 

along the length of the workpiece. In this chapter, review of results and observations obtained 

during the research are discussed. Figure 5.28 gives a pictorial representation of the machining 

experiments and process definitions. 

 

 

 

 

 

 

 

 

Figure 5-27: Scheme of Cutting process 
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5.10.2 Segmentation of data 

The number of tool entry into the workpiece per second is an indication of the theoretical frequency 

of the machining process. This information helps in the selection of a time segment frame for 

signal processing. The theoretical cutting frequency of the milling operation was obtained from 

the equation below: 

            (5-3) 

 

Where: 

f = theoretical frequency 

T = the number of the teeth on the tool 

n = the number of rotational speed of the cutter in rpm 

Vc = cutting speed in mm/min 

Dc = cutting tool diameter in mm 

For the purpose of this experiment, the theoretical cutting frequencies (Table 5-14) of the process 

were 99.45 Hz, 125.98 Hz and 172.39 Hz. Table 5-15 shows the segmentation of data values and 

the number of tool entry per segments.  

   Table 5-14: Theoretical cutting frequency 

Vc (m/min) Dc (mm) T Fc (Hz) 

150 16 2 99.45 

190 16 2 125.98 

260 16 2 172.39 

 

The PCI from National Instruments (PCI-6110E) used in the research work has further capabilities 

such as 4-Channel, Simultaneous-Sampling Multifunction DAQ with Extended Input Ranges up 

to ±42 V, 4 Simultaneously Sampled Analog Inputs, two 16-Bit Analog Outputs, 4 MS/s.  

Therefore, the author, by choice within the specification above used 1 MS/s of sampling rate, 

segmentation of the data for processing was implemented. The sampling occurred over a time 

frame of 35 seconds, yielding to an acquisition throughput of 35 million samples per pass. 

f = T × 
n

60
=  

T × VC ×1000

π × Dc ×60
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Table 5-15:  Segmentation of Data 

Parameters   values   

Rotational speed (rpm)  2900 3800 5200 

Sampling rate (S/s)   1,000,000   

Theoretical cutting frequency (Hz)  99.45  125.98 172.39 

Acquisition time frame (s)   35  

Total acquired data    35,000,000   

Number of segments   4   

No. of segments selected for extraction   1   

Segment time frame (MS)   0.3   

Number of samples per segment   300,000   

 

5.10.3 Signal filtering 

The most common frequency domain characteristic found in the literature is the spectral energy 

around the first natural frequency of the tool-workpiece system. It was established that the first 

natural frequency for this system lies at about 5 kHz. The spectral energy in the 5-kHz region was 

taken as a feature. However, some authors also found that useful information about the process 

can be found in the 'low' frequency domain. Investigations proved that the spectral energy between 

100 - 1000 Hz also displays a significant trend towards tool wear. Therefore, this was also taken 

as a feature. SP Tool from Matlab was used to design and filter the raw data used for the analysis 

of Signal Processing. Figure 5-19 and Table 5-16 show filter design and the specifications for the 

filter designed. 



Page 125 
 

5.10.4 Filter Design  

Figure 5-28: Filter 

5.10.5 Filter specifications: 

Table 5-16: Filter table 

Response type High pass 

Design method Chebyshev type II 

Filter order Minimum order 

Match Exactly Stop band 

Frequency specification Fs = 50Hz, F stop = 0.4, F pass = 0.8 

Magnitude Specification (dB) A stop = 60, A pass = 1 

Structure Direct-form II second order section 

Order 7 

Sections 4 

Stable Yes 
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5.11 Domains observations and feature extractions 

Fundamentally, the purpose and the focus of the signal processing is to extract features from 

acquired and recorded signals, and automatically select the features that demonstrate a consistent 

trend towards tool wear. To achieve this and to increase the reliability of the tool wear monitoring 

system, a monitoring strategy was devised based on features extracted from the time and frequency 

domains, as well as features extracted from time series models and wavelet Transform analysis. 

5.11.1 Time domain observation and feature extraction 

Tool wear occurrence can be categorized in three stages viz new, moderate and worn. Therefore, 

data acquired are segmented and classified into these three categories Figures 5-30 and 5-31, 

represent new tool, Figures 5-32 and 5-33 represent moderately worn and Figures 5-34 to 5-37 

represent worn out tool. Looking carefully at the figures we can see a trend in the amplitude of 

raw AE, it was observed that the higher the wear the bigger the uniform amplitude of the tool. In 

Figure 5-38 to 5-41, a clear worn out tool can be seen with built up edge BUE in Figure 5-39. 

Looking at Figure 5-5-40 and 5-41, a confirmation of both MATLAB, Design experts and Excel 

software modeling was also shown in the signal processing phase (Time-domain, Frequency-

domain and Spectrum). This worn-out tool at 0.43mm Tool wear has a speed of 2900rpm, depth 

of cut of 2mm and feed of 58mm/min    Therefore, it shows that when the tool is practically worn 

out, the sinusoidal waves of the signals during machining will eventually fade out and become 

uniform amplitude.  

 

 

 

 

 

 

 

 



Page 127 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vb = 0.05mm 

Figure 5-29: round 1 tool 16, AE signal in Time and Frequency domain at Speed=4050rpm, 

Feed = 243mm/min Depth= 2 

Figure 5-30: round 1 tool 16 AE burst (Spectrum)at Speed=4050rpm, Feed = 243mm/min, 

Depth= 2 
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Table 5-17:Experiment round 1 tool 17: AE burst (Spectrum)at Speed=4050rpm, Feed = 

243mm/min, Depth= 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vb = 0.1mm 

 

Figure 5-31: round 1 tool 17 showing AE signal in Time and Frequency domain at 

Speed=4050rpm, Feed = 243mm/min Depth= 2 

 

Figure 5-32: round 1 tool 17 AE burst (Spectrum)at Speed=4050rpm, Feed = 243mm/min, 

Depth= 2 

 



Page 129 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-18: Experiment round 1 tool 17: AE burst (Spectrum)at Speed=5200rpm, Feed = 

104mm/min, Depth= 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Vb = 0.39mm 

 

Figure 5-33: round 2 tool 5 showing AE signal in Time and Frequency domain at 

Speed=5200rpm, Feed = 104mm/min Depth= 2 

 

Figure 5-34: round 1 tool 1 AE burst (Spectrum)at Speed=5200rpm, Feed = 104mm/min, Depth= 

2  
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Table 5-19: Experiment round 2 Tool 6: AE burst (Spectrum) at Speed=5200rpm, Feed = 

312mm/min, Depth= 3mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vb = 0.13mm 

 

Figure 5-35: AE signal in Time and Frequency domain at Speed=5200rpm, Feed = 

312mm/min Depth= 3mm 

Figure 5-36: round 1 tool 16 AE burst (Spectrum)at Speed=5200rpm, Feed = 312mm/min, 

Depth= 3 
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Figure 5-38: round 4 Tool 13: AE burst (Spectrum) at Speed=4050rpm, Feed = 243mm/min, 

Depth= 2mm 

 

 

 

 

 

 

Vb = 0.32mm 

 

Built up 

edge 

Figure 5-37: AE signal in Time and Frequency domain at Speed=4050rpm, Feed = 243mm/min 

Depth= 2mm 
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Figure 5-40: round 5 Tool 1 AE burst (Spectrum) at Speed=2900rpm, Feed = 58mm/min, Depth 

= 2mm 

 

 

 

 

Vb = 0.43mm 

 

Flank 

wear  

Figure 5-39: uniform AE signal in Time Domain and Frequency domain at Speed=2900rpm, 

Feed = 58mm/min Depth= 2mm 
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Figure 5-42: round 5 Tool 16: AE burst (Spectrum) at Speed=4050rpm, Feed = 405mm/min, 

Depth = 1mm 

 

 

 

 

 

Vb = 0.31mm 

 

Built up 

edge 

Figure 5-41: uniform AE signal in Time Domain and Frequency domain at Speed=4050rpm, 

Feed = 243mm/min Depth= 2mm 
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5.11.2 Frequency domain observations and features extraction.  

The most common frequency domain characteristics found in the literature is the spectral energy 

around the first natural frequency of the tool-workpiece system. It was established that the first 

natural frequency for this system lies at about 5 kHz Figure 5-44. The spectral energy in the 5-kHz 

region was taken as a feature. However, some authors also found that useful information about the 

process can be found in the 'low' frequency domain. Investigations proved that the spectral energy 

between 100 - 1000 Hz also displays a significant trend towards tool wear. Therefore, this was 

also taken as a feature see Figure 5-45 to 5-46.  
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Figure 5-43: Experiment round 1 tool 16, AE welch PSD and its corresponding Spectrogram at 

Speed=4050rpm, Feed = 243mm/min Depth= 2 
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Figure 5-44: Experiment round 1 tool 17, AE welch PSD and its corresponding Spectrogram at 

Speed=4050rpm, Feed = 243mm/min Depth= 2 
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Figure 5-45: Experiment round 5 tool 1, AE welch PSD and its corresponding Spectrogram at 

Speed=290rpm, Feed = 58mm/min Depth= 2 
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In the course of this study, the following features were considered in the frequency domain. 

Frequency mean: which is the pitch measurement that accesses the center of power distribution 

across the frequencies. Spectral peaks: this signifies the maximum energy in the frequency 

spectrum.  Frequency deviation: is the deviation of the frequency components from the mean 

frequency. Overall, the frequency components of the acoustic signal showed a better variation with 

the flank wear values compared to the amplitude levels of the raw AE signals. Otherwise, raw AE 

amplitudes may not be the best observation for monitoring the tool wear when machining stainless 

steel. 

5.12 Wavelet domain, observations and feature extractions 

Wavelet transform can be explained as a spectral estimation technique in which any general 

function can be expressed as an infinite series of wavelets. The basic knowledge underlying 

wavelet analysis comprises of expressing a signal as a linear combination of a particular set of 

functions (wavelet transform,), that is obtained by shifting and dilating one single function called 

a mother wavelet. The decomposition of the signal leads to a set of coefficients called wavelet 

coefficients.  

Therefore, the signal can be reconstructed as a linear combination of the wavelet functions 

weighted by the wavelet coefficients. In order to obtain an exact reconstruction of the signal, 

adequate number of coefficients must be calculated. The key feature of wavelets is the time-

frequency localization. This means that most of the energy of the wavelet is restricted to a finite 

time interval. Frequency localization means that the Fourier transform is band limited. When 

compared to STFT, the advantage of time-frequency localization is that wavelet analysis varies 

the time-frequency aspect ratio, producing good frequency localization at low frequencies (long 

time windows), and good time localization at high frequencies (short time windows). This 

produces a segmentation, or tiling of the time-frequency plane that is appropriate for most physical 

signals, especially those of a transient nature. The wavelet technique applied to the Tool wear 

monitoring signal will reveal features related to the transient nature of the signal which are not 

obvious by the Fourier transform. 

It should be well noted that the selection of suitable wavelet and the number of decomposition 

levels is very important in analysis of signals using the DWT. The number of decomposition levels 

is chosen based on the dominant frequency components of the signal. The levels are chosen such 
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that those parts of the signal that correlate well with the frequencies necessary for classification of 

the signal are retained in the wavelet coefficients Figure 5-47. In the present study, since the AE 

signals do not have any useful frequency components above 60 Hz, the number of decomposition 

levels was chosen to be 7.  

Thus, the AE signals were decomposed into details D1–D7 and one final approximation, A7. 

According to literatures, the lower order Daubechies wavelets are not differentiable every-where 

and it also consists of a sharp edge geometrical appearance, but the higher order Daubechies 

wavelets are relatively smooth in form. Normally, tests are performed with different types of 

wavelets and the one which gives maximum efficiency is selected for the application. The 

smoothing feature of the Daubechies wavelet of order 3 (db3) made it more appropriate to detect 

changes of AE signals. Hence, the wavelet coefficients were computed using the db3 in the present 

study Figure 5-47. 
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Figure 5-46: Daubechies wavelet waveform of the third order (db3) at Level 7. 
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5.13 Feature selections 

Furthermore, the selection of appropriate wavelet and the number of decomposition levels are very 

important for the analysis of signals using DWT because one of the objects of wavelet analysis is 

to decompose signals into several frequency bands.  The number of decomposition levels is chosen 

based on the dominant frequency components of the signal. The levels are chosen such that those 

parts of the signal that correlate well with the frequencies necessary for classification of the signal 

are retained in the wavelet coefficients. In this work, Daubechies 3 (db3) is selected because its 

smoothing feature was suitable for detecting changes of the AE signals. Daubechies wavelets are 

the most popular wavelets representing foundations of wavelet signal processing, and are used in 

numerous applications. [144, 145, 146].  

The frequency band of each detail scale of the DWT is directly related to the sampling rate of the: 

       

           (5-4) 

 

 original signal, which is given by: 

           (5-5) 

            

 where fs is the sampling frequency, and l is the level of decomposition. In this study, the sampling 

frequency is 1Million (Hz) of the AE signal. The highest frequency that the signal could contain, 

from Nyquist’ theorem, would be fs/2. Frequency bands corresponding to Seven decomposition 

levels for wavelet db3 with sampling frequency of 1Million (Hz) of AE signals were listed in Table 

5-20. The signals were decomposed into details D1-D7 and one final approximation A7. 

 

 

 

 

 

 

[
fm

2
; fm] 

fm = [
fs

2l+1
] 
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Table 5-20: Signal Decomposition level 

Decomposition Signal Frequency band (KHz) 

D1 250 – 500 

D2 125 – 250 

D3 62.5 – 125 

D4 31.25 – 62.5 

D5 15.63 – 31.25 

D6 7.813 – 15.63 

D7 3.906 – 7.813 

A7 0 – 3.906 

 

 

Figure 5-47: The decomposition Level of AE Signal using Wavelet analysis 
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A critical look at the Figure 5-48 above shows that the sub-band D2, D1, D3, D4 and D5 had the 

highest amplitude. This indicates that the majority of the AE spectral contents for the wavelets are 

centered within the frequency range of 125 kHz-250 kHz, 250kHz–500kHz, 62.5 kHz-125 kHz, 

31.25kHz – 62.5kHz and 15.63kHz- 31.25kHz respectively (Table 5.20). Also, substantial 

correlations were also noticed with variations in sub-bands D2, D1, D3, D4, D5 and the Tool wear. 

Therefore, the following domain features were extracted from the wavelet decomposition Table 5-

21 and Table 5-22.     

Table 5-21: Time domain 

Time domain 

Features   

Root mean square RMS 

Range range 

Standard Deviation of frequency St Dev 

Mean Mean 

Variance variance 

Maximum max 

Minimum min 

Kurtosis Kurtosis 

Skewness Skewness 

Peak -To - Peak P-T-P 
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Table 5-22: Time -Frequency domain 

Time - frequency domain 

Features   

Frequency distribution in sub-band 1 d1 

Frequency distribution in sub-band 2. d2 

Frequency distribution in sub-band 3. d3 

Frequency distribution in sub-band 4. d4 

Frequency distribution in sub-band 5. d5 

Standard deviation in sub-band 1. St Dev D1 

Standard deviation in sub-band 2 St Dev D2 

Standard deviation in sub-band 3 St Dev D3 

Standard deviation in sub-band 4 St Dev D4 

Standard deviation in sub-band 5. St Dev D5 

Absolute distribution in sub-band 1. Abs D1 

Absolute distribution in sub-band 2 Abs D2 

Absolute distribution in sub-band 3 Abs D3 

Absolute distribution in sub-band 4. Abs D4 

Absolute distribution in sub-band 5 Abs D5 

Total Energy density of wavelet Energy 

 

5.14 Feature selection and evaluation 

Altogether a total of 29 features were extracted and used. These are divided as follows (Table 5-

23): 

Table 5-23: Feature domain division 

Feature domain Numbers of features 

Machine parameters 3 

Time domain 10 

Time-frequency domain (Wavelet) 16 

Total 29 
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These 29 features were selected thus: first, the 3 machine parameters and the remaining 26 features 

were extracted from 16 different experimental runs which are classified as new tool, early wear, 

moderate wear and worn out tool Figure 5-23. In each category, the author used four experimental 

runs. Therefore, the total features data used in this research work is 464 data (29 times 16 matrix). 

The author has attached the normalized feature data at the appendix.    

According to most recent and similar studies, authors have correlated the trend in the features with 

the measured tool wear in order to select the best features. In this case, it was not possible to disturb 

the production process for wear measurement. Although this is not a true representation of the tool 

wear, but it can give an indication of which features show consistent trend in time, and whether 

the trend is towards higher or lower values of the feature. Therefore, the quantity r, called the linear 

correlation coefficient (also known as Pearson product moment correlation coefficient in honor of 

its developer Karl Pearson), measures the strength and the direction of a linear relationship 

between two variables in our case its features and tool wear.  

Mathematically computed as: 

 

           (5-6)   

 

Where x and y are the variables (features and tool wear). Further exposition, for positive 

correlation, if x and y have a strong positive linear correlation, i.e. r is close to +1.  An r value of 

exactly +1 indicates a perfect positive fit. This means that Positive values indicate a relationship 

between x and y variables such that as values for x increases, values for y also increase. On the 

other hand, for negative correlation, if x and y have a strong negative linear correlation, such that 

r is close to -1.  An r value of exactly -1 indicates a perfect negative fit.  Negative values indicate 

a relationship between x and y such that as values for x increase, values for y decrease. However, 

for no correlation, a situation where there is no linear correlation or a weak linear correlation, r is 

close to 0.  A value near zero means that there is a random, nonlinear relationship between the two 

variable. Below in the table shows the correlation coefficients of the features extracted and the tool 

wear. 

r =
n ∑ xy − (∑ x)(∑ y)

√n(∑ x2) − (∑ x)
2

 √n(∑ y2) − (∑ y)
2
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Table 5-24: feature correlation 

No features  corrcoeff 
 

No Cont’d  features 

Cont’d 

Corrcoeff 

Cont’d 

1 feed -0.37 
 

16 d3 0.04 

2 speed 0.12 
 

17 d4 0.04 

3 depth of cut 0.37 
 

18 d5 0.56 

4 RMS -0.40 
 

19 St Dev D1 -0.19 

5 range 0.75 
 

20 St Dev D2 -0.41 

6 St Dev -0.39 
 

21 St Dev D3 -0.39 

7 Mean -0.29 
 

22 St Dev D4 -0.31 

8 variance -0.25 
 

23 St Dev D5 -0.58 

9 max 0.58 
 

24 Abs D1 -0.40 

10 min -0.50 
 

25 Abs D2 -0.38 

11 Kurtosis 0.43 
 

26 Abs D3 -0.34 

12 Skewness -0.02 
 

27 Abs D4 -0.22 

13 P-T-P 0.29 
 

28 Abs D5 -0.54 

14 d1 0.78 
 

29 Energy 0.45 

15 d2 0.27 
    

 

5.15 Neural Networks 

5.15.1 Artificial Neural network procedure, architecture and results 

A comprehensive literature has been discussed in review part on ANN, therefore the process will 

be briefly explained here. A total of 29 feature sets were selected for building the neural network, 

based on correlation coefficients in the table above and literature, including the machining 

parameters, mean, root mean square and standard deviation, frequency content and deviations in 

sub-band D1, D2, D3, D4, D5 and the total energy of wavelets. 



Page 146 
 

5.15.2 Normalization of data set  

The selected feature dataset was transformed and normalized to values ranging between 0 and 1 

using equation below where 0 and 1 value correspond to the lowest and highest feature value in 

the subset respectively (Table 5.24). The normalization was done to achieve standardization of the 

feature values and reduce redundancy before feeding them into the network for training. 

                                  (5-7) 

     

Where:  

𝐭𝐧- Normalized value of 𝐟𝐨, 𝐟𝐨 - observed value (i.e. feature),  𝐟𝐦𝐚𝐱 – maximum observed value in 

the subset and  𝐟𝐦𝐢𝐧 – minimum observed value in the subset. See the appendix for normalized 

data. 

5.15.3 Classification of Features  

ANN is a powerful data-modelling tool that is able to capture and represent complex input-output 

relationships to classify wear output. It involves the usability of artificial intelligence as an 

adequate tool in machine tool monitoring.  Data set with the selected key features were used to run 

a neural network. A feed forward and back propagation multilayer ANN was used for solving the 

problem, and the network training and testing were carried out using the MATLAB software 

package. In this research work, the author used hyperbolic tangent sigmoid transfer function 

(tansig) in the hidden layers and linear transfer function (purelin) in the output layer as the 

activation function were preferred, the resilient back propagation function (trainrp) was used as 

the training algorithm, and the gradient descent with momentum back propagation algorithm 

(traingdm) was used as the learning rule. 

The data in the training and testing sets must be normalized as earlier carried out due to the use of 

the hyperbolic tangent sigmoid function in the model also in order to equalize the importance of 

variables. In Table 5-25, a learning rate of 0.3 on a gradient descent training function with a 

momentum of 0.7 was used. An adaptive learning rate method aided in quick generalization of the 

error and reduced training time. The weights of the network were selected at random from a range 

of -1 to 1. No optimization algorithms were implemented on the BPNN due to its reverse operation 

𝐭𝐧 =
(𝐟𝐨 − 𝐟𝐦𝐢𝐧)

(𝐟𝐦𝐚𝐱 − 𝐟𝐦𝐢𝐧)
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mode which provides an adequate optimization structure for the system. The training was run for 

a thousand epochs with no validation queries.  

Table 5-25: Network model and architecture 

Parameters of multilayer neural network  Values  

Epochs  1,000  

Performance function  Mean square error  

Number of layers  3  

Transfer Function at layer 1  Log-sigmoid  

Transfer Function at layer 2   Log-sigmoid  

Transfer Function at layer 3   Log-sigmoid  

Layer 1 size  29 

Layer 2 size  58  

Layer 3 size  3  

Learning rate  0.3  

Momentum  0.7  

Bias B [1] 

Weights  Random from [-1 1]  

Training Function  Gradient Descent with adaptive learning 

rate and momentum  

Training method Batch process 

 

A three-layer feed forward BPNN with one hidden layer was adopted to train the network for the 

classification process. The network architecture Figure 5-49, comprises 29 input neurons which 

are: Feed, Speed, Depth of cut, RMS, Range, Standard deviation of frequency, Mean, Variance, 

Maximum, Minimum, Kurtosis, Skewness, Peak to Peak, Frequency distribution band (1-5), 

Standard deviation sub band (1-5), Absolute deviation sub band (1-5), 58 hidden layer neurons 

and three outputs as new, moderate wear and worn out. During the analysis of the neural network, 

Matlab was used to feed 29 inputs and automatically 58 neurons was generated. However, the 
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choice of different hidden layers from 1-3 that was used in this work was to see any effect the 

number of hidden layers could have on the training of data. Therefore, it is by choice to use any 

number of hidden layers. In fact, some literatures said that the more hidden layers we may have 

during training may impact our output results. 

The Neural network was trained to identify each sample line from the input data and generate a 

binary number as output that corresponds to a target coded wear value. Table 5-26 shows the coded 

binary representation of wear values corresponding to target output for the neural network 

developed. 

The training results presented in this work indicates that the neural network architecture composed 

of multiple hidden layers of 3 with 58 neurons can identify both perfect as well as noisy characters 

effectively with minimum error in last epoch as seen in Figure 5-52 and Figure 5-53. Increasing 

the number of neurons further only seems to increase the complexity of the network as well as the 

training time for the network, and is found to be unsuitable exhibited by visual findings. As per 

choice of hidden layers, single layer means a single non-linear function of linear combinations of 

inputs. Two layers means a non-linear function of a linear combination of non-linear functions of 

linear combinations of inputs. The second one is much richer than the first one. The same sequence 

goes to three hidden layers.  Hence the difference in performance. Basically, more layers mean, 

more non-linearity applied to data and it also means more distangling of the data before the final 

classifier (last layer) decides what the given instance is. 

Table 5-26: Coded representation of tool wear values 

Wear ranges  0.01<x<0.1  0.1<x<0.2  0.2<x<0.43  

Binary 

representation   

0 0 1  0 1 0  1 0 0  
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Figure 5-48: Typical Neural networks for the analysis ranging from 1-3 hidden layers 1-output 

with 3-neurons.   

During training process, observations and evaluations were made on the regression plot Figure 5-

50 and confusion plot Figure 5 -51. 
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5.15.4 Process evaluation and observations: 

 

Figure 5-49: Regression Plot 

 

Figure 5-50: confusion Plots 
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Figure 5-51: Performance Plot 

 

Figure 5-52: Validation Check, Gradient and Learning rate during Training 
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5.16 Network training 

During training and testing of data, 15% of the features were selected from the new stage, moderate 

stage and worn out stage. The results predicted from the Neural networks were compared with the 

experimental wear. The table 5-27 shows the experimental flank wear compared with neural 

network for some selected experimental runs contain in the feature extracted. In table 5-27, it was 

observed that when fewer input neurons (10) were used in training the data, very close flank wears 

were obtained compare to Table 5-28 when 58 input neurons were used. Figure 5-54 and figure 5-

55 also validates these results. 

Table 5-27: Neural Networks architecture for 29 inputs features, 10 neurons, 1 hidden layer, 1 

output layer with 3 Output Neurons 

S/N Exp 

round 

Tool 

no 

Pass 

no 

Exp 

(mm) 

NN 

(mm) 

S 

(rpm) 

F(mm/min) D(mm) %error Accuracy 

1 1 17 4th 0.02 0.03 4050 243 2 55 45 

2 1 16 1st 0.05 0.05 4050 243 2 1 99 

4 1 17 1st 0.05 0.06 4050 243 2 20 80 

8 2 6 1st 0.13 0.13 5200 312 3 1 99 

10 5 3 1st 0.18 0.18 2900 290 2 2 98 

11 4 9 1st 0.20 0.20 4050 81 1 0 100 

13 4 11 1st 0.30 0.30 4050 243 2 0 100 

15 2 5 1st 0.39 0.39 5200 104 2 0 100 

16 5 1 1st 0.43 0.43 2900 58 2 1 99 

 

 

Figure 5-53: Graph of experimental Flank wear and Predicted Flank wear using 10 neurons 
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Table 5-28: Neural Networks architecture for 29 inputs features, 58 neurons, 1 hidden layer, 3 

output Neurons 

S/N Exp 

round 

Tool 

no 

Pass 

no 

Exp 

(mm) 

NN 

(mm) 

S 

(rpm) 

F(mm/min) D(mm) %error Accuracy 

1 1 17 4th 0.02 0.04 4050 243 2 83 17 

2 1 16 1st 0.05 0.03 4050 243 2 30 70 

4 1 17 1st 0.05 0.06 4050 243 2 22 78 

8 2 6 1st 0.13 0.04 5200 312 3 68 32 

10 5 3 1st 0.18 0.18 2900 290 2 1 99 

11 4 9 1st 0.2 0.19 4050 81 1 5 95 

13 4 11 1st 0.3 0.30 4050 243 2 0 100 

15 2 5 1st 0.39 0.39 5200 104 2 0 100 

16 5 1 1st 0.43 0.41 2900 58 2 4 96 

 

  

Figure 5-54: Graph of experimental Flank wear and Predicted Flank wear using 58 neuron 
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5.16.1 Network testing and Validation 

Testing was also carried out for the two scenarios of numbers of neurons in hidden layers. The 

tables 5-29 and 5-30 below show the predicted flank wear during testing.  During testing, features 

were randomly taken from fairly new data for testing and neural network showed a reasonable 

flank wears. Although it was a little bit higher than experimental and predicted values. But it was 

confirmed that the neural network is active. The testing was carried out using different numbers 

for inputs hidden neurons. Table 5-29 and 5-30 show the results of testing and the three graphs 

were plotted Fig 5-56 and 5- 57. The data used in Table 5-29 can be found in Appendix C. 

Table 5-29: Neural Networks architecture 29 inputs, 10 neurons, 1 hidden layer, 3 Output 

Neurons  

Exp 

Run 

Exp 

Round 

Tool 

no 

Pass 

no 

Exp 

(mm) 

NN1 

(mm) 

NN2 

Testing 

state S 

(rpm) 

F(mm/min) 

1 1 17 4th 0.02 0.03 0.04  

Fairly new 

4050 243 

2 1 16 1st 0.05 0.05 0.03 4050 243 

4 1 17 1st 0.05 0.06 0.06 4050 243 

8 2 6 1st 0.13 0.13 0.07  

Moderately 

worn 

5200 312 

10 5 3 1st 0.18 0.18 0.15 2900 290 

11 4 9 1st 0.2 0.20 0.23 4050 81 

13 4 11 1st 0.3 0.30 0.26  

Worn out 

4050 243 

15 2 5 1st 0.39 0.39 0.38 5200 104 

16 5 1 1st 0.43 0.43 0.41 2900 58 

 

Note: NN1 (Training) and NN2 (Prediction) 
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Figure 5-55: Graph showing the variation in Experimental, Training and Prediction Flank wears 

for 10 Neurons. 

 

Table 5-30: Neural Networks architecture 29 inputs, 58 neurons, 1 hidden layer, 3 output 

Neurons  

S/N Exp 

round 

Tool 

no 

Pass 

no 

Exp 

(mm) 

NN 

(mm) 

NN 

Testing 

     state S 

(rpm) 

F(mm/min) D(mm) 

1 1 17 4th 0.02 0.04 0.03  

fairly new 

4050 243 2 

2 1 16 1st 0.05 0.03 0.05 4050 243 2 

4 1 17 1st 0.05 0.06 0.06 4050 243 2 

8 2 6 1st 0.13 0.04 0.19  

moderately 

worn 

5200 312 3 

10 5 3 1st 0.18 0.18 0.21 2900 290 2 

11 4 9 1st 0.2 0.19 0.11 4050 81 1 

13 4 11 1st 0.3 0.30 0.28  

worn out 

4050 243 2 

15 2 5 1st 0.39 0.39 0.35 5200 104 2 

16 5 1 1st 0.43 0.41 0.43 2900 58 2 
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Figure 5-56: Graph showing the variation in Experimental, Training and Prediction Flank wear 

for 58 Neurons. 

5.17 Conclusions and recommendations 

5.17.1 Conclusions  

Considering the growing market of the aerospace, marine and automobile industry that uses more 

stainless steels and the push for reduced assembly flow time, opportunities for the advancement of 

machining technology are prominent. This studies established progress over the performance 

reported in current literature. 

Bearing in mind that the ultimate task in tool condition monitoring is the ability to establish an 

ideal model to investigate tool wear. To this effect, this research was aimed at modelling and 

analyzing machine parameters and validating the model using AE as a viable means for tool wear 

identification. The study was performed on Grade 316 stainless steel material being machined by 

end-milling process. To achieve this, a series of experimental runs and signal processing 

techniques were employed.  
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In the course of this research work, a comprehensive feasibility study of using the machine 

parameters, tool wear model and the principles of AE sensing technique for Tool condition 

monitoring was carried out. Productivity, optimization and a monitoring process framework was 

used to monitor the end milling operation at different machining parameters using one industrial 

Acoustic Emission sensor.  

This research work has proposed a tool wear modelling scheme premised on design of experiment 

and signal processing framework to validate the model by identifying a feature selection, 

extraction and process conditioning followed by a comparison of the two approaches. Within the 

signal processing framework, the results certified and validated the importance of both time 

domain and frequency domain information in wear estimation. AE Sensing provided viable 

information on wear formation but not all features appropriately described machining state. A 

direct link was identified between some AE features and the rate of wear generated on the tool. A 

model using machine parameters and signal features are suitable enough to predict deplorable tool 

state wear. The model and signal features identified the high correlation and influence of the 

following under listed features: 

a. The developed design of experiment model can predict 75% of the total variability in the 

tool wear.  

b. The feed rate has the highest effect on the tool wear.  

c. A minimum tool wear value of 0.174mm was achieved through optimization at low values 

of feed, speed and depth of cut. Hence, better surface finishes can be achieved by using 

lower machining parameters.  

d. When working with stainless steel 316, a maximum Tool wear value of 0.296mm was 

achieved through optimization at low values of feed about 0.06mm/rev, speed of 

4050mm/min and depth of cut about 2mm.  

e. At high feed, low speed and cutting depth, Tool wear can be improved with an increased 

cutting length.  

f. At low cutting speed and feed tool life can be improved 

g. For productivity, it was proposed that low feed, speed and depth of cut can yield long 

lasting tool with volume of materials being removed. However, an elevated feed, depth of 

cut and speed will yield better volume removed but tool life will be half truncated. 
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h. The amplitudes of the raw AE voltage do follow a consistent increasing trend with the 

increase in tool wear values therefore, they may be suitable for online monitoring.  

i. Time-frequency domain features (wavelets) show a better correlation with the Flank wear 

compared to time domain features and frequency domain features. Therefore, they serve as 

a better choice of input to the neural network scheme.  

j. The overall extracted AE features show a unique pattern with the changes in Tool wear 

k. The extracted wavelet features from sub-bands 1,2 3 and 4, range, Kurtosis, and Wavelet 

energy show the most significant correlation with flank wear compared to other sub-bands. 

Hence, they are more suitable features although all the feature extracted were used for 

predicting the Tool wear.  

l. Artificial Neural Networks process are suitable for predicting and validating such ill-

pattern variations derived from the research work by achieving a high percentage 

prediction accuracy for most of the flank wear value from the experimental.  

m. Signal processing and Neural networks are good combination of tools to validate tool wear 

model from design of experiment. Hence, it can also be used to model and deployed for 

tool wear in industry. 

5.17.2 Recommendations  

The following observations were made during the research work which could be inform of 

recommendation for future work: 

i. Apart from the three parameters used during machining in this research work, more 

tool parameters such as, rake angle, nose radius could be added to have more inputs 

parameters during modelling. 

ii. Dry milling operations with the use of temperature sensor can be carried out on 

stainless steel.  

iii. Using the same guide provided in this research work, different workpiece can be 

worked on. 

iv. Different and multiple sensors can be deployed during data acquisition.  

v. For signal processing, wavelet packet can be employed for Time frequency analysis. 

vi. Other types of artificial Intelligent can be used to model and validate data. 
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APPENDIX A: LabVIEW Code for Data Acquisition 
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APPENDIX B: Live Data Acquisition 
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APPENDIX C: Experimental data Table development 
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1 1 2900 0.02 58 2 4 0.05 3200 8 0.10 6400.00 12 0.10 9600.00 6 18 0.27 14400.00

1 2 2900 0.02 58 2 4 0.05 3200 8 0.05 6400.00 12 0.10 9600.00 6 18 0.22 14400.00

2 3 5200 0.10 520 2 4 0.02 3200 9 0.10 7200.00 13 0.13 10400.00 6 19 0.24 15200.00

2 4 5200 0.10 520 2 4 0.05 3200 9 0.10 7200.00 13 0.16 10400.00 6 19 0.25 15200.00

3 5 2900 0.10 290 2 4 0.05 3200 8 0.05 6400.00 14 0.10 11200.00 7 21 0.09 16800.00

3 6 2900 0.10 290 2 4 0.05 3200 8 0.05 6400.00 14 0.10 11200.00 7 21 0.10 16800.00

4 7 4050 0.10 405 1 4 0.05 1600 8 0.05 3200.00 12 0.07 4800.00 8 20 0.14 8000.00

4 8 4050 0.10 405 1 4 0.05 1600 8 0.10 3200.00 12 0.10 4800.00 8 20 0.15 8000.00

5 9 5200 0.02 104 2 4 0.05 3200 8 0.20 6400.00 8 0.29 6400.00 0 8 0.29 6400.00

5 10 5200 0.02 104 2 4 0.05 3200 8 0.39 6400.00 8 0.29 6400.00 0 8 0.29 6400.00

6 11 5200 0.06 312 3 4 0.06 4800 8 0.10 9600.00 12 0.10 14400.00 6 18 0.19 21600.00

6 12 5200 0.06 312 3 4 0.05 4800 8 0.13 9600.00 12 0.18 14400.00 6 18 0.25 21600.00

7 13 5200 0.06 312 1 4 0.09 1600 6 0.10 2400.00 10 0.10 4000.00 6 16 0.20 6400.00

7 14 5200 0.06 312 1 4 0.06 1600 6 0.10 2400.00 10 0.10 4000.00 6 16 0.15 6400.00

8 15 2900 0.06 174 1 4 0.05 1600 8 0.05 3200.00 14 0.07 5600.00 6 20 0.10 8000.00

8 16 2900 0.06 174 1 4 0.05 1600 8 0.05 3200.00 14 0.07 5600.00 6 20 0.10 8000.00

9 17 4050 0.02 81 1 4 0.05 1600 7 0.10 2800.00 11 0.14 4400.00 6 17 0.21 6800.00

9 18 4050 0.02 81 1 4 0.05 1600 7 0.10 2800.00 11 0.10 4400.00 6 17 0.17 6800.00

10 19 4050 0.10 405 3 4 0.05 4800 8 0.10 9600.00 12 0.10 14400.00 6 18 0.20 21600.00

10 20 4050 0.10 405 3 4 0.05 4800 8 0.05 9600.00 12 0.06 14400.00 6 18 0.17 21600.00

11 21 4050 0.06 243 2 4 0.10 3200 6 0.20 4800.00 7 0.26 5600.00 1 8 0.31 6400.00

11 22 4050 0.06 243 2 4 0.10 3200 6 0.27 4800.00 7 0.27 5600.00 1 8 0.29 6400.00

12 23 2900 0.06 174 3 4 0.05 4800 7 0.13 8400.00 11 0.29 13200.00 0 11 0.29 13200.00

12 24 2900 0.06 174 3 4 0.10 4800 7 0.10 8400.00 11 0.28 13200.00 0 11 0.28 13200.00

13 25 4050 0.06 243 2 4 0.05 3200 7 0.20 5600.00 11 0.27 8800.00 1 12 0.32 9600.00

13 26 4050 0.06 243 2 4 0.10 3200 7 0.10 5600.00 11 0.20 8800.00 1 12 0.20 9600.00

14 27 4050 0.02 81 3 4 0.05 4800 7 0.29 8400.00 8 0.32 9600.00 0 8 0.32 9600.00

14 28 4050 0.02 81 3 4 0.10 4800 7 0.20 8400.00 8 0.26 9600.00 0 8 0.26 9600.00

15 29 4050 0.06 243 2 4 0.05 3200 8 0.11 6400.00 12 0.17 9600.00 6 18 0.30 14400.00

15 30 4050 0.06 243 2 4 0.05 3200 8 0.10 6400.00 12 0.11 9600.00 6 18 0.22 14400.00

16 31 4050 0.06 243 2 4 0.05 3200 8 0.06 6400.00 12 0.10 9600.00 6 18 0.16 14400.00

16 32 4050 0.06 243 2 4 0.05 3200 8 0.05 6400.00 12 0.07 9600.00 6 18 0.16 14400.00

17 33 4050 0.06 243 2 4 0.05 3200 6 0.05 4800.00 12 0.10 9600.00 6 18 0.20 14400.00

17 34 4050 0.06 243 2 4 0.02 3200 6 0.05 4800.00 12 0.05 9600.00 6 18 0.13 14400.00
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APPENDIX D: Normalized Feature extracted 

 

 

 

 

 

 

 

 

 

 

EXP1T17/4EXP1T16/4 EXP1T16 EXP1T17 EXP2T16 EXP2T9 EXP4T8 EXP2T6 EXP5T4 EXP5T3 EXP4T9 EXP5T7 EXP4T11 EXP4T13 EXP2T5 EXP5T1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

speed 0.50 0.50 0.50 0.50 0.50 0.50 0.00 1.00 0.50 0.00 0.50 1.00 0.50 0.50 1.00 0.00

feed 0.53 0.53 0.53 0.53 0.53 0.07 0.33 0.73 1.00 0.67 0.07 0.73 0.53 0.53 0.13 0.00

DoC 0.50 0.50 0.50 0.50 0.50 0.00 0.00 1.00 0.00 0.50 0.00 0.00 0.50 0.50 0.50 0.50

mean 2 0.02 0.02 0.02 0.02 0.01 0.01 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

range 0.06 0.05 0.06 0.08 0.06 0.08 0.04 0.08 0.00 0.04 0.05 0.00 0.29 0.29 0.31 1.00

RMS 0.41 0.37 0.37 0.36 0.50 0.21 0.02 1.00 0.02 0.02 0.03 0.02 0.08 0.07 0.37 0.00

St Dev 0.07 0.06 0.06 0.06 0.08 0.04 0.01 0.16 0.01 0.01 0.01 0.01 0.02 0.02 0.06 0.00

Variance 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

max 0.04 0.04 0.04 0.06 0.04 0.07 0.04 0.04 0.00 0.04 0.04 0.00 0.29 0.04 0.04 1.00

min 0.93 0.95 0.94 0.93 0.92 0.95 1.00 0.85 1.00 1.00 0.95 1.00 1.00 0.07 0.00 1.00

Kurtosis 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.03 0.00 1.00 0.96 0.01 0.00

Skewness 0.47 0.47 0.47 0.47 0.47 0.48 0.51 0.47 0.47 0.54 0.55 0.47 1.00 0.00 0.46 0.47

P-T-P 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 1.00 0.00 0.00 1.00 0.07 0.07 0.08 0.55

d1 0.06 0.01 0.08 0.16 0.08 0.06 0.01 0.03 0.00 0.08 0.01 0.00 1.00 0.33 0.67 0.83

d2 0.30 0.03 0.30 0.25 0.25 0.25 0.10 0.50 0.01 0.20 0.25 0.01 1.00 0.50 0.50 0.00

d3 0.48 0.48 0.48 0.48 0.48 1.00 0.17 1.00 0.01 0.38 1.00 0.01 1.00 0.48 1.00 0.00

d4 0.02 0.02 0.04 0.04 0.08 0.02 0.02 0.10 1.00 0.02 0.02 1.00 0.10 0.10 0.04 0.00

d5 0.02 0.02 0.04 0.04 0.02 0.02 0.02 0.04 0.00 0.02 0.02 0.00 0.08 0.04 0.04 1.00

St Dev D1 0.02 0.02 0.02 0.02 0.02 0.01 0.00 0.03 0.00 0.01 0.01 0.00 0.01 0.01 0.02 0.00

St Dev D2 0.03 0.03 0.03 0.03 0.04 0.02 0.00 0.08 0.00 0.00 0.02 0.00 0.01 0.01 0.03 0.00

St Dev D3 0.05 0.05 0.05 0.05 0.07 0.03 0.01 0.13 0.01 0.01 0.03 0.01 0.01 0.01 0.05 0.01

St Dev D4 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01

St Dev D5 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00

Abs D1 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

Abs D2 0.01 0.01 0.02 0.01 0.02 0.01 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00

Abs D3 0.02 0.02 0.02 0.02 0.03 0.01 0.00 0.06 0.01 0.00 0.01 0.01 0.00 0.00 0.02 0.00

Abs D4 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00

Abs D5 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Energy 0.07 0.03 0.02 0.04 0.04 0.03 0.03 0.01 0.49 0.03 0.03 0.37 0.01 0.02 0.00 1.00

Flk Wear 0.02 0.05 0.05 0.05 0.06 0.10 0.10 0.13 0.14 0.18 0.20 0.22 0.30 0.32 0.39 0.43

EXP1T17/4EXP1T16/4 EXP1T16 EXP1T17 EXP2T16 EXP2T9 EXP4T8 EXP2T6 EXP5T4 EXP5T3 EXP4T9 EXP5T7 EXP4T11 EXP4T13 EXP2T5 EXP5T1
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APPENDIX E: Some Flank wears 

 

 

  

R1T13 (VB= 0.1mm) 

R1T11 (VB= 0.05mm) 

R1T2 (VB= 0.05 

R = Round, T = Tool  



Page 176 
 

 

 

  

R2T11 (VB= 0.2mm) 

R2T12 (VB= 0.27mm) 

R2T5 (VB= 0.2mm) 

R = Round, T = Tool  
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R3T11 (VB=0.27mm) 

R3T10 (VB=0.1mm) 

R3T12 (VB=0.28mm) 

R = Round, T = Tool  
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R4T11 (VB= 0.28mm) 

R4T1 (VB= 0.27mm) 

R4T2 (VB= 0.25mm) 

R = Round, T = Tool  
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R5T15 (VB= 0.35mm) 

R5T2 (VB= 0.28mm) 

R5T11 (VB= 0.3mm) 

R = Round, T = Tool  
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APPENDIX E: Some Matlab codes 

function Hd = filter 
%FILTER Returns a discrete-time filter System object. 

  
% MATLAB Code 
% Generated by MATLAB(R) 8.1 and the Signal Processing Toolbox 6.19. 
% Generated on: 14-Sep-2016 11:18:48 

  
Fstop = 0.4;  % Stopband Frequency 
Fpass = 0.8;  % Passband Frequency 
Astop = 60;   % Stopband Attenuation (dB) 
Apass = 1;    % Passband Ripple (dB) 
Fs    = 50;   % Sampling Frequency 

  
h = fdesign.highpass('fst,fp,ast,ap', Fstop, Fpass, Astop, Apass, Fs); 

  
Hd = design(h, 'cheby2', ... 
    'MatchExactly', 'stopband', ... 
    'SystemObject', true); 

 
function createfigure(X1, YMatrix1, X2, Y1, X3, Y2, X4, Y3) 
%CREATEFIGURE(X1, YMATRIX1, X2, Y1, X3, Y2, X4, Y3) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  X2:  vector of x data 
%  Y1:  vector of y data 
%  X3:  vector of x data 
%  Y2:  vector of y data 
%  X4:  vector of x data 
%  Y3:  vector of y data 

  
%  Auto-generated by MATLAB on 31-Aug-2016 15:15:08 

  
% Create figure 
figure1 = figure('Tag','TRAINING_PLOTPERFORM','NumberTitle','off',... 
    'Name','Neural Network Training Performance (plotperform), Epoch 1000, 

Maximum epoch reached.'); 

  
% Create axes 
axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on'); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(axes1,[0 1000]); 
%% Uncomment the following line to preserve the Y-limits of the axes 
% ylim(axes1,[9e-08 0.11]); 
hold(axes1,'all'); 

  
% Create multiple lines using matrix input to semilogy 
semilogy1 = semilogy(X1,YMatrix1,'Parent',axes1,'LineWidth',2); 
set(semilogy1(1),'Color',[0 0 1],'DisplayName','Train'); 
set(semilogy1(2),'Color',[0 0.8 0],'DisplayName','Validation'); 
set(semilogy1(3),'Color',[1 0 0],'DisplayName','Test'); 

  
% Create semilogy 
semilogy(X2,Y1,'Parent',axes1,'LineStyle',':','Color',[0 0.48 0],... 
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    'DisplayName','Best'); 

  
% Create semilogy 
semilogy(X3,Y2,'Parent',axes1,'MarkerSize',16,'Marker','o','LineWidth',1.5,..

. 
    'LineStyle','none',... 
    'Color',[0 0.48 0]); 

  
% Create semilogy 
semilogy(X4,Y3,'Parent',axes1,'LineStyle',':','Color',[0 0 0]); 

  
% Create title 
title('Best Validation Performance is 8.6353e-07 at epoch 0',... 
    'FontWeight','bold',... 
    'FontSize',12); 

  
% Create ylabel 
ylabel('Mean Squared Error  (mse)','FontWeight','bold','FontSize',12); 

  
% Create xlabel 
xlabel('1000 Epochs','FontWeight','bold','FontSize',12); 
% Create legend 
legend(axes1,'show'); 

 
function createfigure(X1, YMatrix1, X2, Y1, X3, YMatrix2, X4, YMatrix3, X5, 

YMatrix4, X6) 
%CREATEFIGURE(X1, YMATRIX1, X2, Y1, X3, YMATRIX2, X4, YMATRIX3, X5, YMATRIX4, 

X6) 
% X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  X2:  vector of x data 
%  Y1:  vector of y data 
%  X3:  vector of x data 
%  YMATRIX2:  matrix of y data 
%  X4:  vector of x data 
%  YMATRIX3:  matrix of y data 
%  X5:  vector of x data 
%  YMATRIX4:  matrix of y data 
%  X6:  vector of x data 
%  Auto-generated by MATLAB on 31-Aug-2016 15:12:24  
% Create figure 
figure1 = figure('Tag','TRAINING_PLOTREGRESSION','NumberTitle','off',... 
    'Name','Neural Network Training Regression (plotregression), Epoch 1000, 

Maximum epoch reached.'); 

  
% uicontrol currently does not support code generation, enter 'doc uicontrol' 

for correct input syntax 
% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc 

guide' for more information 

  
% uicontrol(...); 

  
% Create axes 
axes1 = axes('Parent',figure1,... 
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    'Position',[0.13 0.593876272242609 0.304276096520464 

0.331123727757391],... 
    'PlotBoxAspectRatio',[1 1 1]); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(axes1,[0.02 0.43]); 
%% Uncomment the following line to preserve the Y-limits of the axes 
% ylim(axes1,[0.02 0.43]); 
box(axes1,'on'); 
hold(axes1,'all'); 

  
% Create xlabel 
xlabel('Target','FontWeight','bold','FontSize',12); 

  
% Create ylabel 
ylabel('Output ~= 0.99*Target + -0.00039','FontWeight','bold','FontSize',12); 

  
% Create title 
title('Training: R=0.98665','FontWeight','bold','FontSize',12); 

  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',axes1); 
set(plot1(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 
set(plot1(2),'LineWidth',2,'DisplayName','Fit'); 

  

% Create plot 
plot(X2,Y1,'Parent',axes1,'Marker','o','LineStyle','none',... 
    'DisplayName','Data',... 
    'Color',[0 0 0]); 

  
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,'Location','NorthWest'); 

  
% Create axes 
axes2 = axes('Parent',figure1,... 
    'Position',[0.587518430936152 0.593876272242609 0.317481569063848 

0.331123727757391],... 
    'PlotBoxAspectRatio',[1 1 1]); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(axes2,[0.038837655771357 0.427043907570427]); 
%% Uncomment the following line to preserve the Y-limits of the axes 
% ylim(axes2,[0.038837655771357 0.427043907570427]); 
box(axes2,'on'); 
hold(axes2,'all'); 

  
% Create xlabel 
xlabel('Target','FontWeight','bold','FontSize',12); 

  
% Create ylabel 
ylabel('Output ~= 1*Target + -0.0012','FontWeight','bold','FontSize',12); 

  
% Create title 
title('Validation: R=1','FontWeight','bold','FontSize',12); 

  
% Create multiple lines using matrix input to plot 
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plot2 = plot(X3,YMatrix2,'Parent',axes2); 
set(plot2(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 
set(plot2(2),'LineWidth',2,'Color',[0 1 0],'DisplayName','Fit'); 

  
% Create plot 
plot(X4,Y1,'Parent',axes2,'Marker','o','LineStyle','none',... 
    'DisplayName','Data',... 
    'Color',[0 0 0]); 

  
% Create legend 
legend2 = legend(axes2,'show'); 
set(legend2,'Location','NorthWest'); 

  
% Create axes 
axes3 = axes('Parent',figure1,... 
    'Position',[0.13 0.11 0.304276096520464 0.329981370316705],... 
    'PlotBoxAspectRatio',[1 1 1]); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(axes3,[0.038837655771357 0.427043907570427]); 
%% Uncomment the following line to preserve the Y-limits of the axes 
% ylim(axes3,[0.038837655771357 0.427043907570427]); 
box(axes3,'on'); 
hold(axes3,'all'); 

  

% Create xlabel 
xlabel('Target','FontWeight','bold','FontSize',12); 

  
% Create ylabel 
ylabel('Output ~= 1*Target + -0.0097','FontWeight','bold','FontSize',12); 

  

% Create title 
title('Test: R=1','FontWeight','bold','FontSize',12); 

  
% Create multiple lines using matrix input to plot 
plot3 = plot(X3,YMatrix3,'Parent',axes3); 
set(plot3(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 
set(plot3(2),'LineWidth',2,'Color',[1 0 0],'DisplayName','Fit'); 

  
% Create plot 
plot(X5,Y1,'Parent',axes3,'Marker','o','LineStyle','none',... 
    'DisplayName','Data',... 
    'Color',[0 0 0]); 

  
% Create legend 
legend3 = legend(axes3,'show'); 
set(legend3,'Location','NorthWest'); 

  
% Create axes 
axes4 = axes('Parent',figure1,... 
    'Position',[0.587518430936152 0.11 0.317481569063848 

0.329981370316705],... 
    'PlotBoxAspectRatio',[1 1 1]); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(axes4,[0.02 0.43]); 
%% Uncomment the following line to preserve the Y-limits of the axes 
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% ylim(axes4,[0.02 0.43]); 
box(axes4,'on'); 
hold(axes4,'all'); 

  
% Create xlabel 
xlabel('Target','FontWeight','bold','FontSize',12); 

  
% Create ylabel 
ylabel('Output ~= 0.99*Target + -0.00015','FontWeight','bold','FontSize',12); 

  
% Create title 
title('All: R=0.98786','FontWeight','bold','FontSize',12); 

  
% Create multiple lines using matrix input to plot 
plot4 = plot(X1,YMatrix4,'Parent',axes4); 
set(plot4(1),'LineStyle',':','DisplayName','Y = T','Color',[0 0 0]); 
set(plot4(2),'LineWidth',2,'Color',[0.4 0.4 0.4],'DisplayName','Fit'); 

  
% Create plot 
plot(X6,Y1,'Parent',axes4,'Marker','o','LineStyle','none',... 
    'DisplayName','Data',... 
    'Color',[0 0 0]); 

  
% Create legend 
legend4 = legend(axes4,'show'); 
set(legend4,'Location','NorthWest'); 

 

function createfigure(X1, Y1, Y2) 
%CREATEFIGURE(X1, Y1, Y2) 
%  X1:  vector of x data 
%  Y1:  vector of y data 
%  Y2:  vector of y data 

  
%  Auto-generated by MATLAB on 31-Aug-2016 15:10:30 

  
% Create figure 
figure1 = figure('Tag','TRAINING_PLOTTRAINSTATE','NumberTitle','off',... 
    'Name','Neural Network Training Training State (plottrainstate), Epoch 

1000, Maximum epoch reached.'); 

  
% uicontrol currently does not support code generation, enter 'doc uicontrol' 

for correct input syntax 
% In order to generate code for uicontrol, you may use GUIDE. Enter 'doc 

guide' for more information 

  
% uicontrol(...); 

  
% Create axes 
axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on',... 
    'XTickLabel','',... 
    'Position',[0.13 0.709264705882353 0.775 0.19093662464986]); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(axes1,[0 1000]); 
box(axes1,'on'); 

Moderate 

Worn out 
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hold(axes1,'all'); 

  
% Create semilogy 
semilogy(X1,Y1,'Parent',axes1,'MarkerFaceColor',[1 0 0],'LineWidth',2); 

  
% Create ylabel 
ylabel('gradient'); 

  
% Create title 
title('Gradient = 0.00013746, at epoch 1000'); 

  
% Create axes 
axes2 = axes('Parent',figure1,'XTickLabel','',... 
    'Position',[0.13 0.409632352941176 0.775 0.19093662464986]); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(axes2,[0 1000]); 
box(axes2,'on'); 
hold(axes2,'all'); 

  
% Create plot 
plot(X1,X1,'Parent',axes2,'MarkerFaceColor',[1 0 0],'Marker','diamond',... 
    'LineWidth',1,... 
    'LineStyle','none'); 

  
% Create ylabel 
ylabel('val fail'); 

  
% Create title 
title('Validation Checks = 1000, at epoch 1000'); 

  

% Create axes 
axes3 = axes('Parent',figure1,'Position',[0.13 0.11 0.775 0.19093662464986]); 
%% Uncomment the following line to preserve the X-limits of the axes 
% xlim(axes3,[0 1000]); 
box(axes3,'on'); 
hold(axes3,'all'); 

  
% Create plot 
plot(X1,Y2,'Parent',axes3,'MarkerFaceColor',[1 0 0],'LineWidth',2); 

  
% Create ylabel 
ylabel('lr'); 

  
% Create xlabel 
xlabel('1000 Epochs'); 

  
% Create title 
title('Learning Rate = 274.6145, at epoch 1000'); 

 

 


