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ABSTRACT

Chronic kidney disease is increasingly recognized as a leading public health problem over the world that affects more
than 10 percent of the population worldwide, where electrolytes and wastes can build up in your system. Kidney
failure might not be noticeable until more advanced stages where it may then become fatal if not for artificial filtering
or a transplant. As a result, it is important to detect kidney disease early on to prevent it from progressing to kidney
failure. The current main test of the disease is a blood test that measures the levels of a waste product called creatine
and needs information such as age, size, gender, and ethnicity. They may be uncomfortable, can lead to infections,
and are inconvenient and expensive.

I will re-engineer an Android application for Chronic Kidney Disease detection by working on test strip detection
zone localization, detection zone focus, capture quality, and dynamic model loading. This uses a smartphone’s camera
and allows users to manually focus on an area of the view to analyze. The camera detects where the test strip and its
detection zone is and checks if it is in focus. The pixels are sent to the machine learning algorithm. The application
can quickly determine the health of a users kidney and can display it. By only requiring a few drops of blood and an
Android smartphone, it is very important for those who cannot afford insurance or live in developing countries. This
can make a huge difference in early detection of CDK in these areas where people would otherwise disregard the tests
in fear of not having enough money.
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Chapter 1

Introduction

1.1 Problem

Our kidneys are an essential part of the human body that specializes in the filtration and removal of toxins and wastes.

Chronic kidney disease is increasingly recognized as a leading public health problem over the world that affects more

than 10 percent of the population worldwide. Although we can survive with just one kidney, when the amount of

functioning kidney tissue is diminished significantly, there is a case of chronic kidney disease, where electrolytes and

wastes can build up in your system. The danger one must account for is that kidney failure might not be noticeable

until more advanced stages where it may then become fatal if not for artificial filtering or a transplant. Some symptoms

include nausea, vomiting, fatigue, cramps, high blood pressure, and chest pain.

It is important to detect kidney disease early on to prevent it from progressing to kidney failure. The current main

test of the disease is a blood test that measures the levels of a waste product called creatinine. With information such

as age, size, gender, and ethnicity, the doctor is able to determine the millimeters of waste that one’s kidneys should be

able to filter in a minute. In general, if a person’s filtration rate is less than 90 milliliters per minute, it may be a cause

for concern. Other tests include urine tests, ultrasound scans, MRI scans, CT scans, and kidney biopsies. However,

blood tests may be uncomfortable for those who have to take out their own blood, can lead to infections, and are

inconvenient and expensive as it requires trained medical personnel. This requires a visit to the doctor, a trip to a lab

to extract the blood, and the use of expensive machines that most people cannot afford, which takes up a lot of time.

1.2 Solution

I will re-engineer an Android-based experimentation application that will be used for Chronic Kidney Disease de-

tection by improving components of the app, including test strip detection zone localization, detection zone focus,

capture quality, and dynamic model loading. Using a smartphone’s camera directly in the application, users will be

able to manually focus on an area of the view in order to take sharp photos of the test strip that will then be analyzed.

The camera has to detect where the test strip is and where the detection zone of it is and then check if it is in focus.
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If so, the pixels of the detection zone will be sent to the machine learning algorithm to be analyzed to get the results

to the user. By scanning the test strip, the application will be able to determine quickly and accurately the health of

the user’s kidney, and all of this can be done at home with the images being stored securely online. This will provide

a massive advantage over blood tests as it requires only a few drops of blood compared to a vial in a blood test. In

addition, this app can be used in existing inexpensive phones with test strips that are less than a dollar each, making it

very important for those who cannot afford insurance or live in developing countries. This can make a huge difference

in early detection of CDK in these areas where people would otherwise disregard the tests in fear of not having enough

money.

1.3 Functional Requirements

The Kidney Health App must be able to log users in with a password and email in order to save and store information

that is specific to each person. It must be able to take photos using the smartphone’s camera and to focus on a given

part of the screen. It must check that the area is in focus or it will change the focus factor until it is focused, then it

can take a picture. To do this, the algorithm will be taking screenshots from the camera. Given a screenshot that was

just taken, the app has to see if it is in focus and find out where the detection zone is. This is done by detecting where

the test strip is and where the detection zone of the test strip is. If it is detected, then it will be checked to see if it is

in focus. The pixels will then be extracted and sent to the machine learning algorithm to get the prediction with the

results. If the user wants to save the image, then they will be able to save it. If the detection zone is inadequate, then

the app will try again from the beginning. In addition, if the detection zone is not in focus with the algorithm, the user

will be able to use manual focus. This is done by taking the center point of the detection zone, deciding which way

to change the aperture of the camera, and the function telling us if we are in focus by how much. Otherwise once it is

finished, the user will be displayed a screen that displays all of the tests that have been taken.

1.4 Constraints and Technologies Used

This app will be constrained by the Android operating system using the Camera2 API. It will be able to access functions

that are specific to the Camera2 API to access the manual focus mode of an Android smartphone. Development of

the Android application will be done through Android Studio using the Kotlin language. This application will not run

on Apple devices that are running the IOS operating system. It will make use of computer vision algorithms, deep

learning prediction algorithms, and database storage. The application will only be designed to work with Android

smartphones.
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1.5 Use Cases and Design Rationale

Once finished, this application will be used in lower income areas where people cannot afford expensive hospital blood

tests. The test strips that are less than a dollar each require only a few drops of blood compared to a vial, and this

makes it very important for those who cannot afford insurance or live in developing countries. Android phones are

much more widespread in these areas due to the lower cost, and making them quick and inexpensive takes out the time

spent on making a trip to the hospital and waiting for a result. On the other hand, iPhones tend to have higher cost,

leading to less customers in these areas. Current blood tests require trained medical personnel, including a visit to the

doctor, the lab for extraction of the blood and the use of expensive machines. This takes up a great deal of time and

money that many people in low income countries may not have or be able to afford. The application will be able to

deliver the results at home in a matter of minutes.

1.6 Risk Analysis

Issue Probability Severity Solution

Unable to manually focus Likely Not Severe Use Autofocus instead

Falling behind on app development A Little Likely Slightly Severe Create and update timeline often

Lacking direction Unlikely Severe Consult with Dr. Anastasiu

1.7 Diagram and Timeline
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Login Screen 
that asks for 
email and 
password and 
checks if user 
has account

No account?
Register and 
put information 
into database

Yes account?
Check 
information in 
Database and 
log in

Camera View

Put Test Strip into view. 
Check where detection 
zone of strip is and if 
focused

In Focus? 
Check with 
algorithm

Not in focus?
Manual focus with 
slider through 
drivers specific to 
camera API 

Change aperture 
of camera until in 
focus through 
algorithm

Show User result 
of the prediction 
and ask to save 
image

Extract Pixels of 
Detection Zone and 
send to Machine 
Learning algorithm

Figure 1.1: Diagram flow chart
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November 4 - 
Finish initial 
diagrams and 
turn it in

December 9 - 
Finish up 
document and 
turn in

November 25 - 
Finish the 
Literature Survey

January 2023 - 
finish login page 
and basic 
camera function

March - Test the 
application and if 
it detects focus 
factor

May - Write final 
paper

November 11 - 
Find all of the 
sources and test 
autofocus to 
understand

December 2 - 
Put survey into 
Document

December - 
Presentation

February - 
Machine learning 
algorithm and 
Manual Focus

April - 
Presentation

Figure 1.2: Timeline
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Chapter 2

Literature Survey

2.1 Introduction to the Literature Review

In this chapter, we review works by researchers related to several areas of the project, such as the smartphone camera,

camera focus, deep learning, and machine learning.

2.1.1 Smartphone Camera Technology

Blahnik and Schindelbeck [1] focused on defining smartphone imaging technology and its applications. Smartphone

cameras have been a loyal companion for most people now due to their constantly improving portability, connectivity,

and image performance. For the last couple of years in smartphones, more and more of them are debuting with multi

camera systems, along with 3D acquisition systems such as time-of-flight sensors. When the iPhone came out in 2007,

although it was outranked in some areas by other previous smartphones, the revolutionary parts were the controls,

which featured only one button and a touchscreen that allowed for precise control, eventually replacing mechanical

keyboards. With cameras, there are several requirements. The image sensor should be as large as possible to allow as

much light as possible. With light, fundamental disadvantages such as image noise, reduced dynamic range, longer

exposure times, and motion blur are all reduced.

Zhang et al. [2] discussed the autofocus system and the evaluation methodologies. The autofocus system in cameras

has rapidly become more popular over the last several decades. Autofocus is directly embedded in a camera and is

designed to bring the best focused image to the viewer within a few seconds without them needing to do it manually.

It is a feedback control system that is composed of three parts. The first is a motor that drives the camera lens to move

along the optical axis to find the lens position of best focus, the second is a group of lenses that converge light rays to

the image sensor, and the third is a processing unit that computes the focus value per frame and issues control signals

to the motor. The evaluation is determined by accuracy and speed. One popular method due to its performance and

low cost is contrast-based autofocus. Its basis is the search algorithm, with the simplest one being global search. This

is when the autofocus system measures the focus value at every lens step. Other algorithms include rule-based search,
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model-based search, coarse to fine search, curve-fitting-based methods, and machine-learning methods.

Abuolaim et al. [3] defined and explained autofocus for smartphone cameras. Autofocus on smartphones is the

process of determining how to move a camera’s lens so that a certain scene content is focused. Autofocus systems

use algorithms such as contrast detection and phase differencing. An issue is that determining a high-level objective

regarding how to best focus a particular scene is less clear as different smartphone cameras “employ different AF

criteria; for example, some attempt to keep items in the center in focus, others give priority to faces while others

maximize the sharpness of the entire scene. The fact that different objectives exist raises the research question of

whether there is a preferred objective.” The work in this paper aims to revisit autofocus for smartphones within the

context of temporal image data by describing the capture of a new 4D dataset that provides access to a full focal stack

at each time point in a temporal sequence. Using this dataset, we have developed a platform and associated API that

mimic real AF systems by restricting lens motion within the constraints of a dynamic environment and frame capture.

API calls let algorithms simulate lens motion, image access, and low level functionality such as contrast and phase

detection.

Nguyen et al. [4] discussed the challenges and issues for optical camera communication based android camera

2 API. Smartphones are constantly evolving and upgrading hardware and software. For the camera, the Camera 2

Application Programming Interface is the forefront of the software for smartphone cameras. It configures the camera

device as a pipeline, allowing it to change the parameters for capturing a single frame by capture request, raptures

the single image per the request, and outputs one capture result metadata packet with all of the requesting information

about the state of the device at the time of capture, and the final settings used in TotalCaptureResult. Displaying camera

previewed images are done through Surface View, Texture View, or Image View. The CaptureRequest describes all of

the capture factors needed by a camera device to capture an image. Using the Camera 2 API, developers can set the

manual shutter speed, frame rate to image data output support, and use logical and easy-to-use algorithms. It allows

for exact frame rate or shutter speed configurations, although this depends on the hardware of the camera.

Nishiyama and Mizoguchi [5] designed a cognitive support system for cosmetic skin analysis support by having

users take pictures of their skin to transmit. This is done for a skin diagnosis that will be used to promote the sales

of cosmetics. They do cognitive support through a smartphone so that advice on the operation is transmitted to the

user in real time, allowing them to perform their own skin diagnosis.The process of this application is as follows. The

user selects a domain by tapping the rectangle on the monitor with a finger and the selected portion is transmitted

to the diagnosis and analysis server. The result is then displayed to the user. The application uses Camera API

(android.hardware.Camera) and focuses the camera through android.hardware.Camera.AutoFocusCallback. It uses

android.app.Activity for the display module and android.hardware.SensorManager for the sensor module. Some other

modules such as the speech module, communication module, and cognitive support modules are also used.

Kitano et al. [6] discussed a method used for estimating the distance between objects in photographic images.
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This is known as the depth from focus, or DFF method. Although this method has already been implemented through

image-side telecentric optical systems because a change in image magnification becomes a problem due to differences

in focus positions. Therefore, there have been no examples of this method having been implemented using a general

optical system camera, such as a smartphone. In this study, we implemented an image-distance estimation program on

the basis of the DFF method using an Android smartphone camera. This paper describes the possibility of estimating

the distance between objects in an image taken with the camera of a general smartphone by using the DFF method.

This paper also describes how we plan to resolve current flaws with the method that were discovered from this study.

Wachel et al. [7] discussed a simple model for on-sensor phase detection algorithm. In smartphones, focusing

is seeking for the image being the best approximation of the captured scene. The proposed autofocusing algorithm

is a stochastic optimization type. A scene is in focus when the sensor is in the image plane, where all rays from a

single point at the scene converge into a single point A popular approach is to use the sequentially collected images

with their variance serving as a focus function, and this is known as contrast-detection auto-focusing which also

includes algorithms based on an image histogram or its gradient analysis. Since contrast detection does not require

any additional equipment, it is very commonly used in digital cameras. However, a single image does not provide

information about either the distance between the sensor and the image plane or the direction toward the sensor that

should be shifted in order to attain a focused image. As a result, these algorithms seek it iteratively in the back-and-

forth manner, which requires capturing an image in each position. These algorithms are usually derivatives of the

stochastic approximation routines and rather slow and not directly applicable in object tracking or video applications.

Phase detection algorithms can overcome these deficiencies. In phase detection, a single image is split into two, left-

and right-hand side halves, and is achieved with a separate optical path. As a result, this is often used in digital SLRs.

If the image is out of focus, then the half-images are shifted with respect to each other. This phase shift maintains

information about the distance between the sensor and the image plane and the direction towards the sensor should be

moved. Phase detection is faster than contrast detection as a single but split image is enough to determine the correct

sensor position. Masking makes it possible to split a single image without additional optical equipment.

2.1.2 Deep Learning

Sanga et al. [8] conducted a study aimed at developing a mobile application for early detection of banana diseases

with deep learning by using a dataset of 3000 banana leaves images. They pre-trained the models on Resnet152 and

Inceptionv3 Convolution Neural Network architectures with the Resnet152 achieving an accuracy of 99.2 percent and

Inceptionv3 an accuracy of 95.41 percent. Inceptionv3 was chosen over Resnet152 for Android as it has lower memory

requirements. Once complete, the application that was developed was able to detect the two diseases with a confidence

level of 99 percent of the captured leaf area. The researchers employed deep learning models and transfer learning

techniques and assessed the performance of the deployed tool to detect banana diseases. They set their result to have
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the percentage confidence level in detection to be at least 70 percent as otherwise the app will recommend having a

clear image of the captured leaf. The results of this study were that early detection in real time is very important for

banana diseases to improve banana yields.

Wang et al. [9] discussed the development of smartphones, laptops, and mobile devices and how they have also

furthered the development of artificial intelligence applications on these devices. The information obtained from the

cameras, microphones, and sensors of a smartphone such as video, audio, and acceleration can be provided to mo-

bile deep learning applications, or MDLA. Some examples of what mobile deep learning applications provide are

malicious software detection, app recommendation, user verification, mobile visual tasks, mobile web browsing op-

timization, human activity monitoring, medical health monitoring, and other fields. These applications can support

distributed machine learning, federated learning, multiple smart IoT applications, and other services that use mobile

big data. The main bottleneck of mobile deep learning applications involve storage, calculations, high power and

bandwidth consumption, and users’ reluctance to download these applications in conjunction with limited resources of

mobile devices. The deployment of MDLAs allows for the migration of a large number of centralized applications to

the mobile end. For example, instead of a user having to manually record their meal information, they can instead use

a smart spoon. Running MDLAs locally without a third party involves reducing resource requirements or optimizing

hardware to make it more suitable by either compressing the deep learning model or reusing intermediate computing

results or maximizing the rate of utilizing device resources through precise dispatching among multiple deep learn-

ing tasks.Another direction is gaining support from background servers by offloading the running of tasks to reduce

computing delay.

Sun et al. [10] defined herbal medicine as the practice which includes herbs, herbal materials, herbal preparations,

and herbal products. As herbs are basic and are the source and main components of other forms, there must be a focus

on quality control of the herbs. For herb recognition, manual and automatic recognition was proposed. Automatic

recognition is based on the idea that using herb images and bringing quick candidate categories to help manual recog-

nition find the decisions faster. The researchers proposed a deep learning based network compression algorithm to

compress the Deep Neural Network into a smaller one so that it could be used in mobile devices. The three steps of

the application are that first, the image processing is operated on each herb image for the preparation of Deep Neural

Network computation. Afterwards, a DNN runs on that image to get confidence scores for each category, and lastly,

the scores are ranked with top K herb categories to show the results of the recognition. By compressing the algorithm,

herb recognition using automatic recognition can be employed in laboratories with limited resources.

Basavaraju et al. [11] discussed learning techniques for mobile Android applications. A smartphone constitutes a

sensor carried by humans that can be exploited to provide even more services through data obtained from its cameras,

gyroscope, GPS, and accelerometers. Smartphones occupying 52.8 percent of the worldwide market share today are

Android devices. There are three machine learning paradigms. They are supervised learning, unsupervised learning,
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and reinforcement learning. The researchers in this paper focus on supervised learning, which consists of “algorithms

that learn a model from externally supplied instances of known data and known responses to result in a general

hypothesis, such that the learned model can be used over new data to predict responses about future instances.” In

other words, they are performed with examples by being given existing data with examples that have been assigned

one or more labels based on their input values and response values. These examples are then used to train the system

for the function that it is supposed to learn. Once the machine learns the function, it is then able to work on new

data. The two categories of supervised learning are classification, which is used when the response values differentiate

between various discrete classes, and regression, which is used when the response values are continuous, such as

numerical data. Several applications that implement machine learning were chosen for examination. With WalkSafe,

“The contributions of their work are as follows. 1. The app includes intricate design with vehicle detection and

pedestrian alert. 2. It incorporates machine learning algorithms on the phone to detect the front views and back views

of moving vehicles. 3. It exploits the phone API (Application Programming Interface) to save energy by running the

vehicle detection algorithm only during active calls and using mobile sensors such as a back camera to detect vehicles

that could be approaching the user.” It uses image recognition through a model that was first trained offline, then

uploaded for online vehicle recognition. The steps consisted of dataset building using images from different sources

to serve as a basis, training for image preprocessing, and feature extraction and classification. However, if there are

implementation problems, the image processing technology could drain the battery life. A Fruit detection app uses

microphone sensors to estimate the ripeness of watermelons. To detect it, the watermelon has to be thumped in order

for the sound to be analyzed and the result to be given. The datasets were trained by thumping acoustic response

signals.

Herbst et al. [12] used deep learning to classify images of rapid human immunodeficiency virus, or HIV tests that

were acquired in rural South Africa. They used a library of 11,374 images, and deep learning algorithms were trained

to classify tests as positive or negative. When the algorithm was deployed as an application, high levels of sensitivity

(97.8 percent) and specificity (100 percent) were found, and the number of false positives and false negatives were

reduced. Their findings lay the foundations for a new paradigm of deep learning called enabled diagnostics in low and

middle income countries. Their diagnostics “have the potential to provide a platform for workforce training, quality

assurance, decision support and mobile connectivity to inform disease control strategies, strengthen healthcare system

efficiency and improve patient outcomes and outbreak management in emerging infections.”

2.1.3 Machine Learning

Ganesan [13] discussed how machine learning and artificial intelligence revolutionizes mobile app development by

allowing apps to identify speech, photos, gestures, and translate voices with high accuracy. For example, Google

Maps uses machine learning to provide directions and real-time traffic information. Both Apple and Google analyze
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the user’s wording behavior to recommend and suggest the next word. Facebook and Youtube use machine learning

in order to recommend videos and products in addition to people a user may know. Snapchat uses it for their com-

puter vision programs. Machine learning cannot be accomplished in a single step and involves iterative and repeating

processes through data exploration, visualization, and experimentation. The steps are to define the machine learn-

ing problem, collect, prepare, and enhance the data that is needed, use the data to build the model by choosing the

appropriate machine learning type and algorithm, training the model, testing, and evaluating and fine-tuning it, and

deploying the model. The four main classifications of machine learning are supervised learning, unsupervised learn-

ing, semi supervised learning, and reinforcement learning. Supervised learning uses a labeled dataset with some of the

inputs already being mapped to the output. Unsupervised learning is when models are trained with unlabeled datasets

and predict the outcome without any human intervention. Semi supervised learning employs labeled and unlabeled

datasets. Reinforcement learning learns from the environment in an iterative method. With machine learning, feature

extraction is the process of fetching information out of data that can identify the desired result. Classification is when

data that has been feature extracted is taken by the algorithm and a formula is created to determine how a new piece of

data can be evaluated. Both feature extraction and classification created a trained model, and prediction is taking the

trained model, feeding it new data, and seeing how accurately it predicts the expected results.

Sarker et al. [14] discussed how in mobile phones, machine learning algorithms typically find insights or natural

patterns in data to make better predictions and decisions in intelligent systems. Deep learning is a part of machine

learning that is used to solve complex problems when using a diverse set of data. Natural language processing derives

intelligence from unstructured mobile content expressed in a natural language. There are several characteristics of

intelligent apps. Action-oriented applications do not wait for the user to make decisions and instead studies their

behavior to deliver personalized and actionable results through predictive analytics. Intelligent applications should

also be adaptive to each user and the difference in their use. They should generate suggestions and make decisions

based on the users’ needs and interests, and they should deliver a data-driven output. In addition, being context aware

means gathering information about its environment at any time and adapting its behavior. Users should feel the same

experience on different platforms through cross-platform operation. Machine learning empowers mobile devices to

“learn, explore, and envisage outcomes automatically without user interference.” A branch of artificial intelligence

is Natural Language Processing, which deals with the interaction between computers and humans using the natural

language. “NLP techniques can make it possible for computers to read text, hear speech, interpret it, measure sentiment

or to mine opinions, and eventually determine which parts are important in an intelligent system” The ultimate goal if

it is to derive intelligence from unstructured data expression in a natural language such as English.

Mcintosh et al. [15] described how machine learning is used to learn functions from data to represent and to classify

sensor inputs, multimedia, emails, and calendar events. Machine learning has been appearing more in smartphones

through voice recognition, spell checking, word disambiguation, face recognition, translation, spatial reasoning, and
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even natural language summarization. However, a major challenge for app developers is that the end-user’s device

only has a limited battery life which means that computationally intensive tasks can drain the batteries of the smart-

phone. Since there are not many guidelines for developers to use machine learning on mobile devices while also being

concerned about battery consumption, the researchers in this paper combine empirical measurements of different ma-

chine learning algorithm implementations with complexity theory to provide recommendations. They were able to

conclude that algorithms such as J48, MLP, and SMO generally perform better with regards to energy consumption

and accuracy. They also found that consumption of energy was related to algorithmic complexity, and for best results

a developer must consider dataset size, number of data attributes, whether the model will require updating, and more.

Kulkarni et al. [16] aimed to evaluate a Pothole Detection System app that uses machine learning on Android.

To detect potholes, the application uses an Android device’s built in accelerometer to collect the x, y, and z axis

accelerations. The pothole detection algorithm runs when the user is driving on the roads and monitors for changes in

the acceleration, adding the current time, geographic coordinates and pothole statistics to the event log. By logging

the condition of the roads with the locations, they can alert local authorities to fix the road and resolve the complaint.

Torres et al. [17] proposed a biometrics-based machine learning approach that supports user authentication in

Android to augment native user authentication mechanisms, making the process more seamless and secure. Our

evaluation results show very high rates of success, both for authenticating the legitimate user and also for rejecting the

false ones. Finally, we showcase how the proposed solution can be deployed in non-rooted devices.

Loke et al. [18] introduced a sign language converter system using hand gesture recognition feature to recognize

the gestures in Indian sign language and convert them to a natural language. It uses Hue, Saturation, Intensity (HSV)

color models for hand tracking and segmentation. Supervised training was used to train the neural network for data

classification. The developed android application can capture images of hand gestures, and these images are sent to a

web hosting server, “from where they are given as input to the neural network in MATLAB for pattern recognition.”

Following this, the hand gesture is mapped to its natural language equivalent and the converted text is sent back to

the device for the user. As the application is easy to use and inexpensive, it can facilitate communication for the deaf,

mute, and those who don’t understand sign language.

Makhod et al. [19] used machine learning and image processing for egg size classification. The paper proposed

an image processing algorithm for classifying eggs by size from an image displayed on an Android device. A coin of

known size is used in the image as a reference object. The coin’s radius and the egg’s dimensions are automatically

detected and measured using image processing techniques. Egg sizes are classified based on their features computed

from the measured dimensions using a support vector machine (SVM) classifier. The experimental results show the

measurement errors in egg dimensions were low at 3.1 percent and the overall accuracy of size classification was 80.4

percent.

Liu et al. [20] created a family doctor app for mobile health service as a result of the improvement of living
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standards that have led to the request of people’s health increasing paid attention and also increasing demand for

hospitalization. This causes hospital overload. The app created uses mobile Internet technology, integrates the idea

of service-oriented implementation and is based on Android mobile development technology, in which the function

of self-diagnosis is implemented using decision tree classification algorithm. The system will provide online medical

treatment and drug information service tools for family members, including consultation with famous doctors, self-

diagnosis of symptoms, convenient drug purchase and case record, etc. After the completion of the system, all the

functions of the system were tested, and its performance was evaluated. The results of the evaluation were generally

in line with expectations. It can run on a variety of operating system platforms and can be flexibly configured and

managed.
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Chapter 3

Methods

3.1 Languages and Features

The languages that this kidney health application will use are Kotlin, Java, and the extensible markup language, also

known as xml. Kotlin is a statically typed programming language that is designed to interoperate with Java. It has

type inference and is Google’s preferred language for an Android application, with features that make developing

applications easier than in Java. For this project, Kotlin is used to program the main features of the application such as

the login screen and the main camera function and features, such as manually accessing different parts of the camera

to manipulate the focus. The application also makes use of Java code, to work alongside Kotlin and build on other

features for the application. Finally, there is the extensible markup language, or xml, which is used to define the UI

layout of the application, or user interface. It is used to build a simple and intuitive interface that the user can easily

navigate through and find the information needed to complete a kidney health test. Details such as the colors, the

layout, the dimensions, and the design of each page is implemented with the extensible markup language.

Development of this application is done through Android Studio, which is the official IDE for Android application

development. Development on Android Studio has a great amount of support and assistance, including an emulator

that can be used to quickly run and test an application without needing to plug in an Android phone. For the API,

the application uses the Camera2API instead of the newer and simpler CameraX as Camera2 is a low level camera

package that has deeper controls for more complex uses, like manually manipulating the lens of a camera to change

the focus, along with other abilities. However, doing this means that the device specific configurations need to be

managed. It provides full access to Google’s camera that the original Camera API and CameraX API do not. OpenCV

is a computer vision algorithm that will be used for the detection zone of the test strip. The goal is to use the circle

detection feature of OpenCV, which requires the hough circle transform to find all of the circles on the test strip, find

which ones create an isosceles triangle, and find the distance between the points in the center of the three circles in each

corner. The database that will be used to store the user information is SQlite, which is a small, fast, and self-contained

SQL database, and is the most used database in the world that comes with Android.
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Figure 3.1: Seekbar

3.2 Seekbar

A seekbar is presented on the camera view. To achieve manual focus, The control af mode, which is the autofocus

mode, is set to off, meaning that the camera will not change the focus by itself when the distance from an object is

altered. The code gets the progress of the seekbar that the user sets it to after dragging it and also gets the value of the

minimum lens focus distance, which is the shortest distance that the camera can be from the subject and still have it in

focus. These two values are then multiplied, and the lens focus distance is set to the new value, which then changes

the level of focus for the camera.

3.3 Login

For the results and information of the user to be displayed on the readings screen, the user first needs to log in with

their username and password. These inputs are then checked in the SQLite database for a matching username and

password, and once that is verified, all of the information associated with the account is sent over to the next activity,

which is the readings page located in results.kt. Intent is used to navigate from one activity, in this case the login

screen, to the next, which is the readings page. Intent.putExtra() transfers data from one activity to the other. In the

code shown, on a successful login, the user’s name, password, username, demographic, and email are all sent over to

be displayed in the readings screen.
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Figure 3.2: Login

3.4 Readings

In the readings screen, Intent.getStringExtra() is used to get all of the associated data from the user and assigns

them to different variables from var value to var value4. The variables are bound to each textview in the layout

file so that each value can be displayed as text on the readings screen. Figure 3.4 shows how a textview is defined.

The android id is used to define which bound value is attached to which textview. In this case, value2 is bound to

android:id=”@+id/uname” through bind.uname.text=value2.
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Figure 3.3: Readings

Figure 3.4: Textview Example
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Chapter 4

Evaluation

4.1 Design

The user starts at the login screen, where they will be able to login if they already have an account, and if not, they can

choose to register instead. In the registration screen, the user inputs their full name, username, password, demographic,

email, race, and gender. Afterwards, they can log in, which takes them to the home screen. At the home screen they

will see the information associated with their account, and they can also choose to go to the camera to take a new test.

In the camera view, the user can manually focus the lens of the camera through the focus distance values to achieve

the desired focus, and whatever value the focus is at will be returned to the user to let them know the current value.

4.2 Challenges

A substantial challenge during the development of the application was manual focus, as there was not a lot of infor-

mation surrounding the feature. The applications that were used as a reference, including the samples that Google

provided, all utilized autofocus, which is achieved by simply setting the control af mode to on. Some of the other

challenges were sending over values to different files of the application such as the name that the user logs into and

displaying it in the home page, and that was achieved with packaging the user information into an intent and sending

it over to the next activity, or file. A huge hurdle was creating the algorithm to detect and highlight all of the circles

on the test strip, find the triangle, and find the detection zone where the algorithm would take place. OpenCV has

been a challenge. As this portion of the project was not able to be completed, the alternative that was proposed was

to implement an algorithm that would allow the user to take a photo after changing the focus of the camera view and

crop the desired detection zone for the final algorithm to analyze the test strip and return the results to the user. Only

the pixels in the cropped area would be sent to the machine learning algorithm to be analyzed. This alternative method

is easier to implement but requires more work from the user when using the application. Instead of the application

automatically finding the detection zone to analyze, the user will need to define the zone themselves.
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Figure 4.1: Login and Register Screen

Figure 4.2: Readings Screen and Camera View
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Chapter 5

Future Work

In the future, efforts will be directed to developing the detection zone algorithm so that the user will not have to

manually crop the image. Other efforts can be made to improve the detection zone algorithm so that it can work even

at an angle instead of needing to be at 90 degrees, or perpendicular to the test strip. With this feature implemented,

it will make it much easier and convenient for users as they would not have to think about keeping the phone exactly

perpendicular to the test strip. It will be able to function at any angle and still be quick and accurate.
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Chapter 6

Societal Issues

Ethical Issues. In terms of ethical considerations, the major consideration during the development of this project is

privacy, as the application takes a user’s private information to run a kidney health test. The application has to ensure

that the information will not be leaked as test results should be private. However, SQLite is local to the device, so

only the user with the device has the information on hand and can access it. Accessing the database also requires a

username and password that the user will need to keep safe. None of the information will be stored on the internet.
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Chapter 7

Conclusion

7.1 What We Have Learned

Kidney Health Disease is one of the most common diseases in the world, and although it is easy to detect early on, the

current methods of testing are painful, inexpensive, and potentially dangerous. This application will make the process

much more simple, efficient, and practical for those who cannot afford to make a trip to the hospital and a lab, and do

not want to wait for their results to come in. All of the testing can be done at home in an Android application.

7.2 Why it is Important

The goal of the Kidney Health Android App is to allow for easier access to kidney health testing. It is more com-

fortable, cheaper for those who do not have money for expensive hospital tests, and is more convenient as it can be

done at home with just a blood test strip and an Android smartphone. Kidney disease is very dangerous, common, and

difficult to detect in its early stages, and an inexpensive method of testing will encourage people to check the health of

their kidney earlier on and with more regularity to get early treatment.
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