106,742 research outputs found

    Abduction and Dialogical Proof in Argumentation and Logic Programming

    Full text link
    We develop a model of abduction in abstract argumentation, where changes to an argumentation framework act as hypotheses to explain the support of an observation. We present dialogical proof theories for the main decision problems (i.e., finding hypothe- ses that explain skeptical/credulous support) and we show that our model can be instantiated on the basis of abductive logic programs.Comment: Appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    Towards a Benchmark of Natural Language Arguments

    Full text link
    The connections among natural language processing and argumentation theory are becoming stronger in the latest years, with a growing amount of works going in this direction, in different scenarios and applying heterogeneous techniques. In this paper, we present two datasets we built to cope with the combination of the Textual Entailment framework and bipolar abstract argumentation. In our approach, such datasets are used to automatically identify through a Textual Entailment system the relations among the arguments (i.e., attack, support), and then the resulting bipolar argumentation graphs are analyzed to compute the accepted arguments

    Summary Report of The First International Competition on Computational Models of Argumentation

    Get PDF
    Computational models of argumentation are an active research discipline within Artificial Intelligence that has grown since the beginning of the 1990s (Dung 1995). While still a young field when compared to areas such as SAT solving and Logic Programming, the argumentation community is very active, with a conference series (COMMA, which began in 2006) and a variety of workshops and special issues of journals. Argumentation has also worked its way into a variety of applications. For example, Williams et al. (2015) described how argumentation techniques are used for recommending cancer treatments, while Toniolo et al. (2015) detail how argumentation-based techniques can support critical thinking and collaborative scientific inquiry or intelligence analysis. Many of the problems that argumentation deals with are computationally difficult, and applications utilising argumentation therefore require efficient solvers. To encourage this line of research, we organised the First International Competition on Computational Models of Argumentation (ICCMA), with the intention of assessing and promoting state of the art solvers for abstract argumentation problems, and to identify families of challenging benchmarks for such solvers. The objective of ICCMA’15 is to allow researchers to compare the performance of different solvers systematically on common benchmarks and rules. Moreover, as witnessed by competitions in other AI disciplines such as planning and SAT solving, we see ICCMA as a new pillar of the community which provides information and insights on the current state of the art, and highlights future challenges and developments. This article summarises the first ICCMA held in 2015 (ICCMA’15). In this competition, solvers were invited to address standard decision and enumeration problems of abstract argumentation frameworks (Dunne and Wooldridge 2009). Solvers’ performance is evaluated based on their time taken to provide a correct solution for a problem; incorrect results were discarded. More information about the competition, including complete results and benchmarks, can be found on the ICCMA website

    The Case of Dinosaur Metabolism

    Get PDF
    In lieu of an abstract, here is the article\u27s first paragraph: To learn the critical skill of scientific argumentation, students need learning experiences that involve constructing evidence-based explanations. Students often struggle to propose, support, critique, refine, justify, and defend a scientific position (Llewellyn 2013). This article describes a lesson in which biology students are challenged to support their claims with evidence-based reasoning as they research the thermoregulation of dinosaurs

    Bipolarity in argumentation graphs: Towards a better understanding

    Get PDF
    Edited by Benferhat Salem, Philippe LerayInternational audienceDifferent abstract argumentation frameworks have been used for various applications within multi-agents systems. Among them, bipolar frameworks make use of both attack and support relations between arguments. However, there is no single interpretation of the support, and the handling of bipolarity cannot avoid a deeper analysis of the notion of support.In this paper we consider three recent proposals for specializing the support relation in abstract argumentation: the deductive support, the necessary support and the evidential support. These proposals have been developed independently within different frameworks. We restate these proposals in a common setting, which enables us to undertake a comparative study of the modellings obtained for the three variants of the support. We highlight relationships and differences between these variants, namely a kind of duality between the deductive and the necessary interpretations of the support

    Extension-based Semantics of Abstract Dialectical Frameworks

    Get PDF
    One of the most prominent tools for abstract argumentation is the Dung's framework, AF for short. It is accompanied by a variety of semantics including grounded, complete, preferred and stable. Although powerful, AFs have their shortcomings, which led to development of numerous enrichments. Among the most general ones are the abstract dialectical frameworks, also known as the ADFs. They make use of the so-called acceptance conditions to represent arbitrary relations. This level of abstraction brings not only new challenges, but also requires addressing existing problems in the field. One of the most controversial issues, recognized not only in argumentation, concerns the support cycles. In this paper we introduce a new method to ensure acyclicity of the chosen arguments and present a family of extension-based semantics built on it. We also continue our research on the semantics that permit cycles and fill in the gaps from the previous works. Moreover, we provide ADF versions of the properties known from the Dung setting. Finally, we also introduce a classification of the developed sub-semantics and relate them to the existing labeling-based approaches.Comment: To appear in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    "Minimal defence": a refinement of the preferred semantics for argumentation frameworks

    Full text link
    Dung's abstract framework for argumentation enables a study of the interactions between arguments based solely on an ``attack'' binary relation on the set of arguments. Various ways to solve conflicts between contradictory pieces of information have been proposed in the context of argumentation, nonmonotonic reasoning or logic programming, and can be captured by appropriate semantics within Dung's framework. A common feature of these semantics is that one can always maximize in some sense the set of acceptable arguments. We propose in this paper to extend Dung's framework in order to allow for the representation of what we call ``restricted'' arguments: these arguments should only be used if absolutely necessary, that is, in order to support other arguments that would otherwise be defeated. We modify Dung's preferred semantics accordingly: a set of arguments becomes acceptable only if it contains a minimum of restricted arguments, for a maximum of unrestricted arguments.Comment: 8 pages, 3 figure

    Representing and Extracting Support via Complement-based Argumentation Frameworks

    Get PDF
    Both support and attack are essential concepts in natural argumentation. As originally introduced, however, abstract argumentation considered only attack. Although there have been attempts to add a support relation to abstract argumentation, these do not fulfil all desiderata. In this paper we show how the various notions of necessary and sufficient support can be captured using only the attack relation, and highlight the problematic nature of the notion of general support. We suggest that leveraging abstract argumentation semantics and the attack relation to represent support, and the consequent expression of argument in a simple graphical architecture, will yield computational benefits
    • 

    corecore