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PROPOSED FRAMEWORK FOR IMPROVING PERFORMANCE OF 

FAMILIAL CLASSIFICATION IN ANDROID MALWARE 

ABSTRACT 

Because of the recent developments in hardware and software technologies for mobile 

phones, people depend on their smartphones more than ever before. Today, people conduct a 

variety of business, health, and financial transactions on their mobile devices. This trend has 

caused an influx of mobile applications that require users' sensitive information. As these 

applications increase so too have the number of malicious applications increased, which may 

compromise users' sensitive information. Between all smartphone, Android receives major 

attention from security practitioners and researchers due to the large number of malicious 

applications. For the past twelve years, Android malicious applications have been clustered into 

groups for better identification. Characterizing the malware families can improve the detection 

process and understand the malware patterns. However, in the research community, detecting new 

malware families is a challenge. In this research, a framework is proposed to improve the 

performance of familial classification in Android malware. The framework is named a Reverse 

Engineering Framework (RevEng). Within RevEng, applications' permissions were selected and 

then fed into machine learning algorithms. Through our research, we created a reduced set of 

permissions using Extremely Randomized Trees algorithm that achieved high accuracy and a 
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shorter execution time. Furthermore, we conducted two approaches based on the extracted 

information. The first approach used a binary value representation of the permissions. The second 

approach used the features' importance. We represented each selected permission in latter approach 

by its weight value instead of its binary value in the former approach. We conducted a comparison 

between the results of our two approaches and other relevant works. Our approaches achieved 

better results in both accuracy and time performance with a reduced number of permissions. 
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CHAPTER 1: INTRODUCTION 

Due to the recent developments in hardware and software technologies for mobile phones, 

people depend on their smartphones more than ever before. As of 2017, more than 407 million 

mobile devices were sold as reported by Gartner; devices that operate on Android recorded 86% 

of the total market [1]. Although this popularity is beneficial to Google’s operating system, 

Android, this popularity has propelled malicious developers to target Android users. F-Secure, a 

known corporation on cybersecurity, has reported that more than 99% of total malware attacks on 

mobile devices have targeted Android devices [2]. The attacks include software with malicious 

code, called a payload, that performs harmful activities and compromises the confidentiality, 

integrity, or availability of the victims’ data or resources [3]–[5]. 

Google, as well as a large group of researchers in academia and the industry, has devoted 

significant attention to security issues in Android’s software stack’s components, especially at the 

application level, such as in licensing and application verification, security vulnerability, and 

intrusion detection. Nevertheless, with smartphones’ ever-increasing advanced features, such as 

high-resolution cameras and sensors, as well as online services such as banking and GPS, so too 

increase the number of malicious applications (or malware apps); users’ data and resources are 

always at risk. As defined by Google, there are 17 categories of malware like spyware and 

backdoors categorized based on the malware’s behavior [6].   
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1.2 Research Problem and Scope 

Classifying malware families is an important approach for anti-virus companies (AVs). 

AVs, as well as other researchers, try to find new malware that does not correlate to previously 

found malware. Nevertheless, malicious developers try to find ways to bypass the AVs’ detection 

by both closely studying the behavior of AVs and by applying various techniques to get around 

their detection techniques, such as code obfuscation.  

AVs have been using the signature-based technique to detect any malware. Signatures (i.e. 

the hash value of the file) of a malware are a single or a group of blueprint data that is generated 

and associated with the malware. Every company has its own signature for the same malware. 

However, since malicious developers always attempt to bypass the detection and hide their code, 

they change the content and create variants of the malware. Any changes made to the malware will 

have a direct effect on the hash of the file and will impact the other signatures created for the 

malware. 

With today’s continues increasing number of applications, there is a need for a proper 

identification of malware features that would characterize both malware and its variants. Those 

features are used as inputs to machine learning algorithms for classifications. Such algorithms or 

classifiers are trained to create a model that would identify the finger-like of the malware and the 

malware’s variants.  

Although extracting features helps in studying the malware, the size of the features set 

affects the overall complexity of the learning process. In this case, researchers should focus on 

identifying the smallest set of features that give the highest and most accurate classification result. 
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1.3 Motivation behind the Research  

Cybersecurity is an essential defense line to preserve the privacy of users. Users can be 

targeted such as a governmental employee in a military department or a head of a financial 

company. The information leakage has a tremendous impact on their own life or on the place they 

work for. Beside targeted users, an ordinary individual can be randomly hunted and the leakage of 

of data would impact them and their surroundings as well. Malicious developers utilize the 

information for their own evil benefits or can be used by other spying agencies. 

Especially with the applications when the malicious developers get control of a device and 

are granted the trust from the user, they will last for long period and less likely to be removed 

unless their control was detected. By keeping the malware installed, information will be streamed 

without prior knowledge of the user. 

With the advancement in data science and machine learning, classifiers can be trained on 

all sort of malware to come up with models. Models are used afterward for evaluation. When 

models are ready, they are deployed for testing and start classifying the application. The machine 

learning field, nowadays, is supported by many research efforts, academic, and industrial 

organizations for different problem domain: classification or regression problems. 

With this track of research, AVs will be able to match any variant of the malware quickly 

to their families by applying the same detected malware signatures. Thus, AVs can easily adopt 

patches they developed for the previously identified malware. Moreover, this research will support 

malware researchers to complement their efforts to study undiscovered malware families. 
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1.4 Contributions of the Proposed Research  

This research has proposed a novel framework, i.e., RevEng, that classifies 1,233 samples 

of malware. Our framework identifies an optimal set of permissions, a set that gives high accuracy, 

out of all the permissions provided by an Android operating system. We used the feature’s ranking 

algorithm used in Extremely Randomized Trees. The set of permissions is tested on six classifiers 

to assign malware into its family. RevEng also achieves a higher prediction accuracy rate than 

other related work. To evaluate our approach, we list a detailed comparison with StomDroid’s 

framework results [7]. The list of abbreviations used in the dissertation is provided in Table A.1. 

In summary, the proposed contributions in this research are summarized as follows: 

▪ We introduce a novel taxonomy that categorizes all the related work in familial 

classification in terms of the type of analyses, features, and techniques that has been used. 

▪ We design and implement RevEng that reverse-engineers malware datasets based on their 

families and extracts the permissions from apps. 

▪ We are targeting a multi-class classification problem to assign a detected malware sample 

to previously studied and dissected malware families. 

▪ The proposed approach can identify a minimal subset of features with higher accuracy and 

a minimum execution time compared to other related work. 
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CHAPTER 2: LITERATURE REVIEW 

The chapter discusses the Android operating system, application, and Android malware 

with their attack and activation techniques. Also, we discuss in detail the related work in three 

dimensions: type of analysis, techniques used, and features. We identified the datasets are used 

and show the limitation and challenges in the literature. At the end we conclude with the future 

directions of the research. This chapter is published in [8]. 

2.1. Android and Malware 

In this section, we discuss Android operating system and application. We address the main 

components inside them and define some technologies and fundamentals. Then, we discuss 

Android malware and the attacks they use to harm the user. 

2.1.1 Android Operating System 

Android is one of Google products that is designed for smartphones and mostly written in 

Java language. Android uses a Linux kernel to communicate with the hardware. The platform 

architecture [9] consists of: system apps, Java API, C/C++ libraries, HAL, and Linux kernel. The 

updated overall architecture of the Android in [10] is shown in Figure 2.1. 

System Apps. System apps (also called core apps) are applications that come pre-installed 

on the Android system for email communication, SMS messaging, or calling service. Third-party 
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applications are native apps that do not come preinstalled on the system and can be downloaded 

from the Android application store (Google Play) or other unofficial markets. Google Play is a 

place that indexes all Google trusted applications. 

Java API Framework. A set of Application Programming Interface (API) written in Java 

to communicate with system components and services. Applications utilize APIs such as view 

system (i.e. button and text boxes), the resource manager (i.e. graphics and layouts), notification 

manager (i.e. alerts on the status bar), activity manager (i.e. managing back stack for activities), 

and content provider (i.e. share data). 

Native C/C++ Libraries. Many of the kernel core components are built from libraries that 

are written on C and C++ languages. Libraries such as Webkit, Libc, and OpenGL ES are some of 

those libraries. 

Hardware Abstraction Layer (HAL). HAL provides the hardware capabilities to Java 

API Framework.  

Linux Kernel. Linux kernel is modified and updated especially for Android. The kernel 

does not include GNU C compiler, GNU libraries, or X server like in known Linux kernel. Some 

of the included features to this kernel are Low-memory Killer, Wakelocks, Anonymous Shared 

Memory, Paranoid Network, and Binder. 

2.1.2. Android Application 

Android applications are written on Java language and compiled to special bytecode called 

Dalvik bytecode. Dalvik bytecode is interpreted using Dalvik Virtual Machine (DVM). DVM is a 

register-based VM that uses CPU registers to store the data in the instruction. 



 

7 

 

  

In 2017, Google announced Kotlin to be another official Android development language. 

Android contains four main components that form the building blocks of the application [11]: 

Activities, Services, Broadcast receiver, and Content providers. Activity is a Java class (a single 

screen) and entry point that the user interacts with. For example, in a phone app, contacts screen 

is an instance of an activity that shows a list of contacts. Services are background processes that 

process long-running jobs. An example of a service is running some updates for the application. 

Broadcast receiver is a component that responds to system announcements or delivers broadcasts 

to another or within the same app. An example of this component is when the user notified that 

the battery is low. Finally, Content provider manages data stored in a database, i.e., SQLite, or in 

the file system. It allows other apps to query such data if they have the permissions. For instance, 

the content provider responses to the user click on the contacts list and show the list in the phone 

app. Moreover, it is important to mention an important message event called Intent. Intent is a 

message object that is used to perform some operations such as starting an activity or a service or 

delivering a broadcast message to broadcast receivers. The intent object contains a set of 

Figure 2.1 Android platform architecture. 
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information such as component name, action to be performed, data type, category type, extras, and 

flag. 

Android applications, either system or third-party app, communicate with the Android 

platform via defined Application Programming Interfaces (APIs). Android framework provides a 

list of APIs that a developer can call to extend the functionality of the hardware without direct use 

of lower layers of the architecture. Such functionalities are managing user interface (UI) elements, 

accessing shared data storage, and passing messages between application components. As in 

Linux, the Android app is assigned a unique user id (UID) and group id (GID). Each app runs in a 

separate process to identify and isolate each app’s resources from each other. Using UID, Android 

creates kernel-level application sandbox to enforce kernel security. 

Android application is compressed in an archive format file, like any other known formats 

such as ZIP and JAR, called Android Application Package (APK). APK contains seven files: asset, 

lib, meta-info, res, androidmanifest.xml, classes.dex, and resources.arsc. In this section, we limit 

our discussion on two main files: the manifest file (Androidmanifest.xml) and the code file 

(classes.dex). 

Android manifest. The manifest file is an XML format file that provides beforehand a set 

of information about the app and declaration of the app components. Information such as the app’s 

package name and version number, permissions required by the application, app entry points, and 

registered intents. 

Dalvik executable (DEx). The file classes.dex contains a set of files (bytecodes). Those 

files are a special type of bytecode called Dalvik Bytecode that are compiled from normal Java 
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classes. In Figure 2.2, we show the steps of converting Java classes and the generation of a DEx 

file [12]. 

 

 

Android Access Control 

To protect the system’s resources, Android, like in Linux, uses an forced access control 

mechanism to remove the malware and render it harmless. Android requires application to request 

permissions prior to utilizing the resource [13]. In the application level, permissions must be 

declared inside the AndroidManifest where essential information on the app and its components 

are located. Prior to Android version 6, the user was required to grant access to all what app 

requests at the time of the installation. The risk of this, besides the user’s weak knowledge of the 

requested permissions and what they mean, is that an app can deceive the user by requesting 

permissions unrelated to the app’s main functionality. Malware app can leverage some permissions 

to gain access to the resources and perform its malicious acts [14]–[16]. In Android, there are more 

than 300 permissions, each of which has a level of protection considered either normal or 

dangerous [17]. A designation of normal implies low risk to the isolated resources. All permissions 

with normal level are automatically granted to the app by the system without the user’s consent 

(i.e., SET_WALLPAPER). Permissions categorized as dangerous, however, have a higher risk on 

the user’s data and the device (i.e., ANSWER_PHONE_CALLS). For this reason, dangerous 

Figure 2.2  Dexing Java classes into classes.dex. 
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permissions require the user’s consent prior to the installation in order for access to be granted 

application [17]. This research examines the permissions that malware families request as features 

for our static analysis. 

2.1.3. Android Malware 

In this section, we discuss the most recognized type of malware attacks in the literature 

such as: repackaged, update attack, and drive-by download as listed in [18]. Furthermore, we 

discuss the way that malicious payload is executed. Finally, we conclude the section by discussing 

malware families and characteristics. 

A malware could secretly be embedded in a set of deceptive applications and can be 

identified by detecting the malware’s files or similar malware characteristics (i.e. signature or 

requested permissions), on the set. This set containing the malware’s files is identified as a family 

of the malware [19].  

Malware families. A family of malware is a group of malware that shares common 

characteristics and behavior. Adopting an attack or malicious behavior by inserting a payload (or 

more than one payload) requires using the same package names used for the attack. By frequent 

use of package names (or other common characteristics), this becomes one identity (signature) of 

a group of malware (family). For example, AnserverBot family, a popular malware family, uses 

com.sec.android.provider.drm the package name in the code. Another example is that malware in 

DroidKungFu family contain a package named com.google.ssearch [18]. The family is identified 

by a unique name. Some of malware families are show in Table 4.1. Another family is 

DroidDream, also known as RootCager, was discovered in 2011 in the official Android market, 
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Google-Play. DroidDream family is a Trojan that collects the mobile device’s I.D. or serial number 

and other related information by requesting administrator access control on the device. This Trojan 

can be detected by locating the two code files rageagainstthecage and exploid in the family 

members [18], [20]–[22]. DroidDream is one of the advanced and sophisticated types of malware. 

Other common malware families are listed in [23]. 

Attack techniques. One of the most common techniques is to piggyback a known app with 

a malicious payload. This technique is known as repackaging as the malicious disassemble an app, 

insert the malicious code (payload), and repack the app. Examples of such malware families are 

ADRD, AnserverBot, and BgServ [18]. An alternative way of the same technique is update attack. 

This is in order to repackage the application when performing updates. A victim installs the 

modified app, without the payload, to avoid detection. When it is time for the update, a payload 

will be installed with the new version. Families such as BaseBridge, DroidKungFuUpdate, and 

Plankton are some examples of families adopting this technique. 

Another technique is called drive-by download. In this technique, the victim installs an app 

that advertises another app that is either standalone or repackaged malware. In addition, instead of 

advertising, the download request can happen without user notification. This could happen when 

the user grants certain permissions to the app to download when the user first installs the main 

application. GGTracker, Jifake, Spitmo, and ZitMo are some of the families using this type of 

attack. 

Obfuscation techniques. Obfuscation is a way to make code unclear. Malware (or 

commercial apps) use this technique to hide their actual code. Some of the obfuscation techniques 

are: Renaming method and variable. When it comes to naming a method and variable, the name 
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should reflect the behavior of the method or variable. In the case of malware and when malware is 

identified by some methods or variables names as signatures, changing the names helps the 

malicious developer to bypass the AV.  

▪ String Encryption. One technique that AV uses to quickly scan an application is to look for 

a link, a form of URL or IP address, to a remote server. The server is also called command 

and control (C&C) from which the application receives commands and run them on the 

victim’s device. For the malware to hide this link, it needs to be encrypted. The encrypted 

link will be decrypted at the usage moment. The obfuscated strings are hard to reverse 

engineer and then hard to read. In general, encryption can make the application heavy and 

very slow to execute. But the technique has been used to encrypt part of the code to avoid 

detection. 

▪ Control Flow Obfuscation. Even when the code is obfuscated, experience developer and 

malware analyst can draw an understanding of the behavior of the obfuscated code from 

matching the control flow of the program. To make the code unpredictable, developers 

obfuscate the control statements as well. 

▪ Dummy code insertion. Last technique is to insert codes that do not relate to the actual 

behavior of the malware. This code is called dummy since it is not used, but to mislead the 

scanner from reading and understanding the code. 

Finally, there are tools used for obfuscation. Common Java obfuscators are 

ProGuard [24] and DexGuard [25], which are widely used. 

Activation techniques. This technique associated with Android events. 

BOOT_COMPLETED event, for example, is triggered when the device finishes the booting 
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process. Malware uses this event to be notified when the device is up and running to activate the 

malicious process. Other events such as SMS_RECEIVED that is triggered when an SMS is 

received is utilized by zSone family. Another example is a ACTION_MAIN event that is triggered 

when an app’s icon that is clicked is adopted by a DroidDream family. 

There are many papers contributed to detecting such techniques such as [26]–[30]. For 

example, Tian et al. [30] designed a repackaged detection technique. Their technique based on 

partitioning the code into two levels, class-levels dependency graph (regions), and method-level 

call graphs. They utilize machine-learning to recognize internal behavior using three types of 

features: permissions, sensitive API calls, and user interaction. 

How anti-virus works. Malware signatures, as they have been manually analyzed or 

detected, are saved in an AV database to be compared against files under scanning. When a match 

is found in the file, the file (or app) is considered malicious, and it will be quarantined. 

2.2. Android Malware Related Work 

In this section, we review the survey papers on Android malware. Most of the surveys 

focus on malware detection, including [31]–[39]. The most recent survey has reviewed papers on 

malware detection while focusing on their approaches; they discussed the advantages and 

disadvantages of each detection approaches and methods [32]. 

The following survey has proposed a taxonomy to categorize Android malware detection 

techniques; they highlighted the trends and the challenges [34]. The following two survey papers 

have provided an outline of the methodologies used in classifying malware based on work 

surveyed [33], [38]. The authors in [35] have focused on the state-of-the-art papers in identifying 
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malware behaviors based on a diverse set of features; they highlighted the effective features in 

detecting malware. Yan and Yan have surveyed the related work in dynamic malware detection; 

they focused on the performance evaluation criteria on malware detection [36]. 

Souri and Hosseini have conducted a systematic survey on the state-of-the-art papers in 

utilizing data mining techniques in malware detection; they categorize the techniques into 

signature-based and behavioral-based. Furthermore, they discuss the importance of data mining 

techniques in malware detection [37]. Riasat et al. have provided a comprehensive survey on the 

tools and methods used on malware detection; they highlighted the various types of tools used in 

the research field [39]. Arshad et al. categorize the antimalware and penetration techniques 

proposed by state-of-the-art research to protect the Android system; they highlighted their 

limitation and benefits [31]. 

The previous surveys on malware detection have focused on malware detection. In this 

survey, our focus is on malware familial classification, detection, and analysis, which will 

introduce a baseline for future work in this domain. 

To conduct our review, we followed an exploratory research approach. We investigated 

more than a thousand papers published in journals and conferences. To filter out the selected 

papers, we considered keywords. The following respectable scientific databases are explored: 

IEEE Xplore [40], ACM Digital Library [41], MDPI [42], ScienceDirect [43], Hindawi [44], 

Springer [45], and arXiv [46], and we also used reputable literature search engines such as 

Microsoft Academic [47], Semantic Scholar [48], and Google Scholar [49]. Keyword criteria for 

selecting a literature contain main and optional keywords. Main keywords are Android malware 

and malware family. Optional keywords are malware detection, familial classification, malware 
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family identification, and malware family categorization. We have classified the related work 

according to their type of analysis, techniques, and features.  

Our complete taxonomy is shown in Figure 2.3. and Table 2.1. The taxonomy categorizes 

all the related work in familial classification in terms of the type of analyses, features, and 

techniques that has been used. 

2.3 Analysis 

In this section, we discuss the type of analysis followed by the state-of-the-art. They are 

static, dynamic, and hybrid analysis. 

2.3.1. Static Analysis 

Static analysis is applied while the app is in a static state. It basically collects information 

about the app such as the app’s name, size, permissions, code, and programing pattern. Some of 

the information requires reverse engineering the app from machine code to a readable format to 

analyze the code. The advantage of performing such analysis is that it is fastest and cheapest since 

it doesn’t require executing the application nor does it require monitoring activities. A drawback 

of the analysis is that many malware launch their attack at runtime. In addition, other malware use 

an obfuscation technique or encrypted methods which cannot be read or decrypted unless the app 

is executed. A set of papers [50]–[77] used static analysis. Details on the static features used by 

the papers were discussed in Section 2.5, Features. 

2.3.2. Dynamic Analysis 

This type of analysis (also known as behavioral analysis) performed during the execution 
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of an app. It monitors the inside and outside action, connections, calls, and clicks that happen while 

the app is being executed. Such analysis has the advantage of detecting wide-range and 

sophisticated malware. Malware families that are bound to an event that were mentioned earlier 

can only be detected while the app is running. The disadvantage of such analysis is that it is time-

consuming. In addition, it requires a priori knowledge of the malware technique to monitor. 

Several papers have applied dynamic analysis such as [78]–[83]. Details on the dynamic features 

used by the papers were discussed in Section 2.5, Features. 

2.3.3. Hybrid Analysis 

Hybrid analysis is a combination of both static and dynamic analysis. Although hybrid 

analysis has the advantage of covering both analyses, it has a major drawback. Such analysis is a 

time-consuming process considering the huge number of malware samples to be detected and 

analyzed. Papers such as [84]–[88] have used hybrid analysis and the details on the features used 

were discussed in Section 2.5, Features. 

2.4. Techniques 

In this section, we discuss the techniques used by the state of the art to address the familial 

malware problem. There are two main techniques used: model-based and analysis-based. 

 

2.4.1. Model-Based 

In a model-based technique, a model is created to classify malware into families. There are 

four main categories of techniques used, which are machine learning, similarity analysis and image 
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processing, and evasion. 

Machine learning. The literature use machine learning to classify malware samples into 

families. 

 
  Figure 2.3 Android malware families’ taxonomy. 
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Index Year Reference Analysis Features Technique 

1 2020 Fang et al. [50] Static Static Image-reps-based 

2 2019 Qiu et al. [51] Static Static 
Similarity-based and 

Machine Learning 

3 2019 Zhang et al. [52] Static Static 
Signature-based and 

Machine Learning 

4 2019 Zhiwu et al. [53] Static Static 
Visualization-based and 

Machine Learning 

5 2019 Mirzaei et al. [54] Static Static Visualization-based 

6 2019 Vega et al. [55] Static Static Visualization-based 

7 2019 Vega et al. [56] Static Static Visualization-based 

8 2019 Jiang et al. [57] Static Static Machine Learning 

9 2019 Fasano et al. [58] Static Static Machine Learning 

10 2019 Blanc et al. [84] Static Static Machine Learning 

11 2019 Xie et al. [60] Static Static 
Statistical-based and 

Machine Learning 

12 2019 Turker et al. [61] Static Static 
Statistical-based and 

Machine Learning 

13 2018 Atzeni et al. [84] Hybrid Dynamic and Static Signature-based 

14 2018 Kim et al. [85] Hybrid Dynamic and Static 
Visualization-based and 

Machine Learning 

15 2018 Fan et al. [62] Static Static 
Visualization-based and 

Machine Learning 

16 2018 Sun et al. [78] Dynamic Dynamic Visualization-based 

17 2018 Martin et al. [79] Dynamic Dynamic 
Machine Learning and 

Statistical-based 

18 2018 Aktas et al. [86] Hybrid Dynamic and Static Machine Learning 

19 2018 Garcia et al. [63] Static Static Machine Learning 

Table 2.1 Taxonomy table of the literature. 
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Index Year Reference Analysis Features Technique 

20 2018 Calleja et al. [64] Static Static Evasion and Machine Learning 

21 2018 Alswaina et al. [65] Static Static Machine Learning 

22 2017 Massarelli et al. [80] Dynamic Dynamic 
Signature-based and 

Machine Learning 

23 2017 Zhou et al. [66] Static Static 
Visualization-based and 

Similarity-based 

24 2017 Chakraborty et al. [87] Hybrid Dynamic and Static Machine Learning 

25 2017 Sedano et al. [67] Static Static Statistical-based 

26 2016 Battista et al. [71] Static Static Signature-based 

27 2016 Hsiao et al. [81] Dynamic Dynamic Visualization-based 

28 2016 Gonzale et al. [68] Static Static Visualization-based 

29 2016 Fan et al. [69] Static Static 
Visualization-based and 

Machine Learning 

30 2016 Kang et al. [70] Static Static Similarity-based 

31 2016 Malik et al. [82] Dynamic Dynamic Statistical-based 

32 2016 Sedano et al. [72] Static Static Statistical-based 

33 2016 Feng et al. [88] Hybrid Dynamic and Static 
Visualization-based, Machine 

Learning, and Signature-base 

34 2015 Aresu et al. [83] Dynamic Dynamic 
Signature-based and 

Similarity-based 

35 2015 Lee et al. [73] Static Static 
Signature-based and 

Similarity-based 

36 2015 Li et al. [74] Static Static 
Visualization-based and 

Machine Learning 

37 2015 Garcia et al. [89] Static Static Machine Learning 

38 2014 Deshotels et al. [75] Static Static 
Visualization-based and 

Similarity-based 

39 2014 Suarez et al. [76] Static Static 
Statistical-based and 

Machine Learning 
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Index Year Reference Analysis Features Technique 

40 2013 Kang et al. [77] Static Static 
Statistical-based and 

Machine Learning 

  

 

In [53], the authors classify the malware using Deep Learning (DL) techniques. In [79], 

the authors classify malware into families using classical machine learning such as Support Vector 

Machine (SVM) and DL algorithms such as CNN and RNN. In [76], the authors use a Nearest 

Neighbor classifier (NN) to classify malware into families. In [57], the authors preprocess the data 

and extract the sensitive opcode sequence. For the minor families, they use the oversampling 

technique to overcome this issue. To represent the semantic features of the sensitive opcode 

sequence, they use text mining (i.e., Doc2Vec algorithm [90]). Finally, they train their model using 

nine machine learning algorithms such as SVM and Randomforest. In [80], the authors feed the 

fingerprint to an SVM algorithm to classify malware into families. In [74], the authors construct 

the feature vector and feed it to several machine learning algorithms such as Randomforest. In 

[60], the authors used SVM to classify the samples into families. In [77], the authors feed the 

features to several machine learning classifiers such as Decision Tree and Association rules. In 

[64], the authors build a framework to train the classifier algorithm with a set of samples to drive 

the heuristic search using a Genetic algorithm. In [62], [69], the authors use frequency graphs 

(FreGraph) as their features to be fed into several machine learning algorithms such as SVM, 

Decision Tree, and Randomforest to classify the malware into families. In [59], the authors feed 

the Android-oriented matrices to several machine learning algorithms such as SVM, KNN, and 

Decision Tree. In [63], the authors apply machine learning algorithms to extract complex features 

and used them to classify malware into families. In [61], the authors use three machine learning 
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techniques: standard classifier such as SVM, ensemble classifier, and Neural Network to classify 

malware into families. In [65], Alswaina et al. use two models to perform familial classification. 

The authors use the binary representation of the features and weighted importance. Then, they use 

six machine learning algorithms to predict malware families. In [86], the authors apply three filters 

to filter the features. The dynamic and static features are combined and fed to machine learning 

algorithms, such as Randomforest and KNN for classification. In [51], the authors apply Linear 

SVM, DT, and DL algorithms. Fene et al. [88] utilize the SVM algorithm. 

In [87], the authors use supervised algorithms such as Randomforest. Moreover, the authors 

use unsupervised learning such as K-means and mean-shift due to unbalanced samples in each 

family. They also propose ensemble clustering and classification techniques, which integrate the 

results generated from the supervised and unsupervised algorithms. In [85], the authors optimize 

the weight of features using community detection algorithms. They further classify the malware 

into families using machine learning. In [52], the authors use the fingerprints to classify malware 

into families using online passive-aggressive (PA) classifiers. Further details of PA can be found 

in [91]. In [58], the authors extract features from the apps and create code metrics. Then, they 

binary classify (coarse-grain) the samples. The malware is further classified into families (fine-

grain). 

Evading detection. In this technique, the goal is to evade detection or elude classifiers into 

misclassification. In [64], the authors build a framework to alter the malware to perform an attack 

and misclassify the results. 

Similarity analysis. Literature computes the distance between any malware and the family. 
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In [83], the authors use the token-subsequence algorithm to extract and generate signatures 

from each family based on network traffic analysis. In [70], the authors represent opcode as a 

vector of binary and frequency to compute the similarity between the malware and families. In 

[66], the authors evaluate their approach by performing similarity analysis. In [75], the authors 

perform two tests. The first test is used to binary classify malware. In the second test, they apply 

the agglomerative clustering algorithm to cluster the apps into families. To evaluate their model, 

they compute the distance between the malware and the clusters’ centroids to validate which family 

the sample belongs to. In [73], the authors cluster the families based on the most frequent key 

terms used by each family. Then, they use the dictionary search method for classification. In [51], 

the authors use TF-IDF to represent the frequency of the features. 

Image representation. Some literature classifies the malware to malware families based 

on image representation. In [50], the authors convert the DEX file into an image and plain text. 

Then, they extract the color and the texture feature from the image. For the three features: color, 

texture, and text, they feed them into the feature Fusion algorithm to classify malware into families. 

2.4.2. Analysis-Based 

In the analysis-based technique, an analysis is carried to analyze and construct features to 

observe families’ characteristics. There are three sub techniques under this approach, which are 

signature-based, statistical analysis, and visualization analysis. 

Signature-based. They construct a signature for each family to identify the families. In 

[83], the authors use a multi-step clustering approach: First, they apply coarse-grained clustering 

and then apply fine-grained clustering. In [52], the authors construct the fingerprint of the malware 
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families using n-grams analysis and features hashing. In [80], the authors generate a fingerprint 

for each family. In [73], the authors construct a signature of each malware family based on the 

collected features. Feng et al. [88] propose an approximate signature matching algorithm to 

generate signature for malware families. 

Statistical analysis. They applied statistical tools to analyze and identify the family’s 

characteristics and the important features. In [76], the authors use statistical analysis and text 

mining to extract the features. In [79], the authors use Markov chain to represent the features. In 

[60], the authors eliminate unimportant features using the frequency-based approach. In [77], the 

authors compute the bytecode frequency. In [61], the authors apply a feature ranking algorithm to 

identify the most important features. 

Visualization analysis. They visualize the characteristics of families using graph mining 

and PCA. In [53], the authors extract DFG and CFG. Then, they encode the graphs into a matrix. 

In [85], the authors represent the features using a network graph. In [66], the authors collect the 

sensitive API calls and then construct graphs based on sensitive API calls. Then, they characterize 

malware families based on the subgraph isomorphism. In [74], the authors construct a short and 

long APIs dependency path to perform context and constant analysis. In [75], the authors 

disassemble the app into Smali files. Then, they create class dependency graph (CDG) to group 

the classes into modules to identify which module contains malicious code. In [62], [69], the 

authors use community detection, subgraph matching, and subgraph clustering to generate the 

FreGraph. Feng et al. [88] utilize an inter-component call graph (ICCG) to represent the 

communication in the app to construct the features. 
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2.5. Features 

In this section, we discuss the types of features used by works of literature to classify 

malware into families. They are classified into static and dynamic features. 

2.5.1. Static Features 

Static features are any features that can be recognized or utilized without the execution of 

the application. Some examples of static features are package name, application size, permissions, 

and list of APIs. 

A set of papers [55], [56], [65], [67], [68] uses features that are related to malware 

installation such as repackage and update, payload activation such as on booting and receiving 

calls, and privilege escalation attack such as asroot and exploid families [18]. Moreover, in [55], 

[56], [67], they include other features related to financial charges such as SMS and phone calls. 

Vega et al. in [55], [56], also include features related to personal information stealing such as 

phone number. 

In [51], [54], [57], [60]–[64], [66], [69], [72], [74], [75], [88], [89], a subset of sensitive or 

suspicious API calls are utilized in their feature set. Permissions used in the app are included as 

features in [51], [60], [61], [65], [72]. Moreover, in [57], sensitive opcode sequence, actions, and 

strings are utilized in their features. Garcia et al. [63], [89] added native code-based to their set of 

features. 

Fasano et al. [58] and Blanc et al. [59] use a set of metrics generated from Smali files to 

measure the quality code of the app to be used as features. However, in [57], [70], [71], [73], [77], 



 

25 

code-based analysis such as Java bytecode, bytecode frequency, opcode, or opcode sequence are 

used as features. 

Other papers such as [53], [76] use data-flow graph (DFG) and control-flow graph (CFG) 

as features. In [50], the authors extract the texture, color, and text features from the DEX file. 

Zhang et al. [52] use features extracted from DEX as n-gram and hash code. 

Finally, some works of literature have applied a set of static features in addition to dynamic 

features. In [87], the authors use 190 static features such as permissions. In [86], the authors use 

static features such as the number of services and receivers. In [85], the static features such as 

permissions, filename, and activity name are utilized. In the paper [84], a set of static features from 

the Android manifest in addition to an APK file that is generated from Androguard tool [92], a 

Python code to reverse engineer Android files. 

2.5.2. Dynamic Features 

Features that require execution of the application are considered dynamic. For example, 

network traffic, send/receive SMS, resource consumption, system logs, and I\O operations. 

In [82], the author traced the system calls during the execution of the application. Aresu et 

al. [83] utilize network traffic (HTTP) in their classification. Martin et al. [79] depend on the 

features that are generated by a DroidBox [93] tool, an Android sandbox for dynamic analysis, 

which is represented as operations and function of time. In [81], the authors record the API calls 

that are performed during application execution. In [80], resources’ consumption is utilized as 

features for their classification. In [78], the authors use sensitive and permission-related API calls. 
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Finally, a group of literature works has applied a set of dynamic features in addition to 

static features. In [87], the authors use around 2048 dynamic features logs such as file I/O, network 

usages, and cryptographic usage. In [86], the authors use dynamic features that are generated using 

a DroidBox tool [93] such as the number of open/closed connections and the number of 

sent/received network packets. In [85], the dynamic features such as API call sequence are utilized. 

In [84], a set of dynamic features uses DroidBox [93] and CuckooDroid [94]. Feng et al. [88] use 

suspicious API call behaviors such as sendSMS API and data leakage. 

2.6. Discussion 

In this section, we highlight the datasets that have been used, the limitation of literature, 

the general challenges related to malware families, and we also report future directions. 

2.6.1. Experimental Datasets 

There are many datasets used in the literature that contain a collection of Android malware 

grouped into families such as: Android Malware Genome Project (Malgenome) [18], Drebin [95], 

the AMD [96] Project, and AndroZoo [97]. Some papers collected the malware samples from the 

Android market such as Anzhi, or a repository such as VirusTotal [98] and VirusShare [99]. 

The datasets differ in the number of samples and number of families. For example, AMD 

[96] contains 4354 malware samples grouped in 42 families. While Drebin [95] has 5560 samples 

grouped in 179 families, other datasets such as AndroZoo [97] contain many more samples and 

families, where the number of samples is 10.7 million grouped into more than 3000 families. In 

Figure 2.4, we show the number of publications that uses each dataset found in the literature. 

Furthermore, Table 2.2 shows detailed information where the publications are included. The 
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repository category includes sites like VirusTotal, VirusShare, and Koodous, for which there is no 

fixed set to be used as benchmarks. Collection category refers to either an unknown collection 

performed by the author or sites such as HelDroid, FalDroid, and the Anzhi app market. As we see 

from Figure 2.4, the most used datasets are Drebin [95] and Genome [18]. More details on the 

commonly used datasets are reported in Table 2.3. 

 

 

 

 

Dataset 
No. of 

Pubs. 
Publications 

Drebin [95] 18 [51]–[53], [57]–[59], [61]–[64], [71], [72], [78]–[80], [83], [87], [88] 

Genome [18] 16 [52], [55], [56], [63], [65]–[68], [70], [74]–[77], [81], [83], [88] 

Collection 6 [58], [60], [62], [73], [82], [85] 

Repository 6 [53], [60], [63], [69], [84], [87]  

AMD [96] 3 [50], [51], [61]  

UpDroid [86] 2 [61], [86] 

Contagio [100] 2 [53], [83]  

AndroZoo [101] 1 [54] 

Marvin [102] 1 [53] 

AndroMalShare [103] 1 [66] 

Figure 2.4 Dataset reported by publications, where the x-axis represents the number of publications. 

Table 2.2 Dataset, number of publications, and publication details. 



 

28 

 

 

Dataset Total Samples Number of Families 

Drebin [95] 5,560 179 

Genome [18] 1,260 49 

AMD [96] 4,354 42 

AndroZoo [101] 10.7M 3K+ 

 

2.6.2. Limitations 

As we surveyed forty research papers, we summarize the limitations to the following: First, 

most of the literature uses small datasets such as a few numbers of families or a few malware 

samples for studying families. Moreover, they use outdated or discontinues datasets such as 

Contagiodump (Contagio) [100] and Malgenome Project (Genome) [18]. In addition, several 

papers build their experiments on manually collected data without testing their model on 

benchmarked data. Several papers lack the disclosure of the list of features applied to reproduce 

the work. 

2.6.3. Challenges 

Family naming. One of the challenges that we observe is that there are no naming schemes 

(conventions) for the malware family. Naming a family is varied depending on the AV company. 

Families such as BaseBridge (or adSMS), Smssend (or fakeplayer), and DroidDream (or 

DORDRAE) are some of the families that have multiple names. One of the reasons is that one 

company names a family based on different share characteristics than other companies. 

Characteristics such as installation methods, activation, or the name of their malicious file name 

Table 2.3 Commonly used datasets and their details. 
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are discussed in [18], [104], [105]. Attempts have been made by [101], [106], [107] to establish 

naming standards. Sebastian et al. [108] address the issue of inconsistent labeling (naming) of 

malware family and contribute the AVclass tool, an auto-labeling, as an effort to unify labeling. In 

addition, Euphony is a system proposed by [101] to unify different AV companies. 

Imbalance Dataset. Some of the malware families contain hundreds of samples, while 

others contain as little as one sample such as DroidKungFuUpdate family in the Genome [18]. 

Other families with one sample in Genome dataset [18] are listed in Table 2.4. The rest of families 

in the dataset are shown in Table 4.1. This cause identifies the characteristics of a family as 

challenging. In case of standalone malware (not repackaged), the identification is almost 

impossible. 

Family 

SMSReplicator 

Walkinwat  

Endofday  

GGTracker  

GamblerSMS  

Lovetrap  

Zitmo  

CoinPirate  

DogWars  

NickyBot  

DroidCoupon  

DroidDeluxe  

Spitmo 

DroidKungFuUpdate  

FakeNetflix 

Jifake 

 

2.6.4. Directions 

Advanced machine learning. Malware families should be deeply analyzed and identified. 

Deep learning technology has been adapted to address various research problems including voice 

Table 2.4 Genome dataset’s families with one sample. 
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recognition, image processing, and text analysis. One of the advanced techniques of Deep Learning 

is reinforcement learning, which can be utilized to better understand the families’ characteristics. 

Reinforcement learning has shown very promising results, especially in dynamic analysis. Another 

technique that should be adopted is transferred learning, which can be utilized to address the lack 

of samples in families. 

Big data handling. Since the amount of malware is increasing exponentially, as it was 

reported by GDATA that almost 9K of new malware programs are reported daily [109], a scalable 

solution should be considered. For example, the AndroZoo [97] dataset has millions of samples 

that can be handled using big data technologies. One of the most important tools are Hadoop [110] 

and Spark [111]. They can handle a huge amount of malware data with fast processing. 

Crowdsourcing. Beside Big data technologies, a group of malware family analyzers can 

be utilized to better identify and characterize the families. For example, a source can use a subset 

of features, while other sources investigate other feature sets. A malware repository VirusTotal 

[98] and VirusShare [99] are some examples. 

Automated detection. The huge number of generated malware necessitate the call for 

automated analysis and classification of malware family rather than performing such tasks 

manually [85], [112].
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CHAPTER 3: RESEARCH PLAN  

The research developed a Reverse Engineering framework (RevEng). Within RevEng, 

applications' permissions were selected and then fed into machine learning algorithms (MLA). 

Through our research, we created a reduced set of permissions using Extremely Randomized Trees 

that achieved high accuracy and a shorter execution time. Furthermore, we conducted two 

approaches based on the extracted information. The first approach used a binary value 

representation of the permissions. The second approach used the features' importance. We 

represented each selected permission in Approach One by its weight value instead of its binary 

value. We conducted a comparison between the results of our two approaches and other relevant 

works. Our approaches achieved better results in both accuracy and time performance with a 

reduced number of permissions.  

3.1 Proposed Framework 

RevEng consists of four main components that include the Dataset, Family, App, and 

Analysis components. Each component parses and collects information on the dataset. The 

Dataset, Family, and App components are included in the preprocessing stage, whereas the 

Analysis component is used in the processing stage. To explain our framework, we used the term 
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extracted features to indicate the result of collecting the selected features from the application; this 

is not to be confused with feature extraction terminology. 

In the following section, we identify the functionality of each component in RevEng 

framework and their interactions to classify malware app and predict malware family. The 

following is a general flow of the framework. More details are added in the following section. 

1) The Dataset is needed to parse and maintain information about the malware families in 

the dataset. The component takes the dataset and assigns each family to a Family component to be 

processed. At the end of the preprocessing stage, the Dataset processes the results of each Family 

component and constructs the input matrices (MBcand and MWcand) for the Analysis component in 

the processing stage. 

2) The Family component processes one malware family and keeps a list of all malware 

apps in the family. The component maintains and removes any duplicate of an application using 

the hash value of the malware. Each member of the malware family is assigned to an App 

component to be processed. In the end, the Family component processes the result obtained from 

each App component and passes them back to the Dataset. 

3) The App component represents a malware app. It reverse-engineers the malware 

application, extracts the features and passes them back to the Family component. 

4) The Analysis component is the where the framework applies MLA to generate 

classification models, train and validate them using input data from the Dataset to predict the 

malware families. 
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3.2 Framework Components 

Dataset: This component contains general information about the dataset such as 

FamiliesList (a list of families in the dataset), SFCand (a candidate subset of selected features SF), 

MBcand (a two dimensional binary matrix result from applying SFCand), MWcand (a two dimensional 

weighted matrix result from applying the weight of each features in SFCand), and NoOfThreads 

(number of threads set for framework efficiency, default is 4). 

Family: This component contains detailed information on a malware family. Parameters 

such as FamilyName (name of the family), AppList (a list of apps in the malware family), 

PermissionsUnion (a set of all permissions declared in the malware family), and PermissionsInter 

(the intersection set of all permissions declared the malware family) are collected by this 

component. 

App: This component is responsible for reverse engineering a malware app. It extracts 

information such as AppName (the application file’s name in the dataset), AppPackage (the 

application’s package name), Permissions (a list of permissions declared in the malware app), and 

ExtractedFeatures (a binary array result from applying feature selection in SFCand).  

Analysis: This component consists of several machine learning algorithms or classifiers 

(MLAs). Each MLA creates a model with pre-set hyperparameters. These hyperparameters are 

elected and tuned based on trial and error to produce optimal results in our experiments. The 

MLAs’ models are trained, validated, and tested on MBcand and MWcand that are produced by the 

Dataset component as inputs to each model to classify each input into its predicted malware family. 

In this component, we take advantage of Scikit-Learn libraries [113] to implement machine 
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learning algorithms. Figure 3.1 demonstrates the Dataset, Family, and App components’ data 

structure with pseudo-code.  

 

 

3.3 Application’s Features 

The features used in this research is an app’s permissions as requested by the malware apps 

(samples). The focus is on finding the optimal set of permissions, a set that gives high accuracy, 

out of all the permissions provided by an Android operating system. To accomplish this, one of 

the ensemble classifiers, called Extremely Randomized Trees (ET), [114] was utilized. ET, like 

Random Forest (RF) [115], is based on building a large collection (forest) of decision trees (DT). 

Each DT uses the whole set to build the tree and, for each split, finds the optimal cut-point based 

on information gain. RF develops each tree by selecting a random set of data and a random set of 

features. The target class of the observation predicted is based on the majority vote. For ET, the 

Figure 3.1 Demonstrates the contents of components and the relation between them. 
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algorithms add more randomness to RF such that on each split in a tree, instead of selecting the 

optimal cut-point, ET selects a feature at random. In addition, ET ranks the importance of each 

feature using Gini importance [116]. 

Features Reduction: The SF here is the permissions feature used in StormDroid [7]. To 

extract the important features, we run an ET algorithm on the SF. As a result, each feature in SF 

is assigned an importance value between zero and one, based on the information that the attribute 

provides in ET’s DT. All features with zero importance have been excluded since such features 

either do not add significance to uniquely classify a malware family (noise) or have some 

dependency between features. By collecting all features greater than zero, we have a Candidate 

Selected Features set (SFCand), a reduced set of features as shown in Figure 3.2. The ultimate SFCand 

contains 42 out of 59 permissions. The SFCand chosen, with their importance, are included in Table 

5.6. The top 10 permissions with high importance are shown in Figure 3.3. 

Our analysis of the dataset shows that a group of permissions is requested by many malware 

families. For example, INTERNET (which permits opening a network socket) is requested by more 

than 82% of the malware families; READ_PHONE_STATE (which permits a reading of the 

device’s phone number, a status of ongoing calls, and phone accounts in the device) is requested 

by more than 60.5% of the malware families; ACCESS_NETWORK_STATE (which permits 

querying into the status of the network, such as if the device is connected to a network) is requested 

by more than 42.5% of the malware families. These permissions are also the top three permissions 

in both [18] and [17]. For this reason, these permissions are not critical to identify and classify one 

malware family from another. Therefore, the ET classifier assigns a very low importance to such 

features, as shown in Table 5.6. 



 

36 

 

 

 

 

 

 

3.4 Data Preprocessing  

Upon beginning the execution of the framework, the Dataset component is initialized 

(Dataset.Init) with the dataset. Once the component is ready, RevEng starts loading and parsing 

Figure 3.2 Extraction of the important features from SF and generating SFCand. 

Figure 3.3 Top 10 permissions based on their importance. 
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the dataset by executing Dataset.Load. To start creating the families’ objects, RevEng forks several 

threads (NoOfThreads) assigned in the initialization during the execution of Dataset.Run as 

illustrated in Figure 3.4.  

 

 

Multi-threading utilizes the processor and increases the reverse engineering process of the 

applications as illustrated in Figure 3.5. All objects of the Family component in this case, malware 

families–are inserted in a list (i.e., Q). Each thread processes one object as a task, (i.e., ti). Each 

task initializes a family (Family.Init), loads a family’s contents, and starts parsing a family’s 

application (Family.Parse) as shown in Figure 3.4. Family.Parse initializes the App component 

(App.init) and parses it (App.Parse). 

The App.Parse method, in turn, extracts information from the application such as the 

package name, all permissions in the manifest file, and checks the existence of each permission in 

SF in the app’s list of permissions. To extract the package name and the declared permissions in  

Figure 3.4 Pseudo-code of the Dataset, Family, and App components shows the main parts of the code. 
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the app’s manifest file, we used the Android Asset Packaging Tool (AAPT), which is part of the 

Android Software Development Kit (SDK). AAPT is a utility with powerful features that 

decompiles the package’s permissions listed in the Application manifest XML file, and it can also 

extract the resources’ table. The items’ indices in ExFA (extracted features) and SF (selected 

feature) are in the same order. If an app A has a feature 𝜌 | 𝜌 𝜖 𝑆𝐹 in index i, then ExFA(i) = 1, 

otherwise ExF(i) = 0, and so on.  

 

Each App’s ExF is cascaded back to the app’s family and then to the Dataset components 

as shown in Figure 3.6. 

 

Figure 3.5 Multi-threading processes of the list of tasks in queue. 
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The Dataset joins all the ExFs in MBcand for analysis as illustrated in Figure 3.6. The size 

of MBcand is 𝑚 ×  𝑛, where m = 1,233 (total number of samples) and n = 42 (number of permissions 

in SFCand) as shown previously in Figure 3.2. 

 

 

 

To generate the Weighted Candidate Matrix MWcand, each element is calculated as in (1). 

Each 𝜌𝑖𝑗 value in MBcand is multiplied by the permissions’ importance as generated by ET for the 

permission’s index j. The Y matrix contains the malware families (classes: ci) of each malware 

sample at row i in both MBcand and MWcand. MBcand and Y matrices are shown below: 

 

 

Figure 3.6 Preparation of MBcand and MWcan matrices for processing. 
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The overall framework is shown in Figure 3.7. 

 

 

 Figure 3.7 RevEng framework. 
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CHAPTER 4: EXPERIMENTAL SETUP 

In this chapter, we show some details on the Genome dataset that we use in our research. 

Then will show the implementation and the evaluation of the approaches. 

4.1 Dataset 

We relied on the Genome dataset that was provided by [17]. This dataset contained 49 

malware families with a total of 1,260 applications. Each family differed in size between 1 and 

300 applications. In this research, families that contained less than 4 applications have been 

excluded to maintain accurate results. Table 4.1, lists the malware families and their samples used 

in our experiments, for a total of 1,233 applications in 28 families. 

4.2 Implementation  

The programming language Python was used in all our implementations. Python is 

supported by the research community in various fields and it has rich libraries. Scikit-Learn is one 

of the communities that has implemented Machine Learning Algorithms [113].  

The Analysis component contains the following classifiers: Support Vector Machine 

(SVM), Decision Tree (ID3), Random Forest (RF), Neural Network (NN), K-Nearest Neighbor 

(KN), and Bagging, as implemented by [113]. 
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Malware Family No. of Samples Malware Family No. of Samples 

GingerMaster 4 jSMSHider 16 

HippoSMS 4 ADRD 22 

FakePlayer 6 YZHC 22 

GPSSMSSpy 6 DroidKungFu2 30 

Asroot 8 DroidKungFu1 34 

BeanBot 8 DroidDearmLight 46 

Bgserv 9 GoldDream 47 

Gone60 9 KMin 52 

RogueSPPush 9 Pjapps 58 

SndApps 10 Geinimi 69 

Plankton 11 DroidKungFu4 96 

zHash 11 BaseBridge 122 

Zsone 12 AnserverBot 187 

DroidDream 16 DroidKungFu3 309 

Total 1,233   

 

 

4.3 Evaluation 

Cross-validation: Since the number of malware families is very low, as is the number of 

malware samples, we used the cross-validation (or stratified k-fold) technique to split and alternate 

between the training and testing sets. We set up the number of folds (𝑘 = 4) such that on each 

iteration, the classifier used 75% of a family’s samples for training and 25% for testing. In the 

processing stage, the Analysis component is fed MBcand and MWcand to be processed. Each classifier 

trains, validates, and tests the model on the two inputs using the aforementioned setup. As a result 

of the analysis, we calculated each classifier’s accuracy (2) and the execution time in seconds. 

Training-testing split: To address the imbalance data issue, we split the data into two sets, 

training, and testing set. We further apply random oversampling technique to the training set. We 

evaluate the model on the testing set. 

Table 4.1 List of malware families with their samples in the dataset Genome used in RevEng. 
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CHAPTER 5: RESULTS AND DISCUSSIONS 

In this chapter we show the results of the classification in the two approaches. We 

conducted two experiments: with and without oversampling the data. 

5.1 Experiment 1: Familial Classification without Oversampling 

We conducted 100 experiments using MBcand and MWcand on each classifier. The experiment 

measured two factors: the classifier’s prediction accuracy and the time performance. For all total 

experiments on each classifier, we calculated the worst, the best, and average accuracy, and the 

average execution time. Table 5.1 shows the details of the experiments in two main columns: the 

first and second column represent the results of our approach with MBcand and MWcand, respectively. 

 

 MBcand MWcand 

Classifier Worst Avg. Best Time Worst Avg. Best Time 

SVM 85.16 85.16 85.16 0.28 25.06 25.06 25.06 0.44 

NN 95.78 95.78 95.78 1.57 87.27 87.27 87.27 5.17 

ID3 94 94.52 94.73 0.06 94.08 94.42 94.89 0.06 

KN 95.46 95.46 95.46 0.06 93.59 93.59 93.59 0.05 

Bagging 90.59 91.56 92.21 0.21 90.11 91.09 92.05 0.18 

RF 94.73 95.81 96.27 0.08 95.38 95.99 96.43 0.08 

 

The results show that using MBcand, RF, KN, and NN achieve high accuracy (average ≈ 

95.68%) and standard deviation ≈ 0.19%) in comparison with other classifiers (such as SVM, ID3, 

Table 5.1 Detailed performance (prediction accuracy and time) for each classifier (without oversampling). 
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and Bagging). From the best selected classifiers, we can see that RF achieves the highest 

prediction, on average, of 95.81%. In terms of time performance, KN and RF complete their 

analyses in 0.06 seconds and 0.08 seconds, respectively, while NN achieves the lowest 

performance. SVM has the highest misclassification rate using MBcand. 

For the MWcand, the results have higher variations than the previous approach. The top three 

classifiers are RF, KN, and ID3 (average ≈ 94.66% and standard deviation ≈ 0.21%). The RF 

classifier also achieves the highest accuracy of 95.99%. SVM produces the lowest accuracy score 

using this feature. In terms of time performance, we can see that RF completed the experiments in 

0.08 seconds on average. KN completed faster than the previous approach with an execution time 

of 0.05 seconds. 

Comparing our two approaches, MBcand and MWcand, we can see that RF achieves the highest 

accuracy with a rate of 95.99% using MWcand, which was slightly higher than when using MBcand, 

by 0.18%. RF’s took 0.08 seconds using both approaches. 

We applied StormDroid’s set of features (59 permissions) [7] as shown in Table 5.2 and 

Figure 5.1. We found that the RF classifier produced the highest accuracy of 95.97% versus the 

other classifiers. RF also completed in 0.08 seconds. 

 

 MBcand MWcand StormDroid 

Classifier Accuracy Time Accuracy Time Accuracy Time 

SVM 85.16 0.28 25.06 0.44 80.05 0.36 

NN 95.78 1.57 87.27 5.17 95.05 1.92 

ID3 94.52 0.06 94.42 0.06 94.52 0.07 

KN 95.46 0.06 93.59 0.05 95.54 0.08 

Bagging 91.56 0.21 91.09 0.18 91.65 0.26 

RF 95.81 0.08 95.99 0.08 95.97 0.08 

Table 5.2 Average of the classifiers’ accuracies and time performance for our 100 experiments (without 

oversampling). 
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In Table 5.3, we summarized our comparison based on two categories: classifiers’ highest 

accuracies and the classifiers’ best time performances. Of all three approaches, RF achieved the 

highest accuracy on MWcand with a rate of 95.99% in 0.08 seconds. For the best execution time, we 

found that KN was the best on MWcand with 0.05 seconds and an accuracy of 93.59%. In the time 

performance, we could see that ID3 using MBcand performed faster, although the classifier had the 

exact same accuracy as in the related work [7]. The chart for Table 5.3 is show in Figure 5.2. 

 

 MBcand MWcand StormDroid 

Best Accuracy Time Accuracy Time Accuracy Time 

Accuracy 95.81 (RF) 0.08 95.99 (RF) 0.08 95.97 (RF) 0.08 

Time 94.52 (ID3) 0.06 93.59 (KN) 0.05 94.52 (ID3) 0.07 

 

Table 5.3 Comparison between classifiers in terms of the best accuracy and best time performance (without 

oversampling). 

Figure 5.1 Comparison between StormDroid and our approach based on classifiers’ accuracies (without 

oversampling). 
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From our previous discussion, we concluded that MWcand achieved 0.02% better accuracy 

than StormDroid [7] with exactly equal execution time. The accuracy of RF classifier using all the 

three approaches is similar in general. However, minimizing the number of features from 59 to 42 

(0.28% of features) means a reduction in the dimensionality. 

In conclusion, we improved the accuracy. Moreover, when using MWcand with KN, we 

achieved less execution time than the related work [7] with 37.5% improvement as shown in Figure 

5.2. A sample of RF’s confusion matrix on one iteration is presented in Figure 5.1. 

  

Figure 5.2 Comparison between StormDroid and our approach based on time performance (without 

oversampling). 



 

48 

5.2 Experiment 2: Familial Classification with Oversampling  

To address the imbalanced data issue, we have deployed random sampling on the training 

set. Random sampling works as follows: it duplicates the data samples in the minority classes such 

as GingerMaster family (with 4 samples) to be equal in size to the majority class such as 

DroidKungFu3 family (with 309 samples); Thus, random sampling algorithm will oversample 

GingerMaster class from 4 to 309 samples. We recomputed the accuracy and time reported in 

Section 5.1 as in Table 5.4 and Figure 5.3. The comparison is shown in Table 5.5 and Figure 5.4.  

 

 MBcand MWcand StormDroid 

Classifier Accuracy Time Accuracy Time Accuracy Time 

SVM 96.68 0.76 86.54 0.78 96.36 0.94 

NN 96.48 3.89 88.95 12.95 96.35 4.59 

ID3 95.88 0.1 95.84 0.12 95.85 0.12 

KN 96.03 0.24 94.28 0.24 95.97 0.29 

Bagging 93.25 0.72 92.89 0.66 93.22 0.88 

RF 97.35 2.24 97.39 2.26 97.26 2.29 

 

 

 MBcand MWcand StormDroid 

Best Accuracy Time Accuracy Time Accuracy Time 

Accuracy 97.35 (RF) 2.24 97.39 (RF) 2.26 97.26 (RF) 2.29 

Time 95.88 (ID3) 0.1 95.84 (ID3) 0.12 95.85 (ID3) 0.12 

 

Table 5.4 Average of the classifiers’ accuracies and time performance for our 100 experiments (with 

oversampling). 

Table 5.5 Comparison between classifiers in terms of the best accuracy and best time performance (with 

oversampling). 
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Figure 5.3 Comparison between StormDroid and our approach based on classifiers’ accuracies (with 

oversampling). 

Figure 5.4 Comparison between StormDroid and our approach based on time performance (with oversampling). 



 

50 

In conclusion, by oversampling the data, we gain an increase of 2% in the accuracy than 

before. However, we can see that the average execution time has increased 30 times than the 

previous results. The longer execution time was due to the significant increase of the size of the 

training set because of the oversampling.  

By comparing our result with the related work  [7], we achieved the same trend as the first 

experiment. Moreover, MWcand achieved 0.13% better accuracy and around 5 sec faster. 

 

 

  

Table 5.6 List of SFCand with their importance (ω >0). 
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Figure 5.5 Confusion matrix of one RF execution. 



 

 

CHAPTER 6: CONCLUSIONS 

Though out the research, we investigate a total of forty research papers on Android 

malware familial detection, classification, and categorization from various scientific databases. 

We classified the literature according to their type of analysis, type of features, and the techniques 

applied. We further report the datasets that have been used and include details about each of them. 

Moreover, we discussed the limitations of the literature approaches, challenges faced by the 

researchers, and future trends for the research community. Our findings show that most of the 

limitations circulate around the availability and the size of benchmarked datasets. In addition, some 

common challenges are the lack of samples and standardization of family naming. 

Finally, we adopted machine learning to analyze and identify malware features such as the 

permissions requested by malware. Our focus in this research was to find a small subset of 

permissions that classified sets of applications into their proper malware families. We utilized 

Extremely Randomized Trees to further reduce the number of features from 59 to 42 (by 0.28%). 

In our two approaches, we represented the selected features as binary value, MBcand, and as 

weighted value, MWcand. We evaluated our approaches based on the accuracy and time performance 

of six classifiers, and we achieved both a higher accuracy by 0.02% (RF, 95.99%) and shorter time 

performance by 37.5% with KN than StormDroid [7]. As for the future work, investment in 

advanced artificial intelligence techniques such as reinforcement learning and big data 

technologies should be considered. 
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APPENDIX A 

Abbreviations 

AV Anti-Virus 

ML/MLA Machine Learning 

API Application Programming Interface FreGraph 

SF Selected Features 

SFCand Selected Features Candidate ⊂  SF  

MBcand Binary Matrix of SFCand 

MWcand Weighted Matrix of SFCand 

AAPT Android Asset Packaging Tool 

SDK Software Development Kit 

𝜌 Permission 

𝜔 Feature’s Weight 

ExF Extracted Features Values (0’s and 1’s for binary) 

SVM Support Vector Machine 

ID3 Decision Tree Algorithm – ID3 (classifier) 

RF Random Forest Algorithm (classifier) 

NN Neural Network Algorithm (classifier) 

KN K-nearest Neighbors Algorithm (classifier) 

ET Extremely Randomized Tree Algorithm (classifier) 

DL Deep Learning 

CNN, RNN Convolutional, Recurrent Neural Networks NN 

DFG Data-Flow Graph 

CFG Control-Flow Graph 

CDG Class Dependency Graph 

APK Android Application Package 

DEX Dalvik Executable 

PA Passive-Aggressive Algorithm 

UI User Interface UID, GID 

 

Table A.1 List of abbreviation used in the dissertation. 


