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Abstract

Human action recognition plays a crucial role in visual learning applications such as video

understanding and surveillance, video retrieval, human-computer interactions, and autonomous

driving systems. A variety of methodologies have been proposed for human action recogni-

tion via developing of low-level features along with the bag-of-visual-word models. How-

ever, much less research has been performed on the compound of pre-processing, encoding

and classification stages. This dissertation focuses on enhancing the action recognition per-

formances via ensemble learning, hybrid classifier, hierarchical feature representation, and

key action perception methodologies.

Action variation is one of the crucial challenges in video analysis and action recog-

nition. We address this problem by proposing the hybrid classifier (HC) to discriminate

actions which contain similar forms of motion features such as walking, running, and jog-

ging. Aside from that, we show and proof that the fusion of various appearance-based and

motion features can boost the simple and complex action recognition performance.

The next part of the dissertation introduces pooled-feature representation (PFR) which

is derived from a double phase encoding framework (DPE). Considering that a given uncon-

strained video is composed of a sequence of simple frames, the first phase of DPE generates

temporal sub-volumes from the video and represents them individually by employing the

proposed improved rank pooling (IRP) method. The second phase constructs the pool of

features by fusing the represented vectors from the first phase. The pool is compressed and

then encoded to provide video-parts vector (VPV). The DPE framework allows distilling

the video representation and hierarchically extracting new information. Compared with

recent video encoding approaches, VPV can preserve the higher-level information through

standard encoding of low-level features in two phases. Furthermore, the encoded vectors

from both phases of DPE are fused along with a compression stage to develop PFR.

The real-world long-shot video streams contain complicated contents and editing arti-

facts. However, the conventional action recognition frameworks are only capable of analyz-
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ing the pre-segmented short-shot videos. The last chapter of this dissertation focuses on key

action perception (KAP) along with a robust video action clustering for unconstrained and

constrained video analysis. The KAP includes two classifiers: the former detects the key

action among multiple temporal clusters, and the latter recognizes the key action which is

obtained by the former classifier. The video action clustering is the essential pre-processing

step for KAP implementation. The sequential relationship of the video frames and com-

plexity of motion representations provide challenges in video action clustering. We propose

two novel multi-layer subspace video action clustering (ML-VAC) techniques to encode the

sequential relationships of constrained and unconstrained video frames without having any

prior knowledge about the number of temporal clusters in a given video.

We evaluate the proposed techniques on simple and complex datasets, such as UCF50,

HMDB51, Hollywood2, KTH, Weizmann, URADL, UCF101, Olympic Sports, and Keck

Gestures. The employed datasets contain constrained and unconstrained video samples to

test the proposed strategies in different conditions.
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CHAPTER 1

Introduction

In this chapter, we introduce the topic of this Ph.D. dissertation, simple and complex action

recognition in constrained and unconstrained videos in Section 1.1. Next, we present the

motivation of enhancing the action recognition performances in Section 1.2. Then, we clar-

ify the research challenges related to simple and complex action recognition in Section 1.3.

The objective and major contributions of our work are presented in Section 1.4. Finally, we

explain the structure of this dissertation in Section 1.5.

1.1 Video Action Recognition

Nowadays, video streams and video cameras are considered as crucial parts of human life.

The video cameras are utilized in different public and private places such as homes, banks,

schools, hospitals, and many other locations. The required hardware for capturing and

storing the videos is becoming more and more available among societies. Mobile phones,

tablets, computers, laptops, and on-the-shelf cameras can capture, save, and distribute video

streams. The captured video streams are considered as valid forms of transferring informa-

tion in different real-world scenarios such as video surveillance and healthcare applications.

However, monitoring of captured videos is a tough task due to the lack of human resources

and privacy issues. Instead of human resources, intelligent systems can be employed to

monitor and analyse video streams. The affordable, powerful, and rapidly evolving sys-

tems can analyse video streams much faster than human resources.

Human action recognition plays a prominent role in video analysis and visual learning

frameworks. The goal of human action recognition is to automatically analyse ongoing

video streams from unknown video frames to detect and recognize human actions. In a
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more extreme and continuous scenario, the starting and ending frames of all activities from

an input video must be detected and followed by an action recognition framework. Sim-

ple actions have the property of simplicity and periodicity such as walking, boxing, and

running. Therefore, they can be easily recognized due to their simplicity and limited view-

points. However, complex action recognition is considered as a challenging task due to

viewpoint changes, cluttered backgrounds, and motion speed variations. Furthermore, the

same class of a complex action may contain a huge intra-class appearance and motion vari-

ations. Consequently, complex actions contain longer and sophisticated temporal structures

compare to the simple actions. The constrained videos are captured with the stable cameras

and backgrounds. In other words, the camera is not moving while capturing the constrained

videos. However, unconstrained videos are captured with the dynamic cameras and back-

grounds. A given unconstrained video may contain complex contents including numerous

human actions. Thus, analysis of an unconstrained video is a very challenging task and

requires sophisticated algorithms compare to the constrained video analysis.

We believe that different types of frameworks with a variety of complexities can be

applied to recognize human actions in constrained and unconstrained videos. These frame-

works are applied to different applications with a prior knowledge about the video types.

For instance, the video surveillance and entertainment applications usually deliver con-

strained videos since the cameras and backgrounds are stable. In this dissertation, we en-

hance the simple and complex action recognition in constrained and unconstrained videos

via supervised learning. Our ultimate goal is to boost the action recognition performances

in constrained and unconstrained videos by learning actions from training video samples

and recognizing them in unseen and realistic video settings. It is worth pointing out that

we learn action models using training video samples and their labels. Then, we apply the

unseen videos into the trained models to recognize actions.

1.2 Motivation

Many of the video analysis approaches are dependent on the action recognition frame-

works. Visual content understanding and video action recognition are the fundamental
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building blocks in diverse applications such as video retrieval, healthcare monitoring, nat-

ural human-machine interaction, video surveillance, autonomous driving platforms, tele-

immersion systems, and digital entertainment [6, 7, 8, 9]. We believe that boosting the

action recognition performances aims to design and develop powerful video analysis sys-

tems in different industrial domains. This section describes the most important applications

which can benefit from action recognition algorithms (see Figure 1.2.1).

1.2.1 Applications

Video Retrieval. Nowadays, people pay more attention to record their daily activities

using digital cameras and upload the video streams on the internet. The rapid growing of

the video streams leads to having problems of categorizing the available videos according

to their contents and existing human actions in videos. Furthermore, the developments of

social and semantic web applications have inspired the advancement of video retrieval and

annotation tools using action recognition frameworks. Manual classification of uploaded

videos into a variety of groups is a tremendously time-consuming and impossible task. The

field of video action recognition has attracted considerable attention to addressing the issue

of video retrieval in an automatic format. Previous video retrieval approaches aimed to

solve this problem via a pattern recognition framework which is trained using the features

from training videos and enables the intelligent system to categorize the video actions in

new unseen samples. Altogether, action recognition systems and video understandings are

highly essential and unavoidable for applicable video retrieval systems.

Video Surveillance. Recently, video surveillance cameras have widely accepted by

societies and employed in a variety of public and private locations such as airports, train

stations, shopping malls, banks, casinos, swimming pools, cinemas, and parking lots. The

ultimate goal of video surveillance systems is to detect intrusion and analysis of human be-

havior. There are numerous real-world applications which require the benefits from video

surveillance systems. The intelligent systems can watch for kids and monitor their be-

haviors when the parents are away. The intelligent cameras can be employed to properly

take care of elderly parents or neighbors throughout a day. The recent threats around the
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world encourage the usage of intelligent cameras to monitor people in public places. All in

all, video surveillance cameras are becoming more often to detect and even prevent secu-

rity violations. The rapid growing of the installed video surveillance cameras in different

locations shows the increased demands for reliable action recognition systems.

Tele-Immersion Systems. Tele-immersion is an advanced form of virtual reality which

aims people who are widely separated from each other to work and share experiences to-

gether as if they were located in the same environment. There are numerous potential appli-

cations for tele-immersions such as design and virtual prototyping, maintenance and repair,

and surgical activities. In a tele-immersive environment, intelligent systems localize and

recognize human actions along with the physical and virtual objects. Then, the people and

objects are projected in realistic and geographically distributed immersive environments.

Human action detection and recognition play a crucial factor in tele-immersion applica-

tions where people and their actions must be recognized and projected to an immersive

space.

Driver Assistance Systems. The advanced generation of driver assistance systems is

capable of considering driver preferences, driver intentions, and the overall traffic condi-

tions. Human action prediction is necessary to monitor people around a car and control

the car’s movements automatically. From the other side, action recognition is an important

factor to monitor the driver and alarm about the consciousness based on the movements of

the hands and body of the driver.

Health Care Monitoring. Nowadays, the population of old people is rapidly increased

around the world. Thus, there is a fast increasing demand for intelligent systems which aim

to detect and emerge about upcoming and existing physical and mental health problems of

old people and patients. For the purpose of healthcare monitoring of elderly people and

patients, the human action and behavior recognition is becoming more and more important

and widely utilized in communities. Detecting, recognizing, and recording the time and lo-

cation of daily human activities such as housekeeping, walking, food preparation, sleeping,

and exercise, allows medical scientists to offer appropriate strategies to improve diet and

medication adherence.

Digital Entertainments and Human-Computer Interactions. The human-computer
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interaction is a communication format between users and digital devices. The flow of

data between the user and device is described as the loop of interaction. Nowadays, video

cameras and visual learning frameworks are considered as the main loop of interaction to

provide a natural and intuitive way of human interaction with a digital equipment. The

Microsoft Kinect sensor (see Figure 1.2.1(e)) is one of the digital interacting equipments,

available in millions of homes around the world. Kinect includes efficient motion sensors

which allow users to control and interact with it through a natural user interface. Conse-

quently, human gesture and action recognition is the key factor for the Kinect and other

available interacting devices.

1.3 Research Challenges

Video action recognition is a challenging task despite significant efforts by the image pro-

cessing and computer vision scientists. Figure 1.3.1 depicts the frame sequences from a

complex video to justify the challenges in the video analysis and action recognition do-

main. In this section, we present several research challenges in the field of video action

recognition.

Occlusion. The general action recognition algorithms assume to clearly see the per-

formed action in video streams. In the real-world scenario, we always encounter extreme

cases where people are occluded while performing an action. The occlusions can be hap-

pened by the objects or people which are located in the field of view of the camera. Since

some of the body parts are not visible during occlusions, analyzing and recognizing an

action is very challenging in extreme cases. Figure 1.3.1 depicts some moments with oc-

clusions from a given video.

Volumetric analysis of actions via local features aims to address this challenge by analy-

sis entire spatiotemporal volumes of a given video. In this case, local features are extracted

when they are not occluded and this is considered as enough informative data for action

recognition. The local appearance and motion features can categorize actions via analy-

sis of tiny patches. Additionally, the local representations aim to deal with illumination,

pose and shape changes more efficiently compare to the global representations. It is worth
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Figure 1.2.1: The important samples of applications based on human action recognition

frameworks. The (a) refers to video surveillance systems; (b) refers to tele-immersion

application; (c) shows the human-computer interaction; (d) refers to the advanced deriving

systems; and (e) shows the Kinect sensor.
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pointing out that selection of the informative local features and patches is an open problem

in the computer vision domain.

Viewpoint Variations. The angle of the camera to a subject directly affects the action

recognition performances. Most of the conventional visual learning frameworks assume to

see an action from a fixed viewpoint. However, in the real-world cases, the videos can be

captured using different points of views. In different positions of a camera, the posture and

form of a body are changed considerably. Consequently, the appearance and motion-based

features are changed based on a variety of body poses derived from different camera angles.

Increasing the number of training samples from different viewpoints of cameras is the

most effective solution for this challenge. Thus, the features from the same action and

different viewpoints are utilized to train a single classifier. Alternatively, we can capture

several videos from different points of views on a subject. Then, the features from a variety

of viewpoints can be synthesized to create a more robust feature vector for action recog-

nition. We can classify actions using different feature sets in two formats: first, the single

classifier can be trained using the fused feature vector inspired by concatenation of indi-

vidual features. Second, several single classifiers can be trained using individual feature

sets. Then the scores of single classifiers are fused to make the final decision about a given

video. Chapter 3 of this dissertation evaluates different strategies to fuse individual feature

sets and enhance the action recognition performances in constrained and unconstrained

videos.

Camera Motion. The dynamic of cameras highly affects action recognition perfor-

mances since redundant and unnecessary motion features are extracted along with the in-

formative features in unconstrained conditions. Figure 1.3.1 shows several moments with

camera motion while capturing the video. In this case, the irrelevant features are extracted

from the background and included in the feature sets of walking action. Recently, the mo-

tion boundary histograms (MBH) have been proposed by [10] to address this issue. MBH

is obtained by computing the derivatives of motion patterns and aims to use the trajec-

tories from humans and objects of interests. The MBH enhances the action recognition

performance using the motion features derived from optical flow.

Interclass Similarity and Anthropometric Variations. The same action may vary
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from person to person, which leads to the intraclass variations. Furthermore, the speed

and strength of action performance highly affect the interclass gaps. For instance, walk-

ing action can be performed slowly or rapidly based on the age, shape, and other physical

properties of different people. Additionally, there is no guarantee that a person will iter-

ate the action at the same speed and strength every time. From the other side, any video

dataset may contain similar classes such as running, walking and jogging. The similar

activities may express identical shapes and provide comparable probabilities while classi-

fying a video based on the actions. This issue is called as interclass similarity which is a

common problem in video action recognition.

The robust video representation algorithms aim to deal with interclass similarity and

anthropometric variations. Appearance-based features such as the histogram of oriented

gradients (HOG) are the simplest means of capturing pose and shape variations. HOG

aims to represent the shape of the body performing an action. The motion-based features

such as the histogram of oriented flows (HOF) and MBH are robust to address the issue

of anthropometric variations. These local motion features neglect the pose and appearance

variations. We hypothesize that enhancing the classification module using motion features

can improve the action recognition performances by solving the interclass similarity issue

in constrained videos. Chapter 4 of this dissertation thoroughly describes the novel hybrid

classification module to address the issue of interclass similarity.

Cluttered Background. The dynamic or cluttered background provides ambiguous

information in the feature sets from a given video. Motion-based features are highly af-

fected by a dynamic background since irrelevant data is attached to the informative motion

features of a video. To address this issue, most of the algorithms assume to see a static

background or handle background segmentation from the videos prior to employing the

action recognition platforms. The advanced local feature extraction methods, such as im-

proved dense trajectories, are less affected by cluttered backgrounds. The HOF and MBH

local features in the volumetric analysis of a video are robust with noises, camera motion,

and dynamic backgrounds. Chapter 5 of this dissertation provides a method to extract the

most informative features of a video and addresses the issue of dynamic backgrounds in

action recognition frameworks.
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Figure 1.3.1: The frame samples of a video stream to demonstrate the overall challenges in

the action recognition domain.
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Real-World Unconstrained Conditions. In real-world scenarios, the dynamic camera

and background may be involved in unconstrained videos. These problems can be solved by

enhancing the local features and video representation methodologies. The bigger problems

come up when a video consists of several human actions. Most of the common action

recognition algorithms assume to see a sole action in a short shot video stream. Thus, the

extracted video features contain information about that single action. However, in case

of having several actions, the video features will contain information from several actions

since the conventional algorithms analyse the entire video for feature extraction. In order

to address this issue, a powerful video action clustering must be applied to temporally

segment a given video into several actions. Next, the action recognition frameworks can

be applied to individual temporal segments for analyzing of individual actions. Chapter 6

of this dissertation proposes multi-layer video clustering approaches for constrained and

unconstrained video analysis. Furthermore, the Chapter 6 detects the key action among

multiple clusters and recognizes the action of the key cluster using a double label learning

framework.

1.4 Objective and Contributions

The major objective of this Ph.D. dissertation is to improve the performance of video ac-

tion recognition by proposing a number of enhancements to the bag of visual world model

(BoVW). The enhancements are performed by introducing a video clustering approach be-

fore extraction of features in the BoVW model. The video clustering approach is capable of

segmenting a given video into plausible actions without having any prior knowledge about

the number of clusters. Additionally, the proposed hybrid classifier and hierarchical feature

representation approaches along with the improved rank pooling method aim to boost the

simple and complex action recognition in constrained and unconstrained benchmark video

datasets. This section enlists the major contributions of this dissertation as follows:

1) As an initial step, we have studied and tried the cooperative learning methods to

enhance the action recognition algorithms by combining the appearance and motion-

based features of a given video. The obtained experiments demonstrate that fusion

10
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of different features can enhance the action recognition performances in benchmark

datasets. However, the early fusion of features generates the huge vectors which

make the classification task very challenging and time-consuming. To address this

issue, we have trained single classifiers using individual features and combined the

scores of classifiers for making the final decision about a given video. This strat-

egy could enhance the action recognition performances compare to the early fusion

method.

2) As the second contribution, we propose a hybrid classifier (HC) to confidently dis-

criminate the similar actions such as walking, running, and jogging. It is worth point-

ing out that similar classes provide analogous probabilities in the action classification

step. The proposed HC is capable to check the validity of produced probabilities be-

fore making the final decision about a given sample. Furthermore, we analyse the

effect of motion saliency map and proposed hybrid classifier on simple and complex

action recognition performance in benchmark datasets.

3) As the third contribution, we propose the hierarchical pooled-feature representation

(PFR) methodology to leverage the motion and appearance-based information from

a given video. The PFR is derived from the proposed double phase encoding (DPE)

framework which represents the individual temporal blocks of a given video in two

phases. The low-level information is obtained by representing the individual blocks

at the first phase of DPE. At the second phase of DPE, The higher-level information

is achieved by synthesizing the represented features of the first phase. The PFR has

been experimented on six benchmark datasets and obtained reliable results compare

to the state-of-the-art methods.

4) The representation of individual blocks of DPE framework is performed by the pro-

posed improved rank pooling (IRP) strategy. The IRP enhances the regular rank

pooling method by removing the similar frames of a given video. The cleaned set of

features aims to generate reliable rank-pooled vectors to represent individual tempo-

ral blocks in the DPE framework. Additionally, the double thresholding scheme has

been introduced to reliably clean redundant data from short and long shot videos.
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5) The conventional action recognition algorithms have been developed and tested on

pre-segmented video datasets which contain a sole action in few seconds. However,

the videos contain long and complicated temporal contents in real-world scenarios.

We hypothesize that clustering a captured video into plausible actions is a crucial

pre-processing step to action recognition task in real-world applications such as video

surveillance and video retrieval. As the fourth contribution, we propose the two video

action clustering approaches for constrained and unconstrained videos. The proposed

clustering approaches aim to segment a given video into plausible actions without

having any prior knowledge about the number of clusters in a given video. The

introduced video clustering approaches obtained comparable results in benchmark

datasets.

6) As the last contribution, we propose the key action perception (KAP) framework to

analyse the temporal clusters of a video. The KAP aims to detect and recognize the

key action among multiple clusters in a video stream. Based on different applications,

we may not be able to recognize all the actions of individual clusters due to lack of

video samples in training phase. The KAP includes two classifiers to address this

issue: the first classifier detects the key and noise temporal clusters in a video and

the second classifier recognizes the action of the key clusters. We have manually

labeled the key and noise clusters of Hollywood2 and URADL datasets to train the

first KAP classifier. We utilize the labels of the key clusters to train the second KAP

classifier. The KAP approach obtained competitive performance with the state-of-

the-art techniques in benchmark datasets.

1.5 Organization of Thesis

The rest of the dissertation is structured as follows: Chapter 2 consists of an extensive liter-

ature review of video analysis algorithms including feature extraction and encoding, clas-

sification, and time-series video clustering approaches. The ensemble learning to leverage

different video descriptors for action recognition is discussed in Chapter 3. The effect of

motion saliency map and hybrid classification system on action recognition is introduced
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in Chapter 4. Chapter 5 proposes the hierarchical feature representation along with the im-

proved rank pooling methodology. Finally, the key action perception methodology along

with the video action clustering approaches are introduced in Chapter 6 followed by draw-

ing a conclusion and presenting some scopes for future work in Chapter 7.
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CHAPTER 2

Related Work and Datasets

2.1 Overview

Human actions and activities contain the simple movements of human body which are

called gestures. For instance, playing violin contains a mix of different simple movements

in hands. Variety of researchers define the term of an action based on their own intuitions.

We follow the proposed terminology in [11] to describe a human action. As mentioned in

[11], ”action is the most elementary human-surrounding interaction with a meaning”. The

category of each individual action is obtained by analysis of the interaction between the

human and its surroundings.

The real-world videos include long and complex temporal contents with various editing

artifacts, variable length, and different camera motion conditions [9]. Variety of recent

methodologies pay attention to simple and complex human activity recognition for video

analysis approaches [12, 13, 14, 15, 16, 17, 18]. Complex actions are composed of a

sequence of simple actions, such as long jump, vault, and discus throw [19]. The same

class of an action contains significant intra-class appearance and motion variations due to

the complicated temporal structure, cluttered backgrounds, viewpoint changes and motion

speed variations [19]. Consequently, the representation and classification of simple and

complex human actions are still considered as challenging problems in constrained and

unconstrained videos. During the past three decades, action recognition researchers first

focused on simple actions in constrained conditions, but more attention is now paid to

complex actions in realistic videos [19].

Activity recognition is considered as a multi-class classification problem where each

target class is assigned with a specific action type. An action recognition system consists
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of two major steps: first, the features are selected, described, and encoded. Then, a classifi-

cation algorithm is employed to categorize actions. In such a system, an efficient feature set

is able to reduce the burden of the classification algorithm. On the other hand, a powerful

classification algorithm is able to accurately classify actions even with low discriminative

feature sets. Computer vision scientists have been working to compare a variety of visual

descriptions and representations which are well-suited for video action recognition prob-

lems. The performances of these representations are typically evaluated on benchmark

datasets [11, 20].

To justify our major contributions and bold the context of our research, this chapter

reviews and presents the existing literature on video action recognition. We separate the

existing methodologies related to the field of action recognition into four major groups.

First, we describe the holistic representations which are derived from the human body ar-

chitecture, movements and shapes as global information. Second, we review the local rep-

resentations inspired by edges, colors, trajectories, and interest points from video streams.

Third, we review the classification modules to categorize a given video using local or global

representations. Finally, we review the available literature to address the video action clus-

tering problems. Altogether, this chapter presents the state-of-the-art methods and describe

their advantages and limitations to recognize human activities in videos.

2.2 Holistic Representations

Holistic representations are one of the early approaches used for video action recognition.

The methodology of silhouette frames and features has been proposed by [21], and ex-

tracts the human shape mask for each individual frame. Then, the ratio of background to

foreground pixels is calculated based on the cells of the grid over silhouette. Next, the

codebook is generated using the vector quantization algorithm using the grid of the video

frames. For categorizing a given video, they utilize the Hidden Markov Models (HMM) to

figure out the best model which matches the obtained symbol sequence.

The idea of temporal templates has been proposed by [1] to extract shape masks from

individual video frames and then accumulate the differences between frame sequences. The
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Figure 2.2.1: The motion energy image and motion history image for temporal template

matching [1].

achieved information using differences of frame sequences is used to generate the binary

motion-energy image (MEI) and scalar-valued motion history image (MHI) as depicted in

Figure 2.2.1. The MEI represents the existence of a motion in video frames, and MHI

presents the pixel intensities as a temporal history of the motion. Finally, the action of

a given video is recognized by temporal template matching against obtained examples of

training samples.

The extraction of three-dimensional shapes using silhouettes has been proposed by [2].

This methodology has five major steps: first, the background subtraction is performed

to calculate the silhouette information; second, the silhouettes are concatenated over ten

frames to generate a spatio-temporal shape as shown in Figure 2.2.2 (a) ; third, the action

dynamics, shape structure, and saliency of that blocks are calculated using Poisson’s equa-

tion as depicted in Figure 2.2.2; fourth, the blocks of ten frames are matched using the

sliding window approach; finally, the actions are recognized using the nearest neighbour

classifier with Euclidean distance.

It is worth pointing out that the accuracy of holistic approaches is highly dependent

on the segmentation of a video. In the real-world scenario, the segmentation task is very

difficult where videos contain long shots including dynamic backgrounds and motion of

cameras while capturing frames. From the other side, holistic algorithms are not strong to

deal with action variations. For instance, the holistic approaches definitely fail to properly

recognize actions if the videos of the same action are captured from different points of

views with occlusions. In order to address the limitations of silhouette approaches, the

advanced video action recognition frameworks have been shifted to extract local features

from a given video. Next section presents the summary of the video local representation
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Figure 2.2.2: (a) demonstrates the three-dimensional shapes using silhouettes [2], (b) shows

the solution to the Poisson equation on space-time shapes [2], (c) depics the local space-

time saliency features [2].
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Figure 2.3.1: The general framework of bag of visual words model for video action recog-

nition.

algorithms.

2.3 Local Representations

Local features aim to represent a given video by analysis of spatiotemporal volumes. Anal-

ysis of spatiotemporal windows helps to solve the issues of occlusions in videos due to

the following reason: local representation approaches usually analyse the entire video for

feature selection and description. Consequently, the extracted features from the normal

moments with no occlusions are enough to represent a video. Many of the successful ac-

tion recognition frameworks employ low-level features with bag of visual word (BoVW)

framework [22]. The pipeline of BoVW contains four major steps: feature detection, fea-

ture description, feature encoding, and classification as depicted in Figure 2.3.1. This sec-

tion thoroughly describes the state-of-the-art methods to enhance the individual blocks of

the BoVW framework.

2.3.1 Feature Detectors

One of the early successful local feature detectors is Harris3D [3] which is considered as

the extension of regular Harris detector [23]. The Harris3D is derived from the signifi-

cant eigenvalues of a spatiotemporal second-moment matrix at each pixel of video frames.

The local positive spatiotemporal maxima is employed to define the final corners as inter-

est points in video frames as depicted in Figure 2.3.2. Additionally, Harris3D brings the

novelty to video analysis domain by employing separate spatial and temporal scale values

[3]. In some extreme cases, the number of detected corners are too rare for video action
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Figure 2.3.2: Detection of spatio-temporal interest points from the movements of the legs

while performing walking action [3].

recognition. To address this problem, the Gabor detector [24] has been proposed to obtain

denser interest points from video frames. The Gabor detector employs Gaussian kernels on

the spatial domain and Gabor filters on the temporal domain of video frames. Finally, the

interest points are identified using local maxima of the employed response functions.

The Gabor detector extracts a huge number of interest points for action recognition and

video analysis frameworks. However, many of the selected points are irrelevant to human

actions and deliver noises to the feature sets. To address this problem, the Hessian3D de-

tector [4] has been proposed to select the most reliable interest points as shown in Figure

2.3.3. The Hessian matrix is computed for each individual interest points and its determi-

nant is used for scale selection and point localization. The obtained interest points are scale

invariant and denser than points in Harris3D detector. Additionally, the Hessian3D is much

faster compared to the previous detectors due to the usage of integral video by calculating

derivatives with the box-filter algorithm.

The dense sampling strategy has been proposed by [25] to analyse the spatiotemporal

domains of a video for extracting of reliable interest points. The dense sampling detector

extracts a huge number of interest points and then selects the most reliable points for action

recognition. The comparison of Gabor detector, Hessian3D, Harris3D, and dense sampling
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Figure 2.3.3: The results of Hessian3D detector with different thresholding values to extract

sparse and dense sets of interest points [4].

have been performed in [25]. As described in [25], it is shown that Harris3D outperforms

other feature detectors for simple action recognition. However, dense sampling obtained

impressive results for complex action recognition. The major limitation of dense sampling

is to extract a huge number of interest points which is computationally very expensive.

Aside from that, the moving subjects are ignored and motion features are not considered in

dense sampling detector.

To address these limitations, the dense trajectories has been introduced by [5] as shown

in Figure 2.3.4. The interest points are extracted and tracked using an optical flow al-

gorithm. The tracked interest points are described by powerful descriptors such as the

histogram of oriented gradients (HOG) [26], the histogram of oriented flows (HOF) [27],

and motion boundary histograms (MBH) [10] which deliver minor spatiotemporal details

of a video. The most widely used local feature extractions are evaluated and analysed in

[28, 22]. Based on the mentioned literature, the best current frameworks for human action

recognition rely on dense trajectory features [5] that are then encoded by Fisher vector (FV)

method. The extracted interest points are supposed to be described for video action classifi-

cation. Next section presents the advanced feature descriptors for human action recognition

in videos.

2.3.2 Feature Descriptors

The appearance and motion characteristics of each detected interest point must be described

for video action recognition. One of the early descriptors has been introduced by [29] based

on the histogram of spatiotemporal gradients. They employed the higher-order derivatives

along with the optical flow methodologies to describe the motion information from indi-
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Figure 2.3.4: The dense trajectory structure including HOF, HOG, and MBH feature de-

scriptors [5].

vidual interest points.

The more advanced appearance and motion-based descriptors have been proposed in

[27]. These local descriptors are obtained in local cuboids followed by spatial-temporal in-

teresting points (STIP) detectors [30] or dense sampling strategies [5]. Each interest point

is divided into a spatiotemporal grid to extract the most informative data from individual

local features. The histogram of oriented gradients (HOG) has been proposed by [27] to

describe shape information and visual appearance. The histogram bins are quantized by

calculating the orientations of edges in video frames. The motion features are described by

the histogram of oriented flows (HOF) [27]. The histogram bins are quantized by calculat-

ing the optical flows over each interest point. the HOG and HOF are calculated for each

individual cell of the grid. Finally, the obtained HOG and HOF descriptors are normalized

and merged into the final descriptor. The HOF describes all the moving interest points from

video frames. Thus, it cannot address the issue of moving points which are obtained based

on moving cameras. To address this limitation, the motion boundary histogram (MBH) has

been proposed by [31].

The MBH describes a given interest point by separating the optical flow into vertical and

horizontal components as depicted in Figure 2.3.5. The histogram is quantized based on the

vertical and horizontal orientation information. In other words, the spatial derivatives are

calculated based on vertical and horizontal perspectives. Finally, the obtained histograms

are merged to generate the final MBH descriptor. Additionally, the trajectory descriptor

has been proposed to extract informative data from dense trajectories [5]. The trajectory

descriptors analyse the shape of a trajectory using a set of displacement vectors. It is worth
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Figure 2.3.5: The results of the MBH descriptor for ignoring the irrelevant moving objects

from cluttered background [5].

pointing out that the displacement vectors are normalized by the sum of their magnitudes

before generation of trajectory descriptors.

Each individual descriptor represents a given video from different perspectives. Thus,

the concatenation of different descriptors as early fusion aims to boost the action recog-

nition performance [31]. However, the early fusion of different descriptors provides huge

vectors for the classification stage. We hypothesize that late fusion strategies can address

this limitation since separate classifiers are trained over individual descriptors. Then, the

score level fusion of single classifiers can enhance the action recognition performance as

presented in chapter 3 of this dissertation. The video samples of a dataset are

2.3.3 Feature Encoding

Selection of appropriate encoding method is a significant step to action recognition per-

formance in the BoVW framework [22]. Advanced feature encoding methods have been

presented for action recognition, such as vector of locally aggregated descriptors (VLAD)

[32], soft-assignment [33], and Fisher encoding [34]. The effective encoding methods for

action recognition are evaluated in [22] and it is shown that Fisher encoding outperforms the

state-of-the-art strategies. As discussed in [10], the Fisher vector (FV) encoding method

is successfully adopted with improved dense trajectory features and obtained promising

results on challenging action datasets. The combination of dense trajectories and Fisher

vector encoding was first proposed in [35] and obtained state-of-the-art results on several
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action datasets. The approach was further modified and enhanced in [36] by employing the

stacked FVs. Moreover, Jain et al. [37] showed that the accuracy of this approach could be

improved by modeling the context of an action. We adopt FV encoding in this dissertation

due to its impressive performance in the field of video action recognition.

The adopted FV algorithm encodes the difference among video features and the vo-

cabulary by applying derivative operations on the likelihood concerning the distribution

parameters, (mean (µ), weights (̟), and covariance (σ)), of the vocabulary. The Gaus-

sian Mixture Model (GMM) is adapted to shape the vocabulary parameters. The GMM,

including K components {kς , ς = 1...K} is trained to learn the parameters over a subset

of training features. However, training a huge number of video descriptors from a dataset

is computationally expensive and requires enormous amounts of memory. Thus, it is rec-

ommended to randomly select 1000 features from each video descriptor to train the GMM

vocabularies. The random selection of features should not affect the learning procedure

of GMM vocabularies. Before building vocabulary, principal component analysis (PCA)

is applied to reducing the size of the local feature dimension. PCA decorrelates features

to support the diagonal covariance assumption since the covariance matrices of the GMM

vocabulary are considered to be diagonal. The dimension of the local features is reduced to

D using the PCA algorithm before the creation of GMM vocabularies. Finally, the first and

second order derivatives are calculated based on the local video features and vocabularies

as follows,

ūkς =
1

N
√
̟kς

N
∑

i=1

γkςi(
xi − µkς

σkς
) (2.3.1)

v̄kς =
1

N
√

2̟kς

N
∑

i=1

γkς i[(
xi − µkς

σkς
)2 − 1] (2.3.2)

where xi ∈ ℜN×D is the set of features from a given video, N is the number of local

features, D is the dimension of features, ūkς ∈ ℜD, v̄kς ∈ ℜDand γkςi is the weight of local

features for kth Gaussian. The γkς i is obtained by,

γkς i =
e[−

1

2
(xi−µkς )

Tσ−1

kς
(xi−µkς )]

K
∑

ς=1

e[−
1

2
(xi−µkς )

Tσ−1

kς
(xi−µkς )]

(2.3.3)
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where the Gaussian Mixture Model (GMM) links each vector of xi to a component k in

the mixture with a strength calculated by the posterior probability. The final Fisher vector

is obtained by concatenation of the first and second order derivatives as f̄ = {ukς , vkς |ς =
1...K}. In a given Gaussian component, the distribution of features inclines to small values

around zero when the number of components increases [34]. In this case, the power and L2

normalization approaches aim to unsparsify the Fisher vectors [34]. As the power normal-

ization, we apply the signed squared rooting by applying the function f(f̄) = sgn(f̄)
√

∣

∣f̄
∣

∣

to each dimension of f̄ where sgn(.) is the signum function [38]. As the L2 normalization,

the obtained vector is further normalized by the L2 norm [38]. The final dimension of the

Fisher vector is 2DK, where D is the dimension of the set of local features and K is the

number of components in GMM training.

2.4 Higher-level Representations

In the computer vision domain, the ultimate goal of action recognition frameworks is to

provide informative higher-level and semantic video representations on top of the low-level

features. The low-level features deliver local intensity variations such as key points, edges,

and gradients from the video frames. However, the higher-level features contain more re-

alistic and structured information based on the whole shape and motion of an action. Con-

sequently, an enormous gap exists between low-level video features and high-level action

parts. This gap includes the differences between lower-level features (tiny spatiotemporal

details of the video frames) and higher-level representations (more structured information

from the whole motion in video frames). Minimizing the gap between low-level and high-

level representations aims to boost the action recognition performance in unconstrained and

constrained videos.

It should be noted that the standard FV (SFV) efficiently encodes the local features into

a high-dimensional space, and aggregates the codes into a huge encoded vector. However,

FV is incompetent to directly extract more structured data from a given video. To address

this problem, a variety of higher-level representations have been proposed for complex ac-

tion recognition to mine discriminative action parts [39, 40, 41, 42, 43, 44, 45]. These
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methods take the advantages of discriminative spatiotemporal components while having

limited representative ability or requiring a high computational cost. Most of the current

frameworks train a classifier for each spatiotemporal segment and finally present the out-

puts of these classifiers as video representations by max-pooling. Consequently, each part

produces a single value for the final representation. This procedure limits the power of

the higher-level representations. For example, discriminative cuboids by Exemplar-SVM

and multiple instances learning frameworks which are adapted to mine discriminative ac-

tion parts are introduced in [44]. Furthermore, the clustering and ranking algorithms are

presented in [41, 40] to extract the discriminative 3D features for video representation.

The mined 3D parts are large sub-volumes and contain rich semantic information which

is related to action categories. Along the line of these ideas, Peng et al. [36] presented

a multi-layer hierarchical mid-level methodology to densely encode sampled sub-volumes

via Fisher encoding. However, this method is highly expensive to implement due to the

encoding each feature sample in the first layer and to consider a massive number of spa-

tiotemporal sub-volumes in the second layer. The mid-level representation based on atoms

and phrases is proposed in [46]. Even though the [46] framework obtains promising re-

sults, it is highly expensive to implement due to the clustering stage as the first step of the

framework.

Furthermore, the deep networks demonstrate an efficient power to produce higher level

video representations [47, 12, 48, 49, 50]. Video processing with deep networks is inspired

by the success of image representation and classification using deep networks [12, 50]. It is

very expensive to train an effective deep multi-layer network for video analysis even though

the deep networks can represent videos from the low level to mid and high-level features.

Aside from that, deep features include the foreground and background information from

image sequences whereas many of the video sections are irrelevant to actions. For instance,

zooming, tilting, and rotation of a camera may transfer irrelevant features through deep

networks. Thus, the diversity and irregular distribution of features make it difficult to

employ deep networks for action recognition directly. In other words, the interest region

detection is supposed to be adopted as a preprocessing step in the deep learning approaches

to analyse the unconstrained videos efficiently.
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We hypothesize that combining the temporal sub-volumes of low-level motion features

is capable of providing significant clues to video analysis since an elaborate video always

includes multiple finer-grained parts in the temporal domain. Chapter 5 of this disserta-

tion proposes a novel hierarchical strategy, called double phase encoding (DPE), to provide

higher-level representations from an unconstrained video. The principal motivation behind

this framework is to represent the entire video with higher level information derived from

temporal sub-volumes of low-level motion features. Unlike the standard feature encoding

where all the features of a given video are encoded in one stage, the DPE methodology

encodes a video using two hierarchical phases. At the first phase, the motion features

are extracted and then the temporal sub-volumes of low-level features are represented in-

dividually. Each represented vector presents specific information related to its temporal

sub-volume. At the second phase, a pool of the individual represented vectors (IRVs) is

generated by concatenating the IRVs from the first phase. The pool may contain redundant

features since the temporal sub-volumes are occluded in different scales. The principal mo-

tivation behind compression of encoded features is to extract the most informative data in

the second phase of DPE. The compressed pool transfers the most prominent information

for higher-level encoding at the second phase of DPE. We target to encode the compressed

pool for extraction of the video-parts vector (VPV). The VPV allows distilling the repre-

sentation and extracting new higher level information from temporal sub-volumes of local

features.

2.5 Classification Modules

Based on the nature of action recognition frameworks, we employ the supervised learning

algorithms in this dissertation. In the supervised frameworks, the training samples are

available along with their annotated labels. The learning models are trained based on the

available training samples. Then, the models are validated and tested using the rest of

data. The classification is the last stage in a general action recognition framework. Action

classification is tremendously challenging for computers due to the complexity of video

data and the subtlety of human actions [51, 52].
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Nowadays, a variety of classification strategies have been proposed for different appli-

cations [53]. For the classification of video-based features, the recent action recognition

frameworks employ typical support vector machine (SVM) [54], extreme learning ma-

chine (ELM) [55], or neural networks (NN) [5, 10, 20, 28, 22, 56]. Based on the Jaegers

estimation [57], most of the classification strategies mainly focus on single-hidden-layer

feed-forward networks (SLFN) due to their universal approximation capability. The SLFN

strategies include an input layer which receives the data from environments, a single hid-

den layer where the parameters and weights of the network are calculated, and an output

layer which prepares the network outputs. According to conventional NN theories, all the

weights and parameters can be adjusted in the SLFN frameworks [58].

The SVMs maximize the distance between a hyperplane that separates two classes of

data [54]. Linear and non-linear separations can be performed using a kernel function

in the SVM classifier. It is worth pointing out that SVM classifiers avoid ending in a

local minimum and reach the global minimum. According to the authors of [54], SVMs

are reliable in the speed of classification and robust to deal with irrelevant information

in the feature sets. In chapter 5 of this dissertation, we adopt the learning strategy with

sub-network nodes (LSN) [59], inspired by [58, 55], to classify the encoded video-based

features. Furthermore, we evaluate and compare the LSN performance with standard SVM

and ELM classifiers in the video analysis domain.

Employing of a single classifier to classify patterns has been recently challenged by

multiple classifier approaches, where the classification system is derived from an ensem-

ble of single classifiers whose outputs are pooled in a way to attain a more accurate final

decision. In an ensemble classification approach, every single classifier will focus on di-

verse aspects of the data and will err under different situations. It should be noted that

single classifiers errors have to be uncorrelated in an ensemble classification system [60].

Consequently, the total errors can be reduced by an applicable combination of the single

classifiers if different errors are obtained from individual classifiers.

Generally, two methods are used to employ the power of several representations or de-

scription techniques. The first method is to merge the extracted feature sets, which is called

early fusion, and then to feed this higher dimensional feature set to an individual classi-
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fier. The second method is to train several single classifiers using separated feature sets

and efficiently fuse the outputs of the single classifiers in a late fusion model. It should

be noted that the discriminative power of encoded information cannot be completely uti-

lized while employing individual recognition techniques. In other words, while dealing

with difficult action recognition problems, mainly when working with many action types

and/ or having resemblance between actions, the single recognition classifiers are not able

to accurately categorize actions. Therefore, an ensemble classification framework can be

employed to improve the recognition performance, where each combination of a feature

set and a classifier is a human action learner. The strategic combination of the learners can

significantly enhance the classification accuracy. The joint efficiency of the ensemble of

multiple classifiers can compensate for a deficiency in one learner while employing the late

fusion techniques over several single classifiers.

Action classification can be very challenging for similar classes in a dataset. For ex-

ample, equivalent probabilities may be provided for running, jogging and walking classes

while classifying the samples of KTH dataset. The classifier is not capable of making the

final decision indubitably when equivalent probabilities are generated for different classes.

To this end, in chapter 4 of this dissertation, we propose a hybrid classifier to automatically

compress the encoded features and select the best SVM kernel for classification.

2.6 Video Action Clustering

The recent action recognition methodologies rely on the bag of visual words (BoVW)

framework which contains feature extraction, feature encoding, and classification stages.

Most of the BoVW models adopt Fisher vectors of improved dense trajectories [10, 46, 61]

or CNN features [49, 7, 62, 63, 64, 65] with a classifier such as support vector machine

(SVM), and achieve reliable results on pre-segmented video datasets, such as UCF-101 [66]

and HMDB51 [67]. The available action recognition methods work well on fine-grained

videos where only one action is available in entire video [10, 49, 68, 7, 61, 46]. Therefore,

the action detection can be ignored since most of the video datasets contain single actions

in short-shot videos. However, the available action recognition frameworks fail to catego-
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rize a long-shot video which consists of multiple actions. To address this problem, the key

action cluster must be detected as the pre-processing step to the action recognition frame-

works. Chapter 6 of this dissertation proposes key action perception (KAP) framework as a

multi-label learning system including two classifiers. Multi-label learning frameworks aim

to solve problems where a single sample is represented by a single feature vector and mul-

tiple class labels [69]. The first KAP classifier categorizes the obtained temporal clusters

into noise and key actions. Then, the second KAP classifier recognizes the content of the

key temporal cluster. The video action clustering is the challenging pre-processing task to

the KAP framework.

Previous action detection frameworks focus on selection of appropriate action candi-

dates among multiple spatiotemporal sliding windows [70, 71, 72, 73]. These strategies are

capable of locating a single action in the short videos. However, in case of having long-shot

videos including multiple actions, the mentioned methods fail to segment the video into

plausible actions and detect the key action among clusters. Recent approaches utilize deep

models for detection of appropriate actions in unconstrained videos [74, 75]. The work [75]

proposes a method to predict the staring and finishing frames of an action by employing

of the Recurrent Neural Network. The deep networks work well for the short-shot video

analysis, but they are very time-consuming for long-shot video analysis due to the dense

snippet sampling. The relation between temporal structures can deliver important infor-

mation for video action clustering and detection. Thus, the segment-convolutional neural

network (SCNN) [76] method has been proposed to employ 3D convolution for modeling

the temporal structures of a given video. Even though SCNN considers the order of tem-

poral structures, it is limited to detect actions in short-shot videos. From the other side,

defining the key action among the available temporal segments is still an open problem.

All in all, deep network clustering models are computationally costly and require plenty of

data, which is not directly available for some particular applications. Thus, deploying these

models on video action clustering and detection is very challenging. We need to make more

straightforward models without sacrificing accuracy.

Subspace clustering is a reliable methodology to cluster the videos into plausible ac-

tions automatically [49]. Subspace clustering aims to produce coding information for affin-
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ity matrix generation. Enforcing different constraints on the coefficients [77], or developing

scalable implementations [78, 79] have been proposed to improve the performance of sub-

space clustering. However, with the notable exception of [80, 81], most of the proposed

approaches ignore the specific properties of time-series data. The available mentioned

methodologies assume that the data points are independently drawn from multiple sub-

spaces. They independently model the data points [82] or implicitly consider the global

structural information in data [83]. However, they neglect the sequential relationships that

possibly reside in data. In this dissertation, we aim to move beyond these limitations and

develop effective action clustering methods for constrained and unconstrained videos. The

proposed methods achieve superior performance on constrained and unconstrained datasets

regardless of the complexity of videos.

2.7 Video Datasets

We present experiments in a broad range of datasets with the same training and testing

splits as reported by the state-of-the-art methods. Table 2.7.1 enlists the specifications of

the employed datasets in this dissertation. Figure 2.7.1 shows some frame samples from

the six benchmark datasets including simple and complex actions. The brief description of

the datasets is presented below.

Hollywood2 [89]. This dataset contains 12 action categories, 1707 video samples, and

approximately 20.1 hours of videos in total. The samples are captured from 69 Hollywood

movies and include long and complex temporal contents. We employ the proposed training

and testing sets by [89] for evaluation of our methods. The recognition accuracy is mea-

sured by mean average precision (mAP) over all classes as described in [89]. The samples

of the video frames from this dataset are depicted in Figure 2.7.1(e).

URADL [84]. This is a high-resolution dataset of 15 complex actions. It includes

150 video samples which are captured with a stable camera and background. Thus, this

dataset consists of constrained video samples. However, the videos of this dataset contain

the longest lengths compared to the other employed datasets. The 10-fold cross validation

strategy is used to validate the classification performance of the URADL dataset.
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Table 2.7.1: Specification of the employed benchmark datasets to evaluate the proposed methods in this dissertation

Datasets Year Number of Videos Number of Classes Camera Motion Background Video Duration (Ave.)

Hollywood2 [27] 2008 1707 12 Yes Dynamic 13.73 seconds

URADL [84] 2009 150 10 No Static 16.16 seconds

Olympic Sports [85] 2010 783 16 Yes Dynamic 7.69 seconds

HMDB51 [67] 2011 6849 51 Yes Dynamic 3.12 seconds

UCF-50 [86] 2012 6676 50 Yes Dynamic 7.00 seconds

UCF-101 [66] 2012 13320 101 Yes Dynamic 7.21 seconds

KTH [87] 2004 600 6 No Static 19.34 seconds

Weizmann [2] 2007 90 10 No Static 2.44 seconds

Keck Gesture [88] 2012 98 14 Yes Static 17.84 seconds

3
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Olympic Sports [85]. This dataset consists of athletes practicing different sports,

which are collected from YouTube and annotated using Amazon Mechanical Turk. The

dataset contains 16 classes, represented by a total of 783 video clips. We use standard splits

with 649 training clips and 134 testing clips and report mean average precision (mAP) over

all classes as recommended in [85].

HMDB51 [67]. This dataset consists of roughly 7,000 videos and 51 action classes.

The samples of this dataset are subject to different camera motions, viewpoints, video

quality and occlusions. The samples are collected from different sources such as movies

and YouTube videos. The samples of the video frames from HMDB51 are shown in Figure

2.7.1(b). We apply the leave-one-split-out cross-validation over three standard splits, as

presented in [67]. For every class, there are 70 samples for training and 30 samples for

testing. We present the average accuracy over the three train-test splits as the performance

measure for the proposed action recognition frameworks.

UCF50 [86]. This dataset includes 6,676 video clips and 50 action classes. The video

samples are split into 25 groups and each group contains at least 4 action clips. The same

group may share some common features, such as similar background, same person, or

similar viewpoint. We apply the leave-one-group-out cross-validation as recommended by

the authors in [86] and report average accuracy over all classes.

UCF101 [66]. This dataset is the extension of the UCF50 including 13320 videos and

101 classes, consisting of realistic videos from YouTube. The video samples are grouped

into 25 sections while each group consists of 4 to 7 videos of an action. The videos from the

same groups may share some common features, such as similar background and viewpoint.

We follow the validation protocol, proposed by the authors of UCF101 to evaluate our

methods. As presented in [66], three groups of train-test video samples are defined for

evaluation of action recognition algorithms. In each split, videos from 18 of the 25 sections

are used as training samples, and the rest for testing. The average accuracy of three splits

demonstrates the overall performance measure on this dataset.

KTH [87]. KTH is one of the popular video action datasets including six action cate-

gories (boxing, hand clapping, hand waving, jogging, running and walking). Each individ-

ual action is performed by 25 people. Every single action has been implemented in four
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different conditions including indoor, outdoor, variations in scale, and changes in clothing.

We follow the leave-one-person-out protocol to evaluate our methods. It means that we

train the model using the video samples of 24 people and test the model using the videos

of the remained person.

Weizmann [2]. This dataset contains 90 videos and 10 classes of simple actions, cap-

tured from 9 subjects. The camera and background are stable while capturing the videos

in Weizmann dataset. Thus, we evaluate the proposed video action clustering algorithm to

temporal segment the concatenated videos of this dataset.

Keck Gesture [88]. This dataset includes 14 gesture classes in 294 video samples

which are derived from a group of military signals. In each video sample, one gesture is

iterated for three times. We consider this dataset as a set of unconstrained videos since the

camera is moving while capturing some of the samples. We test our proposed video action

clustering algorithm to cluster the concatenated unconstrained videos of this dataset.

2.8 Summary

This chapter presented the most relevant and prominent methodologies for human action

recognition in videos. As the early approaches, holistic representations have been summa-

rized along with their limitations. The holistic approaches assume to see the videos with

stable backgrounds. In other words, the camera must be stable and videos are supposed

to be captured in a constrained condition for holistic representations. Otherwise, holistic

approaches fail to recognize human actions in unconstrained videos where the background

is sophisticated and the camera is moving while capturing video sequences.

Next, the local features along with the robust descriptors and encoders have been re-

viewed in this chapter. It is shown that local features provide state-of-the-art results com-

pared to other approaches. Aside from that, we need less computational powers to recog-

nize human actions using local features compared to the deep and more sophisticated mod-

els. All in all, the local representations based on bag-of-visual-words frameworks are robust

and fast to video action recognition and even higher-level information can be extracted on

the top of local features. However, in some extreme cases, the local representations fail to
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Figure 2.7.1: The samples of video frames from six benchmark datasets to evaluate the

action recognition frameworks.
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properly recognize human actions. For instance, it is difficult to address action variations

using general local representations. In more extreme cases when the videos contain several

actions, the local representations cannot provide enough clues for discriminating actions.

We target to enhance the action recognition performances using local representations in

constrained and unconstrained conditions.

We tackle the video analysis and action recognition problems in four chapters as fol-

lows. Chapter 3 of this dissertation evaluates different fusion techniques to leverage mo-

tion and appearance-based features for action recognition in benchmark datasets. Chapter

4 presents the novel hybrid classifier to deal with the action variation problems in con-

strained videos. Chapter 5 presents the hierarchical feature representation which carries the

low-level and higher-level information for action recognition. Finally, chapter 6 presents

the key action perception along with the robust video action clustering frameworks for

constrained and unconstrained video action recognition.
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CHAPTER 3

Effect of Ensemble Learning on Simple and

Complex Action Recognition

3.1 Overview

The fusion of different features and descriptors aims to enhance the action recognition per-

formance since each individual descriptor provides specific motion or appearance-based

information from a given video. There are two general approaches to leverage the power of

different video features and descriptors. As the first approach, we merge the obtained video

features and then feed this higher dimensional feature set to a single classifier. The concate-

nation of individual features provides the huge set of data which makes the classification

very challenging and time-consuming. In order to address this problem, we hypothesize

that combining of different features can be performed as the late fusion format where the

single classifiers are trained using the individual feature sets and then the scores of classi-

fiers are fused to make the final decision. This chapter focuses on the late fusion strategy

and evaluates its effect on action recognition datasets.

The performance of pattern classification using a single classifier has been recently

challenged by employing of multiple classifier paradigms [90]. The underlying idea of

the ensemble of classifiers is that instead of employing a very sophisticated representation

or learning technique, we can learn action categories using a set of relatively simple and

diverse classifiers, each trained using an individual feature set. In an ensemble classification

system, it is hoped that each base classifier will focus on different aspects of the data and

will err under different situations. Thus, the total errors can be reduced by fusion of scores

from single classifiers.
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In this work, as shown in Figure 3.2.1, the encoded data from the individual descrip-

tors (HOG, HOF, MBH, and Trajectory) are fed to the single classifiers separately. Then,

the outputs of single classifiers are fused to classify actions. A combination function is

employed to merge the outputs of single classifiers. The most common combination func-

tions for fusing the single classifiers have been presented in [60]. This chapter adopts the

Dempster-Shafer (DS) fusion method and the algebraic combiners to synthesize the out-

puts of single classifiers. The stated fusion methods make an ensemble of classifiers by

observing the output of single classifiers as a measure of evidence. The following sec-

tions thoroughly describe the ensemble learning framework and extensive experiments on

benchmark action recognition datasets.

3.2 Ensemble Learning Framework for Action Recogni-

tion

As the first step of the ensemble learning framework, we extract the video features using

the improved dense trajectory (IDT) method [10]. In the IDT, each frame of the video

is analysed to sample the points densely from a multi scale pyramid. Then, the sampled

points are tracked for a given time window. It should be noted that the employed tracking

is based on dense optical flow field computation [91] and is applied on each spatial scale

separately. For each trajectory, three descriptors (HOF, MBH, and HOG) are computed in

the space-time volume with exactly the same parameters as stated in [10]. HOF and MBH

are based on optical flow and capture motion information. The orientations of flow vectors

are quantized using the HOF descriptor. However, MBH divides the optical flow into hori-

zontal and vertical components. Then, the derivatives of each component are computed by

MBH descriptor. HOG is based on the orientation of image gradients, and describes the

information from static appearance. The feature dimensions of the HOG, HOF, and MBH

for x and y axis are 96, 108, 96 and 96 respectively as stated in [10].

The ensemble learning of the proposed activity recognition framework consists of the

following blocks as shown in Figure 3.2.1: random subset selection (RSS), principal com-
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ponent analysis (PCA), Gaussian mixture model (GMM), and Fisher vector encoding (FVE)

where τ stands for the four separated descriptors (HOG, HOF, MBH, and Trajectory); γ

stands for the PCA projection coefficients; δ stands for the GMM vocabularies for four

descriptors; ψ and ϕ respectively refer to the training and testing feature sets, encoded by

the fisher vector. Due to the huge dimension of video features, it is impossible to employ

all the features for the training of GMM. As the first step, we randomly select a set of fea-

tures from the descriptors and then reduce their dimension using PCA to train the GMM

for Fisher vector encoding. The random selection of features is not affecting the results

of GMM training. The single SVM classifiers are trained using the feature sets that are

encoded by the Fisher vector representation. Then, the outputs of single SVM classifiers

are fused to make the final decision about the test samples. As presented in the following

sections, we use the DS and algebraic fusion methods to synthesize the scores of single

classifiers.

3.2.1 Dempster-Shafer Fusion

Many fusion strategies are inspired from Dempster-Shafer (DS) theory of evidence which

adopts belief functions instead of probabilities to quantify the evidence from each sample.

The belief functions are synthesized by the Dempster’s rule of combination to make the

final decision about a testing sample. In the DS, the beliefs in a hypothesis are calculated

as the sum of the subjective probabilities of all classes it encloses. In other words, the

DS allows combining evidences from different sources and arriving at a degree of belief

(represented by a belief function) that takes into account all the available evidences.

As shown in Figure 3.2.2, a decision profile is employed to discover the overall support

for each class and then to label the test sample in the class with the largest support. Con-

sidering X ∈ ℜn to be a feature vector and Ω = {ω1, ω2, ω3, ..., ωc} to be the set of class

labels, each classifier Di in the ensemble E = {D1, D2, ..., DL} results c degrees of sup-

port. All defined c degrees of support are considered to be in the interval [0, 1]. Classifier

Di defines that X comes from class ωj by showing the di,j(X) support. The class label ωj

is assigned to an instance, if the support of that class is the largest one compare to other
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Figure 3.2.1: The ensemble learning framework to leverage the features of different perspectives.
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supports. Figure 3.2.2 presents the decision profile (DP (X)) from the L classifier outputs

for a particular instance X where α refers to the available classes and β refers to the sup-

ports from L trained classifiers D1, ..., DL for the class ωj . The following four stages are

performed to predict the target class of each test sample using the DS fusion strategy.

As the first step, the decision templates are made by calculating the means of the de-

cision profiles for all training samples belonging to ωj . We obtain the decision templates

DTj for j = 1, ..., c as:

DTj =
1

Nj

Nj
∑

k=1

di,j(Xk) (3.2.1)

where Nj refers to the number of training samples belonging to the class of ωj .

As the second step, we calculated the proximity between the decision templates and the

output of classifiers:

φj,i(X) =
(1 + ||DT i

j −Di(X)||)−1

∑c

j=1 (1 + ||DT i
j −Di(X)||)−1

(3.2.2)

where DT i
j denotes the ith row of the decision templateDTj , and Di refers to the output of

the ith classifier (the ith row of the decision profile DP(x)). The ||.|| is the Frobenius matrix

norm in Equation 3.2.2.

As the third step, the belief degrees are computed for each class j = 1, ..., c and clas-

sifier i = 1, ..., L to show how a test sample is correctly assigned into a given class ωj by

a given classifier. The following equation calculates the belief degrees of a given testing

sample:

Bj,i(X) =
φj,i(X)Πk 6=j(1− φk,i(X))

1− φj,i(X)[1− Πk 6=j(1− φk,i(X))]
(3.2.3)

Finally, the Dempster rule is applied to combine the belief degrees which are derived

from each of the single classifiers. Based on the Dempster rule, the belief degrees from L

classifiers must be multiplied to achieve the final support for each class:

µj(X) =
L

Π
i=1

Bj,i(X), j = 1, ..., c (3.2.4)

where the final class is assigned to the testing sample by considering the largest µj(X).
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Figure 3.2.2: The form of the decision profile in DS fusion method.

3.2.2 Algebraic Combiners

We utilize the mean, maximum, and product rules as the algebraic combiners to fuse the

outputs of single classifiers. In the product rule, the total support for each class is calcu-

lated using a simple algebraic function over the scores of single classifiers. As stated in

Figure 3.2.2, in the decision profile, each column represents the supports from separated

classifiers and each row shows the outputs of each single classifier for classes j = 1, .., c.

The total obtained support for class ωj is obtained from the column j of the decision profile

as follows:

µj(X) = F [d1,j(X), ..., di,j(X), ..., dL,j(X)] (3.2.5)

where F is the following function called product combination rule:

µj(X) =
1

L

L
∏

i=1

di,j(X) (3.2.6)

The product rule selects the class whose product of supports from each classifier is the

highest. It should be noted that the product rule decimates any class that obtains at least

one zero or very small support due to the nulling nature of multiplying by zero.

For the mean rule, the support for a given class is the average of all classifiers’ outputs

for that given class. Thus, the F function is considered as an averaging function for the

mean rule fusion. The final decision is the class ωj for which the total support µj(X) is the

highest. The maximum rule simply takes the maximum among the classifiers’ individual

outputs where the ensemble decision is chosen as the class for which total support is largest.

43



3. EFFECT OF ENSEMBLE LEARNING ON SIMPLE AND COMPLEX ACTION RECOGNITION

3.2.3 Classification

A set of visual feature sets are extracted using the most popular state-of-the-art descriptors:

Histogram of Oriented Gradients (HOG), Histogram of Optical Flow (HOF), and Motion

Boundary Histograms (MBH) for x and y axis. The extracted feature sets are encoded using

the Fisher Vector (FV) encoding method. The employed codebook size for the Gaussian

mixture model in the FV encoding approach is 128. Then, the action learning models

are trained by feeding the individual encoded feature sets to single classifiers. For the

classification, the support vector machines with a cost of 100 and the linear kernel have

been used as the single classifiers. Next, the outputs of single classifiers are fused using

the Dempster-Shafer, product rule, mean rule, and maximum rule combiners. It should be

noted that the individual classifiers are trained using different feature sets with a variety of

dimensions in both feature space and sample length. As a result, it is shown that the derived

predictions from single classifiers can be combined to boost the recognition performance.

Five models of single classifiers are trained using different feature sets to create the

ensemble of classifiers. The models utilize different combination of individual feature sets

to train single classifiers. The form of combination is thoroughly presented in the next

section.

3.3 Experiments

In this chapter, the issue of automatic recognition is addressed for human action recogni-

tion via supervised learning. It means that for every training video we know which action

or actions it contains. The action models are learnt using training videos, and then these

actions are recognized in new, unseen videos, i.e. videos for which we do not have anno-

tations. This section describes the experimental setup and results for the proposed action

recognition framework. The UCF 101, UCF Sports, URADL, and Weizmann datasets are

used to evaluate the effect of ensemble learning on action recognition.
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3.3.1 Experimental Setup

The action recognition is performed using the following two models: first, as the early

fusion method, the individual feature sets are merged to create a higher dimensional feature

set. Then, the higher dimensional feature set is fed to a single SVM classifier to recognize

actions. Second, as the late fusion method, the ensemble of classifiers are trained using the

five extracted feature sets (HOF, HOG, MBH on x and y axis, and trajectories). The five

ensemble models are presented as follows.

As the first model, five individual feature sets are trained using five SVMs and the

scores of single classifies are fused for action recognition.

As the second model, four separated feature sets (MBH on x and y axis, HOG, and

HOF) are trained by four single SVMs. Then, the scores of single classifiers are synthesized

using the DS, product, mean, and maximum fusion methods. It should be noted that we

ignore the trajectory descriptor due to its inconsistency in ensemble approaches. In other

words, trajectory descriptor cannot provide any useful information to the ensemble models.

As the third model, the MBH features on x and y axis are merged to yield a single

MBH feature set. Then, the HOG, HOF, and MBH feature sets are trained using three

single SVMs. The scores of three single SVM are fused to assign a label to a given video.

As the fourth model, the HOG, MBH-x, and MBH-y feature sets are merged and with

single HOF feature set have been used to train two single classifiers. The score fusion of

two classifiers makes the final decision about a given video.

Finally, the HOF and HOG are merged to generate a single feature set. Next, the single

SVMs are trained by the new HOF-HOG feature set and MBH. Then, the outputs of the

stated single classifiers are fused to categorize a video into a proper class.

3.3.2 Experimental Results

The Weizmann, UCF Sports, and URADL datasets are evaluated using the Leave-One-Out

cross-validation scheme. This scheme takes out one sample video for testing, and trains

using all of the remaining videos of an action class. This is implemented for all the sample

videos in a cyclic manner, and the overall accuracy is calculated by averaging the accuracy
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Table 3.3.1: Accuracies of Action Recognition using Single Classifiers

Method URADL UCF101 UCF Sports Weizmann

Trajectory and Single SVM 78.00% 41.55% 67.8% 76.5%

HOG and Single SVM 83.33% 74.84 76.00% 84.95%

HOF and Single SVM 90.00% 78.88 80.29% 92.47%

MBH-x and Single SVM 87.33% 77.82% 75.29% 92.47%

MBH-y and Single SVM 88.67% 78.15% 70.29% 78.49%

Early Fusion and Single SVM 94.00% 85.06% 83.86% 92.47%

of all iterations. However, for the UCF 101 dataset, the proposed evaluation method in [14]

has been employed to calculate the action recognition accuracy.

Table 3.3.1 shows the results of action recognition performances over UCF101, URADL,

UCF Sports, and Weizmann datasets using individual feature sets and early fusion method.

It is shown that the early fusion can enhance the performance of the video features for

the task of action recognition. However, training and testing of the single classifiers using

the early fused vectors are time-consuming and challenging due to the huge dimension of

fused vectors. To address this problem, the ensemble learning framework is proposed to

deal with different motion and appearance-based features.

Figure 3.3.1 shows the accuracies of the five ensemble models for the URADL and

UCF101 datasets. As shown in Figure 3.3.1, the highest accuracies for the ensemble ap-

proaches are attained by training two single SVM classifiers based on HOF and merged

of HOG-MBH descriptors as the fourth ensemble model. Then, the scores of these single

classifiers are fused using the product rule and DS fusion. As shown in Figure 3.3.1, the

product rule of the fourth ensemble model outperforms the DS fusion and other ensemble

models.

The attained recognition accuracies using Dempster Shafer, mean, maximum, and prod-

uct fusion methods on the UCF101, UCF Sports, Weizmann, and URADL datasets are

presented in Table 3.3.2. In addition to the fusion methods, the accuracies of individ-

ual classifiers, each trained on separated feature sets, are shown in Table 3.3.1. For each

dataset, the highest achieved accuracy is highlighted in both tables. The highest accuracy

for the ensemble approaches are attained by training two single SVM classifiers based on

HOF and HOG-MBH descriptors, and fusion the outputs of these single classifiers using
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Figure 3.3.1: The attained accuracies using five types of merging and ensemble approaches

for UCF101 and URADL datasets

the product rule approach. It must be noted that the score level fusion based on the prod-

uct rule combination has remarkably improved the results for the benchmark datasets due

to the decimation of any class that obtains at least one zero or very small support respect

to the nulling nature of multiplying by zero. Furthermore, the mean rule fusion over four

individual descriptors obtains comparable results to product rule fusion. However, we con-

clude that the product rule fusion outperforms other combination strategies since we only

train two classifiers based on the fourth ensemble model and product rule fusion. Thus, it

is more efficient to employ product rule fusion and the fourth ensemble model to enhance

the processing time, required power, and action recognition accuracies.

3.4 Summary

In this chapter, the issue of automatic action recognition is addressed via supervised en-

semble learning. The performance of human action recognition is enhanced by utilizing

the Fisher vector representation and improving the classification module. Each of the sin-

gle classifiers are trained over individual feature descriptors that are encoded by the Fisher

vector approach. The outputs of single classifiers are fused using the DS and algebraic
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Table 3.3.2: Accuracies of Action Recognition using Ensemble of Classifiers

Ensemble Model Feature Sets Fusion Method UCF101 UCF Sports Weizmann URADL

1 HOG, HOF, MBH-x, MBH-y, Trajectories DS 78.15% 80.29% 92.47% 90.0%

2 HOG, HOF, MBH-x, and MBH-y DS 84.42% 83.14% 96.77% 94.0%

3 HOF, HOG, MBH DS 81.74% 83.14% 96.77% 96.66%

4 HOF and Merged HOG-MBH DS 83.88% 81.71% 95.70% 96.30%

5 MBH and Merged HOF-HOG DS 82.73% 81.71% 93.55% 96.30%

1 HOG, HOF, MBH-x, MBH-y, Trajectories Mean Rule 78.15% 81.00% 91.40% 90.0%

2 HOG, HOF, MBH-x, and MBH-y Mean Rule 86.21% 84.57% 96.77% 96.30%

3 HOF, HOG, MBH Mean Rule 85.06% 81.71% 96.77% 94.0%

4 HOF and Merged HOG-MBH Mean Rule 85.72% 82.43% 95.70% 94.0%

5 MBH and Merged HOF-HOG Mean Rule 84.92% 82.43% 91.40% 94.0%

1 HOG, HOF, MBH-x, MBH-y, Trajectories Maximum Rule 78.15% 80.29% 92.47% 90.0%

2 HOG, HOF, MBH-x, and MBH-y Maximum Rule 84.92% 81.00% 93.55% 96.30%

3 HOF, HOG, MBH Maximum Rule 84.02% 81.71% 94.62% 94.0%

4 HOF and Merged HOG-MBH Maximum Rule 85.16% 82.43% 95.70% 96.30%

5 MBH and Merged HOF-HOG Maximum Rule 84.42% 81.71% 92.47% 96.30%

1 HOG, HOF, MBH-x, MBH-y, Trajectories Product Rule 81.74% 81.71% 92.47% 90.0%

2 HOG, HOF, MBH-x, and MBH-y Product Rule 83.88% 83.86% 96.77% 96.30%

3 HOF, HOG, MBH Product Rule 86.16% 84.71% 95.70% 94.0%

4 HOF and Merged HOG-MBH Product Rule 86.21% 84.57% 96.77% 96.66%

5 MBH and Merged HOF-HOG Product Rule 85.76% 81.71% 91.40% 90.0%

4
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combiners to improve the performance of the action recognition. The performances of

early and late fusion approaches are compared in the extensive experiments. Following

the multiple classifier philosophy, the experiments demonstrate that the fourth proposed

ensemble approach based on the product rule fusion outperforms standard non-ensemble

strategies and other fusion methods for action recognition. It is worth pointing out that the

fourth learning ensemble includes two single classifiers which are trained over HOF and

HOG-MBH descriptors.
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CHAPTER 4

Effect of Hybrid Classifier on Action Recognition

Performance

4.1 Overview

Any action dataset may contain similar classes such as running, walking and jogging.

Therefore, equivalent probabilities may be provided for different classes upon action clas-

sification. In this case, the classifier cannot indubitably assign a class to a given sample.

To address this problem, we propose a new hybrid classifier to automatically compress the

features and classify them using SVM with polynomial or sigmoid kernels. Furthermore,

we hypothesize that motion saliency detection can strength the power of motion feature ex-

traction in the bag of visual words framework (BoVW). To this end, we evaluate the effect

of 3D-discrete wavelet transform (3D-DWT), as the preprocessing step, on motion feature

extraction. The experimental results show that the proposed framework achieves promising

results on KTH, Weizmann, and URADL datasets, and outperforms recent state-of-the-art

approaches.

As depicted in Figure 4.2.1, the proposed hybrid classifier is composed of three lay-

ers. We hypothesis that huge vector of encoded features may transfer redundant info and

outliers to classifier. Thus, in case of providing equivalent probabilities in the first layer,

we compress the encoded features to d dimension in the second layer, and then pass the

compressed features to the third layer. The major motivation behind data compression

is to extract the most useful and prominent information while reducing the dimension of

data. In the third layer, the system chooses the best kernel among polynomial and sig-

moid functions for SVM classifier. The experimental results of the proposed framework
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show a significant improvement over traditional SVM classifier for action recognition. In

summary, this chapter makes the following contributions.

1) Applying 3D-DWT on videos to extract motion saliency maps. Different threshold-

ing values are evaluated to extract the best motion saliency map for local feature

extraction. The effect of 3D-DWT on motion-based features is evaluated in this

chapter.

2) Proposing a hybrid classifier to automatically compress the extracted features and

select the best SVM kernel for action classification.

The remainder of this chapter is organized as follows. Section 4.2 thoroughly presents

the architecture, formulation, and implementation of our framework for action recognition.

The experiments and results are described in Section 4.3. Finally, Section 4.4 summarizes

the proposed method and experimental results.

4.2 Proposed Framework

In this chapter, we employ the 3D-discrete wavelet transform (3D-DWT), as a preprocess-

ing step, in the BoVW model. Moreover, we propose a hybrid classification system to

confidently classify human actions. The proposed framework is depicted in Figures 4.1.1

and 4.2.1, and discussed in the following subsections.

4.2.1 Preprocessing and Feature Extraction

The three dimensional discrete wavelet transform (3D-DWT) can be considered as a com-

bination of three 1D-DWT in the x, y and t directions [92]. It is composed of high-pass

and low-pass filters that perform a convolution of filter coefficients and input pixels. After

applying of 3D-DWT, the volume of image sequences is decomposed into 8 sub-signals.

We employ the sub-band which is generated with high-pass filters in three directions. We

first resize the image sequences to 500 × 500 and then apply 3D-DWT on resized videos.

The extracted sub-signal, which is composed of high-pass filters to each direction, is con-

verted to video with 10 frames per second. Then, the motion saliency map is generated by
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Figure 4.1.1: The enhanced action recognition framework by adding the pre-processing and hybrid classifier stages to the BoVW model.
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applying a threshold of (θ) on created pixels. We evaluate different thresholding values to

provide the best motion saliency map.

We hypothesize that only the motion features can provide enough information to rec-

ognize actions from the videos which are captured with static cameras. To this end, the

dense trajectory features [5] are extracted from preprocessed videos and then described by

histogram of optical flow (HOF). The HOF describes the local motion by defining a grid

around the encompassing space-time area and computing a histogram of optical flow for

each cell of the grid [27]. The HOF description is performed faster on motion saliency

maps compare to the raw videos. The described features are encoded by Fisher vector [38],

and then fed to the proposed hybrid classifier. The dimension of the encoded features is

2DK where D is the dimension of the initial features and K is the codebook size while

encoding the features. We further call the extracted motion features as W-HOF since the

wavelet is employed to extract the motion saliency maps before HOF extraction.

4.2.2 Hybrid Classification

Equivalent probabilities may be provided for similar action categories while classifying a

given sample. In this case, the classifier cannot confidently categorize the actions. In order

to address this problem, we propose a novel hybrid classifier to use the appropriate SVM

kernel when equivalent probabilities are generated by linear SVM for multiple classes. Our

proposed hybrid classifier is composed of the following three layers as depicted in Figure

4.2.1.

First layer. The encoded features are fed to the SVM classifier with linear kernel. The

one-vs-all strategy is followed and the linear SVM is trained for multiple classes. For a

given sample, the set of generated probabilities, P = [p1, . . . , pm], is checked and evaluated

to figure out whether the maximum probability is confidently assigned to its class. The

thresholding value τ is obtained as

τ = max1(P )−max2(P ) +
1
m

(4.2.1)

where m is the number of classes and P is the set of probabilities, generated in one-vs-
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Figure 4.2.1: The proposed hybrid classifier for action classification.
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all mode. The max1(P ) and max2(P ) are the first and second maximum values in set

of probabilities which are generated by linear SVM. In case of providing τ ≤ max1(P ),

the result of linear SVM is considered as non-confident and the features are passed to

the second layer. Otherwise, the final decision is made based on the max1(P ) which is

generated by linear SVM.

Second layer. The double-layer net with sub-network nodes (DL-SNN) [93] is em-

ployed to generate the compressed version of encoded features. The major motivation

behind the usage of DL-SNN is to extract the most useful features and remove the redun-

dant info from data. The features are compressed to d dimension and then transferred to

the third layer.

Third layer. The experiments demonstrate that SVM with sigmoid and polynomial ker-

nels obtain different recognition performances based on the compressed features. There-

fore, in the third layer, the SVM classifier with polynomial or sigmoid kernels is adopted

to classify the compressed features which are inherited from the second layer. The sigmoid

and polynomial kernels are selected based on the following conditions:

Sigmoid : max1(P )−max2(P ) <
1
m
× E

Polynomial : max1(P )−max2(P ) ≥ 1
m
× E

(4.2.2)

where E denotes the constant threshold in classifying the samples of three employed

datasets. It is worth pointing out that we train three models during the training stage. the

first model is created by SVM with linear kernel over the original encoded features. The

second and third models are created by SVM with polynomial and sigmoid kernels over the

compressed encoded features. The three models are trained and evaluated by libsvm library

[94]. During training of three models the cost is set to 100 and the rest of the parameters

remain as defaults in libsvm package [94].

Compression Stage

The architecture of DL-SNN for compressing the encoded features at the second layer of

hybrid classifier is shown in Figure 4.2.2. The section (a) of Figure 4.2.2 demonstrates the
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Figure 4.2.2: Structure of DL-SNN for compressing the encoded features at the second

layer of hybrid classifier. The (a) is the feature mapping layer; (b) and (c) refer to the

networks with feature mapping and learning layers; (d) shows the double layer network

with sub-network nodes including two feature mapping and single learning layer.
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feature mapping layer; (b) and (c) show the first and second networks for compressing the

original data in two stages; and (d) shows the combination of the first and second stages in

the multi-layer network including two feature mapping layers.

The DL-SNN is composed of general nodes formed by several hidden nodes to com-

pressing features (see Figure 4.2.2). The number of general nodes and output dimension

are independent while the number of hidden nodes in each general neuron must be equal

to the dimension of outputs (m). The optimal general parameters are generated in feature

mapping layer using the inverse of the activation function. The following five steps are

performed to provide the optimal feature set in the DL-SNN framework.

As the first step, we randomly generate the initial general node of the feature mapping

layer , by setting j = 1, as

H
j
f = g

(

â
j
f . x + b̂

j

f

)

,
(

â
j
f

)T
.âj

f = I,
(

b̂
j

f

)T

. b̂
j

f = 1 (4.2.3)

where H
j
f is the current feature data, and â

j
f ∈ Rd×2DK , b̂

j

f ∈ R are the orthogonal

random weight and bias of feature mapping layer.

As the second step, we calculate the parameters in the learning layer based on the

sigmoid activation function (g) for any continuous desired outputs (y),

âh = g−1(u2DK(y)) ·
(

H
j
f

)−1
, âj

h ∈ Rd×m

b̂h =
√

mse
(

â
j
h · H

j
f − g−1(u2DK(y))

)

, b̂j2DK ∈ R

g−1(·) = − log(
1

(·) − 1) if g(·) = 1/(1 + e−(·))

(4.2.4)

where H−1 = HT (CI+HHT )−1 whileC is a positive value, u2DK is a normalized function

u2DK(y) : R → (0, 1], and g−1 and u−1
2DK represent reverse functions.

As the third step, we update the output error as ej = y− u−1
2DKg(Hj

f , âh, b̂h), and obtain

the error feedback data as

Pj = g−1(u2DK(ej)) · (âh)
−1 (4.2.5)
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As the fourth step, we update the feature data as H
j
f =

∑j

l=1 u
−1
l g(x, âl

f , b̂
l
f) by setting

j = j + 1 and adding a new general node â
j
f , b̂

j
f in the feature mapping layer by

â
j
f = g−1(uj(Pj−1)) · x−1 , âj

f ∈ Rd×2DK

b̂jf =
√

mse(âj
f · x − Pj−1) , b̂

j
f ∈ R

(4.2.6)

Finally, we iterate the steps 2 to 4 for L − 1 times. It is worth to mention that a

new general node is added to the existing network when repeating steps 2 to 4 once.

The parameters {â
j
f , b̂

j
f}Lj=1 are optimal projecting parameters and the feature data HL

f =
∑L

j=1 u
−1
j g(x, âj

f , b̂
j
f) = H∗

f are the optimal feature data.

The DL-SNN can be used as a multi-layer network. The multi-layer network provides

a better general performance than double-layer structure. In the multi-layer strategy, the

input data is transformed into multi-layers, and the input raw data is converted into d-

dimensional space using multitude feature mapping layers. As depicted in Figure 4.2.2(d),

given a training set {(xi, yi)}Mi=1 ⊂ R2DK×Rm, the compressed features are represented as

HT
f =

∑L

i=1 g(HT
f · â

i
f + b̂if ) where HT

f is the output of the second layer in the multi-layer

network.

4.3 Experiments and Results

This section describes the employed datasets, effect of the 3D-DWT and hybrid classifica-

tion on action recognition, and the experimental results of our proposed approach compared

with the recent state-of-the-are methods.

4.3.1 Datasets

We evaluate the effect of preprocessing method and hybrid classifier over Weizmann [2],

URADL [84], and KTH [87] datasets. All the videos of employed datasets are captured

with static cameras and homogeneous backgrounds.

The KTH and Weizmann datasets contain simple actions such as running and walking.

However, the URADL dataset contains more complex actions such as writing on board and
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Figure 4.3.1: The recognition performance of HOF and W-HOF based on the traditional

linear SVM and proposed hybrid classifier on three employed datasets. The horizontal axis

refers to the percentages of action recognition accuracy over three datasets.

drinking water. The same experimental settings are kept for training and testing stages of

the hybrid classifier over each dataset.

4.3.2 Effect of motion saliency map on action recognition

As depicted in Figure 4.3.1, the W-HOF provides a good performance on three employed

datasets. We evaluate the W-HOF performance using the traditional linear SVM and pro-

posed hybrid classifier. In both cases, the results are boosted compare to the HOF features

which are trained by traditional linear SVM. It shows that the described features by W-HOF

delivers advanced information to the classification stage. Thus, 3D-DWT can be considered

as a powerful option to extract motion saliency maps before HOF description.

We evaluate a set of thresholding values to extract motion saliency maps from the trans-

formed data. Based on the experiments, 200 is considered as the best thresholding value to

provide optimal motion saliency maps for HOF description.

4.3.3 Evaluation of hybrid classifier

The encoded features are compressed to d dimension at the second layer of hybrid classifier.

We evaluate different compression dimensions to compress the data. As shown in Figure
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Figure 4.3.2: Evaluation of a set of dimensions for compressing the features at the second

layer of hybrid classifier.

4.3.2, compressing the features to 500 is considered as the best option for three datasets.

It should be noted that the double-layer net with sub-network nodes (DL-SNN) is not sen-

sitive to the parameters of the networks. Thus, we can select the parameters randomly

without affecting the generalization performance in the learning process.

The optimized thresholding constant (E) in Equation 4.2.2, is considered as 2.5 for

three employed datasets. As shown in Figure 4.3.1, the proposed hybrid classifier outper-

forms the traditional SVM while classifying the W-HOF features. For the URADL and

Weizmann datasets, all the samples are automatically fed to the SVM with sigmoid kernel

in the third layer of hybrid classifier. However, for the KTH dataset, some of the samples

which provide equivalent probabilities are automatically classified by sigmoid or polyno-

mial kernels in the third layer. Moreover, the classification of boxing and hand-waving

samples is performed confidently with linear SVM at the first layer of hybrid classifier.

4.3.4 Results

In Table 4.3.1, we further compare our results with several state-of-the-art approaches.

The proposed framework achieves 100%, 98%, and 100% accuracy for Weizmann, KTH,

and URADL datasets, and outperforms the state-of-the-art methods. The obtained results
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Table 4.3.1: Comparison of our results based on hybrid classifier to the state-of-the-arts

Dataset Method Recognition Rate

Weizmann

Cao et al. [95] 99.6%

Lei et al. [96] 89.2%

Samanta et al. [97] 90.0%

Sushma et al. [98] 95.55

Proposed Framework 100.00%

KTH

Cao et al. [95] 92.0%

Lei et al. [96] 93.97%

Samanta et al. [97] 94.7%

Barrett et al. [99] 94.9%

Proposed Framework 98.00%

URADL

Prest et al. [100] 92%

Bilibski et al. [101] 94.7%

Wang et al. [5] 96%

Eman et al. [102] 96.6%

Proposed Framework 100.00%

demonstrate that the compression of encoded features can enhance the recognition per-

formance in the hybrid classifier. This is due to the automatical usage of polynomial or

sigmoid kernels in the third layer of hybrid classifier. The sigmoid and polynimial kernels

are mainly very effective while training a data with moderate feature dimenssion.

We conclude that the encoded features may contain outliers and redundant info which

make the classification more challenging and time-consuming. And the employed DL-SNN

provides optimal compressed features for action recognition in our hybrid classifier.

4.4 Summary

This chapter evaluates the effect of 3D-DWT on motion features and proposes a hybrid

classifier for action recognition. The experimental results show that motion saliency maps,

which are obtained by 3D-DWT, are capable of maturing the motion feature extraction for

action recognition. Furthermore, it is shown that the proposed hybrid classifier is capable

of leveraging the linear, sigmoid and polynomial kernels in SVM classifier. The results

show that the compression of encoded features can enhance the recognition performance
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in hybrid classifier. The experimental results demonstrate that the proposed framework

achieves promising results compared with the state-of-the-art approaches.
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CHAPTER 5

Hierarchical Feature Representation for Complex

Action Recognition

5.1 Overview

Complex video analysis is a challenging problem due to the long and sophisticated tem-

poral structure of unconstrained videos. This chapter introduces pooled-feature represen-

tation (PFR) which is derived from a double phase encoding framework (DPE) to address

this problem. Considering that a given unconstrained video is composed of a sequence of

simple frames, the first phase of DPE generates temporal sub-volumes from the video and

represents them individually. The second phase constructs the pool of features by fusing

the represented vectors from the first phase. The pool is compressed and then encoded to

provide video-parts vector (VPV). This framework allows distilling the video representa-

tion and hierarchically extracting new information. Compared with recent video encoding

approaches, VPV can preserve the higher-level information through standard encoding of

low-level features in two phases. Furthermore, the encoded vectors from both phases of

DPE are fused along with a compression stage to develop PFR. The early and late fusion

steps are adopted based on the priority of compression stage over the concatenation of

represented vectors.

Feature ranking from video-wide temporal evolution brings reliable information for

complex action recognition. However, a video may contain similar features in the sequence

of frames which deliver unnecessary information to the ranking function. In addition to the

PFR method, this chapter proposes a method to enhance the general rank-pooling strategy

which captures the optimized latent structure of the video sequence data. The optimiza-
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tion is followed by removing the redundant features from the sequence data. The cosine

and correlation distance metrics are employed to detect the identical features and extract

the most efficient information from the video frames. Then, the ranked features are gen-

erated from the optimized and clean sequence data. The proposed improvement is easy to

implement, fast to compute and effective in recognizing complex actions.

We adopt the improved rank pooling methodology to represent the temporal blocks at

the first phase of DPE framework. To validate the proposed IRP and PFR methods, we con-

duct extensive experiments on six complex action datasets: UCF50, HMDB51, URADL,

Olympic, Hollywood2 and UCF101. Experimental results demonstrate that PFR with early

fusion achieves the state-of-the-art performance by capturing the most prominent features

with minimum dimension compared to the typical video representation frameworks.

In particular, this chapter makes the following contributions:

1) Enhancing the general rank pooling strategy by removing the redundant features from

identical frames of a given video.

2) Employing the cosine and correlation distance metrics for detecting and removing the

redundant features using the proposed consequent and protracted checking methods.

Furthermore, we define the optimized threshold for removing the identical features.

3) Proposing the DPE framework to provide useful information for complex video anal-

ysis based on the assumption that a complex video is composed of a sequence of

simple actions. The early fusion of individual represented vectors (IRVs), at the first

phase of DPE, outperforms the traditional encoded vectors obtained from features of

entire video.

4) Introducing VPV at the second phase of DPE to represent higher-level information

for unconstrained video analysis.

5) Proposing the PFR with early and late fusion strategies to leverage the motion and

appearance-based information from a given video. It is worth pointing out that PFR

with early fusion provides the most significant features with least dimension and

highest efficiency for complex action recognition.
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6) Adopting the learning strategy with sub-network nodes (LSN) classifier in the ac-

tion recognition domain and compare its training speed and accuracy with traditional

extreme learning machine (ELM) and support vector machine (SVM) over six chal-

lenging datasets.

The rest of the chapter is organized as follows: Section 5.2 explains the proposed frame-

work w.r.t. existing works. This is followed by the evaluation and testing of our methods

in Section 5.3. Finally, Section 5.4 summarizes the proposed methods and experimental

results.

5.2 Proposed Framework

We hypothesize that hierarchically encoding the temporal sub-volumes of local video-based

features is a crucial step to producing higher-level features for action recognition. This

chapter introduces the pooled-feature representation (PFR), inherited from double phase

encoding (DPE), to present the most informative and prominent features of an uncon-

strained video. The PFRs are employed as the input to the learning strategy with sub-

network nodes (LSN) [59] to classify actions. It should be noted that we adopt the pro-

posed improved rank pooling (IRP) strategy to represent the temporal blocks in the DPE

framework. This section presents the proposed action recognition framework by describing

the IRP, DPE, PFR, and LSN strategies.

5.2.1 Improved Rank Pooling

The relative ordering of the video frames plays a crucial factor in video representation

frameworks. The general rank pooling strategy [61] has been proposed to represent a given

video by analysis the orders of the available frames in that video. However, the similar

encoded features from the identical frames may affect the ranking machines and produce

inefficient video representation. To address this problem, we detect the identical features

and remove them from the F={f̄1,· · · ,f̄t} where F is the set of features from a given video

and t is the length of that video. Consequently, we obtain a set of F={f̄1,· · · ,f̄η} where
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all the η features are unique. In this case, the video representation is generated using the

unique set of features without any similarity among data. The similarity between a pair of

vectors is detected using the distance metrics. The cosine and correlation distance metrics

are employed to measure the similarity among features. We evaluate the IRP framework

based on the stated similarity metrics in the experimental section of this chapter. The brief

description of theses metrics is stated as follows:

• Cosine distance metric [103]: To assign a numeric score to pair of vectors, the model

measures the similarity between the query vectors as

dcos(fn ,fn+1)
=

D
∑

i=1

(f
(i)
n f

(i)
n+1)

√

D
∑

i=1

(f
(i)
n )2

√

D
∑

i=1

(f
(i)
n+1)

2

(5.2.1)

The angle between two vectors is used as a measure of divergence between the vec-

tors, and cosine of the angle is used as the numeric similarity. Based on the cosine’s

property, we obtain 1.0 for identical vectors and 0.0 for orthogonal vectors. There-

fore, if the numeric similarity is above the threshold, the later vector is removed from

the feature set.

• Correlation distance metric: The correlation similarity score between two vectors is

calculated as

dcorr(fn ,fn+1)
=

1
D

D
∑

i=1

(f
(i)
n f

(i)
n+1)− (µfnµfn+1

)

σfnσfn+1

(5.2.2)

where µfn and µfn+1
are the means and σfn and σfn+1

are the standard deviations of

fn and fn+1 respectively. The numerator of the equation is called the covariance of

fn and fn+1, and is the product of fn and fn+1 subtracted from the product of their

means.

The similar frames are removed based on the protracted and consequent methods where

the subsequent feature vectors are analysed and compared. As the protracted method, in
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case of having similarity among fn and fn+1, the later vector is removed and then com-

parison is performed between the fn and fn+2 vectors. If the similarity score is below the

threshold, both the vectors are kept and the next comparison is performed between fn+2

and fn+3. As the consequent method, the couple checking is performed between any cou-

ple vectors. If the similarity score is over the threshold, the later vector is removed. Figures

5.2.1(a) and 5.2.1(c), show the feature vectors from the original video frames. As depicted

in Figure 5.2.1(b) and 5.2.1(d), the similar vectors are removed from the original set and

the sets of cleaned vectors are obtained based on the protracted and consequent methods

respectively. The protracted and consequent removing schemes are performed from the

starting frame to the last frame of a particular video.

Additionally, we propose the double thresholding scheme (DTS) as the complemen-

tary step for removing the identical features from temporal sub-volumes. The underlying

motivation behind the DTS is to behave with short and long shot videos efficiently. More

identical feature vectors may exist in the long shot sub-volumes. Therefore, the higher

threshold εh is used to remove more vectors from a long shot sub-volume. However, we

may achieve just a few feature vectors from a short video while using the same threshold

which is used for long shot videos. In this case, we consider the lower εl to remove the

similar feature vectors less strictly. If the number of frames of the processed sub-volume

is above 80 frames, the higher value is selected to remove the identical features. Other-

wise, the lower threshold is adopted for eliminating similar features. Based on the adopted

cosine and correlation distance metrics, the DTS evaluation for finding the most reliable

thresholding values is explained in Section 5.3.1.

The relative ordering of the feature vectors from a given video frames is preserved

regardless of the significant variability in intra-class action performance speeds. For in-

stance, the walking action can be performed faster or slower. However, regardless of the

speed of walking, the ordering of the frames remains the same for all walking actions.

We employ the rank pooling method as described in [61] to represent the cleaned order-

ing of the frames from a particular video. The rank pooling is performed based on the

assumption that a given video is composed of t frames while the frame feature vector at a

discrete time step n is denoted by f̄n. The rank pooling represents the temporal evolution
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Figure 5.2.1: Protracted and consequent removal schemes over an example. (a) and (b) show the original and clean feature sets based on

the protracted scheme. (c) and (d) show the original and clean feature sets based on the consequent scheme.
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of F={f̄1,· · · ,f̄n,· · · ,f̄t} from a given sub-volume. The V̄ indicates the represented infor-

mation which reflects the change of frame features from time n to n+ 1 for unique frames

in a given sub-volume. As in [61], a pairwise linear ranking machine learns parameters p

from the data F where p lies in the same space as the cleaned data in F. In other words,

p represents the information from the content of F by capturing the data about ordering in

F. In other words, rank pooling is a function-based temporal pooling approach to capture

the latent structure of the video sequence data, e.g., how frame-level features evolve in a

video [61]. The optimization objective for the appearance evolution is expressed based on

RankSVM which is considered as a pairwise learning to rank framework [104]. The dy-

namics of F={f̄1,· · · ,f̄η}, denoted by ∆, are obtained using a linear function ϕp=ϕ(F; p)

parametrized by p, where ϕ approximates ∆ by

arg min
p

‖∆− ϕp‖ . (5.2.3)

where dynamics ∆ are driving force for ordering the frame feature vectors in the correct

sort [61]. The improved rank pooling framework is evaluated over benchmark datasets

and the experimental results are presented in Section 5.3.1. In the rest of the chapter, we

employ the IRP framework to develop the double phase encoding strategy for complex

action recognition.

5.2.2 Double Phase Encoding

We introduce DPE as a hierarchical approach to provide rich semantic clues for complex

action recognition through low-level features. As depicted in Figure 5.2.2, the proposed

DPE includes two phases where τ denotes the number of temporal sub-volumes at the first

phase; the V̄ and C̄ denote the represented vectors from temporal sub-volumes and com-

pressed feature sets respectively; the d denotes the dimension of features after compression

at the second phase; the D and K denote the original feature dimension and number of

components for GMM training.

The first phase consists of the following three steps: feature extraction, temporal sub-

volume generation, and sub-volume representation. At the first step, we extract features
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Figure 5.2.2: The proposed double phase encoding (DPE) framework for unconstrained video analysis.
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with {N, t} dimensions from a given video. The N and t respectively present the number

of feature samples and the temporal length of a given video. Even though our proposed

methodology is independent of the choice of features, we use the improved dense trajectory

(IDT) feature extraction method along with HOG, HOF, and MBH descriptors [31] as the

initial step in our framework (see Figure 5.2.3). The IDT features [31] provide state-of-

the-art results on benchmark action datasets. The length of the trajectories, number of

scales, sampling stride, neighborhood size, and number of spatial and temporal cells are

the adjustable parameters for IDT feature extraction [31]. We follow the same parameters

from [31] since the feature extraction parameters are precisely optimized in [31].

At the second step, we generate the temporal sub-volumes based on
{

t
2
, t
3
, t
4
, . . . , t

w

}

scales where t is the temporal length of a given video and w is the maximum number of

equal sized sub-volumes in the last division scale. Therefore, the video features are split

into τ sub-volumes as S = {s1, . . . , sτ} where τ =
(

w
2
(1 + w)

)

− 1 (see 1st DPE phase

at Figure 5.2.2). It is worth pointing out that we generate equal size temporal sub-volumes

based on each scale, e.g., t
2

produces 2 equal sized temporal sub-volumes and so on for the

rest scales.

At the third step, we represent the individual temporal sub-volumes S = {s1, . . . , sτ}
of local features as V = {V̄1, . . . , V̄τ}. We employ our IRP method to represent the indi-

vidual sub-volumes. The variety of features from τ temporal sub-volumes aim to represent

a given video considering its temporal details. We encode the features from individual

frames in each temporal sub-volume using the Fisher vector (FV) algorithm. The adopted

FV algorithm encodes the difference among video features and the vocabulary by apply-

ing derivative operations on the likelihood concerning the distribution parameters, (mean

(µ), weights (̟), and covariance (σ)), of the vocabulary. The Gaussian mixture model

(GMM) is adapted to shape the vocabulary parameters. Even though HOF, HOG, and

MBH (MBHx, and MBHy) are all histogram based descriptors, they carry different in-

formation from different perspectives. Consequently, the individual GMMs are learnt for

each descriptor and four different represented vectors are produced for each sub-volume of

S = {s1, . . . , sτ}. Figure 5.2.3 shows the employment of four descriptors through our rep-

resentation methodology for complex action recognition. As depicted in Figure 5.2.3, the
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Figure 5.2.3: Video action recognition framework based on the first and second DPE phases and standard Fisher encoding.
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improved rank pooling (IRP) representations from four descriptors (HOG, HOF, MBHx,

and MBHy) are combined where δ contains the pooled feature representations (PFR) in-

herited from different descriptors. Section 5.2.3 thoroughly presents the PFR strategy.

In this chapter, we further call the set of τ represented vectors, {V̄1,· · · ,V̄τ} as individual

represented vectors (IRVs) obtained at the third step of the first phase of DPE framework.

The Second Phase

The ultimate goal of the second phase of DPE is to extract the higher-level video informa-

tion by encoding the individual feature vectors which are generated at the first phase. The

second phase consists of the following three steps: pool construction, pool compression,

and pool representation (see 2nd DPE phase in Figure 5.2.2) .

As the first step, we construct the pool of features by fusing the individual feature

vectors {V̄1,· · · ,V̄τ}. As depicted in Figure 5.2.2, the pool includes 2DK vectors while

each vector contains τ elements. The D, K and τ are the dimension of features, number

of components in GMM training, and number of temporal sub-volumes respectively. The

pool of features contain the low-level feature vectors from τ temporal sub-volumes of local

features. We hypothesize that an encoding strategy aims to extract higher-level features

from the pool. However, the size of the pool is too high-dimensional to be represented by

the Fisher vector encoding at the second phase. Aside from that, Fisher vectors may contain

minimal values, close to zero, which cannot provide extended information for higher-level

feature extraction. We hypothesize that compression of the pool of features aims to extract

the most reliable and prominent features for the encoding step at the second phase. Thus,

as the second step in the second phase of DPE, the pool of features is mapped to a lower

dimensionality space, impressively. The pool is compressed from 2DK to d dimension

using the double-layer net with sub-network nodes (DL-SNN) framework.

As the third step, the compressed pool is decorrelated using PCA and then employed

as the input to the Fisher vector encoding in the second phase of DPE. The GMM with

the same codebook size, as in the first phase, is learned and the higher level information is

obtained as shown in Figure 5.2.2. The VPV contains the higher level information which

is derived from the encoding of temporal sub-volume features. Next section describes the
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Figure 5.2.4: Different layers of the Double-Layer Net with Sub-Network Nodes. (a)

demonstrates the feature mapping layer. (b) shows the learning layer

DL-SNN framework for compression of the pool of features as the second step of second

DPE phase.

Dimensionality Reduction

The generated pool at the second phase of DPE includes a high dimension of features. The

high dimensionality significantly increases the required time and memory for data process-

ing [105]. Thus, we map the pool to a lower dimensional space to extract the most useful

and prominent information while reducing the dimension of the pool. We adopt the double

layer net with sub-network nodes (DL-SNN) [93] to map the pool to a lower dimensional

space. The learning speed of the employed DL-SNN is much faster than deep networks

such as stacked autoencoders (SAE) and deep belief networks (DBNs) [93]. Furthermore,
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Table 5.2.1: Notations to be used in the proposed video analysis framework

Notation Meaning

M Number of training samples.

D Local features dimension after reducing their size by PCA.

K Number of components for Gaussian mixture training.

2DK Dimension of the encoded features using Fisher vector method.

w Maximum number of temporal sub-volumes in DPE framework.

m Output data dimension (number of classes).

L The numbers of general hidden nodes.

c Regularization parameter.

(ααα, ♭) A hidden node.

(a, b) A general hidden node (or subnetwork node).

â
j
f

Input weight of the jth general hidden node

in feature mapping layer. â
j
f ∈ Rd×n .

b̂jf
Bias of the jth general hidden node in

feature mapping layer b̂jf ∈ R.

(αααj
fi, ♭

j
f) The ith hidden node in the jth general hidden node.

(âh, b̂h) Hidden nodes in learning layer and âh ∈ Rm×d.

uj
Normalized function in the jth general node, uj(·) : R → (0, 1],

u−1
j represent its reverse function.

H
j
f Feature data generated by j general nodes in a feature mapping layer.

eL
The residual error of current two-layer network (L general

nodes in the first layer and (ah, bh) in the second layer).

the DL-SNN can provide a better generalization performance than other dimension reduc-

tion approaches such as isomap and linear discriminant analysis [93]. Additionally, we

show that DL-SNN is not sensitive to the parameters of the networks. Therefore, we can

select the parameters randomly without affecting the generalization performance in the

learning process.

The summary of the notations, used in DL-SNN, is described in Table. 5.2.1. The DL-

SNN platform consists of feature mapping and learning layers. The feature mapping layer

includes general nodes formed by several hidden nodes which naturally forms the natural

learning procedure (see Figure 5.2.4). The numbers of general nodes and output dimension

are independent while the number of hidden nodes in each general neuron must be equal to

the size of outputs (m). To achieve the optimal general parameters in the feature mapping

layer, the inverse of the activation function is adopted as the based on the learning steps.

The following five steps are performed to ensure that the represented features, derived from

DL-SNN, are the optimal feature data at the second phase of DPE.
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Figure 5.2.5: Double-layer net with sub-network nodes for mapping the feature data.

Step 1: We set j = 1 for M distinct training samples, {(xi, yi}Mi=1, xk ∈ R2DK , y ∈ Rm.

Then, the initial general node of the feature mapping layer is generated randomly as

H
j
f = g

(

â
j
f . x + b̂

j

f

)

,
(

â
j
f

)T
.âj

f = I,
(

b̂
j

f

)T

. b̂
j

f = 1 (5.2.4)

where H
j
f is the current feature data, g is the activation function, and â

j
f ∈ Rd×2DK , b̂

j

f ∈
R are the orthogonal random weight and bias of feature mapping layer.

Step 2: Calculate the parameters in the learning layer based on a sigmoid or sine acti-

vation function g for the continuous desired outputs y,

âh = g−1(u2DK(y)) ·
(

H
j
f

)−1
, âj

h ∈ Rd×m

b̂h =
√

mse
(

â
j
h · H

j
f − g−1(u2DK(y))

)

, b̂j2DK ∈ R

g−1(·)











arcsin(·) if g(·) = sin(·)

− log(
1

(·) − 1) if g(·) = 1/(1 + e−(·))

(5.2.5)

where H−1 = HT (CI+HHT )−1 whileC is a positive value, u2DK is a normalized function

76



5. HIERARCHICAL FEATURE REPRESENTATION FOR COMPLEX ACTION RECOGNITION

u2DK(y) : R → (0, 1], and g−1 represents reverse activation function.

Step 3: Update the output error ej as

ej = y − u−1
2DKg(Hj

f , âh, b̂h), (5.2.6)

and obtain the error feedback data as

Pj = g−1(u2DK(ej)) · (âh)
−1 (5.2.7)

Step 4: Update the feature data as

H
j
f =

j
∑

l=1

u−1
l g(x, âl

f , b̂
l
f ) (5.2.8)

by setting j = j + 1 and adding a new general node â
j
f , b̂

j
f in the feature mapping layer by

â
j
f = g−1(uj(Pj−1)) · x−1 , âj

f ∈ Rd×2DK

b̂jf =
√

mse(âj
f · x − Pj−1) , b̂

j
f ∈ R

(5.2.9)

Step 5: Repeat steps 2 to 4 for L − 1 times. It is worth to mention that a new general

node is added to the existing network in the feature mapping layer when repeating steps 2

to 4 once. The parameters {â
j
f , b̂

j
f}Lj=1 are optimal projecting parameters and the feature

data HL
f =

∑L

j=1 u
−1
j g(x, âj

f , b̂
j
f) = H∗

f are the optimal feature data.

The employed method can be used as a double-layer network including two feature

mapping layers (see Figure 5.2.5). The structure with double-layer network provides a bet-

ter general performance than single-layer structure. In the double-layer strategy, the input

data is transformed into two feature mapping layers, and the input raw data is converted

into d-dimensional space. Figure 5.2.5 depicts the double layer net with subnetwork nodes

as follows: (a) Mapping from initial feature set to H1
f ; (b) Mapping from H1

f to H2
f ; (c)

Mapping from initial feature set to HT
f using the input weights [(â1f1, b̂

1
f1
), . . . , (âLf1, b̂

L
f1
)]

and [(â1f2, b̂
1
f2
), . . . , (âLf2, b̂

L
f2
)] .

Mathematically, given a training set {(xi, yi)}Mi=1, the output of first and second feature
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mapping layers are represented as H1
f =

∑L

i=1 g(H1
f · âi

f + b̂
i
f ), and H2

f =
∑L

i=1 g(H2
f · âi

f +

b̂if ) where g denotes the activation function of the hidden layers. As shown in Figure 5.2.5,

the input to the double layer network contains 2DK features which come from the output

of Fisher vectors. We target to compress the input data to an optimized dimension using

DL-SNN. The evaluation of the streamlined compression rates is described with details in

Section 5.3.

5.2.3 Pooled-Feature Representation

Fusion of multiple feature sets aims to boost the action recognition performances in com-

puter vision applications [20]. The main advantage of fusion is that the classifier can ’see’

all the distinct features at once and only one learning phase is required. However, fusion

provides a high dimension of feature sets, usually accompanied by limited amounts of train-

ing data, which makes the classification more challenging and time-consuming. To address

this problem, we hypothesis that the fusion of multiple feature sets can be joint with the

compression stage to make a reliable and robust feature vector.

The DPE provides τ + 1 feature vectors in its former and latter phases. Each of the

singular vectors represents specific information related to a sub-volume or higher level

video information. Therefore, the fusion of singular vectors from DPE and Fisher vector

of the entire video can boost the recognition performance since the individual feature sets

deliver diverse sets of information. However, early fusion provides a high dimensional

feature set with dimension of (τ + 2)× 2DK which is challenging and time-consuming in

the training phase. Aside from that, the high dimensionality of data requires huge space of

memory and processing power in the classification stage. We adopt the DL-SNN to deal

with the massive dimension of fused features based on the two following options.

First Option

As shown in Figure 5.2.6(a), the DL-SNN compresses each single represented vector indi-

vidually to d1 dimension. Then, the compressed feature vectors are concatenated to gener-

ate the PFR. The PFR is inherited from the compressed version of IRVs which are obtained
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Figure 5.2.6: The first and second PFR options to obtain the PFR-LF and PFR-EF.
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at the first phase of DPE (
[

V
r

1
, . . . , V

r

τ

]

), the compressed version of video parts vector

which is obtained at the second phase of DPE (V PV
r
), and the compressed version of

standard FV (SFV
r
). Consequently, the PFR’s dimension is become (τ + 2) × d1 where

d1 ≪ 2DK. This vector is then used as the input to the classifier for action recognition.

We call the first option as PFR with Late Fusion (PFR-LF) since the fusion is performed as

the latter step and compression is implemented as the former step.

Second Option

As shown in Figure 5.2.6(b), the single encoded vectors from the first and second phases

of DPE and SFV are fused as FFV =
{

[V 1, . . . , V τ ], V PV , SFV
}

. Then, the DL-SNN

is used to compressing the fused vector into d2 dimension . In other words, the dimension

of fused vector is reduced from (τ + 2) × 2DK to d2. In the Figure 5.2.6(b), the FFV

and FFV
r

show the fused vector and compressed version of fused vector respectively. We

consider the compressed version of fused vector as PFR with Early Fusion (PFR-EF) since

the fusion is performed as the former step and compression is implemented as latter step.

The PFR-EF contains the most informative features, and is adopted as the input to classifier

for action recognition.

The video data is usually characterized in multiple views, such as static appearance,

motion pattern, and motion boundary. The essence of multi-view data requires fusing dif-

ferent descriptors for action recognition. Therefore, we fuse the PFR of MBHx, MBHy,

HOG, and HOF descriptors to employ all the appearance and motion informative data in

our methodology (see δ in Figure 5.2.3).

5.2.4 Classification Strategy

Most of the recent action recognition frameworks classify the video features using a linear

support vector machine (SVM) or extreme learning machine (ELM) [106, 107, 45, 46, 20].

However, in this chapter, we employ the learning strategy with sub-network nodes (LSN)

[59] to classify actions. The principle motivation behind the usage of LSN is to further im-

prove the learning speed and accuracy compared to the common SVM and ELM classifiers.
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Furthermore, different from common classifiers which are sensitive to the combination of

parameters, experimental results show that the generalization performance of the LSN is

not susceptible to the parameters of the networks. Thus, the random selection of parameters

is not affecting the generalization performance in the learning process.

The LSN classifier is presented as follows: given M feature vectors from arbitrary

distinct video samples {(xi, yi)
M
i=1; xi ∈ Rd , yi ∈ Rm}, we have lim

d→+∞
‖y−u−1(g(â1.x+

b̂1)).β1 + . . .+ u−1(g(âd.x + b̂d)).βd‖ = 0 which holds with probability one if

âd = g−1(u(ed − 1)). xT (CI + xxT )−1, âd ∈ Rd×m

b̂d = sum(âd.x − g−1(u(ed−1)))/M, b̂d ∈ R

βd =

{

ed−1, u
−1

(

g
(

âd.x + b̂d

))}

∥

∥

∥
u−1

(

g
(

âd.x + b̂d

))
∥

∥

∥

2

(5.2.10)

where xT (CI + xxT )−1 = x−1 is the MoorePenrose generalization inverse of the training

samples [108]; g−1 is the inverse of an activation function; and u−1 is an inverse func-

tion of normalized function u. The âd and b̂d denote dth sub-network hidden node, where

âd ∈ Rd×m and b̂d ∈ R. The ed denotes the residual error of current network output Θd

with d hidden nodes, i.e., ed = y − Θd. The H is the hidden layer output matrix of the

single layer feed-forward network (SLFN) where ith column of H is the ith hidden node

output with respect to inputs. The I and sum(e) indicate the unit matrix and the sum of the

whole elements of the matrix e. It is proven in [59] that the sequence ‖ed‖ is reduced and

converges to zero in the LSN classifier. According to [59], the input and output weights

have the minimum norm between all the least-squares solutions. From the other side, it is

proven in [59] that the LSN with m hidden nodes is capable of providing a similar or much

better generalization performance compared to other learning strategies with thousands of

hidden node. Consequently, if equation 5.2.10 calculates â and b̂ only once for M different
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Figure 5.2.7: (a) LSN with one sub-network hidden node. (b) The sub-network hidden

node can be considered as a standard SLFN with m hidden nodes.

samples
{

(xi, yi)
M

i=1

}

, xi ∈ Rd, yi ∈ Rm, the network output is generated as

f(x) = β1u
−1(g(a1.xj + b̂1))

= β1u
−1(g([a11, . . . , a1m].xj + b̂1))

(5.2.11)

where j = 1, ...,M and g is an activation function. According to Bartletts theory [109],

when a learning algorithm finds a network with small weights with a low squared error

in the training process, the generalization performance depends on the size of the weights

rather than the number of weights . In other words, a robust learning framework must be ca-

pable of reaching the smallest training error as well as the smallest norm of weights. Based

on this motivation, the sub-network hidden nodes and output weights of the LSN frame-

work provide the smallest norm of weights and lowest training error. The sub-network

hidden nodes of the LSN classifier are calculated in the learning layer and not generated

randomly. Figure 5.2.7(a) shows the LSN learning framework with its sub-network node

as (a1, b̂1), (a2, b̂2), . . ., (am, b̂m). Figure 5.2.7(b) shows that the strategy of the employed

network with only one sub-network layer is similar to a standard SLFN. It should be noted

that at the first layer of LSN, ν indicates the number of features which are provided by

PFR.
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5.3 Experiments and Results

This section presents a detailed experimental evaluation for complex action recognition

in benchmark datasets. Section 5.3.1 describes the evaluation of IRP and Section 5.3.2

explains the experimental setup and results of PFR framework.

5.3.1 Evaluation of Improved Rank Pooling

Defining the optimized thresholds

The HMDB51 and Hollywood2 datasets contain simple and complex actions with short

and long shot videos. However, the URADL dataset is composed of complex actions with

very long shot videos. Therefore, the extracted features from URADL may contain more

redundant and similar data compare to the HMDB51 and Hollywood2 datasets. Based on

the different characteristics of available videos in each dataset, the thresholding selection

is supposed to be very flexible for particular short and long shot videos. Consequently, we

propose the double thresholding scheme (DTS) to efficiently remove the identical features

based on the similarity score.

The recognition performances over three datasets using the sets of DTS are shown in

Figure 5.3.1. We assign two thresholding values for the short and long shot videos. Based

on the experiments, we consider a video as the long shot if the number of frames are

more than 80. Otherwise, the videos are considered as short shot. Table 5.3.1 presents the

set of higher and lower level thresholds for cosine and correlation distance metrics. These

thresholding values have been evaluated for three employed datasets. For the cosine metric,

the 9th thresholding set outperforms others. We assign 0.18 and 0.13 as the higher and lower

level threhsolds for the cosine metric. For the correlation metric, the 7th thresholding set

outperforms other sets. We assign 0.62 and 0.4 as the higher and lower thresholding levels

for the correlation metric.
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Figure 5.3.1: Action recognition performance using the improved rank pooling algorithm

based on cosine (a) and correlation (b) distance metrics.
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Table 5.3.1: Actual thresholding values for the similarity detection and elimination based on cosine and correlation distance metrics

Thresholding order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Higher τcos 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.25 0.3 0.35 0.4

Lower τcos 0.5 0.6 0.7 0.8 0.9 0.10 0.11 0.12 0.13 0.14 0.15 0.17 0.19 0.21 0.23

Higher τcorr 0.5 0.53 0.56 0.59 0.62 0.65 0.68 0.71 0.74 0.77 0.79 0.81 0.83 0.85 0.87

Lower τcorr 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.67 0.69 0.71 0.73 0.75

8
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Performance Evaluation

As shown in Figure 5.3.2, the IRP strategy outperforms or atleast results like regular rank

pooling for all the actions of Hollywood2 dataset. It is worth to pointing out that the

results for the ”hug” and ”handShake” actions are much better than the regular rank pooling

performance. The mentioned actions are mainly have been performed with combination

of other actions. For instance, people are talking or walking before or after the actual

”handshaking” action. We believe that the IRP is capable to remove the redundant data

from this kind of complex actions efficiently before ranking the features. This can be

considered as the main reason for outperforming of IRP over these actions. It should be

noted that IRP works roughly the same as rank pooling for simple actions such as ”run”

and ”situp”.

As shown in Figure 5.3.1, the cosine and correlation metrics are roughly results the

same with different thresholding values. However, in terms of processing speed, the cosine

metric is faster and can be considered as the best similarity metric for IRP. The protracted

removal scheme outperforms the consequent removal scheme for all datasets. The results

of consequent scheme is about the same as regular rank pooling. consequently, we can con-

clude that consequent scheme is not capable of removing all identical feature vectors from

the original set. So, it leads to obtain the same results as regular rank pooling. However,

the protracted scheme is capable of removing most similar feature vectors, and achieves

reliable results.

Comparison of IRP to the state of the art

We compare the IRP performance with the state-of-the-art frameworks, as stated in Table

5.3.2. The proposed IRP methodology outperforms the regular rank pooling for all the

three employed datasets. We also compare our results with improved dense trajectory (IDT)

framework since we employ local features based on IDT to propose the IRP methodology.

IRP results better than the IDT framework for all the datasets.

As reported in Table 5.3.2, the proposed IRP obtained the 70.6%, 63%, and 99.6%

average accuracy for the Hollywood2, HMDB51, and URADL datasets. The improvement
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Figure 5.3.2: The action recognition performance on individual classes of Hollywood-2

dataset

Table 5.3.2: Comparison of our results, based on IRP, to the state-of-the-arts

Dataset Method Recognition Rate

Hollywood2

Wang et al. [31] 58.2%

Jain et al. [32] 62.5%

Fernando et al. [61] 69.6%

Proposed Framework 70.6%

HMDB51

Wang et al. [31] 46.6%

Jain et al. [32] 52.1%

Fernando et al. [61] 61.6%

Proposed Framework 63.00%

URADL

Prest et al. [100] 92%

Wang et al. [31] 96%

Eman et al. [102] 96.6%

Proposed Framework 99.6%
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of regular rank pooling shows a higher impact on URADL dataset since it is composed of

only complex actions in very long shot videos. The average length of videos in URADL is

about 16.16 seconds which is much higher than other two datasets. Consequently, we can

conclude that IRP works better on long shot videos with complex actions.

5.3.2 Evaluation of Pooled-Feature Representation

Now, we describe the detailed evaluation of PFR-EF and PFR-LF trained by LSN. Finally,

we conclude this section by comparing the obtained PFR results with the state-of-the-art.

Since the proposed methodology is not specific to an action type or class of actions, we

present experiments in a broad range of datasets. We follow the same training and testing

splits as reported by the state-of-the-art methods. It should be noted that we keep the same

experimental settings for training and testing over each dataset.

Experimental Setup

At the first phase of DPE framework, we extract the IDT features along with HOF, HOG,

and MBH descriptors. We keep the settings of feature extraction as stated in [10]. Thus,

the dimension of the HOG, HOF, and MBH descriptors are 96, 108, and 192 respectively.

We split the local features, derived from each descriptor, into τ sub-volumes. Then, each

temporal sub-volume is represented using the improved rank pooling (IRP) strategy. In

the IRP, we employ PCA with a dimensionality reduction of size 64 before encoding the

local features from τ sub-volumes. For encoding, we learn a visual dictionary by Gaussian

mixture model (GMM) of codebook size K. Consequently, the dimension of encoded

features is 128×K for each dataset.

At the second phase of DPE, the pool of features contain 128 × K features and τ

samples. We compress the pool using DL-SNN to extract the most prominent and useful

features for encoding of the second DPE phase. Based on the experiments, the regular-

ization parameter of DL-SNN can be selected randomly without affecting on recognition

performance. Finally, we encode the compressed pool to generate VPV at the second phase

of DPE. Additionally, we calculate the standard Fisher vectors (SFV) based on the same
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parameters as for VPV. Now, we have all the required information to generate PFR-EF and

PFR-LF.

The PFR-EF and PFR-LF are evaluated to determine the best option for complex action

recognition. The evaluation is performed using the LSN classifier. Moreover, we compare

the recognition performance of LSN, ELM, and SVM classifiers over the best option of

PFR. For the SVM, linear activation function aligned with the cost of 100 is selected as

the optimized parameters [10, 110, 111, 5]. For the ELM, we use 1000 hidden nodes

and regularization parameter of 2−2 aligned with sigmoid activation function as the most

reliable parameters [59]. For the LSN strategy, the optimized number of hidden nodes is

equal to the output nodes. So, it is different based on the number of classes in each dataset.

Thus, we use 10, 16, 51, 50, 101, and 12 hidden nodes for URADL, Olympic, HMDB51,

UCF50, UCF101, and Hollywood2 datasets. The regularization parameter of the LSN is

also examined, and it is shown that its changes do not affect the learning process.

Experimental Results

Effective number of temporal sub-volumes. Generating of temporal sub-volumes at the

first phase of DPE framework is considered as the most important factor in PFR production.

We compare different number of sub-volumes in DPE (see Table. 5.3.3). The evaluation

is performed using the LSN classifier over six datasets. The best average of recognition

performance is obtained by employing nine temporal sub-volumes as stated in Table. 5.3.3.

For the URADL and Hollywood2 datasets, the VPV performance becomes better while

increasing the number of sub-volumes. From the other side, the best VPV performance for

HMDB51 is achieved by employing five sub-volumes since that dataset contains shortest

video shots compared to other employed datasets.

It shows that VPV performance has a direct relation to the length of videos since the

URADL and HMDB51 contain longest and shortest videos compare to other datasets. We

perform all the future experiments by employing nine temporal sub-volumes since the best

average of recognition performance is obtained using nine temporal sub-volumes. Thus, the

maximum number of equal size sub-volumes are four on the third scale while generating

the temporal sub-volumes of local features.

89



5
.

H
IE

R
A

R
C

H
IC

A
L

F
E

A
T

U
R

E
R

E
P

R
E

S
E

N
T

A
T

IO
N

F
O

R
C

O
M

P
L

E
X

A
C

T
IO

N
R

E
C

O
G

N
IT

IO
N

Table 5.3.3: Defining the best number of temporal sub-volumes to yield feature sets in the first phase of DPE.

Number of

Sub-volumes
UCF50 URADL Olympic Sports HMDB51 UCF101 Hollywood2

IRV VPV IRV VPV IRV VPV IRV VPV IRV VPV IRV VPV

2 91.2% 49.4% 94.0% 66.6% 90.2% 51.1% 59.4% 36.9% 89.4% 43.1% 69.4% 39.2%

5 91.9% 51.8% 95.3% 68.6% 91.0% 53.7% 59.4% 39.9% 90.0% 45.3% 69.6% 41.8%

9 92.3% 52.1% 97.3% 70.6% 91.2% 59.7% 61.1% 39.2% 91.6% 49.2% 69.6% 42.2%

14 92.1% 52.0% 96.6% 71.3% 91.0% 55.9% 59.4% 39.5% 90.4% 47.5% 70.9% 43.5%

20 90.5% 52.0% 94.0% 72.6% 89.5% 54.4% 57.2% 36.9% 89.7% 47.2% 69.5% 41.2%

27 90.0% 51.9% 94.0% 72.6% 85.8% 48.5% 55.9% 36.9% 88.9% 46.4% 68.9% 39.6%

9
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Figure 5.3.3: The effect of different codebook dimensions while encoding the features for

six employed datasets.

Effective codebook dimension for encoding the features. We evaluate a set of code-

book sizes, K = {32, 64, 96, 128, 164}, to encode the features at the first and second phases

of DPE framework (see Figure 5.3.3). For each dataset, the same codebook size is allocated

to both DPE phases. The experiments have been performed by feeding the features to LSN

classifier. Based on the experiments, the best codebook size for the UCF50, Olympic,

HMDB51, and Hollywood2 is 128, for URADL is 32, and for UCF101 is 200. It should

be noted that we already reduced the size of the features to 64 using the PCA approach.

Thus, the dimension of the generated features is 4096 for URADL, 25600 for UCF101, and

16384 for the rest of datasets.

Evaluate the regularization parameter in DL-SNN. Parameter C is the only ad-

justable factor for compressing of features at the second phase of DPE. It is selected from

the set of C = [2−4, . . . , 28]. We analyze the effect of the parameter C on the recogni-

tion performance over six employed datasets. The fused vector, derived from VPV and

IRVs, is fed to LSN for classification. We adopt the same C for DL-SNN and LSN during

experiments. The encoding is performed using the best codebook size for each dataset.

Experimental results show that generalization performance of the DL-SNN is not sensitive

to the parameter C. Therefore, we can select the parameter randomly at the outset without
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Figure 5.3.4: Evaluation of different compression rates at the second phase of DPE for the

employed datasets.

affecting the generalization performance in the learning process.

Effect of compression rates on VPV performance. The same compression size, se-

lected from d = {100, 150, 200, . . . , 1000}, is used for HOG, HOF, and MBH descriptors.

Then, the compressed version of each descriptor is encoded to generate VPVs. The VPVs

and IRVs of the employed descriptors are fused and then fed to LSN for classification. The

evaluation is performed using different dimensions in set d. We obtain the most accurate re-

sults by compressing the features to 500 dimensions for all datasets (see Figure 5.3.4). The

experiments show that increasing the compression dimension over 500 has no improving

effect on the results. The reason might be related to the sparsity of generated vectors using

DL-SNN. Generally, when the compression rate is increased, the sparsity of compressed

vectors is increased. And the sparsity of compressed vectors affects the encoding results at

the second phase of DPE.

Effect of compression rates on PFR performance. We analyze the sets of compres-

sion scales for generating PFR-EF and PRF-LF (see Figure 5.3.5). In order to provide the

PFR-EF, dimensions from the set d = [1000, 2000, ..., 10000] are evaluated to compress the

fused features. We evaluate the compression dimensions on HOG, HOF, MBHx and MBHy

separately. The experimental results show that the best compression size is 5000 for mo-
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tion features and 7000 for appearance-based features. It shows that the appearance-based

features are more sensitive while compressing and we may miss some vital information

during the compression. However, we can extract the more useful and reliable features

while compressing the motion-based features. In other words, motion-based features con-

tain more redundant information related to action recognition. Based on the experiments,

the best generated PFR-EF is composed of 22000 features and M video samples based on

four descriptors.

For producing the PFR-LF, each of the single feature sets are first compressed based on

the dimensions in set d = [100, 200, ..., 2000]. Then, the compressed features are fused to

generate the PFR-LF. As shown in Figure 5.3.5, 500 and 700 are roughly considered as the

best compression dimensions for motion and appearance-based features respectively. We

compress τ +2 encoded vectors for each descriptor where τ = 9 in our experiments. Since

we use four descriptors, 44 compressed vectors are fused to generate the PFR-LF. Based

on the experiments, the best PFR-LF contains 24200 features and M samples based on the

employed descriptors.

Effect of the length of videos on DPE framework. We analyze how the length of

videos affects the VPV recognition performance over UCF50 dataset. We use the fusion of

VPV and IRVs which are derived from 9 temporal sub-volumes, as the input to LSN clas-

sifier. Then, we compare the recognition accuracies achieved with different video lengths.

As shown in Figure 5.3.6, the recognition performance is enhanced by increasing the length

of videos. This is not surprising since longer videos are composed of more dynamic infor-

mation compared to shorter videos. Also, generating sub-volumes with small scales for

shorter videos will likely be more affected by outliers. It should be noted that relative

recognition performance between very long and concise videos, is about 10% and 50% for

IRVs and VPV respectively. We conclude that we are capable of capturing the dynamics of

long-shot videos more efficiently than short videos.

Analysis of classifiers. Looking at the results of UCF50 dataset, we observe that LSN,

SVM, and ELM respectively achieve 92.45%, 90.4%, and 88.6% for the first train-test

group. The training time for SVM, LSN, and ELM are 9735, 1365, and 364 seconds

respectively for the first train-test group. The experiments show that LSN outperforms
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Figure 5.3.5: Evaluation of compression rates to create PFR-EF and PFR-LF feature vectors over six benchmark datasets.
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Figure 5.3.6: The effect of video length on IRVs and VPV performances over UCF50

dataset.

Table 5.3.4: Comparison of sigmoid and sine activation functions in LSN over six bench-

mark datasets.

Activation

Function
UCF50 URADL Olympic HMDB51 UCF101 Hollywood2

Sigmoid 94.9% 100.0% 91.4% 63.2% 91.8% 71.4%

Sine 94.6% 100.0% 91.2% 63.0% 91.2% 70.8%

standard SVM in both accuracy and training speed. However, compared to the standard

ELM, LSN is capable of boosting the recognition performance while having a slower train-

ing speed. Additionally, we evaluate the effect of sigmoid and sine activation functions in

the LSN classifier (see Table. 5.3.4). Based on the obtained results using six benchmark

datasets, the sigmoid activation function outperforms the sine function. Thus, we conclude

that the sigmoid function is more differentiable with respect to the network parameters and

this property plays a vital role in the training of LSN classifier.

Analyse the results and compare with state-of-the-arts. As shown in Figure 5.3.7,

the action recognition performance using PFR-EF outperforms PFR-LF in six benchmark

datasets. Additionally, PFR-EF provides better results compared to the VPV, SFV, and

IRVs. The obtained features using PFR-LF and PFR-EF are trained and tested by LSN

classifier. We summarize the results of proposed PFR-LF and PFR-EF in Table 5.3.5. Ad-

ditionally, we compare the obtained results with state-of-the-art action recognition frame-

works.
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Figure 5.3.7: Compare the action recognition performances using VPV, IRVs, SFV, PFR-

EF, and PFR-LF.

As shown in Table 5.3.5, the action recognition performance is surprisingly improved

for URADL datasets. The URADL contains long-shot videos. Based on the lengthy com-

plex videos, we obtain 100% accuracy for the URADL. The recognition performance is

boosted for UCF50 dataset by obtaining 94.9% average accuracy over 25 groups of testing

and training splits. As stated in Table 5.3.5, we boost the results compared to the low-level

[19, 45, 112, 106] and mid-level [46] video representation approaches. The improvement

is marginal since the average length of videos in UCF50 is 7.00 seconds. The recognition

performance of the HMDB51 is boosted compare to the results of low-level and high-level

video representation methods [113, 114, 61, 6]. We compare the results of HMDB51 to

regular rank pooling approach [61] since we use the improved rank pooling strategy at the

fisrt phase of DPE to represent the temporal sub-volumes. Since HMDB51 dataset con-

tains shorter videos compare to other employed datasets, the recognition performance is

marginally improved. For the Olympic dataset, our results are the same as the presented

results by the state of the arts. Even though the length of videos of Olympic is roughly

the same as UCF50, smaller temporal sub-volumes are not capable of producing informa-

tive features for some specific actions at the first phase of DPE. For instance, the initial

96



5. HIERARCHICAL FEATURE REPRESENTATION FOR COMPLEX ACTION RECOGNITION

smaller sub-volumes of the high jump, long jump, and triple jump actions provide almost

the same features since the athletes are running with the same style in the three stated ac-

tions. Thus, due to the similarity between some of the sub-volumes of specific actions, the

PFRs are not easily discriminated. The involved similarities make the classification more

challenging. We achieved 91.4% based on mean average precision (mAP) over 16 classes

of the Olympic dataset. For the UCF101 and Hollywood2 datasets, the recognition perfor-

mances are boosted as shown in Table 5.3.5. We obtained reliable results for Hollywood2

dataset even though it contains complex videos with different qualities. The average of

video lengths in Hollywood2 dataset is 13.73 seconds. The long-shot video samples aim

to extract more informative features using the proposed PFR-EF method. We compare the

recognition performances of UCF101 and Hollywood2 with standard Fisher vector [10],

and state-of-the-art low-level and mid-level video representations [115, 106, 45].

We draw several vital conclusions by the inspection of Table 5.3.5 and the results of pre-

vious experiments. First of all, PFR-EF is a robust framework to represent unconstrained

videos. Second, the proposed method is complementary to local feature extraction meth-

ods such as improved dense trajectory features. Furthermore, we show that fusion of all

individual represented vectors at the first phase of DPE and the VPV from the second phase

of DPE can boost the recognition performance in complex videos. Consequently, the PFR-

EF is capable of representing a given video by extracting the most vital information from

appearance-based and motion features. Additionally, we conclude that PFR-EF impres-

sively enhances the action recognition performance for long-shot video samples.

5.4 Summary

In this chapter, we introduce pooled-feature representation (PFR), a new methodology to

represent unconstrained videos with the most prominent features. The PFR aggregates

the relevant information throughout a video via fusion of low-level and high-level repre-

sentations that are derived from the proposed double phase encoding (DPE) framework.

DPE is a multi-stage framework to represent the higher level information by employing

two encoding phases joined with the compression stage. The combination of the individ-
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Table 5.3.5: Comparison of our results, based on PFR, to the state-of-the-arts

Dataset Method Recognition Rate

UCF-50

Wang et al. [46] 93.8%

Tran and Torresani [45] 82.8%

Liu et al. [19] 75.6%

Wang [106] 91.7%

Zhang et al. [112] 94.5

Proposed PFR-LF 94.4%

Proposed PFR-EF 94.9%

HMDB51

Liu et al.[113] 57.2%

Xu et al. [114] 59.5 %

Fernando et al.[61] 61.8%

Liu et al. [6] 51.4%

Tran and Torresani [45] 41.9%

Proposed PFR-LF 62.2%

Proposed PFR-EF 63.2%

URADL

Yuan et al. [42] 92%

Prest et al. [100] 92%

Bilibski et al. [101] 94.7%

Wang et al. [5] 96%

Eman et al. [102] 96.6%

Proposed PFR-LF 97.33%

Proposed PFR-EF 100.00%

Olympic Sports

Lan et al. [116] 91.4%

Wang et al. [10] 91.1%

Jiang et al.[115] 91.0%

Wang et al.[106] 90.4%

Li and Dai [107] 91.4%

Proposed PFR-LF 91.0%

Proposed PFR-EF 91.4 %

UCF101

Lan et al. [116] 89.1%

Wang et al. [10] 84.7%

Jiang et al.[115] 87.2%

Wang et al.[106] 86.0%

Tran and Torresani [45] 71.6%

Proposed PFR-LF 91.3%

Proposed PFR-EF 91.8 %

Hollywood2

Lan et al. [116] 68.0%

Wang et al. [10] 64.3%

Jiang et al.[115] 65.4%

Wang et al.[106] 69.4%

Tran and Torresani [45] 56.6%

Proposed PFR-LF 70.0%

Proposed PFR-EF 71.4 %
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ual represented vectors from DPE phases allows preserving richer information from the

temporal domain of local features.

Additionally, we propose the improved rank pooling (IRP) strategy to represent the

individual temporal blocks at the first phase of DPE framework. The IRP captures the op-

timized latent structure of the video sequence data and describes a given video based on

its temporal contents. The improvement of rank-pooling is followed by eliminating the

identical features, derived from the video frames. As a case study, we compare the recog-

nition performance by employing the cosine and correlation distance metrics in detection

of identical features. Furthermore, we propose the double thresholding scheme (DTS) to

efficiently measure the similarity of couple vectors. We also propose two strategies for de-

tecting of similar features, called consequent and protracted checking methods where the

later achieves the best results. The cosine and correlation metrics achieve roughly the same

results with different thresholding sets.

Based on extensive experimental evaluations, we conclude that our method applies to

a wide variety of datasets for capturing the prominent temporal information of a video.

Our architecture is trained and evaluated over six challenging datasets, namely UCF50,

URADL, Olympic, HMDB51, UCF101, and Hollywood2. The best recognition perfor-

mance is achieved for URADL dataset with 100% accuracy since it contains the long-shot

videos of complex actions. We conclude that our proposed methodology is novel and accu-

rate for capturing the most salient information from the temporal domain of unconstrained

videos.
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CHAPTER 6

Key Action Perception for Constrained and

Unconstrained Video Analysis

6.1 Overview

The conventional action recognition frameworks extract and encode the features of the

entire given video. However, a given video may contain inappropriate actions and motions

which are entirely different from the key action. The inappropriate motions provide noises

in the feature sets of a given video and contribute challenges to the action classification

part. To address this problem, we propose the key action perception (KAP) along with

a robust video action clustering for unconstrained and constrained video analysis. The

KAP includes two classifiers: the former detects the key action among multiple temporal

clusters, and the latter recognizes the key action which is obtained by the former classifier.

The video action clustering is the essential pre-processing step for KAP implementa-

tion. The sequential relationship of the video frames and complexity of motion represen-

tations provide challenges in video action clustering. We propose two novel multi-layer

subspace video action clustering (ML-VAC) techniques to encode the sequential relation-

ships of constrained and unconstrained video frames. We obtain the expressive coding

information by analyzing the motion features of a given video. Then, the affinity graph is

constructed using the coding information and multiple temporal clusters are defined with-

out having any prior knowledge about the number of temporal clusters in a given video.

The rest of the chapter is divided as follows: Section 6.1 is divided into a two subsec-

tions to discuss the proposed key action perception, followed by the proposed approach

for video action clustering. Section 6.2 provides an explanation of the algorithm followed
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Figure 6.2.1: Proposed key action perception framework including unsupervised and su-

pervised sections.

by several types of experimental results and comparisons with some of the state-of-the-

art video clustering and action recognition strategies. Finally, Section 6.3 concludes this

chapter by summarizing the proposed framework and obtained results.

6.2 Video Analysis with Key Action Perception

Localization and recognition of key actions are the fundamental problems in video analysis.

In this section, we first describe the architecture of proposed KAP as shown in Figure

6.2.1, and then explain the ML-VAC framework based on the proposed UVAC and CVAC

algorithms as depicted in Figure 6.2.2 and Figure 6.2.3.

6.2.1 Key Action Perception (KAP)

The ultimate goal of KAP is to detect and recognize the key action among the C =

{c1, . . . , cN} plausible actions using two classifiers (see Figure 6.2.1). The N clusters are

classified into noise and key actions by the former classifier and L = {l1, . . . , lN} labels
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are produced where the lk indicates the label for the key action cluster. Then, the features of

the key action cluster v̄(ck|lk) are adopted to recognize its action by the latter classifier. In

order to train the former KAP classifier, the video clusters from each dataset are supposed

to be manually labelled as noise and key actions. Thus, we manually labelled the temporal

clusters of the available video datasets into key and noise actions. The key action clus-

ters along with the available labels in the employed datasets are adopted to train the latter

KAP classifier. Even though the KAP is independent from the choice of video features, we

adopt our proposed improved rank pooling strategy[117] as video representation for both

key action detection and recognition parts.

The videos must be carefully clustered into plausible actions for boosting the action

recognition performance in KAP. The complexity of motion representation, background

clutter, and sequential relationship of video frames contribute challenges to the video action

clustering task. We assume that each particular video application requires specific cluster-

ing algorithm. For instance, the camera and background are stable in the video surveillance

applications. However, we may have dynamic camera and background with different light-

ing conditions and action variations in video retrieval applications. In other words, the

complexity of video contents is different in constrained and unconstrained videos. We pro-

pose multi-layer video clustering approaches which consider the sequential information of

video frames to perform time-series action clustering in both constrained and unconstrained

videos. The following section thoroughly describes the proposed clustering methods.

6.2.2 Video Action Clustering

Subspace clustering is an effective strategy to group the video frames into low-dimensional

subspaces [81, 118, 78, 119]. The traditional subspace clustering methods consider V =

{v̄1, v̄2, . . . , v̄τ} as a set of data vectors in a D-dimensional Euclidean space where each

column represents a sample. Subspace clustering aims to cluster τ data vectors into their

respective subspaces. In the computer vision domain, the variable τ refers to the number of

frames in a given video as shown in the unsupervised section of Figure 6.2.1. The conven-

tional subspace clustering methods oversight the temporal information in data, which make
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Figure 6.2.2: Proposed ML-VAC for unconstrained video action clustering (UVAC).

them inadequate for the time series clustering. We propose the multi-layer subspace video

action clustering (ML-VAC) method considering the temporal relationship in data vectors.

The proposed ML-VAC is capable of clustering a given video into non-overlapping plausi-

ble actions based on the three following steps.

1) Feature Extraction and Encoding. Given a video with τ frames, let V be a se-

quence of feature vectors V = {v̄1, . . . , v̄τ} ∈ ℜD from a D-dimensional space repre-

senting a given video. It is worth pointing out that the context of the temporal change is

more important than the spatial context for video action clustering. Thus, ML-VAC adopts

the motion features as improved dense trajectories along with the histogram of optical flow

(HOF) descriptor [10] to prepare the sequence of feature vectors.

The HOF features are represented by Fisher vector encoding for each frame. It should

be noted that the length of trajectories is kept as 15 since it contributes the best action recog-

nition performance [10]. Therefore, the features from each individual frame and its 15 con-

secutive frames are encoded and the whole video is presented as V = {v̄1, v̄2, . . . , v̄τ−15}
where τ indicates the number of frames in each video. The V includes D features and m

samples where m = τ − 15 as depicted in Figure 6.2.2. The video representation data is

utilized for coding matrix generation in ML-VAC algorithm. We propose two techniques

for coding matrix generation to properly deal with constrained and unconstrained videos.

2) Coding Matrix Generation. We employ the multi-layer learning paradigms to
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produce the coding matrix (Z) by analysing the extracted features from a given video.

The generated coding matrix is required for affinity graph construction in the clustering

framework. The achieved matrix Z contains the most informative motion features from

a given video with respect to the temporal order of the frames. Each feature vector in

Z = {z1, z2, ..., zm} is an alternative representation of the associated video features.

We propose two methods for coding matrix generation in the unsupervised mode since

the prior knowledge about the content of any given video is unavailable. Additionally, any

information about the number of action clusters in videos is unavailable. The first frame-

work works well for unconstrained video action clustering (UVAC). The second framework

aims to generate robust coding matrices for constrained video action clustering (CVAC).

The UVAC system can be employed for the video retrieval applications where the camera

and backgrounds may have a dynamic form. The CVAC system can be used for the video

surveillance applications where the camera and backgrounds are static. The following sec-

tions describe the two proposed methods with details.

2.1) Unconstrained Video Action Clustering (UVAC). We adopt a multilayer net-

work with general nodes, inspired by [93], for coding matrix generation. The m en-

coded feature vectors of the video frames are labelled based on the order of frames as

F = {Φ1,Φ2, . . . ,Φm} with respect to V = {v̄1, v̄2, . . . , v̄m}. The encoded features and

their labels are fed to the multilayer framework and then the parameters of the model are

utilized as coding matrix for clustering (see Figure 6.2.2). The learning steps are based on

the inverse activation functions and L general nodes to obtain the optimized parameters in

coding layer. The following five steps are performed to generate the coding matrix (Z).

Step 1. Given m arbitrary distinct training data vectors {(Vk,Fk)}m

k=1 ,Vk ∈ ℜD,F ∈
ℜm, the parameters of the initial general node in coding matrix layer are randomly gener-

ated as

Z
j
f = gs

(

â
j
f . V + b̂

j

f

)

,
(

â
j
f

)T
.âj

f = I,
(

b̂
j

f

)T

. b̂
j

f = 1

gs(·) = sin(·)
(6.2.1)

where j is set to 1, Z
j
f is the current coding matrix, and â

j
f ∈ ℜd×D, b̂

j

f ∈ ℜ are the
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orthogonal random weight and bias of coding matrix layer. The variable d refers to the

number of sub-network nodes in each general hidden node in the coding layer of UVAC

framework. In the experiments, we show the optimized variable d to generate the coding

matrix of an unconstrained video.

Step 2. For any continuous desired output Fk, the parameters in the learning layer are

computed as

âh = gt(un(F)) ·
(

Z
j
f

)−1
, âj

h ∈ ℜd×m

b̂h =
√

mse
(

â
j
h ·Z

j
f − gt(un(F))

)

, b̂jn ∈ ℜ

gt(·) = arctan(·)

(6.2.2)

where Z−1 = ZT (CI + ZZT )−1 while C is a constant value, and un is a normalized

function while un(F) : ℜ → (0, 1]. The parameter C affects the diagonal of ZZT and

modifies the stability of the network while producing the coding matrix. We examine a

set of values for parameter C and show its effect on coding matrix generation in Section

IV. Furthermore, we use the inverse of the tangent function to update the nodes of learning

layer.

Step 3. Update the output error ej and error feedback data as

ej = F − u−1
n gs(Z

j
f , âh, b̂h), (6.2.3)

Pj = gs(un(ej)) · (âh)
−1 (6.2.4)

where u−1
n represents the reverse function of un.

Step 4. Set j = j + 1 and add a new general node â
j
f , b̂

j
f in the coding layer as

â
j
f = g−1

s (uj(Pj−1)) · V −1 , âj
f ∈ ℜd×D

b̂jf =
√

mse(âj
f · V − Pj−1) , b̂

j
f ∈ ℜ

g−1
s (·) = arcsin(·)

(6.2.5)
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and Update the coding matrix as

Z
j
f =

j
∑

t=1

u−1
t gs(V , ât

f , b̂
t
f) (6.2.6)

Step 5. Repeat steps 2 to 4 for L − 1 times where L is equal to the number of general

nodes as shown in the coding layer of Figure 6.2.2. The parameters {â
j
f , b̂

j
f}Lj=1 are optimal

projecting parameters in the coding layer. It should be noted that L is equal to the number

of feature vectors (m) from any input video and it defers based on the length of different

video streams which are used as the input to UVAC network.

The coding matrix is generated based on the features of video frames. The classes are

created based on the order of video frames F = {Φ1,Φ2, . . . ,Φm}. Thus, only one sample

is available for each class. The first general hidden node and its bias {â
1
f , b̂

1
f} are generated

randomly in the first step and the next general hidden nodes are inspired by the first general

node which was created randomly. In order to remove the redundant and non-optimized

parameters, we make the final coding matrix as

ZL
f =

∑L

j=2 u
−1
j gs(V , âj

f , b̂
j
f )

L− 1
= Z∗ (6.2.7)

without considering the randomly created data in the first general node. The generated

coding matrix, Z ∈ ℜd×m, contains optimal data for affinity matrix calculation from un-

constrained videos.

2.2) Constrained Video Action Clustering (CVAC).

The CVAC aims to produce robust coding matrices for constrained videos. Figure 6.2.3

shows the structure of the employed system. The CVAC contains the autoencoder format,

inspired from [120], where the input data are encoded and decoded in sequential layers for

training the coding matrix of the network. The obtained information in the encoding layer

are utilized as the coding information for affinity graph construction. As shown in Figure

6.2.3, the employed model tries to construct the input data in the output layer. Thus, we

have D-dimensional video data in the input and output layers. The following four steps are

implemented to produce the coding matrix in the encoding layer of CVAC.
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Figure 6.2.3: The framework of coding matrix generation for constrained video action

clustering (CVAC).

Step 1. We randomly generate the initial parameters in the encoding layer as

Zf = gs(af .V + bf) (6.2.8)

where (af)
T .af = I and (bf)

T .bf = 1. The af ∈ ℜd×D are the random parameters of

the encoding layer in CVAC. The Zf is the initial coding data and gs is the sine activation

function. It should be noted that unlike the UVAC framework, we use the inverse of the

same activation function in the decoding layer of CVAC framework.

Step 2. We calculate the parameters of the decoding layer using the inverse of sine

activation function as ak = arcsin(y).(Z−1
f ) where y is the output of the CVAC which

should be equal to the input data in the optimal format. The Z−1
f is the Moore-Penrose

inverse of matrix Zf . The major motivation behind usage of Moore-Penrose inverse is to

achieve the minimum norm in least-squares solutions [121]. The Z−1
f is calculated as

Z−1
f = ZT (CI +ZZT )−1 (6.2.9)

where CI adds the constant parameters to the diagonal of ZZT according to the ridge

regression theory for improving the stability of the network. However, based on the ex-
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periments, the value of C is not affecting the final clustering performance in the CVAC

algorithm.

Step 3. We update the coding matrix Z as

Zf = gs(af .V + bf) (6.2.10)

where the af and bf are calculated as af = (ak)
T and bf = bk.

Step 4. We iterate the second and third steps multiple times for adjusting the parameters

of the coding matrix Z. Based on the experiments, the clustering results are boosted upto

four iterations. However, increasing the number of iterations over four times is not boosting

the clustering performances. Thus, we update the parameters of the coding matrix in four

iterations since the parameters are not improved in the further iteration steps.

The CVAC has few advantages and limitations in comparison with UVAC. We update

the parameters of the encoding layer based on the weights of the decoding layer in the

CVAC algorithm. In other words, the parameters of the coding matrix are not calculated

and they are achieved from the decoding layer. This procedure aims CVAC to generate the

coding matrix much faster than the UVAC algorithm. We calculate the parameters in each

layer of UVAC independently. Aside from that, the UVAC contains general nodes including

sub-network nodes in the coding layer which makes more accurate coding matrices for

unconstrained video clustering. However, it shows that CVAC can produce more reliable

coding matrices for constrained video clustering problems. The efficiency of generated

coding matrices by CVAC and UVAC algorithms is evaluated by performing clustering

experiments on Weizmann and Keck Gesture datasets as stated in Section IV.

3) Action Clustering based on Provided Coding Matrix Z. Previous subspace video

clustering methods [122, 83, 82] generate the affinity graph as G =
(

|Z |+
∣

∣ZT
∣

∣

)

/2 where

Z contains the video features. The features of the sequential video frames are highly cor-

related to each other [123] since they are extracted from time-series domain. Due to the

underlying relationships of within-cluster samples, the obtained affinity graph G does not

well present consequent blocks of actions. Thus, we utilize the proposed similarity mea-

surement in [81] which employs the advantages of the correlation among within-cluster
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Figure 6.2.4: The affinity graph (G) which is derived from the generated coding matrix

(Z).

samples. Additionally, we utilize the proposed coding matrices from constrained and un-

constrained videos instead of using raw features for affinity graph construction. The affinity

graph G is produced by

G(i,j) =
zTi zj

‖zi‖2‖zj‖2
(6.2.11)

where G ∈ ℜm×m includes dense squares on the diagonal of the affinity matrix. The

variable m refers to the index of the frames in a given video. Each dense square on the

diagonal of affinity graph demonstrates an individual action in a given video as depicted in

Figures 6.2.4 and 6.3.1.

The conventional video clustering methods try to segment the affinity matrix using the

Normalized Cuts (NC) algorithm [124, 122, 83, 82, 81]. However, we cannot confidently

estimate the number of clusters in a given video by employing the NC algorithm. From

the other side, the generated affinity graphs contain some noises when the coding matrix

comes from an unconstrained video. In this scenario, the NC is not capable of clustering

the data into plausible segments even though we properly estimate the number of clusters
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in a given video. To address this problem, we propose a simple yet robust methodology to

deal with clustering a video using the generated affinity graph G.

We analyse the diagonal of the affinity graph for clustering the data into plausible non-

overlapping actions. We apply the kernel K on the diagonal of G and then extract the

values of the diagonal of G for clustering stage.

K =













−1 −1 −1

−1 4 −1

−1 −1 −1













(6.2.12)

The kernel K aims to extract the edges with enough sensitivity on the diagonal of

affinity graph. The 1-dimensional vector from the diagonal of G is then employed for

clustering the consequent video frames into plausible actions. The available high peaks in

the achieved 1-dimensional signal indicate the frame borders between different actions of a

video. It is worth pointing out that a given point of the obtained signal is a high-peak value

if the two neighbouring values contains lower amplitudes.

The calculated 1-dimensional signal from the diagonal of affinity graph may contain

noises due to the complexity of motion patterns and coding matrix. We discover the most

important patterns to detect the border frames by smoothing the signal using the Gaussian

blurring filter. We consider the length of the Gaussian filter vector as 40 since each indi-

vidual action needs atleast two seconds (40 frames) to be implemented in the employed

datasets. Thus, the employed Gaussian filter is capable of discriminating different motions

by obtaining the most crucial high peaks in the 1-D signal. Finally, we generate the dis-

tance clustering matrix (DCM) based on the indexes of frame borders. We represent the

features of temporal blocks which are obtained based on frame borders. The features are

represented using the improved rank pooling method [117]. The represented features of

consequent blocks are compared using the product of cosine and standard Euclidean dis-

tance metrics. The mixing of two similarity distance metrics aims to confidently compare

the represented features from different points of views. The similarity scores of the repre-

sented features of temporal blocks generate the distance clustering matrix (DCM) ∈ ℜB×B
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where B is the number of temporal blocks from a given video based on the known high-

peaks in 1-D signal.

We remove the redundant consequent frame borders in few iterations until reaching

the convergence of DCM. It is worth pointing out that discriminated consequent video

blocks and similar blocks which are not located next to each other are remained and fed

to KAP framework for key action detection and recognition. In other words, if the same

action blocks are happened by a gap of different actions among them, we keep the identical

actions since we want to check the different sequential blocks in real-world applications.

The reason of having similar consequent action blocks in DCM is that some actions

contain repeatable motions. For instance, in the jumping action from Weizmann dataset,

we have several jumping in a given video sample. Thus, the smoothed 1-D signal from

diagonal of affinity graph may contain several high peaks based on repetition of the same

motion. We target to remove the redundant frame borders and extract the features of the

entire video block instead of performing action detection and recognition for separated

identical video blocks. All the frame borders based on similar neighbourhood temporal

blocks are removed. Then, the represented features of each block are fed to the first classi-

fier of KAP for key action detection. Later, if a temporal block is detected as the key action,

we feed its features to the second classifier for the action recognition. In this scenario, we

do not need any prior knowledge about the number of action clusters in a given video.

Aside from that, we can confidently define the clusters from constrained and unconstrained

videos for video surveillance and video retrieval applications.

6.3 Experimental Results

The KAP along with the multilayer video action clustering, based on CVAC and UVAC

algorithms, are evaluated on Hollywood2 and URADL datasets. The employed datasets

include long-shot videos compare to other available presegmented datasets such as UCF101

[66] and HMDB51 [67]. Additionally, the CVAC and UVAC frameworks are evaluated on

Weizmann [2] and Keck Gesture datasets to show their robustness for video clustering in

different conditions. This section thoroughly presents the datasets, experiments of action
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Figure 6.3.1: (a) The affinity graph G based on combination of 5 actions from Weizmann

dataset. (b) The affinity graph of the sample from Hollywood2 dataset containing 3 dis-

criminated actions.

detection and recognition performances, and evaluation of video clustering algorithms.

6.3.1 Datasets

Majority of the available action recognition datasets contain the fine-grained videos includ-

ing a sole action in a couple of seconds. The proposed KAP approach is capable of detect-

ing the key action among multiple actions in a given video. For the evaluation of KAP

performance, we selected the Hollywood2 and URADL datasets which include complex

contents and multiple actions in the single-shot video samples. Additionally, we evaluate

the proposed CVAC and UVAC frameworks on constrained (Weizmann) and unconstrained

(Keck Gesture) video datasets.

6.3.2 Evaluation of Video Action Clustering Algorithms

In this section, we evaluate the accuracy of the proposed multi-layer video action cluster-

ing framework on Weizmann and Keck Gesture datasets. We target to boost the clustering

performances on constrained and unconstrained videos using the CVAC and UVAC algo-

rithms. Later, we adopt the CVAC and UVAC algorithms in the KAP framework to perceive

the key action in a given video.
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Each video sample of the Weizmann dataset contains a unique action. Thus, we ran-

domly concatenate five videos of different classes into a more extended video sequence to

evaluate the clustering approaches. This procedure is repeated for 10 times. For evaluation

of the clustering approaches on Keck Gesture dataset, we create the long-shot videos by

concatenating of 14 video samples of different classes. It is worth pointing out that Keck

Gesture dataset contains the videos which are captured with stable and dynamic cameras.

We only use the videos which are captured with dynamic cameras since we want to evaluate

the unconstrained video action clustering using the Keck Gesture dataset. Additionally, we

employ the Hollywood2 and URADL to evaluate the KAP framework. Since the KAP per-

formance is highly dependant on the video action clustering section, we visually evaluate

the clustering performance on some samples of Hollywood2 dataset.

The actions of the merged constrained and unconstrained videos can be easily discrim-

inated in the obtained affinity graph G as depicted in Figure 6.3.1. The parallel lines in left

or right sides of the diagonal in affinity graph G show the repetition of each action in a se-

quence. For instance, in Figure 6.3.1(a), the first square indicate the Jack action performed

by Daria in the Weizmann dataset which includes 3 repeated Jack actions. This condition

is valid for all the squares in the affinity graph G. It should be noted that Figure 6.3.1(a)

and (b) show the affinity graphs from 5 actions of Wiezmann (including jack, jump, walk,

and skip) and a video from Hollywood2 dataset (including walk, kiss, and walk) respec-

tively. Since the camera and background are stable in the Weizmann dataset, the produced

affinity graph has less noise and the squares on the diagonal can be easily discriminated

to localize different actions. For the video from Hollywood2 dataset, the obtained affinity

graph consists of more noises since the camera and background are dynamic while captur-

ing the video. We propose the CVAC and UVAC for constrained and unconstrained video

clustering tasks. Thus, regardless of the complexity of a given video, we produce temporal

clusters of different actions. The dense block diagonals in the affinity graphs imply that

with-in cluster structures are well analysed since our approach is very flexible to control

the sequential neighbours.

For the evaluation of CVAC and UVAC algorithms, we manually label the ground truth

of the available temporal clusters in the testing video samples. The labeling is performed on
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the individual frames of the testing videos. Then, we follow the pair-counting measurement

proposed in [125] to measure the accuracy of the clustering approaches. The employed

pair-counting measurement includes two major variables (p1, p2). The p1 refers to the

percentage of pairs where both the ground truth and clustered frames are assigned to the

same cluster. The p2 refers to the percentage of pairs where the clustered and ground truth

frames are assigned to non-identical clusters considering all pairs of different class video

frames. Furthermore, the average of p1 and p2 indicates the clustering performance.

Table 6.3.1 states the accuracy of action clustering performances on the Weizmann and

Keck Gesture datasets. The proposed video clustering approaches outperform the state-of-

the-art methodologies. Based on the experiments, the CVAC marginally outperforms the

UVAC algorithm for constrained video clustering, but its processing speed is much faster

compare to UVAC. Thus, we conclude that the CVAC algorithm is capable of clustering

the constrained videos with a high level of confidence. Furthermore, we find that CVAC is

appropriate for the applications where the camera and background are stable such as video

surveillance. And the UVAC is suitable for the applications with the dynamic camera and

cluttered background such as video retrieval frameworks.

Optimizing the Parameters of CVAC and UVAC algorithms: The raw feature vec-

tors along with their created labels are fed to the multi-layer video action clustering (ML-

VAC) framework for clustering a given video into plausible actions. The CVAC and UVAC

methods contain two important parameters. The first one is the regularization parameter

and the second parameter refers to the dimension of the coding matrices.

We evaluate the regularization parameter C on the video clustering results. The reg-

ularization parameter C in both CVAC and UVAC is selected from C ∈ {2−4, ..., 28}.

Figure 6.3.2 shows the results of video action clustering by employing a set of parameter

C on Weizmann and Keck Gesture datasets. The ML-VAC performs well with the optimal

C = 23 based on obtained experimental results. Additionally, we evaluate the KAP perfor-

mance on Hollywood2 and URADL datasets where the video action clustering is the crucial

preprocessing step. We employ the set of regularization parameters C ∈ {2−4, ..., 28} for

KAP evaluation. Based on the experiments, we achieve the best action recognition perfor-

mance using C = 23 in the CVAC and UVAC algorithms.
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Table 6.3.1: Comparison of proposed ML-VAC to the state-of-the-arts

Dataset Method Accuracy

Weizmann

SSC [82] 38.8%±3.2%

LSR [122] 40.1%±2.9%

OSC [80] 65.8%±3.3%

ML-VAC based on CVAC 78.9%±1.6%

ML-VAC based on UVAC 78.6%±1.9%

Keck Gesture

SSC [82] 26.8%±2.4%

LSR [122] 38.2%±2.1%

OSC [80] 41.9%±2.3%

ML-VAC based on CVAC 58.2%±1.8%

ML-VAC based on UVAC 60.9%±1.3%

Furthermore, we evaluate the set of dimensions for generation of coding matrices via

CVAC and UVAC algorithms. Figure 6.3.3 shows the obtained results of video clustering

and key action perception based on different coding matrix dimensions. The UVAC algo-

rithm outputs the best results while setting the dimension of coding matrices as 600 for

Keck Gesture and Hollywood2 datasets. For unconstrained video analysis, the dimension

may be different based on the length and complexity of the video frames. It should be noted

that the concatenated testing videos from the Keck Gesture dataset contain 14 actions in

few minutes. Thus, we may loose some informative features while creating the coding

matrix with a low dimension on Keck Gesture dataset. Finally, we confidently conclude

that the coding matrix with dimension of 400 outputs the best results for constrained video

analysis.

6.3.3 Evaluation of KAP Performance

The Hollywood2 and URADL datasets are employed to evaluate the overall action recog-

nition performance using KAP along with the CVAC and UVAC algorithms. The Holly-

wood2 dataset contains unconstrained videos. Some of the video samples of the mentioned

dataset include several actions in few seconds. However, each video sample has a sole label

even though several actions are occurred in a given video. The KAP framework includes

two classifiers to detect and recognize the key action among a set of temporal clusters.

The first KAP classifier is trained by positive key actions which are labelled manually
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from Hollywood2 and URADL datasets. For the negative samples, we randomly collect the

same number of videos from other datasets such as UCF101 [66] and HMDB51 [67]. The

sets of negative and positive samples include different categories and the actions of nega-

tive samples are not existed in the positive samples. We obtain reliable key action detection

results based on the first KAP classifier. We achieve 95.2% and 100.0% for the Holly-

wood2 and URADL datasets respectively. Later, the second classifier of KAP recognizes

the key actions. The same settings for train-test splits of Hollywood2 [89] and URADL

[84] datasets are used for training and testing the second classifier in KAP framework. We

use the linear SVM classifier in both classification stages of KAP framework. We follow

the same SVM parameters as in [10, 68, 117] since we compare the obtained KAP results

with [10, 68, 117].

Effect of the Codebook Dimension on Video Clustering and Key Action Percep-

tion: The feature encoding of the temporal blocks from a given video has an impressive

effect on the ML-VAC and KAP frameworks. During the experiments, we provide a set

of codebook dimensions for training of the Gaussian mixture model in Fisher vector en-

coding methodology. The best results are obtained by 32, 64, 24, and 48 codebook sizes

for URADL, Hollywood2, Weizmann, and Keck Gesture datasets respectively. It should

be noted that the obtained results for the URADL and Hollywood2 datasets are achieved

based on the key action perception along with the video clustering algorithms. However,

the demonstrated results for the Weizmann and Keck Gesture datasets show the accuracy

of the proposed ML-VAC based on CVAC and UVAC algorithms respectively.

We believe that the optimized codebook dimension has a direct relation to the number

of available classes and the complexity of the video features in each dataset. For instance,

the URADL and Weizmann datasets contain 10 classes in multiple constrained videos.

From the other side, Hollywood2 and Keck Gesture Datasets include 12 and 14 classes in

several unconstrained videos. Thus, we conclude that the higher codebook dimension aims

to boost the key action perception in complex and unconstrained videos.

Evaluation of different similarity scores on KAP performance: The ML-VAC al-

gorithm aims to figure out the starting and ending frames for each action by defining the

high peaks on the 1-dimensional signal. However, several border frames may be defined
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in case of having the same repeated sequential actions in a video. Figure 6.3.4 shows the

1-dimensional signal from a video sample of Hollywood2 dataset. The employed video

sample includes 235 video frames as shown in Figure 6.3.4. The 1-dimensional signal in-

cludes seven high peaks. But, only three actions have been clustered after comparing the

consequent blocks by our distance metric. As shown in Figure 6.3.4, the temporal block

between the first and second high peaks refers to the walking action. The temporal cluster

between the second and forth high peaks refers to the action of putting dishes on the table.

Since two dishes have been placed on the table based on two different motions, we got two

high peaks in the signal. The sitting action is clustered based on the fourth to seventh high

peaks. The reason of having several high peaks for the sitting action is that the video is cap-

tured from different points of views while the girl is sitting on the chair. So, the ML-VAC

defines several high peaks based on different views of the camera. However, the temporal

blocks between the high peaks are compared and if the consequent blocks have a similarity

score below the threshold, we merge them into a unique temporal block. All in all, we

obtain three clusters of different actions from the given video of Hollywood2 dataset. In

the Figure 6.3.4, ρ refers to the values from the smoothed diagonal of the affinity graph.

Table 6.3.2 states the set of similarity scores for comparing the consequent temporal

blocks while clustering a given video into plausible actions. The experiments show that

the thresholding score of 24 results the best KAP performance for the Hollywood2 and

URADL datasets. In other words, if the similarity score of two video blocks is less than 24,

we merge the two consequent blocks together as the same action. Alternatively, we keep

the video blocks separated as two discriminated actions.

Effect of Video Length on Key Action Perception: The length of videos has a direct

effect on KAP performance. As the video length is expanded, the number of temporal

clusters is increased. Consequently, the feature set from a given video may contain more

redundant data and noises which makes the action classification more challenging. in this

scenario, the proposed ML-VAC algorithm must cluster a given long-shot video into non-

overlapping actions. Then, the KAP framework analyses the produced temporal clusters

for key action perception.

Based on the extensive experiments on Hollywood2 and URADL datasets, we boost the
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Table 6.3.2: KAP evaluation based on different similarity scores for merging the consequent identical temporal blocks.

Similarity Score 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

KAP performance

on Hollywood2 (MAP) 47.8 57.4 62.9 65.6 67.9 67.9 67.9 69.6 69.6 72.0 69.6 68.7 68.7 67.6 64.8

KAP performance

on URADL (Accuracy) 96.0 96.0 97.5 97.5 97.5 98.8 98.8 100.0 100.0 100.0 100.0 97.5 96.0 95.0 95.0

1
1
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Figure 6.3.2: Evaluation of parameter C for video action clustering and key action percep-

tion.

Figure 6.3.3: Effect of different coding matrix dimensions on video action clustering and

key action perception algorithms.
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Figure 6.3.4: The high peaks on the smoothed 1-D signal show the starting and ending frame indexes for each temporal cluster.
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action recognition performance while the length of videos is increased upto 200 frames.

The achieved results demonstrate that KAP framework along with ML-VAC algorithm is

capable of detecting and recognizing the key action in the long-shot videos of Hollywood2

dataset (see Figure 6.3.5). We found that video samples with above 200 frames are mostly

from routine actions such as drive a car, fight, and walk. In other words, the same action

is performed and repeated in a long-shot video. In this cases, the action recognition is not

boosted since the overall feature sets from the entire video contain the structured informa-

tion from a unique action. However, KAP is very powerful to perceive the key action in the

video samples where few actions are occurred in one video shot which contain below 200

frames.

Additionally, we evaluate the effect of the video length on CVAC and UVAC algorithms.

The experiments show that the accuracy of video clustering algorithms is decreased if the

video length is highly increased. We believe that this is due to the property of the encoded

features from individual frames at the first step of our framework. As mentioned before,

we encode the features of the single frames from a given video. Then, we generate the

coding matrix based on the encoded features. If the number of frames is huge, the CVAC

and UVAC algorithms cannot provide informative coding matrices for the video clustering.

In other words, the generated 1-dimensional signal from the affinity graph contains a lot of

noises which leads to a weak clustering stage in a long-shot video. Thus, we recommend to

shorten the videos to maximum of 200 frames before extraction and encoding of features.

In this case, the CVAC and UVAC algorithms are capable of producing informative coding

matrices regardless of complexity of a given video.

6.3.4 Discussion

We compare the obtained action recognition results with state-of-the-arts as stated in Table

6.3.3. Since we employed the improved dense trajectories (iDT) [10] at the first steps of

UVAC and CVAC algorithms, we compare the KAP results with iDT framework. Addition-

ally, we compare the results with the stacked fisher vectors (SFV) [68] since SFV combines

the features of different temporal segments into a unique feature vector. Furthermore, we
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Figure 6.3.5: Effect of the video length on the clustering approaches and KAP performance.

compare the KAP results with improved rank pooling (IRP)[117] since we employ the IRP

in the KAP framework to detect and recognize actions in constrained and unconstrained

videos. Furthermore, we compare the KAP performance with fuzzy topic model [95], ge-

netic programming [113], STAP framework [126], fusion of global dynamics and local

appearance [127], explicit modelling [100], and velocity histories [84].

Based on the extensive experiments, we obtained reliable results on Hollywood2 (72.0%)

and URADL (100.0 %) datasets. As stated in Table 6.3.3, the KAP is capable of boosting

the action recognition performances compare to other state-of-the-arts since the redundant

video clusters are removed and the action is recognized by applying the IRP on the key ac-

tion cluster. The achieved results demonstrate that a robust video action clustering frame-

work impressively affects the action detection and recognition performance. Aside from

that, for the real-world applications, such as video surveillance and retrieval problems, the

video frames consist of a complex motion structure containing multiple actions. So, the

proposed clustering approaches can be employed to cluster a given video into multiple

plausible non-overlapping actions and then perform the action detection and recognition

tasks efficiently.

Compared to the state-of-the-arts, the most reliable results are achieved on Answer
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Table 6.3.3: Comparison of KAP results to the state-of-the-arts

Dataset Method Recog. Rate

Hollywood2

Improved Dense Trajectories [10] 64.8%

Stacked Fisher Vectors [68] 67.6%

Improved Rank Pooling [117] 70.6%

Fuzzy Topic Model [95] 47.9%

Genetic Programming Model [113] 46.8%

STAP Framework [126] 62.5%

Global and Local Features[127] 58.61%

Proposed KAP 72.0%

URADL

Improved Dense Trajectories [10] 93.3%

Stacked Fisher Vectors [68] 95.6%

Improved Rank Pooling [117] 99.6%

Explicit Modeling Approach[100] 92.0%

Velocity History (full method)[84] 89.0%

Velocity History (point tracks)[84] 67.0%

Proposed KAP 100.0%

phone, Handshake and Kiss actions from Hollywood2 dataset since these video samples

usually contain redundant motions and non-relevant actions. Since the KAP is capable of

detecting the key action, we could improve the results of the stated actions by at least eight

percentages. It is worth pointing out that the KAP evaluation is performed on Hollywood2

and URADL datasets since they roughly contain long shot videos including several actions

in a video.

6.4 Summary

In this chapter, we propose the key action perception (KAP) to detect and recognize the

key actions in constrained and unconstrained videos. As the crucial preprocessing step,

a given video is supposed to be clustered into plausible actions for KAP implementation.

Thus, additionally, we propose the multi-layer video action clustering for constrained and

unconstrained videos. The proposed clustering approaches provide the sequential tempo-

ral clusters via analysis of time-series video data. Extensive experiments demonstrate the

robustness of the proposed KAP and clustering frameworks which achieve state-of-the-art

results on benchmark datasets.
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CHAPTER 7

Conclusion and Perspectives

This chapter presents a summary of the implemented efforts and the conclusions inspired

by them. The local features are very popular in the action recognition domain due to

their superior performance on constrained and unconstrained videos. In this dissertation,

action recognition systems through local features have been extensively studied and several

advances have been proposed. Chapter 3 presents the evaluation of ensemble learning

systems on simple and complex action recognition performances. Chapter 4 proposes a

robust hybrid classifier to recognize human activities in constrained videos. Chapter 5

presents a hierarchical framework to represent a given unconstrained video including low-

level and higher-level information which are achieved on the top of low-level features.

Chapter 6 explores the key action perception along with the constrained and unconstrained

video action clustering systems. Finally, the possible future research directions that could

be pursued as the extensions of these efforts are pointed out in this chapter.

7.1 Contributions and Limitations

The major contributions of this dissertation are divided into three groups: 1) Enhancing the

classification module as ensemble learning and hybrid classifier. 2) Improving the video

representation module by extracting new higher-level information and fusion of features.

3) Proposing a robust video action clustering approach followed by the key action percep-

tion. The following subsections describe the detailed major and minor contributions of this

dissertation.
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7.1.1 Ensemble Learning for Action Recognition

The third chapter of this dissertation evaluates the effect of ensemble learning in action

recognition domain. It is shown that fusion of appearance-based and motion features aims

to boost the action recognition performance in constrained and unconstrained videos. How-

ever, concatenation of individual features generates a huge fused vector which makes the

classification very challenging. The employed ensemble approach trains several classifiers

for individual features. Then, the scores of single classifiers are combined to make the final

decision about the class of a given video. We evaluate the Dempster-Shafer and algebraic

fusion strategies to combine the classifiers’ scores.

The experimental results demonstrate that score-level fusion of single classifiers im-

proves the action recognition performance in constrained and unconstrained videos. We

can save memory while classifying a given video using the employed ensemble approach

since the features from different perspectives are combined as a late fusion method.

This approach has the limitation of slow training time for several classifiers. In the

early fusion approach, in case of having enough memory, we can train a single classifier

even though its accuracy is marginally lower than the ensemble approach. However, in the

ensemble method, we have to spend much more time to train individual classifiers using a

variety of separated feature sets. Aside from that, we may need to adjust the parameters of

individual classifiers separately since the features are usually from different perspectives.

7.1.2 Hybrid Classifier

The recognition of similar actions, such as walking, running and jogging is considered

as a challenging task in the action recognition domain. Generally, the classifiers cannot

confidently assign the proper label to a given sample while having similar classes in a

dataset. To address this problem, the fourth chapter of this dissertation makes the following

contributions for action recognition:

1) The hybrid classifier is proposed to efficiently assign the labels to similar actions.

The hybrid classifier aims to check the confidence of a produced label. In case of

producing a non-confidence label, the hybrid classifier compresses the features and
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recognizes the action with polynomial or sigmoid activation functions.

2) Additionally, we evaluate the effect of motion saliency map detection on motion fea-

tures for action recognition. We employ the 3D-DWT to extract the motion saliency

maps of constrained videos.

The proposed approach obtains impressive action recognition results on constrained

video datasets. However, this approach cannot improve the results in unconstrained videos.

Thus, we conclude that the hybrid classifier can be employed for the video surveillance

applications where the camera and background are stable.

7.1.3 Hierarchical Feature Representation

The fifth chapter introduces pooled-feature representation (PFR) which is derived from a

double phase encoding framework (DPE) to represent an unconstrained video using low-

level and higher-level information. In particular, the fifth chapter of this dissertation pro-

poses the following contributions:

1) Enhancing the general rank pooling strategy by removing the redundant features from

identical frames of a given video.

2) Employing the cosine and correlation distance metrics for detecting and removing the

redundant features using the proposed consequent and protracted checking methods.

Furthermore, we define the optimized threshold via introduced double thresholding

scheme for removing the identical features in a short or long shot video.

3) Proposing the DPE framework to provide useful information for complex video anal-

ysis based on the assumption that a complex video is composed of a sequence of

simple actions. The early fusion of individual represented vectors (IRVs), at the first

phase of DPE, outperforms the traditional encoded vectors obtained from features of

entire video.

4) Introducing VPV at the second phase of DPE to represent higher-level information

for unconstrained video analysis. The VPV is achieved by encoding the compressed
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version of IRVs which are obtained at the first phase of DPE. The VPV consists

of higher-level information to represent a video since the IRVs contain low-level

information of individual blocks of a video. In other words, encoding of IRVs aims

to obtain higher-level information about the overall motions in a video.

5) Proposing the PFR with early and late fusion strategies to leverage the motion and

appearance-based information from a given video. It is worth pointing out that PFR

with early fusion (PFR-EF) provides the most significant features with least dimen-

sion and highest efficiency for complex action recognition.

6) Adopting the LSN classifier in the action recognition domain and compare its training

speed and accuracy with traditional extreme learning machine (ELM) and support

vector machine (SVM) over six challenging datasets.

The PFR-EF is appropriate for representing of constrained and unconstrained videos.

However, it may not enhance the action recognition performance on the actions with routine

and specific motions in short shot videos. This framework achieves impressive results on

the long-shot videos including multiple simple motions such as the videos in URADL and

Hollywood2 dataset.

7.1.4 Key Action Perception

The conventional action recognition algorithms have been developed and tested on pre-

segmented video datasets which contain a sole action in few seconds. However, the videos

contain long and complicated temporal contents in real-world scenarios. We hypothesize

that clustering a captured video into plausible actions is a crucial pre-processing step to

action recognition task in real-world applications such as video surveillance and video

retrieval. In particular, the sixth chapter of this dissertation proposes the following contri-

butions:

1) We propose a multi-layer clustering approach to temporally segment a video into

plausible actions. The proposed approach consists of two different unsupervised

learning paradigms for constrained and unconstrained video action clustering.
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2) We propose and evaluate the unconstrained video action clustering (UVAC) and con-

strained video action clustering (CVAC) methods to produce coding matrices for

analysis of the motion features in a video. It should be noted that the proposed clus-

tering approach using the CVAC and UVAC algorithms is capable of segmenting a

video without having any prior knowledge about the number of clusters.

3) The methodology of key action perception (KAP) is proposed and evaluated to de-

tect the key action among multiple plausible clusters and recognize the detected key

action. The KAP consists of two classifiers to detect and recognize the key actions

in constrained and unconstrained videos.

4) We have manually labelled the key and noise temporal clusters in the Hollywood2

and URADL datasets to train the first classifier of the KAP framework. The second

classifier of the KAP framework is trained using the original labels of the employed

datasets. The Hollywood2 is utilized as an unconstrained video dataset which con-

sists of complex video streams with sophisticated temporal contents. The URADL

contains complex actions in constrained videos.

The KAP is capable of perceiving the key action in short or long shot videos. However,

the length of videos has a direct effect on the proposed video action clustering. The exten-

sive experiments demonstrate that the proposed approaches work well on the videos with

the maximum of 200 frames. Therefore, the input videos must be shortened to 200 frames

before employing the proposed clustering approaches.

7.1.5 General Summary

This dissertation has been targeted towards enhancing the simple and complex video action

recognition performances. The effort was spent to encompass both constrained and uncon-

strained video analysis. In the real-world applications, videos consist of long and complex

contents. The conventional algorithms fail to recognize actions in long-shot videos since

each sample may contain several actions. To address this problem, we propose a multi-

layer clustering approach to temporally segment the videos into plausible actions. Then,
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the proposed key action perception and hierarchical feature representation along with the

hybrid classifier can be employed to detect and recognize key actions among multiple plau-

sible temporal clusters in a video. Next section provides some directions for future possible

researches to enhance the proposed frameworks and modify the action recognition perfor-

mance.

7.2 Scope for Future Work

We have probable future directions for carrying forward the research and findings of our

contributions. This section thoroughly presents the future works for boosting and evaluat-

ing the developed action recognition frameworks as follows:

1) The double phase encoding approach can be implemented by considering the spatial

and temporal windows. We only utilize the temporal windows to represent a given

video. However, considering the spatial windows aims to robustly represent complex

videos. This is due to having actions in different spatial locations in real-world sce-

narios. Selection of appropriate spatial windows is an open research problem and it

is directly related to localization of an action in the spatial domain of video frames.

2) The achieved PFR-EFs are independent of the type of video features. We utilize the

improved dense trajectories as the initial step in our algorithm. We target to test the

proposed framework using more advanced video-based features.

3) It should be noted that we utilize SVM to produce ranking vectors for video repre-

sentation in IRP framework. In the future, we target to perform more researches on

ranking machines and employ convolutional neural networks and extreme learning

machine to represent a given video based on the evolution of video frames.

4) The UVAC and CVAC algorithms are proposed in the ML-VAC framework to cluster

unconstrained and constrained videos. We can select the appropriate algorithm based

on the video analysis application. For instance, we utilize CVAC in the video surveil-

lance applications where the camera and background are stable. From the other side,
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we can use UVAC for video retrieval applications where the camera and background

could be in the dynamic format. Based on the extensive experiments, it is shown that

the video length has a direct effect on the proposed clustering approach.

We target to focus on developing a more robust algorithm to cluster the actions re-

gardless of the complexity, length, and content of a given video. Different feature

mapping frameworks such as deeper auto encoders can be employed to make ad-

vancements in the video clustering domain.

5) We target to evaluate the proposed methodologies on larger datasets such as Activ-

ityNet and YouTube-8M. These datasets have been updated recently and contain a

huge number of samples for individual action classes.

6) Currently, there is a lack of video datasets including constrained videos and complex

actions. We plan to create our video surveillance dataset containing the long-shot

videos and perform the KAP framework along with the ML-VAC for video analysis.
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