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ABSTRACT 

Yang, Kai Ph.D., Purdue University, August 2016. Visual Clutter Study for Pedestrian 
Using Large Scale Naturalistic Driving Data.  Major Professors: Eliza Du, Edward J. 
Delp. 
 
 
Some of the pedestrian crashes are due to driver’s late or difficult perception of pedestrian’s 

appearance. Recognition of pedestrians during driving is a complex cognitive activity. 

Visual clutter analysis can be used to study the factors that affect human visual search 

efficiency and help design advanced driver assistant system for better decision making and 

user experience. In this thesis, we propose the pedestrian perception evaluation model 

which can quantitatively analyze the pedestrian perception difficulty using naturalistic 

driving data. An efficient detection framework was developed to locate pedestrians within 

large scale naturalistic driving data. Visual clutter analysis was used to study the factors 

that may affect the driver’s ability to perceive pedestrian appearance. The candidate factors 

were explored by the designed exploratory study using naturalistic driving data and a 

bottom-up image-based pedestrian clutter metric was proposed to quantify the pedestrian 

perception difficulty in naturalistic driving data. Based on the proposed bottom-up clutter 

metrics and top-down pedestrian appearance based estimator, a Bayesian probabilistic 

pedestrian perception evaluation model was further constructed to simulate the pedestrian 

perception process. 
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1. INTRODUCTION 

1.1 Motivation 

In United States, National Highway Traffic Administration (NHTSA) reports that 4280 

pedestrian were killed in the traffic crashes in 2010, with around 70000 injuries [1]. In 

Europe, more than 30000 people were killed on road in 2011 based on the European 

Commission data [2]. Pedestrian safety is a worldwide public safety and health issue.  

Among them, some of the crashes are due to driver’s late or difficult perception of 

pedestrian appearance. Perception of pedestrian appearance during driving is a complex 

cognitive activity. It may be affected by varied factors, such as driving scenarios, 

background complexity, illumination conditions, pedestrian appearance etc. Exploring and 

understanding the factors which may affect pedestrian perception difficulty by driver could 

be interesting and meaningful for both researchers and road safety practitioners. First of 

all, it could enable deeper insight into human visual perception process/model by providing 

evidences from real life visual attention task. Secondly, the results may be very valuable 

for safer road component design. Thirdly, a computational model with quantitative analysis 

methods of pedestrian perception could be the basis for more reliable pedestrian active 

safety system with better decision making and user experience. 

Visual clutter [3, 4] has been proposed to represent the highly variable visual information 

that may lead to a degradation of some tasks. It may interfere with quickly and precisely 

gathering information and making decisions. Visual clutter is closely related to visual 

attention/perception ability. Visual clutter analysis can provide significant information to 

study and justify visual attention/perception model. Edquist [5] claimed that cluttered 

driving environment has been shown to impair driving performance, e.g., increasing the 

driver’s response time to detect changes, impairing the detection of road signs, etc. Visual 
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clutter analysis could be used to study the factors that may affect the driver’s ability to 

perceive pedestrian appearance. However, most of the previous study relied on conducting 

human subject tests using limited visual stimuli (e.g. scenery photographs, synthetic 

driving scene, etc) and focused on the visual search task, which may not be suitable for 

exploring pedestrian perception in naturalistic driving scenarios. A comprehensive study 

of understanding of pedestrian perception during driving is encouraged by the application 

of large scale naturalistic driving data in driver behavior study. Moreover, an automatic 

and quantitative framework of pedestrian perception analysis, including automatic 

pedestrian detection, visual clutter computation and pedestrian perception estimation, is 

meaningful for potential incorporation into current intelligent transportation system. The 

lacking of both the theoretical and practical analysis methods of pedestrian perception 

encourages the topic and exploration in this thesis.        

1.2 Background 

We briefly introduce and review some backgrounds and researches which are closely 

related to the topic in this thesis, including the biological mechanism of human visual 

perception process, visual attention models, visual clutter analysis models and visual clutter 

study using naturalistic driving data.     

1.2.1 Human visual perception models 

Visual perception is the ability to interpret the surrounding environment by processing 

information that is contained in visible light. Figure 1.1 (a) and (b) illustrate the primary 

visual path within human visual system and an oversimplified visual perception model[6]. 

Intensity, color, edge and other features from the visual scene are sensed by the 

photoreceptor and formed an image on the retina located on the back of eyeball. The light 

signal is then converted to electrochemical signal and transmitted to brain via the optic 

nerves. The signal is received by the Lateral Geniculate Nucleus (LGN) and sent to the 

primary visual cortex (V1) by multiple layers of neurons. Two pathways [7] can be 

identified within the visual cortex: a dorsal or mangocellular pathway reaches to the 

parietal lobes and mainly encodes the spatial and motion information (“where”), and a 
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pavocellular or ventral pathway leading to the temporal lobes and is concerned with 

detailed visual information used for the recognition of objects (“what”). While the actual 

functional and structural complexity of the visual system is far more than the 

oversimplified model in Figure 1.1(b), the two-pathway theory is valid and widely accepted.  

 

(a) 

 

(b) 

Figure 1.1 (a) Human vision system. (b) Oversimplified flowchart of human visual 
perception mechanism[6][7] 
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During the past several decades, a wide variety of visual attention models have been 

proposed in psychology field to simulate human perception. The bottom-up process 

originates from sensory information and is driven by the physical data. It senses from 

individual parts to the whole images. In contrast, the top-down process originates from 

cognitive information and is driven by our knowledge, expectation and goals. It usually 

senses from the whole image to individual parts. The two types of models are further 

integrated and combined to explain the visual search and recognition process. 

The two-stage pre-attention-recognition model [4, 8] has been widely accepted and studied. 

It claimed that when human vision system perceives a particular target from a complex 

background, a pre-attentive stage is first initiated to detect basic features in parallel and 

then bind those features into a selective attention area/object. During the pre-attentive stage, 

the visual scene parts are parallel sensed in a bottom-up way and generate a weighted 

representation indicating the varied levels of visual response. During the recognition stage, 

top-down knowledge plays the main role and helps to disambiguate the objects from the 

noisy bottom-up weighted representation. Here is an overview of some popularly used 

visual attention models. 

The Feature Integration Theory (FIT) model 

Treisman and Gelade [8] introduce the Feature Integration Theory (FIT) to explain the 

visual attention mechanism which is considered as one of the earliest seminal work of 

computational visual attention model. Multiple separated feature maps are computed from 

the low level features (e.g. intensity, color, orientation) within the entire visual field in 

parallel. The separated feature maps are then combined to generate a master map to guide 

the attention (Figure 1.2). The master map indicates the bottom-up feature saliency within 

the entire visual field leading to a serial scanning directs the focus of attention towards 

selected scene entities. Object profiles are learned from the target location within the 

master map and could be served as top-down knowledge for higher perception tasks.  
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Two different ways of object identification was discussed in the FIT model: a bottom-up 

focal attention process and a top-down recognition process. It is claimed that the two routes 

may act together while they could be independent during extreme cases. The first route 

performing object identification depends on focal attention from different locations to 

integrate the features registered within the same spatio-temporal “spotlight” on to a 

particular object. The second route may act when focused attention are blocked by 

overloading. Top-down process achieves the identification by predicting the context of the 

environment and matching the disjunctive features to those in the scene.  

The FIT model also provided important insights into the preattentive processing by 

studying the possible preattentive features and how the preattentive process is performed 

by human visual system. The possible preattentive features were found by conducting 

experiment in which the subjects were asked to find target among distractors. If the 

predefined response time and accuracy thresholds can be achieved regardless of the number 

of the distractors, the task is said to be preattentive. The FIT model well explained the 

preattention mechanism: one can access the individual feature maps, which were believed 

to be preattentive features, and quick complete the search/perceive task; while a 

conjunction target of multiple features cannot be detected by accessing individual feature 

maps, therefore requiring longer response time with lower accuracy.   
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Figure 1.2 Feature Integration Theory [8] 

The “Spotlight” and “Zoom lens” model 

Attention was initially compared to a “spotlight” indicating its selective mechanism [9, 10]. 

The visual process will be enhanced within the illuminated spotlight area of a few degrees 

of visual angle. Later, Eriksen and James [11] proposed to modify the spotlight into a zoom 

lens model to explain the visual attention process. They claimed that the visual attention 

area size could be varied depending on the task similar to a zoom lens. This model relies 

on the natural low level visual features therefore do not take high-level object appearance 

into consideration. The zoom lens analogy suggests that the density of the visual processing 

resource may decrease as the size of the attention area increases. 

The Guided Search model 

Wolfe [4, 12, 13] proposed the Guided Search theory which shares a lot of concepts with 

FIT. Feature maps are computed from different types of low-level features in parallel and 

a master activation map is combined by summing all the computed feature maps. In 

contrast with FIT, the activation map emphasizes top-down knowledge to weigh the 
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relative bottom-up feature map by selecting the feature type that best distinguishes the 

target from its distractors. 

Figure 1.3 shows the model of Guided Search theory. The activation map based on both 

bottom-up and top-down information is constructed during visual search. Wolfe believes 

the early vision divides the image into different feature maps. Each feature type (e.g. color, 

orientation) has one corresponding feature map. Different feature maps may have different 

relationship with each other. Bottom-up activation measures how different an element is 

from its neighbors and such difference is computed and combined. Top-down activation is 

driven by user, including searching purpose, knowledge, searching experience and so on. 

The final activation map is a combination of bottom-up and top-down activations, with 

task dependent weights assigned to each feature map.     

 

Figure 1.3 The guided search model [4] 

The Biased Competition Model 

Desimone and Duncan [14] proposed a similar visual attention model which combined both 

bottom-up feature maps and top-down priors to guide attention. Competitions are involved 

when two or more bottom-up stimuli are exciting the attention. The bottom-up stimuli are 

influenced by a top-down modulation and the relative responses are biased. 
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The biased competition model implies the prioritizing of task relevant visual information. 

The visual system only have limited bandwidth available for processing therefore a 

mechanism to select relevant information and ignore irrelevant stimuli is reasonably built 

by the model.  

Bottom-up Saliency Map 

Koch and Ullman [15] proposed a pure bottom-up computational architecture of visual 

attention. Based on FIT, this model relies on computing conspicuities from several types 

of low-level features and constructing a bottom-up saliency map to guide attention. A 

winner-takes-all (WTA) neural network was proposed to determine the most salient 

location within the entire visual field. The selected most salient location is then routed to a 

central presentation containing only features within the routed region which simulates the 

fixation process of human vision system.   

Based on Koch and Ullman’s theory, Itti et al. [16] proposed a detailed bottom-up 

computational model (Figure 1.4) which is one of the most popularly used models. 

Multiscale features, including intensity, color and orientations are computed using image 

pyramid and combined into a topographical saliency map. A dynamic neural network 

which involves the global inhibition of WTA and local inhibition effect are then activated 

to select the attention locations based on the computed saliency map.  
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Figure 1.4 Bottom-up saliency map [16] 

The Connectionist Models 

Besides the aforementioned computational models which compute the feature maps using 

linear filters, connectionist models (Figure 1.5) rely mainly on neural networks and claim 

to be more biologically plausible than linear filter based models. Tsotsos et al.[17] 

proposed the Selective Tuning Model which constructs a pyramid architecture with passing 
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zone and inhibit zone. The passing zone selects the interest location for further process and 

the inhibit zone inhibits all the other locations that are not belonged to the pass zone. Cave 

[18] proposed the FeatureGate model which is implemented in a neural network consisting 

of a hierarchy of spatial maps. Attentional gates controlled by both bottom-up and top-

down features are designed to control the flow between each level of the hierarchy. 

 

Figure 1.5 Connectionist model 

The Probabilistic attention guiding framework   

The probabilistic attention guide model assumes that attention can be modeled as the 

likelihood function of target presence given the image feature and location. Torralba et al. 

[19] proposed the contextual guidance probability model which splits the target presence 

likelihood into bottom-up saliency, top-down object knowledge and contextual prior using 

Bayesian rules to calculate the target presence probability at any location. Zhang et al. [20] 

proposed a similar Bayesian framework to guide free-viewing attention with variation that 

derives the saliency measure from natural scenes. Later, Kanan et al. [21] extended this 
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framework to incorporate the top-down object appearance information into their bottom-

up saliency map which achieves better results than pure bottom-up saliency model. 

Rao [22] proposed another type of probability model which  interpret visual attention and 

perception as estimating the posterior probability of object features and locations. The 

belief propagation Bayesian algorithm was applied to prescribe the “message” (probability) 

transmission process from one node to another which simulates the feature encoding 

process within the visual cortex. This idea was later extended by Yu and Dayan [23], and 

Chikkerur et al.[24] to a Bayesian inference model of attention.      

1.2.2 Visual clutter analysis models and study 

Visual clutter has been shown close related to human visual attention/perception ability. 

Researchers have studied the factors that may impair the visual search efficiency for human 

machine interface. Treisman and Gelade [8] proposed to use the set size, i.e. the number of 

items in scene, to study the visual search efficiency. Wolfe  et al. [25] proposed to study 

the visual search clutter by measuring the background complexity. Bravo and Farid [26] 

studied the effect of occlusion on search efficiency. Duncan and Humphreys [27] proposed 

to measure the target saliency by comparing its visual feature to the background. Several 

models of quantitatively measuring clutter have been proposed and shown well correlation 

with visual search efficiency by conducting subject tests [3, 26, 28, 29]. The two-stage 

attention-perception model [4, 8] has been widely accepted and studied. It claimed that 

when human vision system search for a particular target from a complex background, a 

pre-attentive stage is first initiated to detect basic features in parallel and then bind those 

features into a selective attention area/object.  Global features are extracted first and 

attention is guided into local features [30]. Based on this theory, Reddy and VanRullen [31] 

showed that there are two limitations on human attention that may cause inefficient search: 

attention for recognition and attention against competition. Attention for recognition refers 

to the feature detection and binding stage which is affected by global features and attention 

against competition happens when the search target is close to similar items or background 

which is closely related to local features. Beck et al. [28] then proposed global and local 
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clutter measure methods to measure global clutter and local clutter which are closely 

related to the above limitations on attention. Global clutter measures the overall amount of 

visual information while the local clutter measures the visual information surrounding the 

search target. The global clutter and local clutter is believed to be interactive or additive to 

each other to determine the difficulty of target search [28]. 

 

(a)                                          (b) 

Figure 1.6 Examples of global clutter and local clutter (a) Hundreds of books in clutter 
(b) Camouflaged insect on a green leaf 

The effect of global and local clutter on visual attention/perception ability can be shown 

by a simple example. Figure 1.6 (a) shows a globally cluttered image. The bright yellow 

book (book 1) in the red box has much lower local clutter level (high saliency) than the 

brown book (book 2) in the blue box, which makes it much easier to search the bright 

yellow book. On the other hand, Figure 1.6 (b) shows a relatively less globally cluttered 

image with very small color variation, however, the local clutter of the insects should be 

high due to its low saliency and contrast to the surroundings, which makes it even more 

difficult to be noticed than the bright yellow book placed on a much cluttered background 

in Figure 1.6 (a) if they are in the same scale. The global-local clutter representation has 

shown reasonable well correlation with human visual search performance. This example 

shows that global clutter may indicate the search efficiency in general in the image. But 

local clutter is the key for search efficiency for a particular object/target.  
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Rosenholtz et al. [3] defined visual clutter as a situation where excessive visual information 

with high variability may lead to the degradation of visual task performance. Treisman and 

Gelade [8] proposed to use set size, i.e. the number of items and target-distractor 

dissimilarity in an image to measure the clutter level. The corresponding set size-reaction 

time function was used as a cue to decide the search difficulty. Wolfe [13] proposed to use 

features including contrast, orientation, color and motion to measure clutter. Voicu et al. 

[32] proposed a clutter model to measure infrared images. Global features and local 

features are computed and applied to train a genetic model to classify the clutter level. 

Later, Mack and Oliva [33] proposed to use edge density to measure the image complexity. 

This measure has been proven to have good correlation with the influence of background 

on visual search performance by multiple human subject experiments. Rosenholtz et al. [3] 

proposed two clutter measure methods: Feature Congestion and Subband Entropy. The 

Feature Congestion model [34] relies on calculating the target saliency and the local 

variability at multiple scales. Color, orientation and luminance contrast are selected as the 

features to measure the target saliency versus the local variability. Subbanding Entropy is 

based on the notion that clutter level should be reflected by the bits required for subband 

image coding. To compute the subbanding entropy, the image is first converted into Lab 

and then decomposed into wavelet subbands using steerable pyramid [35]. The generated 

wavelet coefficients are binned and the entropy is calculated within each subband. The 

final score is a weighted sum of the entropies computed in luminance and chrominance 

channels. 

Based on the attention limitation model, Beck et al. [28] proposed global clutter and local 

clutter measure respectively and studied the interaction between these two clutters. Color-

cluster clutter (C3) algorithm [36] was applied as a predictor to measure the clutter level. 

The algorithm selects color variability as the main feature and computes a clutter score 

based on the color density and color saliency due to the characteristics of the geospatial 

images. 
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1.2.3 Clutter study using the naturalistic driving data 

Naturalistic driving study has been increasingly conducted during the recent decade to fill 

the gap in traditional driver/road user behavior/interaction study, which normally relied on 

simulator and test track studies. The naturalistic driving data are collected by a variety of 

sensors installed in the subject vehicle in an unobtrusive and simultaneous way. Although 

the traditional data collection methods were valuable for building the baseline of the 

driving data study, they are not suitable enough for the real behavior within the complex 

driving environment, especially for the pedestrian behavior study [37]. 

In this section, we introduce the collected large scale naturalistic driving dataset for this 

thesis. The data used in this research is collected from an on-going naturalistic driving 

pedestrian data analysis project sponsored by Toyota North America. In this study, we 

recruited 110 cars and their drivers in the greater Indianapolis area for a one year 

naturalistic driving study starting in March 2012. The Transportation Active Safety 

Institute (TASI) at IUPUI is located in the heart of downtown Indianapolis. In addition, 

within the 30 mile radius around Indianapolis, where many people commute daily, there is 

a variety of urban streets, highways, freeways, suburban areas, and rural areas. This makes 

it possible to collect driving and vehicle data from very diverse driving conditions. We 

used off-the-shelf vehicle black boxes for data recording, which are installed at the front 

windshield behind the rear-view mirrors, which record high-resolution forward-view 

videos (recording driving views outside of front windshield), GPS information, and G-

sensor information. We designed and developed a suite of tools to process the data, perform 

automatic pedestrian detection, and pedestrian behavior analysis. 

In this project, we installed a DOD GS600 DVR in each vehicle to collect the naturalistic 

driving data that consists the driving scene video, GPS information, and vehicle 

acceleration in X,Y, and Z directions. The DOD GS600 DVR can collect data continuously 

and save the data into a micro SD card. We used 32GB micro SD cards which can hold up 

to 10 hours of driving data. The SD card can be easily accessed and switched at the bottom 

of the camera. Figure 1.7 shows the specification of the DOD GS600 DVR.  It includes 
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one 120o wide angle lens video camera, a GPS with internal antenna, and G sensor. We set 

the DOD GS600 DVR to record video 30 frames per second with 1280x720 resolution. 

 

Figure 1.7 The specification of DOD GS600 

Figure 1.8 shows the example installation to the subject’s vehicle. It is installed behind the 

rear mirror on the front windshield via its suction cup to record the driving scene. The 

power cable of the DVR is connected to the vehicle’s cigarette charger. The camera will 

be turned on when vehicle is on; and will be off when the vehicle is off.  

 

Figure 1.8 An example installation 

Figure 1.9 shows an example collected video frame, GPS and G sensor data. Video data 

in .mov format which is encoded using H.264. In the generated video, the GPS location 

and vehicle speed is displayed on the top left corner of the video. At the same time, it 

outputs a separate data file in text format with GPS location, speed, and G sensor 

information. Each second, it would output the GPS information along with calculated 

moving speed. Every 0.1 second, it would record the G sensor information. 
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Figure 1.9 Example collected data. 

While more and more researchers have linked the visual clutter within the driving 

environment directly to the degradation of the visual task performance during driving, such 

as vehicle/pedestrian/road sign detection, there is very limited research has been done using 

the naturalistic driving data. Jenkins [38] firstly studied the effect of “visual clutter” using 

photographs of various road scenes. Each subject was asked to rank the photographs from 

most cluttered to least cluttered and to detect synthetic disc targets from the photographs. 

Ho et al. [39] studied the clutter of traffic scene and its effect on traffic sign detection by 

conducting a series of human subject tests. Edquist [40] systematically studied the effect 

of clutter on driving performance, especially focus on the road sign detection performance 

affected by the advertising billboards.  All the above studies suggested impair of traffic 

signs detection ability related to the visual clutter of the traffic scene. However, none of 

these studies proposed a reasonable computational model to quantify the effect of visual 

clutter on driver’s perception. Moreover, there is no previous study focus on exploring the 

effect of visual clutter on pedestrian perception using naturalistic driving data. The study 

in this thesis aims to fill this gap.  

1.3 Limitations and Challenges 

The existing visual attention/perception models and related clutter measure methods can 

reasonably predict the true human attention and provide information to multiple tasks, such 

as object searching, human machine interface design etc. However, there are several 

limitations. Currently, psychological exploratory experiments have been conducted to 
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study the visual clutter effect. There lacks computational models which can automatically 

evaluate the visual clutter. Furthermore, the existing visual clutter measure approaches are 

not designed for pedestrian clutter evaluation and may not be applicable to pedestrian 

visual clutter study. Some of the proposed models are correlated to a well-controlled human 

subject test, which is conducted using artificial stimuli, synthetic images [12, 26] or scenery 

photographs. The naturalistic driving scenes have very different characteristics that are 

associated with pedestrian appearance perception difficulty. In addition, some of those 

models are tested and applied on clutter measure from a specific category, such as 

geospatial displays [28], infrared images [32]. Most of these clutter measure models require 

manual parameters adjustment based on each image’s characteristics. This would be 

inefficient and won’t be applicable to real-life driving data analysis.  

On the other hand, given the fact that large scale naturalistic driving data was used in this 

study, an efficient pedestrian localization within the large dataset is required. Unlike the 

synthetic images or scenery photographs with limited number used in previous visual 

clutter study, pure manually selection/localization of the target (pedestrian in this study) 

from the test data is not an option for the TASI 110-car naturalistic driving data with 

billions of video frames collected. An effective pedestrian detection algorithm can work 

well in the collected naturalistic driving data, which is very challenging, is the preliminary 

requirement for later pedestrian clutter analysis.  

1.4 Contribution and Organization 

There are mainly three contributions in this study. First, an efficient categorization-based 

pedestrian detection for large scale naturalistic driving dataset, which is very challenging, 

was proposed and state-of-the-art detection results were achieved on the TASI 110-car 

naturalistic driving dataset. The same framework was later extended to bicyclist detection 

and explored with feature learning using deep networks. Second, the factors which affect 

the pedestrian perception within naturalistic driving scene were studied and two types of 

visual clutter metrics were proposed to measure the driving environment complexity and 

pedestrian perception difficulty. The proposed computational clutter metrics were justified 
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by human subject tests using naturalistic driving data, which are, to our best knowledge, 

the first clutter measurements particularly designed for naturalistic driving data and 

pedestrian perception. Third, with the proposed pedestrian detection and clutter metrics, 

we proposed a computational pedestrian perception evaluation model to quantify the 

perception difficulty of pedestrians appeared within naturalistic driving scene. The 

computational model could mimic the human visual perception and provide quantitative 

measurement of the pedestrian perception difficulty, which could be potentially 

incorporated into the current advanced driver assistance system (ADAS) for better decision 

making and user experience. 

The main contributions of the categorization based pedestrian/bicyclist detection 

framework for large scale naturalistic driving data are: 

• We proposed a novel categorization-based detection strategy which integrated the 

information collected from camera, GPS and G-sensor. 

• We developed a two-stage detection scheme which efficiently detects 

pedestrians/bicyclists from large scale naturalistic driving data. 

• We explored and investigated the possible best bicyclist features using feature learning 

and constructed a deep network for multi-pose bicyclist detection. 

• We collected the 110-car TASI naturalistic driving dataset. 

The main contributions of the proposed computational clutter metrics for pedestrian within 

naturalistic driving data are: 

• We proposed two clutter metrics which are particularly designed for naturalistic 

driving data and pedestrian perception. 

• We conducted several human subject tests using naturalistic driving data to justify the 

proposed clutter metrics. 

• We proposed a bottom-up pedestrian perception predictor.  

• We compared the proposed clutter metrics and predictor with existing methods 

The main contributions of the computational pedestrian perception evaluation model are: 
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• We proposed a computational pedestrian perception estimator which extended the 

Bayesian framework for visual attention 

• We conducted several human subject tests using naturalistic driving data and 

qualitative test to justify the proposed computational pedestrian perception evaluation 

model by comparing with existing computational visual attention/perception models.  

The rest of thesis is organized as follow. The designed automatic pedestrian detection 

system to locate pedestrian in large scale naturalistic driving data will be introduced in 

chapter 2. The proposed pedestrian clutter measure approaches will be illustrated in detail 

in chapter 3 with the experimental results of both human subject tests and naturalistic 

driving data. The proposed computational pedestrian perception evaluation model for 

naturalistic driving data will be illustrated in chapter 4 with experimental results followed 

by the conclusions in chapter 5.  
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2. THE PROPOSED PEDESTRIAN DETECTION SYSTEM FOR 
LARGE SCALE NATURALISTIC DRIVING DATA 

Extensive research interest from both vehicle manufacturers and road safety practitioners 

has been focused on protecting vulnerable road users; such as pedestrians, bicyclists, and 

wheelchairs. Pre-collision systems (PCS), with vulnerable road user detection capability 

are becoming a standard feature of active safety systems in the market.  Understanding the 

road user (pedestrians, bicyclists) behavior is important to the pre-collision system design 

and testing. Large scale naturalistic driving data analysis can provide valuable and 

objective information on how road users behave in real life. Analyzing road user behavior 

within large scale naturalistic driving data requires efficient detection methods. 

In order to extract the local pedestrian clutter feature, accurately locating pedestrians within 

the entire naturalistic driving scene is the very first and important step. Given the fact that 

huge amount of naturalistic driving data are collect and for this research, it is unaffordable 

to manually label each pedestrian. Furthermore, the output detection probability of the 

pedestrian detection algorithm will be served as top-down pedestrian based knowledge for 

the probabilistic pedestrian clutter evaluation model.  In this chapter, the proposed 

automatic pedestrian detection system for large scale naturalistic driving data is introduced. 

The pedestrian detection system automatically locates pedestrians within large scale 

naturalistic driving frames collected from the TASI 110-car Naturalistic Driving Dataset 

[41].     

2.1 Related Work 

Pedestrian detection has achieved advances in recent years. Different types of sensor 

techniques have been proposed to perform both on-board pedestrian detection and offline 
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pedestrian data analysis, including vision (monocular camera [42-45], stereo camera [46, 

47], NIR camera [48], TIR camera [49]), Radar [50, 51] and Lidar [52-54]. Among all 

these sensor modalities, vision-based pedestrian detection is popularly used for its low cost 

and high compatibility with other tasks, such as lane detection [55-58]. Even though an 

enormous effort has been made in object detection, or specifically, human detection in the 

past decade, it is still not ideal enough for pedestrian detection in naturalistic driving data 

sets. Detecting pedestrians from a large scale naturalistic driving data set collected by a 

monocular in-car camera could be a very challenging problem due to the following reasons: 

• The pedestrians appearing in the naturalistic data are of high variance in size, location, 

gait, pose, clothes. The quality of the video data may vary a lot due to the limitation of 

the acquisition system. This makes this task more difficult than detecting people from 

a well-focused dataset taken from a photographic camera.   

• The constantly changing background of naturalistic driving data, the weather and 

illumination change and the cluttered urban scene makes the foreground segmentation 

very difficult, especially for a monocular vision system. 

• The size of the naturalistic driving data is large; therefore, the accuracy and efficiency 

should be well balanced to achieve satisfactory detection results. 

 

Figure 2.1 A schematic overview of different modules of a pedestrian detection system 

A typical pedestrian detection system may include the following modules: preprocessing, 

foreground segmentation, object classification, verification, tracking and the related 

applications [56]. (Figure 2.1) Some of the modules may be optional or combined together. 
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Preprocessing 

Preprocessing typically includes tasks such as gain adjustment, camera calibration, image 

enhancement etc. low-level adjustment, such as exposure and dynamic range, are normally 

not included in pedestrian detection related publications due to the difficulty of real-time 

adjustment. Solutions exploiting image enhancement and high dynamic range images have 

gained increasing interest in dealing with low saturated data, especially videos/images 

collected in complicated urban environment. Camera calibration is another main step in the 

preprocessing module. Depending on the type of camera used in the system, the calibration 

can be divided into monocular-based and stereo-based. Stereo-based methods have 

provided more robust results in spite of increasing computational cost. 

Foreground segmentation 

Foreground segmentation is also known as region of interest (ROI) generation, which 

extracts the meaningful regions of the image and removes as many background regions as 

possible. One of the most common procedure is the sliding window search, which is an 

exhaustive scanning approach. Pedestrian size constraints are considered when 

constructing the search window. Computational ROI generation can be divided into 2D-

based, stereo and motion-based method. 

Object classification 

The extracted ROIs are sent to the object classification to classify as pedestrian or non-

pedestrian aiming minimizing the false positive rate and false negative rate.  Most effort 

has been made in classification module. The object classification module can be roughly 

separated into two steps: feature extraction and classification. A number of pedestrian 

features and classifiers have been explored in the past two decades. We will review some 

of them in detail later. 
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Verification/refinement 

A typical system usually contains a step to verify and refine the classified pedestrian 

windows. The verification uses a different set of criteria than the classifier to filter out false 

positives. The refinement usually performs a fine segmentation around the set of detected 

pedestrian to remove the overlapping windows and to find the best fit. The module 

sometimes can be integrated to the classification module. 

Tracking 

Pedestrians tracking has been increasingly integrated into the pedestrian detection system. 

It has been applied to follow the detected pedestrians over time to further avoid false 

positives. Kalman filter and partical filter have been heavily used to provide prediction 

based on various cues such as sill silhouette, location, color, texture,etc. 

Application 

The last module receives pedestrian information from the previous modules and makes 

high-level decision. Typical applications include areas such as environmental perception, 

human-machine interaction, etc. Most of them are out of the scope of this thesis. We will 

focus our review on the previous detection methods. 

Extensive research has been explored in monocular vision system based pedestrian 

detection. Due to the difficulty of foreground segmentation [59] and keypoint selection [60] 

in naturalistic driving data with dynamic background and low resolution, a sliding window 

search based strategy is generally applied to locate the possible regions of interest (ROIs) 

which may contain pedestrians. Basically, a set of visual features are extracted and encoded 

from the image patch inside each sliding window, and then the encoded feature is classified 

by a pre-learned classifier as pedestrian or non-pedestrian. We separate our literature 

review into feature extraction methods and classification methods. 
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A. Pedestrian feature extraction 

Pedestrian appearance features, such as shape, texture, color and other information, have 

been tested to be relatively robust pedestrian cue. In the past decades, many researchers 

have designed pedestrian appearance feature-based detection method. These appearance 

based features can be used in a holistic way or in a part-based model. For example, in [46], 

Gavrila and Munder proposed shape-based silhouette template matching method to detect 

a pedestrian with existing templates. Similar idea can be found in [61], Lin and Davis used 

hierarchical part-template matching approach. The variations in pedestrians make it 

difficult to directly apply the template matching without further exploiting the appearance 

feature of the pedestrian. In [62], Papageorgiou and Poggio first proposed to use Haar 

wavelets (HWs) to extract the local feature of regions of interest, HWs works as a large 

scale derivative, which computes the difference between two rectangular regions. Similarly, 

Viola and Jones extended their successful HW like detector for face detection to pedestrian 

as a fast computing local representation which built a foundation for future pedestrian 

detector. Later, Dalal and Triggs [42] proposed a human classification algorithm that uses 

Histogram of Oriented Gradients (HOG) relying on the dense representation of histogram 

of gradient within a detection window. It computes local gradient histogram within 

multiple overlapping blocks and generates a concatenated descriptor of all blocks within 

each detection window. Similarly gradient histogram based feature extraction methods can 

be found in shapelet [63], edgelet [64], Edge Oriented Histogram(EOH) [65] and etc. HOG 

achieved promising result on human detection and was popularly used in combination with 

texture and color features to further improve the accuracy, such as Local Binary Pattern 

(LBP) [66], Local Tinery Pattern [67], color histogram [68, 69]. Statistical features such as 

covariance matrix [70] and co-occurrence matrix [71] are also explored by other 

researchers as different feature representations. In addition, motion cues are also explored 

in video-based pedestrian detection methods [72]. However, it is challenging to incorporate 

motion cues with appearance feature when the camera is in motion. 
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With all the above review pedestrian features, one main trend in the field is to incorporate 

multiple types of features or to explore best feature from a large feature pool. These 

techniques have shown considerable improvement over a single feature detector. Wojek 

and Schiele [73] proposed to combine Haar-like features, shapelets and HOG to achieve 

improvement over any single feature. Munder et al. proposed to combine the shape and 

texture information to apply to the multi-cue pedestrian detection and tracking system. 

Dollar et al. [74] proposed to extract fast computing Haar-like features from multiple 

channels which can best separate pedestrian and non-pedestrian windows. Extension of this 

work includes [75-77]. Xu et al. [78] proposed to combine LBP based motion feature, 

HOG+Haar features and temporal information in a cascaded way to efficiently detect 

sudden crossing pedestrians. Enzweiler and Gavrila [79] proposed a multi-level mixture-

of-experts framework which utilizes HOG and LBP features from depth, intensity and 

motion channels to increase pedestrian classification accuracy.  

B. Classification 

Learning pre-trained classifier from a full labeled training set is still the dominant way to 

generate pedestrian classifier. Support Vector Machine (SVM) is popularly used in object 

detection so as to pedestrian detection task. Linear SVM is applied in [42] to classify the 

extracted HOG feature. In [80], Mohan et al. proposed to independently classify four 

human parts by using HWs and a quadratic SVM. The classifications of these parts are then 

combined with a linear SVM. Felzenszwalb et al. [81] proposed to use latent SVM to model 

the unknown positions of pedestrian parts in their part-based model. Lin and Davis [82] 

used a radial basis function (RBF) kernel SVM to classify the computed HOGs from 

matched silhouette with higher accuracy but slower speed than linear SVM. Recently, Maji 

et al. [83] proposed to use Additive Kernel SVMs for efficient pedestrian classification 

which achieved better accuracy but the same speed as linear SVM. Nevertheless, the speed 

of SVM is still a concern when applied in real time situations. 

Another big family of classifiers popularly used in pedestrian detection consists of different 

types of boosting methods. Boosting methods are powerful when the dimension of features 
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is high. It relies on selecting best features from a large candidate feature pool and these 

selected features are served as weak classifiers. Normally a cascaded style is applied to 

group these weak classifiers into a strong classifier for fast classification purpose. Viola 

and Jones [72] proposed to use Adaboost [84] to learn a cascade of weak classifiers which 

can reject non-pedestrian windows at very early stage. Similar framework can be found in 

[70, 85] using different boosting methods including Realboost [84], logitboost [86] and etc. 

While boosting methods have shown advantage in classification time, the training process 

is not trivia. The configuration parameters needs to be tuned over and over and when the 

training sample number and candidate feature number are huge, the training itself may take 

very long time.  

Other classification methods, such as conventional Neural Networks [87, 88], chamfer 

distance [89], have also been explored by researchers with related feature extraction 

methods. We also observed a trend which combines multiple classification techniques in a 

cascade [90] or parallel [91] way aiming to make a good tradeoff between performance 

and efficiency. 

2.2 Proposed Pedestrian Detection Approach 

The proposed categorization based two-stage pedestrian detection scheme is designed to 

effectively and efficiently find frames with pedestrian appearance from a very large scale 

naturalistic driving data. Given the fact that the huge number of frames to process and the 

various driving scenarios, a well balance between the accuracy and efficiency should be 

achieved. It is very challenging to design a specific algorithm that can work with all kinds 

of real-life driving scenarios. It would be very rational to categorize the driving scenario 

first and apply a corresponding detection algorithm for different categories, or at least a 

few preprocessing. Moreover, in our situation, frames with different pedestrian appearance 

probability should be treated differently to maximize the processing efficiency. On one 

hand, some frames may contain little or no information of pedestrians, which would “eat 

up” the processing speed. Therefore, it is unnecessary to apply the most accurate and 

sophisticated algorithm to such category frame by frame. On the other hand, some data 
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may provide critical information of pedestrian behavior, which requires high recognition 

accuracy and a smaller detection interval.   

 

Figure 2.2 Overview of the proposed pedestrian detection system 

The overview flow chart of the proposed scheme is shown in Figure 2.2. The naturalistic 

driving video, GPS and G-sensor data collected from a monocular in-car recording device 

is first categorized into different driving scenarios based on the GPS, G-sensor data and 

other available database, for example, the weather database etc. The category knowledge 

includes the driving location, illumination and weather condition, driving speed and an 

estimated pedestrian appearance probability by the category information. Based on the 

driving speed of the vehicle, two levels of pedestrian detection algorithm are applied to 

vehicle stop and slow moving period and vehicle fast moving period respectively. The 

categorization based preprocessing and enhancement utilizes the prior knowledge collected 

from the data categorization module to efficiently perform necessary image enhancement 

on certain categories. The pedestrian detector is then incorporate with the category 

knowledge to efficiently generate the ROIs and decide optimal detection and classifier 

parameters. We will illustrate each module in detail in the rest of this section. 

B. Naturalistic driving data categorization 

As we mentioned before, for efficiency purpose, it is very rational to categorize the driving 

data based on the driving condition, driving location, weather and illumination condition 

and applied appropriate algorithm for each category. There are several benefits from the 

categorization module. First, categorization module can provide more information about 
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the data which could be utilized to process the video data more efficiently. For example, if 

we know that the vehicle is moving very slow or even stop, background subtraction can be 

applied to locate pedestrian regions of interest (ROIs) much faster than applying a whole 

frame sliding window search. Second, the categorization information can provide more 

characteristics of the video data so that a category-related preprocessing can be automatic 

performed specifically. For example, image enhancement can be performed on a video 

taken at dawn or dust to mitigate the low illumination issues. Third, a Bayesian model can 

be learned from a small part of the categorized data to estimate the pedestrian appearance 

probability given a set of category labels. The estimated probability will provide important 

information to the parameter and threshold selection of the detection system. The collected 

data will be first categorized based on the analysis results of the video content and other 

sensory information (GPS, G-Sensor, date, weather database, etc.). The goal of this module 

is to improve the accuracy and efficiency of data analysis and, at the same time, to provide 

statistical information about driving scenarios. Therefore the categorization will focus on 

classifying the status of driving scenarios, location conditions and the current time and 

weather environment which will help to improve the efficiency and adaptability in 

pedestrian detection. 

Each frame is automatically categorized based on its vehicle status, location, time and 

weather. Vehicle status can be directly categorized by the speed of vehicle calculated from 

GPS module. Location categorization classifier is learned from kernel-based clustering of 

the GPS and G-sensor data taken at different locations and K nearest neighborhood based 

method is applied to classify each video. The time and weather information can be retrieved 

from weather database. 

With the category information, a Bayesian model can be constructed to estimate the 

probability of pedestrian appearance: 

 
P�wi�X, C = Cj� =

P�X�wi, C = Cj� ∙ P�wi, C = Cj�
P(X) , (2.1) 
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where 𝑤𝑤𝑖𝑖  is the classified label (pedestrian or non-pedestrian), 𝑿𝑿 is the extracted image 

feature vector and 𝑪𝑪𝒋𝒋 is the category vector.   

     
P(X) = �P(X|wi, Cj)P(wi, Cj)

c

i=1

 
(2.2) 

is the evidence learned from the training set and c is the number of training samples. The 

estimated pedestrian appearance probability will be used as an indicating weight to 

determine the categorization based pedestrian detection algorithm parameters. 

Table 2.1 Time categories and necessary preprocessing or modifications 

Category Characteristics Preprocessing or 

modification 

Clear daytime Good illumination and 

very few noise 

N/A 

Heavily cloudy 

daytime 

Moderate illumination Contrast stretching 

Bright sunshine Strong illumination, 

may contain glare, 

pedestrian normally 

darker than 

background 

Glare detection and remove, 

select appropriate threshold to 

generate ROI 

Clear night Low illumination, 

pedestrian brighter 

than background 

select appropriate threshold to 

generate ROI 
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C. Preprocessing and categorization based enhancement 

Preprocessing and enhancement of the video data is necessary due to the various 

illumination and weather situations. We list the necessary preprocessing or modifications 

for different time and weather categories we generated from last module in Table 2.1. 

D. Categorization-based two-stage pedestrian detection 

a. ROI prescreening 

The TASI 110 car naturalistic driving dataset [39, 44] is collected by installing a video 

camera recorder on each of the 110 subject cars. The recorded videos are generally 

uncalibrated due to the different height of the subject vehicles and accidental adjustment 

of the camera angle/positions made by the subjects.  This can result in a substantial 

variation of camera viewpoint (Figure 2.3). Therefore a motion based automatic ROI 

prescreening step is designed to mitigate this problem. Moreover, by accurately locating 

the vehicle hood/control panel and the skyline, both the detection speed and false positives 

will be reduced for the refined ROIs.  

 

Figure 2.3  Videos with different viewpoints recorded by different subject vehicles 

To detect the horizon with a moving camera, motion flow field is evaluated to determine a 

Focus of Expansion (FOE) of the flow vectors. Sun’s method [114] is applied to calculate 

the optical flow of consecutive frames with the energy function written as:  
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𝐸𝐸(𝑢𝑢, 𝑣𝑣) = �{𝜌𝜌𝐷𝐷 �𝐼𝐼1(𝑖𝑖, 𝑗𝑗) − 𝐼𝐼2�𝑖𝑖 + 𝑢𝑢𝑖𝑖,𝑗𝑗 , 𝑗𝑗 + 𝑣𝑣𝑖𝑖,𝑗𝑗��
𝑖𝑖 ,𝑗𝑗

+ 𝜆𝜆�𝜌𝜌𝑠𝑠�𝑢𝑢𝑖𝑖,𝑗𝑗 − 𝑢𝑢𝑖𝑖+1,𝑗𝑗� + 𝜌𝜌𝑠𝑠�𝑢𝑢𝑖𝑖,𝑗𝑗 − 𝑢𝑢𝑖𝑖,𝑗𝑗+1�

+ 𝜌𝜌𝑠𝑠�𝑣𝑣𝑖𝑖,𝑗𝑗 − 𝑣𝑣𝑖𝑖+1,𝑗𝑗� + 𝜌𝜌𝑠𝑠�𝑣𝑣𝑖𝑖,𝑗𝑗 − 𝑣𝑣𝑖𝑖,𝑗𝑗+1��} (2.3) 

where i and j are the horizontal and vertical pixel coordinates, u and v are the horizontal 

and vertical components of the optical flow field, ρD and ρs are the data and spatial penalty 

functions, which are set by experience or trial and error, in order to create the desired flow 

field effects. The value of λ  is a balancing factor between the data term and spatial 

smoothness term. By minimizing this energy function, the optical flow for each pixel is 

generated and combined into the flow field for the whole image. 

 

Figure 2.4 Optical flow field from video motion (a red spot overlaid with four blue 
arrows to show the general direction of flows and the FOE). 

The generated motion field is shown in Figure 2.4. The FOE is calculated based on the 

optical flow field in the following way: several groups of two consecutive video frames are 

first selected from the longer video sequences in which there is car motion (found by speed 

data from the log file recorded along with the video).  The optical flow field is then divided 

into left half and right half. The highest motion regions in both left and right flow fields 

are isolated. Based on the optical flow vectors of each pixel in these regions, we calculate 

the crossing points of each pair of pixels by extending the flow lines in left and right regions. 

Finally, by sorting the vertical axis of these crossing points, we first delete the highest and 
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lowest vertical axis and then average the remaining ones to find the final vertical axis of 

vanishing point. The hood/vehicle control panel part can be found in the flow field as “no 

motion” part down at the bottom if exists. The final refined ROI is determined as the region 

between the two detected lines as shown in Figure 2.5. 

 

 

Figure 2.5  Example of Prescreened ROI 

b. ROI refinement 

With the vehicle status category information, ROI generation will be performed more 

effectively and efficiently. In particular, for frames categorized as vehicle slow moving or 

stop, the background is relatively constant. A fast background subtraction algorithm can 

be applied to generate possible binary foreground ROIs which may contain pedestrians. In 

particular, we locate the possible ROIs in each frame k by comparing the overall variation 

between frame k and the synthetic average frame generated from the N previous frames 

within each detecting window with a threshold T: 
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 (2.4) 

where W and H are the width and height of the detecting window, 𝐹𝐹𝑘𝑘(𝑥𝑥,𝑦𝑦) is the pixel 

value of frame k at (x, y), 𝐺𝐺(𝑥𝑥,𝑦𝑦) is a Gaussian smooth filter and T is a pre-defined 

threshold learned from training images. For each generated ROI, a set of pedestrian 

constraints which can be computed quickly are applied to check whether the ROI contains 

a pedestrian, including the shape, size, the ratio of height to width, the orientation, etc. so 

that the possible ROIs are further refined. 

For vehicle fast moving cases, sliding window based detection is necessary. However, a 

prescreening step is still necessary for both efficiency purpose and reducing false positives. 

We observed that most appearance based detector, such as HOG, normally generate false 

positives mainly from objects and/or complex background with shape close to human body. 

A large portion of the false positives come from trees, pole structured objects and building 

outlier (Figure 2.6):  

• Trees sometime may appear to have similar local shape and edge response as 

pedestrians while encoded in HOG. Especially when the top tree shape is close to 

the pedestrian head-shoulder ratio and the bottom tree contains the trunk, it is likely 

to be recognized as human. The color frame is used to eliminate tree regions within 

the frame. The ratio of green component to the other two channels and the ratio of 

green part to the whole area of detecting window are two cues to separate tree 

regions.  

• Pole-like objects have similar overall shape as a standing pedestrian.  The strong 

vertical edge response will be emphasized by the positive weight of the classifier.     

• Vehicles have strong vertical edges on the two rims of the wheels and the two rims 

could appear close to the leg part of pedestrian. Moreover the rigid edges generated 

𝑅𝑅𝑅𝑅𝐼𝐼𝑘𝑘 =  �1, 𝑖𝑖𝑖𝑖 � � 𝐺𝐺(𝑥𝑥,𝑦𝑦) ∗ (𝐹𝐹𝑘𝑘(𝑥𝑥, 𝑦𝑦) −
1
𝑁𝑁
�𝐹𝐹𝑘𝑘−𝑁𝑁(𝑥𝑥, 𝑦𝑦)) > 𝑇𝑇
𝑁𝑁

𝑛𝑛=1

𝐻𝐻

𝑦𝑦=1

𝑊𝑊

𝑥𝑥=1

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
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by the vehicle frame can also generate high positive score after weighted by the 

pedestrian classifier near the head or shoulder area.   

• Building outliers also have very strong vertical edge response in HOG 

representation. The positive score of the classifier will be emphasized by the 

dominant histogram contributed by vertical edge. Pole-structured objects, vehicles, 

building outliers and road components are considered having more rigid and longer 

vertical edges or horizontal than pedestrian shape. A direct template matching 

between the edge map and a long rigid line template can eliminate a certain amount 

of pole-structured objects, vehicle and building outliers.  

 

Figure 2.6 Common false positives of appearance based pedestrian detector. The 
corresponding gradient representation of each patch is shown on the right side. 
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Based on the rationale and the false positive analysis above, prescreening step is shown in 

Figure 2.7. The goal of the prescreen step is to eliminate regions where pedestrians are of 

low probability to locate within the whole frame so that the number of sliding windows 

can be greatly reduced. The rationale is that pedestrian will have relatively strong vertical 

edge response therefore ROIs are only detected at certain regions of the whole frame. The 

color frame and grayscale frame are both generated during the preprocessing and 

prescreening step. The pedestrian location constraints are first applied to narrow down the 

sliding window scanning region. The top part of the frame containing mostly the sky and 

the bottom part of the frame containing mostly the panel will be excluded. Edge detection 

and tree color detection are performed in parallel on grayscale image and color image 

respectively. A mask map containing the possible pedestrian ROI will be generated by the 

prescreening step. The sliding window search will only be performed on the regions 

containing vertical edges determined by the mask map since a standing pedestrian is 

considered to have relatively strong vertical edges compared to the background. In 

particular, ROIs  in each frame will only be selected by the equation: 

 ROIk = �1, if� �
∂G(x, y) ∗ f

∂x

H

y=1

W

x=1
(x, y) > T

0, otherwise
 

(2.5) 

where W and H are the width and height of the detecting window, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑥𝑥,𝑦𝑦) is the vertical 

edge map value of frame at (x, y) and 𝐺𝐺(𝑥𝑥,𝑦𝑦) is a Gaussian smooth filter. T is a pre-defined 

threshold decided by evaluating the training images. In this way, the number of detection 

windows will be greatly reduced while at the same time maintaining a high detection rate. 

 

Figure 2.7 Prescreening step of vehicle fast moving cases 
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c. multi-stage pedestrian detection 

 

Figure 2.8 Two-stage pedestrian detection scheme 

As we reviewed in section II, pre-trained SVM generally achieves good results and can be 

more easily applied in part-based model to achieve better accuracy. However, sliding 

window based SVM classification is very challenging to achieve real time processing speed. 

It takes seconds to process a whole 1280×720 image in our implementation even with 

greatly refined ROIs. Considering the huge number of frames of the naturalistic driving 

data we collected, this is unaffordable. On the other hand, cascaded boosting based 

classifiers can eliminate most of the non-pedestrian windows at very early stage. A 

combination of these two types of classifiers can achieve reasonably optimal tradeoff for 

our purpose. 

Stage I: Cascaded boosting based detection 

The flowchart of the two-stage detection is shown in Figure 2.8. On stage I, integral 

features [74] are extracted from each sliding window for its compromising performance 

and computation efficiency. The integral feature makes use of integral image aiming at 

reducing the computation cost of filtering operation from O(n2) to O(n). The integral image 

is computed rapidly from an input image and is used to speed up the calculation of any 
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upright rectangular area. The integral image is generated by summing the entire pixel 

values between each pixel and the origin. For example, give an image 𝐼𝐼 and a point (𝑥𝑥, 𝑦𝑦), 

the value at (𝑥𝑥,𝑦𝑦) of the integral image IΣ is calculated by the formula: 

 𝐼𝐼Σ =  ��𝐼𝐼(𝑥𝑥,𝑦𝑦)
𝑗𝑗≤𝑦𝑦

𝑗𝑗=0

𝑖𝑖≤𝜕𝜕

𝑖𝑖=0

 
(2.6) 

The convolution of an image I with an n × n box filter with value 𝑖𝑖 at point (𝑥𝑥, 𝑦𝑦) can be 

implemented by only four operations using integral image 𝐼𝐼Σ: 

 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑦𝑦) = 𝑖𝑖 ∗ ((𝐴𝐴 + 𝐷𝐷) − (𝐵𝐵 + 𝐶𝐶)) (2.7) 

where A, B, C, D is the value of the four corners of the convolved regions in integral image 

𝐼𝐼Σ   : (Figure 2.9) 

𝐴𝐴 = 𝐼𝐼Σ(𝑥𝑥 − �
𝑛𝑛
2
� , 𝑦𝑦 − �

𝑛𝑛
2
�) 

𝐵𝐵 = 𝐼𝐼Σ �𝑥𝑥 + �
𝑛𝑛
2
� , 𝑦𝑦 − �

𝑛𝑛
2
�� 

𝐶𝐶 = 𝐼𝐼Σ �𝑥𝑥 − �
𝑛𝑛
2
� , 𝑦𝑦 + �

𝑛𝑛
2
�� 

 𝐷𝐷 = 𝐼𝐼Σ(𝑥𝑥 + �
𝑛𝑛
2
� , 𝑦𝑦 + �

𝑛𝑛
2
�) (2.8) 

 

Figure 2.9 Filter Convolution using Integral Image 
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Integral features are extracted by applying box filter on integral image. The 10 channels 

breakdown is shown in Figure 2.10, including three color channels, one gradient magnitude 

channel and six gradient histogram channels. A pre-trained cascaded Adaboost classifier 

is applied to fast eliminate non-pedestrian windows and generate refined candidate 

windows. We follow the implementation in [74] for the feature extraction step, but instead 

of training a 2000 stage cascaded classifier, only 100 features are selected from the integral 

feature pool. Note that we emphasize the fast elimination non-pedestrian windows on this 

stage instead of an accurate classification. 100 stage cascaded classifier is enough for this 

purpose and much faster to train and process compared to the 2000 stage classifier in [74]. 

A certain amount of false positive is allowed in this stage and will be further eliminated by 

later stages. 

 

Figure 2.10 Integral features from 10 channels 

Stage II: ELM based multimodal detection 

On stage II, the candidate windows will be encoded into the HOG+LBP representation. 

The traditional HOG method relies on stably computing the overlapping local histogram 
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of edge direction in a dense way. The detection window is first normalized into a 128×64 

image patch. Each detection window is divided into 15×7 overlapping blocks and each 

block is further divided into 2×2 cells. The 9-orientation histogram of gradients is 

generated within each cell. The locally computed distribution vector is then concatenated 

into a 3780 dimensional descriptor (Figure 2.11). 

 

Figure 2.11 HOG descriptor generation 

It is shown in [58] that incorporating LBP into HOG can provide more texture information 

and achieve considerable improvement over HOG representation, especially when the 

resolution of the classifier ROI is relatively good. 𝐿𝐿𝐵𝐵𝐿𝐿82 is selected for its relatively better 

performance on pedestrian data than other forms. The binary pattern is computed by 

comparing the neighbor pixels with the central pixel and arranged as a binary sequence. 

The histogram of the binary sequences within each cell is calculated and concatenating as 

a vector. In our implementation, the LBP feature is extracted as a 1888 dimensional vector 

and concatenated with the HOG feature (Figure 2.12). A dimension reduction algorithm is 

optional to apply on the concatenated HOG+LBP feature vector to reduce the classification 

time for our efficiency without impairing too much accuracy. 

An ELM multimodal detection scheme is shown in the lower part of Figure 2.8. The upper 

body and low body classifiers are trained simultaneously with the holistic classifier. During 

the detection, the three classifier outputs are fused to generate the final detection score. We 

found that the upper body and lower body can provide additional cue for the traditional 
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whole body model in an affordable extra overhead and it is effective in reducing false 

positives. For example, a road sign or a tree may have very similar upper shape and whole 

shape to a pedestrian, however, a large portion of such hard examples with shape close to 

pedestrians in whole still have considerably large differences in the leg part, and the 

difference could possibly strengthened by a lower body representation therefore fewer false 

positives are expected. Similarly, a vehicle or a building outlier false positive window may 

have very similar lower part shape to a pedestrian and an upper body classifier can 

strengthen the head-shoulder representation therefore rejecting more false positive 

windows of those two categories. We compromises the false positive rate and the 

processing speed by adopting such a part-based model which can be computed parallel 

with the holistic features without adding too much processing time. A set of classifier 

fusion methods will be tested on our pilot test set to ensure a high detection rate while at 

the same time reducing more false positive windows. We will introduce the fusion details 

and results later. 

 

(a) 

 

(b) 

Figure 2.12 LBP feature extraction (a) the binary sequence generation (b) the feature 
vector generation 



43 
 

 

 

 

ELM has been applied to many different areas including biometrics, image segmentation, 

human action recognition and etc. It shows advantages over traditional classifier such as 

SVM, SLFN both on performance and efficiency. It is the first time ELM is applied to 

pedestrian detection and a considerable improvement over the traditionally used SVM 

classifier is observed during our pilot experiments shown in chapter 2.4.  

Huang et al. [92] theoretically and experimentally proved that ELM can be used as a unified 

learning platform which does not need to tune the hidden layer parameters as traditional 

Single layer neural networks (Figure 2.13) do. Instead of using the time-consuming 

gradient descent based learning method; ELM relies on computing the Moore-Penrose 

generalized inverse of the hidden layer matrix [93].  

 

Figure 2.13 Single layer neural networks 

In general, ELM maps any given SLFN hidden layer into a matrix form: 

 ℎ(𝑥𝑥) = [𝐺𝐺(𝑎𝑎1,𝑏𝑏1, 𝑥𝑥1),𝐺𝐺(𝑎𝑎2,𝑏𝑏2, 𝑥𝑥2), … ,𝐺𝐺(𝑎𝑎𝐿𝐿, 𝑏𝑏𝐿𝐿, 𝑥𝑥𝐿𝐿)] (2.9) 

where a, b are the random initialized hidden layer parameter matrix, L is the number of 

nodes in hidden layers, G is the node activation function, which could be additive, radial 

basis function (RBF) or etc. In particular, the additive node activation has the form:  

1 i… L…

1 N

xi

…

1

βi

N input neurons

L hidden neurons

M Output neurons

ai,bi

M…
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 𝐺𝐺(𝒂𝒂𝒊𝒊, 𝑏𝑏𝑖𝑖 ,𝒙𝒙) = 𝑔𝑔(𝒂𝒂𝒊𝒊𝒙𝒙 + 𝑏𝑏𝑖𝑖) (2.10) 

where 𝑎𝑎𝑖𝑖 is the weight vector connecting the ith hidden node and the input nodes and 𝑏𝑏𝑖𝑖 is 

the bias of the ith hidden node. The RBF node has the form: 

 𝐺𝐺(𝒂𝒂𝒊𝒊,𝑏𝑏𝑖𝑖 , 𝒙𝒙) = 𝑔𝑔(𝑏𝑏𝑖𝑖‖𝒙𝒙 − 𝒂𝒂𝒊𝒊‖) (2.11) 

where 𝒂𝒂𝒊𝒊 is the center of the ith hidden node and 𝑏𝑏𝑖𝑖 is the impact factor of the ith hidden 

node. Therefore the output function of the SLFN can be written as 

 𝑖𝑖(𝒙𝒙) =  �𝛽𝛽𝑖𝑖𝐺𝐺(𝒂𝒂𝒊𝒊, 𝑏𝑏𝑖𝑖 ,𝒙𝒙)
𝐿𝐿

𝑖𝑖=1

= 𝒉𝒉(𝒙𝒙)𝜷𝜷 
(2.12) 

where 𝒉𝒉(𝒙𝒙) is the hidden layer output corresponding to input sample x and 𝜷𝜷 is the output 

weight vector between the hidden layer and the output layer. With calculated hidden layer 

matrix of N input samples: 

𝑯𝑯 = [𝒉𝒉(𝒙𝒙𝟏𝟏)𝑻𝑻,𝒉𝒉(𝒙𝒙𝟐𝟐)𝑻𝑻, … ,𝒉𝒉(𝒙𝒙𝑵𝑵)𝑻𝑻]𝑇𝑇 

and the target matrix: 

𝑻𝑻 = [𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑁𝑁]𝑇𝑇, 

then 𝜷𝜷 can be directly calculated as: 

 𝜷𝜷 = 𝑯𝑯†𝑻𝑻 (2.13) 

In this way, the input layer and hidden layer parameters 𝒂𝒂𝒊𝒊, 𝑏𝑏𝑖𝑖 do not need to be tuned and 

the network can be trained very efficiently.    

Huang et al. [94] shows that dual optimization objective functions of ELM is consistent 

with that of SVM while ELM searches optimal solution in a greater domain with faster 

implementation. Therefore ELM achieves better performance in general and multiple tests 

have also proved it [94]. In particular, for a binary case, the decision function of ELM 

classifier can be written as 
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 𝑖𝑖(𝒙𝒙) = 𝑒𝑒𝑖𝑖𝑔𝑔𝑛𝑛(ℎ(𝒙𝒙)𝑯𝑯𝑇𝑇 �
𝑰𝑰
𝐶𝐶 + 𝑯𝑯𝑯𝑯𝑻𝑻�

−1

𝑻𝑻) (2.14) 

where H is the hidden layer matrix calculated from the training samples, T is the target 

matrix of training samples and 𝑰𝑰
𝐶𝐶
 is a positive constant matrix for a stabler inverse result. 

Kernel formed ELM is applied to learn the holistic classifier, upper body classifier and 

lower body classifier. The output function of extended kernel based generalized SLFNs 

has the form: 

 𝑖𝑖(𝒙𝒙) = [𝐾𝐾(𝒙𝒙, 𝒙𝒙1),𝐾𝐾(𝒙𝒙,𝒙𝒙2), … ,𝐾𝐾(𝒙𝒙, 𝒙𝒙𝑁𝑁)] �𝛀𝛀+
𝐼𝐼
𝐶𝐶�

−1

𝑇𝑇 (2.15) 

where T is the target label vector, c is the positive constant, 𝛀𝛀 is the kernel matrix with 

Ω𝑖𝑖𝑗𝑗 = 𝐾𝐾�𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗�and K is the kernel function. In our application, RBF kernel is used which 

has the form: 

 𝐾𝐾�𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗� = exp (−
�𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗�

2

𝑑𝑑 ) (2.16) 

Where d is the kernel parameter controls the width of the function. 

The generated ELM scores from the holistic, upper and lower body classifiers are fused to 

generate the final decision. Several score fusion methods can be used to fuse matching 

results: simple-average (SA), minimum-score (MIN), maximum-score (MAX), classifier 

weighting (CW) and Dempster Shafer method (DS).The first four are commonly used 

fusion method and the DS method is based on DS theory [95]  

(1). Simple-Average (SA): the normalized scores S from different modalities with score Si 

are averaged directly using 𝑆𝑆 = 1
𝑀𝑀
∑ 𝑆𝑆𝑖𝑖𝑀𝑀
𝑖𝑖=1 , where M is the number of the modalities. 

(2). Product (Pro): the normalized score S is the product of score Si from different 

modalities𝑆𝑆 = ∏ 𝑆𝑆𝑖𝑖𝑀𝑀
𝑖𝑖=1 . 
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(3). Minimum-Score (MIN): select the minimal score as the fusion score 𝑆𝑆 =

min {𝑆𝑆1, … , 𝑆𝑆𝑀𝑀}. 

(4). Maximum -Score (MAX): select the maximal score as the fusion score 𝑆𝑆 =

max {𝑆𝑆1, … ,𝑆𝑆𝑀𝑀}. 

(5). Classifier Weighting (CW):  each modality classifier is assigned a weight based on its 

Equal Error Rate (EER). The weights for more accurate matchers are higher than those of 

less accurate matchers. The fusion score is calculated as: 𝑆𝑆 = ∑ 𝑤𝑤𝑖𝑖𝑆𝑆𝑖𝑖M
i=1 , where w(i) is the 

weight for classifier i calculated as 𝑤𝑤𝑖𝑖 =
1

∑ 1/E𝑖𝑖
M
i=1
E𝑖𝑖

 where E𝑖𝑖is the Equal Error Rate (EER) of 

classifier i. 

(6). Dempster Shafer method (DS): this information fusion method is based on Dempster 

Shafer theory. The belief of each event is initialized as 0 (uncertainty is 1) and updated 

based on incoming evidences. The theory assumes that the incoming evidences are 

independent pairwisely and their emerging order is unimportant. However, the evidences 

here are from the same pedestrian therefore assuming them independent is invalid. We 

adopt the modified Dempster’s rule by Murphy and Kalka, the fusion score Di is calculated 

as: 

 𝐷𝐷𝑖𝑖 =
(𝐷𝐷𝑖𝑖−1 ∗ 𝐷𝐷𝑖𝑖)n

(𝐷𝐷𝑖𝑖−1 ∗ 𝐷𝐷𝑖𝑖)n + �(1 −𝐷𝐷𝑖𝑖−1) ∗ (1− 𝐷𝐷𝑖𝑖)�
n ,    𝑖𝑖 = 2,3 

(2.17) 

D1 is initialized as the smallest score, the scores are sort in ascending order, here n = 0.5 

which gives equal weight to all evidences. 

We tested each fusion method by the pilot experiments and the one with the best 

performance is applied to the large scale naturalistic driving data. 

2.3 Experimental Results of the Proposed Pedestrian Detection System 

A. Naturalistic driving data 
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In this study, we recruited 110 cars and their drivers in the greater Indianapolis area for a 

one year naturalistic driving study starting in March 2012. The drivers were selected based 

on their geographic, demographic, and driving route representativeness. We used off-the-

shelf vehicle black boxes for data recording, which are installed at the front windshield 

behind the rear-view mirrors, which record high-resolution forward-view videos (recording 

driving views outside of front windshield), GPS information, and G-sensor information. 

Some examples of the collected naturalistic driving data are shown in Figure 2.14. Over 

the one-year period, it collects about 80 Terabytes (TB) of data which covers over 1.3 

million miles and 36,000 hours of driving data.  

 

Figure 2.14 Examples of collected naturalistic driving data 

B. Implementation details  

A training set including 1487 positive samples and 2857 negative samples cropped from 

the collected naturalistic driving data are used to train all the test and baseline classifiers. 

Each training sample is normalized into 128×64 image patch. For the cascaded boosting 

classifier in stage I, 30000 integral features are randomly generated from each training 

patch and 100 stage cascaded classifier is learned. For the multimodal ELM classifier in 

stage II, HOG+LBP feature is generated from holistic, upper body and lower body patches 

respectively. For HOG feature, we compute the fast HOG using integral image [96]. 8×8 

block and 2×2 cell is applied as in [42]. For LBP features,   𝐿𝐿𝐵𝐵𝐿𝐿82  is used for its tested 
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optimal performance for pedestrian data [66]. Each 16x16 block is encoded into a 59 

dimensional feature vector and all the encoded LBP vectors are concatenated and 

normalized by L2-hys [42]. Therefore the concatenated feature vectors of holistic, upper 

body and lower body have dimension of 5668, 2708 and 2708 respectively. For speed 

reason, a dimension reduction algorithm is performed on each of the three feature vectors 

before ELM classification and score fusion. The ELM multimodal classifier will output a 

fused score as the final result. The best suitable dimension reduction and fusion algorithm 

and relative parameters are determined by our designed pilot experiments. 

C. Pilot experimental results on test samples 

We generate a set of test samples cropped from the naturalistic driving videos which are 

not overlapped with the training set. The goals of this experiment are (1) find the suitable 

dimension reduction method and parameters; (2) find the optimal fusion method of ELM 

multimodal classifier. (3) compare the performance of the proposed ELM multimodal 

classifier with traditional SVM classifier. 

The test samples with 639 pedestrian samples and 1029 non-pedestrian samples are 

cropped from our naturalistic driving data which are very challenging. The pedestrian 

samples vary in illumination, pose, clutter, etc. and the non-pedestrians include a lot of 

hard examples like trees, pole-structured objects, etc. Some of the test samples are shown 

in Figure 2.15, the left four pedestrian samples have different pose, shape and illuminations 

with cluttered background and the right four non-pedestrian samples are considered to be 

hard example as they have very similar shape to a pedestrian.   
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(a)                                                                       (b) 

Figure 2.15 Examples of pilot test samples (a).Pedestrian test samples (b).Non-pedestrian 
test sample 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 2.16 Results of the pilot experiments. (a) Comparison of different dimension 
reduction methods. (b) Comparison of different fusion methods. (c) Comparison of 

classifiers. (d) Comparison of with or without false positive reduction 

Classification speed is directly related to the dimension of input feature vector. Effectively 

applying dimension reduction methods could sufficiently reduce the classification 

computation time while at the same time not impairing the accuracy very much. The 

reduction of classification time of each window will dramatically increase the processing 

efficiency for the large scale naturalistic driving data. For this purpose, we tested several 

dimension reduction methods including principle component analysis (PCA), linear 

discriminant analysis (LDA) and independent component analysis (ICA). For PCA and 

ICA, we both use 500 components. The comparison results in shown in Figure 2.16 (a) and 

we can obviously see that PCA outperforms other two dimension reduction methods and 

achieves almost the same accuracy as the original HOG+LBP feature. Moreover, as we can 

see from the results, PCA shows better performance at the low false positive rate region, 

which is exact the region where select the thresholds for large scale naturalistic driving 

data processing. 
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Figure 2.16 (b) shows the results of the multimodal ELM classifier using different fusion 

methods. SA, Pro and CW outperformed the holistic ELM classifier and DS achieved 

similar performance as the single modal HOG+LBP feature.  In addition, the multimodal 

classifier had considerable improvement over the single modal at the low false positive rate 

(FPR) region and overall it effectively reduced the false positives, which is very 

meaningful for our naturalistic driving data detection. 

To better justify the advantage of ELM as pedestrian classifier, we directly compare its 

performance with traditional SVM which is very popularly used in pedestrian detection 

systems. (Figure 2.16 (c)) We used exactly the same feature extraction and training process 

for the two types of classifiers. Both HOG only and HOG+LBP feature classifiers are tested 

and compared. We observed dramatically improvement from the pilot experimental results. 

In particular, ELM achieves more than 15% improvement of detection rate at 0.01 FPR. 

Moreover, ELM shows classification speed advantage over SVM both in training time and 

test time.  

Figure 2.16 (d) shows the results of the trained multimodal ELM detector with and without 

the prescreening step we illustrated in section IV.D.a to reduce the possible false positives 

from trees, pole-like structures and vehicles. The prescreen step effectively reduced the 

false positives, which are considered as hard examples in naturalistic driving scenarios.  To 

better show the individual false positives from trees, poles and vehicle wheels reduced by 

the prescreening step, we ran the test set without prescreening, with tree elimination, with 

pole structure and building outlier elimination respectively. The false positive reduction 

step was shown to effectively eliminate the typical “hard examples” in pedestrian detection.  

Table 2.2 shows the processing time comparison between ELM and SVM where ELM 

takes only 2-3 seconds to train a HOG+LBP classifier on the training set aforementioned 

comparing with minutes of SVM. For each window, ELM only takes 1/3 processing time 

of SVM. Note for the speed test, we use the 5668 dimensional holistic HOG+LBP feature 

as input and implement the classifier on Matlab environment. On the other hand, 

HOG+LBP feature also achieves better performance than HOG only feature on both ELM 
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and SVM classifiers. The proposed multimodal ELM classifier using SA fusion is also 

shown for comparison.   

Table 2.2 Computational time comparison of ELM and SVM 

 SVM The proposed ELM 

Training time (sec) 87.83 2.23 

Test time per window (sec) 0.215 0.078 

 

D. Experimental results on INRIA person dataset. 

We further tested the proposed method with an empirically selected dimension reduction 

and multimodal fusion algorithm on INRIA person dataset. We used the 288 test images 

with pedestrians to compare the proposed detector with existing methods. The full image 

was evaluated and a standard sliding window scanning scheme was performed. Non-

maximum suppression (NMS) was implemented to combine nearby and overlapping 

detections. The comparison result is shown in Figure 2.17. We compared the proposed 

detector with the traditional HOG detector and the state-of-the-art FPDW detector. The 

HOG+LBP feature was extracted and reduced to 500 dimensions using PCA and fused by 

SA rules. The proposed multimodal ELM outperformed the HOG detector and achieved 

comparable result with the FPDW detector. 
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Figure 2.17 Comparison of experimental results on INRIA person dataset. 

E. Experimental results on naturalistic driving data 

With the comparison results on dimension reduction and fusion methods from the pilot test, 

we applied the proposed method on naturalistic driving data using the optimal methods and 

parameters tested from the cropped test set. The HOG+LBP feature was extracted and 

reduced to 500 dimensions using PCA and fused by SA rules. The tested video content 

involved different driving scenarios, including different road types, weather conditions, 

illuminations, etc. Twelve five-minute test videos are randomly selected from our large 

scale dataset with over 3600 seconds of data including over 100,000 frames. Each frame 

was 1280×720 high resolution. Similar to experiments on INRIA person dataset, we 

applied false positive per image versus the miss rate metric which is popularly used to 

measure the performance of the pedestrian detection system using the standard PASCAL 

measurement [97]. A standard multi-scale window based technique was incorporated with 

the proposed preprocessing and ROI generation to minimize the sliding window number. 

A non-maximum suppression method similar to [42] was applied to combine multiple 
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overlapping detections. The parameters are listed in Table 2.3. For our pedestrian behavior 

analysis purpose, we only annotated and detected pedestrians of size greater than 48 pixels 

in height in the test set, since pedestrians from too far away are considered to have no 

potential conflicts with the vehicle. We compared the proposed multimodal ELM classifier 

using 500 PCA components and SA fusion rule with two popularly used baseline methods: 

HOG+SVM and HOG+LBP+SVM (Figure 2.19). The proposed method outperformed 

both baseline methods. To better illustrate the improvement of the multimodal ELM 

detector applying HOG+LBP features, Figure 2.18 shows the detection results of the 

proposed detector and classic HOG detector. The proposed detector achieved 0.3 false 

positive per image (fppi) compared to 1.3 fppi of the HOG detector at the same detection 

rate. The ROC curve and the computational time breakdown are shown in Figure 2.19 and 

Table 2.4. The proposed detector with categorization and preprocessing achieved slightly 

better performance than the detector without category specific preprocessing and ROI 

refinement. Moreover, the computation time was greatly reduced due to the 

implementation of the categorization based ROI refinement. Compared to traditional 

HOG+SVM, the proposed classifier had approximately five times improvement in speed. 

A tracking by detection example result of a five-second video clip is shown in Figure 2.20, 

where the pedestrian within was detected at different distances with different gaits. 

 

Figure 2.18 False positives comparison of HOG detector and the proposed detector 
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Table 2.3 Parameter value used in experiments 

 

Parameter 

 

value 

Normalized window size 
Sliding window stride 

Window scale number 
HOG block size 

HOG cell 
LBP block size 

ELM regularization (c) 
Kernel width (d) 

Normalized detection score 

128×64 
4 

5 
8×8 

2×2 
16×16 

1 
10 

[-1,1] 

 

 

Figure 2.19 Comparison of experimental results on naturalistic driving data 
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Table 2.4 Process time breakdown for per second video (in average) 

 Categorization 

(sec) 

Frame 
Generation 

from 
video(sec) 

Pedestrian Detection 

(sec) 

HOG+ 

SVM 

 

- 

 

0.39 

 

3.6 

Multi-modal ELM 

 

 

- 

 

0.39 

 

1.77 

Multi-modal ELM 

with categorization 

 

0.008 

 

0.39 

 

0.62 

 

 

Figure 2.20 A tracking by detection example of a five-second video 
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F. Effect of categorization based prescreening and enhancement 

To justify the effect of categorization based prescreening and enhancement on improving 

the detection efficiency in large scale naturalistic driving data, we sampled a total number 

of 20 5 minute-long naturalistic driving video from the entire TASI 110-car dataset. The 

selected data covered all the categories and were selected based on the actual statistic of 

the entire TASI 110-car statistics. The statistics of the sampled data is shown in  Table 2.5. 

66 pedestrians were labeled within the 20 5-minute videos with about 180,000 frames. We 

focus the experiments and analysis on each categorization-based prescreening method 

individually. 

Location  

The vehicle location information was provided by the GPS data recorded along with the 

videos. Highway, rural and urban areas have very different background clutters therefore 

different prescreening methods could be applied. In our implementation, highway videos 

were considered to have the lowest background clutter and only vehicle structure 

elimination was applied. Tree reduction was further applied to rural videos and pole 

structure/building outlier reduction step was further applied to urban videos. In addition, 

only roadside regions were considered as ROI for highway and rural scenarios for 

efficiency purpose. We ran the multimodal ELM detector using the same parameter set in 

Table 3 and set the threshold to 0.2. The comparison results are shown in Table 2.6. We 

compared the pedestrians detected versus the total number of false detected frames. The 

location category information provided refined ROIs and prescreened windows to the 

detection module therefore substantially reduced the false positives. The computational 

time was also greatly reduced due to the reduction of ROIs and window numbers. 

Time/illumination 

Illumination has substantial effect on the pedestrian appearance and detection performance. 

Necessary preprocessing was applied to the video frame according to its category. Cloudy 

videos with moderate illuminate were enhanced with contrast stretching. For some night 
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videos with strong backlight, glare removal step was implemented to eliminate possible 

false positives introduced by the strong backlight. For dark night videos, due to the 

constraints of the camera, only windows brighter than a pre-determined threshold were 

considered as ROIs. Very dark patches were ignored as background to save computational 

power. The results in Table 2.6 show that the illumination based enhancement and 

prescreening substantially reduced false positives in night videos.   

Vehicle status 

Moving pedestrians in videos with constant background can be quickly separated with the 

still background while the vehicle is stopped or moving slowly. Therefore a fast 

background subtraction method was applied to quickly generate ROIs for moving 

pedestrians and to further refine the ROIs based on the size, height-width ratio and 

orientation. A certain amount of computation time reduction was observed while 

maintaining the detection rate in the experiment.  

Table 2.5  Statistics of the test data 

 By location By Time/illumination By status 

Urban/suburban Rural/highway Clear 
daytime 

Cloudy 
daytime 

Backlight night Moving Stop/slow 

Percentage 40% 60% 40% 20% 5% 35% 90% 10% 
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Table 2.6  Comparison results with category information vs. without category 
information 

 Detection rate False detected 
frames 

False positive 
rate 

Computational 
time(s/frame) 

Without category 
info 

77.3% 2192 1.22% 1.51 

With location info 77.3% 1322 0.73% 0.68 

with time info 80.3% 977 0.54% 0.76 

With vehicle status 
info 

77.3% 1788 1.0% 1.35 

 

2.4 Bicyclist Detection in Large Scale Naturalistic Driving Video Comparing 

Feature Engineering and Feature Learning  

In addition to pedestrian detection, the proposed detection system was further developed 

and explored for bicyclist detection in large scale naturalistic driving videos. Compared to 

pedestrian detection, real time on-board bicyclist detection is even more challenging due 

to the following reasons: 

• Bicyclists in driving video have higher appearance variance than pedestrians. In 

particular, as shown in Figure 2.21, bicyclists with five different poses are largely 

varied in shape and appearance, which cannot be easily represented by a single model 

as the traditional pedestrian detector does.  

• Bicyclists normally move much faster than pedestrians, which requires the faster 

response PCS with a more efficient detection algorithm.  
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Figure 2.21 Bicyclists with different poses in naturalistic driving videos 

In the literature, two types of strategies deal with the high intra-class variance of the 

bicyclists. One solution [98] is to introduce several different holistic models for different 

poses and detect bicyclists with corresponding poses in parallel. The computational cost 

for this method is increased since multiple passes of sliding window detections are 

performed.  This could be the bottleneck of a large scale detection or real-time on-board 

system. Therefore a more efficient feature extraction and classification method is needed. 

The other method [99]  is to use a part-based model [81] to handle the variance of poses, 

gestures, clothing and bicycle types. However, the performance of part-based models could 

be degraded due to the low-resolution representation of the objects with a small scale. 

Moreover, part-based model usually requires higher computational cost.  

Recently, deep learning networks have been extensively studied and applied to computer 

vision tasks, such as object detection, sematic learning, etc. Deep networks has shown 

significant improvement over traditional neural networks on a number of applications. The 

primary advantage is that it can compactly represent a significantly larger set of functions 

than shallow networks. In particular, Deep networks also provide an end-to-end framework 

to traditional object detection task. It relies on learning features by the network itself 

instead of designing the hand-engineered features. 

The two-stage detection scheme was applied to bicyclist detection and a multi-modal 

bicyclist detector which efficiently detects bicyclists with varied poses from large scale 

naturalistic driving data was proposed. Motion based region of interest or bounding box 
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detection was designed and first applied to the entire video to refine the region for sliding-

window detection. Then an efficient integral feature [74] based detector is applied to 

quickly filter out the negative windows. The remaining candidate windows are then 

encoded and tested by three pre-learned pose-specific detectors. On the other hand, we also 

explored the possibility of applying state-of-the-art deep networks on bicyclist detection 

from naturalistic driving data. A multi-layer auto-encoder (AE) based deep network was 

learned. The extracted features are directly learned from the dataset in contrast to the 

integral features and HOG detector we used in the proposed two-stage multi-modal 

bicyclist detection scheme. The two methods are illustrated and compared using a subset 

of our TASI 110-car naturalistic driving dataset. 

A. Feature engineering 

Similar to the two-stage pedestrian detection, during stage I detection, Integral features [74] 

are extracted from each sliding window balancing the performance and the computational 

efficiency. The extracted features are from color and gradient channels. A pre-trained 

cascaded Adaboost classifier is applied to quickly eliminate non-bicyclist windows and 

generate refined candidate windows. Most negative windows can be rejected in this early 

stage. A 100-stage cascaded classifier is adequate for this purpose and it is much faster to 

train and process, compared to the 2000 stage classifier in [74]. A certain amount of false 

positives are allowed in this stage as a trade-off. 

To handle the high intra-class variation of bicyclists with different poses, we treat bicyclists 

with different poses as different classes. For each pose, pose-specific classifiers are trained 

by the categorized samples cropped using the training set collected and sampled from the 

TASI 110-car naturalistic driving dataset. However, naïvely assuming five pose-specific 

classifiers (as illustrated in Figure 2.21) will add five times the detection burden, since each 

pose-specific detector needs to scan the entire ROI. For the best efficiency, we train only 

three poses: side view, front-side view and rear-side view (Figure 2.22). The two reasons 

that we choose only these three poses are: (1) these three models are the most dominant 

cases of bicyclists spotted in the sampled naturalistic driving data, which can be extended 
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into the general real-life situations, where these three poses are mostly observed; and (2) 

the front and rear poses will change to one of these three poses as the position relationship 

between the observing vehicle and bicyclists changes. In other words, there will eventually 

be a moment when a front/rear posed bicyclist changes its pose to one of the three chosen 

poses so it can be captured by these three detectors in the video. To further accelerate the 

scanning, the front-side view detector will be only performed on the left half of the ROI 

and the rear-side view detector will be only performed on the right half of the ROI for the 

TASI 110-car dataset.  

Because of the changeable background and bicyclist colors and intensities, our feature 

relies on the outline or edge of bicyclists. HOG features can loosely describe global shape 

but provide flexible changes locally to the shape. During stage II detection, the candidate 

windows output from stage I were encoded into the HOG representation. The traditional 

HOG method relies on stably computing the overlapping local histogram of edge direction 

in a dense way. The detection window is normalized into a 128×64 pixel image patch. Each 

window is divided into 15×7 overlapping blocks, and each block is further divided into 2x2 

cells. The 9-orientation histogram of gradients is computed within each cell. The locally 

computed distribution vector is then concatenated into a 3780 dimensional descriptor. 

In our implementation, we use 128×64 pixel normalized windows for the two slanted view 

poses and 128×128 pixel normalized windows for the side view poses. For the HOG 

features, we compute the fast HOG using integral image [96]. 8×8 pixel blocks and 2×2 

cells are applied [42]. The average gradient representation of the three poses is generated 

from the training set.  The resulting HOG is shown in Figure 2.22, where the dominant 

parts from many bicyclist training windows are used to distinguish bicyclists from other 

objects. 
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Figure 2.22 HOG representation and trained classifier weights (on intensity and 
orientation) of three pose-specific classifiers for bicyclists. 

B. Feature learning  

Beyond human engineered features based on our environment and target analysis, we want 

to further confirm if there is any better way in classifying the bicyclists because our 

designed features and learned models may not be optimal. In this section, the possibility of 

applying deep networks to bicyclist detection was explored purely based on the large 

dataset. A deep learning framework was formed to extract first-order features from 

bicyclist patches that is used for extracting feature. A fine-tuning step was followed by a 

16x8 blocks
2x2 cells

16x8 blocks
2x2 cells

16x16 blocks
2x2 cells

Block size 
8pixels x 8 pixels
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supervised learning using RBF kernel-based ELM (Extreme Learning Machine). Note the 

deep network relies on its representation ability to automatically extracted low level 

features from an unlabeled dataset therefore can be used as an unsupervised learning 

algorithm. The low-level features of bicyclist patches can be extracted by a single layer 

auto-encoder and used as substitute or compliment for the raw representation or other hand-

engineered features, such as HOG. The layer learning can be repeated and stacked to learn 

high-level representations. 

 

Figure 2.23 The proposed framework to learn bicyclist features using deep learning 

Figure 2.23 shows the proposed framework of applying the idea of deep network to learn 

features of bicyclist using naturalistic driving data. Unsupervised learning and supervised 

learning are mixed. The raw pixels of the color and gradients of the randomly sampled 

blocks are directly used as the input to a single layer AE to learn the hidden layer 

parameters. The learned result served as the first layer filter of the convolution network. 

The AE learning are repeated and stacked to learn from low-level features to high-level 

features. Sparse constraints are applied to the AE and a single activation is constrained on 

the hidden layer. The features are learned layer by layer without supervision. The outputs 

of the learned, stacked AEs are then input into a multi-layer perceptron network (MLP) 

and fined tuned in a supervised fashion. 

The fine-tune process is shown in Figure 2.24. Four-layer stacked AEs including two 

convolution layers and two pooling layers are constructed and learned using color images 



66 
 

 

 

 

and gradient images of bicyclist patches. More layers can be stacked to get higher level 

representation. The final output of all the sub-blocks are concatenated into a single vector 

and a two-layer fully connected ELM is learned with supervision. 

The extracted features from the hidden layer of each single layer AE can be used as the 

input to a next layer of AE and the multiple-layer AE can be stacked and higher level 

features will be extracted in later stages of AE. The high level features can be directly used 

as extracted features or combined with hand engineered features such as HOG to form a 

final round of supervised learning, or “fine-tuning” to improve the final detection result. 

The round of supervised learning is shown to be very useful in improving the classification 

performance. 

 

Figure 2.24 Fine-tune of the learned stacked AEs for bicyclists 

2.5 Experimental Results of the Bicyclist Detection 

A. Experimental results on test sample frames using two stage multi-modal bicyclist 

detector 

During stage I detection, Integral features are extracted from each sliding window 

balancing the performance and the computational efficiency. The extracted features are 

from color and gradient channels. A pre-trained cascaded Adaboost classifier is applied to 

quickly eliminate non-pedestrian windows and generate refined candidate windows. Most 
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negative windows can be rejected in this early stage. In this section, we will discuss the 

building process of the cascaded classifier. 

To train the two-stage multimodal bicyclist detector and test the performance, we generated 

a very challenging test sample set which contains 160 frames with bicyclists, randomly 

selected from the TASI 110 naturalistic driving video. Bicyclists within the test set varied 

greatly in size and appearance, with height ranging from 30 pixels to 250 pixels. Three 

pose-specific classifiers have been trained using a manually cropped training set. The 

training set is not overlapping with the test set. The positive set contains 922 cropped 

patches for front-side view cases, 1628 cropped patches for rear-side view cases, and 733 

cropped patches for side view cases. The negative set was randomly generated from the 

naturalistic videos without bicyclists. Three rounds of bootstrapping have been 

implemented using a selected bootstrapping training sets and hard examples to retrain the 

classifier. For best performance, we intentionally kept a certain amount of margin around 

the cropped training samples. 

Three pose specific cascaded classifiers were trained using the cropped training samples. 

The integral features are randomly generated and computed. The parameter of each layer 

was selected by ensuring no false rejection and detect highest false windows. We kept 

adding more cascaded layers until the object false window reduction rate was attained. 

Remember the goal of stage I classifier was to quickly remove most false windows. We set 

the false window reduction rate as 99% and use 10 as increment when adding the cascaded 

layers. The results on test set is shown in Figure 2.25. The reduction rate was observed 

saturated as layer number increased. We selected 100 as the layer number since it achieved 

adequate reduction rate while still ensuring no false rejection. 
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Figure 2.25 False window reduction rate by cascade classifier layer number 

The full image was evaluated and a standard sliding window scanning scheme was 

performed. Non-maximum suppression (NMS) was implemented to combine nearby and 

overlapping detections.  We applied false positive per image versus the miss rate metric 

which is popularly used to measure the performance of pedestrian detection system using 

the standard PASCAL measurement. The ROC curves of the three separate pose-specific 

classifiers are shown in Figure 2.26. We observed that the side view detector performs best 

among the three due to the unique and explicit bicycle appearance of the side view bicyclist. 

The traditional HOG+SVM detector [2] was also implemented and performed on the test 

sample frames as a baseline result. The same three pose-specific HOG+SVM detectors 

were trained using the same training set we generated from the naturalistic driving video. 

The same parameter setting as the HOG encoding in stage II was applied and the linear 

SVM was trained to classify the sliding window. The same evaluated metric was used and 

the comparison result is shown in Figure 2.27. The proposed two-stage detector 

outperforms the traditional HOG detector on the test sample frames. The proposed detector 

also achieved over 10 times improvement in terms of the computational time compared 

with the time-consuming HOG+SVM detector. 
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B. Experimental results on large scale naturalistic driving videos 

The comparison results of the proposed detector with motion-based ROI prescreening and 

the whole frame sliding-window based detector is shown in Table 2.7. The false positive 

rate is calculated as the number of false detected frames divided by the total number of 

frames without bicyclists. The prescreening step efficiently reduces the sliding window 

searching region while maintaining the detection rate as the whole frame scanning. The 

resulted false positive rate is also reduced from 4.7% to 3.1%. Some of the detection results 

are shown in Figure 2.28. The horizontal lines are the detected bound of the ROI using the 

motion based prescreening. The red, green and blue bounding boxes stand for detections 

of front-side view, rear-side view and side view respectively. Two examples of tracking-

by-detection are shown in Figure 2.29, where side view and rear-side view bicyclists are 

captured at different distances.  

 

Figure 2.26 ROC curves of the pose-specific bicyclist detectors. Blue: Side view detector, 
Green: Rear-side view detector, Red: Front-side view detector. 
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Figure 2.27 Comparison result between the proposed detector and traditional HOG 
detector 

Table 2.7. Comparison result of the proposed method with and without prescreening 

 Detection 

Rate 

False 

Positive 

Rate 

Computation time (seconds 

per frame in average) 

Proposed method without 

prescreening 

88.1% 4.7% 0.21 

Proposed method with 

prescreening 

88.1% 3.1% 0.16 
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Figure 2.28 Detection examples of pose-specific bicyclist detector on naturalistic driving 
videos 

 

(a)  
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(b) 

Figure 2.29 Examples of tracking-by-detection of five-second bicyclist videos (a) rear-
side view (b) side view 

To show how the proposed bicyclist detector interact with pedestrian detector, we ran 

experiment on a test set including both bicyclists and pedestrians. We used the pedestrian 

detector proposed in chapter 2.2 to detector pedestrians. We retrained the pedestrian 

detector with added bicyclist samples in the negative training set. We also retrained the 

multi-pose bicyclist detector with only the lower body to potentially reduce false 

acceptance from pedestrians. 
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The test set in last section was used again in this experiment. 42 bicyclists and 74 

pedestrians are labeled in the test set. We ran the retrained bicyclist detection and 

pedestrian detector frame by frame respectively and integrated based on the detection score. 

The detection results is shown in Table 2.8. The detection rate of the bicyclist reduced 

slightly compared to the previous experiment due to the mis-detection as pedestrians. No 

mis-detection of pedestrians as bicyclists was reported due to the lower body of the 

bicyclist was used for training.  

Table 2.8 Results of the experiment with bicyclists and pedestrians combined 

 Detection rate False positive rate Mis-detected as 
bicyclist/pedestrian 

Pedestrian detector  60/74 1.52% 0 
Bicyclist detector 33/42 5.4% 4 

 

C. Experimental results of the learned deep network 

The proposed deep network and learned features using bicyclists in naturalistic driving data 

is explored and compared with the feature engineering methods. For simplicity, only the 

rear-side view and the front-side view samples were used as training and test set.  

 

Figure 2.30 The first layer AE learned features using natural images 
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The randomly sampled blocks from natural images are directly used as the input to a single 

layer AE to learn the hidden layer parameters. The learned result served as the first layer 

filter of the network. Sparse constraints were applied to the AE and a single activation was 

constrained on the hidden layer. The trained weights of the learned 25 filters are visualized 

in Figure 2.30, where we can see the outputs are wavelet form representations which 

implies edge detection is important.  

 

Figure 2.31 The second layer AE learned features using bicyclist images 

A second layer AE was learned on top of the first layer node trained before. The second 

layer activation is shown in Figure 2.31, where each of the 16 node outputs is actually a 

linear combination of the first layer output. The second layer node weights are learned 

using patches from naturalistic driving data and the positive bicyclist training sample. It 

shows higher level representation of the image, such as the part of the bicycle wheel. 

Based on the 2nd Layer node activation weights trained above, a 2-stacked convolution 

network is trained and a round of fine-tuning using the labeled training set is carried out. 

The learned features from this trained network were served as the feature extractor of the 

bicyclists and a supervised ELM is learned on top of the 2-stacked convolution network. 

The test results on the test set are shown in Figure 2.32. We compared the convolution 

network with different layers and the proposed two-stage bicyclist detector using hand 

engineered features. We also compared to results with gradient image and without gradient 
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image as initial input. The gradient image achieves much better results than just using raw 

image and 2 layer network outperforms the single layer counterpart respectively. The result 

of the 2-stack deep learning using the gradient image is close to the HOG method, which 

is promising, in that just two layers of AEs are learned. For simplicity, only rear-side view 

and front-side view are used for the test so that no warping is needed. We also trained a 2-

stacked convolution network on top of HOG features. The resulting detector achieved 

comparable performance to the two-stage detector, which on the other side shows the 

effectiveness of HOG in representing bicyclist. Table 2.9 shows a breakdown of the two 

stage detector and the convolution network. The running time of the deep network is 

acceptable due to the reducing number of windows to classify after the stage I false window 

reduction. 

To further evaluate the 2-stacked convolution network, the entire test set sampled from 

TASI 110-car naturalistic driving dataset contains about 900,000 frames with 42 labeled 

bicyclists was tested using both the proposed two-stage detector in chapter 2.4 and the 

learned 2-stacked convolution network. The gradient image was used for the convolution 

network for optimal results. A frame-by-frame detection with window-based evaluation 

metric was applied. The window based true positive rate versus false positive rate was 

reported. A “hit” window was counted when the ratio between the intersection of the 

detection window and the labeled window and the union of the detection window and the 

labeled window is greater than 50%.  The comparison result is shown in Figure 2.33.  
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Figure 2.32 Comparison results on test set using only rear-side and front side bicyclists 

 

Figure 2.33 Comparison results on naturalistic driving data 



77 
 

 

 

 

Table 2.9. Computation time breakdown of the proposed two-stage detector and the 
convolution network 

 Stage I cascaded classifier 

(seconds per frame in average) 

Stage II 

Multi-pose detector(seconds per 

frame in average) 

The proposed 

two-stage 

detector  

 

0.05 

 

0.16 

2-stack 

convolution 

network 

 

0.05 

 

0.41 

 

Because of the nature of problems to recognize several poses of bicyclists against 

changeable background, the HOG based features coupled with strong contrast results in a 

high ROC, with the area under the curve at 0.983. A deep network has not reached this 

level and the best area under the ROC curve is 0.968, though a controlled process with 

supervised learning begins to converge to the HOG results, as seen in Figure 15. The deep 

network middle layer output shows reasonable features, close to edges and bicyclist 

primitives in the recognition. The deep network middle layer output shows reasonable 

features, close to edges and bicyclist primitives in the recognition. In deep learning, edge 

based data gains better results than color data while convolution network built on HOG 

features achieved comparable results to the proposed detector, which reflect the correctness 

of using HOG features to detect variety of clothes of bicyclists in a changeable background. 

It could be helpful to improve the performance of the deep network by stacking more 

convolution layers and pulling layers. However, due to the limited number of the bicyclist 

samples in our study, the very deep network is unlikely to converge. In future, we plan to 

collect and generate more bicyclists training samples to train deeper nets. 
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3. THE PROPOSED BOTTOM-UP IMAGE-BASED PEDESTRIAN 
CLUTTER METRIC 

3.1 Definition of Image Clutter Metric 

Many researchers have studied visual clutter and given their understandings. Clutter is a 

term borrowed from radar image referring to any signal in a scene that is of no interest to 

the observer [40]. The definition of clutter is mostly related to the visual search/detection 

task therefore Bhanu [100] first defined clutter as an object which resembles the target.  

While the consensus of background clutter is still unclear and varied from task to task, the 

effect of clutter on target acquisition performance has been widely studied. There are 

generally two types of operational definition for visual clutter. The first category of 

definition relates the clutter with the degradation of visual task performance. It is believe 

that the clutter acts as a distractor during the target search phase and reduce the accuracy 

during the target detection task. Among them, Rosenholtz et al. [3] particularly studied the 

effect of clutter on degradation of visual tasks and defined visual clutter as a situation where 

excessive visual information with high variability may lead to the degradation of visual 

task performance. The second type of definition relates the clutter with set size [13] or the 

“crowdedness” [101] of the scene by building the correlation between the “object” number 

in a scene with searching efficiency. 

Based on the aforementioned two different types of understanding of visual clutter. The 

computational visual models can be roughly divided into two categories: feature space-

based model and set size-based model. The first category relies on building a mapping from 

image-based metric extracted from multiple feature spaces to the clutter level. The input 

signal is decomposed into multiple feature spaces and a subset of them is selected to 

measure the clutter intensity. The second category relies on counting the number of the 

objects in a scene and build a mapping from the set size to clutter intensity. Although it is 
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argued that the set size is difficult to quantify in realistic scenes, computer vision aided 

segmentation methods are usually applied to calculate the “object” numbers. 

Pedestrian detection within naturalistic driving scene is a complicated process which 

combines the vision perception and brain cognition, not a simple visual search task tested 

in building the above clutter metric. The clutter intensity in this case should be conditional. 

In another word, it should be both feature space based and target related. For example, a 

pedestrian may completely merge into the background if he/she has low contrast no matter 

how much information the background feature space may contain. A pedestrian with high 

local contrast may still be able to be detected promptly given a highly variant background. 

However, most existed clutter metric for visual search task does not consider the 

searching/detection target itself. Moreover, the feature space selection and weighting for 

general image may not applicable to naturalistic driving scene and a customized clutter 

metric is need for pedestrian clutter modeling. 

As we mentioned before, the limitation of the existed clutter metric and computational 

model for general visual task does not suitable for modeling the visual clutter effect on 

pedestrian detection from naturalistic driving. We split the clutter metric into a complexity-

based global environmental clutter measure and a contrast-based local pedestrian clutter 

measure. 

3.2 Global Environmental Clutter (GEC) Measure 

3.2.1 Existing Global Clutter Metrics 

Global clutter metrics were developed to measure the overall complexity of the scene from 

physical image property without considering the cognitive assessment of the observer. The 

subjective ratings from human observer were usually compared with the objective clutter 

metric to build a reasonable model.  

Many global clutter metrics have been proposed during the past two decades. There is no 

agreement on which metric is best yet, therefore we explored several popularly used 

metrics before we proposed our customized metric for naturalistic driving data. 
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SW metric  

Schmieder and Weathersby [102] proposed to measure the scene complexity by computing 

the root mean square of the image intensity. In particular, SW metric computes the average 

of the variance within consecutive image blocks: 

 SW = �
1

M ∗ N��σ2i,j

N

j=1

M

i=1

 

(3.1) 

where M and N is the divided grid number of horizontal and vertical directions within the 

entire image. σi,j is the variance of the pixel intensity computed within block i, j . 

POE metric 

The probability of edge (POE) metric [103] emulates the human vision system which is 

sensitive to edges. It calculates the edge map using image preprocessed by difference of 

offset Gaussian filters. Canny edge detector is used with predetermined thresholds. The 

POE clutter is the average of edge point numbers counted from the edge map block. Given 

threshold T and block numberi, the POE metric is calculated as 

 POE = �
1
N� POE𝑇𝑇,𝑖𝑖

2
N

i=1

 
(3.2) 

where POE𝑇𝑇,𝑖𝑖 is the count of edge number within block i given threshold T. 

Feature Congestion (FC) 

Rosenholtz et al. [3] studied the visual clutter by assuming the clutter in a local part of a 

display should be determined by the local variability of several key features. The Feature 

Congestion model [34] relies on calculating the target saliency and the local variability at 

multiple scales. Color, orientation and luminance contrast are selected as the features to 

measure the target saliency versus the local variability.   
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Subbanding Entropy (SE) 

Subbanding Entropy [3] is based on the notion that clutter level should be reflected by the 

bits required for subband image coding. To compute the subbanding entropy, the image is 

first converted into Lab and then decomposed into wavelet subbands using steerable 

pyramid [35]. The generated wavelet coefficients are binned and the entropy is calculated 

within each subband. The final score is a weighted sum of the entropies computed in 

luminance and chrominance channels. 

C3 metric 

More recently, Lohrenz et al. [36] proposed their C3 (Color-Cluster Clutter) model of 

clutter, which derives clutter estimates by combining color density with global saliency. 

Color density is computed by clustering into polygons those pixels that are similar in both 

location and color. Global saliency is computed by taking the weighted average of the 

distances between each of the color density clusters. 

3.2.2 The Proposed Global Environmental Clutter Metric 

 

Figure 3.1 Region of interest (ROI) of the GEC measure 
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Construct the feature space 

As we mentioned before, the image clutter metrics relies on building the feature spaces and 

generating a mapping from the extracted feature set to clutter intensity. However, the 

mapping of the existing metrics are usually empirical selected and case sensitive. Moreover, 

the feature selection and mapping could be varied from different types of scenes. For 

instance, a monochrome city map image would emphasize the edge map more than other 

feature spaces while the clutter of a color world map image would better measured by color 

variance. In another word, such mapping should be scene-specific and task-specific to best 

reflect the true human vision perception.   

To build the specific mapping between the clutter score and naturalistic driving scene, 

candidate feature maps have to be constructed first. We propose the GEC metric to directly 

measure the overall clutter score of the entire image based on several candidate features. 

We then build the mapping through human perception inspired study. The regions of 

interest (ROI: region inside red box shown in Figure 3.1) is first selected from the full view 

to exclude the sky and driving panel parts which should not be the pedestrian search region 

during driving. The upper bound of the ROI is set at a fixed position to get rid of the sky 

and the driving information recorded by the camera shown on the upper left corner of the 

video to emulate the actually view while the driver is driving.  

The global environmental clutter (GEC) feature vector is select as: 

 𝑖𝑖𝐺𝐺𝐺𝐺𝐶𝐶 = [𝜌𝜌𝐺𝐺𝐺𝐺 𝜎𝜎𝐺𝐺𝐿𝐿 𝜎𝜎𝐺𝐺𝐶𝐶   𝜌𝜌𝐺𝐺𝑀𝑀] 𝑇𝑇 (3.3) 

where 𝜌𝜌𝐺𝐺𝐺𝐺  is the global edge density,  𝜎𝜎𝐺𝐺𝐿𝐿 is the global luminance variation, 𝜎𝜎𝐺𝐺𝐶𝐶  is the 

global chrominance variation and 𝜌𝜌𝐺𝐺𝑀𝑀  is the global motion density. We will illustrate the 

rationale and implementation detail of each feature next.    

• Global Edge density (𝜌𝜌𝐺𝐺𝐺𝐺) 

Global edge density has been proven to be a good indicator of the global clutter level 

correlated to human vision perception. Oliva et al. [33] proposed to use canny edge 
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density as a clutter feature which achieves good correlation with human perception. 

Therefore we use a canny detector with fixed threshold range to detect edge to fairly 

compare edge density of different frames acquired in different driving scenarios, 

illumination and weather conditions. The low threshold is set as 0.11 and high threshold 

is set to be 0.27 respectively, following the parameter selection in [3]. Considering the 

low-pass characteristic of human vision system, a 7 by 7 Gaussian filter is applied to 

each image before the Canny detector to remove excess high frequency image 

component to which human vision system are not very sensitive. The final edge density 

is calculated as the ratio between the number of edge pixels and the total number of 

pixels in the frame. 

• Global Luminance variation (𝜎𝜎𝐺𝐺𝐿𝐿) 

Global luminance variation is computed in a block way on the luminance channel of 

L*a*b* to measure the luminance change of the entire image. A luminance variation 

matrix with the same size of the entire image is pre-generated. A 9 by 9 sliding window 

slides all over the image and the standard deviation of the luminance value within that 

9 by 9 window is computed as the entry of the luminance matrix corresponding to the 

center pixel of the sliding window. The final luminance variation is the mean value of 

the luminance matrix.   

• Global Chrominance variation (𝜎𝜎𝐺𝐺𝐶𝐶) 

Global chrominance variation is computed on two chrominance channels a and b 

respectively similar to the way of computing luminance variation.  The final 

chrominance variations is calculated as  

 𝜎𝜎𝐺𝐺𝐶𝐶 = �𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑏𝑏2 (3.4) 

where 𝜎𝜎𝐺𝐺𝐶𝐶  is the final chrominance variations, 𝜎𝜎𝑎𝑎  is the chrominance variations of 

channel a and 𝜎𝜎𝑏𝑏 is the chrominance variations of channel b. 
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• Global Motion density (𝜎𝜎𝐺𝐺𝐶𝐶) 

Global motion density is optional feature for video input only. It is computed as the 

average magnitude of the motion vector of the entire frame. 

The global environmental clutter score is a function of edge density, luminance variation, 

chrominance variation and optional motion density. An example of the four feature maps 

and computed features are shown in Figure 3.2. The higher GEC score means higher global 

clutter. 

 

Figure 3.2 Global environmental clutter features computed from four feature maps 

To derive the mapping function from the candidate feature to the GEC score which 

emulates the true human visual perception, a human perception inspired study was 

conducted. A labeled behavioral ground truth set containing naturalistic driving data is 
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collected through the GEC exploratory experiments. The mapping and related parameters 

of the GEC are learned from the objective image metric and behavioral ground truth. 

Therefore our method is interdisciplinary, applying the image feature extraction algorithm 

on naturalistic driving data for human clutter perception task. We now introduce the 

designed experiment of human perception inspired study for GEC metric. 

Experiment 3.1: Global environmental clutter rating for naturalistic driving image 

This experiment focuses on exploring how subjects perceive the overall clutter level of a 

given image taken from the naturalistic driving scenarios. A set of images were displayed 

to the human subjects and the perceived subjective ratings of global clutter were collected. 

The set of images were divided into a training set and a test set. The training set is used to 

learn the mapping function and related parameters and the test set is used to evaluate the 

learned GEC metric.  

Method    

Participants 

A total of 12 subjects with age from 22 to 33 and driving experience from 2 years to 11 

years participated in the GEC rating experiment for naturalistic driving images. All had 

normal or corrected-to-normal vision, by self-report, and were not guided with any clutter 

rating judgment standard before. 

Stimuli 

Stimuli consisted of 100 1280×720 images selected from the TASI 110-car naturalistic 

driving dataset. The selected image set includes data sampled under different driving 

scenarios, illumination conditions and weather conditions. The TASI 110-car naturalistic 

driving dataset is pre-labeled and the category information is shown below: 

• Driving scenario: urban (downtown area)/rural/school area/shopping 

area/community 
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• Illumination condition: daytime/dusk/dawn/night with street light/night with head 

light   

• Weather condition: clear/cloudy/fog/rain/snow. 

The percentage of each category is in accordance with the distribution of the entire TASI 

110-car naturalistic driving dataset. 

Design 

The global clutter level naturalistic driving images were rated by subjects based on their 

true perception and driving experience. The images were shown in random order to reduce 

the effects of order or potential bias. For instance, a high-cluttered image could possibly 

receive higher rate if shown after a series of low-cluttered images and vice versa. No 

definition of clutter was given to the subjects while they were asked to come up with their 

own definitions and be consistent through the entire experiment. The GUI of Experiment 

3.1 is shown in Figure 3.3. 

Procedure 

The experiment uses naturalistic driving images taken from an in-car camera. Each subject 

was asked to sit in front of a computer monitor. A series of naturalistic driving images was 

shown on the monitor and the subject was asked to input his/her perceived clutter level in 

the designated box. The rating experiment was carried out using a graphic user interface 

written in MATLAB running on a Windows 7 PC with a 19-inch LCD monitor. The actual 

display size of the image region is 20.1×11.3 cm2. The rating is set to be from 1 to 5, with 

1 stands for the lowest clutter level and 5 stands for the highest. Before the experiment set, 

a practice set with baseline images from different scenarios were given to each subject. The 

purpose of the practice set and the baseline images was not only to ensure each subject 

understands the rating process, but also to help subjects build reasonable rating rules with 

respect to different scenarios on their own. Only the results of experiment set were recorded. 

During the experiments, subjects were free to go back to the images they had already rated 

and rerated them if they felt they had made a mistake.  
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Figure 3.3 The GUI of the GEC rating experiment for naturalistic driving image 

Experiment 3.2: Global environmental clutter rating using naturalistic driving videos 

This experiment focuses on exploring how subjects perceive the overall clutter level of a 

given naturalistic driving videos, which is closer related to the true perception of driver 

than using images. Motion features were extracted from the naturalistic driving video and 

motion map was added to the feature spaces. The collected results will be served as the 

ground truth for our video based pedestrian clutter analysis.  

Method    

Participants 

The same group of Experiment participated this study. 
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Stimuli 

50 naturalistic driving video clips with 15 seconds long each were sampled from the TASI 

110-car naturalistic driving dataset and similar to Experiment 4.1, the distribution of the 

selected set was set to match that of the entire dataset. Similarly the 50 video clips were 

divided into a training set and a test set for the mapping function learning.  

Design 

Similar to Experiment 3.1, the global clutter level naturalistic driving video clips were rated 

by subjects based on their true perception and driving experience. The rating experiment 

was carried out using a graphic user interface written in MATLAB running on a Windows 

7 PC with a 19-inch LCD monitor. The actual display size of the image region is 20.1×11.3 

cm2. The 15 seconds video clips are extracted from the large scale driving data set such 

that the acquisition vehicles may have potential conflicts with the pedestrians. One video 

clip was shown in the computer monitor screen each time for subjects to rate. The subject 

was asked to input his/her perceived clutter level in the designated box. The videos can be 

paused and resumed by subjects at any time and can be played at multiple frame rate. Again, 

the videos were shown in random order to exclude potential bias. The GUI of Experiment 

3.2 is shown in Figure 3.4. 

Procedure 

The 15 second potential conflict naturalistic driving video clips were shown in the 

computer monitor and the subjects were free to view the videos as many times as they want. 

The subjects were asked to input his/her perceived clutter level in the designated box below 

the video clip. Again, the rating is from 1 to 5, 1 stands for the lowest clutter level and 5 

stands for the highest. Similar to experiment, a practice set is prepared for subjects before 

the test set to help them get familiar with the rating process and build initial impression 

about the clutter level rating using video clips. Only the clutter level ratings of the test set 

were recorded.   
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Figure 3.4 The GUI of the GEC rating experiment for naturalistic driving video 

Learn the mapping function 

The training set collect from the GEC rating experiments were used to learn the mapping 

function from bottom-up image-based feature to GEC level obtained by subjective rating. 

The test set was only used for model evaluation and comparison with other existing clutter 

metric. The parameter learning and tune were through cross-validation using the training 

set only. A candidate set of regression and learning techniques were selected and the 

corresponding mapping function or model was learned and tuned. The results were further 

evaluated by the test set.  

Linear/non-linear Regression [104]: the most direct method is to applied regression 

method to the training data collected from exploratory study. Linear regression, polynomial 

regression and logistic regression were used to find the best regression function and 

parameters. Suggested by [105], non-linear regression was also tested to check the possible 
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fitting model using the Steven’s power law [106] between the objective intensity and the 

perceived magnitude. 

Support Vector Machine [107]: SVM is popularly used in object detection, classification 

and machine learning applications. It aims at finding the best hyper plane to separate 

different classes. Multi-class SVM was used to derive the mapping. Linear SVM and 

kernel-based SVM were evaluated. 

Single Layer Feed-forward Neural Network (SLFN): neural network is also a well-known 

machine learning algorithm which has been developed into a variety of forms. Among the 

family of SLFNs, Extreme Learning Machine (ELM) has been proposed recently and show 

better performance than traditional SLFN in multiple tasks. Huang et al.[94] theoretically 

and experimentally proved that ELM can be used as a unified learning platform which does 

not need to tune the hidden layer parameters as traditional Single layer neural do. Instead 

of using the time-consuming gradient descent based learning method; ELM relies on 

computing the Moore-Penrose generalized inverse of the hidden layer matrix. Later, Huang 

et al. shows that dual optimization objective functions of ELM is consistent with that of 

SVM while ELM searches optimal solution in a greater domain with faster implementation. 

Results 

The training set was first used to learn the best mapping function and tune the parameters 

when necessary using cross validation. The ground truth of each image/video clip was 

calculated by taking the median subjective ratings of all participants. The reason that we 

preferred median to mean was to eliminate the effect of outliers. The ground truth was 

normalized into [0, 1] range as a numerical value instead of a categorical value for 

classification methods. The rooted mean square error (RMSE) between the predicted value 

and the ground truth of the validation set (i.e., residuals) were assessed for different 

regression methods. In addition, a better fit of the regression does not necessarily lead to 

a better correlation between the GEC score and the human perceived clutter level. 
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Therefore the correlation between the predict GEC value and the subjective ratings were 

also compared to find the best predictor.  

We first computed the intra-class correlation coefficient (ICC) [108] by averaging the 

Pearson’s correlation between all pairs of subjective ratings. The ICC of all 12 subjects is 

0.702, which tells us that there was good agreement among all the subjects. This also shows 

that the subjective ratings can be served as a reliable ground truth for human perception of 

global clutter so that the different computational GEC metrics can be meaningfully 

compared. 

 

Figure 3.5 Correlation of the proposed GEC compared with other existing methods 

Table 3.1 shows the results of the mapping function using different regression models. 

RMSE and R values are listed and compared. We also computed the p-value and all of the 

tests have p-value less than 0.05 which means the correlation is statistically significant. 

The non-linear regression using the power function achieves best fit and correlation results. 

We therefore selected it as the mapping function for GEC metric. 
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The proposed GEC metric was also compared with other well-known global clutter metrics 

mentioned in Chapter 3.2.1. The Pearson’s correlations (R) between the image-based 

computed metrics and the median of subjective ratings of all test data were computed. The 

comparison result is shown in Figure 3.5. The SW (0.41), POE (0.26), FC (0.4) and C3 

(0.21) metrics are all have weak correlations with the subjective ratings while the SE (-

0.51) has a negative correlation, which means none of these existing metrics can predict 

the true human perception of global clutter of naturalistic driving scene very well. All the 

tests have p-value less than 0.05. In contrast, the proposed GEC (0.62) shows good 

correlation with the true human clutter perception and outperforms the existing global 

clutter metrics. Since none of the listed existing metrics considered the motion feature 

space, to be fair, we also computed the GEC without the motion channel (0.52). The GEC 

without motion is also correlated well and can better predict the global clutter perception.       

 

Figure 3.5 Correlation of the proposed GEC compared with other existing methods 
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Table 3.1 Results of regression models of GEC metrics 

Regression model RMSE R p-value 

linear 0.21 0.50 0.01 

logistic 0.22 0.48 0.01 

Non-linear (power) 0.17 0.62 0.01 

SVM 0.22 0.45 0.02 

ELM 0.20 0.51 0.02 

3.3 Local Pedestrian Clutter (LPC) Measure 

Local clutter metric measures the clutter level in local region around the target. It is 

essentially measuring the difference or contrast between the target and the local 

background. Similar to global clutter metric, feature spaces usually are built and a 

difference function is designed to calculate feature contrast.  

3.3.1 Existing local clutter metrics 

Several popularly used local clutter metrics have been proposed for years to measure the 

target-to-background contrast in general target search task for both natural images and 

synthetic images.  

Root-sum-of-squares (RSS) metric  

The RSS metric [109] is defined as 

 RSS = �(µ𝑇𝑇 − µ𝐵𝐵)2 + 𝜎𝜎𝑇𝑇2 (3.5) 

where µ𝑇𝑇 and µ𝐵𝐵are the mean intensity of the target and background respectively and σ𝑇𝑇is 

the standard deviation of the target intensity.   
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Doyle metric 

In addition to RSS metric, the Doyle metric [110] measures the difference between the 

target and background in terms of both mean and standard deviation. The Doyle metric is 

defined as: 

 Doyle = �(µ𝑇𝑇 − µ𝐵𝐵)2 + (σ𝑇𝑇 − σ𝐵𝐵)2 (3.6) 

where σ𝐵𝐵 is the standard deviation of the background intensity. 

Although the above existing local clutter metrics are easy to compute and widely used for 

visual clutter measure for target search tasks, they have several limitations when applying 

to the pedestrian perception task during naturalistic driving. First, most feature spaces 

involved in the clutter metric are selected empirically using synthetic image and target 

search experiments while perceiving pedestrian from naturalistic driving scene could be 

very different and a different set of feature spaces need to be explored. Second, the 

difference function treated all feature spaces equal while this may not be the case for 

pedestrian perception within naturalistic scene. Third, the target feature vector usually 

extracted from the entire bounding box around the target, which is rough and inaccurate. 

Refined target segmentation is required to accurately extract the feature of the target. 

Therefore we proposed a local pedestrian clutter (LPC) to compensate the above issues 

next  

3.3.2 The Proposed Local Pedestrian Clutter Metric 

Given the limitations of the existing local clutter metric discussed above, the proposed LPC 

metric for pedestrian perception within naturalistic driving scene was explored. Similar to 

GEC metric, the feature spaces were first constructed and the human perception inspired 

study is explored to learn the optimal combination of the different features. A difference 

function was then applied to generate the LPC level. Instead of manually label the target 

area as most previous work did, the pedestrian detection system we proposed for large scale 

naturalistic driving data was applied to automatically locate the pedestrians within the 
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naturalistic driving scene. To further extract the local pedestrian clutter feature accurately 

from the pedestrian region, an active contour based pedestrian region refinement was 

implemented before feature space construction and feature extraction. 

Pedestrian locating  

The proposed pedestrian detection system in chapter 3 is implemented to detect frames 

with pedestrians within billions of naturalistic driving video frames. Some of the locating 

examples are shown in Figure 3.6. The detected result will be verified and the coordinates 

of the accurately located pedestrian window (the red bounding box) will be input into the 

LPC measure module such that a center-surround LPC measure method could be applied 

to the pedestrian region.  

 

Figure 3.6 Examples of pedestrian locating 

Pedestrian contour refinement and cloth extraction 

To achieve accurate center-surround LPC measure region, pedestrian cloth region needs to 

be extracted as accurately as possible. In order to accurately locate pedestrian cloth region, 

in addition to the two-stage sliding window detection illustrated above, an active contour 

[111] based pedestrian contour generation is further applied to the detected and verified 

pedestrian windows. A deformable model is initiated around the actual pedestrian contour 



96 
 

 

 

 

and energy minimization is used to evolve the contour. The energy function can be written 

as: 

 
𝐸𝐸(𝐶𝐶) = 𝛼𝛼� |𝐶𝐶′(𝑒𝑒)|2𝑑𝑑𝑒𝑒

1

0
+ 𝛽𝛽� |𝐶𝐶′′(𝑒𝑒)|2𝑑𝑑𝑒𝑒

1

0

−  𝛾𝛾� |∇u0(𝐶𝐶(𝑒𝑒))|2𝑑𝑑𝑒𝑒
1

0
 

(3.7) 

where the first two integrals stand for the internal energy which control the contour 

smoothness and the third integral is the external energy which evolves the contour to the 

object.  𝐶𝐶′(𝑒𝑒)  is the tangent of the curve and 𝐶𝐶′′(𝑒𝑒)  is normal to the curve. The edge 

detector function can be defined as: 

 𝑔𝑔�∇u0(𝑥𝑥,𝑦𝑦)� =  
1

1 + |∇Gσ(𝑥𝑥,𝑦𝑦) ∗ u0(𝑥𝑥, 𝑦𝑦)|𝑝𝑝 
(3.8) 

where Gσ is a Gaussian smooth filter and ∇u0 is the image gradient. The generated contour 

defines the pedestrian mask which will be used to compute pedestrian clutter features, 

including local luminance variation and local chrominance variation. 

In general, a pedestrian has a relatively homogenous cloth region in color and luminance 

intensity. The color and luminance contrast between the homogenous cloth region and the 

surrounding background is intuitively more accurate and meaningful corresponding to 

human visual attention model. K-mean color clustering based cloth region segmentation 

[112] is then applied to the detected pedestrian window to segment the cloth region. In 

particular, K color subsets are generated to minimize the within-cluster distance: 

 𝑎𝑎𝑒𝑒𝑔𝑔𝑎𝑎𝑖𝑖𝑛𝑛𝑠𝑠� � ‖𝐼𝐼(𝑥𝑥, 𝑦𝑦) − 𝜇𝜇𝑐𝑐‖2
𝐼𝐼(𝜕𝜕,𝑦𝑦)∈𝑆𝑆𝑛𝑛

𝑘𝑘

𝑐𝑐=1

 
(3.9) 

where 𝑆𝑆 = {𝑆𝑆1, … ,𝑆𝑆𝑘𝑘} is the k clusters, 𝐼𝐼(𝑥𝑥, 𝑦𝑦)is the chrominance pixel value and 𝜇𝜇𝑐𝑐 is the 

mean value of each cluster. The final cloth mask is an intersection of the pedestrian mask 

by active contour and cloth region derived from K-mean color clustering algorithm. 
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Figure 3.7 Pedestrian contour refinement and cloth extraction result. From left to right: 
pedestrian contour, cloth color clustering, pedestrian target mask. 

One example of the refined contour and extract cloth color cluster is shown in Figure 3.7. 

The left image shows the result of the active contour generation. The middle image is the 

color cluster result. Here we use k = 4 which is determined empirically and achieve good 

result in general. The right image is the pedestrian-background mask which will be used 

for later feature extraction. 

Local Pedestrian Clutter Feature Extraction 

Local pedestrian clutter is measured by the contrast between the pedestrian area and the 

surrounding background area using low-level image based features. In particular, the 

contrast is represented by the distance between the feature vectors extracted from 

pedestrian area and background area respectively. The background window is defined as a 

larger surrounding window with twice the area of the detected pedestrian window (Figure 

3.8). We illustrate each proposed feature in detail next. The local pedestrian clutter (LPC) 

score is defined as: 

 𝐿𝐿𝐿𝐿𝐶𝐶 = 1 −
∆(𝑇𝑇,𝐵𝐵)
‖∆(𝑇𝑇,𝐵𝐵)‖ 

(3.10) 

where T is the 15 dimensional feature vector [𝑇𝑇1, …𝑇𝑇15]𝑇𝑇 of pedestrian area and B is the 

15 dimensional feature vector [𝐵𝐵1, …𝐵𝐵15]𝑇𝑇 of background area. ∆ measures the distance 

between the two vectors. In our current implementation, the saliency distance [3] is used: 
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 ∆(𝑇𝑇,𝐵𝐵) =  ��𝑖𝑖(𝑇𝑇) − 𝑖𝑖(𝐵𝐵)�𝑇𝑇Σ−1(𝑖𝑖(𝐵𝐵))(𝑖𝑖(𝑇𝑇) − 𝑖𝑖(𝐵𝐵)) (3.11) 

where 𝑖𝑖 is the mapping function we want to learn from the human perception inspired 

study and Σ stands for the covariance matrix. Note that for the last four features, we use a 

bin size of 16 while calculating the distance, i.e. the luminance intensity and chrominance 

intensities are regrouped into 16 intensity levels for the entire 0 to 255 range. The local 

pedestrian clutter score is also a normalized value from 0 to 1. The higher the local 

pedestrian clutter is, the more cluttered the pedestrian is, suggesting more difficult to 

perceive the pedestrian from the background.   

 

Figure 3.8 Illustration of background window and pedestrian window 

• Local Edge density (𝜌𝜌𝐿𝐿𝐺𝐺) 

The local edge density is calculated the same way as computing global environmental 

clutter score within the pedestrian window and within the region generated by subtracting 

pedestrian window from the background window respectively. 

• Edge distribution (𝐻𝐻𝐿𝐿𝐷𝐷) 

Local edge distribution is a histogram of edge magnitude binned by the edge orientation 

similar to the idea of HOG. Two distributions are computed within the same two regions 
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defined in computing edge density. Orientation bin number is empirically set as 9 as the 

HOG representation. 

• Local luminance variation (𝜎𝜎𝐿𝐿𝐿𝐿) 

Local luminance variation is computed within the pedestrian mask defined by the 

pedestrian contour and within the region generated by subtracting pedestrian mask region 

from the background window respectively. It is computed in the same way as that of the 

global environmental clutter score measure. 

• Local chrominance variation (𝜎𝜎𝐿𝐿𝐶𝐶) 

Local Chrominance variation is computed within the two regions defined in computing 

local luminance variation using the same way as the chrominance variation in global 

environmental clutter score measure. 

• Mean luminance intensity (𝜇𝜇𝐼𝐼) 

Mean luminance intensity is computed within the cloth mask region and within the region 

generated by subtracting cloth mask region from the background window. The average 

luminance intensity is calculated using the L channel of Lab representation. 

• Mean chrominance intensity (𝜇𝜇𝐶𝐶) 

Mean chrominance intensity is computed within the two regions defined in computing 

mean luminance intensity respectively. The average chrominance intensities are calculated 

using a and b channels of Lab representation respectively. 

• Mean motion magnitude (𝜇𝜇𝑚𝑚) 

Mean motion magnitude is computed within the two regions defined in computing mean 

luminance intensity respectively. The average magnitude of motion vector within the 

defined regions will be computed only for video based stimuli. 
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Similar to GEC metric, a mapping function 𝑖𝑖  in Equation 3.11 was learned given the 

extract features and the results of the human perception inspired study for local pedestrian 

clutter. The same set of regression/learning methods of GEC was used for LPC. Both 

images and videos were used as stimuli for the LPC rating experiments. The LPC 

experiments are introduced next. 

Experiment 3.3: Local pedestrian clutter rating for naturalistic driving image 

The pedestrian clutter level perception test was designed to collect the true perception that 

how difficult pedestrians in naturalistic driving scenarios can be perceived. The pedestrian 

clutter result collected from the subjects will be treated as the ground truth for the mapping 

function learning. The most correlated features (could be extracted from local pedestrian 

window, global feature map and different saliency maps) with true human perception will 

be learned and assigned appropriate weights based on the analysis of the study results.   

Method    

Participants 

The same group of subjects in Experiment 3.1 attended this study. 

Stimuli 

The stimuli in this experiment were naturalistic driving images which contain one or 

multiple pedestrians. The same set of test images as Experiment 3.1 was used. 

Design 

The stimuli in this experiment were naturalistic driving images which contain one or 

multiple pedestrians. The pedestrian clutter level was subjectively rated by each subject 

based on their perception of the pedestrians. A red box was shown around the pedestrian 

area to indicate the target pedestrian for rating. The red box would disappear after three 

seconds therefore no artifacts would affect the pedestrian clutter perception.  The images 

were shown in random order to reduce the effects of order or potential bias. 
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Similarly, each subject was asked to input the ratings in the designated box. 1 stands for 

the lowest pedestrian clutter, i.e. easiest to detect the pedestrian by naked eyes and 5 stands 

for the highest pedestrian clutter, i.e. most difficulty to detect the pedestrian by naked eyes. 

The GUI of Experiment 3.3 is shown in Figure 3.9.  

Procedure 

The experiment uses naturalistic driving images taken from an in-car camera. The rating 

experiment was carried out using a graphic user interface written in MATLAB running on 

a Windows 7 PC with a 19-inch LCD monitor. The actual display size of the image region 

is 20.1×11.3 cm2. A series of naturalistic driving images were shown on the monitor. Each 

subject was asked to rate 100 images with respect to the local target pedestrian area based 

on their perception and understanding of clutter. Before the test set, a practice set was given 

to each subject. The purpose of the practice set and the baseline images was not only to 

ensure each subject would understand the rating process, but also to help subjects build 

reasonable rating rules with respect to different scenarios on their own. Only the results of 

the test set were recorded.  

 

Figure 3.9 The GUI of the LPC rating experiment for naturalistic driving image 
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Experiment 3.4: Local pedestrian clutter rating for naturalistic driving video 

This experiment focuses on exploring how subjects perceive the local pedestrian clutter 

level of a set of given naturalistic driving video, which is closer related to the true 

perception of driver than using images. Pedestrian motion and driver pedestrian 

interactions would be important additional factors to affect the local pedestrian perception 

difficulty.  

Method    

Participants 

The same group of subjects in Experiment 3.1 participated this study. 

Stimuli 

The stimuli in this experiment was 15 seconds long naturalistic driving videos which 

contain one or multiple pedestrians. It was the same experiment set as Experiment 3.2 

Design 

The pedestrian clutter level was subjectively rated by each subject based on their perception 

of the pedestrians. One video clip was shown at one time on the monitor screen. A red box 

was shown around the pedestrian area to indicate the target pedestrian for rating. The red 

box was only last for 3 seconds and was removed after that without adding artifacts to the 

clutter rating.  The subject can replay the videos as many times as they want to make sure 

they confirmed the pedestrian to rate. The videos also can be played at multiple frame rates 

and paused at any time.  Similarly, each subject input the subjective rating from 1 to 5 for 

each video in designated box. 1 stands for the lowest pedestrian clutter, i.e. easiest to detect 

the pedestrian by naked eyes and 5 stands for the highest pedestrian clutter, i.e. most 

difficulty to detect the pedestrian by naked eyes. Rated videos can be acessed later and the 

ratings can be modified if the subject. Again the videos were shown in random order to 
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reduce the effects of order or potential bias. The GUI of Experiment 3.4 is shown in Figure 

3.10.   

Procedure 

The experiment uses naturalistic driving videos taken from an in-car camera. Each subject 

was asked to seated in front of a computer monitor. The test videos was shown on the 

screen one at a time in a random order. The rating experiment was carried out using a 

graphic user interface written in MATLAB running on a Windows 7 PC with a 19-inch 

LCD monitor. The actual display size of the image region is 20.1×11.3 cm2. Each subject 

was asked to rate the 50 videos with respect to the local target pedestrian area based on 

their perception and understanding of clutter. Similarly, before the test set, a practice set 

was given to each subject. Only the results of the test set were recorded. 

 

Figure 3.10 The GUI of the LPC rating experiment for naturalistic driving video 
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Learn the mapping function 

To learn the mapping function 𝑖𝑖 in Equation 3.11, the same set of regression and learning 

methods used in GEC mapping function learning was also tested and compared. The 

ground truth of the human local clutter perception was collected by Experiment 3.3 and 

Experiment 3.4. The training set and test set was divided the same as the GEC study. Cross 

validation was applied to tune the parameters of the SVM and ELM regression. 

Results 

Similar to GEC study, the training set was used to learn the best mapping function using 

cross validation. The test set was used to compare different regression methods and models. 

The human perceived local clutter ground truth of each image/video clip was calculated by 

taking the median subjective ratings of all participants to remove the effect of outliers. The 

ground truth was normalized into [0, 1] range as a numerical value instead of a categorical 

value for classification methods. The rooted mean square error (RMSE) between the 

predicted value and the ground truth of the validation set (i.e., residuals) were assessed for 

different regression methods. In addition, a better fit of the regression does not necessarily 

lead to a better correlation between the LPC score and the human perceived clutter level. 

Therefore the correlation between the predict LPC value and the subjective ratings were 

also compared to find the best predictor.  

Similarly, for LPC study we also computed the intra-class correlation coefficient (ICC) by 

averaging the Pearson’s correlation between all pairs of subjective ratings. The ICC of all 

12 subjects is 0.802, which showed good agreement among all the subject ratings. This 

also shows that the subjective ratings can be served as a reliable ground truth for human 

perception of LPC so that the different computational LPC metrics can be meaningfully 

compared. Table 3.2 shows the results of the mapping function using different regression 

models. RMSE and R values are listed and compared. We also computed the p-value and 

all of the tests have p-value less than 0.01 which means the correlation is statistically 

significant. All the regression models show good correlation with the human perception of 
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LPC. The non-linear regression using the power function achieves best fit and correlation 

results, again showing a power relation between the physical measure and the perceived 

intensity, which is in accordance to Steven’s power law.  

The proposed GEC metric was also compared with two other popularly used local contrast 

metrics mentioned in Chapter 3.3.1. The Pearson’s correlations (R) between the image-

based computed metrics and the median of subjective ratings of all test data were computed. 

The comparison result is shown in Figure 3.11. The RSS (-0.48) and Doyle (-0.50) both 

showed a negative correlations, which means neither of these existing metrics can predict 

the true human perception of LPC within naturalistic driving scene well. All the tests have 

p-value less than 0.01. The LPC metric correlates well with the true human perception. To 

be fair, we also compared the LPC using the image stimuli without incorporating the 

motion channel with RSS and Doyle metrics.        

Table 3.2 Results of regression models of LPC metrics 

Regression model RMSE R p-value 

linear 0.18 0.60 0.004 

logistic 0.17 0.58 0.005 

Non-linear (power) 0.12 0.72 0.004 

SVM 0.22 0.55 0.005 

ELM 0.18 0.59 0.004 
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Figure 3.11 Correlation of the proposed LPC compared with existing local contrast 
methods 

3.4 Example experimental results of GEC and LPC metrics  

3.4.1 Results on natural images 

We first evaluated our global clutter measure and local clutter measure on natural images. 

The two simple examples shown in Chapter 2 are evaluated to justify our approach. Figure 

3.12 shows the clutter measure results of the book and insects image respectively. The 

colored boxes represent the target area we used. The book image on the left has a much 

higher clutter score (0.518) than the insect image on the right (0.086), which is in 

accordance with human perception. On the other hand, the bright yellow book (Book 1) 

has much lower local clutter score (0.508) than the insect (0.851), suggesting a higher local 

saliency and less detection difficulty than the green insects, which is also a good reference 

and reflection of true human perception. The bright yellow book (book 1) on the left image 

has much lower local clutter score (0.508) than the dark brown one (0.913) (book 2), 

indicating an easier attention and perception, which is also a quite reasonable reference and 

reflection of the true human perception. 
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(a)                                         (b) 

Figure 3.12 Experimental results on natural images using the proposed measures. (a) 
local clutter scores of two books on the same global environment, and (b) local clutter 

score of insect is high even when the image’s global clutter score is low. 

 

Figure 3.13 An example comparison of GEC measure and SE measure 

We compared our task independent global environment clutter score with the Subband 

Entropy (SE) method [3] in Figure 3.13.  The much larger difference between the two 
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images of the GEC measure than SE measure shows that GEC score are more reasonable 

than SE score and more consistent with human perception. 

3.4.2 Example results on naturalistic driving data 

We next show the clutter measure results on naturalistic driving images. Figure 3.14 shows 

six examples of measured GEC and LPC using the test naturalistic driving data. Image 4 

and Image 5 are the same image and have the same global background with GEC score 

0.287. The GEC scores provide reasonable reference to the global clutter level although 

they are not very discriminative while comparing some similar driving scenes. However, 

the LPC score reflects the difficulty of pedestrian perception quite well compared to the 

GEC score. The pilot test and study on the naturalistic driving data shows that (1) low 

contrast image tends to have lower GEC score, such as night image (Image 1 with GEC 

score 0.116) and image with excessive glares and reflections (Image 2 with GEC score 

0.200). (2) Color Saliency is the most important factor that may affect the LPC score, e.g. 

Image 6 has the lowest LPC score (0.507) due to its highly saturated and discriminative 

pants color compared to the neighborhood area and (3) LPC could be a better indicator and 

reference for pedestrian perception difficulty in real naturalistic driving scenarios. For 

example, even though Image 1 has the lowest GEC score (0.116), it is most difficult to 

detect the pedestrian in dark due to its high LPC score (0.926). Note that all these scores 

are currently normalized objective score computed from the image feature maps. More 

accurate model and evaluation approaches will be learned after the exploratory study 

analysis and probabilistic learning. 
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Figure 3.14 Clutter measure results on test naturalistic driving images. Note that Image 4 
and Image 5 are the same image but we measured LPC scores for different pedestrians 

We also tested the proposed GEC and LPC metric on our large scale naturalistic driving 

data. 1850 5-second videos containing 3418 pedestrians have been analyzed using the 

proposed pedestrian locating and clutter measure approach. The 1850 videos are generated 

and selected from TASI 110 car naturalistic driving dataset with the standard that the 

pedestrian may have potential conflicts with the vehicle. The global clutter score and local 

clutter score distribution of all the tested 1850 videos are shown in Figure 3.15.  
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(a)                                                                 (b) 

Figure 3.15 Results of the 3418 pedestrians from 1850 images in preliminary test (a) 
GEC score distribution (b) LPC score distribution 

3.5 Bottom-up pedestrian perception predictor 

With the proposed GEC and LPC metrics which are correlates well with the true clutter 

perception of naturalistic driving data, we now can present the combined bottom-up 

pedestrian perception predictor for naturalistic driving scene. Suggested by [105] using a 

combination of global clutter metric, local contrast metric and target size as a predictor for 

pedestrian detection performance in night vision system, we proposed our bottom-up 

pedestrian perception predictor similarly.  

The proposed bottom-up pedestrian perception predictor (BUP3) is a combination of the 

proposed GEC, LPC metrics and the target size metric. The target size is defined as the 

square root of the pixel number of the target (RPOT) based on the pedestrian contour 

refinement results in chapter 4.3.2.  BUP3 is then expressed as: 

 𝐵𝐵𝐵𝐵𝐿𝐿3 =
(1− 𝐿𝐿𝐿𝐿𝐶𝐶) ∗ RPOT

𝐺𝐺𝐸𝐸𝐶𝐶  (3.12) 

Intuitively, the BUP3 is proportional to 1− 𝐿𝐿𝐿𝐿𝐶𝐶 and is inverse proportional to GEC, which 

means the higher the local contrast is and the less complex the global environment is, the 

easier the pedestrian can be perceived. 
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A similar metric was proposed in [105] and the human subject test using night vision data 

proved its effectiveness in predicting the pedestrian detection efficiency. To validate this 

predictor on naturalistic driving data, we designed another experiment to collect pedestrian 

perception data.  

Experiment 3.5: Pedestrian perception using naturalistic driving video 

This experiment aims to simulate the naturalistic driving scenarios by letting subject 

perceive pedestrians within naturalistic driving videos. A set of naturalistic driving videos 

with pedestrians sampled from the TASI 110-car naturalistic driving dataset is used to 

measure the pedestrian perception efficiency of each subject. The collected response time 

(RT) was used to measure the performance of the proposed bottom-up pedestrian 

perception predictor. 

Method    

Participants 

The same group of subjects in Experiment 3.1 participated this study. 

Stimuli 

50 15-second naturalistic driving videos containing only one pedestrian were used as the 

stimuli. The selected videos are varied in driving scenario, illumination and weather 

condition. The percentage of each category is in accordance with the distribution of the 

entire TASI 110-car naturalistic driving dataset. The pedestrian within each selected video 

may have potential conflict with the vehicle. 

Design 

The stimuli in this experiment are 15 second long naturalistic driving videos containing 

only one pedestrian. The 15 second video includes the full interaction between the 

pedestrian and the vehicle. In another word, a typical potential conflict video include the 

first appearance of pedestrian, the potential conflict between the vehicle and the pedestrian, 
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and the disappearance of the pedestrian. Each human subject was asked to response when 

they first observed and confirmed the pedestrian. The RT between the first appearance of 

pedestrian and the response was recorded. In this study, the first appearance of pedestrian 

is defined as the point when the full body of the pedestrian was shown in the naturalistic 

driving scene. The point was determined through automatic pedestrian detection 

introduced in Chapter 2 and verified by human annotator.   

Procedure 

The experiment used 50 15 seconds long naturalistic driving videos containing only one 

pedestrians taken from an in-car camera. Each subject will be seated in front of a computer 

monitor. One video was shown on the screen at a time. Again the videos are played in 

random order to exclude bias. The video can only be played at its taken frame rate and can 

only be viewed once. Each human subject was asked to hit the spacebar when they observed 

and confirmed the pedestrian and the RT would be recorded automatically. A confirmation 

sound indicated that the key press had been recorded. The subjects can take a break if they 

want after complete a video and continue to the next video by clicking the “Next” button 

when they are ready. Similarly, before the test set, a practice set would be given to each 

subject. Only the results of the test set was recorded. 

Results 

We first compute the ICC of the collected RT among all 12 subjects. The ICC is 0.717 

which indicates a good agreement of pedestrian perception using test data among the 12 

human subjects. To evaluate the performance of the predictor, we computed the Pearson 

Linear correlation coefficient denoted by𝑒𝑒𝑝𝑝 , Spearman’s rank correlation coefficient 

denoted by 𝑒𝑒𝑠𝑠 and Kendall’s rank correlation coefficient denoted by 𝑒𝑒𝑘𝑘between the inverse 

of the RT and the value of the predictor. We also compared the results with five popularly 

used bottom-up saliency metrics, including Itti’s method [16], Feature congestion (FC) 

method [34], Difference of Gaussian (DoG) based method [20], Independent Component 

Analysis (ICA) based method [20] and DCT based method [113] shown in Table 3.3. The 
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proposed BUP3 metric achieves the best correlation with the true pedestrian perception 

within naturalistic driving scene with statistical significance (all p-values are less than 0.05). 

Note here the inverse of the RT is used therefore a higher positive correlation value 

indicates a better predictor. 

Table 3.3 Results of bottom-up metrics for pedestrian perception predictor (correlations 
between the inverse of RTs and the bottom-up metrics) 

 𝑒𝑒𝑝𝑝 𝑒𝑒𝑠𝑠 𝑒𝑒𝑘𝑘 p-value 

Itti’s [16] 0.401 0.288 0.323 0.01 

FC[34] 0.572 0.397 0.411 0.02 

DCT[113] 0.466 0.381 0.350 0.01 

ICA[20] 0.501 0.393 0.401 0.01 

DoG[20] 0.525 0.491 0.588 0.02 

The Proposed 

BUP3 

0.731 0.602 0.708 0.01 
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4. PEDESTRIAN PERCEPTION ESTIMATION MODEL  

4.1 Overview 

In this chapter, the proposed pedestrian perception estimation model will be illustrated in 

detail. In the proposed model, pedestrian perception is modeled as a combination of 

pedestrian pre-attention process and pedestrian recognition process. Bayesian probabilistic 

theory is applied to derive the mathematic form of the pedestrian perception model. A 

Bayesian probabilistic framework based system will be learned to automatic evaluate the 

pedestrian clutter score which reflects the pedestrian perception difficulty. The derivation 

of the Bayesian framework will be first introduced and the corresponding mathematic 

meaning of each module and implementation details will be presented later. 

4.2 Pedestrian Perception Estimator (PPE) 

In the proposed pedestrian perception model, the pedestrian perception is modeled as a 

two-stage pre-attention recognition process. Both bottom-up stimulus-driven information 

and top-down task-driven knowledge will contribute to the perception result, i.e., the 

pedestrian clutter score. During the pre-attention stage, a stimulus-driven search model 

plays the main role and shifts driver’s attention to the salient components within the 

naturalistic driving scene. During the recognition stage, a goal-driven search model takes 

over and driver’s attention was guided by his/her knowledge, experience and assumption 

of pedestrian appearance, location, etc. The two stage output will be combined by to 

generate the pedestrian perception results. 

To model the combination stage, we follow and extend the Bayesian framework for visual 

attention in [20]. Pedestrian perception by driver can be modeled by a Bayesian 

probabilistic framework, and should be determined by both global features and local 

features. The pedestrian perception estimator (PPE) is formulated by estimating the 
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likelihood of pedestrian presence given the local feature set L, global feature set G and 

location X. In particular, the probability of pedestrian presence given the local feature set 

𝑙𝑙𝑡𝑡 computed from the target area, the global feature set 𝑔𝑔𝐼𝐼 of the entire image and the target 

location𝑥𝑥𝑡𝑡, 𝐿𝐿(𝑅𝑅 = 1|𝐿𝐿 = 𝑙𝑙𝑡𝑡 ,𝐺𝐺 = 𝑔𝑔𝐼𝐼 ,𝑋𝑋 = 𝑥𝑥𝑡𝑡) can be calculated using Bayesian rules: 

 𝐿𝐿(𝑅𝑅 = 1|𝐿𝐿,𝐺𝐺,𝑋𝑋) =
𝐿𝐿(𝐿𝐿,𝐺𝐺,𝑋𝑋|𝑅𝑅 = 1)𝐿𝐿(𝑅𝑅 = 1)

𝐿𝐿(𝐿𝐿,𝐺𝐺,𝑋𝑋)  (4.1) 

For simplicity, the location X and the extracted features L, G are considered to be 

conditionally independent. Eq.4.1 can be split and derived as: 

𝐿𝐿(𝐿𝐿,𝐺𝐺,𝑋𝑋|𝑅𝑅 = 1)𝐿𝐿(𝑅𝑅 = 1)
𝐿𝐿(𝐿𝐿,𝐺𝐺,𝑋𝑋)  

=
𝐿𝐿(𝐿𝐿,𝐺𝐺|𝑅𝑅 = 1)𝐿𝐿(𝑋𝑋|𝑅𝑅 = 1)𝐿𝐿(𝑅𝑅 = 1)

𝐿𝐿(𝐿𝐿,𝐺𝐺)𝐿𝐿(𝑋𝑋)  

=
1

𝐿𝐿(𝐿𝐿,𝐺𝐺)
𝐿𝐿(𝐿𝐿,𝐺𝐺|𝑅𝑅 = 1)𝐿𝐿(𝑋𝑋|𝑅𝑅 = 1)𝐿𝐿(𝑅𝑅 = 1)

𝐿𝐿(𝑋𝑋)  

 =
1

𝐿𝐿(𝐿𝐿,𝐺𝐺)𝐿𝐿(𝐿𝐿,𝐺𝐺|𝑅𝑅 = 1)𝐿𝐿(𝑅𝑅 = 1|𝑋𝑋) (4.2) 

The first term of Eq.4.2 can be seen as the self-information if we take log on both sides. It 

reflects the bottom-up saliency which is determined by the joint probability of local 

features of the target area and global features of the entire image. Rare probability patterns 

will have more saliency. The second term is the top-down knowledge containing the target 

based posterior probability of local features and global features. The global features here 

can be related to the contextual information proposed by Torralba et al.[19]. The third term 

is the location prior, i.e., the probability of pedestrian presence at a given location which 

reflects the location expectation and knowledge of the driver.  
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4.3 The Proposed Pedestrian Perception Estimation Model 

 

Figure 4.1 Diagram of the proposed pedestrian clutter evaluation system 

Based on the hypothesis in chapter 4.2, we propose a pedestrian perception estimator which 

combines the bottom-up saliency term, top-down knowledge and location prior term. The 

overall diagram of the proposed pedestrian perception estimation system is shown in Figure 

4.1. The pedestrian is firstly located in the naturalistic driving scene automatically using 

the proposed pedestrian detection method in chapter 2. During the pre-attention stage, the 

bottom-up information of the entire image is computed based on the proposed BUP3 clutter 

metric in chapter 3. Remember both the GEC of the entire naturalistic driving scene and 

the LPC in the local regions were explored in building the BUP3 clutter metric particularly 

designed for naturalistic driving scene and pedestrians. The location prior is learned from 

the large scale naturalistic driving data with the exact pedestrian locations provided by the 

proposed pedestrian detection method.  During the recognition stage, the top-down 

pedestrian knowledge probability is calculated based on the sliding window based 

pedestrian detection probability. The top-down probability reflects the probability of the 

appearance based pedestrian features given the fact that the target is a pedestrian. The 

computation of the bottom-up and top-down probability maps will be introduced later. 
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During the fusion stage, all the above three terms are combined together to generate the 

final pedestrian perception estimation. 

Generating the pedestrian perception probability map 

 To estimate the pedestrian perception difficulty within the entire naturalistic driving scene, 

a pedestrian perception probability map is required to compare the perception probability 

all over the given the naturalistic driving scene.  In the proposed model, the perception 

probability map can be split into the bottom-up probability map, top-down probability map 

and location prior map. We now introduce how the three maps are generated respectively. 

The bottom-up probability map is based on the proposed BUP3 in chapter 3 aiming at 

represent the bottom-up saliency of the target. The BUP3 metric was particularly built for 

pedestrian within naturalistic driving scene and justified by the human subject tests in 

chapter 3. The bottom-up probability map is generated as follows: 

1. Obtain the target size from the pedestrian detection module. 

2. Using sliding window and compute the BUP3 of each window, which results in a lattice 

with the calculated BUP3 scores. The stride of the sliding window is set to be 4 in our 

experiments. 

3. Interpolate the resulted lattice to generate a full map with the same size of the entire 

naturalistic driving scene 

4. Gaussian smooth the generated map and normalize to [0,1] range 

Figure 4.2 shows an example of the generated bottom-up probability map. The pedestrians 

with high saliency are highlighted in the heat map with a high bottom-up probability, as 

well as the other sitting workers, traffic signs and vehicles.  
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Figure 4.2 An example of bottom-up probability map 

The top-down probability is generated based on the probability of the appearance feature 

surrounding the target given the fact that the target is a pedestrian. The probability can be 

directly related the pedestrian detection score which reflects the a posterior probability 

using Bayes’ rule. In particular, the top-down probability can be written as 

𝐿𝐿(𝐿𝐿,𝐺𝐺|𝑅𝑅 = 1) =
𝐿𝐿(𝑅𝑅 = 1|𝐿𝐿,𝐺𝐺)𝐿𝐿(𝐿𝐿,𝐺𝐺)

𝐿𝐿(𝑅𝑅 = 1) . 

Assuming the prior term constant for pedestrian appearance probability, the top-down 

probability is directly proportional to the a posterior probability which can be generated by 

the pedestrian classifier learned in chapter 2. The entire top-down probability map is 

generated similar to bottom-up map as follows: 

1. Obtain the target size from the pedestrian detection module. 
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2. Using sliding window and compute the pedestrian appearance probability of each 

window, which results in a lattice with the calculated pedestrian detection scores. The 

stride of the sliding window is set to be 4 in our experiments. 

3. Interpolate the resulted lattice to generate a full map with the same size of the entire 

naturalistic driving scene 

4. Gaussian smooth the generated map and normalize to [0,1] range 

The top-down probability map of the naturalistic driving scene in Figure 4.2 is shown in 

Figure 4.3, where the region with pedestrian appearance has relatively high top-down 

probability.  

 

Figure 4.3 An example of top-down probability map 

The location prior is learned by accumulating all pedestrian appearance locations within 

the aligned 1850 naturalistic driving potential conflict videos mentioned in chapter 3.4.2. 

It acts as a constant factor when finally generating the pedestrian perception probability 

map. 
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4.4 Experimental Results  

In this section, examples of the experimental results using the proposed pedestrian 

perception estimator (PPE) are present and compared with other visual clutter/perception 

measure. The human subject test results of experiment 3.5 is correlated with the proposed 

pedestrian perception estimator to compare with other visual saliency methods.   

The proposed pedestrian perception probability map was generated for all the 50 

naturalistic driving scenes used in human subject test experiment 3.5. To compare fairly 

with existing visual clutter/saliency methods to predict the perception, the location prior 

was not included in the generation of the proposed perception map in this experiment.  

An example of qualitative comparison is shown in Figure 4.4. The proposed PPE is 

compared to the other five existing visual perception/saliency map. The Itti’s [16] map, the 

FC[34] map and the ICA[20] map were generated using the code provided by the authors 

while the DCT[113] map and the DoG[20] map were re-implemented based on their paper 

respectively.  

A quantitative comparison was also carried out by correlating to the results of the human 

subject test in experiment 3.5. The mean values of saliency/perception probability within 

the target box were correlated with the inverse of the RT and the Pearson Linear correlation 

coefficient denoted by𝑒𝑒𝑝𝑝 , Spearman’s rank correlation coefficient denoted by 𝑒𝑒𝑠𝑠  and 

Kendall’s rank correlation coefficient denoted by 𝑒𝑒𝑘𝑘  were computed to evaluate the 

performance of the pedestrian perception of all the methods. The proposed PPE achieved 

the best correlation with the true visual perception of pedestrian within naturalistic driving 

scene. With the incorporation of top-down information, the proposed PPE outperformed 

all other bottom-up metrics, including the BUP3 proposed in chapter 3. Note here the 

inverse of the RT is used therefore a higher positive correlation value indicates a better 

predictor. The proposed PPE can be used as a reasonable predictor of the pedestrian 

perception in naturalistic driving scenes. 
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Figure 4.4 An example of qualitative comparison of saliency/perception maps. From top 
to bottom: Itti’s [16], FC[34], DCT[113], ICA[20], DoG[20] and the proposed PPE 
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Table 4.1 Results of pedestrian perception predictor (correlations between the inverse of 
RTs and the estimated probability/saliency) 

 𝑒𝑒𝑝𝑝 𝑒𝑒𝑠𝑠 𝑒𝑒𝑘𝑘 p-value 

Itti’s [16] 0.401 0.288 0.323 0.01 

FC[34] 0.572 0.397 0.411 0.02 

DCT[113] 0.466 0.381 0.350 0.01 

ICA[20] 0.501 0.393 0.401 0.01 

DoG[20] 0.525 0.491 0.588 0.02 

BUP3 0.731 0.602 0.708 0.01 

The proposed 

PPE 

0.773 0.633 0.755 0.01 
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5. CONCLUSIONS 

5.1 Conclusions 

In this thesis, we proposed a pedestrian perception evaluation model which can 

automatically and quantitatively evaluate the pedestrian clutter and analyze the pedestrian 

perception difficulty using naturalistic driving data. We designed the categorization-based 

multi-stage automatic pedestrian detection system to locate the pedestrians in large scale 

naturalistic driving data instead of manual labeling. Visual clutter analysis was used to 

study the factors that may affect the driver’s ability to perceive pedestrian appearance. We 

designed two quantitative measures: global environment clutter (GEC) score to capture the 

complexity of the driving environment in terms of visual search; and local pedestrian 

clutter (LPC) score to evaluate the search efficiency of the pedestrian in the given driving 

environment. The candidate features were studied by the designed exploratory study using 

naturalistic driving data. The results of the exploratory study were served as the ground 

truth of pedestrian perception and a Bayesian probabilistic model which can quantitatively 

compute the pedestrian perception difficulty was proposed.   

Recognition of pedestrians during driving is a complex cognitive activity. Some of the 

pedestrian crashes are due to driver’s late or difficult perception of pedestrian’s appearance. 

Visual clutter analysis is used to study the factors that may affect the driver’s ability to 

perceive pedestrian appearance. This could enable us more insight into the human visual 

perception process by providing evidence from real-life tasks. Moreover, the results could 

provide road safety practitioners valuable information about road component and 

pedestrian safety features design. An automatic pedestrian perception valuation system 

could further be incorporated into pedestrian active safety systems to ide more robustness 

and reliability. 
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