
Machine Learning-Based Android Malware Detection Using Manifest
Permissions

J. Todd McDonald

Dept of Computer Science
School of Computing

University of South Alabama
jtmcdonald@southalabama.edu

Nathan Herron
Dept of Computer Science

School of Computing
University of South Alabama

nbh1001@jagmail.southalabama.edu

William Bradley Glisson
Cyber Forensics Intelligence Center

Dept of Computer Science
Sam Houston State University

 glisson@shsu.edu

Ryan K. Benton
Dept of Computer Science

School of Computing
University of South Alabama
 rbenton@southalabama.edu

Abstract

The Android operating system is currently the

most prevalent mobile device operating system
holding roughly 54 percent of the total global market
share. Due to Android’s substantial presence, it has
gained the attention of those with malicious intent,
namely, malware authors. As such, there exists a
need for validating and improving current malware
detection techniques. Automated detection methods
such as anti-virus programs are critical in protecting
the wide variety of Android-powered mobile devices
on the market. This research investigates
effectiveness of four different machine learning
algorithms in conjunction with features selected from
Android manifest file permissions to classify
applications as malicious or benign. Case study
results, on a test set consisting of 5,243 samples,
produce accuracy, recall, and precision rates above
80%. Of the considered algorithms (Random Forest,
Support Vector Machine, Gaussian Naïve Bayes, and
K-Means), Random Forest performed the best with
82.5% precision and 81.5% accuracy.

1. Introduction

The Android operating system has consistently
been a significant contender in the mobile operating
systems market. As of June 2018, the Google Play
store features over 3.3 million apps [1], and as of
December 2018, Android boasts 54.2% of the global
market share [2]. Due to Androids’ consistent
popularity, it has become a prime target for malware

authors. In recent years, Android-powered devices
have become increasingly targeted due in part to their
increased use for business and financial tasks. Apps
now routinely process sensitive financial and
personal information as part of mobile banking,
social media, and communication programs.

Norton Anti-virus (AV) defines malware as
“software that is specifically designed to gain access
to or damage a computer, usually without the
knowledge of the owner” [3]. Norton further
delineates types of malware as spyware, ransomware,
viruses, worms, Trojan horses, and adware. In 2017,
Kaspersky Labs reported the detection of 5,730,916
malicious installation packages, 94,368 mobile
banking Trojans, and 544,107 mobile ransomware
Trojans [4]. As such, it can be said that there exists a
strong need for accurate and reliable commercial
anti-virus (AV) tools in the Android environment and
that malware in mobile devices can be a substantial
threat [5].

While academicians are interested in detecting
malicious activity [17,30-31], opportunities abound
to improve Android malware detection accuracy in
commercial AV. Zhou and Jiang [7] evaluated
Android malware detection using the following anti-
virus programs: AVG Antivirus Free v2.9 (AVG),
Lookout Security & Antivirus v6.9 (or Lookout),
Norton Mobile Security Lite v2.5.0.379 (Norton),
and TrendMicro Mobile Security Personal Edition
v2.0.0.1294 (TrendMicro). The anti-virus programs
were used to scan separate devices afflicted with
1,260 samples of malware. Of the 1,260 samples,
AVG was able to detect 689 samples (54.7%),
Lookout 1,003 samples (79.6%), Norton 254 samples

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 6976
URI: https://hdl.handle.net/10125/71460
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

mailto:jtmcdonald@southalabama.edu
mailto:nbh1001@jagmail.southalabama.edu
mailto:glisson@shsu.edu
mailto:rbenton@southalabama.edu

(20.2%), and TrendMicro was able to identify 966
samples (76.7%). Nguyen et al. [17,30] reported
similar results in a study of AV accuracy in detecting
repackaged apps, where a newly repackaged botnet
version of the popular Snapchat application was not
detected by 12 different AV products including
AVG, CM Security, Avast, Norton, Kaspersky, and
others. In addition, the representative zero-day
sample was not detected by online research engines
such as Sandroid, AndroTotal, VirusTotal, and
OPSWAT [17].

This overall environment spurs the need to
improve the security of the large market share of end-
users. This research addresses whether malware can
be detected by analyzing permissions that accompany
Android binaries, supplementing prior work with
smaller test data sets and similar machine learning
(ML) algorithms [25,38-40]. A case study analyses is
performed on a corpus of 4597 known benign
Android apps and 6000 malicious Android apps, with
comparison to a popular AV engine (VirusTotal)
based on four different single algorithm ML
approaches. The balance of the paper provides
background and related work (Section 2) and a
description of the case study methodology (Section
3). Section 4 presents data from the analysis of
commercial anti-virus (AV) engines, as well as
effectiveness results of ML algorithms. Section 5
draws conclusions based on the results and identifies
future work related to this research.

2. Background

The influx of mobile devices and applications is

pressing the need for mobile security research.
Android applications are deployed in an Android
Package Kit (APK) format, which relies on
traditional ZIP compression [4]. Repackaging is a
significant threat because malicious reverse
engineering of APK files is relatively easy given
readily available standard open source tools [5]. In
the traditional attack model, repackaged apps use
cloned code along with inserted ads that redirect
advertisement revenue [5-7]. Likewise, repackaged
apps can have inserted malicious code on top of
benign code that will be spread by unsuspecting end-
users [8]. Malware detection approaches are broadly
categorized as static and dynamic. Static approaches
use parts of the APK file without running the
application, while dynamic approaches require some
type of sandbox or emulation environment to execute
the app for collection of data [9]. Heuristic methods
utilize rule-based inference to model apps as
malicious or benign.

2.1. Android Architecture

The Android software stack, illustrated in Figure

2, provides a layered approach for supporting
Android applications. Android app are compiled from
source code, data files, and resource files using the
Android Software Development Kit into an APK, an
Android package, which is an archive file with a .apk
suffix [9]. An APK file contains all the required
content of an Android application and is the file that
is used for application installation. All components of
the application must be accounted for in a single
AndroidManifest.xml file that resides in the APK
archive.

Figure 1: Android OS Architecture [23]
This research focuses on using the manifest file as

input to chosen machine learning algorithms. The
manifest file also stores a large amount of
information such as permissions required by the
application [10]. The exact contents of the manifest
file vary based on the application: an example of an
Android permission statement is shown in Figure 2.
Developers may also define custom permissions.

Figure 2: Manifset Permissions Labelling [9]

2.2 Android Malware

The landscape of Android malware is ever-

changing. In March 2019, Kaspersky Labs released
its annual evaluation of mobile malware showing that
its services detected over 5.3 million malicious
installation packages [11]. McAfee released a report
in the first quarter of 2019, indicating that they had
detected nearly 2 million samples of new mobile
malware in quarter four of 2018 alone [12]. Some

Page 6977

common types of malware seen throughout 2018
were: Adware [13], Banking Trojans [14], Mobile
Crypto Miners, and Repackaged applications [15-16].
The malicious datasets used in this research come
from a wide variety of virus categories, but with no
specific classification given to their family or type.
Thus, the results of the research represent a true
random sampling of potential Android malware that
may be encountered in the wild. Section 3.1 provides
more detail about malicious APKs used in this
research study.

2.3 Static Detection

Static analysis is a process by which a program is

analyzed without execution. The most common form
of malware detection in AV programs is based on
signature analysis. Signature-based detection works
by scanning a file and then generating a unique
identifier, a signature, for that specific file. The
signature creation process varies between anti-virus
programs. Typically, a hash of the file is created and
compared against a table of the hashes of known
malicious files. If the hash of the scanned file
matches that of a known malicious file in the
database, then it can be assumed to be malicious.
Items that frequently undergo review in static
analysis processes are as follows: source code, assets,
manifest files, string patterns, and files that are
known to be malicious. The shortcoming of
signature-based detection methods is that if no
signature exists for comparison, then nothing can be
said about the file in question.

Schmidt et al. [18] developed a method of
comparing application function calls with the
function calls of malicious samples using the Prism,
and Nearest Neighbor Algorithms (PART). Although
they reported high accuracy for their static detection
approach, they stated that in a real-world scenario,
the tasks they performed would be impossible due to
resource limitations. As a conclusion, they cited the
need for further work to create time-efficient methods
of detection.

Desnos [19] states that Android’s open-source
framework and its Java source code allow for
malicious authors to tamper with Android
applications easily. Therefore, they implement a
method of static analysis using similarity distance to
determine if an application is malicious or benign.
Though further optimized than previous work, the
authors state that there is a need for automated
behavior analysis and that manual analysis and
signature-based detection methods are insufficient.

Feng et al. [20] developed Apposcopy, a
semantics-based method for identifying Android

malware that aims to steal private user information.
Apposcopy makes use of static analysis procedures as
well as analysis of control flow to detect malware.
Using 1027 malicious samples from 15 different
malware families, Apposcopy reported an accuracy
of 90% with 103 false negative (FN) and only 2 false
positive (FP) results. They also analyzed 11,215 apps
from the Google Play store, with only 16 reported as
malware.

There is also current literature that bases static
detection of malicious Android apps on machine
learning in general, which is the focus of the research
presented in this paper. Tam et al. [23] address issues
about the sandboxed nature of Android applications.
To access the system, all applications must be
granted permissions by the Android Permission
System during installation. Once installed and
permissions have been given and enforced by the
kernel, applications can interact with each other
through the system with the use of API calls.
Unfortunately, these rules apply to anti-virus
applications as well and prevent applications from
being inspected by other applications. Due to this
reason, signature-based detection methods are the
most viable [23].

Kang et al. [24] proposed a means of detecting
and classifying Android-based malware using static
analysis. Their study centered around three
significant points. First, detection methods using
static analysis should be associated with creator
information. In particular, their approach used the
serial number of certificates and analysis of app
components such as permissions to determine
malignancy. Second, a scoring algorithm was
implemented that placed malware into families based
on scores calculated from weights assigned to API
calls, permissions, and system commands. Third, the
proposed method was tested on live malware samples
including 51,179 benign and 4,554 malicious
samples. Their approach was able to correctly detect
malignancy in 98% of all samples as well as correctly
classify samples into corresponding malware families
90% of the time. Such results show that features
based on certificate signatures, API calls,
permissions, and system commands form a promising
line of research.

2.4 Detection Based on Manifest Files

Our work is not the first to utilize manifest files as
the source of static analysis or machine learning
algorithms. The work of Milosevic and
Dehghantanha [25] utilized static malware analysis
techniques using both supervised and unsupervised
machine learning methods. Of similarity to the work

Page 6978

in this paper, one of their four experiments utilized
supervised machine learning algorithms where
permission-based classification was in focus. For the
training of their machine learning models, they made
use of the M0Droid dataset, which includes 200
malicious and 200 benign Android applications.
Algorithms tested in this experiment include SVM,
Naïve Bayes, C4.5, and JRIP. The results of their
permission-based analysis test are shown in Figure 3.
The case study reported in this paper is similar
because we also use Random forest, Bayesian
networks, and SVM for classification based on
Android permission features, but their result comes
from a much smaller data set. Further comparison of
results is provided in Section 4.

Figure 3: Permission-Based Classification

Using Single ML Algorithms [25]

In a 2016 study, Kumaran and Lee [38] report
results of a study of 500 benign and 500 malicious
apps. They focused on 183 features derived from
requested permissions, declared permissions, and
intent filters in the Android manifest file, which
formed the basis of three data sets. Their reported
best accuracies of various ML algorithms across the
three sets were 63.6% for intents, 90.5% for
permissions, and 91.7% for combined permissions.
For the combined dataset, 6 different ML algorithms
were studied (of which SVM is also considered in our
study) and the following accuracies using ten-fold
cross-validation were reported: Linear Discriminants
(82.6%), Cubic SVM (91.7%), Weighted KNN
(91.4%), Complex Tree (89.3%), Linear SVM
(89.2%), Course KNN (79%). True Positive Rate
(TPR)/False Negative Rate (FNR) of benign apps
was reported as 94.2%/5.8% and TPR/FNR rates of
malicious apps was reported as 89.2%/10.8%. In
comparison, our case study uses a larger data set and
three different ML algorithms, and only considers
permissions. Further comparison of results is
provided in Section 4.

In a 2017 study, Wang et al. [39] report
development of Mlifdect, which provided a holistic
study of parallel machine learning processing with
combined classification of manifest information.
Closer to the data set in this research, Mlifdect
performance was evaluated on app dataset of 3,982
malicious and 4,403 benign apps using ML

algorithms with 10-fold cross validation. Unlike this
work, their approach fused information from 3
different ML algorithms (KNN, J48, and Random
Forest) computing in parallel on 2 different features
sets. One feature set used a combination of API calls,
requested permissions, intents, and components and
the other feature set contained command, hardware,
protected strings, and network URLs. Our approach
only focuses on permission and uses two of the same
ML algorithms: K-means (similar to KNN) and
Random Forest. However, we only consider the
efficacy of a single algorithm instead of fusing
combined results. Wang et al. [39] extracted 65,000
features covering eight categories of Android
manifest permissions. Reported accuracy from
Android benign and malware apps with Mlifdect was
99.7%.

In 2013, Sanz et al. [40] reported results of
Android malware analysis using MAMA, based on
manifest analysis. They consider both permissions
and “uses” features found in the manifest file, where
we only consider permissions in this study. They
used variations of Naïve Bayes, Bayesian Network
(K2 and TAN), Support Vector Machine (Polynomial
and Normalized Polynomial Kernel), J48, KNN (K =
1, 3 and 5), and Random Forest (N = 10, 50 and 100).
Figure 4 shows their reported TPR/FPR and accuracy
results for permissions-only analysis. Best results
were with Random Forest, using a population of 100
trees, achieving an 87% detection accuracy. Of note,
their study down-selected a balanced set of 333
benign and 333 malicious apps for analysis, whereas
our study is on a larger and more modern set of apps.
Further comparison of results is provided in Section
4.

Figure 4: Permission-Based Classification

Using Single ML Algorithms [40]

2.5 Dynamic and Heuristic Analysis

Dynamic analysis methods are less frequent in

commercial anti-virus scanners due to their intense

Page 6979

resource requirements and complex nature. Burgera
et al. [21] developed an approach for automated
dynamic analysis as a means of malware detection in
Android devices, called Crowdroid. The detector
relies on traces submitted from many users across
many different types of devices. While Crowdroid
did implement a method of automatic detection, the
process still relied on signatures collected from users.
In addition to being resource-intensive, the dynamic
analysis also has the drawback that a large number of
false positives may be generated.

Heuristic analysis is a relatively new approach
[36] and makes use of a wide variety of methods to
identify components of a program that can be used to
create an inference as to the nature of the said
program. A set of rules is established that determines
the criteria for what flags a file as benign or
malicious. The rules vary widely, depending on the
author. However, they are usually generated by using
pre-created algorithms and models that are used in
data mining and machine learning. An example of
such is the work of Suarez-Tangil et al. [22], which
made use of vector space modeling and text mining
to compare applications to generalized malware
samples.

3. Machine Learning Methodology

The goal of this research is to examine efficacy of
single-algorithm machine learning techniques on
manifest permissions on a reasonably sized Android
app data set. The aim is to evaluate performance in
comparison to commercial AV products to see if
single aspect detection (manifest permissions) using
single ML algorithms provide as good or better
results. Secondarily, the case study approach extends
prior results on manifest-based feature detection by
either examining a larger set of more recent apps and
different ML algorithms. The methodology is divided
into five phases, detailed next.

3.1 Phase 1: Setup and Data Acquisition

To begin, an environment is created in which
analysis on malicious applications can be safely
performed. For the test environment, experiments are
executed on a Windows10 Pro Edition host machine
running VMWare Workstation 15 Pro with an
Ubuntu version 19.10, Eoan, operating system. This
virtual environment provides the guarded sandbox in
which all tests are conducted. Scripts used in
experiments are written in Python 3.7 and Bash.
Given the setup of the virtual environment, data
sources are migrated to the environment which

include a collection of 4597 benign applications from
the Google Play store that have previously been run
through anti-virus to verify their benign nature.
These samples are part of a pre-existing internal
private repository of APK files that were pulled from
the Google Play store in 2017 and verified to be
benign through VirusTotal. The benign samples act
as the control set of data. In addition to the samples
collected from the Google Play store, 6000 malicious
samples are collected from the AndroZoo [28]
repository. The samples are sourced from both the
Google Play store and AppChina third-party market,
and no sample exceeded 30 megabytes (MB) in size.
The AndroZoo repository hosts a large collection of
malicious Android applications with classifications of
malware ranging from adware to repackaged
applications.

All malicious samples are randomly selected
applications that are no older than January 1st 2018
from the AndroZoo repository using the python
library (AZ) that AndroZoo provides [28]. This
sampling ensured the malicious set was
representative of the current Android environment.
For collection of the applications taken from
AndroZoo, a script created in Python 3.7.3 is used
that allows download from the repository. An API
key must be provided to the script in order to run and
can be requested by emailing androzoo@uni.lu and
stating the name of the research institution and the
name of the individual requesting access. All
applications for AndroZoo access must be sent from
a university or research institution email account.

3.2 Phase 2: Evaluating Commercial AV

As part of the research approach presented in this
paper, performance of machine learnings algorithms
is compared against performance of typical and
current anti-virus engines used commercially. In
order to evaluate the effectiveness of common
commercial anti-virus engines, the malicious and
benign data sets are submitted to VirusTotal [32] in
their entirety. The VirusTotal free API is used for
such uploads. The free API allows for submission of
1000 samples per day, and 30,000 samples per
month. An API key can be requested from
VirusTotal simply by navigating to the website [32]
and signing up for a free account. The VirusTotal
website provides a means to upload samples in batch
by using the officially supported Windows or Mac
application.

To facilitate the upload of the data set used in this
research, the entire data set is split into smaller
batches of roughly 900 samples each. This resulted
in seven batches for the malicious set and five for the

Page 6980

benign set. It should be noted that this is solely for
the purpose of uploading the samples to VirusTotal,
and that the samples are not split into batches when
chosen machine learning algorithms are applied
during the algorithm evaluation phase.

3.3 Phase 3: Data Preparation

In phase three, APK files are decoded as part of
data pre-processing for machine learning (ML)
algorithms. The APK files, much like unextracted
ZIP archive files, are largely useless in a raw form.
To decode the APK, the Apktool version 2.4.1
application is used, which represents a common
command line interface tool used for reverse
engineering Android applications. Running Apktool
requires its wrapper script, its JAR file, and a Java
Runtime Environment (JRE) version of 1.8 or higher.
Running Apktool against a given APK file produces
several items: 1) an assets folder containing all the
application assets; 2) a folder containing metadata; 3)
SMALI files; and 4) the AndroidManifest.xml file
(referred to simply as the manifest file). After
retrieving the file of interest (i.e., the manifest file),
the manifest file is converted from an XML
document into a format that the ML algorithms can
work with, which is a comma separated value (CSV)
file containing no string data. All APKs in the benign
and malicious sets are processed in this manner.

3.4 Phase 4: Algorithmic Choice

For testing effectiveness of various ML
approaches, two options exist for selecting a set of
features for a given manifest file: 1) manually
selecting or 2) allowing an individual algorithm to
place weight on the individual permissions. In this
research, the latter approach was chosen, allowing
ML algorithms to place weights on the individual
permissions to create the set of features. In some
ways, this approach is similar to the technique used
by Sato et al. [26], where key malicious features
identified by those researchers included permissions
such as BOOT_COMPLETED, SMS_RECIEVED, and
CONNECTIVITY_CHANGE. Additionally, custom
permissions are included in this research, which are
taken from the sample sets created for analysis.
Additional inspiration for determining features is the
list of commonly used permissions, which were
adapted in this research from the work of Sarma et al.
[27]. Figure 5 shows the twenty most common
parameter sets. The algorithms utilized for this
research are: Support Vector Machine (SVM),

Gaussian Naïve Bayes, K-Means, and Random
Forest.

Figure 5: Common Permissions [27]

Rationale for choosing these four ML algorithms

among many other possible choices are delineated
next. Naïve Bayes is one of the simpler classifiers,
which often results in competitive performance
despite the assumption of independence between
attributes; this approach depends on Bayesian
probability [34,35]. Random Forest has a history of
strong performance, often leading to near optimal
results; it also represents a tree-based learning
paradigm [34,35]. SVMs have a strong theoretical
basis for their operation, and like Random Forests,
tend to provide strong results; it is based on
optimization of hyperplanes [34,35]. K-Means is a
clustering approach that allows for the discovery of
natural groupings within the data; by assigning
"clusters" the label of the majority class, it can be
converted into an effective classification solution
[34,35].

3.5 Phase 5: Evaluation

In the evaluation phase, the four chosen ML
algorithms are exercised against the benign and
malicious data sets. Results are taken from the
iterations of testing, which produce a binary
classification on whether each manifest file is either
malicious or benign. A malicious file that is correctly
classified as malicious is counted as true positive
(TP), whereas a malicious file classified as benign is
considered a false negative (FN). A manifest file
from a benign APK that is classified as benign is
considered a true negative (TN), whereas a benign
sample categorized as malicious is counted as a false

Page 6981

positive (FP). These values form the basis of
detection rates which are used in further statistical
measures to assess effectiveness of a given algorithm.
Detection rates from the four machine learning
algorithms are compared against the detection rates
of commonly used anti-virus software featured on
VirusTotal, which includes over 70 anti-virus engines
[33]. Data from all evaluations are used to determine
which methods perform best in terms of specificity,
sensitivity (recall), accuracy, precision, F1 score, and
the output of their respective confusion matrices.

4. Experimental Results

This section presents results and analysis of each
of the four chosen ML algorithms and the evaluation
of samples using VirusTotal commercial anti-virus.
Effectiveness of ML approaches are compared
against this baseline of results for typical commercial
AV applications, along with prior work.

4.1 Commercial Detection Engine Evaluation

To begin, the benign set of APKs are uploaded to
VirusTotal. There were issues submitting some
samples to VirusTotal, as files larger than 32mb in
size are unable to be loaded. Therefore, these
samples returned a null value and are excluded from
analysis results. Of the 4,279 samples successfully
submitted to VirusTotal from the benign set, there
were a total of 789 unique false positives, with 2,879
total instances of a false positive instance occurring
across all detection engines. 789 unique instances of
false positives (FP) resulted in a false positive rate of
18.4%. 2,879 total instances of a false positive
evaluation out of 253,105 total evaluations yields a
1.137% false positive rate against all instances of
evaluation.

While VirusTotal offers support for over 70
engines in total, not all engines are able to process all
samples. For a given sample, the number of total
engines that were able to process the sample were
recorded. Data collection included a mapping of
samples to their evaluation engines, detection rates,
anti-virus engine version numbers, and a full list of
the SHA256s for each APK file. These raw results
are stored in a private Github repository, with access
granted and available upon request [37].

Next, the malicious set of APKs are uploaded to
VirusTotal in the same manner. These resulted in a
higher evaluation success rate, but out of 6,000
samples, only 98 were unable to be submitted due to
the incompatibility with VirusTotal. The malicious
data set resulted in 848 unique detections, resulting in

a unique detection rate of 14.37%. Additionally,
there were 3,856 total detections across all engines,
resulting in a detection rate of 1.04% across all
evaluations computed. Figure 6 provides a summary
of the TP and FP unique detection rates for the
benign and malicious sample sets.

Figure 6: VirusTotal Detection Rates

4.2 ML Algorithm Evaluation

In this section, we detail the results of the
computations generated from the four algorithms:
Random Forest, SVM, Gaussian Naïve Bayes, and K-
Means. All algorithms were implemented using
Python 3.7, the numpy library (for computations), the
pandas library (for data analysis and manipulation),
and the sklearn library (for algorithm
implementation). Training and test sets were taken
from the benign and malicious APK sets (referred to
in section 3.1). Algorithms read in content from pre-
processed CSV files (referred to in section 3.3),
stores them into a data frame (one for malicious one
for benign), shuffles their respective contents, and
then splits them evenly into two data frames. Hence,
two sets of benign programs and two sets of malware
programs are created.

Once the data frames have been shuffled and split,
the benign data frame 0 is concatenated with the
malicious data frame 0 to produce the learning set;
the other two data frames produce the test set. For
results, TP/FP/TN/FN counts are recorded (in a
confusion matrix) and other key statistical values are
computed as follows:

• Sensitivity/Recall/TPR: TP / (TP + FN)
• Specificity/TNR: TN/(TN + FP)
• Precision: TP / (TP + FP)
• Accuracy: TP + TN/(TP + TN+ FP + FN)
• F1: 2*(Precision*Recall)/(Precision+Recall)

Figure 7 provides a consolidated view of the

confusion matrices produced by all four ML
algorithms and the VirusTotal engine results. Figure
8 provides a summary of statistical factors produced

Page 6982

by each of the four ML algorithms. Figure 9 provides
a receiver operating curve for all four ML algorithms.

Random Forest. The implementation of random
forest successfully executed with no issues. The
algorithm correctly labeled 2,577 samples as
malicious, our true positive value. The algorithm
also successfully labeled 1,698 samples as benign,
our true negative value. Random forest incorrectly
labeled 547 samples as malicious (false positives)
and labeled 421 samples incorrectly as benign (false
negatives). The precision for random forest was
calculated at 0.8249, or roughly 83%. The recall was
computed to be 0.8585, or roughly 86%. Accuracy
was computed to be 0.8153, or roughly 81%. The F1
score was calculated to be 0.84188, or roughly 84%
and the specificity is 0.7563 or roughly 76%.

Support Vector Machine (SVM). The
implementation of SVM successfully executed with
no issues. The algorithm correctly labeled 2,562
samples as malicious, our true positive value. The
algorithm was also successful in labeling 1,626
samples as benign, our true negative value. Our
implementation of SVM incorrectly labeled 619
samples as malicious (false positives) and labeled
436 samples incorrectly as benign (false negatives).
The precision for our implementation of SVM was
calculated at 0.8054, or roughly 80%. The recall was
computed to be 0.8545, or roughly 85%. Accuracy
was computed at 0.7987, or roughly 80 F1 score was
computed to be 0.8292, or roughly 83%, and, the
specificity is 0.7224 or roughly 72%.

Figure 7: Comparative TP/TN/FP/FN Results

Gaussian Naïve Bayes. Our implementation of

Gaussian Naïve Bayes was successfully executed
with no problems. The algorithm correctly labeled
2,961 samples as malicious, our true positive rate.
The algorithm was also labeled 294 samples as
benign, our true negative value. Additionally, the
algorithm labeled 1,951 samples incorrectly as
malicious (false positives) and labeled 37 samples
incorrectly as benign. The precision for our
implementation of Gaussian Naïve Bayes was
calculated to be 0.6028, or roughly 60%. The recall

was computed to be 0.9876, or roughly 99%. Finally,
the F1 score was calculated to be 0.7486, or roughly
75% and the specificity is 0.1313 or roughly 13%.

Figure 8: Comparative Performance Results

K-Means. Our implementation of K-Means was

successfully executed without issue. The algorithm
correctly labeled 2,562 samples as malicious, our true
positive rate. The algorithm also correctly labeled
1,626 samples as benign, our true negative value. In
addition, the algorithm incorrectly labeled 619
samples as malicious (false positives) and 436
samples as benign (false negatives). The precision
for our implementation of K-Means was calculated to
be 0.80541, or roughly 80%. The recall was
calculated at 0.8545, or roughly 85%. Finally, the F1
score was calculated to be 0.7486, or roughly 75%
and the specificity is 0.72428 or roughly 72%.

Figure 9: Reciever Operating Curve

In terms of comparison with other ML approaches
that focus in some way on manifest-based
permissions, Table 1 provides a summary of the
experimental results of this work and a comparative
with related studies. Of note, our sample size is larger
than other comparative work and on a more recent set
of generalized malicious Android apps. The focus of
this work was to evaluate primarily the efficacy of
single ML approaches on manifest permissions alone,
whereas comparative work has achieved higher
accuracy when ensemble methods or information
fusion approaches are used [25,39].

Page 6983

6. Conclusions and Future Work

The substantial prevalence of Android powered
mobile devices in the global market share makes
Android platforms an attractive target for malware
authors. The efficient and reliable detection of
malware in the Android environment is a complex
problem that doesn’t seem close to being solved. The
first goal of this research was to present an evaluation
of commercial anti-virus tools and how well they
perform at classifying samples as malicious or
benign. The findings indicate that when presented
with a sample set of recently discovered malware
(under two years), commercial anti-virus software
proves woefully inadequate in terms of detection
rates. The malicious set, consisting of 5902 samples,
had only 848 unique detections (14.37%). It should
also be noted that the benign set of 4297 samples had
a false positive rate of 18.4%, or 789 samples

Table 1: Comparative ML Approaches

 B M ML Acc Best
Milosevic,
Dehghantanha
[25] (2017)

200 200 6 89% SVO
SVM

Kumaran,Lee
[38] (2016)

500 500 6 90.5% Cubic
SVM

Wang et al.
[39] (2017)

4,403 3,982 8 99.7% Fused

Sanz et al.
[40] (2013)

333 333 13 87.4% Random
Forest

Case Study
(2020)

4,597 6,000 4 81% Random
Forest

B = Benign Samples, M = Malicious Samples
ML = # of ML algorithms, Acc = Accuracy

The second goal of this research was to provide an

evaluation of the effectiveness of several commonly
implemented machine learning algorithms, namely,
Random Forest, SVM, Gaussian Naïve Bayes, and K-
Means, when applied to the APK manifest file alone.
The findings showed that compared to the detection
rates of anti-virus engines readily available, all of the
ML algorithms that used just the manifest file alone
offered significant improvements, with Random
Forest having the highest precision (0.8249),
accuracy (0.8153), and F1-score (0.8418), specificity
(0.7563) as well as the second highest computed
recall (0.8153). The only algorithm that offered less
than desirable results was Gaussian Naïve Bayes.
Gaussian Naïve Bayes had the lowest precision
(0.6028), accuracy (0.6208), and F1 score (0.7486)
and specificity (0.1313). Compared to relative work
(seen in Table 1), this work also reaffirms that
Random Forest and SVM are best at classification
when permissions are in view.

Future work will be focused on the creation of a
novel algorithm that is more finely tuned towards the
detection of malware, as opposed to the use of
general-purpose algorithms. Ensemble approaches
and the use of additional ML algorithms are also in
view for static detection using manifest permission
features. There are also many other static features
associated with APKs that are elaborated in the
current literature that could be easily combined with
a manifest file approach to form a greater feature set.
From results of this research, a natural follow-on step
would be to classify Android malware into families
based on permissions. Finally, adversarial machine
learning will be considered to account for attacks
where adversaries target manifest permission features
to deceive ML algorithms.

7. References

[1] Statista, “Number of available applications in the

Google Play Store from December 2009 to September
2018,” Statista, 2018. [Online]. Available:
https://www.statista.com/statistics/266210/number-of-
available-applications-in-the-google-play-store/.
[Accessed 5 March 2020].

[2] Statista, “Subscriber share held by smartphone
operating systems in the United States from 2012 to
2018,” Statista, 2018. [Online]. Available:
https://www.statista.com/statistics/266572/market-
share-held-by-smartphone-platforms-in-the-united-
states/. [Accessed 4 March 2020].

[3] Symantec, “What is malware and how can we prevent
it?,” Norton Anti-virus, 2018. [Online]. Available:
https://us.norton.com/internetsecurity-malware.html.
[Accessed 2 March 2020].

[4] Kaspersky Labs, “Mobile Malware Evolution 2017,”
Kaspersky Labs, 07 March 2018. [Online]. Available:
https://securelist.com/mobile-malware-review-
2017/84139/ . [Accessed 1 March 2020].

[5] Symantec, “What is anti-virus software?,” Norton
Antivirus, 2019. [Online]. Available:
https://us.norton.com/internetsecurity-malware-what-
is-antivirus.html . [Accessed 22 March 2020].

[6] Bazrafshan Z., H. Hashemi, S. M. H. Fard and A.
Hamzeh, “A survey on heuristic malware detection
techniques,” The 5th Conference on IKT, Shiraz, 2013,
pp. 113-120, doi: 10.1109/IKT.2013.6620049.

[7] Zhou, Y. and X Jiang, “Dissecting Android Malware:
Characterization and Evolution,” IEEE Symposium on
Security and Privacy, 2012.

[8] Google Developers, "Platform Architecture," Google,
3 September 2018. [Online]. Available:
https://developer.android.com/guide/platform/.
[Accessed 2 December 2020].

[9] Google Developers, "Application Fundamentals,"
Google, 2018. [Online]. Available:
https://developer.android.com/guide/components/fund
amentals . [Accessed 14 April 2020].

Page 6984

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-states/
https://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-states/
https://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-states/
https://us.norton.com/internetsecurity-malware.html
https://securelist.com/mobile-malware-review-2017/84139/
https://securelist.com/mobile-malware-review-2017/84139/
https://us.norton.com/internetsecurity-malware-what-is-antivirus.html
https://us.norton.com/internetsecurity-malware-what-is-antivirus.html
https://developer.android.com/guide/platform/
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals

[10] Dong, S. et al., “Understanding Android Obfuscation
Techniques: A Large-Scale Investigation in the Wild”,
In: Beyah R., Chang B., Li Y., Zhu S. (eds) Security
and Privacy in Communication Networks.
SecureComm 2018. Springer, Cham, 2018.

[11] Kaspersky Labs, “Mobile Malware Evolution 2018,”
Kaspersky Labs, 05 March 2019. [Online]. Available:
https://securelist.com/mobile-malware-evolution-
2018/89689/. [Accessed 26 February 2020].

[12] McAfee, “McAfee Mobile Threat Report Q1, 2019,”
McAfee, 2019. [Online]. Available:
https://www.mcafee.com/enterprise/en-us/assets/
reports/rp-mobile-threat-report-2019.pdf [Accessed 26
February 2020].

[13] Erturk, E., “A Case Study in Open Source Software
Security and Privacy: Android Adware,” in World
Congress on Internet Security (WorldCIS-2012),
Guelph, ON, Canada, 2012.

[14] Ståhlberg, M., “The Trojan Money Spinner,” in Virus
Bulletin Conference, 2007.

[15] Jain, A., H. Gonzalez, and N. Stakhanov, “Enriching
reverse engineering through visual exploration of
Android binaries.” In Proceedings of PPREW-5.
ACM, Article 9, 1–9. doi: 10.1145/ 2843859.2843866.

[16] Ibotpeaches, “Apktool - A tool for reverse engineering
Android apk files,” 2016.

[17] Nguyen, T., J.T. McDonald, W. B. Glisson, and T. R.
Andel, “Detecting Repackaged Android Applications
Using Perceptual Hashing”, HICSS-53, January 7-10,
2020, Grand Wailea, Maui, HI, USA.

[18] Schmidt, A., et al., “Static Analysis of Executables for
Collaborative Malware Detection on Android,” in
2009 IEEE Intl Conf on Comm, Dresden, 2009.

[19] Desnos, A., “Android: Static Analysis Using
Similarity Distance,” in 2012 45th Hawaii Intl
Conference on System Sciences, Maui, 2012.

[20] Feng, Y., S. Anand, I. Dillig, and A. Aiken.
“Apposcopy: semantics-based detection of Android
malware through static analysis,” In Proc 22nd ACM
SIGSOFT FSE 2014). ACM. doi: 10.1145/
2635868.2635869.

[21] Burguera, I., U. Zurutuza, and S. Nadjm-Tehrani.
“Crowdroid: behavior-based malware detection
system for Android.” In Proceedings of the 1st ACM
workshop on security and privacy in smartphones and
mobile devices (SPSM ’11). ACM, 15–26. doi:
10.1145/2046614.2046619.

[22] Suarez-Tangil, G., J. Tapiador, P. Peris-Lopez, and J.
Blasco. “Dendroid: A text mining approach to
analyzing and classifying code structures in Android
malware families,” Expert Syst. Appl. 41, 4 (March,
2014), 1104–1117. doi: 10.1016/j.eswa.2013.07.106.

[23] Tam, K., A. Feizollah, N. B. Anuar, R. Salleh, and L.
Cavallaro “The Evolution of Android Malware and
Android Analysis Techniques,” ACM Comput. Surv.
49, 4, Article 76 (February 2017), doi: 10.1145/
3017427.

[24] Kang, H., J. Jang, A. Mohaisen, and H.K. Kim,
“Detecting and Classifying Android Malware Using
Static Analysis along with Creator Information,”

International Journal of Distributed Sensor Networks.
doi: 10.1155/2015/479174.

[25] Milosevic, N., A. Dehghantanha, K. R. Choo,
“Machine learning aided Android malware
classification”, Computers & Electrical Engineering,
Volume 61, 2017, pp. 266-274, ISSN 0045-7906, doi:
10.1016/j.compeleceng.2017.02.013.

[26] Sato, R., D. Chiba, S. Goto, “Detecting Android
Malware by Analyzing Manifest Files,” Proceedings
of the Asia-Pacific Advanced Network, vol. 36, pp. 23-
31, 2013. doi: 10.7125/APAN.36.4

[27] Sarma, H.P., N. Li, C. Gates, R. Potharaju, C. Nita-
Rotaru, and I. Molloy. “Android permissions: a
perspective combining risks and benefits,” In
Proceedings of the 17th ACM symposium on Access
Control Models and Technologies (SACMAT ’12).
ACM, 2012, pp. 13–22. doi: 10.1145/2295136.
2295141.

[28] Allix, K., T. F. Bissyandé, J. Klein, and Y. Le Traon.
“AndroZoo: collecting millions of Android apps for
the research community,” In Proceedings of the 13th
International Conference on Mining Software
Repositories (MSR ’16). ACM, 2016, pp. 468–471.
doi: 10. 1145/2901739.2903508.

[30] Nguyen, T., J.T. McDonald, and W.B. Glisson.
“Exploitation and Detection of a Malicious Mobile
Application,” in 50th HICCS. 2017.

[31] Luckett, P., J.T. McDonald, W.B. Glisson, R. Benton,
J. Dawson, and B.A. Doyle, Identifying stealth
malware using CPU power consumption and learning
algorithms. Journal of Computer Security, 2018, p. 1-
25.

[32] VirusTotal [Online]. Available: https://www.
virustotal.com/gui/home/upload [Accessed 15 May
2020]

[33] “How it works”, VirusTotal [Online]. Available:
https://support.virustotal.com/hc/en-
us/articles/115002126889-How-it-works [Accessed
28 Jun 2020]

[34] Aggarwal, C. C., Data Mining: The Textbook, Course
Materials, First Edition, Springer, 2015.

[35] Han, J., M. Kamber, and J. Pei, Data Mining:
Concepts and Techniques, Third Edition, Morgan
Kaufmann, 2012

[36] Dua, S. and X. Du, Data Mining and Machine
Learning in Cybersecurity, Auerbach Publications,
2011. ISBN-10: 1439839425

[37] Github, https://github.com/
[38] Kumaran, M. and W. Li, "Lightweight malware

detection based on machine learning algorithms and
the android manifest file", REU Poster, 2016, NYIT
School of Engineering and Computing.

[39] Wang, X., D. Zhang, X. Su, W. Li, "Mlifdect: Android
Malware Detection Based on Parallel Machine
Learning and Information Fusion," Security and
Communication Networks, article 6451260, 2017,
Hindawi. doi: 10.1155/2017/6451260

[40] Sanz, B., I. Santos, C. Laorden, X. Ugarte-Pedrero,
"MAMA: Manifest analysis for malware detection in
android," Cybernetics & Systems, October 2013. doi:
10.1080/01969722.2013.803889

Page 6985

https://securelist.com/mobile-malware-evolution-2018/89689/
https://securelist.com/mobile-malware-evolution-2018/89689/
https://www.mcafee.com/enterprise/en-us/assets/%20reports/rp-mobile-threat-report-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/%20reports/rp-mobile-threat-report-2019.pdf
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://github.com/

