172 research outputs found

    Chronic Kidney Disease Android Application

    Get PDF
    Chronic kidney disease is increasingly recognized as a leading public health problem over the world that affects more than 10 percent of the population worldwide, where electrolytes and wastes can build up in your system. Kidney failure might not be noticeable until more advanced stages where it may then become fatal if not for artificial filtering or a transplant. As a result, it is important to detect kidney disease early on to prevent it from progressing to kidney failure. The current main test of the disease is a blood test that measures the levels of a waste product called creatine and needs information such as age, size, gender, and ethnicity. They may be uncomfortable, can lead to infections, and are inconvenient and expensive. I will re-engineer an Android application for Chronic Kidney Disease detection by working on test strip detection zone localization, detection zone focus, capture quality, and dynamic model loading. This uses a smartphone’s camera and allows users to manually focus on an area of the view to analyze. The camera detects where the test strip and its detection zone is and checks if it is in focus. The pixels are sent to the machine learning algorithm. The application can quickly determine the health of a users kidney and can display it. By only requiring a few drops of blood and an Android smartphone, it is very important for those who cannot afford insurance or live in developing countries. This can make a huge difference in early detection of CDK in these areas where people would otherwise disregard the tests in fear of not having enough money

    Machine Learning-Based Android Malware Detection Using Manifest Permissions

    Get PDF
    The Android operating system is currently the most prevalent mobile device operating system holding roughly 54 percent of the total global market share. Due to Android’s substantial presence, it has gained the attention of those with malicious intent, namely, malware authors. As such, there exists a need for validating and improving current malware detection techniques. Automated detection methods such as anti-virus programs are critical in protecting the wide variety of Android-powered mobile devices on the market. This research investigates effectiveness of four different machine learning algorithms in conjunction with features selected from Android manifest file permissions to classify applications as malicious or benign. Case study results, on a test set consisting of 5,243 samples, produce accuracy, recall, and precision rates above 80%. Of the considered algorithms (Random Forest, Support Vector Machine, Gaussian Naïve Bayes, and K-Means), Random Forest performed the best with 82.5% precision and 81.5% accuracy

    Optical Character Recognition and Transcription of Berber Signs from Images in a Low-Resource Language Amazigh

    Full text link
    The Berber, or Amazigh language family is a low-resource North African vernacular language spoken by the indigenous Berber ethnic group. It has its own unique alphabet called Tifinagh used across Berber communities in Morocco, Algeria, and others. The Afroasiatic language Berber is spoken by 14 million people, yet lacks adequate representation in education, research, web applications etc. For instance, there is no option of translation to or from Amazigh / Berber on Google Translate, which hosts over 100 languages today. Consequently, we do not find specialized educational apps, L2 (2nd language learner) acquisition, automated language translation, and remote-access facilities enabled in Berber. Motivated by this background, we propose a supervised approach called DaToBS for Detection and Transcription of Berber Signs. The DaToBS approach entails the automatic recognition and transcription of Tifinagh characters from signs in photographs of natural environments. This is achieved by self-creating a corpus of 1862 pre-processed character images; curating the corpus with human-guided annotation; and feeding it into an OCR model via the deployment of CNN for deep learning based on computer vision models. We deploy computer vision modeling (rather than language models) because there are pictorial symbols in this alphabet, this deployment being a novel aspect of our work. The DaToBS experimentation and analyses yield over 92 percent accuracy in our research. To the best of our knowledge, ours is among the first few works in the automated transcription of Berber signs from roadside images with deep learning, yielding high accuracy. This can pave the way for developing pedagogical applications in the Berber language, thereby addressing an important goal of outreach to underrepresented communities via AI in education

    Recommender App Development for Essential Health Products : Covid and Beyond

    Get PDF
    The COVID-19 pandemic has affected all of our lives in many ways and as a result people have become more health conscious. Now more than ever it is critical to take cautious steps to prevent being infected and spreading the virus. It is important to be supplied with the right products that maintain us all safe and healthy. Although many stores have health related products, sometimes it is a hassle to find them and even to pick out the best ones. With that, the Health Essentials app was developed to facilitate the findings of health products. The app is solely dedicated to presenting users with health-related products as well as recommendations on trending products and recommendations related to products that are viewed. Although the app implementation includes products specific to the pandemic, the app can be extended to provide more health products in different categories and serve as a one stop shop for health products for Covid and beyond

    Hey Dona! Can you help me with student course registration?

    Full text link
    In this paper, we present a demo of an intelligent personal agent called Hey Dona (or just Dona) with virtual voice assistance in student course registration. It is a deployed project in the theme of AI for education. In this digital age with a myriad of smart devices, users often delegate tasks to agents. While pointing and clicking supersedes the erstwhile command-typing, modern devices allow users to speak commands for agents to execute tasks, enhancing speed and convenience. In line with this progress, Dona is an intelligent agent catering to student needs by automated, voice-operated course registration, spanning a multitude of accents, entailing task planning optimization, with some language translation as needed. Dona accepts voice input by microphone (Bluetooth, wired microphone), converts human voice to computer understandable language, performs query processing as per user commands, connects with the Web to search for answers, models task dependencies, imbibes quality control, and conveys output by speaking to users as well as displaying text, thus enabling human-AI interaction by speech cum text. It is meant to work seamlessly on desktops, smartphones etc. and in indoor as well as outdoor settings. To the best of our knowledge, Dona is among the first of its kind as an intelligent personal agent for voice assistance in student course registration. Due to its ubiquitous access for educational needs, Dona directly impacts AI for education. It makes a broader impact on smart city characteristics of smart living and smart people due to its contributions to providing benefits for new ways of living and assisting 21st century education, respectively

    Proposed Framework to Improving Performance of Familial Classification in Android Malware

    Get PDF
    Because of the recent developments in hardware and software technologies for mobile phones, people depend on their smartphones more than ever before. Today, people conduct a variety of business, health, and financial transactions on their mobile devices. This trend has caused an influx of mobile applications that require users' sensitive information. As these applications increase so too have the number of malicious applications increased, which may compromise users' sensitive information. Between all smartphone, Android receives major attention from security practitioners and researchers due to the large number of malicious applications. For the past twelve years, Android malicious applications have been clustered into groups for better identification. Characterizing the malware families can improve the detection process and understand the malware patterns. However, in the research community, detecting new malware families is a challenge. In this research, a framework is proposed to improve the performance of familial classification in Android malware. The framework is named a Reverse Engineering Framework (RevEng). Within RevEng, applications' permissions were selected and then fed into machine learning algorithms. Through our research, we created a reduced set of permissions using Extremely Randomized Trees algorithm that achieved high accuracy and a shorter execution time. Furthermore, we conducted two approaches based on the extracted information. The first approach used a binary value representation of the permissions. The second approach used the features' importance. We represented each selected permission in latter approach by its weight value instead of its binary value in the former approach. We conducted a comparison between the results of our two approaches and other relevant works. Our approaches achieved better results in both accuracy and time performance with a reduced number of permissions

    After Over-Privileged Permissions: Using Technology and Design to Create Legal Compliance

    Get PDF
    Consumers in the mobile ecosystem can putatively protect their privacy with the use of application permissions. However, this requires the mobile device owners to understand permissions and their privacy implications. Yet, few consumers appreciate the nature of permissions within the mobile ecosystem, often failing to appreciate the privacy permissions that are altered when updating an app. Even more concerning is the lack of understanding of the wide use of third-party libraries, most which are installed with automatic permissions, that is permissions that must be granted to allow the application to function appropriately. Unsurprisingly, many of these third-party permissions violate consumers’ privacy expectations and thereby, become “over-privileged” to the user. Consequently, an obscurity of privacy expectations between what is practiced by the private sector and what is deemed appropriate by the public sector is exhibited. Despite the growing attention given to privacy in the mobile ecosystem, legal literature has largely ignored the implications of mobile permissions. This article seeks to address this omission by analyzing the impacts of mobile permissions and the privacy harms experienced by consumers of mobile applications. The authors call for the review of industry self-regulation and the overreliance upon simple notice and consent. Instead, the authors set out a plan for greater attention to be paid to socio-technical solutions, focusing on better privacy protections and technology embedded within the automatic permission-based application ecosystem
    • 

    corecore