

PROPOSED FRAMEWORK FOR IMPROVING

PERFORMANCE OF FAMILIAL CLASSIFICATION IN

ANDROID MALWARE

Fahad Abdulaziz O. Alswaina

Under the Supervision of Dr. Khaled Elleithy

DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND ENGINEERING

THE SCHOOL OF ENGINEERING

UNIVERSITY OF BRIDGEPORT

CONNECTICUT

July 2020

10/26/2020

10/26/2020

10/26/2020

10/26/2020

10/26/2020

10/26/2020

iii

PROPOSED FRAMEWORK FOR IMPROVING PERFORMANCE OF

FAMILIAL CLASSIFICATION IN ANDROID MALWARE

© Copyright by Fahad Alswaina 2020

iv

PROPOSED FRAMEWORK FOR IMPROVING PERFORMANCE OF

FAMILIAL CLASSIFICATION IN ANDROID MALWARE

ABSTRACT

Because of the recent developments in hardware and software technologies for mobile

phones, people depend on their smartphones more than ever before. Today, people conduct a

variety of business, health, and financial transactions on their mobile devices. This trend has

caused an influx of mobile applications that require users' sensitive information. As these

applications increase so too have the number of malicious applications increased, which may

compromise users' sensitive information. Between all smartphone, Android receives major

attention from security practitioners and researchers due to the large number of malicious

applications. For the past twelve years, Android malicious applications have been clustered into

groups for better identification. Characterizing the malware families can improve the detection

process and understand the malware patterns. However, in the research community, detecting new

malware families is a challenge. In this research, a framework is proposed to improve the

performance of familial classification in Android malware. The framework is named a Reverse

Engineering Framework (RevEng). Within RevEng, applications' permissions were selected and

then fed into machine learning algorithms. Through our research, we created a reduced set of

permissions using Extremely Randomized Trees algorithm that achieved high accuracy and a

v

shorter execution time. Furthermore, we conducted two approaches based on the extracted

information. The first approach used a binary value representation of the permissions. The second

approach used the features' importance. We represented each selected permission in latter approach

by its weight value instead of its binary value in the former approach. We conducted a comparison

between the results of our two approaches and other relevant works. Our approaches achieved

better results in both accuracy and time performance with a reduced number of permissions.

vi

ACKNOWLEDGEMENTS

My thanks are wholly devoted to God who has helped me all the way to complete this work

successfully. I owe a debt of gratitude to Prof. Elleithy for his guidance, patience, motivation, and

immense knowledge during this research. To my parents for their prayers and patience. To my

good wife for her encouragement and support throughout the academic journey; you and our little

man, Abdulaziz, are my best friends and blessings in my life. Furthermore, to my teacher, Prof.

Ausif Mahmood for being there for mentoring. Without them, this research would not have been

possible.

I would also thank my respectful committee members: Prof. Ausif Mahmood, Dr. Miad

Faezipour, Dr. Sarosh Patel, and Dr. Samir Hamada for their great feedbacks and constructive

criticism. I am honored that my work has been supervised by Prof. Khaled Elleithy.

vii

TABLE OF CONTENTS

ABSTRACT ... iv

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER 1: INTRODUCTION ... 1

1.2 Research Problem and Scope ... 2

1.3 Motivation behind the Research .. 3

1.4 Contributions of the Proposed Research .. 4

CHAPTER 2: LITERATURE REVIEW .. 5

2.1. Android and Malware ... 5

2.1.1 Android Operating System ... 5

2.1.2. Android Application .. 6

2.1.3. Android Malware ... 10

2.2. Android Malware Related Work ... 13

2.3 Analysis ... 15

2.3.1. Static Analysis ... 15

2.3.2. Dynamic Analysis .. 15

2.3.3. Hybrid Analysis ... 16

2.4. Techniques .. 16

2.4.1. Model-Based .. 16

2.4.2. Analysis-Based .. 22

2.5. Features ... 24

2.5.1. Static Features .. 24

viii

2.5.2. Dynamic Features .. 25

2.6. Discussion ... 26

2.6.1. Experimental Datasets ... 26

2.6.2. Limitations ... 28

2.6.3. Challenges .. 28

2.6.4. Directions ... 29

CHAPTER 3: RESEARCH PLAN ... 31

3.1 Proposed Framework ... 31

3.2 Framework Components .. 33

3.3 Application’s Features ... 34

3.4 Data Preprocessing .. 36

CHAPTER 4: EXPERIMENTAL SETUP ... 41

4.1 Dataset ... 41

4.2 Implementation .. 41

4.3 Evaluation .. 42

CHAPTER 5: RESULTS AND DISCUSSIONS .. 44

5.1 Experiment 1: Familial Classification without Oversampling ... 44

5.2 Experiment 2: Familial Classification with Oversampling .. 48

CHAPTER 6: CONCLUSIONS ... 52

REFERENCES ... 53

APPENDIX A ... 70

Abbreviations ... 70

ix

LIST OF TABLES

Table 2.1 Taxonomy table of the literature 18

Table 2.2 Dataset, number of publications, and publication details 27

Table 2.3 Commonly used datasets and their details. 28

Table 2.4 Genome dataset’s families with one sample 29

Table 4.1 List of malware families with their samples in the dataset Genome used in

RevEng

42

Table 5.1 Detailed performance (prediction accuracy and time) for each classifier

(without oversampling)

44

Table 5.2 Average of the classifiers’ accuracies and time performance for our 100

experiments (without oversampling)

45

Table 5.3 Comparison between classifiers in terms of the best accuracy and best time

performance (without oversampling)

46

Table 5.4 Average of the classifiers’ accuracies and time performance for our 100

experiments (with oversampling)

48

Table 5.5 Comparison between classifiers in terms of the best accuracy and best time

performance (with oversampling)

48

Table 5.6 List of SFCand with their importance (ω >0) 50

Table A.1 List of abbreviation used in the dissertation 70

x

LIST OF FIGURES

Figure 2.1 Android platform architecture 7

Figure 2.2 Dexing Java classes into classes.dex 9

Figure 2.3 Android malware families’ taxonomy 17

Figure 2.4 Dataset reported by publications, where the x-axis represents the number of

publications

27

Figure 3.1 Demonstrates the contents of components and the relation between them 34

Figure 3.2 Extraction of the important features from SF and generating SFCand 36

Figure 3.3 Top 10 permissions based on their importance 36

Figure 3.4 Pseudo-code of the Dataset, Family, and App components shows the main

parts of the code

37

Figure 3.5 Multi-threading processes of the list of tasks in queue 38

Figure 3.6 Preparation of MBcand and MWcan matrices for processing 39

Figure 3.7 RevEng framework 40

Figure 5.1 Comparison between StormDroid and our approach based on classifiers’

accuracies (without oversampling)

46

Figure 5.2 Comparison between StormDroid and our approach based on time

performance (without oversampling)

47

Figure 5.3 Comparison between StormDroid and our approach based on classifiers’

accuracies (with oversampling)

49

Figure 5.4 Comparison between StormDroid and our approach based on time

performance (with oversampling)

49

Figure 5.5 Confusion matrix of one RF execution 51

1

CHAPTER 1: INTRODUCTION

Due to the recent developments in hardware and software technologies for mobile phones,

people depend on their smartphones more than ever before. As of 2017, more than 407 million

mobile devices were sold as reported by Gartner; devices that operate on Android recorded 86%

of the total market [1]. Although this popularity is beneficial to Google’s operating system,

Android, this popularity has propelled malicious developers to target Android users. F-Secure, a

known corporation on cybersecurity, has reported that more than 99% of total malware attacks on

mobile devices have targeted Android devices [2]. The attacks include software with malicious

code, called a payload, that performs harmful activities and compromises the confidentiality,

integrity, or availability of the victims’ data or resources [3]–[5].

Google, as well as a large group of researchers in academia and the industry, has devoted

significant attention to security issues in Android’s software stack’s components, especially at the

application level, such as in licensing and application verification, security vulnerability, and

intrusion detection. Nevertheless, with smartphones’ ever-increasing advanced features, such as

high-resolution cameras and sensors, as well as online services such as banking and GPS, so too

increase the number of malicious applications (or malware apps); users’ data and resources are

always at risk. As defined by Google, there are 17 categories of malware like spyware and

backdoors categorized based on the malware’s behavior [6].

2

1.2 Research Problem and Scope

Classifying malware families is an important approach for anti-virus companies (AVs).

AVs, as well as other researchers, try to find new malware that does not correlate to previously

found malware. Nevertheless, malicious developers try to find ways to bypass the AVs’ detection

by both closely studying the behavior of AVs and by applying various techniques to get around

their detection techniques, such as code obfuscation.

AVs have been using the signature-based technique to detect any malware. Signatures (i.e.

the hash value of the file) of a malware are a single or a group of blueprint data that is generated

and associated with the malware. Every company has its own signature for the same malware.

However, since malicious developers always attempt to bypass the detection and hide their code,

they change the content and create variants of the malware. Any changes made to the malware will

have a direct effect on the hash of the file and will impact the other signatures created for the

malware.

With today’s continues increasing number of applications, there is a need for a proper

identification of malware features that would characterize both malware and its variants. Those

features are used as inputs to machine learning algorithms for classifications. Such algorithms or

classifiers are trained to create a model that would identify the finger-like of the malware and the

malware’s variants.

Although extracting features helps in studying the malware, the size of the features set

affects the overall complexity of the learning process. In this case, researchers should focus on

identifying the smallest set of features that give the highest and most accurate classification result.

3

1.3 Motivation behind the Research

Cybersecurity is an essential defense line to preserve the privacy of users. Users can be

targeted such as a governmental employee in a military department or a head of a financial

company. The information leakage has a tremendous impact on their own life or on the place they

work for. Beside targeted users, an ordinary individual can be randomly hunted and the leakage of

of data would impact them and their surroundings as well. Malicious developers utilize the

information for their own evil benefits or can be used by other spying agencies.

Especially with the applications when the malicious developers get control of a device and

are granted the trust from the user, they will last for long period and less likely to be removed

unless their control was detected. By keeping the malware installed, information will be streamed

without prior knowledge of the user.

With the advancement in data science and machine learning, classifiers can be trained on

all sort of malware to come up with models. Models are used afterward for evaluation. When

models are ready, they are deployed for testing and start classifying the application. The machine

learning field, nowadays, is supported by many research efforts, academic, and industrial

organizations for different problem domain: classification or regression problems.

With this track of research, AVs will be able to match any variant of the malware quickly

to their families by applying the same detected malware signatures. Thus, AVs can easily adopt

patches they developed for the previously identified malware. Moreover, this research will support

malware researchers to complement their efforts to study undiscovered malware families.

4

1.4 Contributions of the Proposed Research

This research has proposed a novel framework, i.e., RevEng, that classifies 1,233 samples

of malware. Our framework identifies an optimal set of permissions, a set that gives high accuracy,

out of all the permissions provided by an Android operating system. We used the feature’s ranking

algorithm used in Extremely Randomized Trees. The set of permissions is tested on six classifiers

to assign malware into its family. RevEng also achieves a higher prediction accuracy rate than

other related work. To evaluate our approach, we list a detailed comparison with StomDroid’s

framework results [7]. The list of abbreviations used in the dissertation is provided in Table A.1.

In summary, the proposed contributions in this research are summarized as follows:

▪ We introduce a novel taxonomy that categorizes all the related work in familial

classification in terms of the type of analyses, features, and techniques that has been used.

▪ We design and implement RevEng that reverse-engineers malware datasets based on their

families and extracts the permissions from apps.

▪ We are targeting a multi-class classification problem to assign a detected malware sample

to previously studied and dissected malware families.

▪ The proposed approach can identify a minimal subset of features with higher accuracy and

a minimum execution time compared to other related work.

5

CHAPTER 2: LITERATURE REVIEW

The chapter discusses the Android operating system, application, and Android malware

with their attack and activation techniques. Also, we discuss in detail the related work in three

dimensions: type of analysis, techniques used, and features. We identified the datasets are used

and show the limitation and challenges in the literature. At the end we conclude with the future

directions of the research. This chapter is published in [8].

2.1. Android and Malware

In this section, we discuss Android operating system and application. We address the main

components inside them and define some technologies and fundamentals. Then, we discuss

Android malware and the attacks they use to harm the user.

2.1.1 Android Operating System

Android is one of Google products that is designed for smartphones and mostly written in

Java language. Android uses a Linux kernel to communicate with the hardware. The platform

architecture [9] consists of: system apps, Java API, C/C++ libraries, HAL, and Linux kernel. The

updated overall architecture of the Android in [10] is shown in Figure 2.1.

System Apps. System apps (also called core apps) are applications that come pre-installed

on the Android system for email communication, SMS messaging, or calling service. Third-party

6

applications are native apps that do not come preinstalled on the system and can be downloaded

from the Android application store (Google Play) or other unofficial markets. Google Play is a

place that indexes all Google trusted applications.

Java API Framework. A set of Application Programming Interface (API) written in Java

to communicate with system components and services. Applications utilize APIs such as view

system (i.e. button and text boxes), the resource manager (i.e. graphics and layouts), notification

manager (i.e. alerts on the status bar), activity manager (i.e. managing back stack for activities),

and content provider (i.e. share data).

Native C/C++ Libraries. Many of the kernel core components are built from libraries that

are written on C and C++ languages. Libraries such as Webkit, Libc, and OpenGL ES are some of

those libraries.

Hardware Abstraction Layer (HAL). HAL provides the hardware capabilities to Java

API Framework.

Linux Kernel. Linux kernel is modified and updated especially for Android. The kernel

does not include GNU C compiler, GNU libraries, or X server like in known Linux kernel. Some

of the included features to this kernel are Low-memory Killer, Wakelocks, Anonymous Shared

Memory, Paranoid Network, and Binder.

2.1.2. Android Application

Android applications are written on Java language and compiled to special bytecode called

Dalvik bytecode. Dalvik bytecode is interpreted using Dalvik Virtual Machine (DVM). DVM is a

register-based VM that uses CPU registers to store the data in the instruction.

7

In 2017, Google announced Kotlin to be another official Android development language.

Android contains four main components that form the building blocks of the application [11]:

Activities, Services, Broadcast receiver, and Content providers. Activity is a Java class (a single

screen) and entry point that the user interacts with. For example, in a phone app, contacts screen

is an instance of an activity that shows a list of contacts. Services are background processes that

process long-running jobs. An example of a service is running some updates for the application.

Broadcast receiver is a component that responds to system announcements or delivers broadcasts

to another or within the same app. An example of this component is when the user notified that

the battery is low. Finally, Content provider manages data stored in a database, i.e., SQLite, or in

the file system. It allows other apps to query such data if they have the permissions. For instance,

the content provider responses to the user click on the contacts list and show the list in the phone

app. Moreover, it is important to mention an important message event called Intent. Intent is a

message object that is used to perform some operations such as starting an activity or a service or

delivering a broadcast message to broadcast receivers. The intent object contains a set of

Figure 2.1 Android platform architecture.

8

information such as component name, action to be performed, data type, category type, extras, and

flag.

Android applications, either system or third-party app, communicate with the Android

platform via defined Application Programming Interfaces (APIs). Android framework provides a

list of APIs that a developer can call to extend the functionality of the hardware without direct use

of lower layers of the architecture. Such functionalities are managing user interface (UI) elements,

accessing shared data storage, and passing messages between application components. As in

Linux, the Android app is assigned a unique user id (UID) and group id (GID). Each app runs in a

separate process to identify and isolate each app’s resources from each other. Using UID, Android

creates kernel-level application sandbox to enforce kernel security.

Android application is compressed in an archive format file, like any other known formats

such as ZIP and JAR, called Android Application Package (APK). APK contains seven files: asset,

lib, meta-info, res, androidmanifest.xml, classes.dex, and resources.arsc. In this section, we limit

our discussion on two main files: the manifest file (Androidmanifest.xml) and the code file

(classes.dex).

Android manifest. The manifest file is an XML format file that provides beforehand a set

of information about the app and declaration of the app components. Information such as the app’s

package name and version number, permissions required by the application, app entry points, and

registered intents.

Dalvik executable (DEx). The file classes.dex contains a set of files (bytecodes). Those

files are a special type of bytecode called Dalvik Bytecode that are compiled from normal Java

9

classes. In Figure 2.2, we show the steps of converting Java classes and the generation of a DEx

file [12].

Android Access Control

To protect the system’s resources, Android, like in Linux, uses an forced access control

mechanism to remove the malware and render it harmless. Android requires application to request

permissions prior to utilizing the resource [13]. In the application level, permissions must be

declared inside the AndroidManifest where essential information on the app and its components

are located. Prior to Android version 6, the user was required to grant access to all what app

requests at the time of the installation. The risk of this, besides the user’s weak knowledge of the

requested permissions and what they mean, is that an app can deceive the user by requesting

permissions unrelated to the app’s main functionality. Malware app can leverage some permissions

to gain access to the resources and perform its malicious acts [14]–[16]. In Android, there are more

than 300 permissions, each of which has a level of protection considered either normal or

dangerous [17]. A designation of normal implies low risk to the isolated resources. All permissions

with normal level are automatically granted to the app by the system without the user’s consent

(i.e., SET_WALLPAPER). Permissions categorized as dangerous, however, have a higher risk on

the user’s data and the device (i.e., ANSWER_PHONE_CALLS). For this reason, dangerous

Figure 2.2 Dexing Java classes into classes.dex.

10

permissions require the user’s consent prior to the installation in order for access to be granted

application [17]. This research examines the permissions that malware families request as features

for our static analysis.

2.1.3. Android Malware

In this section, we discuss the most recognized type of malware attacks in the literature

such as: repackaged, update attack, and drive-by download as listed in [18]. Furthermore, we

discuss the way that malicious payload is executed. Finally, we conclude the section by discussing

malware families and characteristics.

A malware could secretly be embedded in a set of deceptive applications and can be

identified by detecting the malware’s files or similar malware characteristics (i.e. signature or

requested permissions), on the set. This set containing the malware’s files is identified as a family

of the malware [19].

Malware families. A family of malware is a group of malware that shares common

characteristics and behavior. Adopting an attack or malicious behavior by inserting a payload (or

more than one payload) requires using the same package names used for the attack. By frequent

use of package names (or other common characteristics), this becomes one identity (signature) of

a group of malware (family). For example, AnserverBot family, a popular malware family, uses

com.sec.android.provider.drm the package name in the code. Another example is that malware in

DroidKungFu family contain a package named com.google.ssearch [18]. The family is identified

by a unique name. Some of malware families are show in Table 4.1. Another family is

DroidDream, also known as RootCager, was discovered in 2011 in the official Android market,

11

Google-Play. DroidDream family is a Trojan that collects the mobile device’s I.D. or serial number

and other related information by requesting administrator access control on the device. This Trojan

can be detected by locating the two code files rageagainstthecage and exploid in the family

members [18], [20]–[22]. DroidDream is one of the advanced and sophisticated types of malware.

Other common malware families are listed in [23].

Attack techniques. One of the most common techniques is to piggyback a known app with

a malicious payload. This technique is known as repackaging as the malicious disassemble an app,

insert the malicious code (payload), and repack the app. Examples of such malware families are

ADRD, AnserverBot, and BgServ [18]. An alternative way of the same technique is update attack.

This is in order to repackage the application when performing updates. A victim installs the

modified app, without the payload, to avoid detection. When it is time for the update, a payload

will be installed with the new version. Families such as BaseBridge, DroidKungFuUpdate, and

Plankton are some examples of families adopting this technique.

Another technique is called drive-by download. In this technique, the victim installs an app

that advertises another app that is either standalone or repackaged malware. In addition, instead of

advertising, the download request can happen without user notification. This could happen when

the user grants certain permissions to the app to download when the user first installs the main

application. GGTracker, Jifake, Spitmo, and ZitMo are some of the families using this type of

attack.

Obfuscation techniques. Obfuscation is a way to make code unclear. Malware (or

commercial apps) use this technique to hide their actual code. Some of the obfuscation techniques

are: Renaming method and variable. When it comes to naming a method and variable, the name

12

should reflect the behavior of the method or variable. In the case of malware and when malware is

identified by some methods or variables names as signatures, changing the names helps the

malicious developer to bypass the AV.

▪ String Encryption. One technique that AV uses to quickly scan an application is to look for

a link, a form of URL or IP address, to a remote server. The server is also called command

and control (C&C) from which the application receives commands and run them on the

victim’s device. For the malware to hide this link, it needs to be encrypted. The encrypted

link will be decrypted at the usage moment. The obfuscated strings are hard to reverse

engineer and then hard to read. In general, encryption can make the application heavy and

very slow to execute. But the technique has been used to encrypt part of the code to avoid

detection.

▪ Control Flow Obfuscation. Even when the code is obfuscated, experience developer and

malware analyst can draw an understanding of the behavior of the obfuscated code from

matching the control flow of the program. To make the code unpredictable, developers

obfuscate the control statements as well.

▪ Dummy code insertion. Last technique is to insert codes that do not relate to the actual

behavior of the malware. This code is called dummy since it is not used, but to mislead the

scanner from reading and understanding the code.

Finally, there are tools used for obfuscation. Common Java obfuscators are

ProGuard [24] and DexGuard [25], which are widely used.

Activation techniques. This technique associated with Android events.

BOOT_COMPLETED event, for example, is triggered when the device finishes the booting

13

process. Malware uses this event to be notified when the device is up and running to activate the

malicious process. Other events such as SMS_RECEIVED that is triggered when an SMS is

received is utilized by zSone family. Another example is a ACTION_MAIN event that is triggered

when an app’s icon that is clicked is adopted by a DroidDream family.

There are many papers contributed to detecting such techniques such as [26]–[30]. For

example, Tian et al. [30] designed a repackaged detection technique. Their technique based on

partitioning the code into two levels, class-levels dependency graph (regions), and method-level

call graphs. They utilize machine-learning to recognize internal behavior using three types of

features: permissions, sensitive API calls, and user interaction.

How anti-virus works. Malware signatures, as they have been manually analyzed or

detected, are saved in an AV database to be compared against files under scanning. When a match

is found in the file, the file (or app) is considered malicious, and it will be quarantined.

2.2. Android Malware Related Work

In this section, we review the survey papers on Android malware. Most of the surveys

focus on malware detection, including [31]–[39]. The most recent survey has reviewed papers on

malware detection while focusing on their approaches; they discussed the advantages and

disadvantages of each detection approaches and methods [32].

The following survey has proposed a taxonomy to categorize Android malware detection

techniques; they highlighted the trends and the challenges [34]. The following two survey papers

have provided an outline of the methodologies used in classifying malware based on work

surveyed [33], [38]. The authors in [35] have focused on the state-of-the-art papers in identifying

14

malware behaviors based on a diverse set of features; they highlighted the effective features in

detecting malware. Yan and Yan have surveyed the related work in dynamic malware detection;

they focused on the performance evaluation criteria on malware detection [36].

Souri and Hosseini have conducted a systematic survey on the state-of-the-art papers in

utilizing data mining techniques in malware detection; they categorize the techniques into

signature-based and behavioral-based. Furthermore, they discuss the importance of data mining

techniques in malware detection [37]. Riasat et al. have provided a comprehensive survey on the

tools and methods used on malware detection; they highlighted the various types of tools used in

the research field [39]. Arshad et al. categorize the antimalware and penetration techniques

proposed by state-of-the-art research to protect the Android system; they highlighted their

limitation and benefits [31].

The previous surveys on malware detection have focused on malware detection. In this

survey, our focus is on malware familial classification, detection, and analysis, which will

introduce a baseline for future work in this domain.

To conduct our review, we followed an exploratory research approach. We investigated

more than a thousand papers published in journals and conferences. To filter out the selected

papers, we considered keywords. The following respectable scientific databases are explored:

IEEE Xplore [40], ACM Digital Library [41], MDPI [42], ScienceDirect [43], Hindawi [44],

Springer [45], and arXiv [46], and we also used reputable literature search engines such as

Microsoft Academic [47], Semantic Scholar [48], and Google Scholar [49]. Keyword criteria for

selecting a literature contain main and optional keywords. Main keywords are Android malware

and malware family. Optional keywords are malware detection, familial classification, malware

15

family identification, and malware family categorization. We have classified the related work

according to their type of analysis, techniques, and features.

Our complete taxonomy is shown in Figure 2.3. and Table 2.1. The taxonomy categorizes

all the related work in familial classification in terms of the type of analyses, features, and

techniques that has been used.

2.3 Analysis

In this section, we discuss the type of analysis followed by the state-of-the-art. They are

static, dynamic, and hybrid analysis.

2.3.1. Static Analysis

Static analysis is applied while the app is in a static state. It basically collects information

about the app such as the app’s name, size, permissions, code, and programing pattern. Some of

the information requires reverse engineering the app from machine code to a readable format to

analyze the code. The advantage of performing such analysis is that it is fastest and cheapest since

it doesn’t require executing the application nor does it require monitoring activities. A drawback

of the analysis is that many malware launch their attack at runtime. In addition, other malware use

an obfuscation technique or encrypted methods which cannot be read or decrypted unless the app

is executed. A set of papers [50]–[77] used static analysis. Details on the static features used by

the papers were discussed in Section 2.5, Features.

2.3.2. Dynamic Analysis

This type of analysis (also known as behavioral analysis) performed during the execution

16

of an app. It monitors the inside and outside action, connections, calls, and clicks that happen while

the app is being executed. Such analysis has the advantage of detecting wide-range and

sophisticated malware. Malware families that are bound to an event that were mentioned earlier

can only be detected while the app is running. The disadvantage of such analysis is that it is time-

consuming. In addition, it requires a priori knowledge of the malware technique to monitor.

Several papers have applied dynamic analysis such as [78]–[83]. Details on the dynamic features

used by the papers were discussed in Section 2.5, Features.

2.3.3. Hybrid Analysis

Hybrid analysis is a combination of both static and dynamic analysis. Although hybrid

analysis has the advantage of covering both analyses, it has a major drawback. Such analysis is a

time-consuming process considering the huge number of malware samples to be detected and

analyzed. Papers such as [84]–[88] have used hybrid analysis and the details on the features used

were discussed in Section 2.5, Features.

2.4. Techniques

In this section, we discuss the techniques used by the state of the art to address the familial

malware problem. There are two main techniques used: model-based and analysis-based.

2.4.1. Model-Based

In a model-based technique, a model is created to classify malware into families. There are

four main categories of techniques used, which are machine learning, similarity analysis and image

17

processing, and evasion.

Machine learning. The literature use machine learning to classify malware samples into

families.

 Figure 2.3 Android malware families’ taxonomy.

18

Index Year Reference Analysis Features Technique

1 2020 Fang et al. [50] Static Static Image-reps-based

2 2019 Qiu et al. [51] Static Static
Similarity-based and

Machine Learning

3 2019 Zhang et al. [52] Static Static
Signature-based and

Machine Learning

4 2019 Zhiwu et al. [53] Static Static
Visualization-based and

Machine Learning

5 2019 Mirzaei et al. [54] Static Static Visualization-based

6 2019 Vega et al. [55] Static Static Visualization-based

7 2019 Vega et al. [56] Static Static Visualization-based

8 2019 Jiang et al. [57] Static Static Machine Learning

9 2019 Fasano et al. [58] Static Static Machine Learning

10 2019 Blanc et al. [84] Static Static Machine Learning

11 2019 Xie et al. [60] Static Static
Statistical-based and

Machine Learning

12 2019 Turker et al. [61] Static Static
Statistical-based and

Machine Learning

13 2018 Atzeni et al. [84] Hybrid Dynamic and Static Signature-based

14 2018 Kim et al. [85] Hybrid Dynamic and Static
Visualization-based and

Machine Learning

15 2018 Fan et al. [62] Static Static
Visualization-based and

Machine Learning

16 2018 Sun et al. [78] Dynamic Dynamic Visualization-based

17 2018 Martin et al. [79] Dynamic Dynamic
Machine Learning and

Statistical-based

18 2018 Aktas et al. [86] Hybrid Dynamic and Static Machine Learning

19 2018 Garcia et al. [63] Static Static Machine Learning

Table 2.1 Taxonomy table of the literature.

19

Index Year Reference Analysis Features Technique

20 2018 Calleja et al. [64] Static Static Evasion and Machine Learning

21 2018 Alswaina et al. [65] Static Static Machine Learning

22 2017 Massarelli et al. [80] Dynamic Dynamic
Signature-based and

Machine Learning

23 2017 Zhou et al. [66] Static Static
Visualization-based and

Similarity-based

24 2017 Chakraborty et al. [87] Hybrid Dynamic and Static Machine Learning

25 2017 Sedano et al. [67] Static Static Statistical-based

26 2016 Battista et al. [71] Static Static Signature-based

27 2016 Hsiao et al. [81] Dynamic Dynamic Visualization-based

28 2016 Gonzale et al. [68] Static Static Visualization-based

29 2016 Fan et al. [69] Static Static
Visualization-based and

Machine Learning

30 2016 Kang et al. [70] Static Static Similarity-based

31 2016 Malik et al. [82] Dynamic Dynamic Statistical-based

32 2016 Sedano et al. [72] Static Static Statistical-based

33 2016 Feng et al. [88] Hybrid Dynamic and Static
Visualization-based, Machine

Learning, and Signature-base

34 2015 Aresu et al. [83] Dynamic Dynamic
Signature-based and

Similarity-based

35 2015 Lee et al. [73] Static Static
Signature-based and

Similarity-based

36 2015 Li et al. [74] Static Static
Visualization-based and

Machine Learning

37 2015 Garcia et al. [89] Static Static Machine Learning

38 2014 Deshotels et al. [75] Static Static
Visualization-based and

Similarity-based

39 2014 Suarez et al. [76] Static Static
Statistical-based and

Machine Learning

20

Index Year Reference Analysis Features Technique

40 2013 Kang et al. [77] Static Static
Statistical-based and

Machine Learning

In [53], the authors classify the malware using Deep Learning (DL) techniques. In [79],

the authors classify malware into families using classical machine learning such as Support Vector

Machine (SVM) and DL algorithms such as CNN and RNN. In [76], the authors use a Nearest

Neighbor classifier (NN) to classify malware into families. In [57], the authors preprocess the data

and extract the sensitive opcode sequence. For the minor families, they use the oversampling

technique to overcome this issue. To represent the semantic features of the sensitive opcode

sequence, they use text mining (i.e., Doc2Vec algorithm [90]). Finally, they train their model using

nine machine learning algorithms such as SVM and Randomforest. In [80], the authors feed the

fingerprint to an SVM algorithm to classify malware into families. In [74], the authors construct

the feature vector and feed it to several machine learning algorithms such as Randomforest. In

[60], the authors used SVM to classify the samples into families. In [77], the authors feed the

features to several machine learning classifiers such as Decision Tree and Association rules. In

[64], the authors build a framework to train the classifier algorithm with a set of samples to drive

the heuristic search using a Genetic algorithm. In [62], [69], the authors use frequency graphs

(FreGraph) as their features to be fed into several machine learning algorithms such as SVM,

Decision Tree, and Randomforest to classify the malware into families. In [59], the authors feed

the Android-oriented matrices to several machine learning algorithms such as SVM, KNN, and

Decision Tree. In [63], the authors apply machine learning algorithms to extract complex features

and used them to classify malware into families. In [61], the authors use three machine learning

21

techniques: standard classifier such as SVM, ensemble classifier, and Neural Network to classify

malware into families. In [65], Alswaina et al. use two models to perform familial classification.

The authors use the binary representation of the features and weighted importance. Then, they use

six machine learning algorithms to predict malware families. In [86], the authors apply three filters

to filter the features. The dynamic and static features are combined and fed to machine learning

algorithms, such as Randomforest and KNN for classification. In [51], the authors apply Linear

SVM, DT, and DL algorithms. Fene et al. [88] utilize the SVM algorithm.

In [87], the authors use supervised algorithms such as Randomforest. Moreover, the authors

use unsupervised learning such as K-means and mean-shift due to unbalanced samples in each

family. They also propose ensemble clustering and classification techniques, which integrate the

results generated from the supervised and unsupervised algorithms. In [85], the authors optimize

the weight of features using community detection algorithms. They further classify the malware

into families using machine learning. In [52], the authors use the fingerprints to classify malware

into families using online passive-aggressive (PA) classifiers. Further details of PA can be found

in [91]. In [58], the authors extract features from the apps and create code metrics. Then, they

binary classify (coarse-grain) the samples. The malware is further classified into families (fine-

grain).

Evading detection. In this technique, the goal is to evade detection or elude classifiers into

misclassification. In [64], the authors build a framework to alter the malware to perform an attack

and misclassify the results.

Similarity analysis. Literature computes the distance between any malware and the family.

22

In [83], the authors use the token-subsequence algorithm to extract and generate signatures

from each family based on network traffic analysis. In [70], the authors represent opcode as a

vector of binary and frequency to compute the similarity between the malware and families. In

[66], the authors evaluate their approach by performing similarity analysis. In [75], the authors

perform two tests. The first test is used to binary classify malware. In the second test, they apply

the agglomerative clustering algorithm to cluster the apps into families. To evaluate their model,

they compute the distance between the malware and the clusters’ centroids to validate which family

the sample belongs to. In [73], the authors cluster the families based on the most frequent key

terms used by each family. Then, they use the dictionary search method for classification. In [51],

the authors use TF-IDF to represent the frequency of the features.

Image representation. Some literature classifies the malware to malware families based

on image representation. In [50], the authors convert the DEX file into an image and plain text.

Then, they extract the color and the texture feature from the image. For the three features: color,

texture, and text, they feed them into the feature Fusion algorithm to classify malware into families.

2.4.2. Analysis-Based

In the analysis-based technique, an analysis is carried to analyze and construct features to

observe families’ characteristics. There are three sub techniques under this approach, which are

signature-based, statistical analysis, and visualization analysis.

Signature-based. They construct a signature for each family to identify the families. In

[83], the authors use a multi-step clustering approach: First, they apply coarse-grained clustering

and then apply fine-grained clustering. In [52], the authors construct the fingerprint of the malware

23

families using n-grams analysis and features hashing. In [80], the authors generate a fingerprint

for each family. In [73], the authors construct a signature of each malware family based on the

collected features. Feng et al. [88] propose an approximate signature matching algorithm to

generate signature for malware families.

Statistical analysis. They applied statistical tools to analyze and identify the family’s

characteristics and the important features. In [76], the authors use statistical analysis and text

mining to extract the features. In [79], the authors use Markov chain to represent the features. In

[60], the authors eliminate unimportant features using the frequency-based approach. In [77], the

authors compute the bytecode frequency. In [61], the authors apply a feature ranking algorithm to

identify the most important features.

Visualization analysis. They visualize the characteristics of families using graph mining

and PCA. In [53], the authors extract DFG and CFG. Then, they encode the graphs into a matrix.

In [85], the authors represent the features using a network graph. In [66], the authors collect the

sensitive API calls and then construct graphs based on sensitive API calls. Then, they characterize

malware families based on the subgraph isomorphism. In [74], the authors construct a short and

long APIs dependency path to perform context and constant analysis. In [75], the authors

disassemble the app into Smali files. Then, they create class dependency graph (CDG) to group

the classes into modules to identify which module contains malicious code. In [62], [69], the

authors use community detection, subgraph matching, and subgraph clustering to generate the

FreGraph. Feng et al. [88] utilize an inter-component call graph (ICCG) to represent the

communication in the app to construct the features.

24

2.5. Features

In this section, we discuss the types of features used by works of literature to classify

malware into families. They are classified into static and dynamic features.

2.5.1. Static Features

Static features are any features that can be recognized or utilized without the execution of

the application. Some examples of static features are package name, application size, permissions,

and list of APIs.

A set of papers [55], [56], [65], [67], [68] uses features that are related to malware

installation such as repackage and update, payload activation such as on booting and receiving

calls, and privilege escalation attack such as asroot and exploid families [18]. Moreover, in [55],

[56], [67], they include other features related to financial charges such as SMS and phone calls.

Vega et al. in [55], [56], also include features related to personal information stealing such as

phone number.

In [51], [54], [57], [60]–[64], [66], [69], [72], [74], [75], [88], [89], a subset of sensitive or

suspicious API calls are utilized in their feature set. Permissions used in the app are included as

features in [51], [60], [61], [65], [72]. Moreover, in [57], sensitive opcode sequence, actions, and

strings are utilized in their features. Garcia et al. [63], [89] added native code-based to their set of

features.

Fasano et al. [58] and Blanc et al. [59] use a set of metrics generated from Smali files to

measure the quality code of the app to be used as features. However, in [57], [70], [71], [73], [77],

25

code-based analysis such as Java bytecode, bytecode frequency, opcode, or opcode sequence are

used as features.

Other papers such as [53], [76] use data-flow graph (DFG) and control-flow graph (CFG)

as features. In [50], the authors extract the texture, color, and text features from the DEX file.

Zhang et al. [52] use features extracted from DEX as n-gram and hash code.

Finally, some works of literature have applied a set of static features in addition to dynamic

features. In [87], the authors use 190 static features such as permissions. In [86], the authors use

static features such as the number of services and receivers. In [85], the static features such as

permissions, filename, and activity name are utilized. In the paper [84], a set of static features from

the Android manifest in addition to an APK file that is generated from Androguard tool [92], a

Python code to reverse engineer Android files.

2.5.2. Dynamic Features

Features that require execution of the application are considered dynamic. For example,

network traffic, send/receive SMS, resource consumption, system logs, and I\O operations.

In [82], the author traced the system calls during the execution of the application. Aresu et

al. [83] utilize network traffic (HTTP) in their classification. Martin et al. [79] depend on the

features that are generated by a DroidBox [93] tool, an Android sandbox for dynamic analysis,

which is represented as operations and function of time. In [81], the authors record the API calls

that are performed during application execution. In [80], resources’ consumption is utilized as

features for their classification. In [78], the authors use sensitive and permission-related API calls.

26

Finally, a group of literature works has applied a set of dynamic features in addition to

static features. In [87], the authors use around 2048 dynamic features logs such as file I/O, network

usages, and cryptographic usage. In [86], the authors use dynamic features that are generated using

a DroidBox tool [93] such as the number of open/closed connections and the number of

sent/received network packets. In [85], the dynamic features such as API call sequence are utilized.

In [84], a set of dynamic features uses DroidBox [93] and CuckooDroid [94]. Feng et al. [88] use

suspicious API call behaviors such as sendSMS API and data leakage.

2.6. Discussion

In this section, we highlight the datasets that have been used, the limitation of literature,

the general challenges related to malware families, and we also report future directions.

2.6.1. Experimental Datasets

There are many datasets used in the literature that contain a collection of Android malware

grouped into families such as: Android Malware Genome Project (Malgenome) [18], Drebin [95],

the AMD [96] Project, and AndroZoo [97]. Some papers collected the malware samples from the

Android market such as Anzhi, or a repository such as VirusTotal [98] and VirusShare [99].

The datasets differ in the number of samples and number of families. For example, AMD

[96] contains 4354 malware samples grouped in 42 families. While Drebin [95] has 5560 samples

grouped in 179 families, other datasets such as AndroZoo [97] contain many more samples and

families, where the number of samples is 10.7 million grouped into more than 3000 families. In

Figure 2.4, we show the number of publications that uses each dataset found in the literature.

Furthermore, Table 2.2 shows detailed information where the publications are included. The

27

repository category includes sites like VirusTotal, VirusShare, and Koodous, for which there is no

fixed set to be used as benchmarks. Collection category refers to either an unknown collection

performed by the author or sites such as HelDroid, FalDroid, and the Anzhi app market. As we see

from Figure 2.4, the most used datasets are Drebin [95] and Genome [18]. More details on the

commonly used datasets are reported in Table 2.3.

Dataset
No. of

Pubs.
Publications

Drebin [95] 18 [51]–[53], [57]–[59], [61]–[64], [71], [72], [78]–[80], [83], [87], [88]

Genome [18] 16 [52], [55], [56], [63], [65]–[68], [70], [74]–[77], [81], [83], [88]

Collection 6 [58], [60], [62], [73], [82], [85]

Repository 6 [53], [60], [63], [69], [84], [87]

AMD [96] 3 [50], [51], [61]

UpDroid [86] 2 [61], [86]

Contagio [100] 2 [53], [83]

AndroZoo [101] 1 [54]

Marvin [102] 1 [53]

AndroMalShare [103] 1 [66]

Figure 2.4 Dataset reported by publications, where the x-axis represents the number of publications.

Table 2.2 Dataset, number of publications, and publication details.

28

Dataset Total Samples Number of Families

Drebin [95] 5,560 179

Genome [18] 1,260 49

AMD [96] 4,354 42

AndroZoo [101] 10.7M 3K+

2.6.2. Limitations

As we surveyed forty research papers, we summarize the limitations to the following: First,

most of the literature uses small datasets such as a few numbers of families or a few malware

samples for studying families. Moreover, they use outdated or discontinues datasets such as

Contagiodump (Contagio) [100] and Malgenome Project (Genome) [18]. In addition, several

papers build their experiments on manually collected data without testing their model on

benchmarked data. Several papers lack the disclosure of the list of features applied to reproduce

the work.

2.6.3. Challenges

Family naming. One of the challenges that we observe is that there are no naming schemes

(conventions) for the malware family. Naming a family is varied depending on the AV company.

Families such as BaseBridge (or adSMS), Smssend (or fakeplayer), and DroidDream (or

DORDRAE) are some of the families that have multiple names. One of the reasons is that one

company names a family based on different share characteristics than other companies.

Characteristics such as installation methods, activation, or the name of their malicious file name

Table 2.3 Commonly used datasets and their details.

29

are discussed in [18], [104], [105]. Attempts have been made by [101], [106], [107] to establish

naming standards. Sebastian et al. [108] address the issue of inconsistent labeling (naming) of

malware family and contribute the AVclass tool, an auto-labeling, as an effort to unify labeling. In

addition, Euphony is a system proposed by [101] to unify different AV companies.

Imbalance Dataset. Some of the malware families contain hundreds of samples, while

others contain as little as one sample such as DroidKungFuUpdate family in the Genome [18].

Other families with one sample in Genome dataset [18] are listed in Table 2.4. The rest of families

in the dataset are shown in Table 4.1. This cause identifies the characteristics of a family as

challenging. In case of standalone malware (not repackaged), the identification is almost

impossible.

Family

SMSReplicator

Walkinwat

Endofday

GGTracker

GamblerSMS

Lovetrap

Zitmo

CoinPirate

DogWars

NickyBot

DroidCoupon

DroidDeluxe

Spitmo

DroidKungFuUpdate

FakeNetflix

Jifake

2.6.4. Directions

Advanced machine learning. Malware families should be deeply analyzed and identified.

Deep learning technology has been adapted to address various research problems including voice

Table 2.4 Genome dataset’s families with one sample.

30

recognition, image processing, and text analysis. One of the advanced techniques of Deep Learning

is reinforcement learning, which can be utilized to better understand the families’ characteristics.

Reinforcement learning has shown very promising results, especially in dynamic analysis. Another

technique that should be adopted is transferred learning, which can be utilized to address the lack

of samples in families.

Big data handling. Since the amount of malware is increasing exponentially, as it was

reported by GDATA that almost 9K of new malware programs are reported daily [109], a scalable

solution should be considered. For example, the AndroZoo [97] dataset has millions of samples

that can be handled using big data technologies. One of the most important tools are Hadoop [110]

and Spark [111]. They can handle a huge amount of malware data with fast processing.

Crowdsourcing. Beside Big data technologies, a group of malware family analyzers can

be utilized to better identify and characterize the families. For example, a source can use a subset

of features, while other sources investigate other feature sets. A malware repository VirusTotal

[98] and VirusShare [99] are some examples.

Automated detection. The huge number of generated malware necessitate the call for

automated analysis and classification of malware family rather than performing such tasks

manually [85], [112].

31

CHAPTER 3: RESEARCH PLAN

The research developed a Reverse Engineering framework (RevEng). Within RevEng,

applications' permissions were selected and then fed into machine learning algorithms (MLA).

Through our research, we created a reduced set of permissions using Extremely Randomized Trees

that achieved high accuracy and a shorter execution time. Furthermore, we conducted two

approaches based on the extracted information. The first approach used a binary value

representation of the permissions. The second approach used the features' importance. We

represented each selected permission in Approach One by its weight value instead of its binary

value. We conducted a comparison between the results of our two approaches and other relevant

works. Our approaches achieved better results in both accuracy and time performance with a

reduced number of permissions.

3.1 Proposed Framework

RevEng consists of four main components that include the Dataset, Family, App, and

Analysis components. Each component parses and collects information on the dataset. The

Dataset, Family, and App components are included in the preprocessing stage, whereas the

Analysis component is used in the processing stage. To explain our framework, we used the term

32

extracted features to indicate the result of collecting the selected features from the application; this

is not to be confused with feature extraction terminology.

In the following section, we identify the functionality of each component in RevEng

framework and their interactions to classify malware app and predict malware family. The

following is a general flow of the framework. More details are added in the following section.

1) The Dataset is needed to parse and maintain information about the malware families in

the dataset. The component takes the dataset and assigns each family to a Family component to be

processed. At the end of the preprocessing stage, the Dataset processes the results of each Family

component and constructs the input matrices (MBcand and MWcand) for the Analysis component in

the processing stage.

2) The Family component processes one malware family and keeps a list of all malware

apps in the family. The component maintains and removes any duplicate of an application using

the hash value of the malware. Each member of the malware family is assigned to an App

component to be processed. In the end, the Family component processes the result obtained from

each App component and passes them back to the Dataset.

3) The App component represents a malware app. It reverse-engineers the malware

application, extracts the features and passes them back to the Family component.

4) The Analysis component is the where the framework applies MLA to generate

classification models, train and validate them using input data from the Dataset to predict the

malware families.

33

3.2 Framework Components

Dataset: This component contains general information about the dataset such as

FamiliesList (a list of families in the dataset), SFCand (a candidate subset of selected features SF),

MBcand (a two dimensional binary matrix result from applying SFCand), MWcand (a two dimensional

weighted matrix result from applying the weight of each features in SFCand), and NoOfThreads

(number of threads set for framework efficiency, default is 4).

Family: This component contains detailed information on a malware family. Parameters

such as FamilyName (name of the family), AppList (a list of apps in the malware family),

PermissionsUnion (a set of all permissions declared in the malware family), and PermissionsInter

(the intersection set of all permissions declared the malware family) are collected by this

component.

App: This component is responsible for reverse engineering a malware app. It extracts

information such as AppName (the application file’s name in the dataset), AppPackage (the

application’s package name), Permissions (a list of permissions declared in the malware app), and

ExtractedFeatures (a binary array result from applying feature selection in SFCand).

Analysis: This component consists of several machine learning algorithms or classifiers

(MLAs). Each MLA creates a model with pre-set hyperparameters. These hyperparameters are

elected and tuned based on trial and error to produce optimal results in our experiments. The

MLAs’ models are trained, validated, and tested on MBcand and MWcand that are produced by the

Dataset component as inputs to each model to classify each input into its predicted malware family.

In this component, we take advantage of Scikit-Learn libraries [113] to implement machine

34

learning algorithms. Figure 3.1 demonstrates the Dataset, Family, and App components’ data

structure with pseudo-code.

3.3 Application’s Features

The features used in this research is an app’s permissions as requested by the malware apps

(samples). The focus is on finding the optimal set of permissions, a set that gives high accuracy,

out of all the permissions provided by an Android operating system. To accomplish this, one of

the ensemble classifiers, called Extremely Randomized Trees (ET), [114] was utilized. ET, like

Random Forest (RF) [115], is based on building a large collection (forest) of decision trees (DT).

Each DT uses the whole set to build the tree and, for each split, finds the optimal cut-point based

on information gain. RF develops each tree by selecting a random set of data and a random set of

features. The target class of the observation predicted is based on the majority vote. For ET, the

Figure 3.1 Demonstrates the contents of components and the relation between them.

35

algorithms add more randomness to RF such that on each split in a tree, instead of selecting the

optimal cut-point, ET selects a feature at random. In addition, ET ranks the importance of each

feature using Gini importance [116].

Features Reduction: The SF here is the permissions feature used in StormDroid [7]. To

extract the important features, we run an ET algorithm on the SF. As a result, each feature in SF

is assigned an importance value between zero and one, based on the information that the attribute

provides in ET’s DT. All features with zero importance have been excluded since such features

either do not add significance to uniquely classify a malware family (noise) or have some

dependency between features. By collecting all features greater than zero, we have a Candidate

Selected Features set (SFCand), a reduced set of features as shown in Figure 3.2. The ultimate SFCand

contains 42 out of 59 permissions. The SFCand chosen, with their importance, are included in Table

5.6. The top 10 permissions with high importance are shown in Figure 3.3.

Our analysis of the dataset shows that a group of permissions is requested by many malware

families. For example, INTERNET (which permits opening a network socket) is requested by more

than 82% of the malware families; READ_PHONE_STATE (which permits a reading of the

device’s phone number, a status of ongoing calls, and phone accounts in the device) is requested

by more than 60.5% of the malware families; ACCESS_NETWORK_STATE (which permits

querying into the status of the network, such as if the device is connected to a network) is requested

by more than 42.5% of the malware families. These permissions are also the top three permissions

in both [18] and [17]. For this reason, these permissions are not critical to identify and classify one

malware family from another. Therefore, the ET classifier assigns a very low importance to such

features, as shown in Table 5.6.

36

3.4 Data Preprocessing

Upon beginning the execution of the framework, the Dataset component is initialized

(Dataset.Init) with the dataset. Once the component is ready, RevEng starts loading and parsing

Figure 3.2 Extraction of the important features from SF and generating SFCand.

Figure 3.3 Top 10 permissions based on their importance.

37

the dataset by executing Dataset.Load. To start creating the families’ objects, RevEng forks several

threads (NoOfThreads) assigned in the initialization during the execution of Dataset.Run as

illustrated in Figure 3.4.

Multi-threading utilizes the processor and increases the reverse engineering process of the

applications as illustrated in Figure 3.5. All objects of the Family component in this case, malware

families–are inserted in a list (i.e., Q). Each thread processes one object as a task, (i.e., ti). Each

task initializes a family (Family.Init), loads a family’s contents, and starts parsing a family’s

application (Family.Parse) as shown in Figure 3.4. Family.Parse initializes the App component

(App.init) and parses it (App.Parse).

The App.Parse method, in turn, extracts information from the application such as the

package name, all permissions in the manifest file, and checks the existence of each permission in

SF in the app’s list of permissions. To extract the package name and the declared permissions in

Figure 3.4 Pseudo-code of the Dataset, Family, and App components shows the main parts of the code.

38

the app’s manifest file, we used the Android Asset Packaging Tool (AAPT), which is part of the

Android Software Development Kit (SDK). AAPT is a utility with powerful features that

decompiles the package’s permissions listed in the Application manifest XML file, and it can also

extract the resources’ table. The items’ indices in ExFA (extracted features) and SF (selected

feature) are in the same order. If an app A has a feature 𝜌 | 𝜌 𝜖 𝑆𝐹 in index i, then ExFA(i) = 1,

otherwise ExF(i) = 0, and so on.

Each App’s ExF is cascaded back to the app’s family and then to the Dataset components

as shown in Figure 3.6.

Figure 3.5 Multi-threading processes of the list of tasks in queue.

39

The Dataset joins all the ExFs in MBcand for analysis as illustrated in Figure 3.6. The size

of MBcand is 𝑚 × 𝑛, where m = 1,233 (total number of samples) and n = 42 (number of permissions

in SFCand) as shown previously in Figure 3.2.

To generate the Weighted Candidate Matrix MWcand, each element is calculated as in (1).

Each 𝜌𝑖𝑗 value in MBcand is multiplied by the permissions’ importance as generated by ET for the

permission’s index j. The Y matrix contains the malware families (classes: ci) of each malware

sample at row i in both MBcand and MWcand. MBcand and Y matrices are shown below:

Figure 3.6 Preparation of MBcand and MWcan matrices for processing.

40

The overall framework is shown in Figure 3.7.

 Figure 3.7 RevEng framework.

41

CHAPTER 4: EXPERIMENTAL SETUP

In this chapter, we show some details on the Genome dataset that we use in our research.

Then will show the implementation and the evaluation of the approaches.

4.1 Dataset

We relied on the Genome dataset that was provided by [17]. This dataset contained 49

malware families with a total of 1,260 applications. Each family differed in size between 1 and

300 applications. In this research, families that contained less than 4 applications have been

excluded to maintain accurate results. Table 4.1, lists the malware families and their samples used

in our experiments, for a total of 1,233 applications in 28 families.

4.2 Implementation

The programming language Python was used in all our implementations. Python is

supported by the research community in various fields and it has rich libraries. Scikit-Learn is one

of the communities that has implemented Machine Learning Algorithms [113].

The Analysis component contains the following classifiers: Support Vector Machine

(SVM), Decision Tree (ID3), Random Forest (RF), Neural Network (NN), K-Nearest Neighbor

(KN), and Bagging, as implemented by [113].

42

Malware Family No. of Samples Malware Family No. of Samples

GingerMaster 4 jSMSHider 16

HippoSMS 4 ADRD 22

FakePlayer 6 YZHC 22

GPSSMSSpy 6 DroidKungFu2 30

Asroot 8 DroidKungFu1 34

BeanBot 8 DroidDearmLight 46

Bgserv 9 GoldDream 47

Gone60 9 KMin 52

RogueSPPush 9 Pjapps 58

SndApps 10 Geinimi 69

Plankton 11 DroidKungFu4 96

zHash 11 BaseBridge 122

Zsone 12 AnserverBot 187

DroidDream 16 DroidKungFu3 309

Total 1,233

4.3 Evaluation

Cross-validation: Since the number of malware families is very low, as is the number of

malware samples, we used the cross-validation (or stratified k-fold) technique to split and alternate

between the training and testing sets. We set up the number of folds (𝑘 = 4) such that on each

iteration, the classifier used 75% of a family’s samples for training and 25% for testing. In the

processing stage, the Analysis component is fed MBcand and MWcand to be processed. Each classifier

trains, validates, and tests the model on the two inputs using the aforementioned setup. As a result

of the analysis, we calculated each classifier’s accuracy (2) and the execution time in seconds.

Training-testing split: To address the imbalance data issue, we split the data into two sets,

training, and testing set. We further apply random oversampling technique to the training set. We

evaluate the model on the testing set.

Table 4.1 List of malware families with their samples in the dataset Genome used in RevEng.

43

44

CHAPTER 5: RESULTS AND DISCUSSIONS

In this chapter we show the results of the classification in the two approaches. We

conducted two experiments: with and without oversampling the data.

5.1 Experiment 1: Familial Classification without Oversampling

We conducted 100 experiments using MBcand and MWcand on each classifier. The experiment

measured two factors: the classifier’s prediction accuracy and the time performance. For all total

experiments on each classifier, we calculated the worst, the best, and average accuracy, and the

average execution time. Table 5.1 shows the details of the experiments in two main columns: the

first and second column represent the results of our approach with MBcand and MWcand, respectively.

 MBcand MWcand

Classifier Worst Avg. Best Time Worst Avg. Best Time

SVM 85.16 85.16 85.16 0.28 25.06 25.06 25.06 0.44

NN 95.78 95.78 95.78 1.57 87.27 87.27 87.27 5.17

ID3 94 94.52 94.73 0.06 94.08 94.42 94.89 0.06

KN 95.46 95.46 95.46 0.06 93.59 93.59 93.59 0.05

Bagging 90.59 91.56 92.21 0.21 90.11 91.09 92.05 0.18

RF 94.73 95.81 96.27 0.08 95.38 95.99 96.43 0.08

The results show that using MBcand, RF, KN, and NN achieve high accuracy (average ≈

95.68%) and standard deviation ≈ 0.19%) in comparison with other classifiers (such as SVM, ID3,

Table 5.1 Detailed performance (prediction accuracy and time) for each classifier (without oversampling).

45

and Bagging). From the best selected classifiers, we can see that RF achieves the highest

prediction, on average, of 95.81%. In terms of time performance, KN and RF complete their

analyses in 0.06 seconds and 0.08 seconds, respectively, while NN achieves the lowest

performance. SVM has the highest misclassification rate using MBcand.

For the MWcand, the results have higher variations than the previous approach. The top three

classifiers are RF, KN, and ID3 (average ≈ 94.66% and standard deviation ≈ 0.21%). The RF

classifier also achieves the highest accuracy of 95.99%. SVM produces the lowest accuracy score

using this feature. In terms of time performance, we can see that RF completed the experiments in

0.08 seconds on average. KN completed faster than the previous approach with an execution time

of 0.05 seconds.

Comparing our two approaches, MBcand and MWcand, we can see that RF achieves the highest

accuracy with a rate of 95.99% using MWcand, which was slightly higher than when using MBcand,

by 0.18%. RF’s took 0.08 seconds using both approaches.

We applied StormDroid’s set of features (59 permissions) [7] as shown in Table 5.2 and

Figure 5.1. We found that the RF classifier produced the highest accuracy of 95.97% versus the

other classifiers. RF also completed in 0.08 seconds.

 MBcand MWcand StormDroid

Classifier Accuracy Time Accuracy Time Accuracy Time

SVM 85.16 0.28 25.06 0.44 80.05 0.36

NN 95.78 1.57 87.27 5.17 95.05 1.92

ID3 94.52 0.06 94.42 0.06 94.52 0.07

KN 95.46 0.06 93.59 0.05 95.54 0.08

Bagging 91.56 0.21 91.09 0.18 91.65 0.26

RF 95.81 0.08 95.99 0.08 95.97 0.08

Table 5.2 Average of the classifiers’ accuracies and time performance for our 100 experiments (without

oversampling).

46

In Table 5.3, we summarized our comparison based on two categories: classifiers’ highest

accuracies and the classifiers’ best time performances. Of all three approaches, RF achieved the

highest accuracy on MWcand with a rate of 95.99% in 0.08 seconds. For the best execution time, we

found that KN was the best on MWcand with 0.05 seconds and an accuracy of 93.59%. In the time

performance, we could see that ID3 using MBcand performed faster, although the classifier had the

exact same accuracy as in the related work [7]. The chart for Table 5.3 is show in Figure 5.2.

 MBcand MWcand StormDroid

Best Accuracy Time Accuracy Time Accuracy Time

Accuracy 95.81 (RF) 0.08 95.99 (RF) 0.08 95.97 (RF) 0.08

Time 94.52 (ID3) 0.06 93.59 (KN) 0.05 94.52 (ID3) 0.07

Table 5.3 Comparison between classifiers in terms of the best accuracy and best time performance (without

oversampling).

Figure 5.1 Comparison between StormDroid and our approach based on classifiers’ accuracies (without

oversampling).

47

From our previous discussion, we concluded that MWcand achieved 0.02% better accuracy

than StormDroid [7] with exactly equal execution time. The accuracy of RF classifier using all the

three approaches is similar in general. However, minimizing the number of features from 59 to 42

(0.28% of features) means a reduction in the dimensionality.

In conclusion, we improved the accuracy. Moreover, when using MWcand with KN, we

achieved less execution time than the related work [7] with 37.5% improvement as shown in Figure

5.2. A sample of RF’s confusion matrix on one iteration is presented in Figure 5.1.

Figure 5.2 Comparison between StormDroid and our approach based on time performance (without

oversampling).

48

5.2 Experiment 2: Familial Classification with Oversampling

To address the imbalanced data issue, we have deployed random sampling on the training

set. Random sampling works as follows: it duplicates the data samples in the minority classes such

as GingerMaster family (with 4 samples) to be equal in size to the majority class such as

DroidKungFu3 family (with 309 samples); Thus, random sampling algorithm will oversample

GingerMaster class from 4 to 309 samples. We recomputed the accuracy and time reported in

Section 5.1 as in Table 5.4 and Figure 5.3. The comparison is shown in Table 5.5 and Figure 5.4.

 MBcand MWcand StormDroid

Classifier Accuracy Time Accuracy Time Accuracy Time

SVM 96.68 0.76 86.54 0.78 96.36 0.94

NN 96.48 3.89 88.95 12.95 96.35 4.59

ID3 95.88 0.1 95.84 0.12 95.85 0.12

KN 96.03 0.24 94.28 0.24 95.97 0.29

Bagging 93.25 0.72 92.89 0.66 93.22 0.88

RF 97.35 2.24 97.39 2.26 97.26 2.29

 MBcand MWcand StormDroid

Best Accuracy Time Accuracy Time Accuracy Time

Accuracy 97.35 (RF) 2.24 97.39 (RF) 2.26 97.26 (RF) 2.29

Time 95.88 (ID3) 0.1 95.84 (ID3) 0.12 95.85 (ID3) 0.12

Table 5.4 Average of the classifiers’ accuracies and time performance for our 100 experiments (with

oversampling).

Table 5.5 Comparison between classifiers in terms of the best accuracy and best time performance (with

oversampling).

49

Figure 5.3 Comparison between StormDroid and our approach based on classifiers’ accuracies (with

oversampling).

Figure 5.4 Comparison between StormDroid and our approach based on time performance (with oversampling).

50

In conclusion, by oversampling the data, we gain an increase of 2% in the accuracy than

before. However, we can see that the average execution time has increased 30 times than the

previous results. The longer execution time was due to the significant increase of the size of the

training set because of the oversampling.

By comparing our result with the related work [7], we achieved the same trend as the first

experiment. Moreover, MWcand achieved 0.13% better accuracy and around 5 sec faster.

Table 5.6 List of SFCand with their importance (ω >0).

 51

Figure 5.5 Confusion matrix of one RF execution.

CHAPTER 6: CONCLUSIONS

Though out the research, we investigate a total of forty research papers on Android

malware familial detection, classification, and categorization from various scientific databases.

We classified the literature according to their type of analysis, type of features, and the techniques

applied. We further report the datasets that have been used and include details about each of them.

Moreover, we discussed the limitations of the literature approaches, challenges faced by the

researchers, and future trends for the research community. Our findings show that most of the

limitations circulate around the availability and the size of benchmarked datasets. In addition, some

common challenges are the lack of samples and standardization of family naming.

Finally, we adopted machine learning to analyze and identify malware features such as the

permissions requested by malware. Our focus in this research was to find a small subset of

permissions that classified sets of applications into their proper malware families. We utilized

Extremely Randomized Trees to further reduce the number of features from 59 to 42 (by 0.28%).

In our two approaches, we represented the selected features as binary value, MBcand, and as

weighted value, MWcand. We evaluated our approaches based on the accuracy and time performance

of six classifiers, and we achieved both a higher accuracy by 0.02% (RF, 95.99%) and shorter time

performance by 37.5% with KN than StormDroid [7]. As for the future work, investment in

advanced artificial intelligence techniques such as reinforcement learning and big data

technologies should be considered.

 53

REFERENCES

[1] T. McCall and R. van der Meulen, “Gartner Says Worldwide Sales of Smartphones Recorded

First Ever Decline During the Fourth Quarter of 2017,” Egham, UK, Feb. 22, 2018.

[2] S. Proske, “Another Reason 99% of Mobile Malware Targets Androids - F-Secure Blog.”

https://blog.f-secure.com/another-reason-99-percent-of-mobile-malware-targets-androids/

(accessed Jul. 16, 2020).

[3] “NCP - Checklist McAfee Antivirus 8.8 STIG.” https://nvd.nist.gov/ncp/checklist/479

(accessed May 16, 2020).

[4] D. Moon, H. Im, J. Lee, and J. Park, “MLDS: Multi-Layer Defense System for Preventing

Advanced Persistent Threats,” Symmetry, vol. 6, no. 4, pp. 997–1010, Dec. 2014, doi:

10.3390/sym6040997.

[5] G. Brij, A. P Dharma, and Y. Shingo, Handbook of Research on Modern Cryptographic

Solutions for Computer and Cyber Security. IGI Global, 2016.

[6] “Android Security 2017 Year in Review,” Google Online Security Blog.

https://security.googleblog.com/2018/03/android-security-2017-year-in-review.html

(accessed Jul. 16, 2018).

 54

[7] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “StormDroid: A Streaminglized Machine

Learning-Based System for Detecting Android Malware,” in Proceedings of the 11th ACM

on Asia Conference on Computer and Communications Security - ASIA CCS ’16, Xi’an,

China, 2016, pp. 377–388, doi: 10.1145/2897845.2897860.

[8] F. Alswaina and K. Elleithy, “Android Malware Family Classification and Analysis: Current

Status and Future Directions,” Electronics, vol. 9, no. 6, p. 942, Jun. 2020, doi:

10.3390/electronics9060942.

[9] “Platform Architecture,” Android Developers. https://developer.android.com/guide/platform

(accessed May 16, 2020).

[10] S. Shiraishi, “SDK-Based Quality Assurance Framework for Third Party Apps of IVI

Systems,” in Proceedings of the First International Workshop on Software Development

Lifecycle for Mobile (DeMobile13), Saint Petersburg, Russia, 2013, vol. 19.

[11] “Application Fundamentals,” Android Developers.

https://developer.android.com/guide/components/fundamentals (accessed May 14, 2020).

[12] A. Dangizyan, “[AAR to DEX] Loading and Running Code at Runtime in Android

Application,” Medium, Jun. 27, 2019. https://medium.com/@artyomdangizyan/aar-to-dex-

loading-and-running-code-at-runtime-in-android-application-69089a30c715 (accessed May

14, 2020).

[13] Y. Peng, M. Zhang, J. Zheng, and Z. Qian, “Research on Android Access Control Based on

Isolation Mechanism,” in 2016 13th Web Information Systems and Applications Conference

(WISA), Wuhan, China, Sep. 2016, pp. 231–235, doi: 10.1109/WISA.2016.53.

 55

[14] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Automatically securing permission-

based software by reducing the attack surface: an application to Android,” in Proceedings of

the 27th IEEE/ACM International Conference on Automated Software Engineering - ASE

2012, Essen, Germany, 2012, p. 274, doi: 10.1145/2351676.2351722.

[15] S. Rastogi, K. Bhushan, and B. B. Gupta, “Measuring Android App Repackaging Prevalence

based on the Permissions of App,” Procedia Technology, vol. 24, pp. 1436–1444, 2016, doi:

10.1016/j.protcy.2016.05.172.

[16] S. Rastogi, K. Bhushan, and B. B. Gupta, “Android applications repackaging detection

techniques for smartphone devices,” Procedia Computer Science, vol. 78, no. C, pp. 26–32,

2016.

[17] “Permissions overview,” Android Developers.

https://developer.android.com/guide/topics/permissions/overview (accessed Oct. 30, 2018).

[18] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and Evolution,” in

2012 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, May 2012, pp.

95–109, doi: 10.1109/SP.2012.16.

[19] K. Griffin, S. Schneider, X. Hu, and T. Chiueh, “Automatic Generation of String Signatures

for Malware Detection,” in Recent Advances in Intrusion Detection, vol. 5758, E. Kirda, S.

Jha, and D. Balzarotti, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 101–

120.

[20] C. Nachenberg, “A window into mobile device security–Examining the security approaches

employed in Apple’s iOS and Google’s Android,” Symantec Security Response, 2011.

 56

[21] K. Dunham, S. Hartman, M. Quintans, J. A. Morales, and T. Strazzere, Android Malware and

Analysis. Auerbach Publications, 2014.

[22] H. Pieterse and M. S. Olivier, “Android botnets on the rise: Trends and characteristics,” in

2012 Information Security for South Africa, Johannesburg, Gauteng, South Africa, Aug.

2012, pp. 1–5, doi: 10.1109/ISSA.2012.6320432.

[23] “Current Android Malware,” forensic blog, Oct. 02, 2016.

https://forensics.spreitzenbarth.de/android-malware/ (accessed Jul. 14, 2020).

[24] “ProGuard,” Guardsquare, Feb. 02, 2015.

https://www.guardsquare.com/en/products/proguard (accessed Jul. 14, 2020).

[25] “DexGuard,” Guardsquare, Jun. 30, 2015.

https://www.guardsquare.com/en/products/dexguard (accessed Jul. 14, 2020).

[26] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone applications in

third-party android marketplaces,” in Proceedings of the second ACM conference on Data

and Application Security and Privacy - CODASKY ’12, San Antonio, Texas, USA, 2012, p.

317, doi: 10.1145/2133601.2133640.

[27] W. Hu, J. Tao, X. Ma, W. Zhou, S. Zhao, and T. Han, “MIGDroid: Detecting APP-

Repackaging Android malware via method invocation graph,” in 2014 23rd International

Conference on Computer Communication and Networks (ICCCN), China, Aug. 2014, pp. 1–

7, doi: 10.1109/ICCCN.2014.6911805.

 57

[28] Y.-D. Lin, Y.-C. Lai, C.-H. Chen, and H.-C. Tsai, “Identifying android malicious repackaged

applications by thread-grained system call sequences,” Computers & Security, vol. 39, pp.

340–350, Nov. 2013, doi: 10.1016/j.cose.2013.08.010.

[29] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards a scalable resource-driven

approach for detecting repackaged Android applications,” in Proceedings of the 30th Annual

Computer Security Applications Conference on - ACSAC ’14, New Orleans, Louisiana, 2014,

pp. 56–65, doi: 10.1145/2664243.2664275.

[30] K. Tian, D. Yao, B. G. Ryder, G. Tan, and G. Peng, “Detection of Repackaged Android

Malware with Code-Heterogeneity Features,” IEEE Trans. Dependable and Secure Comput.,

vol. 17, no. 1, pp. 64–77, Jan. 2020, doi: 10.1109/TDSC.2017.2745575.

[31] S. Arshad, M. Ali, A. Khan, and M. Ahmed, “Android Malware Detection & Protection: A

Survey,” ijacsa, vol. 7, no. 2, 2016, doi: 10.14569/IJACSA.2016.070262.

[32] O. Aslan and R. Samet, “A Comprehensive Review on Malware Detection Approaches,”

IEEE Access, vol. 8, pp. 6249–6271, 2020, doi: 10.1109/ACCESS.2019.2963724.

[33] E. Gandotra, D. Bansal, and S. Sofat, “Malware Analysis and Classification: A Survey,” JIS,

vol. 05, no. 02, pp. 56–64, 2014, doi: 10.4236/jis.2014.52006.

[34] T. Wu, X. Deng, J. Yan, and J. Zhang, “Analyses for specific defects in android applications:

a survey,” Front. Comput. Sci., vol. 13, no. 6, pp. 1210–1227, Dec. 2019, doi:

10.1007/s11704-018-7008-1.

 58

[35] W. Wang et al., “Constructing Features for Detecting Android Malicious Applications:

Issues, Taxonomy and Directions,” IEEE Access, vol. 7, pp. 67602–67631, 2019, doi:

10.1109/ACCESS.2019.2918139.

[36] P. Yan and Z. Yan, “A survey on dynamic mobile malware detection,” Software Qual J, vol.

26, no. 3, pp. 891–919, Sep. 2018, doi: 10.1007/s11219-017-9368-4.

[37] A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection approaches using

data mining techniques,” Hum. Cent. Comput. Inf. Sci., vol. 8, no. 1, p. 3, Dec. 2018, doi:

10.1186/s13673-018-0125-x.

[38] K. Shaerpour, A. Dehghantanha, and R. Mahmod, “Trends in Android Malware Detection,”

JDFSL, 2013, doi: 10.15394/jdfsl.2013.1149.

[39] R. Riasat, M. Sakeena, C. Wang, A. H. Sadiq, and Y. Wang, “A Survey on Android Malware

Detection Techniques,” dtcse, no. wcne, Jan. 2017, doi: 10.12783/dtcse/wcne2016/5088.

[40] “IEEE Xplore.” https://ieeexplore.ieee.org/Xplore/home.jsp (accessed Jul. 14, 2020).

[41] “ACM Digital Library.” https://dl.acm.org/ (accessed May 14, 2020).

[42] “MDPI.” https://www.mdpi.com/ (accessed Jul. 14, 2020).

[43] “ScienceDirect.” https://www.sciencedirect.com/ (accessed Jul. 14, 2020).

[44] “Hindawi,” Hindawi. https://www.hindawi.com/ (accessed Jul. 14, 2020).

[45] “Springer,” www.springer.com. https://www.springer.com/gp (accessed Jul. 14, 2020).

[46] “ArXiv.” https://arxiv.org/ (accessed Jul. 14, 2020).

 59

[47] “Microsoft Academic.” https://academic.microsoft.com/home (accessed Jul. 14, 2020).

[48] “Semantic Scholar | AI-Powered Research Tool.” https://www.semanticscholar.org/

(accessed Jul. 14, 2020).

[49] “Google Scholar.” https://scholar.google.com/ (accessed Jul. 14, 2020).

[50] Y. Fang, Y. Gao, F. Jing, and L. Zhang, “Android Malware Familial Classification Based on

DEX File Section Features,” IEEE Access, vol. 8, pp. 10614–10627, 2020.

[51] J. Qiu et al., “A3CM: automatic capability annotation for android malware,” IEEE Access,

vol. 7, pp. 147156–147168, 2019, doi: 10.1109/ACCESS.2019.2946392.

[52] L. Zhang, V. L. L. Thing, and Y. Cheng, “A scalable and extensible framework for android

malware detection and family attribution,” Computers & Security, vol. 80, pp. 120–133, Jan.

2019, doi: 10.1016/j.cose.2018.10.001.

[53] Z. Xu, K. Ren, and F. Song, “Android Malware Family Classification and Characterization

Using CFG and DFG,” in 2019 International Symposium on Theoretical Aspects of Software

Engineering (TASE), Guilin, China, Jul. 2019, pp. 49–56, doi: 10.1109/TASE.2019.00-20.

[54] O. Mirzaei, G. Suarez-Tangil, J. M. de Fuentes, J. Tapiador, and G. Stringhini,

“AndrEnsemble: Leveraging API Ensembles to Characterize Android Malware Families,” in

Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security,

Auckland New Zealand, Jul. 2019, pp. 307–314, doi: 10.1145/3321705.3329854.

[55] R. Vega Vega, H. Quintián, J. L. Calvo-Rolle, Á. Herrero, and E. Corchado, “Gaining deep

knowledge of Android malware families through dimensionality reduction techniques,”

 60

Logic Journal of the IGPL, vol. 27, no. 2, pp. 160–176, Mar. 2019, doi:

10.1093/jigpal/jzy030.

[56] R. Vega Vega, H. Quintián, C. Cambra, N. Basurto, Á. Herrero, and J. L. Calvo-Rolle,

“Delving into Android Malware Families with a Novel Neural Projection Method,”

Complexity, vol. 2019, pp. 1–10, Jun. 2019, doi: 10.1155/2019/6101697.

[57] J. Jiang et al., “Android Malware Family Classification Based on Sensitive Opcode

Sequence,” in 2019 IEEE Symposium on Computers and Communications (ISCC),

Barcelona, Spain, Jun. 2019, pp. 1–7, doi: 10.1109/ISCC47284.2019.8969656.

[58] F. Fasano, F. Martinelli, F. Mercaldo, and A. Santone, “Cascade Learning for Mobile

Malware Families Detection through Quality and Android Metrics,” in 2019 International

Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, Jul. 2019, pp. 1–10, doi:

10.1109/IJCNN.2019.8852268.

[59] W. Blanc, L. G. Hashem, K. O. Elish, and M. J. Hussain Almohri, “Identifying Android

Malware Families Using Android-Oriented Metrics,” in 2019 IEEE International Conference

on Big Data (Big Data), Los Angeles, CA, USA, Dec. 2019, pp. 4708–4713, doi:

10.1109/BigData47090.2019.9005669.

[60] N. Xie, X. Wang, W. Wang, and J. Liu, “Fingerprinting Android malware families,” Front.

Comput. Sci., vol. 13, no. 3, pp. 637–646, Jun. 2019, doi: 10.1007/s11704-017-6493-y.

[61] S. Turker and A. B. Can, “AndMFC: Android Malware Family Classification Framework,”

in 2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio

 61

Communications (PIMRC Workshops), Istanbul, Turkey, Sep. 2019, pp. 1–6, doi:

10.1109/PIMRCW.2019.8880840.

[62] M. Fan et al., “Android Malware Familial Classification and Representative Sample

Selection via Frequent Subgraph Analysis,” IEEE Trans.Inform.Forensic Secur., vol. 13, no.

8, pp. 1890–1905, Aug. 2018, doi: 10.1109/TIFS.2018.2806891.

[63] J. Garcia, M. Hammad, and S. Malek, “Lightweight, Obfuscation-Resilient Detection and

Family Identification of Android Malware,” ACM Trans. Softw. Eng. Methodol., vol. 26, no.

3, pp. 1–29, Jan. 2018, doi: 10.1145/3162625.

[64] A. Calleja, A. Martín, H. D. Menéndez, J. Tapiador, and D. Clark, “Picking on the family:

Disrupting android malware triage by forcing misclassification,” Expert Systems with

Applications, vol. 95, pp. 113–126, Apr. 2018, doi: 10.1016/j.eswa.2017.11.032.

[65] F. Alswaina and K. Elleithy, “Android Malware Permission-Based Multi-Class Classification

Using Extremely Randomized Trees,” IEEE Access, vol. 6, pp. 76217–76227, 2018, doi:

10.1109/ACCESS.2018.2883975.

[66] H. Zhou, W. Zhang, F. Wei, and Y. Chen, “Analysis of Android Malware Family

Characteristic Based on Isomorphism of Sensitive API Call Graph,” in 2017 IEEE Second

International Conference on Data Science in Cyberspace (DSC), Shenzhen, China, Jun.

2017, pp. 319–327, doi: 10.1109/DSC.2017.77.

[67] J. Sedano, S. González, C. Chira, Á. Herrero, E. Corchado, and J. R. Villar, “Key features for

the characterization of Android malware families,” Logic Jnl IGPL, vol. 25, no. 1, pp. 54–

66, Feb. 2017, doi: 10.1093/jigpal/jzw046.

 62

[68] A. González, Á. Herrero, and E. Corchado, “Neural Visualization of Android Malware

Families,” in International Joint Conference SOCO’16-CISIS’16-ICEUTE’16, vol. 527, M.

Graña, J. M. López-Guede, O. Etxaniz, Á. Herrero, H. Quintián, and E. Corchado, Eds.

Cham: Springer International Publishing, 2017, pp. 574–583.

[69] M. Fan et al., “Frequent Subgraph Based Familial Classification of Android Malware,” in

2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE),

Ottawa, ON, Canada, Oct. 2016, pp. 24–35, doi: 10.1109/ISSRE.2016.14.

[70] B. Kang, S. Y. Yerima, K. Mclaughlin, and S. Sezer, “N-opcode analysis for android malware

classification and categorization,” in 2016 International Conference On Cyber Security And

Protection Of Digital Services (Cyber Security), London, United Kingdom, Jun. 2016, pp. 1–

7, doi: 10.1109/CyberSecPODS.2016.7502343.

[71] P. Battista, F. Mercaldo, V. Nardone, A. Santone, and C. A. Visaggio, “Identification of

Android Malware Families with Model Checking.,” in ICISSP, 2016, pp. 542–547.

[72] J. Sedano, C. Chira, S. González, Á. Herrero, E. Corchado, and J. R. Villar, “Characterization

of Android Malware Families by a Reduced Set of Static Features,” in International Joint

Conference SOCO’16-CISIS’16-ICEUTE’16, vol. 527, M. Graña, J. M. López-Guede, O.

Etxaniz, Á. Herrero, H. Quintián, and E. Corchado, Eds. Cham: Springer International

Publishing, 2017, pp. 607–617.

[73] J. Lee, S. Lee, and H. Lee, “Screening smartphone applications using malware family

signatures,” Computers & Security, vol. 52, pp. 234–249, Jul. 2015, doi:

10.1016/j.cose.2015.02.003.

 63

[74] Y. Li, T. Shen, X. Sun, X. Pan, and B. Mao, “Detection, Classification and Characterization

of Android Malware Using API Data Dependency,” in Security and Privacy in

Communication Networks, vol. 164, B. Thuraisingham, X. Wang, and V. Yegneswaran, Eds.

Cham: Springer International Publishing, 2015, pp. 23–40.

[75] L. Deshotels, V. Notani, and A. Lakhotia, “DroidLegacy: Automated Familial Classification

of Android Malware,” in Proceedings of ACM SIGPLAN on Program Protection and Reverse

Engineering Workshop 2014 - PPREW’14, San Diego, CA, USA, 2014, pp. 1–12, doi:

10.1145/2556464.2556467.

[76] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco, “Dendroid: A text mining

approach to analyzing and classifying code structures in Android malware families,” Expert

Systems with Applications, vol. 41, no. 4, pp. 1104–1117, Mar. 2014, doi:

10.1016/j.eswa.2013.07.106.

[77] B. Kang, B. Kang, J. Kim, and E. G. Im, “Android malware classification method: Dalvik

bytecode frequency analysis,” in Proceedings of the 2013 Research in Adaptive and

Convergent Systems on - RACS ’13, Montreal, Quebec, Canada, 2013, pp. 349–350, doi:

10.1145/2513228.2513295.

[78] Y. S. Sun, C.-C. Chen, S.-W. Hsiao, and M. C. Chen, “ANTSdroid: Automatic Malware

Family Behaviour Generation and Analysis for Android Apps,” in Information Security and

Privacy, vol. 10946, W. Susilo and G. Yang, Eds. Cham: Springer International Publishing,

2018, pp. 796–804.

 64

[79] A. Martín, V. Rodríguez-Fernández, and D. Camacho, “CANDYMAN: Classifying Android

malware families by modelling dynamic traces with Markov chains,” Engineering

Applications of Artificial Intelligence, vol. 74, pp. 121–133, Sep. 2018, doi:

10.1016/j.engappai.2018.06.006.

[80] L. Massarelli, L. Aniello, C. Ciccotelli, L. Querzoni, D. Ucci, and R. Baldoni, “Android

malware family classification based on resource consumption over time,” in 2017 12th

International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, Oct.

2017, pp. 31–38, doi: 10.1109/MALWARE.2017.8323954.

[81] S.-W. Hsiao, Y. S. Sun, and M. C. Chen, “Behavior grouping of Android malware family,”

in 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia,

May 2016, pp. 1–6, doi: 10.1109/ICC.2016.7511424.

[82] S. Malik and K. Khatter, “System Call Analysis of Android Malware Families,” Indian

Journal of Science and Technology, vol. 9, no. 21, Jun. 2016, doi:

10.17485/ijst/2016/v9i21/90273.

[83] M. Aresu, D. Ariu, M. Ahmadi, D. Maiorca, and G. Giacinto, “Clustering android malware

families by http traffic,” in 2015 10th International Conference on Malicious and Unwanted

Software (MALWARE), Fajardo, Oct. 2015, pp. 128–135, doi:

10.1109/MALWARE.2015.7413693.

[84] A. Atzeni, F. Diaz, A. Marcelli, A. Sanchez, G. Squillero, and A. Tonda, “Countering

Android Malware: A Scalable Semi-Supervised Approach for Family-Signature Generation,”

IEEE Access, vol. 6, pp. 59540–59556, 2018, doi: 10.1109/ACCESS.2018.2874502.

 65

[85] H. M. Kim, H. M. Song, J. W. Seo, and H. K. Kim, “Andro-Simnet: Android Malware Family

Classification using Social Network Analysis,” in 2018 16th Annual Conference on Privacy,

Security and Trust (PST), Belfast, Aug. 2018, pp. 1–8, doi: 10.1109/PST.2018.8514216.

[86] K. Aktas and S. Sen, “UpDroid: Updated Android Malware and Its Familial Classification,”

in Secure IT Systems, vol. 11252, N. Gruschka, Ed. Cham: Springer International Publishing,

2018, pp. 352–368.

[87] T. Chakraborty, F. Pierazzi, and V. S. Subrahmanian, “EC2: Ensemble Clustering and

Classification for Predicting Android Malware Families,” IEEE Trans. Dependable and

Secure Comput., vol. 17, no. 2, pp. 262–277, Mar. 2020, doi: 10.1109/TDSC.2017.2739145.

[88] Y. Feng, O. Bastani, R. Martins, I. Dillig, and S. Anand, “Automated Synthesis of Semantic

Malware Signatures using Maximum Satisfiability,” arXiv:1608.06254 [cs], Jun. 2017,

Accessed: Jul. 14, 2020. [Online]. Available: http://arxiv.org/abs/1608.06254.

[89] J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-Khaligh, and S. Malek, “Obfuscation-

Resilient, Efficient, and Accurate Detection and Family Identification of Android Malware,”

p. 15.

[90] J. H. Lau and T. Baldwin, “An Empirical Evaluation of doc2vec with Practical Insights into

Document Embedding Generation,” arXiv:1607.05368 [cs], Jul. 2016, Accessed: Jul. 14,

2020. [Online]. Available: http://arxiv.org/abs/1607.05368.

[91] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, “Online Passive-

Aggressive Algorithms,” Journal of Machine Learning Research, vol. 7, no. Mar, pp. 551–

 66

585, 2006, Accessed: Jul. 14, 2020. [Online]. Available:

http://www.jmlr.org/papers/v7/crammer06a.

[92] A. Desnos, “Androguard-reverse engineering, malware and goodware analysis of android

applications,” URL code. google. com/p/androguard, vol. 153, 2013.

[93] “Droidbox: An android application sandbox for dynamic analysis.”

https://code.google.com/archive/p/droidbox/ (accessed Jul. 14, 2020).

[94] “Cuckoo Sandbox Book — Cuckoo Sandbox v2.0.5 Book.” https://cuckoo.sh/docs/ (accessed

Apr. 14, 2018).

[95] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin: Effective and

Explainable Detection of Android Malware in Your Pocket,” 2014, doi:

10.14722/ndss.2014.23247.

[96] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep Ground Truth Analysis of Current Android

Malware,” in Detection of Intrusions and Malware, and Vulnerability Assessment, vol.

10327, M. Polychronakis and M. Meier, Eds. Cham: Springer International Publishing, 2017,

pp. 252–276.

[97] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, “AndroZoo: Collecting Millions of

Android Apps for the Research Community,” in 2016 IEEE/ACM 13th Working Conference

on Mining Software Repositories (MSR), May 2016, pp. 468–471.

[98] “VirusTotal.” https://www.virustotal.com/gui/home/upload (accessed Jul. 14, 2020).

[99] “VirusShare.com.” https://virusshare.com/ (accessed Jul. 14, 2020).

 67

[100] “ContagioDump Blog.” https://contagiodump.blogspot.com/ (accessed Jul. 14, 2020).

[101] M. Hurier et al., “Euphony: Harmonious Unification of Cacophonous Anti-Virus Vendor

Labels for Android Malware,” in 2017 IEEE/ACM 14th International Conference on Mining

Software Repositories (MSR), Buenos Aires, Argentina, May 2017, pp. 425–435, doi:

10.1109/MSR.2017.57.

[102] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “MARVIN: Efficient and

Comprehensive Mobile App Classification through Static and Dynamic Analysis,” in 2015

IEEE 39th Annual Computer Software and Applications Conference, Taichung, Taiwan, Jul.

2015, pp. 422–433, doi: 10.1109/COMPSAC.2015.103.

[103] “AndroMalShare - SandDroid.” http://202.117.54.231:8080/ (accessed Jul. 18, 2020).

[104] levinec, “Malware names - Windows security.” https://docs.microsoft.com/en-

us/windows/security/threat-protection/intelligence/malware-naming (accessed Jul. 14,

2020).

[105] H. L. Thanh, “Analysis of Malware Families on Android Mobiles: Detection

Characteristics Recognizable by Ordinary Phone Users and How to Fix It,” JIS, vol. 04, no.

04, pp. 213–224, 2013, doi: 10.4236/jis.2013.44024.

[106] “A New Virus Naming Convention (1991) - CARO - Computer Antivirus Research

Organization.” http://www.caro.org/articles/naming.html (accessed May 14, 2020).

 68

[107] “Virus Bulletin :: The Common Malware Enumeration Initiative.”

https://www.virusbulletin.com/conference/vb2006/abstracts/common-malware-

enumeration-initiative/ (accessed Jul. 14, 2020).

[108] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “AVclass: A Tool for Massive

Malware Labeling,” in Research in Attacks, Intrusions, and Defenses, vol. 9854, F. Monrose,

M. Dacier, G. Blanc, and J. Garcia-Alfaro, Eds. Cham: Springer International Publishing,

2016, pp. 230–253.

[109] “G DATA Software AG. News.” https://www.gdatasoftware.com/news/2017/02/threat-

situation-for-mobile-devices-worsens (accessed Nov. 13, 2018).

[110] C. Lam, Hadoop in action. Greenwich, Conn: Manning Publications, 2011.

[111] M. Armbrust et al., “Spark SQL: Relational Data Processing in Spark,” in Proceedings of

the 2015 ACM SIGMOD International Conference on Management of Data - SIGMOD ’15,

Melbourne, Victoria, Australia, 2015, pp. 1383–1394, doi: 10.1145/2723372.2742797.

[112] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto, “Novel Feature

Extraction, Selection and Fusion for Effective Malware Family Classification,” in

Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy,

New York, NY, USA, 2016, pp. 183–194, doi: 10.1145/2857705.2857713.

[113] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of machine

learning research, vol. 12, no. Oct, pp. 2825–2830, 2011.

 69

[114] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach Learn, vol. 63,

no. 1, pp. 3–42, Apr. 2006, doi: 10.1007/s10994-006-6226-1.

[115] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[116] “3.2.4.3.3. sklearn.ensemble.ExtraTreesClassifier — scikit-learn 0.23.1 documentation.”

https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html (accessed

Jul. 14, 2020).

 70

APPENDIX A

Abbreviations

AV Anti-Virus

ML/MLA Machine Learning

API Application Programming Interface FreGraph

SF Selected Features

SFCand Selected Features Candidate ⊂ SF

MBcand Binary Matrix of SFCand

MWcand Weighted Matrix of SFCand

AAPT Android Asset Packaging Tool

SDK Software Development Kit

𝜌 Permission

𝜔 Feature’s Weight

ExF Extracted Features Values (0’s and 1’s for binary)

SVM Support Vector Machine

ID3 Decision Tree Algorithm – ID3 (classifier)

RF Random Forest Algorithm (classifier)

NN Neural Network Algorithm (classifier)

KN K-nearest Neighbors Algorithm (classifier)

ET Extremely Randomized Tree Algorithm (classifier)

DL Deep Learning

CNN, RNN Convolutional, Recurrent Neural Networks NN

DFG Data-Flow Graph

CFG Control-Flow Graph

CDG Class Dependency Graph

APK Android Application Package

DEX Dalvik Executable

PA Passive-Aggressive Algorithm

UI User Interface UID, GID

Table A.1 List of abbreviation used in the dissertation.

