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Bipolarity in argumentation graphs: Towards a better
understanding

Claudette Cayrol, Marie-Christine Lagasquie-Schiex ∗

IRIT-UPS, Université de Toulouse, France

A B S T R A C T

Different abstract argumentation frameworkshavebeenused forvariousapplicationswithin

multi-agents systems.Among them,bipolar frameworksmakeuseofbothattackandsupport

relations between arguments. However, there is no single interpretation of the support, and

the handling of bipolarity cannot avoid a deeper analysis of the notion of support.

In this paper we consider three recent proposals for specializing the support relation in

abstract argumentation: the deductive support, the necessary support and the evidential

support. These proposals have been developed independently within different frameworks.

We restate these proposals in a common setting, which enables us to undertake a compar-

ative study of the modellings obtained for the three variants of the support. We highlight

relationships and differences between these variants, namely a kind of duality between the

deductive and the necessary interpretations of the support.

1. Introduction

Formal models of argumentation have recently received considerable interest across different AI communities, like de-
feasible reasoning and multi-agent systems [1–3]. Typical applications such as for instance negotiation [4] and practical
reasoning [5] represent pieces of knowledge and opinions as arguments and reach some conclusion or decision on the basis
of interacting arguments.

In formal argumentation, two types of approaches exist. The first one allows for the building of arguments [6]. The second
one corresponds to abstract argumentation frameworks that model arguments as atomic entities, ignoring their internal
structure and focusing on the interactions between arguments, or sets of arguments. In this case, several semantics can be
defined that formalize different intuitions about which arguments to accept from a given framework.

The first abstract framework introduced by [7] limits the interactions to conflicts between arguments with the binary
attack relation. Several specialized or extended versions of Dung’s framework have been proposed (see for instance [8–13]).
Among these extended versions, we are interested in the bipolar framework [14,15] which is capable of modelling a kind
of positive interaction expressed by a support relation. 1 Positive interaction between arguments has been first introduced
by [16,17]. In [14], the support relation is left general so that the bipolar framework keeps a high level of abstraction. The
associated semantics are based on the combination of the attack relation with the support relation which results in new
complex attack relations. However, introducing the notion of support between arguments within abstract frameworks has
been a controversial issue and some counterintuitive results have been obtained, showing that the combination of both
interactions cannot avoid a deeper analysis of the notion of support.

Moreover, there is no single interpretation of the support. Indeed, recently, a number of researchers proposed specialized
variants of the support relation. Each specialization can be associated with an appropriate modelling using an appropriate
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1 [15] is a survey of the use of bipolarity in argumentation. It covers different steps of the argumentation process and is not restricted to bipolar interactions.



complex attack. However, these proposals have been developed quite independently, based on different intuitions and with
different formalizations. In this paper we do not want to discuss all the criticisms which have been advanced, our purpose
is rather to show that bipolar abstract frameworks provide a convenient way to model and discuss various kinds of support.
In particular, we address a comparative study of these proposals, in a common setting. Moreover, it is essential to note that
our goal is not to identify an approach that would be better than another one. We rather intend to explicit the differences
between various kinds of support and to propose a common framework for handling each of them.

Section 2 presents a brief review of the classical and bipolar abstract argumentation frameworks. In Sections 3 to 6 we
discuss three specializations of the notion of support and propose an appropriate modelling for each of them in the bipolar
framework. Related works are discussed in Section 7. In Section 8 we conclude and give some perspectives for future work.

Note that this paper is an extended version of [18]. This extension consists in the introduction of new notions and new
results (proofs are given in the appendix) and a deeper analysis of related works.

2. Background on abstract argumentation frameworks

2.1. Dung argumentation framework

Dung’s seminal abstract framework consists of a set of arguments and one type of interaction between them, namely
attack. What really means is the way arguments are in conflict.

Definition 1 (Dung AF). ADung’s argumentation framework (AF, for short) is a pair 〈A,R〉whereA is a finite and non-empty
set of arguments and R is a binary relation over A (a subset of A × A), called the attack relation.

An argumentation framework can be represented by a directed graph, called the interaction graph, in which the nodes
represent arguments and the edges are defined by the attack relation: ∀a, b ∈ A, aRb is represented by a 6→ b.

Definition 2 (Admissibility in AF). Given 〈A,R〉 and S ⊆ A,

• S is conflict-free in 〈A,R〉 iff there are no arguments a, b ∈ S, such that aRb.
• a ∈ A is acceptable in 〈A,R〉 with respect to S iff ∀b ∈ A such that bRa, ∃c ∈ S such that cRb.
• S is admissible in 〈A,R〉 iff S is conflict-free and each argument in S is acceptable with respect to S.

Standard semantics introduced byDung (preferred, stable, grounded) enable to characterize admissible sets of arguments
that satisfy some form of optimality.

Definition 3 (Extensions). Given 〈A,R〉 and S ⊆ A,

• S is a preferred extension of 〈A,R〉 iff it is a maximal (with respect to ⊆) admissible set.
• S is a stable extension of 〈A,R〉 iff it is conflict-free and for each a 6∈ S, there is b ∈ S such that bRa.
• S is the grounded extension of 〈A,R〉 iff it is the least (with respect to ⊆) admissible set X such that each argument

acceptable with respect to X belongs to X .

Example 1. Let AF be defined by A = {a, b, c, d, e} andRatt = {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)} and represented
by the following graph. There are two preferred extensions ({a} and {b, d}), one stable extension ({b, d}) and the grounded
extension is the empty set.

2.2. Bipolar argumentation framework

The abstract bipolar argumentation framework presented in [14,19] extends Dung’s framework in order to take into
account both negative interactions expressed by the attack relation and positive interactions expressed by a support relation
(see [15] for a more general survey about bipolarity in argumentation).

Definition 4 (BAF). A bipolar argumentation framework (BAF, for short) is a tuple 〈A,Ratt,Rsup〉 where A is a finite and
non-empty set of arguments,Ratt is a binary relation over A called the attack relation and Rsup is a binary relation over A
called the support relation.



A BAF can still be represented by a directed graph Gb called the bipolar interaction graph, with two kinds of edges. Let ai
and aj ∈ A, aiRattaj (resp. aiRsupaj) means that ai attacks aj (resp. ai supports aj) and it is represented by a 6→ b (resp. by
a → b).

Example 2. For instance, in the following graph representing a BAF, there is a support from g to d and an attack from b to a

Newkinds of attack emerge from the interaction between the direct attacks and the supports. These new attacks together
with the direct attacks will be referred to as the complex attacks of the BAF. For instance, these complex attacks can be
defined using the supported attack and the secondary attack which have been introduced in [19] (and previously in [14]
with a different terminology):

Definition 5 ([19] An example of complex attacks in a BAF). Let BAF = 〈A,Ratt,Rsup〉, complex attacks in BAF consist of
the direct attackRatt and the supported and secondary attacks defined by:

• there is a supported attack from a to b iff there is a sequence
a1R1 . . .Rn−1an, n ≥ 3, with a1 = a, an = b, ∀i = 1 . . . n − 2,
Ri = Rsup andRn−1 = Ratt.

• There is a secondary attack from a to b iff there is a sequence
a1R1 . . .Rn−1an, n ≥ 3, with a1 = a, an = b, R1 = Ratt and
∀i = 2 . . . n − 1,Ri = Rsup.

The set of supported (resp. secondary) attacks will be denoted R
sup
att (resp.Rsec

att ).

So, according to the above definition, new kinds of attack, from a to b, can be considered in the following cases.

Note that the above definitions combine a direct attack with a sequence of direct supports, that is a direct or indirect
support.

Notation 1. In the following, a supports bmeans that there is a sequence of direct supports from a to b.

Example 2 (Cont’d). In this example, there is a supported attack from g (or d) to b and a secondary attack from f to a.

Acceptability semanticsmust be redefined for taking into account complex attacks. The first step in defining acceptability
is the investigation of the notion of coherence for a set of arguments. The basic requirement is to avoid conflicts. That leads to
extend the notion of conflict-freeness by replacing direct attacks by complex attacks. So, in the following, given a definition
of complex attacks, we will talk about conflict-freeness wrt 2 these complex attacks.

Moreover, the notion of coherence of a set of arguments can be still enforced by excluding sets of arguments which attack
and support the same argument. This is a kind of external coherence reflected by the notion of safety [14]. So, as in the case
of conflict-freeness, given a definition of complex attacks, we will talk about safety wrt these complex attacks.

Definition 6 ([14] Safety in BAF). Let BAF = 〈A,Ratt,Rsup〉. Let Rc-att be a set of complex attacks built from BAF.
Consider S ⊆ A, S is safe wrtRc-att iff there are no arguments a, b ∈ S, and c ∈ A such that

• b supports c or c ∈ S and
• there is a complex attack from a to c belonging toRc-att.

For instance, following the example of complex attacks given by Definition 5, the set {a, b} can be considered as “inco-
herent” in each of the following cases:

2 wrt: with respect to.



Another requirement has been considered in [14], which concerns only the support relation, namely the closure under
Rsup.

Definition 7 (Closure in BAF). LetBAF = 〈A,Ratt,Rsup〉, S ⊆ A. S is closed underRsup iff ∀a ∈ S, ∀b ∈ A, if aRsupb then
b ∈ S.

So, following the same methodology as in Dung’s framework, different acceptability semantics can be proposed in a
bipolar argumentation framework, depending on the notion of attack (direct, supported, secondary, …) and on the notion
of coherence which are used (conflict-free, safe, closed underRsup).

3. Modelling various kinds of support

Handling support and attack at an abstract level has the advantage to keep genericity. An abstract bipolar framework is
useful as an analytic tool for studying different notions of complex attacks, complex conflicts, and new semantics taking
into account both kinds of interactions between arguments. However, the drawback is the lack of guidelines for choosing
the appropriate definitions and semantics depending on the application. For instance, in Dung’s framework, whatever the
semantics, the acceptance of an argument which is not attacked is guaranteed. Is it always desirable in a bipolar framework?
Two related questions are: Can arguments stand in an extension without being supported? Can arguments be used as
attackers without being supported? It may depend on the interpretation of the support, as shown below.

In the following, we discuss three specialized variants of the support relation, which have been proposed recently: the
deductive support, the necessary support and the evidential support. Let us first briefly give the underlying intuition, then
some illustrative examples.

Deductive support [20] is intended to capture the following intuition: If aRsupb then the acceptance of a implies the
acceptance of b, and as a consequence the non-acceptance of b implies the non-acceptance of a.

Necessary support [21,22], is intended to capture the following intuition: If aRsupb then the acceptance of a is necessary
to get the acceptance of b, or equivalently the acceptance of b implies the acceptance of a.

Evidential support [23,24] enables to distinguish between prima-facie and standard arguments. Prima-facie arguments
do not require any support from other arguments to stand, while standard arguments must be supported by at least one
prima-facie argument.

The following examples show that different interpretations of the support can be given strongly depending on the
context, and that, according to the considered interpretation, some complex attacks need to be considered, while others are
counterintuitive. It is important to note that these examples are not given here in order to express a preference over the
different types of support. Their goal is only to illustrate the existing approaches.

Example 3. This example has been inspired from [21] (and also from a variant in [20]). Let us consider the following
knowledge: Obtaining a Bachelor’s degree with honors (bh) supports obtaining a scholarship (sch) and suppose that having
at least one badmark (bm) does not allow to obtain the honors (even if the average ofmarks normally allows it). One possible
interpretation of the support is: obtaining a bachelor’s degree is necessary for obtaining a scholarship. So, if we do not have
a bh then we are sure that we do not have sch.

Now let us suppose that obtaining schmaybealso fulfilled if the student justifiesmodest incomes (mi). Amore appropriate
interpretation of the support is a deductive one. In that case, a secondary attack from bm to sch would be counterintuitive.
Moreover, it is known that making a blank copy (bc) supports having a very bad mark. With a deductive interpretation of
that support, it makes sense to add a supported attack from bc to bh. Finally, we add the knowledge: having a very good
mark for each test of the examination (vg) supports obtaining a Bachelor’s degree with honors.

The whole example can be formalized in a BAF represented by the following graph:



Example 4 (Example illustrating a necessary support). Let us consider the following dialogue between three agents:

• Agent 1: The room is dark, so I will light up the lamp.
• Agent 2: But the electric meter does not work.
• Agent 1: Are you sure?
• Agent 3: The electrician has detected a failure.

This dialogue shows interactions between the positions rd (the room is dark), ll (the lamp will light up), ew (the electric
meter works), and fail (there is a failure in the electric meter). These interactions can be formalized in a BAF represented by
the following graph:

The intuitive interpretation of the support is a necessary one since the lamp cannot light upwhen the electric meter does
not work. In that case, it makes sense to add a secondary attack from fail to ll.

The importance of the context clearly appears in the following example inspired by an example proposed in [20]:

Example 5. Let us consider the following knowledge about football matches:

• if Liverpool wins last match then Liverpool wins Premier League,
• if Manchester does not win last match then Liverpool wins Premier League,
• if the best player of Liverpool is injured then Liverpool does not win last match.

The interactionsbetweenthepositionswlm (Liverpoolwins lastmatch), lpl (LiverpoolwinsPremierLeague),mnw (Manchester
does not win last match), and bpi (the best player of Liverpool is injured) can be formalized in a BAF represented by the
following graph:

The intuitive interpretation of the support is a deductive one and not a necessary one. Indeed, Liverpool wins Premier
League if Manchester does not win last match, even if Liverpool does not win last match. So adding a secondary attack from
bpi to lpl is not the right modelling.

Example 6 (Example for an evidential support). Let us consider the BAF represented by the graph:

Assume first that the only prima-facie argument is c. So, d may stand, but neither a nor b is grounded in prima-facie
arguments. As a consequence, the attack on d cannot be taken into account. So, c and d will be accepted.

Assume now that the prima-facie arguments are a and c. So, b and d may stand and the attack on d must be considered.
In that case the accepted arguments are a, b and c. In order to reinstate d, an attack could be added either from c to b or from
c to a. Indeed, an attack from c to a invalidates the attack on d by rendering b unsupported.

Finally, assume that the prima-facie arguments are a, b and c. The attack from b to d holds without the support by a. So
an attack from c to a does not enable to reinstate d. There must be an attack from c to b for “saving” d.

We propose to restate various notions of support in the BAF framework.Wewill show that each specialized variant of the
support can be associated with appropriate complex attacks. Then, we will be able to highlight links between these various
notions of support.

We first discuss the deductive and necessary supports (Sections 4.1 and 4.2), and prove that these two specializations
of the support are indeed dual. As a consequence, these two kinds of support can be handled simultaneously in a bipolar
framework. Then in Section 5, we study a restricted version of evidential support and show that it can be viewed as a kind
of weak necessary support.



4. A framework for a comparative study of deductive and necessary supports

4.1. Deductive supports

As explained above, a deductive support is intended to enforce the following constraint: If bRsupc then the acceptance
of b implies the acceptance of c, and as a consequence the non-acceptance of c implies the non-acceptance of b. Suppose
now that aRattc. The acceptance of a implies the non-acceptance of c and so the non-acceptance of b. This strong constraint
can be taken into account by introducing a new attack, called mediated attack.

Definition 8 ([20]Mediated attack). LetBAF = 〈A,Ratt,Rsup〉. There is amediated attack from a to b iff there is a sequence
a1Rsup . . .Rsupan−1, and anRattan−1, n ≥ 3, with a1 = b, an = a.

The set of mediated attacks will be denotedR
med
att .

Example 3 (Cont’d). From vgRsupbh and bmRattbh, the mediated attack bmRattvg will be added.

Moreover, the deductive interpretation of the support justifies the introduction of supported attacks (cf Definition 5
and [19]). If aRsupc and cRattb, the acceptance of a implies the acceptance of c and the acceptance of c implies the non-
acceptance of b. So, the acceptance of a implies the non-acceptance of b.

So, with the deductive interpretation of the support, new kinds of attack, from a to b, can be considered in the following
cases:

Notation 2. In the following, deductive support will be called d-support and the existence of a d-support between two
arguments a and bwill be denoted by a d-supports b.

Definition 9 (Modelling deductive support). Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. The combi-
nation of the direct attacks and the d-supports results in the addition of supported attacks and mediated attacks.

As explained above, modelling deductive support in a BAF can be done in considering the associated Dung AF consisting
of the same arguments and of the relation built from the direct attacks, the supported attacks and the mediated attacks:

Notation 3. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports, the associated Dung AF for the deductive

support is denoted by AF
D and defined by 〈A,RD

att〉 withR
D
att = Ratt ∪ R

sup
att ∪ R

med
att .

Example 3 (Cont’d). The following attacks are added: a supported attack from bc to bh and a mediated attack from bm to
vg. Then support can be ignored, and we obtain the following AF

D:

AF
D has one preferred (and also stable and grounded) extension {bc, bm, sch, mi}.

The following results establish linksbetween thedifferent coherence requirementswhich canbedefined,whenmodelling
deductive support in a BAF.

Proposition 1. Consider BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. Given S ⊆ A,

• S is safe wrtRatt in BAF iff S is safe wrt Ratt ∪ R
med
att in BAF.

• S is safe wrtRatt in BAF iff S is conflict-free wrtRatt ∪ R
med
att in BAF.



Proposition 2. Consider BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports and AF
D its associated Dung AF. Given

S ⊆ A,

• If S is conflict-free wrtRatt and closed underRsup in BAF, then S is also conflict-free in AF
D (that is conflict-free wrtRD

att).

• If S is conflict-free wrtRD
att and closed underRsup in BAF, then S is also safe wrtRD

att in BAF.

From the above proposition it turns out that the notion of coherence enforced in a BAF (for instance, by using the closure
underRsup) is stronger than conflict-freeness in the correspondingAF

D. Moreover, as shown by the following example, the
comparison is strict, even in the case of maximal (for set-inclusion) coherent sets.

Example 7. Consider the following graph representing a BAF:

Among the sets which are conflict-free wrtRatt and closed underRsup, the maximal ones are {a, x} and {b, c}.

Let us consider AF
D represented by:

In AF
D, there is another maximal (for set inclusion) conflict-free set, the set {a, b} which is not closed underRsup in the

corresponding BAF.

The closure requirement makes the notion of coherence in a BAF very strong. However, this requirement can be justified
by the deductive interpretation of the support: Assume that Rsup only contains d-supports; it means that if aRsupb,
the acceptance of a implies the acceptance of b; now, considering a sequence of supports a1Rsupa2Rsup . . .Rsupan, the
acceptance of a1 implies the acceptance of a2, which in turn implies the acceptance of a3 …which implies the acceptance
of an; so, by transitivity, the acceptance of a1 implies the acceptance of an. Obviously, the condition of closure under Rsup
enforces this property.

Going back to the interpretation of the deductive support, the following constraint hold on Example 7:

• The acceptance of a implies the acceptance of x,
• The acceptance of x implies the non-acceptance of c,
• The acceptance of b implies the acceptance of c.

It follows that the acceptance of a must imply the non-acceptance of b. However, this last constraint cannot be enforced in
AF

D. This problem can be easily solved by considering not only direct attacks but also supported attacks in the definition of
a mediated attack.

So, we propose to replace Definition 8 by the definition of a new “mediated” attack, called the super-mediated attack.

Definition 10 (Super-mediated attacks). Let BAF = 〈A,Ratt,Rsup〉 withRsup being a set of d-supports. There is a super-
mediated attack from a to b iff there is a direct attack or a supported attack from a to c, and a support from b to c.

The set of super-mediated attacks will be denoted R
s-med
att .

For instance, there is a super-mediated attack from a to b in the following case:

Then, deductive support can be better taken into account by considering the associated Dung AF consisting of the same
arguments and of the relation built from the direct attacks, the supported attacks and the super-mediated attacks:



Notation 4. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports, the complete associated Dung AF for the

deductive support is denoted by AF
Dc and defined by 〈A,RDc

att〉 withR
Dc
att = Ratt ∪ R

sup
att ∪ R

s-med
att .

The following propositions show that the new AF
Dc enables to recover the closure underRsup.

Proposition 3. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. Given S ⊆ A, if S is conflict-free wrt Ratt

and closed underRsup in BAF, then S is also conflict-free in AF
Dc .

Proposition 4. Let BAF = 〈A,Ratt,Rsup〉 withRsup being a set of d-supports. Given S ⊆ A, S is a ⊆-maximal conflict-free

set in AF
Dc iff S is ⊆-maximal among the sets which are conflict-free wrtRatt and closed underRsup in BAF.

Example 7 (Cont’d). In AF
Dc , the ⊆-maximal conflict-free sets are {a, x} and {b, c}.

An alternative method for modelling all the attacks induced by the deductive support is to give an inductive definition
for these new attacks. Let us first illustrate this method on Example 7:

Example 7 (Cont’d). The new attacks could be obtained with two steps:

Note that the new attack from a to b can also be obtained as a new kind of “mediated” attack from the (supported) attack
(a, c) and the support (b, c).

We propose an inductive definition of these new attacks, called deductive complex attacks (d-attacks for short), by
combining the direct, supported and mediated attacks.

Definition 11 (d-Attacks). Let BAF = 〈A,Ratt,Rsup〉 withRsup being a set of d-supports. There exists a d-attack from
a to b iff

• either aRattb, or aR
sup
att b, or aRmed

att b (Basic case),
• or there exists an argument c such that a supports c and c d-attacks b (Case 1),
• or there exists an argument c such that a d-attacks c and b supports c (Case 2).

The set of d-attackswill be denotedRd-att.

It turns out that the set of d-attacks exactly corresponds to the attacks defined inAF
Dc , the complete associated Dung

AF for the deductive support.

Proposition 5. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. Rd-att = Ratt ∪ R
sup
att ∪ R

s-med
att . In other

words, a d-attacks b iff (a, b) ∈ Ratt ∪ R
sup
att ∪ R

s-med
att .

4.2. Necessary supports

Necessary support corresponds to the following interpretation: If cRsupb then the acceptance of c is necessary to get the
acceptance of b, or equivalently the acceptance of b implies the acceptance of c. Suppose now that aRattc. The acceptance of
a implies the non-acceptance of c and so the non-acceptance of b. This constraint can be taken into account by introducing
a new attack, which is exactly the secondary attack presented above (cf Definition 5 and [19]).



Note that this constraint has been considered in [21], where it was called extended attack.
Moreover, another kind of complex attack can be justified: If cRsupa and cRattb, the acceptance of a implies the accep-

tance of c and the acceptance of c implies the non-acceptance of b. So, the acceptance of a implies the non-acceptance of
b. This constraint relating a and b should be enforced by adding a new complex attack from a to b. Note that this complex
attack was not considered in [21] but has been added in [22].

Let us recall the definition of extended attack proposed in [22] which enables to model necessary support in a BAF.

Definition 12 ([22] Extended attack). Let BAF = 〈A,Ratt,Rsup〉. There is an extended attack from a to b iff

1. either aRattb,
2. or there is a sequence a1Ratta2Rsup . . .Rsupan, n ≥ 3, with a1 = a, an = b,
3. or there is a sequence a1Rsup . . .Rsupan, and a1Rattap, n ≥ 2, with an = a, ap = b.

The set of the extended attacks will be denoted byR
ext
att .

So, with the necessary interpretation of the support, new kinds of attack, from a to b, can be considered in the following
cases:

Notation 5. In the following, necessary support will be called n-support and the existence of a n-support between two
arguments a and bwill be denoted by a n-supports b.

As in the deductive approach, it is possible to define the associated Dung AF:

Notation 6. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of n-supports, the associated Dung AF for the necessary

support is denoted by AF
N and defined by 〈A,RN

att〉 with R
N
att = R

ext
att .

Deductive support and necessary support have been introduced independently. However, they correspond to dual in-
terpretations of the support in the following sense: a n-supports b is equivalent to b d-supports a. Besides, it is easy to
see that the constructions of mediated attack and secondary attack are dual in the following sense: the mediated attacks
obtained by combining the attack relation Ratt and the support relation Rsup are exactly the secondary attacks obtained

by combining the attack relation Ratt and the support relation R
−1
sup which is the symmetric relation of Rsup (R

−1
sup =

{(b, a)|(a, b) ∈ Rsup}). Moreover, the complex attacks which are missing in [21] and added in [22] as evoked previously

can be recovered by considering the supported attacks built from Ratt and R
−1
sup.

Consequently, the modelling by the addition of appropriate complex attacks satisfies this duality.

Proposition 6 (Modelling necessary support). Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of n-supports. The combi-
nation of the direct attacks and the n-supports can be handled by turning the n-supports into the dual d-supports and then adding
the supported attacks and mediated attacks.

Example 8. Consider BAF represented by:

Assume that the support relation has been given a necessary interpretation. That is a is necessary for b and c is necessary
for d. It is equivalent to consider that there is a deductive support from b to a and also from d to c. Then, we add a supported
attack from d to a and a mediated attack from c to b. The resulting AF

N is represented by:



It follows that {c, d} is the only preferred (and also stable and grounded) extension.

Due to the duality between necessary and deductive supports, the inductive process can be applied to the definition of
extended attacks, leading to the complete associated Dung AF for the necessary support:

Notation 7. Let BAF = 〈A,Ratt,Rsup〉 withRsup being a set of n-supports.

• BAFsym denotes the bipolar framework defined by 〈A, Ratt,R
−1
sup〉.

• AF
Dc
sym denotes the complete associated Dung AF for BAFsym (obtained using the direct attacks, the supported attacks

and the super-mediated attacks issued from BAFsym).

• And the complete associated Dung AF for the necessary support is denoted by AF
Nc and exactly corresponds to AF

Dc
sym.

The difference between AF
N and AF

Nc is illustrated by the following example:

Example 9. This example comes from [22]. Consider BAF represented by:

The corresponding BAFsym (R
−1
sup is used in place ofRsup) is represented by:

Then the associated Dung AF for the deductive support AF
D
sym of BAFsym (which is exactly the associated Dung AF for

the necessary support AF
N of BAF) is represented by:



 Table 1

Correspondences between abstract, deductive and necessary supports.

Abstract supports of [14,19] Deductive supports of [20] Necessary supports of [21,22]

Supported attack Supported attack Extended attack (case 3) with R
−1
sup

Secondary attack Mediated attack with R
−1
sup Extended attack (case 2)

Mediated attack Extended attack (case 2) with R
−1
sup

S Safe wrtRatt No direct nor mediated No extended attack (cases 1 and 2)

Attack in S with R
−1
sup in S

S Closed for Rsup S Closed for Rsup S Closed for R
−1
sup

AF
D

AF
N for R

−1
sup

AF
Dc

AF
Nc for R

−1
sup

d-attacks d-attacks forR
−1
sup

And the complete associated Dung AF for the deductive support AF
Dc
sym of BAFsym (which is exactly the complete asso-

ciated Dung AF for the necessary support AF
Nc of BAF) is represented by:

Table 1 gives a synthetic view of the correspondences between the three approaches (abstract, deductive and
necessary).

4.3. Impact on self-attacking arguments

In the literatureon theargumentationdomain, it is very common tofindsomerestrictions about self-attackingarguments.
As taking intoaccountdeductiveornecessarysupports leads to introducenewcomplexattacks, it is interesting tocharacterize
the cases where these attacks correspond to self-attacks. For deductive supports, the following proposition describes these
cases:

Proposition 7. LetBAF = 〈A,Ratt,Rsup〉withRsup being a set of d-supports. Consider a ∈ A. a is a self-attacking argument

of AF
Dc iff

• either aRatta,
• or ∃b ∈ A, such that a supports b and bRatta,
• or ∃b ∈ A, such that a supports b and aRattb,
• or ∃b and c ∈ A, such that a supports c, cRattb and a supports b.

So if we need Dung AF without self attacking arguments, we have to restrict BAF.
A similar property is obtained for the necessary support using the duality between necessary and deductive supports:

Proposition 8. LetBAF = 〈A,Ratt,Rsup〉withRsup being a set of n-supports. Consider a ∈ A. a is a self-attacking argument

of AF
Nc iff

• either aRatta,
• or ∃b ∈ A, such that b supports a and bRatta,
• or ∃b ∈ A, such that b supports a and aRattb,
• or ∃b and c ∈ A, such that c supports a, cRattb and b supports a.



5. Evidential support

Evidential support [23,24] is intended to capture the notion of support by evidence: an argument cannot be accepted
unless it is supported by evidence. Evidence is represented by a special argument, and the arguments which are directly
supported by this special argument are called prima-facie arguments. Arguments can be accepted only if they are supported
(directly or indirectly) by prima-facie arguments. Besides, only supported arguments can be used to attack other arguments.

In Oren’s evidential argument framework, attacks and supports may be carried out by a set of arguments (and not only
by a single argument). However, for the purpose of comparing different specializations of the notion of support, we will
restrict the presentation of evidential support to the case where attacks and supports are carried out by single arguments.
All the definitions that we give in the following are inspired by those given in [23,24].

Given BAF = 〈A,Ratt,Rsup〉, we distinguish a subset Ae ⊆ A of arguments which do not require any support to
stand. These arguments will be called self-supported and correspond to the prima-facie arguments. We recall that in a BAF,
a supports bmeans that there is a sequence of direct supports from a to b. So an evidential BAF can be defined as follows:

Definition 13 (Evidential BAF (EAF)). An evidential BAF (EAF) is a tuple 〈A,Ae,Ratt,Rsup〉 where 〈A,Ratt,Rsup〉 is a BAF
and Ae ⊆ A. Ae is called the set of prima-facie arguments.

So, evidential support (or e-support for short) can be defined as a particular case of the notion of (direct or indirect)
support.

Definition 14 (e-Supports). Let EAF = 〈A,Ae,Ratt,Rsup〉.

• a is e-supported iff either a ∈ Ae or there exists b such that b is e-supported and bRsupa.
• a is e-supported by S (or S e-supports a) iff either a ∈ Ae or there is an elementary sequence b1Rsup . . .RsupbnRsupa

such that {b1 . . . bn} ⊆ S and b1 ∈ Ae.
• S is self-supporting iff S e-supports each of its elements.

Example 8 (Cont’d). Assume that Ae = {a, c}. Then b is e-supported by {a}, d is e-supported by {c}. The sets {a, b} and
{c, d} are self-supporting.

The combination of the direct attacks and the evidential support results in restrictions on the notion of attack and also on
the notion of acceptability. The first idea is that only e-supported arguments may be used to make a direct attack on other
arguments. This is formalized by the notion of e-supported attack.

Definition 15 (e-Supported attack). Let EAF = 〈A,Ae,Ratt,Rsup〉. S carries out an e-supported attack on a iff there exists
b ∈ S such that bRatta and b is e-supported by S.

The second idea concerns reinstatement: If a is attacked by b, which is e-supported, a can be reinstated either by a direct
attack on b or by an attack on c such that without c, bwould be no longer e-supported. In order to enforce this idea, minimal
(for set-inclusion) e-supported attacks have to be considered. We have:

Proposition9. LetEAF = 〈A,Ae,Ratt,Rsup〉. X is aminimal e-supported attack on the argument a iff X is the set of arguments
appearing in a minimal elementary sequence b1Rsup …Rsupbn such that b1 ∈ Ae and bnRatta.

Note that a minimal e-supported attack on a given argument corresponds to a particular case of a supported attack as
defined in Definition 5. In the case when b1Rsup . . .Rsupbn with b1 ∈ Ae and bnRatta, each bi carries out a supported
attack on a.

Now, following Oren’s evidential argument framework, we propose a new definition for acceptability. There are two
conditionson S, forabeingacceptablewrt S. Thefirst one is classical and concernsdefenceor reinstatement: Smust invalidate
each minimal e-supported attack on a (either by attacking the attacker of a or by rendering this attacker unsupported). The
second condition requires that S e-supports a.

Definition 16 (e-Acceptability). Let EAF = 〈A,Ae,Ratt,Rsup〉. a is e-acceptable wrt S iff

• For each minimal e-supported attack X on a, there exists b ∈ S and x ∈ X such that bRattx and
• a is e-supported by S.

Definition 17 (e-Admissibility). Let EAF = 〈A,Ae,Ratt,Rsup〉. S is e-admissible iff

• Each element of S is e-acceptable wrt S and
• there are no arguments a, b ∈ S, such that aRattb.



Example 8 (Cont’d). Assume that Ae = {a, c}. There is only one minimal e-supported attack on d: {a, b}. As cRatta and d
is e-supported by {c}, we have that d is e-acceptable wrt {c}. Then, {c, d} is e-admissible. Note that there is no e-supported
attack on b. However, b does not belong to any e-admissible set, because no e-admissible set e-supports b. Assume now
thatAe = {a, b, c}. {b} is the only minimal e-supported attack on d. As no argument attacks b, no e-admissible set contains
d. The only e-admissible set is {c, b}.

The above example enables us to highlight the relationship between the notion of evidential support and the notion of
necessary support. It seems that evidential support can be viewed as a kind ofweak necessary support, in the following sense:
Assume that b is supported by a and c; with the necessary support interpretation, the acceptance of b implies the acceptance
of a and the acceptance of c; with the evidential interpretation, if b is not self-supported, the acceptance of b implies the
acceptance of a or the acceptance of c and, if b is self-supported, the acceptance of b implies no constraint on a and c.

The above comment suggests to consider theparticular casewheneach argument is self-supported, that isAe = A. In that
case,X is aminimal e-supported attack on a iffX is reduced to one argumentwhich directly attacks a. So, classical acceptability
is recovered: a is e-acceptable wrt S iff a is acceptable wrt S in Dung’s sense. And as each argument is self-supported, we
also recover classical admissibility. That is to say that the support relation is ignored.

Another interesting case occurs when self-supported arguments are exactly those which do not have any support, that
is Ae = {a ∈ A / there does not exist b such that bRsupa}. However, even in that particular case, evidential support cannot
be modelled with necessary support, as shown by the following example.

Example 10. We complete Ex 8 by adding an argument e and a support from e to b:

Assume that Ae = {a, c, e} (this is represented by a double box around the elements of Ae). The only ⊆-maximal e-
admissible set is {c, e, b}. Indeed, d is not e-acceptable wrt {c} since {e, b} is a minimal e-supported attack on d and neither
b nor e is attacked.

Now, if we handle the same graph with necessary supports, we first take R
−1
sup and then add supported and mediated

attacks. This results in adding an attack from d to a and an attack from c to b:

Taking into account these new attacks, the set is {c, b, e} is no longer admissible (there is a conflict between c and b) and
{c, d} becomes admissible.

If we use the inductive definition for the complex attacks, the resulting AF
Nc is the following:

In this case, {d} becomes admissible.

The above example shows that the notion of evidential support, even in the particular case of interactions between single
arguments, cannot be reduced to strict necessary support (nor to deductive support). So, it is not possible to handle together
in the same bipolar framework evidential support and necessary / deductive support. A fortiori, this remark is truewhen one
considers that EAF are also able to handle attacks and supports by sets of arguments. However, the idea of considering attacks
and supports between sets of arguments is related to the notion of coalitions of arguments and, in the following section, we
show how coalitions can be defined using deductive and necessary supports.

6. Coalitions of supports

In this section, we consider only d-supports (if n-supports appear, they can be translated into d-supports without loss of
generality).



Our idea is that coalitions of arguments can beused asmeta arguments andour purpose is to turn a BAF into ametaDungAF
so that the usual Dung’s semantics may be applied. A first attempt has been done in [19]. However the proposed meta argu-
mentation systempresented some important drawbacks (themain reason is that no interpretationwas given to the support).

In the current paper, we show how to fix these drawbacks using a new definition of meta Dung AF which will enable to
establish a one-to-one correspondence between extensions of the meta framework and those of AF

Dc .
Intuitively, each argument a gives rise to a coalition that contains all the arguments supported (directly or indirectly) by

a. A coalition attacks another one if the former contains at least one argument that attacks (withRatt) an argument of the
second one.

Definition 18 (d-Coalition). Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. Let a ∈ A, the d-coalition 3

associated with the argument a is defined by: C(a) = {a} ∪ {b s.t. a supports b}.

Note that C(a) corresponds to the set of nodes that are reachable from a by support edges in the directed graph Gb.
Formally, we define a meta argumentation framework corresponding to a BAF in the following way: For each argument

a ∈ A, the d-coalition C(a) is the meta argument associated with a.

Definition 19 (Meta framework). Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. The Dung meta argu-

mentation framework corresponding to BAF is 〈AC,RC〉, where

• A
C denotes the set of all the meta arguments obtained from A (AC = {C(a), a ∈ A})

• R
C is an attack relation defined by: C(a)RCC(b) iff there exists x ∈ C(a) and y ∈ C(b) such that xRatty.

The following examples illustrate this definition.

Example 11. Consider BAF represented by:

We have C(a) = {a, b, c}, C(b) = {b, c}, C(c) = {c}, C(d) = {d}, C(e) = {e}. So the corresponding Dung meta argu-
mentation framework is represented by:

Example 12. Consider BAF represented by:

We have C(a) = {a, b, c}, C(b) = {a, b, c}, C(c) = {a, b, c}, C(d) = {d}, C(e) = {e}. So the corresponding Dung meta
argumentation framework is represented by:

3 d-Coalition means “deductive coalition”.



Note that three distinct meta arguments correspond to the same d-coalition of arguments.

Example 13. Consider BAF represented by:

We have C(a) = {a, b, c}, C(b) = {b, c}, C(c) = {c}. So the corresponding Dung meta argumentation is represented by:

Note that we obtain self-attacking arguments.

The attacks in the meta framework can be characterized in terms of attacks in AF
Dc .

Proposition 10. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. Let a, b ∈ A. C(a)RCC(b) iff there is an

attack from a to b in AF
Dc .

As a direct consequence, we have:

Proposition 11. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. Let S = {a1, a2, . . . , an} ⊆ A. S is

conflict-free in AF
Dc iff {C(a1), C(a2), …, C(an)} is conflict-free in 〈AC,RC〉.

The usual Dung’s semantics can then be applied on the meta framework. The main result is that there is a one-to-one
correspondence between extensions of the meta framework and those of AF

Dc .

Proposition 12. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. Given S ⊆ A, S = {a1, a2, . . . , an}.

1. S is a ⊆-maximal conflict-free set in AF
Dc iff {C(a1), C(a2), …, C(an)} is a ⊆-maximal conflict-free set in 〈AC,RC〉.

2. S is admissible in AF
Dc iff {C(a1), C(a2), . . . , C(an)} is admissible in 〈AC,RC〉.

3. S is stable in AF
Dc iff {C(a1), C(a2), . . . , C(an)} is stable in 〈AC,RC〉.

Applying the previous propositions on Example 11 shows that the set {e, b, c} is stable in AF
Dc and ⊆-maximal among

the admissible sets of AF
Dc . And in Example 12, the set {e, d} is stable in AF

Dc and ⊆-maximal among the admissible sets

of AF
Dc .

7. Related works

Related works can be partitioned into two parts; the first part is related to the notion of meta argumentation and the
second part concerns a more general framework.

7.1. About meta argumentation

Our approach formeta argumentation is close to the approach described in [25] using necessary support. In thiswork, the
meta argument associated with an argument a, called cluster, contains a and all the arguments that are directly necessary
for a. Turning the necessary supports into the dual deductive supports, the cluster will contain a and all the arguments that
directly d-support a. In contrast, the d-coalition contains a and all the arguments that support a, directly or not.

Nevertheless, in [25], the binary relation which encodes the necessary support is assumed irreflexive and transitive.
The transitive nature of the necessary support enables to recover indirect support in the clusters. So, clusters are similar to
d-coalitions. However, the irreflexive nature of the necessary support excludes some of the d-coalitions. In the particular
case when the support relation is irreflexive and transitive, using the results presented in Section 6 and the duality between



deductive and necessary support, it can be proved that the meta framework based on clusters enables to encode the attacks
in AF

Nc , and not only the extended attacks defined in Definition 12.

Example 14. Consider BAF using n-supports and represented by:

The clusters are C(a) = {a, x}, C(b) = {b, c}, C(c) = {c}, C(x) = {x}.

Note that there is a meta attack from C(a) to C(b) whereas there is no extended attack from a to b.

Using deductive support, [20] described a meta argumentation framework in which meta arguments are auxiliary argu-
ments representing pairs of interacting arguments. More precisely,

• A direct attack from x to c is encoded by a path of length 3 in the meta framework: acc(x)RattXxcRattYxcRattacc(c);
• A support from b to c is encoded by a path of length 2 in the meta framework: acc(c)RattZbcRattacc(b);
where Xxc (resp. Yxc , Zbc) is read as “the attack from x to c is not active” (resp. “the attack from x to c is active”, “b does

not support c”) and acc(x) is read as “x is acceptable”.

The above approach enables to encode a mediated attack, but does not enable to encode a supported attack (see the
following example):

Example 7 (Cont’d). In this example the meta argumentation framework proposed by [20] is represented by:

And the Dung meta argumentation framework obtained with our proposition (see Section 6) is represented by:



With both approaches, we obtain the same ⊆-maximal admissible set {a, x} in the original framework. Nevertheless, an
essential difference between both approaches concerns the conflict-free sets: following themeta argumentation framework
proposed by [20], the set {a, c} is conflict-free that is not the case in our approach.

Moreover, the reading of the auxiliary arguments is not intuitive. From the reading giving by Boella, there should be a
symmetric attack between Xxc and Yxc . As for the encoding of a deductive support from an argument b to an argument c, it
seems strange to create an attack from “c is accepted” to “b does not support c”.

The last approach proposing a meta argumentation framework is given by [24]. In order to compare with our approach,
we still consider the particular case where attacks and supports are carried out by single arguments. The meta arguments
represent groups of arguments and are built from the notion of self-supporting path, as follows:

• Each ⊆-maximal self supporting path of 〈A,Rsup〉 is a meta argument.
• For each x ∈ A such that x is directly attacked, each ⊆-maximal self supporting path of 〈A \ {x},Rsup〉 is a meta

argument.

There is a meta attack from S1 to S2 iff there exist a ∈ S1 and b ∈ S2 such that aRattb.
The meta argumentation framework of [24] captures the e-admissibility in the sense that {S1, S2, . . . , Sp} is admissible

in the meta framework iff the set of arguments S1 ∪ S2 . . . ∪ Sp is e-admissible in the evidential argumentation framework.
Let us consider again Example 10.

Example 10 (Cont’d). Assuming thatAe = {a, c, e}, themeta argumentation framework proposed by [24] is represented by:

It follows that {{e, b}, {c}} is admissible in the meta framework. Note that there are two distinct meta arguments that
contain b, reflecting the notion of weak necessary support: e is necessary for b or a is necessary for b.
In contrast, with the necessary support, turned into deductive supports, we obtain the d-coalitions C(a) = {a}, C(b) =
{b, a, e}, C(c) = {c}, C(d) = {d, c}, C(e) = {e}. Note that there is only one d-coalition containing b.

So the Dung meta argumentation framework obtained with our approach is represented by:

It follows that {C(c), C(d), C(e)} is admissible in the meta framework, and so {c, d, e} is admissible in AF
Dc . In our

approach, b belongs to only one d-coalition. So, there is only one attack against the meta argument C(d) = {c, d}, for which
there exists a counter attack (C(d) attacks C(b)). In contrast, in the meta argumentation framework proposed by [24], there
are two attacks against themeta argument {c, d}: one attack is by themeta argument {a, b}, for which there exists a counter
attack; the other attack is by the meta argument {b, e}, for which there is no counter attack.

7.2. Other works

Another interesting related work has been proposed in the more general setting of Abstract Dialectical Framework (ADF
for short) [26].

This framework allows to represent a variety of dependencies between nodes in an interaction graph.
In a BAF, there are two kinds of edges, one for the support and one for the attack. In contrast, there is only one kind of

edge in an ADF. An edge between a and b represents a dependency between a and b. The kind of dependency is specified by
associating an acceptance condition with each node of the graph. The acceptance condition of s specifies how the status of
s depends on the status of the parents of s, and gives the exact conditions under which s is accepted.

Acceptance conditions aremuchmore flexible than the conditions described above for deductive, necessary or evidential
support. For instance, if c depends on a and b, the following constraint can be taken into account: c is accepted if and only if
exactly one of {a, b} is accepted.



Formally, an ADF is a directed graphwhose nodes represent arguments which can be accepted or not. For each node s, the
set of its parents in the graph is denoted by par(s). An acceptance condition of s, denoted by Cs, is a function that assigns to
each subset R of par(s) one of the values in, out. Cs(R) = inmeans that if the nodes in R are accepted and those in par(s) \ R
are not accepted, then s is accepted. So, the exact conditions under which s is accepted are given by the subsets R ⊆ par(s)
such that Cs(R) = in.

Note that if s has no parent in the graph, then s is accepted if and only if Cs(∅) = in. Moreover, as explained in [26], if
each edge represents an attack, Cs(R) = in iff R = ∅.

In the following, we show that the ADFmodel does not always enable to capture exactly the notion of deductive support.
We consider three different examples. In each case, starting from a BAF considered as a dependency graph, we write the
possible acceptance conditions and try to determine whether some of them may correspond to deductive or necessary
support.

Example 15. Consider the BAF represented by:

We are interested in the acceptance condition Cb.
Considering par(b) = {a}, there exist four possible cases for defining Cb:

Sets R s.t. Conditions under which b is accepted

Cb(R) = in

None No R s.t. Cb(R) = in; so there is no condition under which b is accepted

(b cannot be accepted whatever the status of a)

C0
b ∅ ∃ one R s.t. Cb(R) = in; so there is only one condition under which b is accepted

C1
b {a} ∃ one R s.t. Cb(R) = in; so there is only one condition under which b is accepted

C2
b ∅, {a} ∃ two R s.t. Cb(R) = in; so there are two different conditions under which b is accepted

The second case exactly corresponds to an attack from a to b (Cb(R) = in iff R = ∅). Since, in our example, there is
no attack from a to b, we do not use it. Thus, in order to characterize the support from a to b, it only remains two possible
acceptance conditions for b, C1

b and C2
b .

• C1
b ({a}) = in means b is accepted if a is accepted. And as C1

b specifies only one condition under which b is accepted, we

also have the equivalence b is accepted if and only if a is accepted. So, C1
b models a support which is both deductive and

necessary.
• C2

b (∅) = in means b is accepted if a is not accepted.

C2
b ({a}) = in means b is accepted if a is accepted.

So bwill be accepted whatever the status of a. Thus the notion of support is not captured.

Example 16. We complete the above example by adding an attack from c to b. So, we consider the BAF represented by:

We are interested in the acceptance condition Cb. As there is an attack from c to b, if c is accepted, then b cannot be
accepted. This constraint can be expressed by the following constraint on Cb: If Cb(R) = in then c /∈ R. So only two subsets
of par(b) may be in: ∅ and {a}. And we obtain the same discussion as in the above example. As there is no attack from a to
b, we cannot have Cb(R) = in iff R = ∅. So, there are two possible acceptance conditions for b, C1

b and C2
b defined by:

C1
b (R) = in iff R = {a} and C2

b (∅) = in, C2
b ({a}) = in.

• C1
b ({a}) = in, means b is accepted if a is accepted and c is not accepted. And as C1

b specifies only one condition under which
b is accepted, we also have the equivalence b is accepted if and only if a is accepted and c is not accepted. It follows that if b
is accepted, then a is accepted. So, C1

b enables to model a necessary support from a to b (and not the deductive support
since the condition if a is accepted then b is accepted does not hold).

• With C2
b , b is accepted iff c is not accepted, whatever the status of a. So none notion of support is captured.

This example shows that a deductive support cannot always be captured in the ADF model.



Example 17. Consider the BAF represented by:

We are interested in the acceptance condition Cb, and among all the possible functions we discuss C1
b , C

2
b , C

3
b defined by:

C1
b ({a}) = in, C1

b ({c}) = in, C1
b ({a, c}) = out, C1

b (∅) = out;

C2
b ({a}) = in, C2

b ({c}) = in, C2
b ({a, c}) = in, C2

b (∅) = out;

C3
b ({a, c}) = in, C3

b ({a}) = out, C3
b ({c}) = out, C3

b (∅) = out.
So, we have:

• With C1
b , b is accepted if and only if exactly one of {a, c} is accepted.

• With C2
b , b is accepted iff a is accepted or c is accepted. So C2

b enables to model a support which is both deductive (“if”
part) and weak necessary (“only if” part).

• With C3
b , b is accepted if and only if a is accepted and b is accepted. So C3

b enables to model a support which is both
necessary (“only if” part) and weak deductive (“if” part).

This example shows that a purely deductive (resp. purely necessary) support cannot always be captured in the ADF model.

8. Conclusions and future works

In this paper, we have considered three recent proposals for specializing the support relation in abstract argumentation:
the deductive support, the necessary support and the evidential support. These proposals have been developed indepen-
dently within different frameworks and with appropriate modellings, based on different intuitions.

We have restated these proposals in a common setting, the bipolar argumentation framework. Basically, the idea is to
keep the original arguments, to add complex attacks defined by the combination of the original attack and the support, and
to modify the classical notions of acceptability. We have proposed a comparative study of the modellings obtained for the
considered variants of the support, which has enabled us to highlight relationships and differences between these variants.
Namely, we have shown a kind of duality between the deductive and the necessary interpretations of support, which results
in a duality in the modelling by complex attacks. In contrast, the evidential interpretation is quite different and cannot be
captured with deductive or necessary supports.

So, the abstract bipolar argumentation framework is a suitable tool for handling applications where deductive as well as
necessary supports are expressed. By cons, it is no longer the case as soon as evidential supports also appear in the same
applications.

Evidential support has been captured by a meta argumentation framework, which instantiates Dung’s framework with
meta arguments. Following the same line, we have also proposed a meta argumentation framework taking into account
the deductive/necessary supports and preserving some semantics. This proposition allows for new understandings of the
differences between the variants of support.

This paper addresses how various notions of support can be handled in abstract argumentation and so it is a first step
towards a better understanding of the notion of support in argumentation.

The next step is to discuss how these different notions of support can be built from the internal structure of the arguments
(see [27]). In particular, it would be interesting to study how these three types of support (deductive, necessary, evidential)
can capture different types of reasoning when arguments are built from pieces of knowledge.

More generally, it would be interesting to extend the discussion to the case when attacks and supports can be carried out
by sets of arguments, as in the evidential argumentation framework.

Another interesting topic for further research is the representation of defeasible support in bipolar frameworks. A promis-
ing proposal has been given in [20]. As interactions between arguments are represented by auxiliary arguments in the meta
argumentation framework, an attack from an argument to a support can be easily represented by an attack in the meta
framework. A direct representation of defeasible support in a BAF or in the meta framework based on coalitions must be
investigated.

As regards meta argumentation, the study of coalitions could be continued in connection with recent works about
weightedargumentation frameworks (see [28,10,11,29,30]). The followingquestions appear tobe relevant:Howcanweights
on the arguments and/or weights on the supports be combined into weights on coalitions? Can the cardinality be taken into
account for weighting a coalition? How can weighted coalitions be handled in the meta framework?
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Appendix A. Proofs

Proposition 1. Consider BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. Given S ⊆ A,

• S is safe wrtRatt in BAF iff S is safe wrt Ratt ∪ R
med
att in BAF.

• S is safe wrtRatt in BAF iff S is conflict-free wrtRatt ∪ R
med
att in BAF.

Proof.

• For the first result, it is sufficient to prove that if S is safe wrtRatt in BAF, then S is also safe wrtRmed
att in BAF. Assume

that S is not safe wrtRmed
att in BAF. Then there exists a, b ∈ S, and c ∈ A such that (b supports c or c ∈ S) and there is

a mediated attack from a to c. So, there is a sequence c1(= c)Rsup . . .Rsupcp, and aRattcp, p ≥ 2, and either c ∈ S or b
supports c with b ∈ S.
If c ∈ S, we obtain a contradiction with the assumption that S is safe wrt Ratt in BAF.
If b ∈ S and b supports c, there exists a sequence b1(= b)Rsup …Rsup bn−1 Rsup bn(= c), n ≥ 2. By concatenating
the two sequences, we obtain a sequence of supports from b to cp, and so a contradiction with the fact that S is safe wrt
Ratt in BAF.

• Due to the above result, if S is safe wrt Ratt in BAF, then S is safe wrt Ratt ∪ R
med
att in BAF, and so by definition of

safety, S is conflict-free wrt Ratt ∪ R
med
att in BAF. Conversely, let S be conflict-free wrt Ratt ∪ R

med
att . Assume that S is

not safe wrt Ratt. Then there exists a, b ∈ S, and c ∈ A such that (b supports c or c ∈ S) and there is a direct attack
from a to c.
If c ∈ S, we obtain a contradiction with the assumption that S is conflict-free wrtRatt in BAF.
If b ∈ S and b supports c, we obtain exactly a mediated attack from a to b and so a contradiction with the fact that S

is conflict-free wrtRmed
att in BAF. �

Proposition 2. Consider BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports and AF
D its associated Dung AF. Given

S ⊆ A,

• If S is conflict-free wrtRatt and closed underRsup in BAF, then S is also conflict-free in AF
D (that is conflict-free wrtRD

att).

• If S is conflict-free wrtRD
att and closed underRsup in BAF, then S is also safe wrtRD

att in BAF.

Proof.

• For the first result, it is sufficient to prove that “if S is conflict-free wrtRatt and closed underRsup, then S is conflict-free

wrtR
sup
att ∪ R

med
att in BAF”. This proof is made by a reduction ad absurdum.

Assume that there are arguments a, b ∈ Swith a supported attack from a to b. There is a sequence a1(= a)Rsup . . .Rsup
an−1Rattb, with n ≥ 3. As S is closed under Rsup, we have an−1 ∈ S. So there is a direct attack between two elements
of S, which contradicts the assumption that S is conflict-free wrtRatt.
Nowassumethat thereareargumentsa, b ∈ Swithamediatedattack froma tob. There isa sequenceb1(= b)Rsup . . .Rsup
bp, and aRattbp, p ≥ 2. As S is closed under Rsup, we have bp ∈ S. So there is a direct attack between two elements of
S, which contradicts the assumption that S is conflict-free wrtRatt.

• The second result follows from the following remark: In Definition 6, if S is closed underRsup, the condition (b supports
c or c ∈ S) reduces to c ∈ S. So, if S is closed underRsup, S is safe wrt a complex attack is equivalent to S is conflict-free
wrt that complex attack. �

Proposition 3. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. Given S ⊆ A, if S is conflict-free wrt Ratt

and closed underRsup in BAF, then S is also conflict-free in AF
Dc .

Proof. Let S be conflict-free wrt Ratt and closed under Rsup in BAF. Due to Proposition 2, we know that S is conflict-free

in AF
D (that is conflict-free wrt RD

att).
So, we have to prove that there is no super-mediated attack between two elements of S. Assume that it is not the case,

and that there exists a super-mediated attack from a to b in S. Then, there exists c ∈ A such that aR
sup
att c and bRsupc. The

supported attack from a to c is composed of a support from a to an argument d and an attack from d to c. As S is closed under
Rsup in BAF, d belongs to S, so there is in fact a mediated attack from d, element of S, to b, which contradicts the fact that

S is conflict-free wrtRD
att. �



Proposition 4. Let BAF = 〈A,Ratt,Rsup〉 withRsup being a set of d-supports. Given S ⊆ A, S is a ⊆-maximal conflict-free

set in AF
Dc iff S is ⊆-maximal among the sets which are conflict-free wrtRatt and closed underRsup in BAF.

Proof.

• (⇒)-Part: Let S be a ⊆-maximal conflict-free set in AF
Dc . So, S is conflict-free wrt Ratt in BAF. Assume that S is not

closed under Rsup in BAF. Then, there exist a ∈ S and b /∈ S with aRsupb. As S is ⊆-maximal conflict-free in AF
Dc ,

S ∪ {b} is not conflict-free in AF
Dc . So there exists c ∈ S such that either bRDc

attc or cRDc
attb. In each case, it is possible

to build an attack between a and c, which contradicts the fact that S is conflict-free set in AF
Dc . Let us enumerate the

different cases which may be encountered.
◦ If bRattc, as aRsupb, we obtain a supported attack from a to c.

◦ If bR
sup
att c, as aRsupb, we also obtain a supported attack from a to c.

◦ If bRs-med
att c, as aRsupb, we obtain a super-mediated attack from a to c.

◦ If cRattb, as aRsupb, we obtain a mediated attack from c to a.

◦ If cR
sup
att b, as aRsupb, we obtain a super-mediated attack from c to a.

◦ If cRs-med
att b, as aRsupb, we also obtain a super-mediated attack from c to a.

So,wehave proved that S is conflict-freewrtRatt and closed underRsup inBAF. It remains to prove that S is⊆-maximal.

Assume that it is not the case. Then, there exists S′ ⊆ A, such that S is strictly included in S′ and S′ is conflict-free wrt
Ratt and closed under Rsup in BAF. Due to Proposition 2, it holds that S′ is conflict-free in AF

D (that is conflict-free

wrt RD
att). As S is strictly included in S′, there exists b ∈ S′ such that b /∈ S. So, since S is conflict-free wrt RDc

att and S′ is

conflict-free wrtRD
att, there is an attack between b and an element a of S and this attack must be a super-mediated one

(as S′ is conflict-free wrt RD
att, this attack can be neither a direct attack, nor a supported attack, nor a simple mediated

attack). Two cases may occur.
◦ If the attack is from a to b, there exists a supported attack from a to an argument d and a support from b to d. The

supported attack from a to d is composed of a support from a to an argument e and an attack from e to d. As S is closed
underRsup in BAF, e belongs to S and so to S′. So, there is in fact a mediated attack from e, element of S′, to b, which

contradicts the fact that S′ is conflict-free wrtRD
att.

◦ If the attack is from b to a, there exists a supported attack from b to an argument d and a support from a to d.
As S is closed under Rsup in BAF, d belongs to S and so to S′. So, there is a supported attack from b to an element of

S′, which contradicts the fact that S′ is conflict-free wrtRD
att.

• (⇐)-Part: Let S be a subset of A, ⊆-maximal among the sets which are conflict-free wrt Ratt and closed underRsup in

BAF. Due to Proposition 3, we know that S is conflict-free in AF
Dc .

It remains to prove that S is ⊆-maximal among the conflict-free sets in AF
Dc . Assume that it is not the case. Then, there

exists S′ ⊆ A, such that S is strictly included in S′ and S′ is conflict-free in AF
Dc . As A is finite, we can assume that S′

is ⊆-maximal. So, from the (⇒)-part of the proof, we know that S′ is conflict-free wrt Ratt and closed under Rsup in
BAF. That is in contradiction with S being⊆-maximal among the sets which are conflict-free wrtRatt and closed under
Rsup in BAF. �

Proposition 5. Let BAF = 〈A,Ratt,Rsup〉 withRsup being a set of d-supports.Rd-att = Ratt ∪ R
sup
att ∪ R

s-med
att . In other

words, ad-attacksb iff (a, b) ∈ Ratt ∪ R
sup
att ∪ R

s-med
att .

Proof.

• It is easy to prove that Ratt ∪ R
sup
att ∪ R

s-med
att ⊆ Rd-att. If aRattb, or aR

sup
att b, or aRmed

att b, then by definition (Basic
case), a d-attacks b. If there is a super-mediated attack from a to b, composed of a supported attack from a to c (so, a
d-attacks c – Basic case), and a support from b to c, then, by definition (Case 2), there is a d-attack from a to b.

• Conversely, we have to prove that Rd-att ⊆ Ratt ∪ R
sup
att ∪ R

s-med
att . We give a proof by structural induction. Let (a, b)

such that a d-attacks b.
Basic case: either aRattb, or aR

sup
att b, or aRmed

att b. So, aRDc
attb.

Case 1: there exists an argument c such that a supports c and c d-attacks b. Assuming that cRDc
attb, we have to prove

that aRDc
attb. As cR

Dc
attb, we have either cRattb, or cR

sup
att b, or cRs-med

att b. If cRattb or cR
sup
att b, as a supports

c, we obtain a supported attack from a to b. If cRs-med
att b, as a supports c, we obtain a super-mediated attack

from a to b. So, in each case, aRDc
attb.



Case 2: there exists an argument c such that a d-attacks c and b supports c. Assuming that aRDc
attc, we have to prove

that aRDc
attb. As aR

Dc
attc, we have either aRattc, or aR

sup
att c, or aRs-med

att c. If aRattc, as b supports c, we obtain

a mediated attack from a to b. If aR
sup
att c, or aRs-med

att c, as b supports c, we obtain a super-mediated attack

from a to b. So, in each case, aRDc
attb. �

Proposition 6. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of n-supports. The combination of the direct attacks and
the n-supports can be handled by turning the n-supports into the dual d-supports and then adding the supported attacks and
mediated attacks.

Proof. Given BAF = 〈A,Ratt,Rsup〉, let us consider BAFsym = 〈A, Ratt, R
−1
sup〉 4 and its associated Dung AF for the

deductive support AF
D
sym. So, using the duality between n-supports and d-supports, we have AF

N = AF
D
sym. �

Proposition 7. LetBAF = 〈A,Ratt,Rsup〉withRsup being a set of d-supports. Consider a ∈ A. a is a self-attacking argument

of AF
Dc iff

• either aRatta,
• or ∃b ∈ A, such that a supports b and bRatta,
• or ∃b ∈ A, such that a supports b and aRattb,
• or ∃b and c ∈ A, such that a supports c, cRattb and a supports b.

Proof. The proposition is an obvious consequence of definitions and propositions concerning the deductive support. �

Proposition 8. LetBAF = 〈A,Ratt,Rsup〉withRsup being a set of n-supports. Consider a ∈ A. a is a self-attacking argument

of AF
Nc iff

• either aRatta,
• or ∃b ∈ A, such that b supports a and bRatta,
• or ∃b ∈ A, such that b supports a and aRattb,
• or ∃b and c ∈ A, such that c supports a, cRattb and b supports a.

Proof. The proposition is an obvious consequence of Proposition 7 following the duality between deductive and necessary
supports. �

Proposition9. LetEAF = 〈A,Ae,Ratt,Rsup〉. X is aminimal e-supported attack on the argument a iff X is the set of arguments
appearing in a minimal elementary sequence b1Rsup …Rsupbn such that b1 ∈ Ae and bnRatta.

Proof. We first notice that if b1Rsup . . .Rsupbn is an elementary sequence such that b1 ∈ Ae and bnRatta, the set X =
{b1, . . . , bn−1, bn} is an e-supported attack on a (this follows from the definition of e-supported attack). Furthermore,
assuming that the sequence b1Rsup . . .Rsupbn is minimal exactly means that there is no elementary sequence c1Rsup
…Rsupcp such that c1 ∈ Ae, cpRatta and {c1 . . . cp} ⊆ {b1 . . . bn}.

• (⇒)-Part: Let X be a minimal e-supported attack on the argument a. By definition, there exists b ∈ X such that bRatta
and b is e-supported by X . So, either b ∈ Ae or there is an elementary sequence b1Rsup . . .Rsupbn−1Rsupb such that
{b1 . . . bn−1} ⊆ X and b1 ∈ Ae. Let Y be a subset ofA defined as follows: If b ∈ Ae, then Y = {b}, else Y = {b1 . . . bn−1, b}.
Obviously, Y e-supports b, so Y is an e-supported attack on a. Moreover Y ⊆ X . As X be a minimal e-supported attack
on the argument a, we conclude that Y = X .
It remains toprove theminimalityof the sequence.Assume that thereexists anelementary sequence c1Rsup . . .Rsupcp

such that c1 ∈ Ae, cpRatta and {c1 . . . cp} ⊂ X . Due to the preliminary remarks given in the proof, Z = {c1 . . . cp} is an
e-supported attack of a. As Z ⊂ X , there is a contradiction with the fact that X be a minimal e-supported attack on the
argument a.

• (⇐)-Part: Let X be the set of arguments appearing in a minimal elementary sequence b1Rsup . . .Rsupbn such that
b1 ∈ Ae and bnRatta. From the preliminary remarks given in the proof, X is an e-supported attack on a. It remains to
prove theminimality. Assume that there exists Z such that Z ⊂ X and Z is an e-supported attack on a. From the (⇒)-part
of the proof, we can build an elementary sequence c1Rsup . . .Rsupcp such that c1 ∈ Ae, cpRatta and {c1 . . . cp} ⊆ Z.
As Z ⊂ X , we have {c1 . . . cp} ⊂ X , which contradicts the fact that X is the set of arguments appearing in a minimal
elementary sequence. �

4 The subscript “sym” means that the support relation taken into account is symmetrical to the initial support relation.



Proposition 10. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. Let a, b ∈ A. C(a)RCC(b) iff there is an

attack from a to b in AF
Dc .

Proof.

• (⇒)-Part: C(a)RCC(b) means that there exist x ∈ C(a) and y ∈ C(b) such that xRatty. Due to the definition of a
d-coalition, four cases may be encountered.
◦ x = a, y = b and xRatty: there is a direct attack from a to b.
◦ x = a, there is a sequence of supports from b to y and xRatty: there is a mediated attack from a to b
◦ y = b, there is a sequence of supports from a to x and xRatty: there is a supported attack from a to b
◦ there is a sequence of supports from a to x, a sequence of supports from b to y and xRatty: there is a super-mediated

attack from a to b
In each case, we find an attack from a to b in AF

Dc .
• (⇐)-Part:Assumethat there is anattack froma tob inAF

Dc .Due to thedefinitionofAF
Dc , threecasesmaybeencountered.

◦ there is a direct attack from a to b: as a ∈ C(a) and b ∈ C(b), we have C(a)RCC(b)
◦ there is a supported attack from a to b: it means that there is a sequence of supports from a to an argument c and a

direct attack from c to b. So we have c ∈ C(a), c attacks b and b ∈ C(b) and then C(a)RCC(b)
◦ there is a super-mediated attack from a to b: it means that there is a sequence of supports from b to an argument c

and a direct or supported attack from a to c. So we have c ∈ C(b) and c is attacked by an argument of C(a), and then
C(a)RCC(b). �

Proposition 12. Let BAF = 〈A,Ratt,Rsup〉 with Rsup being a set of d-supports. Given S ⊆ A, S = {a1, a2, . . . , an}.

1. S is a ⊆-maximal conflict-free set in AF
Dc iff {C(a1), C(a2), . . . , C(an)} is a ⊆-maximal conflict-free set in 〈AC,RC〉.

2. S is admissible in AF
Dc iff {C(a1), C(a2), . . . , C(an)} is admissible in 〈AC,RC〉.

3. S is stable in AF
Dc iff {C(a1), C(a2), . . . , C(an)} is stable in 〈AC,RC〉.

Proof.

1. Follows directly from the above proposition, since each argument corresponds to exactly one meta argument
2. Assume that S = {a1, a2, . . . , an} is admissible inAF

Dc . So S is conflict-free inAF
Dc .Weknow that {C(a1), C(a2), . . . ,

C(an)} is also conflict-free in 〈AC,RC〉. Nowassume thatC(ai) is attackedbyameta argumentC(b). Due to theprevious

results, we know that b attacks ai in AF
Dc . As S is admissible in AF

Dc , there exists aj ∈ S such that aj attacks b in

AF
Dc . So, C(aj) attacks C(b) in 〈AC,RC〉. We have proved that {C(a1), C(a2), . . . , C(an)} is admissible in 〈AC,RC〉.

The proof for the converse is analogous.
3. Assume that S = {a1, a2, . . . , an} is stable in AF

Dc . So S is conflict-free in AF
Dc . We know that {C(a1), C(a2), . . . ,

C(an)} is alsoconflict-free in 〈AC,RC〉. AssumethatC(b) is ametaargumentnotbelonging to {C(a1), C(a2), . . . , C(an)}.

So b /∈ S. As S is stable, there exists ai ∈ S such that ai attacks b in AF
Dc . So, C(ai) attacks C(b) in 〈AC,RC〉. We have

proved that {C(a1), C(a2), . . . , C(an)} is stable in 〈AC,RC〉. The proof for the converse is analogous. �
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