552 research outputs found

    Simple and Complex Human Action Recognition in Constrained and Unconstrained Videos

    Get PDF
    Human action recognition plays a crucial role in visual learning applications such as video understanding and surveillance, video retrieval, human-computer interactions, and autonomous driving systems. A variety of methodologies have been proposed for human action recognition via developing of low-level features along with the bag-of-visual-word models. However, much less research has been performed on the compound of pre-processing, encoding and classification stages. This dissertation focuses on enhancing the action recognition performances via ensemble learning, hybrid classifier, hierarchical feature representation, and key action perception methodologies. Action variation is one of the crucial challenges in video analysis and action recognition. We address this problem by proposing the hybrid classifier (HC) to discriminate actions which contain similar forms of motion features such as walking, running, and jogging. Aside from that, we show and proof that the fusion of various appearance-based and motion features can boost the simple and complex action recognition performance. The next part of the dissertation introduces pooled-feature representation (PFR) which is derived from a double phase encoding framework (DPE). Considering that a given unconstrained video is composed of a sequence of simple frames, the first phase of DPE generates temporal sub-volumes from the video and represents them individually by employing the proposed improved rank pooling (IRP) method. The second phase constructs the pool of features by fusing the represented vectors from the first phase. The pool is compressed and then encoded to provide video-parts vector (VPV). The DPE framework allows distilling the video representation and hierarchically extracting new information. Compared with recent video encoding approaches, VPV can preserve the higher-level information through standard encoding of low-level features in two phases. Furthermore, the encoded vectors from both phases of DPE are fused along with a compression stage to develop PFR

    Expanded Parts Model for Semantic Description of Humans in Still Images

    Get PDF
    We introduce an Expanded Parts Model (EPM) for recognizing human attributes (e.g. young, short hair, wearing suit) and actions (e.g. running, jumping) in still images. An EPM is a collection of part templates which are learnt discriminatively to explain specific scale-space regions in the images (in human centric coordinates). This is in contrast to current models which consist of a relatively few (i.e. a mixture of) 'average' templates. EPM uses only a subset of the parts to score an image and scores the image sparsely in space, i.e. it ignores redundant and random background in an image. To learn our model, we propose an algorithm which automatically mines parts and learns corresponding discriminative templates together with their respective locations from a large number of candidate parts. We validate our method on three recent challenging datasets of human attributes and actions. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.Comment: Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    DISCRIMINATIVE LEARNING AND RECOGNITION USING DICTIONARIES

    Get PDF
    In recent years, the theory of sparse representation has emerged as a powerful tool for efficient processing of data in non-traditional ways. This is mainly due to the fact that most signals and images of interest tend to be sparse or compressible in some dictionary. In other words, they can be well approximated by a linear combination of a few elements (also known as atoms) of a dictionary. This dictionary can either be an analytic dictionary composed of wavelets or Fourier basis or it can be directly trained from data. It has been observed that dictionaries learned directly from data provide better representation and hence can improve the performance of many practical applications such as restoration and classification. In this dissertation, we study dictionary learning and recognition under supervised, unsupervised, and semi-supervised settings. In the supervised case, we propose an approach to recognize humans in unconstrained videos, where the main challenge is exploiting the identity information in multiple frames and the accompanying dynamic signature. These identity cues include face, body, and motion. Our approach is based on video-dictionaries for face and body. We design video-dictionaries to implicitly encode temporal, pose, and illumination information. Next, we propose a novel multivariate sparse representation method that jointly represents all the video data by a sparse linear combination of training data. To increase the ability of our algorithm to learn nonlinearities, we apply kernel methods to learn the dictionaries. Next, we address the problem of matching faces across changes in pose in unconstrained videos. Our approach consists of two methods based on 3D rotation and sparse representation that compensate for changes in pose. We demonstrate the superior performance of our approach over several state-of-the-art algorithms through extensive experiments on unconstrained video datasets. In the unsupervised case, we present an approach that simultaneously clusters images and learns dictionaries from the clusters. The method learns dictionaries in the Radon transform domain. The main feature of the proposed approach is that it provides in-plane rotation and scale invariant clustering, which is useful in many applications such as Content Based Image Retrieval (CBIR). We demonstrate through experiments that the proposed rotation and scale invariant clustering provides not only good retrieval performances but also substantial improvements and robustness compared to traditional Gabor-based and several state-of-the-art shape-based methods. We then extend the dictionary learning problem to a generalized semi-supervised formulation, where each training sample is provided with a set of possible labels and only one label among them is the true one. Such applications can be found in image and video collections where one often has only partially labeled data. For instance, given an image with multiple faces and a caption specifying the names, we can be sure that each of the faces belong to one of the names specified, while the exact identity of each face is not known. Labeling involves significant amount of human effort and is expensive. This has motivated researchers to develop learning algorithms from partially labeled training data. In this work, we develop dictionary learning algorithms that utilize such partially labeled data. The proposed method aims to solve the problem of ambiguously labeled multiclass-classification using an iterative algorithm. The dictionaries are updated using either soft (EM-based) or hard decision rules. Extensive evaluations on existing datasets demonstrate that the proposed method performs significantly better than state-of-the-art approaches for learning from ambiguously labeled data. As sparsity plays a major role in our research, we further present a sparse representation-based approach to find the salient views of 3D objects. The salient views are categorized into two groups. The first are boundary representative views that have several visible sides and object surfaces that may be attractive to humans. The second are side representative views that best represent side views of the approximating convex shape. The side representative views are class-specific views and possess the most representative power compared to other within-class views. Using the concept of characteristic view class, we first present a sparse representation-based approach for estimating the boundary representative views. With the estimated boundaries, we determine the side representative views based on a minimum reconstruction error criterion. Furthermore, to evaluate our method, we introduce the notion of geometric dictionaries built from salient views for applications in 3D object recognition, retrieval and sparse-to-full reconstruction. By a series of experiments on four publicly available 3D object datasets, we demonstrate the effectiveness of our approach over state-of-the-art algorithms and baseline methods

    Visual Clutter Study for Pedestrian Using Large Scale Naturalistic Driving Data

    Get PDF
    Some of the pedestrian crashes are due to driver’s late or difficult perception of pedestrian’s appearance. Recognition of pedestrians during driving is a complex cognitive activity. Visual clutter analysis can be used to study the factors that affect human visual search efficiency and help design advanced driver assistant system for better decision making and user experience. In this thesis, we propose the pedestrian perception evaluation model which can quantitatively analyze the pedestrian perception difficulty using naturalistic driving data. An efficient detection framework was developed to locate pedestrians within large scale naturalistic driving data. Visual clutter analysis was used to study the factors that may affect the driver’s ability to perceive pedestrian appearance. The candidate factors were explored by the designed exploratory study using naturalistic driving data and a bottom-up image-based pedestrian clutter metric was proposed to quantify the pedestrian perception difficulty in naturalistic driving data. Based on the proposed bottom-up clutter metrics and top-down pedestrian appearance based estimator, a Bayesian probabilistic pedestrian perception evaluation model was further constructed to simulate the pedestrian perception process

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe
    • …
    corecore