989 research outputs found

    Machine learning algorithms for structured decision making

    Get PDF

    A sensorless state estimation for a safety-oriented cyber-physical system in urban driving : deep learning approach

    Get PDF
    In today's modern electric vehicles, enhancing the safety-critical cyber-physical system CPS 's performance is necessary for the safe maneuverability of the vehicle. As a typical CPS, the braking system is crucial for the vehicle design and safe control. However, precise state estimation of the brake pressure is desired to perform safe driving with a high degree of autonomy. In this paper, a sensorless state estimation technique of the vehicle's brake pressure is developed using a deep-learning approach. A deep neural network DNN is structured and trained using deep-learning training techniques, such as, dropout and rectified units. These techniques are utilized to obtain more accurate model for brake pressure state estimation applications. The proposed model is trained using real experimental training data which were collected via conducting real vehicle testing. The vehicle was attached to a chassis dynamometer while the brake pressure data were collected under random driving cycles. Based on these experimental data, the DNN is trained and the performance of the proposed state estimation approach is validated accordingly. The results demonstrate high-accuracy brake pressure state estimation with RMSE of 0.048 MPa.Published versio

    Deep Reinforcement Learning for Vehicular Edge Computing: An Intelligent Offloading System

    Get PDF
    The development of smart vehicles brings drivers and passengers a comfortable and safe environment. Various emerging applications are promising to enrich users' traveling experiences and daily life. However, how to execute computing-intensive applications on resource-constrained vehicles still faces huge challenges. In this article, we construct an intelligent offloading system for vehicular edge computing by leveraging deep reinforcement learning. First, both the communication and computation states are modelled by finite Markov chains. Moreover, the task scheduling and resource allocation strategy is formulated as a joint optimization problem to maximize users' Quality of Experience (QoE). Due to its complexity, the original problem is further divided into two sub-optimization problems. A two-sided matching scheme and a deep reinforcement learning approach are developed to schedule offloading requests and allocate network resources, respectively. Performance evaluations illustrate the effectiveness and superiority of our constructed system
    corecore