

Algoritmen op basis van machinaal leren voor gestructureerde besluitvorming

Machine Learning Algorithms for Structured Decision Making

Rein Houthooft

UNIVERSITEIT
GENT

Promotor: prof. dr. ir. F. De Turck
Proefschrift ingediend tot het behalen van de graad van
Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Informatietechnologie

Voorzitter: prof. dr. ir. B. Dhoedt

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2016 - 2017

ISBN 978-90-8578-986-4
NUR 980
Wettelijk depot: D/2017/10.500/21

GHENT
UNIVERSITY

“mec

Examination Board:

prof. F. De Turck (advisor)
prof. P. De Baets (chair)
prof. E. Tanghe

prof. T. Dhaene (secretary)
dr. ir. T. Verbelen

dr. F. Ongenae

prof. S. Verstockt

prof. A. Sperotto

prof. A. Nowé

fwo

h FACULTY OF ENGINEERING
Il | AND ARCHITECTURE

Ghent University
Faculty of Engineering and Architecture
Department of Information Technology

imec
Internet Technology and Data Science Lab

Supported by a Doctoral Fellowship of the
Research Foundation — Flanders (FWO)

Dissertation for acquiring the grade of
Doctor of Computer Science Engineering

Acknowledgments

Het is zover, na een kleine drie jaar dien ik mijn doctoraatsthesis in. Ik zou
hier nooit geraakt zijn zonder de gulle steun van enkele bijzondere mensen.
Een welgemeende dankuwel,

aan Krystle, dat je me doorheen mijn studies bent blijven steunen. Zonder
jou zou dit me nooit gelukt zijn;

aan mijn familie, die me alle mogelijkheden bood om te doen wat ik wou,
met vallen en opstaan;

aan Filip, dat je mij de kans tot wetenschappelijk onderzoek gaf, alsook alle
vrijheid tot het bewandelen van mijn eigen onderzoekspad;

to everyone at the Berkeley Al Research lab, thanks for your support, espe-
cially Pieter, that you gave me the chance to be part of your group;

to everyone at OpenAl, for the great research environment and support
through computing resources;

aan het Fonds voor Wetenschappelijk Onderzoek — Vlaanderen (FWO),
welke via zowel een aspirantenmandaat als een reisbeurs mijn onderzoek
ondersteunden, zodat ik dit volledig op mijn eigen manier kon inkleuren;

to all members of the examination board, for your constructive feedback;

aan iedereen aan de Universiteit Gent, op bureau, in de wandelgangen,
het waren mooie tijden. Tevens bijzondere dank aan Brecht, voor de vele
gezellige koffies.

Rein Houthooft
februari 2017

Table of Contents

Acknowledgments
Summary
Samenvatting

1 Introduction

1.1 Graphical Models
1.2 DeepLearning
1.3 Spatially-Structured Decision Making . . .
1.4 Temporally-Structured Decision Making . .
1.5 Scientific Challenges and Contributions . .
1.5.1 Publications
1.5.1.1 Conference Proceedings .

1.5.1.2 Journals

1.5.1.3 Patent Applications . . .

References

2 Structured Prediction for Autonomous Vehicles
2.1 Introduction
2.2 Data Acquisition
2.3 Preprocessing

2.3.1 Region Over-segmentation
2.3.2 Feature Extraction
2.3.3 Convolutional Unary Classifier . . .
2.4 Structured Output Prediction
2.4.1 Structural Support Vector Machines
2.4.2 Max-margin Learning
243 Reasoning.

Xvii

XXi

O N B N =

12

15
16
17
18

iv

244 End-to-end Segmentation.
2.5 Results and Discussion
26 RelatedWork
277 Conclusions
References

Neural Factors in Structural Support Vector Machines
3.1 Introduction
32 RelatedWork
33 Methodology,
3.3.1 Integrated Back-propagation and Inference
3.3.2 Neural Interaction Factors
34 Experiments oL
3.4.1 Experimentalsetup
34.2 Resultsand Discussion
35 Conclusion
3.A Application to Autonomous Vehicle Data
3.A.1 DeepSSVM o
3.A.2 End-to-end Segmentation without SSVM
3.A.3 Results and Discussion
References L

Variational Information Maximizing Exploration
4.1 Introductiono
42 Methodology
4.2.1 Preliminaries
422 Curiosity o
423 Variational Bayes,
424 Compression
4.2.5 Implementation
43 Experiments
44 RelatedWork
45 Conclusions
4.A Bayesian Neural Networks (BNNs)
4B Experimental Setup
4B.1 Environments
4.B.2 Reinforcement Learning Algorithms
References

51
52
53
55
56
60
62
63
67
74
75
75
77
80
81

5 Count-Based Exploration for Deep Reinforcement Learning 119

5.1 Introduction 120
5.2 Methodology 122
52.1 Notation., 122

5.2.2 Count-Based Exploration via Static Hashing . . . 122

5.2.3 Count-Based Exploration via Learned Hashing . . 123

5.3 Experiments 126
5.3.1 Continuous Control 127

5.3.2 Arcade Learning Environment 128

54 RelatedWork 131
5.5 Conclusions Lo 133
5.A Hyperparameter Settings 134
5.B Analysis of Learned Binary Representation 135
5.C Counting Bloom Filter/Count-Min Sketch 135
5.D Robustness Analysis 142
5.D.1 Granularity 142
5.D.2 A Case Study of Montezuma’s Revenge 144
References 149
6 Conclusions and Future Directions 155
6.1 Conclusions 155
6.2 Future Directions 157

References 161

List of Figures

1.1
1.2
1.3

2.1

22

23

24

2.5

2.6

2.7

Illustration of a directed and undirected graphical model
Illustration of a deep convolutional neural network
[lustration of image segmentation applied in an agricultural
autonomous vehicle (1)
lustration of image segmentation applied in an agricultural
autonomous vehicle (2)
Structured output prediction as a graphical model: making
spatially-structured decisions
Tllustrations of the tasks used in the experiments in Chap-
tersdandS
Reinforcement learning as a graphical model: making struc-
tured decisionsintime

One of the vehicles used to capture the dataset images . . .
Class list and occurrence frequencies in the constructed
dataset.
Illustration of images from the autonomous agricultural ve-
hicle segmentation dataset and corresponding manual la-
belings
Convolutional neural network architecture used for unary
prediction that takes as input windows centered around su-
perpixels
Neighborhood connectivity with both first-degree and
second-degree neighbor connections for an actual region
over-segmentation L.
A CRF is shown with second-degree neighborhood connec-
tivity graph, represented as a factor graph with observations
X; representing region feature vectors, and random variables
representing label assignments y;.
End-to-end convolutional segmentation architecture

10

21

22

23

25

27

28
33

viii

2.8

2.9

2.10

2.11

3.1

32

3.3

34

3.5

3.6

3.7

4.1
4.2

4.3

4.4

4.5

SSVM with a CNN unary classifier and end-to-end seg-
mentation model: pixel-wise precision results on the au-
tonomous agricultural vehicle dataset, described as a con-
fusionmatrixo Lo 36
SSVM with a CNN unary classifier and end-to-end segmen-
tation model: pixel-wise recall results on the autonomous
agricultural vehicle dataset, described as a confusion matrix 37
SSVM in combination with the convolutional unary clas-
sifier: illustration of segmented test images from the au-
tonomous agricultural vehicle dataset 38
End-to-end segmentation: illustration of segmented test im-
ages from the autonomous agricultural vehicle dataset . . . 39

[lustrative examples of the performance of SGD and int+nrl

on several MSRC-21 testimages 64
Ilustrative examples of the performance of SGD and int+nrl
on several KITTI testimages 65
Ilustrative examples of the performance of SGD and int+nrl
on several SIFT Flow testimages 66
Visualization of the synergy between unary and interaction
factors 71
Deep SSVM using a convolutional architecture 76

Deep SSVM and end-to-end segmentation model: pixel-
wise precision results on the autonomous agricultural vehi-
cle dataset, described as a confusion matrix 78
Deep SSVM and end-to-end segmentation model: pixel-
wise recall results on the autonomous agricultural vehicle
dataset, described as a confusion matrix 79

TRPO+VIME versus TRPO on tasks with sparse rewards . 100
Performance of TRPO with and without exploration for

different continuous control task 101
Performance of ERWR with and without exploration for
different continuous control tasks 102
Performance of REINFORCE with and without exploration
for different continuous control tasks 103

Performance of TRPO with and without VIME on the high-
dimensional Walker2D locomotion task and the hierarchical
task SwimmerGather 104

ix

4.6

4.7
4.8

4.9

5.1

52

53
54

5.5

5.6

5.7

5.8

59
5.10

VIME: performance over the first few iterations for TRPO,
REINFORCE, and ERWR in function of 7 on MountainCar
and comparison of TRPO+VIME and TRPO on Mountain-
Car: visited states until convergence
BNN output on a 1-dim regressiontask
KL divergence behavior when training a BNN on a 1-dim
regressiontask L L.
Illustrations of the rllab tasks used in the experiments . . .

The autoencoder (AE) architecture; the solid block repre-
sents the dense sigmoidal binary code layer, after which
noise U(—a, a) isinjected.
Mean average return of different algorithms on rllab tasks
with sparserewards,
Performance on Atari 2600 games
Frostbite, Freeway, and Montezuma’s Revenge: subsequent
frames and correspondingcode
Frostbite, Freeway, and Montezuma’s Revenge: subsequent
frames and correspondingcode
Frostbite, Freeway, and Montezuma’s Revenge: subsequent
frames and correspondingcode
Freeway: subsequent frames, reconstructions, and recon-
struction €rrors
Freeway: the learned hash codes corresponding to the
framesin5.7
Statistics of TRPO-pixel-SimHash (k = 256) on Frostbite .
SmartHash results on Montezuma’s Revenge (RAM obser-
vations) e e e e e

List of Tables

3.1

32

3.3

34

5.1

5.2

53

54

5.5

5.6

5.7

MSRC-21 class, pixel-wise, and class-mean test accuracy

for differentmodels 68
KITTI class, pixel-wise, and class-mean test accuracy for
differentmodels 70
SIFT Flow pixel-wise and class-mean test accuracy for dif-
ferentmodels 70

State-of-the-art comparison: MSRC-21 per-class, class-
mean, and global pixel-wise test accuracy for different models 72

Atari 2600: average total reward after training for 50 M
time steps. Boldface numbers indicate best results. Italic

numbers are the best among our methods. 129
Granularity parameters of various hash functions 143
Average score at 50 M time steps achieved by TRPO-pixel-

SimHash. 143

Average score at 50 M time steps achieved by TRPO-
SmartHash on Montezuma’s Revenge (RAM observations) 143
Interpretation of particular RAM entries in Montezuma’s

Revenge 144
TRPO-RAM-SimHash performance robustness to hyperpa-
rameter changes on Frostbite 146

Performance comparison between state counting (left of the
slash) and state-action counting (right of the slash) using
TRPO-RAM-SimHash on Frostbite 147

List of Algorithms

3.1

32

4.1

5.1
52

Integrated SSVM subgradient descent with neural unary and

linear interaction factors 57
Integrated SSVM subgradient descent with both unary and

interaction neural factors 0L 61
Variational Information Maximizing Exploration 97
Count-based exploration through static hashing 123

Count-based exploration using learned hash codes 124

List of Acronyms

AE autoencoder

BASS Basic Abstraction of the Screenshots

BNN Bayesian neural network

CRF conditional random field

CNN convolutional neural network

DQN Deep Q-networks

ELU exponential linear unit

ERWR episodic reward-weighted regression

GPU graphics processing unit

KL Kullback-Leibler

LSH locality-sensitive hashing

MAP maximum a posteriori

MBIE model-based interval estimation

MDP Markov decision process

MRF Markov random field

POMDP partially-observable Markov decision process

ReLU rectified linear unit

RL reinforcement learning

SGD stochastic gradient descent or subgradient de-
scent

SSVM structural support vector machine

TRPO Trust Region Policy Optimization

UCB upper confidence bound

VIME Variational Information Maximizing Explo-

ration

Summary

Machine Learning Algorithms for Structured Decision
Making

This dissertation explores the realm of endowing artificial systems with
the intelligence to learn how to make structured decisions. The first part
focuses on structured decision making in which decisions are correlated in
the spatial domain, while the second part focuses on making temporally-
structured decisions.

Tackling pattern recognition problems in areas such as computer vision,
bioinformatics, and speech recognition is often helped by taking into account
task-specific statistical relations between output variables. These predicted
variables can be regarded as decisions generated by the system at hand.
When outputs are generated by taking into account their interrelations,
we call it structured prediction. In particular, the first part of this thesis
investigates the application of a class of methods called structural support
vector machines (SSVMs), and proposes several fundamental extensions.

First, these models are investigated in light of overcoming a key chal-
lenge in the realization of autonomous vehicles, namely the machine’s ability
to perceive its surrounding environment. Structured prediction models are
applied to the vehicle’s input camera data stream in order to obtain a se-
mantic segmentation, in which each image pixel is assigned a particular
semantic class, such as ‘road’ or ‘object’. For coherent segmentation, an
SSVM is modeled to encode label distributions conditioned on the input
images, taking into account visual contextual cues between adjacent pixel
regions within a second-order neighborhood.

SSVMs are nonprobabilistic models that optimize a joint input-output
function through margin-based learning. The structured model is formu-
lated as an energy-based function using feature-dependent unary potentials,
and pairwise potentials that differentiate between first- and second-degree

Xviii SUMMARY

region neighbors. After optimizing this model through max-margin learn-
ing, based on a semantic loss function, efficient classification is realized via
graph cuts inference using a-expansion. Itis shown through quantitative and
qualitative analyses that by taking into account contextual relations between
pixel segmentation regions within a second-degree neighborhood, spurious
segmentation label assignments are filtered out, leading to highly accurate
semantic segmentations for outdoor scenes. Furthermore, we investigate
these models in an autonomous vehicle use case, while also proposing an
end-to-end segmentation method using deep convolutional neural networks
as an alternative model.

Because SSVMs generally disregard the interplay between unary and
interaction factors during the training phase, final parameters are subop-
timal. Moreover, its factors are often restricted to linear combinations of
input features, limiting its generalization power. To improve prediction
accuracy, we improve SSVMs through: (i) Joint inference and learning
by integration of back-propagation and loss-augmented inference in SSVM
subgradient descent; (ii) Extending SSVM factors to neural networks that
form highly nonlinear functions of input features. This model departs from
the traditional bifurcated approach in which a unary classifier is trained
independently from the structured predictor.

Results on a complex image segmentation task show that end-to-end
SSVM training, and/or using neural factors, leads to more accurate pre-
dictions than conventional subgradient descent and N-slack cutting plane
training. Furthermore, a deep convolutional implementation of this method
is applied in an autonomous vehicle perception use case. The results indicate
that the proposed model serves as a foundation for more advanced structured
models, e.g., by using latent variables, learned feature representations, or
complexer connectivity structures.

The second part of this dissertation investigates predictions that are
correlated in the temporal domain. More specifically, we investigate rein-
forcement learning (RL), in which an agent tries to achieve a specific goal
in an initially unknown environment. Because accomplishing this goal re-
quires more than a single action, they can be seen as temporally-structured
decisions since each action affects the next one. Several fundamentally new
methods are proposed for deep RL—reinforcement learning using deep
neural networks as function approximators—which are applied to robot
locomotion learning as well as autonomous video game playing.

In particular, we notice that scalable and effective exploration remains
a key challenge in deep RL. While there are methods with optimality guar-
antees in the setting of discrete state and action spaces, these methods

SUMMARY Xix

cannot be applied in high-dimensional deep RL scenarios. As such, most
contemporary RL relies on simple heuristics such as e-greedy exploration
or adding Gaussian noise to the controls. Therefore, the agent tends to lock
prematurely onto decision sequences that are suboptimal, rather than taking
exploratory actions to potentially improve its reward in the long term.

This dissertation introduces Variational Information Maximizing Ex-
ploration (VIME), an exploration strategy based on maximization of in-
formation gain about the agent’s belief of environment dynamics. It is a
curiosity-driven exploration strategy for continuous control tasks. We pro-
pose a practical implementation, using variational inference in Bayesian
neural networks (BNNs) that efficiently handles continuous state and ac-
tion spaces. Variational inference is used to approximate the posterior
distribution of a BNN that represents the environment dynamics. VIME
modifies the Markov decision process (MDP) reward function, and can be
applied with several different underlying RL algorithms. We demonstrate
that VIME achieves significantly better performance compared to heuris-
tic exploration methods across a variety of continuous control tasks and
algorithms, including environments with very sparse rewards.

Alternatives to curiosity-based exploration are count-based exploration
algorithms. These methods are known to perform near-optimally when
used in conjunction with tabular RL methods for solving small discrete
MDPs. It is generally thought that count-based methods cannot be applied
in high-dimensional state spaces, since most states will only occur once.
Recent deep RL exploration strategies, such as VIME, are able to deal with
high-dimensional continuous state spaces through complex heuristics, often
relying on optimism in the face of uncertainty or intrinsic motivation.

We describe a surprising finding: A simple generalization of the clas-
sic count-based approach can reach near state-of-the-art performance on
various high-dimensional and/or continuous deep RL benchmarks. States
are mapped to hash codes, which allows to count their occurrences with a
hash table. These counts are then used as a reward bonus, according to the
classic count-based exploration theory. We find that simple hash functions
can achieve surprisingly good results on many challenging tasks.

Furthermore, it is shown that a domain-dependent learned hash code
may further improve these results. Detailed analysis reveals important
aspects of a good hash function: (i) Having appropriate granularity; (ii)
Encoding information relevant to solving the MDP. This exploration strategy
achieves near state-of-the-art performance on robot locomotion tasks and
Atari 2600 games, while providing a simple yet powerful baseline for solving
MDPs that require considerable exploration.

Samenvatting

Algoritmen op basis van machinaal leren voor gestructu-
reerde besluitvorming

Deze scriptie onderzoekt het ontwikkelen van artifici€le intelligente sys-
temen die in staat zijn gestructureerde beslissingen te nemen. Het eerste
deel van deze thesis focust op het maken van gestructureerde beslissingen
waarbij deze gecorreleerd zijn in het ruimtelijke domein. Het tweede deel
handelt over temporeel gestructureerde beslissingname.

Het oplossen van patroonherkenningsproblemen in domeinen zoals
computervisie, bio-informatica en spraakherkenning gebeurt vaak best door
het in rekening brengen van statistische relaties tussen outputvariabelen.
Indien outputs gegenereerd worden met het in acht nemen van hun onder-
linge relaties, wordt dit gestructureerde predictie genoemd. In het bijzonder
onderzoekt het eerste deel van deze thesis de applicatie van een klasse me-
thoden genaamd structural support vector machines (SSVMs) en beschrijft
het hiervoor verschillende fundamentele uitbreidingen.

Eerst worden deze SSVM modellen onderzocht bij het overwinnen van
een belangrijke hindernis voor de realisatie van autonome voertuigen, na-
melijk de mogelijkheid van de machine om zijn omgeving semantisch waar
te nemen. Camera-input van het voertuig wordt aan deze gestructureerde
predictiemodellen gevoed met als doel een semantische segmentatie van de
omgeving te bekomen. Hierbij wordt elke afbeeldingspixel een bepaalde
semantische klasse toegekend, zoals bijvoorbeeld ‘rijweg’ of ‘object’. Om
een coherente segmentatie te bekomen wordt een SSVM gemodelleerd die
de labeldistributie, geconditioneerd op de inputafbeeldingen, encodeert. Dit
model houdt rekening met visuele context tussen de verschillende pixelre-
gio’s binnen een tweede-orde aangrenzendheid.

SSVMs zijn niet-probabilistische modellen die een gezamenlijke input-
output functie optimaliseren via margegebaseerde leertechnieken. Het ge-

Xxii SAMENVATTING

structureerde model wordt geformuleerd als een energiegebaseerde functie,
gebruikmakende van kenmerkafhankelijke unaire potentialen, en paarsge-
wijze potentialen welke differenti€ren tussen eerste- en tweede-orde aan-
grenzendheid. Nadat dit model geoptimaliseerd is via maximum-marge
leertechnieken, met behulp van een semantische objectieffunctie, kan effici-
énte classificatie bekomen worden via graafsnedegebaseerde inferentie. Dit
werk toont aan dat het in acht nemen van contextuele relaties tussen pixel
segmentatieregionen binnen een tweede-orde aangrezendheid foutieve seg-
mentatielabels uitfiltert, wat tot hoogst precieze semantische segmentaties
leidt. Verder onderzoeken we deze methoden in een use case omtrent auto-
nome agrarische voertuigen, waarbij een eind-tot-eind segmentatiemethode,
gebruikmakende van diepe convolutionele neurale netwerken, als alternatief
wordt voorgesteld.

Omdat SSVMs in het algemeen niet gebruik maken van de wisselwer-
king tussen unaire en interactiefactoren gedurende hun trainingsfase, zijn
de finale parameterwaarden suboptimaal. Bovendien zijn de factoren vaak
beperkt tot lineaire combinaties van de inputkenmerken, wat het genera-
lisatievermogen sterk beperkt. Om de voorspellingsprecisie te verhogen,
verbeteren we SSVMs door: gezamenlijke inferentie- en leertechnieken via
de integratie van terugpropagatie en loss-augmented inferentie in SSVM
subgradient descent; (ii) het uitbreiden van SSVM factoren naar neurale
netwerken, welke hoogst nonlineaire factoren van de inputkenmerken voor-
stellen. Dit model stapt af van de traditionele tweedelige aanpak waarin de
unaire factoren onafhankelijk van de interactiefactoren getraind worden in
de gestructureerde predictor.

Resultaten op een complexe afbeeldingsegmentatietaak tonen aan dat
het eind-tot-eind trainen van een SSVM, en/of het gebruik van neurale
factoren, tot een hogere accuraatheid leidt dan conventionele subgradient
descent-methoden en N-slack cutting plane-leertechnieken. Verder passen
we een diepe convolutionele implementatie van de voorgestelde methode
toe in een use case omtrent perceptie in autonome voertuigen. De re-
sultaten demonstreren dat het model kan dienen als het fundament voor
meer geavanceerde gestructureerde modellen, bijvoorbeeld door integratie
met latente variabelen, geleerde kenmerkrepresentaties of meer complexe
connectiviteitsstructuren.

Het tweede deel van deze scriptie onderzoekt gestructureerde voor-
spellingen in het tijddomein. Meer bepaald wordt reinforcement learning
(RL) onderzocht, waarbij een agent tracht een bepaald opgelegd doel te
bereiken in een initieel onbekende omgeving. Omdat dit doel bereiken
meerdere acties vereist, kunnen we de actiesequenties interpreteren als een

SAMENVATTING XXiii

gestructureerde beslissing in de tijd. Elke actie beinvloedt namelijk de
volgende. We introduceren fundamenteel nieuwe methoden voor diepe
RL—reinforcement learning die gebruik maakt van diepe neurale netwer-
ken als functiebenaderigsmethoden. Deze methoden worden toegepast in
het leren van voortbewegingspatronen in robotica en het autonoom spelen
van videospellen.

In het bijzonder merken we op dat schaalbare en effectieve exploratie
een sleutelprobleem is in diepe RL. Hoewel er methoden met optimaliteits-
garanties bestaan in het geval van discrete staat- en actieruimten, kunnen
deze methoden moeilijk aangewend worden in hoogdimensionale scena-
rio’s. Bijgevolg houden huidige RL technieken vooral vast aan eenvoudige
heuristieken zoals e-greedy exploratie of het toevoegen van Gaussische ruis
aan de actie-outputs. Hierdoor heeft de agent de neiging vroegtijdig vast te
raken in suboptimale beslissingssequenties, in plaats van exploratie-acties
te ondernemen die mogelijk de totale beloning op lange termijn verhogen.

Deze thesis introduceert Variational Information Maximizing Explo-
ration (VIME), een exploratiestrategie gebaseerd op de maximalisatie van
informatiewinst omtrent het geloof van de agent in zijn model van de omge-
vingsdynamica. Het is een curiositeitsgedreven exploratie-algoritme voor
continue controletaken. Er wordt een praktische implementatie voorge-
steld op basis van variationele inferentie in Bayesiaanse neurale netwerken,
welke efficiént omgaan met continue staat- en actieruimten. Variationele
inferentie wordt aangewend bij het benaderen van de posteriordistributie van
het netwerk dat de omgevingsdynamica modelleert. VIME past de belo-
ningsfunctie van het Markov beslissingsprocess (MDP) aan en kan gebruikt
worden met tal van onderliggende RL algoritmen. We tonen aan dat VIME
significant beter presteert dan heuristische exploratie-algoritmen over een
waaier aan continue controletaken en RL algoritmen, inclusief taken met
zeer schaarse beloningen.

Een alternatief voor curiositeitsgebaseerde exploratie zijn frequentie-
gebaseerde exploratie-algoritmen. Deze algoritmen staan erom bekend om
bijna-optimaal te zijn in combinatie met tabulaire RL methoden voor het
oplossen van kleine discrete MDPs. Over het algemeen wordt gedacht dat
frequentiegebaseerde methoden niet aangewend kunnen worden in hoogd-
imensionale staatruimten, aangezien de agent in dit geval de meeste staten
maar eenmaal tegenkomt. Recente diepe RL exploratiestrategieén, zoals
VIME, zijn in staat met hoogdimensionale continue staatruimten om te
gaan via complexe heuristieken, vaak gebruikmakend van concepten zoals
optimisme in geval van onzekerheid of intrinsieke motivatie.

Deze thesis beschrijft een verrassende ontdekking: een simpele genera-

XXiv SAMENVATTING

lisatie van de klassieke frequentiegebaseerde aanpak is in staat bijna-state-
of-the-art performantie te behalen op meerdere hoogdimensionale en/of
continue diepe RL benchmarks. Staten worden op hashcodes geprojecteerd,
wat toelaat hun frequentie bij te houden via een hashtabel. Deze frequenties
worden nadien gebruikt als beloningsbonus, naargelang de klassieke theorie
rond frequentiegebaseerd exploreren. We ontdekken dat simpele hashfunc-
ties bijzonder goede resultaten behalen op verscheidene uitdagende taken.

Verder wordt aangetoond dat een domeinafhankelijke geleerde hash-
code deze resultaten nog kan verbeteren. Gedetailleerde analyse toont het
belang aan van een goede hashfunctie. Deze moet namelijk: (i) een aange-
paste granulariteit hebben; (ii) informatie encoderen omtrent de op te lossen
MDP. Deze exploratiestrategie bereikt bijna-state-of-the-art performantie in
zowel het leren van voortbewegingspatronen in robotica als het automoom
spelen Atari 2600 spellen. Dit terwijl het een eenvoudige maar sterke
vergelijkingsbasis vormt voor het oplossen van MDPs waarin significantie
exploratie noodzakelijk is.

Chapter 1

Introduction

Artificial intelligence (Al) is taking a leading role in shaping our future.
Rather than programming computers directly for task solving, a paradigm
shift is taking place towards data-driven approaches, in which computers
are programmed to learn how to solve a task. Being able to teach machines
is extremely valuable, since the majority of tasks are simply too complex
to be explicitly understood by the programmer. The field of machine learn-
ing studies artificial systems that learn from data, by extracting underlying
patterns and structure from examples. Often, this is done through the op-
timization of mathematical models, for which well-fitting parameter values
are sought. Whereas the previous generations of Al systems, such as ex-
pert systems, had problems in dealing with input uncertainty, these learned
models naturally cope with noisy scenarios.

Designing systems that learn how to make complex decision, in which
decisions are structured or correlated, enables many applications. Exam-
ples are placing web advertisements, ranking search results, translating
sentences, robotics, generating text-to-speech, semantic segmentation, etc.
The focus of this work is centered around structured decision making both
in the spatial and temporal domain. As such, the first part of this disserta-
tion (Chapters 2 and 3) investigates multi-output prediction, in which the
predictions affect each other spatially. These models are applied in the
domain of semantic image segmentation to enable visual perception in au-
tonomous vehicles. The second part of this dissertation (Chapters 4 and
5) investigates structured decision making in time. Herein reinforcement

2 CHAPTER 1

learning is researched, which studies agents that learn how to accomplish a
goal in an initially unknown environment. Doing this requires the agent to
take sequential decisions, which affect each other in the temporal domain.
The developed methods are applied in autonomous video game playing and
learning robot locomotion.

1.1 Graphical Models

The concepts presented in this dissertation are based on building models of
the world that can relate observed measurements with quantities that we care
about. For example, given an image in which pixel regions are missing,
infer their missing values (cfr. Chapters 2 and 3). Or, given a sequence
of actions and joint angles generated by a robot that learns to walk, infer
the next action to take (cfr. Chapters 4 and 5). This section introduces
the most important concepts of graphical models needed to understand this
dissertation. For additional background information, the reader is referred
to [Koller and Friedman, 2009].

Q@/@

Figure 1.1: Illustration of a directed (left) and undirected (middle, right) graphical
model. The rightmost figure represents a factor graph that encodes
pairwise relations.

Graphical models form a language to efficiently encode interactions
between variables. Doing so allows these models to connect both known
observations and variables with unknown values. Often it is impossible
to derive these values with certainty, which is where graphical models
come into play. By encoding a conditional or joint probability distribution,
unknown values can be estimated. It is possible to make the distinction
between directed and undirected graphical models.

INTRODUCTION 3

Directed graphical models, such as the one depicted in Figure 1.1 (left),
specify a probability distribution p(y) with y € Y. This is done through
specification of a directed acyclic graph G = (V, &), which effectively
encodes the statistical independencies between the random variables that
make up the nodes of this graph. As such directed graphical models specify
a factorized probability distribution

po = [| P(ilvpace,)- (1.1)
eV
in which ypa . represent the parent nodes of node i in G. For example,
Figure 1.1 (left) specifies the probability distribution

pY) = pily)pelyi yi)p (i) p(y;)- (1.2)

A second class consists of the undirected graphical models, or Markov
random fields (MRFs) [Nowozin and Lampert, 2011], as illustrated in Fig-
ure 1.1 (middle). These models define an undirected graph G = (V, &)
which specifies the factorized distribution

r=5 [] wever 2= [] vcoor a3

CeC(G) yeY CeC(G)

in which C(G) denotes the set of cliques in G and Z is a normalization
constant that ensures that a valid probability distribution is obtained. For
example, Figure 1.1 (middle) defines the factorized probability distribution

1
== [] waGw. (14)

Aelij.k 1}

An alternative way to specify an MRF is by using a factor graph. A factor
graph makes explicit the factorization of the probability distribution. It is
a tuple (V, &, F), composed of nodes, edges, and factors. Herein, & C
VxF . If we define the scope of afactortobe N(F) ={i eV : (i, F) € &},
namely the nodes to which it connects, then the distribution factorizes as

1
p(y) = Z 1_[VE(YNF))- (1.5)
FeF

An example is shown in Figure 1.1 (right), in which only pairwise interac-
tions are considered.

4 CHAPTER 1

Different types of graphical models exist, but they all have in common
that they specify a family of probability distributions by means of a graph.
The various types differ by the allowed graph structure and the conditional
independence assumptions encoded in the graph. Given a graphical model
we can think of it as a filter for probability distributions. Only those distri-
butions pass that satisfy all conditional independencies the graph encodes.
As such, a graphical model specifies a family of probability distributions
rather than a single one [Nowozin and Lampert, 2011].

1.2 Deep Learning

Next to graphical models, many of the methods described in this dissertation
make use of deep learning. Often these methods can be described as
graphical models in which parts are modeled by deep neural networks. Deep
learning models are capable of learning data representations at multiple
abstraction levels. These levels are layers of nonlinear functions of which
the output forms the input of the next layer. As such, they are able to extract a
set of hierarchical features from input data. These models, often called deep
neural networks, are trained using a training dataset, in which the internal
parameters are perturbed such that an objective function is optimized. This
section introduces the most important concepts of deep learning in order
to understand this dissertation. For additional background information, the
reader is referred to [Goodfellow et al., 2016].

The most straight-forward example is the feed-forward neural network,
in which each layer / consists of a set of neurons (units) that first compute
an affine transformation of the neuron outputs of the previous layer, after
which a nonlinear function is applied element-wise. The coefficients of this
affine transformation are tunable parameters. A neural network can thus be
specified through the recursive relation

x1 = f(Wixi1 + by), (1.6)

in which f(-) is an element-wise activation function, W € R™ P, and
b € RP. Examples of activation functions are sigmoidal functions, tanh
functions, and rectified linear units.

A particular class of feed-forward neural networks is the convolu-
tional neural network (CNN). These networks differ in the way each layer

INTRODUCTION 5

is connected to the following. Due to its restricted connectivity pattern, the
number of tunable weights is limited, making it biased towards certain data
types. These data types are generally data in which salient features are trans-
lation invariant, for example images, in which an object can appear anywhere
within the image boundaries. An illustration is shown in Figure 1.2 which
depicts a convolutional autoencoder, a model that attempts to reconstruct its
input, in this case a single-channel image. The input passes through various
transformations, depicted from left to right, applying (possibly transposed)
convolutions and nonlinear transformations.
CNNs are described by the following recursive equation:

XI(P) - f(z Wl(k,P) " Xl(fi + bl(P)>’ (17)

k

with * the 2-dim convolution operator, and Wl(k’p) the learned parameters
(filters) for each input feature map X l(fl) and output feature map X l(p). Each

output feature map X l(p) is the sum of the convolution operations between
each of the input feature maps X l(fi and the corresponding filter Wl(k”’),
The advantage is that the matrix multiplication is replaced by a convolu-
tion, which causes the weights of each output neuron in a particular output
feature map to be shared. This makes the number of parameters to be sig-
nificantly lower, countering overfitting behavior and lowering the memory

requirements for storing the model.

-
\ED 1 t
D \
512
96 x5x%x5)
96x 11x 11
96 % 24 x 24 1024 96 x 24 % 24

N\l 96 x 10 x 10

1x52%52 1x52%52 64x52x%52

Figure 1.2: Illustration of a deep convolutional neural network, more specifically a
convolutional autoencoder, as used in Chapter 5. Herein, 6 X 6 convo-
lutions are used with a stride of 2.

Most deep learning models are trained by some form of stochastic gra-
dient descent (SGD). Gradient descent-based methods optimize an objective

6 CHAPTER 1

function L, e.g., negative log-likelihood L = — }’; log p(x;; w, b) or mean-
squared error in the supervised learning case, by perturbing all network
parameters jointly in a direction that improves the loss value on a particular
training dataset. It is called stochastic since the dataset is often split up
into multiple minibatches, which are processed sequentially. More specifi-
cally, these methods update the weights and biases of the neural network as

follows:
oL

Doy’ bnhbn—a%. (1.8)
The parameters are altered according to the partial derivative of the loss
function L to each of its parameters, rescaled by a factor @ € R, called the
step size. This method of perturbing neural network parameters forms the
basis of many methods described in this thesis, such as optimizing the policy
in reinforcement learning through policy gradients (Chapter 4), optimizing
the structural support vector machine objective function when using neural
factors (Chapter 3), or training convolutional unary classification methods
(Chapter 2).

Wy — W, —a

1.3 Spatially-Structured Decision Making

This section introduces structured decision making in which the decisions
are spatially correlated, as researched in Chapters 2 and 3. This dissertation
specifically investigates these types of methods in light of their application
to visual perception for autonomous vehicles.

Figure 1.3: Illustration of image segmentation as applied in an agricultural au-
tonomous vehicle setting (left) and an image over-segmentation that
also depicts the first- and second-order adjacency neighborhood of a
particular pixel cluster (right)

INTRODUCTION 7

The lack of structured elements in the environment, such as walls,
forms a big challenge for autonomous outdoor vehicles [Reina et al., 2012].
Rather than identifying which areas are traversable or nontraversable, or de-
tecting objects using bounding boxes [Sivaraman and Trivedi, 2013, Bernini
et al., 2014], we attempt to obtain intelligent environment sensing through
assignment of semantic classes to each visual input pixel. Higher-level pro-
cesses can then use this information to determine how the vehicle should
act in order to attain a particular goal.

Two important streams in computer vision can be identified: segmenta-
tion models and bounding box models. The latter attempts to detect objects
by drawing rectangles around them, which tends to break down when highly
irregular regions have to be identified, such as sky or vegetation [Nowozin
and Lampert, 2011]. Segmentation models handle this naturally since they
label each individual pixel or pixel cluster. Since irregular shapes dominate
outdoor scenes, we focus on the segmentation approach in our quest for
intelligent autonomous vehicle perception.

Figure 1.4: Illustration of image segmentation applied to the perception system of
an agricultural autonomous vehicle: original image (left), segmentation
through structured prediction (middle), segmentation through traditional
independent prediction (right)

One approach to segmentation is by making use of a graphical model
that embodies interactions between adjacent over-segmentation regions, i.e.,
coherent pixel clusters, conditionally-dependent on the input image. An
example of a such an over-segmentation is show in Figure 1.3 (right). The
ultimate target is to obtain a segmentation by coloring in each cluster with
a particular semantic class as shown in Figure 1.4 (middle). Herein, a
machine learning system was trained to segment camera images originating
from autonomous agricultural vehicles into various outdoor classes.

In traditional supervised machine learning a system is trained to output
a single scalar value, for example the type of object that is recognized in

8 CHAPTER 1

Figure 1.5: Structured output prediction as a graphical model: making spatially-
structured decisions. The gray nodes represent observed/known vari-
ables, while the white nodes unknown variables, whose values we aim
to determine.

an image. In our particular use case, this would correspond to training a
system to output a correct class for each pixel or pixel cluster individually.
An example is shown in Figure 1.4, which depicts the original image on the
left, and the segmentation through traditional supervised learning on the
right. Structured prediction models allow for arbitrary structured outputs,
such as a graph or vector. These models have proven useful in tasks such
as part-of-speech tagging and optical character recognition, where taking
into account contextual cues and predicting all output variables at once
is beneficial. In Figure 1.4, we see the improvement of using structured
prediction in the middle image, over the traditional approach on the right.

A widely used framework is the conditional random field (CRF) [Koller
and Friedman, 2009], a type of MRF that models the output probability
distribution considering statistical conditional dependencies between input
and output variables, as well as between output variables mutually. How-
ever, many tasks only require ‘most-likely’ predictions, which led to the
rise of nonprobabilistic approaches. Rather than optimizing the Bayes’
risk, these models minimize a structured loss, allowing the optimization of
performance indicators directly [Nowozin and Lampert, 2011]. One such
model is the structural support vector machine (SSVM) [Tsochantaridis
et al., 2005] in which a generalization of the hinge loss to multiclass and
multilabel prediction is used.

An example of a graphical model representing a CRF is depicted in
Figure 1.5 as a factor graph. Herein, the gray nodes represent observed

INTRODUCTION 9

variables, while the white nodes are predictions/decisions made by the
system. This model can be described by the following equation

p(y1x) = ﬁ [Twioxo [wi(ve)- (1.9)

i€V (i,j)e&

The relations between the various decisions are modeled by pairwise factors
Wij (yi, yj), which are functions that output real numbers, whose values in-
dicate the relation strength. The unary factors ¢; (y;, x;) relate observations
to predictions, indicating the relation between input features and output vari-
ables. Relating this to the example used previously, the different regions
in Figure 1.3 (right) form the observations, the gray nodes x;. The class
assigned to each of them is represented by the decisions, the white nodes y;.
A coherent segmentation can best be obtained by predicting all variables at
once, computing arg max,, p(y|x), such as in Figure 1.4 (middle), which is
exactly what the SSVM model does.

1.4 Temporally-Structured Decision Making

The second part of this dissertation focuses on structured decision making
in which temporal correlations between prediction variables are considered,
as researched in Chapters 4 and 5. This section briefly introduces the
field of reinforcement learning, which forms a basis for these chapters. In
particular, these chapters focus on the application of sequential decision
making to learning robot locomotion and autonomous video game playing.

Figure 1.6: Illustrations of the tasks used in the experiments in Chapters 4 and 5.
The left three figures represent continuous control tasks, while the right
two figure represent Atari 2600 games.

Reinforcement learning (RL) studies how an agent can learn to max-
imize a cumulative reward in a previously unknown environment, which it
learns about through experience. The agent could be any object with the

10 CHAPTER 1

po(s)

Ta(als)

Figure 1.7: RL as a graphical model: making structured decisions in time. The
agent decides which action to take based on 7, (als), a reward is given
according to r(s, a), after which the next state is generated according to
P(s’|s,a). When s7 is reached, the episode terminates.

ability to influence its environment. Figure 1.6 shows several environments,
such as balancing a pole on a cart, in which the agent controls the cart ve-
locity, and learning stable walking behavior to collect items, in which the
agent controls the joint torques of a robot. The environment is the set of
possible states the agent can be in, which could be the robot joint angles or
the position of the remaining objects in the collection task. As such, the
agent has the ability to change the environment state through its decisions.
The goal of the agent is specified through a reward function, which could
for example reward the agent in making forward progress when learning to
walk.

A core concept in RL is the Markov decision process (MDP), which
describes an agent interacting with an environment [Sutton, 1990]. This
concept is defined as the tuple (S, A, P, r, po,v,T). Herein, we consider
(i) a state space S C R”" defining the set of possible environment states, (ii)
an action space A C R™ defining the set of possible agent actions, (iii) a
transition function £ : S X A — 8, generating a new state s;4; € S by
taking action a, € A instate s; € S, and (iv) a reward functionr : S XA —
R defining a reward r(s;, a,;) given when taking an action a, in state s;.
Ultimately, the goal is to learn a policy 7 : S — A that allows sequential
decision making for the agent reach its target.

This dissertation focuses specifically on episodic RL, in which the agent
lifetime is broken up into episodes with finite number of states, actions, and
rewards. The episode ends when a terminal state sy is reached, with T

INTRODUCTION 11

being the time horizon. We assume a parametrized policy 7, with the goal
of maximizing u(r,), the expected (discounted) return

T-1
D Yris, a»], (1.10)

t=0

u(me) = ETNP(T;(Z)

where T = (s, ao, . . .) denotes a whole trajectory, with so ~ po(s), a; ~
o (aslsy), and s;41 ~ P(St+118¢, ar). The parameter y € (0, 1] is a discount
factor often introduced to deal with long time horizons. Assuming an initial
state distribution py : S — R, we can represent the agent behavior as a
time-recurrent graphical model, which is shown unrolled in Figure 1.7. As
such, the policy learned can be interpreted as a sequential decision making
procedure with temporally-correlated decisions.

To illustrate this theory, imagine a robot that learns how to walk through
reinforcement learning. The initial distribution could be a probability mass
centered around some specific set of initial joint angles. Each state would
defined as a vector with elements between O and 2x. The actions could
be the joint torques, which would be real-valued vectors. Based on the
underlying robot dynamics model, these torques would modify the angle
settings. Since we work in the discrete time domain, these actions could
for example be executed at 30 Hz. In order to learn to walk, a possible
reward function would be the distance traversed so far. The final state can
be defined as reaching a particular distance, or when the robot body hits the
floor. The policy itself might be a neural network that takes as input the joint
angle vector and outputs the mean and variance of a multivariate Gaussian
distribution. Actions could then be sampled from this distribution, at a rate
of 30 times per second.

One class of RL methods used very often in this thesis are policy
gradient methods. These methods estimate the gradient of the expected
return as defined in Eq. (1.10),

T-1
Va/l(n'a) = VHET~p(T;(l) Z)’tr(Sz, ar)
t=0
T-1
= Erop(ran | Va logp(rs@)) y'r(ss, a,)] . (L1D)
t=0

using a score function gradient estimator [Sutton, 1998], since the likelihood

12 CHAPTER 1

ratio trick tells us that

VaEx~p(x;a) [f(x)] =V, fp(x;a/)f(x)dx

=fV(,p(x;a)f(x)dxzfp(x;a/)Va log p(x; @) f (x)dx
= Bx~p(x;a) [Va logp(X;a')f(x)] . (112)

Moreover, the probability p(7; @) in Eq. (1.11) can be expanded as

p(t;a) = p(so)m(aolso; @)P (s1ls0, ao) . . .

rn(ar—1lst-1;)P (stlsT-1,ar-1), (1.13)

according to the factorization in Figure 1.7. When computing log p(t; @),
these multiplications become sums, hence when computing the gradient,
the terms that are independent of the parameter @ become zero. Since the
transition dynamics probability distribution and the initial state distribution
are both independent from «, these are dropped. As such,

Vo logp(tr; @) = Vo logn(aglso; @)+. . .+Velogm(ar—1|sr-1;a). (1.14)

Therefore, we can replace Eq. (1.11) by

T-1 T-1
Val(7a) = Erpar |), Valogn(alsi @) Y ¥'r(span| . (1.15)
t=0 t=0

As such, we can simply approximate this expectation by drawing samples
according to the environment and policy, and average them. This allows
the optimization of the policy parameters through sampling, without requir-
ing access to the transition dynamics distribution that is often unknown.
This forms the foundation of policy gradient methods as used throughout
Chapters 4 and 5.

1.5 Scientific Challenges and Contributions

This section summarizes the research challenges and scientific contributions
made in the different chapters of this dissertation.

INTRODUCTION 13

Chapter 2: Structured Output Prediction for Semantic Perception in
Autonomous Vehicles A key challenge in the realization of autonomous
vehicles is the machine’s ability to perceive its surrounding environment.
This task is tackled through a model that partitions vehicle camera input
into distinct semantic classes, by taking into account visual contextual cues.
The use of structured machine learning models is investigated, which not
only allows for complex input, but also arbitrarily structured output.

Towards this goal, an outdoor scene dataset is constructed with ac-
companying fine-grained image labelings. For coherent segmentation, a
structured predictor is modeled to encode label distributions conditioned on
the input images. After optimizing this model through max-margin learn-
ing, based on an ontological loss function, efficient classification is realized
via graph cuts inference using a-expansion. Analyses demonstrate that by
taking into account contextual relations between pixel segmentation regions
within a second-degree neighborhood, spurious label assignments are fil-
tered out, leading to highly accurate semantic segmentations for outdoor
scenes.

Additionally, we propose the use of a convolutional neural network as
a unary classifier with a structured predictor, as well as the use of an end-
to-end segmentation method. These models are enhanced through transfer
learning using features from an independent classification task.

Chapter 3: Integrated Inference and Learning of Neural Factors in
Structural Support Vector Machines Tackling pattern recognition prob-
lems in areas such as computer vision, bioinformatics, speech or text recog-
nition is often done best by taking into account task-specific statistical
relations between output variables. In structured prediction, this inter-
nal structure is used to predict multiple outputs simultaneously, leading to
more accurate and coherent predictions. Structural support vector machines
(SSVMs) are nonprobabilistic models that optimize a joint input-output
function through margin-based learning.

Because SSVMs generally disregard the interplay between unary and
interaction factors during the training phase, final parameters are subop-
timal. Moreover, its factors are often restricted to linear combinations of
input features, limiting its generalization power. To improve prediction ac-
curacy, this chapter proposes: (i) Joint inference and learning by integration
of back-propagation and loss-augmented inference in SSVM subgradient

14 CHAPTER 1

descent; (ii) Extending SSVM factors to neural networks that form highly
nonlinear functions of input features.

Image segmentation benchmark results demonstrate improvements
over conventional methods in terms of accuracy, highlighting the feasibility
of end-to-end SSVM training with neural factors. This is reinforced by seg-
mentation results of a deep convolutional implementation of the proposed
model on autonomous vehicle visual data.

Chapter 4: Variational Information Maximizing Exploration Scal-
able and effective exploration remains a key challenge in reinforcement
learning (RL). While there are methods with optimality guarantees in the
setting of discrete state and action spaces, these methods cannot be applied
in high-dimensional deep RL scenarios. As such, most contemporary RL
relies on simple heuristics such as epsilon-greedy exploration or adding
Gaussian noise to the controls.

This chapter introduces Variational Information Maximizing Explo-
ration (VIME), an exploration strategy based on maximization of informa-
tion gain about the agent’s belief of environment dynamics. We propose a
practical implementation, using variational inference in Bayesian neural net-
works which efficiently handles continuous state and action spaces. VIME
modifies the Markov decision process (MDP) reward function, and can be
applied with several different underlying RL algorithms. We demonstrate
that VIME achieves significantly better performance compared to heuris-
tic exploration methods across a variety of continuous control tasks and
algorithms, including tasks with very sparse rewards.

Chapter 5: A Study of Count-Based Exploration for Deep Reinforce-
ment Learning Count-based exploration algorithms are known to per-
form near-optimally when used in conjunction with tabular RL methods for
solving small discrete MDPs. It is generally thought that count-based meth-
ods cannot be applied in high-dimensional state spaces, since most states
will only occur once. Recent deep RL exploration strategies are able to deal
with high-dimensional continuous state spaces through complex heuristics,
often relying on optimism in the face of uncertainty or intrinsic motivation.

In this chapter, we describe a surprising finding: a simple general-
ization of the classic count-based approach can reach near state-of-the-
art performance on various high-dimensional and/or continuous deep RL

INTRODUCTION 15

benchmarks. States are mapped to hash codes, which allows to count their
occurrences with a hash table. These counts are then used as a reward
bonus, according to the classic count-based exploration theory. We find
that simple hash functions can achieve surprisingly good results on many
challenging tasks.

Furthermore, we show that a domain-dependent learned hash code may
further improve these results. Detailed analysis reveals important aspects
of a good hash function: (i) Having appropriate granularity; (ii) Encoding
information relevant to solving the MDP. This exploration strategy achieves
near state-of-the-art performance on both continuous control tasks and Atari
2600 games, while providing a simple yet powerful baseline for solving
MDPs that require considerable exploration.

1.5.1 Publications

The research results obtained during my doctoral studies have been pub-
lished in scientific journals and presented at a series of international confer-
ences. The following sections provide an overview of the work published.

1.5.1.1 Conference Proceedings

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schul-
man, J., De Turck, F., and Abbeel, P. (2016). #Exploration: A study of
count-based exploration for deep reinforcement learning. In Deep Rein-
forcement Learning Workshop at NIPS.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel,
P. (2016). VIME: Variational information maximizing exploration. In
Advances in Neural Information Processing Systems 29 (NIPS), pages 1109—
1117, Barcelona, Spain.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel,
P. (2016). InfoGAN: Interpretable representation learning by information
maximizing generative adversarial nets. In Advances in Neural Information
Processing Systems 29 (NIPS), pages 2172-2180, Barcelona, Spain.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016).
Benchmarking deep reinforcement learning for continuous control. In

16 CHAPTER 1

Proceedings of the 33rd International Conference on Machine Learning
(ICML), pages 1329—1338, New York, USA.

Houthooft, R., De Boom, C., Verstichel, S., Ongenae, F., and De Turck, F.
(2016). Structured output prediction for semantic perception in autonomous
vehicles. In Proceedings of the 30th AAAI Conference on Artificial Intelli-
gence (AAAI), Phoenix, Arizona, USA.

Houthooft, R., Sahhaf, S., Tavernier, W., De Turck, F., Colle, D., and Pick-
avet, M. (2015). Robust geometric forest routing with tunable load balanc-
ing. In Proceedings of the IEEE Conference on Computer Communications
(INFOCOM), pages 1382-1390, Hong Kong, P.R. China.

Houthooft, R., Sahhaf, S., Tavernier, W., De Turck, F., Colle, D., and Pick-
avet, M. (2014). Fault-tolerant greedy forest routing for complex networks.
In Proceedings of the 6th International Workshop on Reliable Networks
Design and Modeling (RNDM), pages 1-8, Barcelona, Spain.

De Backere, F., Hanssens, B., Heynssens, R., Houthooft, R., Zuliani, A.,
Verstichel, S., Dhoedt, B., and De Turck, F. (2014). Design of a secu-
rity mechanism for RESTful Web service communication through mobile
clients. In Proceedings of the IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS), pages 1-6, Krakow, Poland.

1.5.1.2 Journals

Houthooft, R. and De Turck, F. (2016). Integrated inference and learning of
neural factors in structural support vector machines. Pattern Recognition,
59:292-301.

Houthooft, R., Ruyssinck, J., van der Herten, J., Stijven, S., Couckuyt,
L., Gadeyne, B., Ongenae, F., Colpaert, K., Decruyenaere, J., Dhaene, T.,
and De Turck, F. (2015). Predictive modelling of survival and length of
stay in critically ill patients using sequential organ failure scores. Artificial
Intelligence in Medicine, 63(3):191 — 207.

Houthooft, R., Sahhaf, S., Tavernier, W., De Turck, F., Colle, D., and Pick-
avet, M. (2015). Optimizing robustness in geometric routing via embedding
redundancy and regeneration. Networks, 66(4):320-334.

INTRODUCTION 17

1.5.1.3 Patent Applications

Houthooft, R., Verstichel, S., Debilde, B., and Foster, C. A controller for
a working vehicle. E.U. Patent Application No. 16177346.0 - 1905. U.S.
Patent Application No. 15/199,090. Filed 30 June 2016.

18

CHAPTER 1

References

[Bernini et al., 2014] Bernini, N., Bertozzi, M., Castangia, L., Patander,
M., and Sabbatelli, M. (2014). Real-time obstacle detection using stereo
vision for autonomous ground vehicles: A survey. In Proceedings of

the IEEE 17th International Conference on Intelligent Transportation
Systems (ITSC), pages 873-878.

[Goodfellow et al., 2016] Goodfellow, 1., Bengio, Y., and Courville, A.
(2016). Deep Learning. The MIT Press.

[Koller and Friedman, 2009] Koller, D. and Friedman, N. (2009). Proba-
bilistic Graphical Models: Principles and Techniques. The MIT Press.

[Nowozin and Lampert, 2011] Nowozin, S. and Lampert, C. H. (2011).
Structured learning and prediction in computer vision. Foundations and
Trends in Computer Graphics and Vision, 6(3—4):185-365.

[Reina et al., 2012] Reina, G., Milella, A., and Underwood, J. (2012). Self-

learning classification of radar features for scene understanding. Robotics
and Autonomous Systems, 60(11):1377-1388.

[Sivaraman and Trivedi, 2013] Sivaraman, S. and Trivedi, M. M. (2013).
Looking at vehicles on the road: A survey of vision-based vehicle detec-

tion, tracking, and behavior analysis. IEEE Transactions on Intelligent
Transportation Systems, 14(4):1773-1795.

[Sutton, 1990] Sutton, R. S. (1990). Integrated architectures for learning,
planning, and reacting based on approximating dynamic programming.

In Proceedings of the 7th International Conference on Machine Learning
(ICML), pages 216-224.

[Sutton, 1998] Sutton, R. S. (1998). Introduction to reinforcement learn-
ing. The MIT Press.

[Tsochantaridis et al., 2005] Tsochantaridis, I., Joachims, T., Hofmann, T.,
and Altun, Y. (2005). Large margin methods for structured and inter-
dependent output variables. Journal of Machine Learning Research,
6:1453-1484.

Chapter 2

Structured Output
Prediction for Semantic

Perception in Autonomous
Vehicles

Rein Houthooft, Cedric Boom, Stijn Verstichel, Femke Ongenae & Filip De
Turck, Structured Output Prediction for Semantic Perception in Autonomous
Vehicles, In Proceedings of the 30th AAAI Conference on Artificial Intelli-
gence (AAAI-16), Phoenix, Arizona, USA, 2016.

Includes changes and extensions not released at the time of publication.

Ghent University — imec, CNH Industrial
* k%

A key challenge in the realization of autonomous vehicles is the machine’s
ability to perceive its surrounding environment. This task is tackled through
a model that partitions vehicle camera input into distinct semantic classes,
by taking into account visual contextual cues. The use of structured ma-
chine learning models is investigated, which not only allow for complex

20 CHAPTER 2

input, but also arbitrarily structured output. Towards this goal, an out-
door scene dataset is constructed with accompanying fine-grained image
labelings. For coherent segmentation, a structured predictor is modeled to
encode label distributions conditioned on the input images. After optimiz-
ing this model through max-margin learning, based on an ontological loss
function, efficient classification is realized via graph cuts inference using
alpha-expansion. Analyses demonstrate that by taking into account contex-
tual relations between pixel segmentation regions within a second-degree
neighborhood, spurious label assignments are filtered out, leading to highly
accurate semantic segmentations for outdoor scenes. This applied research
chapter thus i) applies structured prediction methods in an autonomous ve-
hicle project for visual understanding of the environment, and ii) sets forth
the background and implementation of the methods that form a basis for the
algorithms developed in Chapter 3.

2.1 Introduction

Outdoor settings present many challenges to autonomous vehicle operation
due to the lack of structured elements in the environment, such as walls or
doors [Reina et al., 2012]. Beyond the identification of traversable areas
and object detection [Sivaraman and Trivedi, 2013, Bernini et al., 2014],
environmental sensing can be approached by determining a semantic class
for each point of the environment, enabling further high-level processing
such as automatic vehicle steering based on road segments. In this chapter,
we present a semantic perception model for autonomous vehicles based on
image segmentation.

In computer vision, two main trends can be discerned, namely segmen-
tation models and bounding box models. The latter attempt at identifying
objects by drawing bounding rectangles. Although this approach performs
very well at recognizing objects with a regular shape, its performance drops
significantly when irregular regions, such as vegetation or sky, have to be
identified [Nowozin and Lampert, 2011]. Segmentation models are not
hindered by irregular shapes as they label each individual image pixel. Be-
cause outdoor scenes consist largely of irregular shapes, the segmentation
approach fits best for autonomous vehicles.

Many segmentation techniques are based on a graphical model that
embodies interactions between neighboring over-segmentation regions, i.e.,

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 21

Figure 2.1: One of the vehicles used to capture the dataset images; cameras are
mounted on the roof top center and mirrors.

coherent pixel clusters, conditionally-dependent on the input image (see
[Nowozin and Lampert, 2011] for an overview). We propose a structured
prediction model that takes into account contextual relations between both
first- and second-degree region neighbors by means of distinct interaction
functions. This model is optimized according to an ontological loss func-
tion via max-margin learning. Towards our goal of autonomous vehicle
perception, a dataset is constructed in which recorded camera images are
labeled in a fine-grained manner. Effective and efficient inference is possi-
ble by means of the @-expansion [Boykov et al., 2001] algorithm, yielding
accurate semantic image segmentations.

2.2 Data Acquisition

Structured prediction methods are applied specifically in an autonomous
agricultural vehicle use case, using alternative data, methods, and im-
provements that could not be shown publicly at the time of publication
in [Houthooft et al., 2016].

As part of this use case, an autonomous agricultural vehicle segmen-
tation dataset was created in collaboration with Case New Holland (CNH)
Industrial. Camera video data was captured originating from ten different
recording campaigns in the Styria region and Amstetten area in Austria,
the Bologna province in Italy, West-Flanders in Belgium, Pinal County in
Arizona, USA, the Indre and Lot-et-Garonne departments in France, the
Thuringia region in Germany, and the North Brabant region in The Nether-
lands. To capture the data, different vehicles were equipped with GoPro
Hero 3+ Black cameras, set to a resolution of 1920 x 1080 pixels and a

22 CHAPTER 2

.38

°
28

class frequency [%]

0.001
0.0001

Figure 2.2: Class list and occurrence frequencies in the constructed dataset.

frame rate of 30 Hz. One of the vehicles used in the campaigns is shown in
Figure 2.1. A wide-angle field-of-view was chosen to capture additional sur-
roundings using the following camera angle settings: 69.5° vertical, 118.2°
horizontal, and 133.6° diagonal, with a focal length of 14 mm. The resulting
fisheye effect was corrected post-hoc through an inverse transformation.

The different captured videos were split into image sequences with a
frequency of 1 Hz. From this set of images, for each measurement campaign,
the most visibly informative and distinctive ones in terms of objects and
perspective were selected. This resulted in a dataset of 595 training and 149
test images, which were labeled by an external party that was given labeling
guidelines. For this task, a labeling tool was built that allows operators
to load an image, segment it into over-segmentation regions, and assign
classes to these regions. Some representative dataset images are shown in
Figure 2.3, while Figure 2.2 shows the list of classes with their occurrence
frequencies.

2.3 Preprocessing

Before the images are fed to the prediction model, they pass through a
preprocessing pipeline in order to extract uniform feature representations.
In this section, we first describe the region segmentation approach, after
which we explain how features are extracted.

2.3.1 Region Over-segmentation

Classifying every pixel is computationally challenging. Therefore, we first
segment the image into visually coherent regions, or superpixels, as shown
in Fig. 2.5. This is done via the SLIC algorithm [Achanta et al., 2012],

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 23

Figure 2.3: Illustation of dataset images (columns 1 and 3) and corresponding man-
ual labelings (columns 2 and 4)

which clusters all pixels in a 5-dim space composed of the CIELab L-, a-,
and b-values, and the pixel coordinates. First, a grid is defined on top of
the image, whose nodes serve as starting positions for K distinct clusters.
The clustering distance used is a weighted sum of both the distance in
the (L, a, b)-space and the (x, y)-space. The weights allow for tuning the
fuzziness of the region boundaries. By means of expectation-maximization,
the clusters evolve until convergence.

2.3.2 Feature Extraction

The next step is the feature extraction process in which each distinct region
is assigned a uniformly-sized feature vector based on both gradient and
color information. Gradient information is extracted as 200-dim features
through the DAISY [Tola et al., 2010] algorithm, while color information
is modeled by the HSV-value of each pixel, leading to 3-dim color features.
What we obtain now is a set of features for each image pixel for the whole
training dataset.

Because the segmentation regions vary in size, the number of extracted
features also varies. However, we want to obtain a uniform feature vector

24 CHAPTER 2

for each region, independent of its size. Therefore, after we have extracted
features from all pixels, we apply k-means clustering to all extracted gradient
features, and to all extracted color features from all image pixels. Gradient
features are clustered into G clusters, while color features are clustered into
C clusters.

To reduce the clustering complexity, the features are not extracted for
each image pixel, but only for pixels that lie on a regular grid. The feature
cluster centers now form so-called words. After these words have been
identified, the extracted features within the same segmentation region are
mapped to the closest word in terms of Euclidean distance in the feature
space, forming bags-of-words.

Because the number of feature clusters, namely G and C, is fixed,
a histogram can be built for each segmentation region that contains the
frequency of occurrence of each of the words. Moreover, the relative
position of the region center, i.e., the median of its pixel coordinates, is added
as a feature. A uniform representation is obtained for each segmentation
region by concatenating the two histograms and the center into a single
vector in R(C+C+2) which acts as the input to our prediction model. In
contrast to the grid-based feature extraction process used for constructing
the words of the bag-of-words model, the features used to construct the
uniform feature vector for each region are densely sampled. In our case, we
specifically used G = 300 and C = 150.

2.3.3 Convolutional Unary Classifier

A convolutional neural network (CNN) is used to learn representations
of each superpixel. The CNN is trained in a supervised fashion, taking
3 % 84 x 84 square windows around the median center of each superpixel as
input, and outputs a probability distribution over all possible classes. This
CNN has the following architecture. First, the 3 x 84 x 84 windows are
downscaled 3-channel 64 x 64 patches. Next, a convolutional layer of 16
5xS5 filters is used, after which a 2-dim max-pooling operation downsamples
the 16 feature maps to 32 x 32 pixels. Hereafter, 2 additional convolutional
layers with max-pooling operations are applied, with 32 and 64 3 x 3 filters
respectively. Hereafter, 2 subsequent dense layers of 1024 units are used,
which end in an 18-bin softmax output layer. Additionally, the previously
mentioned bag-of-word features (452-dim) are added to the first dense layer.

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 25

The CNN architecture is visually described in Figure 2.4.

Adam [Kingma and Ba, 2015] is used as a learning scheme to minimize
the cross-entropy, using minibatches of size 32. The cross-entropy term is
weighted by the inverse of the square root of the class frequencies to correct
for class imbalance. Batch normalization [loffe and Szegedy, 2015] is
applied to every non-output layer; the layer weights are initialized according
to [Glorot and Bengio, 2010]; a dropout [Srivastava et al., 2014] rate of 50%
is applied to both dense layers; all nonlinearities are exponential linear units
(ELUs) [Clevert et al., 2015]; label smoothing of 0.0003 is applied to the
softmax output. Furthermore, the dataset is augmented through random
mirroring over the vertical axis. The CNN softmax ouput probabilities are
used as input features to the SSVM described in the following sections.
Recently, related methods have been proposed by [Mostajabi et al., 2015].

16 x 64 x 64

32x32%32
64x16x 16
K\ 5
U e
64 x8x8
452
32x16x16
1632 %32

3x64x64 1024 1024

Figure 2.4: The convolutional neural network architecture used for the unary pre-
dictor which takes as input windows centered around each superpixel

To enhance the accuracy of the proposed unary classification model,
transfer learning is used through leverage of a CNN that was pretrained
for classification on the ImageNet dataset [Russakovsky et al., 2015]. In
particular, we use the OverFeat CNN model [Sermanet et al., 2013], which
classifies 3x232x232 images into 1000 distinct ImageNet classes. Although
the majority of these classes do not correspond the classes in our dataset, the
goal is to reuse certain learned features in the segmentation model. This can
aid in lowering the overfitting behavior caused by the bias in the proposed
agricultural dataset to particular types of images. The pretrained CNN
model is applied to the same windows as used by the classifier described
in the previous paragraph. The 3 x 84 x 84 windows are scaled up to
3 X 232 x 232 to match the pretrained CNN input dimensions. The class

26 CHAPTER 2

probabilities that are outputted for each superpixel act as an additional 1000-
dim feature vector, which is fed into the first dense layer of the CNN model
described in the previous paragraph. This is shown in Figure 2.4 as the
gray-colored block.

2.4 Structured Output Prediction

Traditional machine learning models for classification predict a single output
through a function f : X — R. In contrast, structured prediction models
[Nowozin and Lampert, 2011] are defined by a function f : X — Y of
which the output is arbitrarily structured. In this work, this structure is
shaped as a vectorin ¥ = £V = {1,..., K}V, with V the number of output
variables to be predicted. In our use case, V is the number of regions
present in the input image, as explained in Section 2.3.1. Structured models
maximize a compatibility function g : X x Y/ — R to obtain the predicted
value f(x), defined as

f(x) = argmax g(x,y), 2.1
yey

which is called inference. In this work, we use a linearly parametrized
function g(x, y) = (w, ¥(x, ¥)), in which w is learned from data and ¥ (x, y)
is a joint feature vector of both x and y. Because the domain Y is very large,
as it is a combination of label assignments to all regions, ¥ has to be defined
in such a way that underlying structures can be exploited. In this work, we
ensure that ¥ identifies with the energy function of an SSVM [Nowozin
and Lampert, 2011], for which efficient inference techniques exist that
correspond to maximizing the compatibility g.

2.4.1 Structural Support Vector Machines

We first explain conditional random fields (CRFs), and afterwards the SSVM
model as used in this chapter is derived. A CREF is a type of probabilistic
graphical model, namely the conditional variant of a Markov random field.
A graphical model defines a probability distribution in a compact way by
making explicit dependencies between random variables. CRFs in particular
define not the full joint distribution over all random variables, but the
conditional distribution of the labels, given the input. This allows for
tractable inference within the model [Nowozin and Lampert, 2011].

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 27

Figure 2.5: Neighborhood connectivity with both first-degree (solid red) and second-
degree (dashed blue) neighbor connections for an actual region over-
segmentation

A CRF models the conditional probability distribution p(y|x), with x
an observation, and y an assignment of labels in Y. This distribution can
be written as

1
) gwﬂyn xF), with 2.2)
2@ =y [vrrxr (2.3)
yeY FeF

called the partition function, which normalizes the distribution. Herein,
F represents the set of factors in the CRF, which model relations between
variables. The model as presented here can be split up into two types of
factors, namely unary and pairwise factors, as follows:

1

P10 = 5o HV Yiyin xi) (i,,lla Wi (v ;). 2.4
for a CRF represented by a graph G = (V, &). Fig. 2.6 depicts the graphical
model as used in this work, while Fig. 2.5 shows the second-order neigh-
borhood connections for an actual image over-segmentation. The unary
terms ¥;(y;, x;) represent relations between input features x; and region
labels y;, while the pairwise terms y;; (yi, yj) model relations between re-
gions. For example, when x; is a green-colored region, then y; is large if

28 CHAPTER 2

Figure 2.6: A CRF is shown with second-degree neighborhood connectivity graph,
represented as a factor graph with observations x; representing region
feature vectors, and random variables representing label assignments y;.
The blocks represent the factors/potentials (not drawn for second-degree
edges), while their incident nodes represent their arguments.

y; = grass and low if y; = road. For the pairwise factors, ¢;; is high if
yi = y; and low otherwise. This leads to a smoothing effect by ensuring that
proximal and similar regions favor equal labels. In our scenario, interlabel
relations are linked together based on each region’s first- and second-degree
neighborhood!, as will be explained later on.

Because the normalization function Z(x) is difficult to compute
[Nowozin and Lampert, 2011] and we are foremost interested in retriev-
ing the most-likely labels, we convert the CRF into an energy-based model
by dropping the normalization function Z(x) and defining energy potentials
as Er(yr,xp) = —logyr(yr, xr). By altering the CRF in this way, we
obtain a model called a structural support vector machine (SSVM) [Taskar
et al., 2003, Nowozin and Lampert, 2011], which defines the total energy as

E(G,x)= Y E(ynx)+ > Eq(yiyj). 2.5)

i€V (i,j)e&

Computing y* = arg max, ¢y p(y|x), called maximum a priori (MAP) in-
ference, requires maximization of p(y|x), which is the same as minimizing
E(y, x). The factor energies are then linearly parametrized [Lucchi et al.,

ISecond-degree neighbors are defined as neighbors of neighbors, based on a region con-
nectivity graph.

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 29

2012] as

Ei(yi, xi;wY) = (W, i (3, xi)) and (2.6)
Eij iy w") = (W wij (v 7)) @7

with w¥ and w¥ the unary and pairwise parameters respectively. Construct-

T 1T
ing a weight vector w = [(WU) , (WP)] , and similarly a feature vector

T 17
Y(y,x) = [(‘PU) , (‘PP)] , with ¥V and ¥? respectively the sum of all

unary features ¢; (y;, x;) and the sum of all pairwise features ;; (yi, yj),
leads to a linear parametrization of E :

E(y, x;w) = (w, ¥(y, x)). 2.8)

In this formulation, the unary features are defined as

T T
vi Qi) = (RO T i =ml) 29
with [-] the Iverson brackets, and i (x;) the probabilistic output of a unary
classification function.

To obtain a fine-grained segmentation of the image, e.g., to detect
vehicles and signs from a distance, we choose a fine-grained region seg-
mentation of 1000 regions. Because neighboring interactions span a low
distance, this leads to noisy predictions. For this reason, both first- and
second-degree neighboring regions are connected by means of pairwise po-
tentials, as shown in Fig. 2.6. Contrary to the unary factors that depend
linearly on the inputs h(x;), the pairwise factors are uniform for all re-
gion interactions. However, a different interaction factor is used for first-
and second-degree connections, which allows for differentiation between
short- and medium-distance interactions. This is encoded into the pairwise
features, as defined by

. . T

Vi) = (2@ Py =m Ay =nl) oo (210)

with (7, j) = (1, 0) if the incident nodes of edge (i, j) € & are first-degree

neighbors, and 7 (i, j) = (0, 1) if they are second-degree neighbors. This

effectively encodes the separate pairwise table for both first- and second-
degree links into the first and second column of w¥.

30 CHAPTER 2

In Eq. (2.8), it can be noticed that E(y, x; w) has a form similar to
g(x,y), the compatibility function g defined at the beginning of this section.
Computing Eq. (2.1) is therefore equivalent to MAP inference in the SSVM
model. Doing so allows us to avoid the intractable computation of g over
all y-values in Y by the use of efficient SSVM MAP inference methods, as
will be explained in Section 2.4.3.

2.4.2 Max-margin Learning

Training the SSVM means tuning the parameters w of the energy function
based on a training dataset, such that its predictions generalize well on a
test set. This can be done through so-called max-margin learning methods,
using quadratic programming. In structured prediction, we minimize a
regularized structured risk rather than the Bayes’ risk, namely

1 N
R(w) + N;A(y",f(x”)), 2.11)

with A : Y XY — Ryg the loss function for which holds Vy,y’ €
Y A, Y') 2 0, A(y,y) = 0, and A(y’,y) = A(»,¥’), R(:) a regular-
ization function, A the inverse regularization strength, and a training set
{(x™, y")}neq,...ny € X X Y. Due to the piecewise nature of this function,
caused by the loss function shape, gradient-based optimization techniques
are unusable [Nowozin and Lampert, 2011]. Therefore, we minimize a
convex upper bound of this function

N
. 2
W' = argmin [R(w) + Zu(y”, X w) |, (2.12)

weRDP n=1

with u(-,-) a function that extracts the maximal difference between the
prediction loss and the energy loss for a data sample (x", y™), defined as

u(y", x";w) =
max [A(y, y") = (EQr x";w) — E (", x™";w))] . (2.13)

In this work, we optimize this objective function by means of the N-slack
cutting plane method [Joachims et al., 2009] with L,-regularization, which

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 31

reformulates the above optimization problem as

, S.t.

1 RS
w' = argmin |= [wl>+ =) &
W, &L, €N |:2 N ;
E(y,x";w) = EG",x"sw) 2 A, y") = & (2.14)

withn € {1,..., N} and y € Y. Herein, &, are slack variables, which are
introduced to allow for linearly punished constraint violation. By doing
this, the maximization function in Eq. (2.13) is translated into linear con-
straints. Moreover, the objective function becomes quadratic in w. This
allows quadratic optimization, for which various optimization libraries ex-
ist. However, a downside is the large number of constraints due to the high
dimensionality of Y.

To counter this, we use cutting plane optimization [Joachims et al.,
2009], in which a working set of constraints W is utilized. Cutting plane
optimization starts by solving the optimization problem with W = 0, and
iteratively adds additional constraints. Only those constraints which are
maximally violated, for each training sample (x", y"), are added to W. This
allows fast optimization at the start of the procedure, combined with strong
results.

For A(, -), we chose a weighted ontological loss function based on the
distance between classes in an ontology, as

\%4
Ay, y") = % Z Oyno (yf" yi), (2.15)
i=1

with V' the number of segmentation regions. The weights 6yn are set
to the inverse of the square root of label frequency in the training set,
normalized over all labels, to correct for some class imbalance. The function
0 : L x L — Ryq represents the distance along the spanning tree defined
by the ontology. As such, the loss of misclassification between two classes
that are conceptually far apart is high.

2.4.3 Reasoning

In order to infer a set of labels that maximally correspond to the regions
of an input image, we have to calculate f(x), as defined in Eq. (2.1).
However, brute-force calculation of f(x) is intractable as it involves due to

32 CHAPTER 2

the combinatorial complexity of the set of possible labelings, we rely on
using tractable approximate reasoning. An inference technique called a-
expansion [Boykov et al., 2001] is used. a-expansion breaks up the energy
minimization problem of Eq. (2.1), based on Eq. (2.5), into sequential
subproblems. In a subproblem, SSVM nodes have the possibility to alter
their label y; to a different (but fixed) label «.

Each subproblem is converted into an auxiliary graph of which the
nodes and edges are constructed in such a manner, that a graph cut results
in an assignment of labels in which y; remains constant, or changes to
a. Because the edge weights are set to the SSVM energies, finding a
minimal cut corresponds to a labeling change that results in a minimal energy
value (for a particular a switch). Solving the subproblems sequentially for
different a-values, yields an approximately optimal labeling. A more in-
depth analysis, including energy formulation requirements and restrictions,
is given in [Boykov et al., 2001, Nowozin and Lampert, 2011].

2.4.4 End-to-end Segmentation

This section propses an alternative approach that avoids the use of an SSVM
model completely. Here, a CNN is modeled to take as input a complete
3 x 640 x 320 image in order to output a full segmentation. This avoids
the need for an over-segmentation preprocessing method, as described in
Section 2.3.1. Its advantage is that the segmentations are no longer limited
by errors made by the SLIC procedure. A possible disadvantage is that
less prior structure is imposed through both the superpixel method and the
SSVM connectivity graph. The proposed model is a type of convolutional
autoencoder with the following architecture, which is also visually described
in Figure 2.7. First a stack of convolutional layers is applied to the 3-channel
input images, composed of respectively 16, 32, 64, and 128 filters of size
3 x 3. After each convolutional layer, a 2-dim max-pooling operation is
applied, halving the size of each set of feature maps.

After the convolutional stack, 2 dense layers of respectively 512 and
8000 units are used, which feed into the stack of transposed convolutional
layers. This stack first reshapes the set of 8000 units into a tensor of size
10 x 20 x 40, after which layers of respectively 128, 64, 32, and 16 filters
of size 3 x 3 are used. After each of these layers, a 2-dim upscaling layer
is applied, doubling the size of each feature map. The final feature map

33

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES

'$59001d UOTIORI)Xd MOPUIM JY} 0) SUIPI0doE sanIIqeqold sse[d NIND 18oJ10AQ Y3 siuasaidar xoq Aeid
oY) ‘suonoouuod JKel-drys oy Juesardar suonoouuod snid PI[OIId Sy} (DINJONIYIIE UONBIUSWISIS [BUOIN[OAUOD PUS-03-pud :/ 7 2InSL]

0T€ X 089 X 91 026 X 0p9 X 91 0TE X 0P9 X €

K

0T X 059 X &

091 %07 X 91
r 08X 091 X 26 08 %091 X 49 0008,

08X 08X 19 0 X 08 X 821
02X 0p X 0001

g : 5 e g
02X 0F x 821 02X 0% X 01

TTTrosexs

07X 08X 8T ponee

34 CHAPTER 2

is fed into a convolutional layer of 16 3 x 3 filters, after which a linear
transformation is applied, which connects to a final 18-bin softmax layer.

To ensure sufficiently detailed segmentations, skip-layer connections
are added that connect the convolutional layers, before their max-pooling
operation, to their transposed convolutional counterparts. As such, the input
of each transposed convolutional layer is expanded through concatenation.
This is made clear in Figure 2.7 by the horizontal dashed connections with
the circled plus symbol. All nonlinear transformations are composed of
ELUs [Clevert et al., 2015]; the learning scheme Adam [Kingma and Ba,
2015] optimizes the cross-entropy augmented with L,-regularization using
minibatches of size 4. The cross-entropy is weighted by the inverse of the
square root of the class frequencies. The training set is augmented through
random image mirroring over the vertical axis. Recently a related method
has been proposed by [Long et al., 2015] and [Ronneberger et al., 2015].

Similar to Section 2.3.3, transfer learning is used to leverage of infor-
mation learned on the ImageNet [Russakovsky et al., 2015] dataset. Again,
we make use of the OverFeat pretrained CNN model [Sermanet et al., 2013].
However, this time the model is slided with a fixed stride over 2x upscaled
input images and applied to the resulting 3 X232 x 232 windows. This trans-
formation results in a 1000-dim class probability vector extracted along a
grid of 20 x 40 points. As such, a tensor of size 1000 x 20 X 40 is formed,
which is concatenated to the reshaped tensor of the 8000 units of the second
dense layer, resulting in a feature map of size 1010 x 20 x 40, shown in
Figure 2.7 by the gray-colored block. The transposed convolutional stack
of layers can now make use of transferred external knowledge in order to
make more informed decisions about the segmentation outputs.

2.5 Results and Discussion

Quantitative results for both models on the test dataset are shown in Fig-
ures 2.9 and 2.8 through confusion matrices. The total set of classes in
the dataset was translated into a set of 18 most interesting class groups. In
these matrices, each row i represents pixels that have a ground truth label
of class i, while each column j represents predictions made by the model as
class j. Therefore, in a confusion matrix, at position (i, j), the number of
pixels classified as j but actually belonging to class i is shown. In this work,
rather than showing the actual pixel counts at each position (i, j), we show

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 35

this count divided by the row sum (in %), which forms the recall confusion
matrix. Hence, the values in each row sum to 100%?2. The diagonal values
of the matrix can be interpreted as the per-class accuracy values, while
the off-diagonal values represent the percentage of pixels (belonging to a
particular class) mispredicted as another class. If we would interpret the
ground truth labels as model predictions, a matrix would be obtained with
only values of 100% on its diagonal, and 0% everywhere else. Moreover,
we show the precision confusion matrix, which is composed of the actual
pixel counts divided by the column sum (in %).

These results reveal that the mistakes made by both methods are logi-
cally interpretable, e.g., mistaking types of land or types of vehicle, while
their accuracy results are very similar. When looking at the average accu-
racy values, the unary classification model achieves an average precision
of 64.7% and an average recall of 67.7%. The end-to-end model achieves
an average precision of 62.6% and an average recall of 67.7%. The global
pixel-wise accuracy, which is the fraction of correctly classified pixels, is
91.2% for the SSVM method and 90.9% for the end-to-end method.

Since the quantitative results of both methods are very similar, illus-
trative qualitative results on the test dataset are shown in Figures 2.10 and
2.11. On the one hand, these results reveal that the SSVM method tends
to overshoot when the over-segmentations are inaccurate, while the end-to-
end method suffers from no such limitation. On the other hand, when the
superpixels do align, they nicely delineate objects, leading to highly accu-
rate and coherent segmentations. This is true even when the actual ground
truth labels do not correctly delineate the objects. Although the quantitative
results of both models are very similar, it can be noticed that the end-to-end
segmentation method is capable of correctly predicting objects that are very
far away, which is its main advantage over the over-segmentation method.

The results of both models highlight their capability to operate in highly
cluttered environments by achieving accurate image segmentations. Such
predictions could form a basis for steering autonomous vehicles towards
particular types of land, e.g., unharvested fields, or to avoid dangerous
areas, e.g., public roads. The accurate segmentation of trees and shrubbery
can aid in marking field boundaries or in avoiding collisions, as does the
segmentation of objects in general, e.g., power poles. Segmenting sky
regions can prove to be helpful in horizon estimation, or to avoid running

2Note that due to rounding errors in the figures, the sum may not be exactly 100%.

36 CHAPTER 2

ABCDEFGHI)] KLMNOPQOQR

A

B H0.9
C

D 40.8
E

F 40.7

G

H 0.6
|

0 v 0O zZ22Z r X —

ABCDEFGHI J KLMNOPQOQR

A -
B J0.9
C

D J0.8
E

F H0.7

G

H H0.6
I

0O vO0OzZ22Zr A —

Figure 2.8: SSVM with a CNN unary classifier (top) and end-to-end segmentation
model (bottom): pixel-wise precision results on the autonomous agricul-
tural vehicle test dataset, described as a confusion matrix. Class legend:
person (A), tractor (B), harvester (C), implement (D), moving object (E),
nonmoving object (F), power pole (G), fence/hedge (H), tree/shrubbery
(D), public road (J), farm road (K), harvested untilled area (L), unhar-
vested area (M), tilled area (N), swath (O), building (P), water (Q), sky
R).

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 37

ABCDEFGHI] KLMNOPAOQR

A

B H0.9
C

D J0.8
E

F 40.7

G

H 10.6
I

00O v O =22 - R —

ABCDEFGHI)] KLMNOPQOQR

A —
B 40.9
C

D 10.8
E

F 40.7

G

H 0.6
|

O v Oz R —

Figure 2.9: SSVM with a CNN unary classifier (top) and end-to-end segmentation
model (bottom): pixel-wise recall results on the autonomous agricul-
tural vehicle test dataset, described as a confusion matrix. Class legend:
person (A), tractor (B), harvester (C), implement (D), moving object (E),
nonmoving object (F), power pole (G), fence/hedge (H), tree/shrubbery
(D), public road (J), farm road (K), harvested untilled area (L), unhar-
vested area (M), tilled area (N), swath (O), building (P), water (Q), sky
(R).

38 CHAPTER 2

Figure 2.10: SSVM combined with the unary CNN classifier: illustration of seg-
mented test images from the autonomous agricultural vehicle dataset;
visible class legend: public road (green), sky (red), private road (pink),
unharvested area (orange), human (white), tractor (black), building
or implement (purple), swath (yellow), harvester (bright yellow), har-
vested area (blue), trees/shrubbery (gray), generic nonmoving object
(cyan), power pole (dark red), car (dark orange), fence/hedge (khaki)

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 39

Figure 2.11: End-to-end segmentation: illustration of segmented test images from
the autonomous agricultural vehicle dataset; visible class legend: pub-
lic road (green), sky (red), private road (pink), unharvested area (or-
ange), human (white), tractor (black), building or implement (pur-
ple), swath (yellow), harvester (bright yellow), harvested area (blue),
trees/shrubbery (gray), generic nonmoving object (cyan), power pole
(dark red), car (dark orange), fence/hedge (khaki)

40 CHAPTER 2

other expensive algorithms on image regions of which we know a priori
that they do not contain important information, e.g., when trying to localize
particular objects.

2.6 Related Work

This section explores literature related to perception in outdoor autonomous
vehicles and outdoor scene understanding, and how our work differs from
previous approaches.

Byun et al. [Byun et al., 2015] used a Markov random field for pre-
dicting road regions and obstacles that fall out of the perception sensor
range. Their approach relies on manually engineered unary and pairwise
potential functions. In contrast, our work makes use of structured learning
through structural support vector machines (SSVMs) to simultaneously tune
all graphical model potentials, allowing the model to adapt to previously
recorded data. Bosch et al. [Bosch et al., 2007] investigated the use of seg-
mentation in outdoor environments by means of a probabilistic pixel map
and fuzzy classifiers. In contrast, we discard probabilities and focus on the
model’s discriminative aspect by using an energy-based formulation of our
model. Armbrust et al. [Armbrust et al., 2009] built an off-road autonomous
vehicle with the goal of operating in highly vegetated terrain. Their system
integrates multiple manually-engineered sensor processing systems, and is
responsible for traversable region and object detection, omitting any form of
semantics. Kelly et al. [Kelly et al., 2006] and Leonard et al. [Leonard et al.,
2008] similarly focused on an integration of sensor processing systems in
which traversable regions are detected. Geiger et al. [Geiger et al., 2014]
proposed a combined scene flow, vanishing point, and scene segmentation
approach for 3-dim traffic understanding using geometric features. Con-
trary to their approach, we focus on semantic scene understanding through
an SSVM, which enables accurate segmentations based on contextual infor-
mation.

Several authors tackle the problem of outdoor scene segmentation by
means of convolutional neural networks [Hadsell et al., 2009, Sermanet
et al., 2009, Hadsell et al., 2007]. Kuthirummal et al. [Kuthirummal
et al.,, 2011] built a traversable region map using a 3-dim grid. Other
work proposed the use of radar for traversable region detection [Reina et al.,
2012, Milella et al., 2014, Milella et al., 2011], however, this does not

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 41

permit high-level reasoning about objects and their semantics. Further-
more, Nourani-Vatani et al. [Nourani-Vatani et al., 2015] propose the use of
SSVMs with a hierarchical loss function for seafloor imagery classification
in autonomous underwater vehicles. In contrast, we focus on segmentation
rather than classification.

Several works study agricultural autonomous vehicles. Closely related
is the work of [Rouveure et al., 2012], in which a model for ambient aware-
ness in autonomous tractors is proposed, within the overarching QUAD-AV
project. Using a multisensory approach based on stereovision, laser scan-
ning, thermography, and microwave radar, they focus specifically on obsta-
cle detection by classifying the surroundings as either traversable or non-
traversable. In contrast, rather than identifying traversable regions through
a combination of 2-dim and 3-dim data, our model segments 2-dim images
into a multitude of semantic classes. In light of the same project, [Reina and
Milella, 2012] and [Milella et al., 2013] propose a two-stage terrain classi-
fier in which geometry-based information, e.g., the estimated terrain slope,
is first used to classify terrain into broad categories, which are refined in
a second stage using a color-based classifier. They propose a self-learning
model in order to avoid the tedious task of manual labeling. A similar
method is proposed in [Reina et al., 2012] for generic rural environments
using a radar sensor, as well as in [Milella and Reina, 2014], using a multi-
baseline camera while relying only on geometric classification. Rather than
using independent classification on grid cells defined on top of the 3-dim
point cloud or 2-dim image, we use a structured prediction model to clas-
sify irregular image regions simultaneously. This allows for coherent and
fine-grained image segmentation for an arbitrary set of classes. Within the
same QUAD-AV project, [Bellone et al., 2013a, Bellone et al., 2013b] pro-
pose RGB-D vision-based terrain analysis using normal vector estimation
through principal component analysis of point cloud data, in order to assess
traversability, suitable for outdoor environments. We obtain traversability
assessment indirectly through semantic segmentation of the ground/field, in
which traversable regions are identified as being part of a subset of classes,
e.g., harvested, tilled, and unharvested field.

[Weiss and Biber, 2010] propose a classification model of the envi-
ronment using a stochastic automaton to describe relations between classes.
To classify the environment, they employ a predefined pattern database
against which laser data patterns are matched in order to determine where

42 CHAPTER 2

the autonomous vehicle is located in the field. In their other work [Weiss
and Biber, 2011], they propose a plant detection system based on 3-dim
laser scanner data. Herein, they employ a clustering approach, while we use
machine learning to allow the vision system to be trained in a supervised
fashion. In [Weiss et al., 2010], the same authors propose a supervised
learning approach for plant recognition. In contrast to this work, our goal
is to obtain a classification of every pixel, rather than identifying specific
objects.

An earlier segmentation study is presented by [Subramanian et al.,
2006]. Herein a rudimentary form of segmentation is used to segment trees
on the side of citrus grove alleyways. Their model is, however, tuned for
this specific setting, making it difficult to generalize their results to signifi-
cantly different settings. The application of our model is not restricted to a
particular type of agricultural environment. [Guijarro et al., 2011] propose
a segmentation approach for plants, e.g., barley, corn, and cereal, and soil
in agricultural images. Their model can be viewed as a component in a
larger machine vision system, but cannot be used for generic segmentation
in which we want to detect a set of arbitrary classes. [Xue et al., 2012]
propose a machine vision method for autonomous navigation in cornfield
rows using background subtraction to segment the plants from the field.
The processed images were used for detecting rows, which are fed to a
fuzzy logic controller that steers the vehicle. [Astrand and Baerveldt, 2005]
propose machine vision for plant row recognition using the Hough trans-
form in order to guide autonomous vehicles. Similarly, [Bergerman et al.,
2012] investigate row detection and row trajectory planning in autonomous
orchard vehicles. In general, these methods are tailored to very specific
settings, while our goal is to obtain a method usable in generic agricultural
environments.

Another related work is [Rovira-Mas et al., 2008] in which stereovision,
localization sensor information, and inertial information is used to build
a 3-dim map of the environment in autonomous vehicles. Such works
could prove to be an asset in our pursuit towards autonomous agricultural
vehicles by projecting the segmentation output onto a map built through
their approach. [Moreno et al., 2014] study laser-finder mapping applied to
autonomous spraying vehicles, relying on GPS. Contrary to their work, we
avoid any form of sensor calibration.

Other recent works of [Kraus et al., 2013] and [Kayacan et al., 2015]

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 43

focus on lower-level tasks in agricultural robotics, such as vehicle dynam-
ics control in reference trajectory tracking. [Godoy et al., 2012] similarly
focus on vehicle control, albeit in a distributed fashion. These works are
orthogonal to our study as we focus on semantic perception. [Oksanen,
2015] evaluates the performance of an autonomous wheat sowing vehicle
developed in previous studies [Oksanen and Linkolehto, 2013]. The vehicle
drives along a predefined polyline trajectory, composed of multiple way-
points, by making use of inertial sensors and a GPS signal. An interesting
outcome of this study is that being heavily reliant on GPS is not sufficiently
robust for autonomous operation, due to signal loss and shadowing. We
argue that intelligent vision can aid in robustifying autonomous behavior.
Most of these studies are tailored to a specific task, heavily relying
on the programming of background knowledge. It is hard to envision how
these systems can generalize to significantly different environments. The
goal of our work is to allow for robust vehicle guidance through intelligent
vision that only relies on real-time video data. By training the vision model
through machine learning, using a diverse set of data, our model generalizes
to different settings. The output of the final processing stage can be used
for further high-level reasoning, e.g., to verify whether the current position,
inferred from detected objects, matches the GPS signal and ground map.

2.7 Conclusions

Advanced perception systems that understand the environment are essential
in enabling autonomous vehicles. We modeled a structured output machine
learning model that takes into account visual contextual cues between over-
segmentation regions within a second-order neighborhood. The structured
model is formulated as an energy-based function using feature-dependent
unary potentials, and pairwise potentials that differentiate between first-
and second-degree region neighbors. After optimization by means of max-
margin learning, most-probable label assignments are obtained via graph
cuts inference using a-expansion. Results indicate that using second-degree
contextual information allows for a high labeling accuracy by better filtering
out spurious labels. The next chapter will investigate how to integrate the
SSVM’s high segmentation coherence with the detailed output of the end-
to-end model.

44 CHAPTER 2

References

[Achanta et al., 2012] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua,
P., and Susstrunk, S. (2012). SLIC superpixels compared to state-of-
the-art superpixel methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(11):2274-2282.

[Armbrust et al., 2009] Armbrust, C., Braun, T., Fohst, T., Proetzsch, M.,
Renner, A., Schifer, B.-H., and Berns, K. (2009). RAVON-the robust
autonomous vehicle for off-road navigation. In Proceedings of the IARP
International Workshop on Robotics for Risky Interventions and Envi-
ronmental Surveillance, pages 12—14.

[Astrand and Baerveldt, 2005] Astrand, B. and Baerveldt, A.-J. (2005).

A vision based row-following system for agricultural field machinery.
Mechatronics, 15(2):251-269.

[Bellone et al., 2013a] Bellone, M., Messina, A., and Reina, G. (2013a).
A new approach for terrain analysis in mobile robot applications. In Pro-

ceedings of the IEEE International Conference on Mechatronics (ICM),
pages 225-230.

[Bellone et al., 2013b] Bellone, M., Reina, G., Giannoccaro, N. I., and
Spedicato, L. (2013b). Unevenness point descriptor for terrain analysis

in mobile robot applications. International Journal of Advanced Robotic
Systems, 10.

[Bergerman et al., 2012] Bergerman, M., Singh, S., and Hamner, B.
(2012). Results with autonomous vehicles operating in specialty crops.
In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 1829-1835.

[Bernini et al., 2014] Bernini, N., Bertozzi, M., Castangia, L., Patander,
M., and Sabbatelli, M. (2014). Real-time obstacle detection using stereo
vision for autonomous ground vehicles: A survey. In Proceedings of
the IEEE 17th International Conference on Intelligent Transportation
Systems (ITSC), pages 873-878.

[Bosch et al., 2007] Bosch, A., Muiioz, X., and Freixenet, J. (2007). Seg-
mentation and description of natural outdoor scenes. Image and Vision
Computing, 25(5):727 — 740.

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 45

[Boykov et al., 2001] Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast
approximate energy minimization via graph cuts. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(11):1222—-1239.

[Byun et al., 2015] Byun, J., Na, K.-i., Seo, B.-s., and Roh, M. (2015).
Drivable road detection with 3D point clouds based on the MRF for
intelligent vehicle. In Proceedings of the 9th International Conference
on Field and Service Robotics (FSR), pages 49—60.

[Clevert et al., 2015] Clevert, D.-A., Unterthiner, T., and Hochreiter, S.
(2015). Fast and accurate deep network learning by exponential linear
units (ELUs). arXiv preprint arXiv:1511.07289.

[Geiger et al., 2014] Geiger, A., Lauer, M., Wojek, C., Stiller, C., and
Urtasun, R. (2014). 3D traffic scene understanding from movable plat-
forms. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(5):1012-1025.

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understand-
ing the difficulty of training deep feedforward neural networks. In Pro-
ceedings of the 13th International Conference Artificial Intelligence and
Statistics (AISTATS), pages 249-256.

[Godoy et al., 2012] Godoy, E. P., Tangerino, G. T., Tabile, R. A., Inamasu,
R. Y., and Porto, A. J. V. (2012). Networked control system for the
guidance of a four-wheel steering agricultural robotic platform. Journal
of Control Science and Engineering.

[Guijarro et al., 2011] Guijarro, M., Pajares, G., Riomoros, 1., Herrera, P.,
Burgos-Artizzu, X., and Ribeiro, A. (2011). Automatic segmentation of
relevant textures in agricultural images. Computers and Electronics in
Agriculture, 75(1):75-83.

[Hadsell et al., 2007] Hadsell, R., Erkan, A., Sermanet, P., Ben, J.,
Kavukcuoglu, K., Muller, U., and LeCun, Y. (2007). A multi-range
vision strategy for autonomous offroad navigation. In Proceedings of the
13th IASTED International Conference on Robotics and Applications
(RA).

46 CHAPTER 2

[Hadsell et al., 2009] Hadsell, R., Sermanet, P.,, Ben, J., Erkan, A.,
Scoffier, M., Kavukcuoglu, K., Muller, U., and LeCun, Y. (2009). Learn-
ing long-range vision for autonomous off-road driving. J. Field Robot.,
26(2):120-144.

[Houthooft et al., 2016] Houthooft, R., De Boom, C., Verstichel, S., On-
genae, F., and De Turck, F. (2016). Structured output prediction for
semantic perception in autonomous vehicles. In Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI).

[loffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch nor-
malization: Accelerating deep network training by reducing internal
covariate shift. In Proceedings of the 32nd International Conference on
Machine Learning (ICML), pages 448-456.

[Joachims et al., 2009] Joachims, T., Finley, T., and Yu, C.-N. J. (2009).
Cutting-plane training of structural SVMs. Machine Learning, 77(1):27-
59.

[Kayacan et al., 2015] Kayacan, E., Kayacan, E., Ramon, H., and Saeys,
W. (2015). Towards agrobots: Identification of the yaw dynamics and
trajectory tracking of an autonomous tractor. Computers and Electronics
in Agriculture, 115:78-87.

[Kelly et al., 2006] Kelly, A., Stentz, A., Amidi, O., Bode, M., Bradley,
D., Diaz-Calderon, A., Happold, M., Herman, H., Mandelbaum, R.,
Pilarski, T., et al. (2006). Toward reliable off road autonomous vehicles

operating in challenging environments. International Journal of Robotics
Research, 25(5-6):449-483.

[Kingma and Ba, 2015] Kingma, D. and Ba, J. (2015). Adam: A method
for stochastic optimization. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

[Kraus et al., 2013] Kraus, T., Ferreau, H., Kayacan, E., Ramon, H.,
Baerdemaeker, J. D., Diehl, M., and Saeys, W. (2013). Moving hori-
zon estimation and nonlinear model predictive control for autonomous

agricultural vehicles. Computers and Electronics in Agriculture, 98:25—
33.

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 47

[Kuthirummal et al., 2011] Kuthirummal, S., Das, A., and Samarasekera,
S.(2011). A graph traversal based algorithm for obstacle detection using
lidar or stereo. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3874—-3880.

[Leonard et al., 2008] Leonard, J., How, J., Teller, S., Berger, M., Camp-
bell, S., Fiore, G., Fletcher, L., Frazzoli, E., Huang, A., Karaman, S.,
et al. (2008). A perception-driven autonomous urban vehicle. Journal
of Field Robotics, 25(10):727-774.

[Long et al., 2015] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully
convolutional networks for semantic segmentation. In CVPR, pages
3431-3440.

[Lucchi et al., 2012] Lucchi, A., Li, Y., Smith, K., and Fua, P. (2012).
Structured image segmentation using kernelized features. In Proceedings

of the 12th European Conference on Computer Vision (ECCV), pages
400-413.

[Milella and Reina, 2014] Milella, A. and Reina, G. (2014). 3D recon-
struction and classification of natural environments by an autonomous

vehicle using multi-baseline stereo. Intelligent Service Robotics, 7(2):79—
92.

[Milella et al., 2013] Milella, A., Reina, G., and Foglia, M. M. (2013).
A multi-baseline stereo system for scene segmentation in natural en-
vironments. In Proceedings of the IEEE International Conference on
Technologies for Practical Robot Applications (TePRA).

[Milella et al., 2011] Milella, A., Reina, G., Underwood, J., and Douillard,
B. (2011). Combining radar and vision for self-supervised ground seg-
mentation in outdoor environments. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages
255-260.

[Milella et al., 2014] Milella, A., Reina, G., Underwood, J., and Douillard,
B. (2014). Visual ground segmentation by radar supervision. Robotics
and Autonomous Systems, 62(5):696-706.

48 CHAPTER 2

[Moreno et al., 2014] Moreno, F.-A., Cielniak, G., and Duckett, T. (2014).
Evaluation of laser range-finder mapping for agricultural spraying vehi-
cles. In Towards Autonomous Robotic Systems: 14th Annual Conference,
pages 210-221.

[Mostajabi et al., 2015] Mostajabi, M., Yadollahpour, P., and
Shakhnarovich, G. (2015). Feedforward semantic segmentation
with zoom-out features. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3376-3385.

[Nourani-Vatani et al., 2015] Nourani-Vatani, N., Lopez-Sastre, R., and
Williams, S. (2015). Structured output prediction with hierarchical loss
functions for seafloor imagery taxonomic categorization. In Proceddings
of the 7th Iberian Conference on Pattern Recognition and Image Analysis
(IbPRIA), pages 173-183.

[Nowozin and Lampert, 2011] Nowozin, S. and Lampert, C. H. (2011).
Structured learning and prediction in computer vision. Foundations and
Trends in Computer Graphics and Vision, 6(3—4):185-365.

[Oksanen, 2015] Oksanen, T. (2015). Accuracy and performance experi-
ences of four wheel steered autonomous agricultural tractor in sowing
operation. In Proceedings of the 9th International Conference on Field
and Service Robotics (FSR), pages 425-438.

[Oksanen and Linkolehto, 2013] Oksanen, T. and Linkolehto, R. (2013).
Control of four wheel steering using independent actuators. In Proceed-
ings of the 4th IFAC Conference on Modelling and Control in Agriculture,
Horticulture and Post Harvest Industry, pages 159-163.

[Reina and Milella, 2012] Reina, G. and Milella, A. (2012). Towards au-
tonomous agriculture: automatic ground detection using trinocular stere-
ovision. Sensors, 12(9):12405-12423.

[Reina et al., 2012] Reina, G., Milella, A., and Underwood, J. (2012). Self-
learning classification of radar features for scene understanding. Robotics
and Autonomous Systems, 60(11):1377-1388.

[Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T.
(2015). U-net: Convolutional networks for biomedical image segmen-
tation. In Proceedings of the 18th International Conference on Medical

STRUCTURED PREDICTION FOR AUTONOMOUS VEHICLES 49

Image Computing and Computer-Assisted Intervention (MICCAI), pages
234-241.

[Rouveure et al., 2012] Rouveure, R., Nielsen, M., Petersen, A., Reina, G.,
Foglia, M., Worst, R., Seyed-Sadri, S., Blas, M., Faure, P., Milella, A.,
etal. (2012). The QUAD-AV project: Multi-sensory approach for obsta-
cle detection in agricultural autonomous robotics. In Proceedings of the
International Conference of Agricultural Engineering (CIGR-AgEng).

[Rovira-Ma4s et al., 2008] Rovira-Maés, F., Zhang, Q., and Reid, J. F.
(2008). Stereo vision three-dimensional terrain maps for precision agri-
culture. Computers and Electronics in Agriculture, 60(2):133-143.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J.,
Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,
Berg, A. C., and Fei-Fei, L. (2015). ImageNet large scale visual recogni-
tion challenge. International Journal of Computer Vision, 115(3):211-
252.

[Sermanet et al., 2013] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M.,
Fergus, R., and LeCun, Y. (2013). OverFeat: Integrated recognition,
localization and detection using convolutional networks. In Proceedings
of the International Conference on Learning Representations (ICLR).

[Sermanet et al., 2009] Sermanet, P., Hadsell, R., Scoffier, M., Grimes,
M., Ben, J., Erkan, A., Crudele, C., Miller, U., and LeCun, Y. (2009).
A multirange architecture for collision-free off-road robot navigation.
Journal of Field Robotics, 26(1):52-87.

[Sivaraman and Trivedi, 2013] Sivaraman, S. and Trivedi, M. M. (2013).
Looking at vehicles on the road: A survey of vision-based vehicle detec-
tion, tracking, and behavior analysis. IEEE Transactions on Intelligent
Transportation Systems, 14(4):1773-1795.

[Srivastava et al., 2014] Srivastava, N., Hinton, G. E., Krizhevsky, A.,
Sutskever, 1., and Salakhutdinov, R. (2014). Dropout: a simple way
to prevent neural networks from overfitting. Journal of Machine Learn-
ing Research, 15(1):1929-1958.

50 CHAPTER 2

[Subramanian et al., 2006] Subramanian, V., Burks, T. F., and Arroyo,
A. (2006). Development of machine vision and laser radar based au-
tonomous vehicle guidance systems for citrus grove navigation. Com-
puters and Electronics in Agriculture, 53(2):130-143.

[Taskar et al., 2003] Taskar, B., Guestrin, C., and Koller, D. (2003). Max-
margin markov networks. In Advances in Neural Information Processing
Systems 16 (NIPS), pages 25-32.

[Tola et al., 2010] Tola, E., Lepetit, V., and Fua, P. (2010). DAISY: An
efficient dense descriptor applied to wide baseline stereo. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(5):815-830.

[Weiss and Biber, 2010] Weiss, U. and Biber, P. (2010). Semantic place
classification and mapping for autonomous agricultural robots. In Pro-
ceedings of IROS Workshop on Semantic Mapping and Autonomous
Knowledge Acquisition.

[Weiss and Biber, 2011] Weiss, U. and Biber, P. (2011). Plant detection
and mapping for agricultural robots using a 3D LIDAR sensor. Robotics
and autonomous systems, 59(5):265-273.

[Weiss et al., 2010] Weiss, U., Biber, P., Laible, S., Bohlmann, K., and
Zell, A. (2010). Plant species classification using a 3D lidar sensor
and machine learning. In Proceedings of the 9th IEEE International

Conference on Machine Learning and Applications (ICMLA), pages 339—
345.

[Xue et al., 2012] Xue, J., Zhang, L., and Grift, T. E. (2012). Variable
field-of-view machine vision based row guidance of an agricultural robot.
Computers and Electronics in Agriculture, 84:85-91.

Chapter 3

Integrated Inference and
Learning of Neural Factors
in Structural Support
Vector Machines

Rein Houthooft & Filip De Turck, Integrated Inference and Learning of
Neural Factors in Structural Support Vector Machines, Pattern Recognition,
59, pp. 292-301, 2016.

Includes changes and extensions not released at the time of publication.

Ghent University — imec, CNH Industrial
* k%

Tackling pattern recognition problems in areas such as computer vision,
bioinformatics, speech or text recognition is often done best by taking
into account task-specific statistical relations between output variables.
In structured prediction, this internal structure is used to predict multiple
outputs simultaneously, leading to more accurate and coherent predictions.
Structural support vector machines (SSVMs) are nonprobabilistic models

52 CHAPTER 3

that optimize a joint input-output function through margin-based learning.
Because SSVMs generally disregard the interplay between unary and inter-
action factors during the training phase, final parameters are suboptimal.
Moreover, its factors are often restricted to linear combinations of input fea-
tures, limiting its generalization power. To improve prediction accuracy, this
chapter proposes: (i) Joint inference and learning by integration of back-
propagation and loss-augmented inference in SSVM subgradient descent;
(ii) Extending SSVM factors to neural networks that form highly nonlinear
functions of input features. Image segmentation benchmark results demon-
strate improvements over conventional SSVM training methods in terms
of accuracy, highlighting the feasibility of end-to-end SSVM training with
neural factors.

3.1 Introduction

In traditional machine learning, the output consists of a single scalar,
whereas in structured prediction, the output can be arbitrarily structured.
These models have proven useful in tasks where output interactions play an
important role. Examples are image segmentation, part-of-speech tagging,
and optical character recognition, where taking into account contextual
cues and predicting all output variables at once is beneficial. A widely
used framework is the conditional random field (CRF), which models the
statistical conditional dependencies between input and output variables, as
well as between output variables mutually. However, many tasks only re-
quire ‘most-likely’ predictions, which led to the rise of nonprobabilistic
approaches. Rather than optimizing the Bayes’ risk, these models mini-
mize a structured loss, allowing the optimization of performance indicators
directly [Nowozin and Lampert, 2011]. One such model is the structural
support vector machine (SSVM) [Tsochantaridis et al., 2005] in which a
generalization of the hinge loss to multiclass and multilabel prediction is
used.

A downside to traditional SSVM training is the bifurcated training
approach in which unary factors (dependencies of outputs on inputs), and
interaction factors (mutual output dependencies) are trained sequentially.
A unary classification model is optimized, while the interactions are trained
post-hoc. However, this two-phase approach is suboptimal, because the
errors made during the training of the interaction factors cannot be ac-

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 53

counted for during training of the unary classifier. Another limitation is
that SSVM factors are linear feature combinations, restricting the SSVM’s
generalization power. We propose to extend these linearities to highly non-
linear functions by means of multilayer neural networks, to which we refer
as neural factors. Towards this goal, subgradient descent is extended by
combining loss-augmented inference with back-propagation of the SSVM
objective error into both unary and interaction neural factors. This leads to
better generalization and more synergy between both SSVM factor types,
resulting in more accurate and coherent predictions.

Our model is empirically validated by means of the complex structured
prediction task of image segmentation on the MSRC-21, KITTI, and SIFT
Flow benchmarks. The results demonstrate that integrated inference and
learning, and/or using neural factors, improves prediction accuracy over
conventional SSVM training methods, such as N-slack cutting plane and
subgradient descent optimization [Nowozin and Lampert, 2011]. Further-
more, we demonstrate that our model is able to perform on par with current
state-of-the-art segmentation models on the MSRC-21 benchmark.

3.2 Related Work

Although the combination of neural networks and structured or probabilistic
graphical models dates back to the early *90s [Bottou et al., 1997, Bridle,
1989], interest in this topic is resurging. Several recent works introduce
nonlinear unary factors/potentials into structured models. For the task of
image segmentation, Chen et al. [Chen et al., 2015a] train a convolutional
neural network as a unary classifier, followed by the training of a dense
random field over the input pixels. Similarly, Farabet et al. [Farabet et al.,
2013] combine the output maps of a convolutional network with a CRF
for image segmentation, while Li and Zemel [Li and Zemel, 2014] pro-
pose semisupervised maxmargin learning with nonlinear unary potentials.
Contrary to these works, we trade the bifurcated training approach for in-
tegrated inference and training of unary and interactions factors. Several
works [Collobert et al., 2011, Morris and Fosler-Lussier, 2008, Prabhavalkar
and Fosler-Lussier, 2010, Yu et al., 2009] focus on linear-chain graphs, us-
ing an independently trained deep learning model whose output serves as
unary input features. Contrary to these works, we focus on more general
graphs. Other works suggest kernels towards nonlinear SSVMs [Lucchi

54 CHAPTER 3

etal., 2012, Bertelli et al., 2011]; we approach nonlinearity by representing
SSVM factors by arbitrarily deep neural networks.

Do and Artieres [Do and Artieres, 2010] propose a CRF in which
potentials are represented by multilayer networks. The performance of their
linear-chain probabilistic model is demonstrated by optical character and
speech recognition using two-hidden-layer neural network outputs as unary
potentials. Furthermore, joint inference and learning in linear-chain models
is also proposed by Peng et al. [Peng et al., 2009], however, the application
to more general graphs remains an open problem [Miiller, 2014]. Contrary
to these works, we popose a nonprobabilistic approach for general graphs
by also modeling nonlinear interaction factors. More recently, Schwing and
Urtasun [Schwing and Urtasun, 2015] train a convolutional network as a
unary classifier jointly with a fully-connected CRF for the task of image
segmentation, similar to [Tompson et al., 2014, Krihenbiihl and Koltun,
2013]. Chen et al. [Chen et al., 2015b] advocate a joint learning and
reasoning approach, in which a structured model is probabilistically trained
using loopy belief propagation for the task of optical character recognition
and image tagging. Other related work includes Domke [Domke, 2013]
who uses relaxations for combined message-passing and learning.

Other related work aiming to improve conventional SSVMs are the
works of Wang et al. [Wang et al., 2013] and Lin et al. [Lin et al., 2015],
in which a hierarchical part-based model is proposed for multiclass ob-
ject recognition and shape detection, focusing on model reconfigurability
through compositional alternatives in And-Or graphs. Liang et al. [Liang
et al., 2015] propose the use of convolutional neural networks to model an
end-to-end relation between input images and structured outputs in active
template regression. Xu et al. [Xu et al., 2014] propose the learning of a
structured model with multilayer deformable parts for action understanding,
while Lu et al. [Lu et al., 2015] propose a hierarchical structured model for
action segmentation.

Many of these works use probabilistic models that maximize the neg-
ative log-likelihood, such as [Do and Artieres, 2010, Peng et al., 2009]. In
contrast, this chapter takes a nonprobabilistic approach, wherein an SSVM
is optimized via subgradient descent. The algorithm is altered to back-
propagate SSVM loss errors, based on the ground truth and a loss-augmented
prediction into the factors. Moreover, all factors are nonlinear functions,
allowing the learning of complex interaction patterns.

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 55

3.3 Methodology

In this section integrated inference and back-propagation is explained for
nonlinear unary factors. Finally, this notion is generalized into an SSVM
model using only neural factors which are optimized by an alteration of
subgradient descent.

As explained in Section 2.4.1, structured prediction is performed as

f(x) =argmax g(x, y; w). 3.
yey

This is called inference, i.e., obtaining the most-likely assignment of labels,
which is similar to maximum-a-posteriori (MAP) inference in probabilistic
models. Because of the combinatorial complexity of the output space Y,
the maximization problem in Eq. (3.1) is NP-hard [Chen et al., 2015b].
Hence, it is important to impose on g some kind of regularity that can be
exploited for inference. This can be done by ensuring that g corresponds to a
nonprobabilistic factor graph, for which efficient inference techniques exist
[Nowozin and Lampert, 2011]. In Chapter 2, g is linearly parametrized as a
product of a weight vector w and a joint feature function ¢ : X x Y — RP.
Commonly, g decomposes as a sum of unary and interaction factors!,
in which ¢ = [(t,DU)T , (goI)T]T. The functions ¢y and ¢; are then sums
over all individual joint input-output features of the nodes ; (y, x) and inter-
actions i;; (, x) of the corresponding factor graph [Nowozin and Lampert,
2011, Lucchi et al., 2012]. For example in the use case of Section 5.3, nodes
are image regions, while interactions are connections between regions, each
with their own joint feature vector. Data samples (x, y) are conform this
graphical structure, i.e., x is composed of unary features xV and interaction
features x/. Moreover, the unary and interaction parameters are generally

concatenated as w = [(wy) ™, (wp)T] .

In this formulation, the unary features are defined as
T

Vil xi) = (&0 lvi=ml)

while the interaction features for 2nd-order (edges) interactions are defined
as

(3.2)

T

(mmes2)’ (3.3)

Vij(yi yj) = (cfij(x)[yi =mAy; = n])

Maximizing g corresponds to minimizing the state of a nonprobabilistic factor graph,
which factorizes into a product of factors. However, by operating in the log-domain, the state
decomposes as a sum of factors.

56 CHAPTER 3

with €;(x) the unary features corresponding to node i and &;;(x) the inter-
action features corresponding to interaction (edge) (i, j). Similarly, higher-
order interaction features can be incorporated by extending this matrix into
higher-order combinations of nodes, according to the interactions. Rather
than optimizing an empirical estimate of the structured risk in Eq (2.11), a
continuous and convex upper bound is defined (cfr. Egs. (2.12) and (2.13)):

N
1 A
L(w) = §||w||2 + N ;max {£(x", y";w),0}, with (3.4

(X", y"w) = max [AG"y) —g(xX" Yy w) +g(x" ysw)], (3.5)

which can be minimized effectively by solving arg min,, .z» L(w) through
numerical optimization [Zhang, 2004].

3.3.1 Integrated Back-propagation and Inference

Traditional SSVM training methods optimize a joint parameter vector of
the unary and interaction factors. However, they restrict these parameters to
linear combinations of input features, or allow limited nonlinearity through
the addition of kernels. The objective function in case of arbitrary non-
linear factors is often hard to optimize, as many numerical optimization
methods require a convex objective function formulation. For example, N-
slack cutting plane training requires the conversion of the max-operation in
Eq. (3.5) to a set of N|Y| linear constraints for its quadratic programming
procedure [Joachims et al., 2009]; block-coordinate Frank-Wolfe SSVM op-
timization [Lacoste-julien et al., 2013] assumes linear input dependencies;
the structured perceptron similarly assumes linear parametrization [Collins,
2002]; and dual coordinate descent focuses on solving the dual of the linear
L-loss in SSVMs [Chang and Yih, 2013].

Subgradient descent minimization, as described in [Nowozin and Lam-
pert, 2011, Shor et al., 1985], is a flexible tool for optimizing Eq. (3.4) as it
naturally allows error back-propagation. This algorithm alternates between
two steps. First,

7" =arg n;aX[A(y", y) +w, o(x", y))] (3.6)
y€

is calculated for all N training samples, which is called the loss-augmented
inference or prediction step, derived from Eq. (3.5). In this chapter, general

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 57

Algorithm 3.1: Integrated SSVM subgradient descent with neural
unary and linear interaction factors

1

[

10
11
12

13

14

Input: number of iterations T’; learning rate curve u/(ty + t); inverse
regularization strength A; training samples
{(X™", Y heqt,...N)
Output: optimized parameters § € RK and w € RE
Tnitialize w to 0 and 6 according to [Glorot and Bengio, 2010]; the
output layer weights are initialized to 0.
forl1 <t<Tdo
for 1 <n < Ndo
2" argmaxy ey [AGY", y) +(w, @1 (x", y)) + f(x", y;0)], as
loss-augmented prediction in Eq. (3.6).
if A(y™, y) —g(x", y™";0,w) + g(x™, 2";0,w) > 0, according
to max-operation in Eq. (3.4) then

Standard SSVM subgradient computation as defined

in [Nowozin and Lampert, 2011],
oL,

ow

Gradient computation as in Eq. (3.10),
VoLn(0,w) — 0+ A(Vof(x",2";:0) = Vo f(x",y";0))

O, w) —w+ A(pr (x™,2") — e (x",y™))

else
L
VoL,(0,w) — 6 and “O,w) —w
w
end
end
Update linear interaction factors as

u o1 N oL,
t0+th=1 ow

W — w (H’W)

Update neural unary factors via back-propagation as

N
1
9 — backprop (ﬁ > VoL (0, w))
n=1

end

58 CHAPTER 3

inference for determining Eq. (3.1) is approximated via the @-expansion
[Boykov et al., 2001] algorithm (also see Section 2.4.3), whose effectiveness
has been validated through extensive experiments [Peng et al., 2013]. Loss-
augmented prediction as in Eq. (3.6) is incorporated into this procedure by
adding the loss term 57(y")[y;" # y;] to the unary factors.

Second, these z-values are used to calculate a subgradient? of Eq. (3.4)
as

1
N[W + A (p(x",2") = o(x", y"))] (3.7)

for each sample (x", y™), in order to update w. Traditional SSVMs assume
that g(x, y;w) = (w, ¢(x,y)) in which ¢ is a predefined joint input-output
feature function. Commonly, this joint function is made up of the outputs
of a nonlinear ‘unary’ classifier C : X — [0, 11'£!, such that wu(x,y)
becomes ¢y (C(x),y) [Houthooft et al., 2016]. This classifier is trained
upfront, based on the different unary inputs corresponding to each node in
the underlying factor graph. Due to the linear definition of g, the SSVM
model is learning linear combinations of these classifier outputs as its unary
factors. In general, the interaction factors are not trained through a sepa-
rate classifier, and are thus linear combinations of the interaction features
directly.

We propose to replace the pretraining of a nonlinear unary classifier,
and the transformation of its outputs through linear factors, by the direct
optimization of nonlinear unary factors. In particular, the unary part of g
is represented by a sum f of outputs of an adapted neural network which
models factor values. To achieve this, the loss-augmented prediction step
defined in Eq. (3.6) is altered to

" =arg rgaX[A(y", y)+woor(x™, y)) + f(x"y:0)] (3.8)
yeE
in which ¢; represents the joint interaction feature function as described at
the beginning Section 4.2 and Eq. (3.3). Eq. (3.8) is calculated similarly
to Eq. (3.6) through a-expansion by encoding the loss term into the unary
factors.
The compatibility function thus becomes

8(x, y:6,w) = (w, 01(x, y)) + f(x,y:0). (3.9
2y e RP is a subgradient of f : RP — R in a point pq if £(p) — f(po) = (v, p — po).

Due to its piecewise continuous nature, Eq. (3.4) is nondifferentiable in some points, hence we
are forced to rely on subgradients.

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 59

The calculation of 3—@’ originally defined as the subderivative of the objec-

tive function in Eq. (3.4), remains unaltered. However, we can no longer
assume that ‘3—5 conforms to the definition of a subgradient due to its non-
convexity. However, we can calculate

VoL(6,w) =

o+ 2 Z (Vof (x",2",0) = Vo f (x",¥y":6)), (3.10)
N neN

with N the set of indices corresponding to training samples for which
£(x™, y"; w) > 01in Eq. (3.5), for a particular loss-augmented prediction z".
In case £(x™, y"; w) = 0, we set VgL = 6. This gradient incorporates the
loss-augmented prediction of Eq. (3.8) and is back-propagated through the
underlying network to adjust each element of 6. The altered subgradient
descent method is shown in Algorithm 3.1. Herein, L, represents the
objective function for the n-th training sample, i.e., L, (6, w) = # [% w1 +
A", ") — g(xX", y" 0, w) + g(x", 250, w))].

In contrast to gradient descent, subgradient methods [Nowozin and
Lampert, 2011, Shor et al., 1985] do not guarantee the lowering of the
objective function value in each step. Therefore, the current best value
L = min{L", L(w®)} is memorized in each iteration 7, along with the
corresponding parameter values (w., 6,.). As such, the objective value L.
decreases at each step as L = min{L(w®"), ..., L(w®)}. This update
rule is omitted from Algorithm 3.1 to improve readability.

Because the loss terms in Eq. (3.5) are no longer affine input trans-
formations due to the introduced nonlinearities of the neural network, we
can no longer assume Eq. (3.4) to be convex, as is the case for conventional
SSVMs. Although theoretical guarantees can be made for the convergence
of (sub)gradient methods for convex functions [Nedi¢ and Bertsekas, 2001],
and particular classes of nonconvex functions [Bagirov et al., 2013], no such
guarantees can be made for arbitrary nonconvex functions [Ngiam et al.,
2011]. The problem of optimizing highly nonconvex functions is studied
extensively in neural network gradient descent literature. However, it has
been demonstrated that nonconvex objectives can be minimized effectively
due to the high dimensionality of the neural network parameter space [Pas-
canu et al., 2014]. Dauphin et al. [Dauphin et al., 2014] show that saddle
points are much likelier than local minima in multilayer neural network ob-
jective landscapes. In particular, the ratio of saddle points to local minima

60 CHAPTER 3

increases exponentially with the parameter dimensionality. Several methods
exists to avoid these these saddle points, e.g., momentum [Sutskever et al.,
2013]. Furthermore, Dauphin et al. [Dauphin et al., 2014] show, based on
random matrix theory, that the existing local minima are very close to the
global minimum of the objective function. This can be understood intu-
itively as the probability that all directions surrounding a local minimum
lead upwards is very small, making local minima not an issue in general.
The empirical results presented in Section 3.4.2 reinforce this believe by
demonstrating that the regularized objective function can still be minimized
effectively, as we achieve accurate predictions.

As described in Algorithm 3.1, the (sub)gradient is defined over whole
data samples, which each consist of multiple nodes. f thus models the
unary part of the compatibility function g, which is a sum of the V,, unary
factors. Therefore, the function f(x, y;#) decomposes as a sum of neural
unary factors

s 3.11
Yi ()

Vi
f(x,y:0) = Zf*(xf];é')
i=1
with xU the unary features in x. The nonlinear function f* : X — Rl<lisa
multiclass multilayer neural network parametrized by 8 € RK whose inputs
are features corresponding to the V}, different nodes. It forms a template for
the neural unary factors. In this network f* (xl.U;), the softmax-function is
removed from the output layer, such that it matches the unary factor range
RI£!. The argument y of the joint feature function is used as an index y; to
select a particular output unit.

3.3.2 Neural Interaction Factors

In this section we extend the notion of nonlinear factors beyond the inte-
gration of the training of a unary classifier. We now also replace the linear
interaction part {w, ¢ (x, y)) of the compatibility function g with a function
h(x,y;y) that decomposes as a sum of neural interaction factors

Ey,
heyiy) = 3 (x57) gy (3.12)
i=1

with x! the interaction features in x, A;(y) the combination of node labels
in the i-th interaction, and E,, the number of interactions in the n-th training

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 61

Algorithm 3.2: Integrated SSVM subgradient descent with both unary
and interaction neural factors
Input: number of iterations T’; learning rate; inverse regularization
strength A; training set {(x", y")}
Output: optimized parameters § € RX and y € RM
1 Initialize 6 and y according to [Glorot and Bengio, 2010]; the
weights of the output layers are initialized to 0.
2 for1 <t<Tdo
3 for1 <n < Ndo

4 7" argmax,c y[A(Y", y) + f(x", y;0) + h(x", y;7)]

5 it A", y) —g(x",y";6,7) + g(x",2";6,y) > 0 then

6 VoLn(6,y) — 0+ A(Vof (x", 2" 0) = Vo f(x",";6))
VyLn(0.y) « v + A(Vyh(x", 2" y) = Vyh(x", y": 7))

7 else

8 | VoLn(6,y) < 0and V, L,(6,y) < 6

9 end

10 end

N
1
1 6 « backprop (ﬁ ; VoL, (6, 7)) and

N
1
back — > V,L,(6,

12 end

sample. The function #* : X — RILI? js parametrized by y € RM, and
forms a template for the interaction factors. Herein, Q depends on the inter-
action order, e.g., Q = 2 in the Section 5.3 use case as connections between
nodes are then edges. Interaction factors are generally not trained upfront.
However, neural interaction factors are useful as they can extract complexer
interaction patterns, and thus transcend the limited generalization power
of linear combinations. In image segmentation for example, interaction
features consisting of vertical gradients and a 90°-angle can indicate that
the two connected nodes belong to the same class. The loss-augmented
inference step in Eq. (3.8) is now adapted to

7" =arg r;aX[A(y”,y) + f(X", y:0) + h(x", y;y)], (3.13)
ye

62 CHAPTER 3

while the compatibility function becomes

8(x,y;0,y) = f(x,y;0) + h(x,y; 7). (3.14)

The two distinct models f and & are trained in a similar fashion to the method
described in Algorithm 3.1, as depicted in Algorithm 3.2. Notice that this
method can easily be adjusted for batch or online learning by adapting and
moving the weight updates at line 11 into the inner loop.

Like the unary function f* in Eq. (3.11), A* (xl’ ;y) is a multiclass
multilayer neural network in which the top softmax-function is removed,
shared among all E,, interaction factors. The output layer dimension matches
the number of interaction label combinations, |£|€ in the most general
case. For example in image segmentation, for a problem with symmetric
edge features, the number of output units in A* is %|L|(|L| + 1), which
all represent different states for a particular interaction factor (in this case
the interactions are undirected edges, thus N;(y) consists of the i-th edge’s
incident nodes).

The resulting structured predictor no longer requires two-phase training
in which linear interaction factors are combined with the upfront training
of a unary classifier, whose output is transformed linearly into unary factor
values. It makes use of highly nonlinear functions for all SSVM factors, by
way of multilayer neural networks, using an integration of loss-augmented
inference and back-propagation in a subgradient descent framework. This
allows the factors to generalize strongly while being able to mutually adapt
to each other’s parameter updates, leading to more accurate predictions.

3.4 Experiments

In this section, our model is analyzed on the task of image segmentation.
Herein, the goal is to label different image regions with a correct class
label. This is cast into a structured prediction problem by predicting all
image region class labels simultaneously. There is one unary factor in
underlying SSVM graphical structure for every image region, while inter-
actions represent edges between neighboring regions. First, our model is
analyzed and its different variants are compared to conventional SSVM
training schemes. Second, the best performing variant is compared with
state-of-the-art segmentation approaches. Our model is implemented as an

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 63

extension of PyStruct [Miiller and Behnke, 2014], using Theano [Bastien
et al., 2012] for GPU-accelerated neural factor optimization.

3.4.1 Experimental setup

The model analysis experiments are executed on the widely-used MSRC-
21 benchmark [Shotton et al., 2009], which consists of 276 training, 59
validation, and 256 testing images. This benchmark is sufficiently complex
with its 21 classes and noisy labels, and focuses on object delineation as
well as irregular background recognition. Furthermore, the experiments
are executed on the KITTI benchmark [Ros et al., 2015] consisting of
100 training and 46 testing images, augmented with 49 training images
of Kundu et al. [Kundu et al., 2014]. This latter benchmark consists of
11 classes, but we drop the 3 least frequently-occurring ones as they are
insufficiently represented in the dataset. Finally, the same experiment is
repeated for a larger dataset, namely the SIFT Flow benchmark [Liu et al.,
2011], consisting of 33 classes with 2488 training and 200 testing images.

All image pixels are clustered into +300 regions using the SLIC
[Achanta et al., 2012] superpixel algorithm. For each region, gradient
(DAISY [Tola et al., 2010]) and color (in HSV-space) features are densely
extracted. These features are transformed two times into separate bags-
of-words via minibatch k-means clustering (once 60 gradient and 30 color
words, once 10 and 5 words). The unary input vectors form (60 + 30)-dim
concatenations of the first two bags-of-words. The model’s connectivity
structure links together all neighboring regions via edges. The edge/in-
teraction input vectors are based on concatenations of the second set of
bags-of-words. Both (10 + 5)-dim input vectors of the edge’s incident re-
gions are concatenated into a (2 X (10 + 5))-dim vector. Moreover, two
edge-specific features are added, namely the distance and angle between
adjacent superpixel centers, leading to (2 X (10 + 5) + 2)-dim interaction
feature vectors.

Factors are trained with (regular) momentum, using a learning rate
curve t()ﬂ_ﬂ’ with p and to parameters, and ¢ the current training iteration
number as used in Algorithms 3.1 and 3.2. The regularization, learning
rate, and momentum hyperparameter values are tuned using a validation
set by means of a coarse- and fine-grained grid search over the parameter
spaces, yielding separate settings for the unary and pairwise factors. The

CHAPTER 3

64

SGD GT

int+nrl

Figure 3.1: Illustrative examples of the performance of SGD and int+nrl on several MSRC-21 test images. Integrated training with

neural factors improves classification accuracy over subgradient descent. The last column presents a case in which our
model fails to outperform SGD.

65

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES

‘dos wiojradino 0y
S[TeJ [POW INO YITYM UT 3SBI © SJUasaId utwn[od Isef Y], “JUIISIAP JUSIPLIIGNS JIA0 AJRINIOE UOBIYISSE]D saA0IdWT S10)08]
[eanou yIm Jururer) pajer3ayu] sofew 159) [LLIY [BI9A9S UO [IU+jul pue (IDS Jo doueurtojrad oy Jo sojdurexo aanensnyyy :g'¢ 23

[u+jur

S

a

ID

CHAPTER 3

66

SGD GT

int+nrl

Figure 3.3: Illustrative examples of the performance of SGD and int+nrl on several SIFT Flow test images. Integrated training with

neural factors improves classification accuracy over subgradient descent. The last column presents a case in which our
model fails to outperform SGD.

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 67

linear parameters w are initialized to 0, while the neural factor parameters
6 and vy are initialized according to [Glorot and Bengio, 2010], except for
the top layer weights which are set to 0. The class weights are set to
correct for class imbalance. The model is trained using CPU-parallelized
loss-augmented prediction, while the neural factors are trained using GPU
parallelism.

The following models are compared: unary-only (unary), N-slack
cutting plane training (CP) with delayed constraint generation, subgradient
descent (SGD)3, integrated training with neural unary and linear interaction
factors (int+lin), bifurcated training with neural interaction factors (bif+nrl),
and integrated training with neural unary and neural interaction factors
(int+nrl).

Multiclass logistic regression is used as unary classifier, trained with
gradient descent by cross-entropy optimization. All unary neural factors
contain a single hidden layer with 256 tanh-units, for direct comparison of
integrated learning with upfront logistic regression training. The interaction
neural factors contain a single hidden layer of 512 tanh-units to elucidate the
benefit of nonlinear factors, without overly increasing the model’s capac-
ity. The experiment is set up to highlight the benefit of integrated learning
by restricting the unary factors to features insufficiently discriminative on
their own. This deliberately leads to noisy unary classification, forcing the
model to rely on contextual relations for accurate prediction. The interac-
tion factors encode information about their incident region feature vectors
to allow neural factors to extract meaningful patterns from gradient/color
combinations. We deliberately encoded less information in the interaction
features, such that the model cannot solely rely on interaction factors for
accurate and coherent predictions.

3.4.2 Results and Discussion

Accuracy results on the MSRC-21 [Shotton et al., 2009] test images are
presented in Table 3.1, while Figure 3.1 shows a handful of illustrative
examples that compare segmentations attained by SGD with int+nrl. The
results of the same experiment for the KITTI benchmark [Ros et al., 2015],
augmented with additional training images Kundu et al. [Kundu et al.,
2014], are shown in Table 3.2 and Figure 3.2. Qualitative results on the

3SGD uses bifurcated training with linear interactions, hence it could be named bif+lin.

CHAPTER 3

68

Table 3.1: MSRC-21 class, pixel-wise, and class-mean test accuracy (in %) for different models

mc o = 3 5}

2 g] g 8 o 2 2 = - % 5o > = 3 2

B B3225385822 58283823 ¢ & 2
unary 15 60 52 8 10 68 35 46 12 21 21 42 9 236 02114 5 6 1 363 23.1
CP 44 77 61 48 21 85 60 69 51 70 63 54 49 16 87 21 41 47 6 16 33 594 48.5
SGD 49 67 71 39 64 80 81 67 35 74 60 42 19 2 88 51 53 38 4 31 26 59.2 49.6
int+lin 48 76 83 67 73 94 78 67 59 56 68 65 48 14 95 43 61 53 6 45 32 674 58.5
bif+nrl 46 74 79 51 51 92 83 64 76 64 67 50 53 9 83 34 42 42 0 47 22 62.7 53.7
int+nrl 53 77 86 61 73 95 83 60 87 77 72 69 77 27 85 29 67 46 0 57 26 70.1 62.3
intf+lin 46 67 80 47 69 83 79 60 35 66 63 53 10 2 89 43 66 62 4 45 17 612 51.7
3-layer 62 76 87 68 77 94 81 66 84 65 75 53 69 33 81 51 67 58 30 64 25 71.6 65.1

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 69

SIFT Flow [Liu et al., 2011] dataset are shown in Figure 3.3, while accuracy
results are shown in Table 3.3.

The results show that unary-only prediction is very inaccurate
(pixel-wise/class-mean accuracy of 36.3/23.1% for the MSRC-21 dataset,
53.8/42.8% for the KITTI dataset, and 44.7/7.5% for the SIFT Flow dataset).
The reason for this is that unary features are not sufficiently distinctive to
allow for differentiation between classes due to their low dimensionality.
Accurate predictions are only possible by taking into account contextual
output relations, demonstrated by the increased accuracy of CP (MSRC-21:
59.4/48.5%; KITTI: 61.5/46.7%; SIFT Flow: 62.5/13.8%) as well as SGD
(MSRC-21: 59.2/49.6%; KITTI: 65.5/50.6%; SIFT Flow: 65.9/15.3%).
These structured predictors learn linear relations between image regions,
which allows them to correct errors originating from the underlying unary
classifier. However, the unary factor’s linear weights w have only limited
capability for error correction in the opposite direction, due to the fact that
the SSVM cannot alter the unary classifier parameters post-hoc.

Using an integrated training approach such as int+lin, in which the
SSVM is trained end-to-end, improves accuracy (MSRC-21: 67.4/58.5%;
KITTTI: 70.2/57.8%; SIFT Flow: 70.2/15.6%) over the bifurcated procedures
CP and SGD. Although neither the unary or interaction features are very
distinctive, the integrated procedure updates parameters in such a way that
both factor types have a unique discriminative focus. Their synergistic
relationship ultimately results in higher accuracy. To better compare SGD
(which uses 8, 21, and 33 logistic regression outputs as unary input features
for the different benchmarks) with int+lin, we also depict the accuracy
(MSRC-21: 61.2/51.7%; KITTI: 69.2/53.5%; SIFT Flow: 70.2/15.6%) of
amodel (int"+lin) with only 8, 21, and 33 unary hidden units for the KITTI,
MSRC-21, and SIFT Flow dataset, rather than 256 units. The 2.0/2.1%
(MSRC-21), 3.7/2.9% (KITTI), and 4.3/0.3% (SIFT Flow) increases in
accuracy over SGD further illustrates the benefit of integrated learning and
inference over conventional bifurcated SSVM training.

Another insight gained by the results is that accuracy increases when
replacing linear interaction factors of conventional SSVMs with neural fac-
tors, i.e., int+nrl (MSRC-21: 70.1/62.3%; KITTI: 75.6/60.9%; SIFT Flow:
71.3/17.0%) and bif+nrl (MSRC-21: 62.7/53.7%; KITTI: 70.0/55.9%; SIFT
Flow:68.8/16.1%) outperform int+lin (MSRC-21: 67.4/58.5%; KITTI:
70.2/57.8%; SIFT Flow: 70.3/16.2%) and SGD (MSRC-21: 59.2/49.6%;

CHAPTER 3

70

Table 3.3: SIFT Flow pixel-wise and class-mean
test accuracy (in %) for different mod-
els

Table 3.2: KITTI class, pixel-wise, and class-mean test accu-
racy (in %) for different models

=
0 — g
2 5 2)
M el [THEN] o) @) 17} —
23:¢325¢z25 £ £ ER
(5}
unary 75 63 59 29 8 71 0 38 53.8 42.8
CP 84 76 75 11 575 0 48 615 46.7 %UNQ MM.M mw
SGD 77 68 86 19 4 80 0 71 655 50.6 SGD €59 153
int+lin 86 76 82 42 23 81 6 67 702 57.8 —
bif+nrl 86 77 81 41 12 80 0 71 70.0 55.9 NMMM Mm.w M.w
int+nrl 86 83 88 50 19 84 4 74 75.6 60.9 o U3 170
int'+lin 81 76 85 22 12 82 0 70 69.2 53.5 S
I 2 15.
3layer 90 82 88 55 28 87 1 78 77.6 63.6 int'+lin - 70.2°15.6

3-layer 71.5 17.2

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 71

80

BOOOOSR Unary
60 = — pairw.
40 - W total -

accuracy [%]

pixel class pixel class pixel class pixel class
SGD int+lin bif+nrl int+nrl

Figure 3.4: Visualization of the synergy between unary and interaction factors. In
bifurcated training the interactions make unary factors redundant as
these cannot be adapt to errors made by the interactions. In integrated
training, combining both factor types leads to a higher accuracy as they
can mutually adapt to each other’s weight updates.

KITTT: 65.5/50.6%; SIFT Flow: 65.9/15.3%) respectively. This increase
can be attributed to the higher number of parameters, as well as the added
nonlinearities in combination with correct regularization. The model has
greater generalization power, allowing the factors to extract more complex
and meaningful interaction patterns. Neural factors offer great flexibility as
they can be stacked to arbitrary depths. This leads to even higher gener-
alization, as indicated by the increased accuracy (MSRC-21: 71.6/65.1%;
KITTT: 77.6/63.6%; SIFT Flow: 71.5/17.2%) of the deeper 3-layer (int+nrl)
model. Herein both unary and interaction factors are 3-hidden-layer neural
networks consisting of 256 and 512 units (rectified linear units for MSRC-21
and KITTI and tanh units for SIFT Flow) in each layer respectively. Our
model can thus easily be extended, for example by letting neural factors
represent the fully-connected layer in convolutional neural networks. As
such, it serves as a foundation for more complex structured models.

All methods converge within 600 epochs, with one epoch taking ap-
proximately 12.62 seconds for the MSRC-21 dataset, 4.35 seconds for the
KITTI dataset, and 197.27 seconds on the SIFT Flow dataset for the int+nrl
algorithm. The algorithm can be further optimized for speed by exploiting
CPU parallelism and optimizing the data transfer between CPU and GPU
when training the nonlinear factors in our model. These optimizations will
be part of our future work.

Figure 3.4 illustrates the synergy between unary and interaction fac-
tors achieved through both integrated and bifurcated training, exercised
on the MSRC-21 dataset. The bars depict model test accuracy when
using only unary or pairwise factors, by setting either the pairwise or
unary factors respectively to a zero factor value, thus (w, ¢;(x,y)) or
w,ou(x,y)) = 0Vy € Y. Although the unary factors alone perform

CHAPTER 3

72

Table 3.4: State-of-the-art comparison: MSRC-21 per-class, class-mean, and global pixel-wise test accuracy (in %) for different models

o0

=) —_ L o

S g 5. 8849 22co¥im > 5 B 2

ELEZZ78: 2528222883822 4 £
neural factors 76 94 94 92 97 92 94 85 93 88 94 95 70 78 97 87 88 91 78 88 63 88.9 87.4
[Liu et al., 2015] 71 95 92 87 98 97 97 89 95 85 96 94 75 76 89 84 88 97 77 87 52 88.5 86.7
[Yao et al., 2012] 71 98 90 79 86 93 88 86 90 84 94 98 76 53 97 71 89 83 55 68 17 86.2 79.3
[Lucchi et al., 2013] 67 89 85 93 79 93 84 75 79 87 89 92 71 46 96 79 86 76 64 77 50 83.7 789
[Munoz et al., 2010] 63 93 88 84 65 89 69 78 74 81 84 80 51 55 84 80 69 47 59 71 24 78 71
[Gonfaus et al., 2010] 60 78 77 91 68 88 87 76 73 77 93 97 73 57 95 81 76 81 46 56 46 77 75
[Shotton et al., 2008] 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 72 67
[Lucchi et al., 2012] 41 77 79 87 91 86 92 65 86 65 89 61 76 48 77 91 77 82 32 48 39 73 170

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 73

well in bifurcated training, nearly all accuracy can be attributed to the in-
teractions. A possible explanation is that both types essentially learn the
same information. The interactions correct errors of the underlying clas-
sifier and ultimately make unary factors redundant. In integrated training,
neither the unary or interaction factors alone attain a high accuracy, but the
combination of both does.

We explain this synergistic relationship with an example: Unary fac-
tors assign to a region of class A, a second-to-highest factor value to class
A, a highest value to class B, and a low value to class C. The interactions
also assign a second-to-highest value to class A, but a highest value to
class C, and a low value to class B. Independently both factors incorrectly
predict the region of class A as belonging to class B or class C. However,
when combined they correctly assign a highest value to class A. In the
figure, bifurcated training only shows limited signs of factor synergy, as
the optimization procedure is insufficiently able to steer unary and pair-
wise parameters in different directions, which causes them have a similar
discriminative focus. This observation leads us to believe that integrated
learning and inference results in higher accuracy by synergistic unary/in-
teraction factor optimization. Both factor types are no longer optimized for
independent accuracy, but mutually adapt to each other’s parameter updates,
which results in enhanced predictive power.

In addition to the previous experiments, the viability of our neural fac-
tor model is shown through comparison with the closely related work of Liu
et al. [Liu et al., 2015] on the MSRC-21 dataset. Liu et al. make use of fea-
tures extracted from square regions of varying size around each superpixel,
through means of a pretrained convolutional neural network. We compare
our model with theirs using overfeat features [Sermanet et al., 2013], trained
on individual regions. Furthermore, the model settings have been altered
with respect to the previous experiments. More specifically, 1,000 SLIC
superpix els are utilized for the over-segmentation preprocessing step, en-
forcing superpixel connectivity and merging any superpixel with a surface
area below a particular threshold. DAISY gradient and HSV color features
are extracted according to a regular lattice, and clustered via minibatch
k-means clustering. Next, the same type of features are extracted for each
individual pixel, leading to unary and pairwise factor feature vectors. More-
over, the (x, y)-position of the superpixel (median-based) center is included
in the unary feature vectors, while the distance and angle between the two

74 CHAPTER 3

superpixel centers is encoded into the interaction feature vectors. The neu-
ral factors are represented by multilayer neural networks using tanh-units,
trained according to our Algorithm 3.2, using conventional momentum and
single image-sized batches per gradient update. Classes are balanced by
weighing them with the inverse of the class frequency. The results are pre-
sented in Table 3.4, which indicate that our model is capable of performing
on par with the current state-of-practice, when used in conjunction with
more advanced methods, e.g., overfeat features. Moreover, similar to Liu et
al. [Liu et al., 2015], we have added the scores of closely related methods
for completeness, for which the results are shown below the horizontal line
in Table 3.4.

3.5 Conclusion

A structured prediction model that integrates back-propagation and loss-
augmented inference into subgradient descent training of structural support
vector machines (SSVMs) is proposed. This model departs from the tra-
ditional bifurcated approach in which a unary classifier is trained indepen-
dently from the structured predictor. Furthermore, the SSVM factors are
extended to neural factors, which allows both unary and interaction factors to
be highly nonlinear functions of input features. Results on a complex image
segmentation task show that end-to-end SSVM training, and/or using neural
factors, leads to more accurate predictions than conventional subgradient
descent and N-slack cutting plane training. Results show that our model
serves as a foundation for more advanced structured models, e.g., by using
latent variables, learned feature representations, or complexer connectivity
structures.

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 75

3.A Application to Autonomous Vehicle Data

This addendum shows an extension to the original work in [Houthooft
and De Turck, 2016]. We compare an end-to-end segmentation method,
as described in Section 2.4.4, with a convolutional implementation of the
end-to-end SSVM method described in this chapter. We call this imple-
mentation a deep SSVM, and apply it to the autonomous agricultural vehicle
segmentation dataset introduced in Chapter 2.

3.A.1 Deep SSYM

Avoiding the need for an over-segmentation preprocessing method, similar
to Section 2.4.4, we propose the use of an SSVM with an underlying grid-
structured graphical model. This model connects each pixel to its four
adjacent neighbors in the left, top, right, and bottom directions. It uses a
unary energy function f(x,y;0), as described in Eq. (3.11), modeled by
a convolutional neural network (CNN) which outputs an energy value for
each distinct class. The interaction energy function i(x, y;y), as described
in Eq. (3.12), is modeled by the same CNN, except that it uses a different
output branch that ends in two distinct output blocks of 182 values. Once 18>
outputs for the horizontal connections (left and right), once 18> outputs for
the vertical connections (top and bottom). The right column and bottom row
are stripped away from both branch outputs, to match the actual grid layout.
The CNN factors are composed of stack of convolutional layers, feeding into
a set of dense layers, feeding into a stack of transposed convolutional layers,
which output the SSVM energy values. The whole system is trained end-to-
end using back-propagation and a-expansion for loss-augmented inference,
as described in Algorithm 3.2. This means, rather than applying the unary
and pairwise neural networks as presented in this chapter separately for each
individual unary or pairwise connection, that the CNN outputs all SSVM
energy values simultaneously.

The model has the following architecture, which is also shown visually
in Figure 3.5. The SSVM graphical model is a grid that connects adjacent
pixels, as described previously, consisting of V,, = 160 x 80 nodes and
E, = (160x79)+(159x160) undirected edges. It takes as input 3x640x320
images downscaled to 3x160x80, and outputs a 160x80 segmentation. This

means that both the unary features xV 1

; as well as the interaction features X;

76

CHAPTER 3

Bx160x 80

100040 x 20
16 80 x40

6480 x40

32 160 x 80

32x160x80 Ex160x50 B x160x80

Figure 3.5: Deep SSVM using a convolutional architecture; the circled plus connections represent the skip-layer connections; the gray
box represents the OverFeat CNN class probabilities according to the window extraction process.

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 77

are the complete 3-channel input images. We specifically use downscaled
images of 160 x 80 pixels to reduce the processing time, since our a-
expansion algorithm implementation cannot be run parallely on a GPU. A
possible solution to this is described in [Vineet and Narayanan, 2009].

The CNN consists of consecutive convolutional layers with 16, 32, and
64 filters of size 3 x 3. After each layer, a 2-dim max-pooling operation
is applied, halving the size of each set of feature maps. Next, 2 dense
layers of respectively 512 and 2000 units are used, which feed into the stack
of transposed convolutional layers. The set of 2000 dense outputs is first
reshaped into a tensor of size 10 x 10 x 20, after which layers of respectively
128, 32, and 32 filters of size 3 X 3 are used. Each of these layers is followed
by a 2-dim upscaling layer, doubling the size of each feature map.

The final feature map is fed into two parallel transposed convolutional
layers, one with 18 3 x 3 filters and one with 2 x 182 filters. The first output
branch feeds into the affine unary energy layer, with output size 18x160x80,
while the second branch feeds into an affine interaction energy layer, with
output size 324 x 160 x 80 (which is cropped to match the actual interaction
grid). As done in Section 2.4.4, skip-layer connections are added that
connect the convolutional layers, before their max-pooling operation, to
their transposed convolutional counterparts. As such, the input of each
transposed convolutional layer is expanded through concatenation. This
is made clear in Figure 3.5 by the horizontal dashed connections with the
circled plus symbol. All nonlinear transformations are composed of ELUs
[Clevert et al., 2015]; the learning scheme Adam [Kingma and Ba, 2015]
optimizes the objective function of Eq. (3.5), according to Algorithm 3.2,
using minibatches of size 6. The loss function A(-,-) is weighted by the
inverse of the class frequencies. Transfer learning is used as described in
Section 2.4.4 through concatenation of the 1000 x 20 x 40 feature tensor
with tensor of feature maps after the first upscaling layer.

3.A.2 End-to-end Segmentation without SSVM

The deep SSVM is compared to an end-to-end segmentation model, as
described in Section 2.4.4, with the same architecture as the deep SSVM.
The architecture is identical to Figure 3.5, but without the lower branch, the
graphical model (SSVM), and with a softmax output of 18 classes rather
than an affine transformation (linear) into 18 unary energy values.

78 CHAPTER 3

ABCDEFGHI)] KLMNOPQOQR

A

B {0.9

c

D {0.8
E

F {0.7

G

H 10.6
[

0 v0O0 zZ22Z - X —

ABCDEFGHI J KLMNOPQOQR

A —
B {o.9
C

D {o.8
E

F {0.7

G

H 10.6
[

0O vO0OzZ22Zr X —

Figure 3.6: Deep SSVM (top) and end-to-end segmentation model (bottom): pixel-
wise precision results on the autonomous agricultural vehicle test
dataset, described as a confusion matrix. Class legend: person (A),
tractor (B), harvester (C), implement (D), moving object (E), nonmoving
object (F), power pole (G), fence/hedge (H), tree/shrubbery (I), public
road (J), farm road (K), harvested untilled area (L), unharvested area
(M), tilled area (N), swath (O), building (P), water (Q), sky (R).

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 79

ABCDEFGHI] KLMNOPAOQR

A

B H0.9
C

D 10.8
E

E 10.7

G

H 40.6
I

00O v O =22 R —

ABCDEFGHI)] KLMNOPQOQR

A -
B H0.9
C

D H0.8
E

F 40.7

G

H H0.6
I

O v Oz R —

Figure 3.7: Deep SSVM (top) and end-to-end segmentation model (bottom): pixel-
wise recall results on the autonomous agricultural vehicle test dataset,
described as a confusion matrix. Class legend: person (A), tractor (B),
harvester (C), implement (D), moving object (E), nonmoving object (F),
power pole (G), fence/hedge (H), tree/shrubbery (I), public road (J),
farm road (K), harvested untilled area (L), unharvested area (M), tilled
area (N), swath (O), building (P), water (Q), sky (R).

80 CHAPTER 3

3.A.3 Results and Discussion

This section demonstrates that the presented end-to-end SSVM training
method can be used in conjunction with highly complex underlying neural
factor models. The prediction accuracy between the deep SSVM and an
end-to-end segmentation model that uses the exact same convolutional base
is compared through precision and recall on the autonomous agricultural
test dataset as introduced in Chapter 2. The results are shown in Figures 3.6
and 3.7 through confusion matrices. In these matrices, each row i represents
pixels that have ground truth label j. As such, at position (i, j), the number
of pixels classified as j but actually belonging to i is shown. Rather than
showing the true pixel counts, we split up this matrix into a precision
and a recall confusion matrix. The recall matrix (Figures 3.7) shows the
original count divided by the row sum (in %), while the precision matrix
(Figures 3.6) shows this count divided by the column sum (in %). Although
recall is often treated as the actual accuracy, we also include precision results
since it captures different predictive qualities of the models

Similar to Chapter 2, the mistakes made by both models are highly in-
terpretable, for example incorrectly classifying ‘fence/hedge’ as ‘tree/shrub-
bery’. On average, it can be noticed that the deep SSVM method attains
a slightly lower recall (53.3% compared to 55.8%), but a higher precision
(63.6% compared to 56.7%) than the end-to-end segmentation model. This
means that if the deep SSVM model makes a prediction, on average, it
is more likely to be correct than its competitor. However, this leads to a
slightly lower detection rate for particular classes. When comparing these
results to the results in Chapter 2, we see that the accuracy values of both
models are lower. This is due to the downsampling process, which dis-
cards lots of information present in the original image. When looking at
the global accuracy, which is the total number of correctly classified pixels,
the end-to-end segmentation model attains an accuracy of 90.5%, while the
deep SSVM scores slightly higher with 92.3%.

These results indicate that the deep SSVM model is capable of adding
value to the segmentation process. However, the most important point to
take away from these results is that they reinforce the conclusion made
previously, namely that the end-to-end SSVM training method can serve as
a foundation for highly complex underlying models.

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 81

References

[Achanta et al., 2012] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua,
P., and Susstrunk, S. (2012). SLIC superpixels compared to state-of-
the-art superpixel methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(11):2274-2282.

[Bagirov et al., 2013] Bagirov, A. M., Jin, L., Karmitsa, N., Al Nuaimat,
A., and Sultanova, N. (2013). Subgradient method for nonconvex nons-
mooth optimization. Journal of Optimization Theory and Applications,
157(2):416-435.

[Bastien et al., 2012] Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J.,
Goodfellow, 1., Bergeron, A., Bouchard, N., Warde-Farley, D., and Ben-
gio, Y. (2012). Theano: new features and speed improvements. In NIPS
Workshop Deep Learning and Unsupervised Feature Learning.

[Bertelli et al., 2011] Bertelli, L., Yu, T., Vu, D., and Gokturk, B. (2011).
Kernelized structural SVM learning for supervised object segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2153-2160.

[Bottou et al., 1997] Bottou, L., Bengio, Y., and LeCun, Y. (1997). Global
training of document processing systems using graph transformer net-
works. In Proceedings of the IEEE International Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 489-494.

[Boykov et al., 2001] Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast
approximate energy minimization via graph cuts. IEEE Transactions on
FPattern Analysis and Machine Intelligence, 23(11):1222—-1239.

[Bridle, 1989] Bridle, J. S. (1989). Training stochastic model recognition
algorithms as networks can lead to maximum mutual information esti-
mation of parameters. In Advances in Neural Information Processing
Systems 2 (NIPS), pages 211-217.

[Chang and Yih, 2013] Chang, M.-W. and Yih, W.-t. (2013). Dual coordi-
nate descent algorithms for efficient large margin structured prediction.
Transactions of the Association for Computational Linguistics, 1:207-

218.

82 CHAPTER 3

[Chen et al., 2015a] Chen, L.-C., Papandreou, G., Kokkinos, 1., Murphy,
K., and Yuille, A. L. (2015a). Semantic image segmentation with deep
convolutional nets and fully connected CRFs. In Proceedings of the
International Conference on Learning Representations (ICLR).

[Chen et al., 2015b] Chen, L.-C., Schwing, A. G., Yuille, A. L., and Ur-
tasun, R. (2015b). Learning deep structured models. In Proceedings of
the 31st International Conference on Machine Learning (ICML), pages
1785-1794.

[Clevert et al., 2015] Clevert, D.-A., Unterthiner, T., and Hochreiter, S.
(2015). Fast and accurate deep network learning by exponential linear
units (ELUs). arXiv preprint arXiv:1511.07289.

[Collins, 2002] Collins, M. (2002). Discriminative training methods for
hidden markov models: Theory and experiments with perceptron algo-
rithms. In Proceedings of the ACL-02 conference on Empirical methods
in natural language processing-Volume 10, pages 1-8.

[Collobert et al., 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural language processing
(almost) from scratch. Journal of Machine Learning Research, 12:2493—
2537.

[Dauphin et al., 2014] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho,
K., Ganguli, S., and Bengio, Y. (2014). Identifying and attacking the
saddle point problem in high-dimensional non-convex optimization. In
Advances in Neural Information Processing Systems 27 (NIPS), pages
2933-2941.

[Do and Artieres, 2010] Do, T.-M.-T. and Arti¢res, T. (2010). Neural con-
ditional random fields. In Proceedings of the 13th International Confer-
ence Artificial Intelligence and Statistics (AISTATS), pages 177-184.

[Domke, 2013] Domke, J. (2013). Structured learning via logistic regres-
sion. In Advances in Neural Information Processing Systems 24 (NIPS),
pages 647-655.

[Farabet et al., 2013] Farabet, C., Couprie, C., Najman, L., and LeCun,
Y. (2013). Learning hierarchical features for scene labeling. IEEE

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 83

Transactions on Pattern Analysis and Machine Intelligence, 35(8):1915—
1929.

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understand-
ing the difficulty of training deep feedforward neural networks. In Pro-
ceedings of the 13th International Conference Artificial Intelligence and
Statistics (AISTATS), pages 249-256.

[Gonfaus et al., 2010] Gonfaus, J. M., Boix, X., Van de Weijer, J., Bag-
danov, A. D., Serrat, J., and Gonzalez, J. (2010). Harmony potentials
for joint classification and segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages
3280-3287.

[Houthooft et al., 2016] Houthooft, R., De Boom, C., Verstichel, S., On-
genae, F., and De Turck, F. (2016). Structured output prediction for
semantic perception in autonomous vehicles. In Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI).

[Houthooft and De Turck, 2016] Houthooft, R. and De Turck, F. (2016).
Integrated inference and learning of neural factors in structural support
vector machines. Pattern Recognition, 59:292-301.

[Joachims et al., 2009] Joachims, T., Finley, T., and Yu, C.-N. J. (2009).
Cutting-plane training of structural SVMs. Machine Learning, 77(1):27-
59.

[Kingma and Ba, 2015] Kingma, D. and Ba, J. (2015). Adam: A method
for stochastic optimization. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

[Krahenbiihl and Koltun, 2013] Kirihenbiihl, P. and Koltun, V. (2013). Pa-
rameter learning and convergent inference for dense random fields. In
Proceedings of the 30th International Conference on Machine Learning
(ICML), pages 513-521.

[Kundu et al., 2014] Kundu, A., Li, Y., Dellaert, F., Li, F., and Rehg,
J. (2014). Joint semantic segmentation and 3D reconstruction from
monocular video. In Proceedings of the 13th European Conference on
Computer Vision (ECCV), pages 703-718.

84 CHAPTER 3

[Lacoste-julien et al., 2013] Lacoste-julien, S., Jaggi, M., Schmidt, M.,
and Pletscher, P. (2013). Block-coordinate Frank-Wolfe optimization for
structural SVMs. In Proceedings of the 30th International Conference
on Machine Learning (ICML), pages 53-61.

[Li and Zemel, 2014] Li, Y. and Zemel, R. (2014). High order regular-
ization for semi-supervised learning of structured output problems. In
Proceedings of the 31st International Conference on Machine Learning

(ICML), pages 1368-1376.

[Liang et al., 2015] Liang, X., Liu, S., Shen, X., Yang, J., Liu, L., Lin, L.,
and Yan, S. (2015). Deep human parsing with active template regres-
sion. IEEE Transactions on Pattern Analysis and Machine Intelligence,

37(12):2402-2414.

[Lin et al., 2015] Lin, L., Wang, X., Yang, W., and Lai, J.-H. (2015).
Discriminatively trained and-or graph models for object shape detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(5):959-972.

[Liu et al., 2011] Liu, C., Yuen, J., and Torralba, A. (2011). Sift flow:
Dense correspondence across scenes and its applications. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 33(5):978-994.

[Liu et al., 2015] Liu, F., Lin, G., and Shen, C. (2015). CRF learn-
ing with CNN features for image segmentation. Pattern Recognition,
48(10):2983-2992.

[Luetal., 2015] Lu, J., Xu, R., and Corso, J. J. (2015). Human action
segmentation with hierarchical supervoxel consistency. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3762-3771.

[Lucchi et al., 2013] Lucchi, A., Li, Y., and Fua, P. (2013). Learning
for structured prediction using approximate subgradient descent with
working sets. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1987-1994.

[Lucchi et al., 2012] Lucchi, A., Li, Y., Smith, K., and Fua, P. (2012).
Structured image segmentation using kernelized features. In Proceedings

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 85

of the 12th European Conference on Computer Vision (ECCV), pages
400-413.

[Morris and Fosler-Lussier, 2008] Morris, J. and Fosler-Lussier, E.
(2008). Conditional random fields for integrating local discriminative
classifiers. IEEE/ACM Transactions on Audio, Speech, Language Pro-
cessing, 16(3):617-628.

[Miiller, 2014] Miiller, A. C. (2014). Methods for Learning Structured
Prediction in Semantic Segmentation of Natural Images. PhD thesis,
University of Bonn.

[Miiller and Behnke, 2014] Miiller, A. C. and Behnke, S. (2014). PyStruct
- Learning structured prediction in Python. Journal of Machine Learning
Research, 15:2055-2060.

[Munoz et al., 2010] Munoz, D., Bagnell, J. A., and Hebert, M. (2010).
Stacked hierarchical labeling. In Proceedings of the 11th European
Conference on Computer Vision (ECCV), pages 57-70.

[Nedi¢ and Bertsekas, 2001] Nedi¢, A. and Bertsekas, D. (2001). Conver-
gence rate of incremental subgradient algorithms. In Stochastic Opti-
mization: Algorithms and Applications, pages 223-264.

[Ngiam et al., 2011] Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le,
Q. V., and Ng, A. Y. (2011). On optimization methods for deep learn-
ing. In Proceedings of the 28th International Conference on Machine
Learning (ICML), pages 265-272.

[Nowozin and Lampert, 2011] Nowozin, S. and Lampert, C. H. (2011).
Structured learning and prediction in computer vision. Foundations and
Trends in Computer Graphics and Vision, 6(3—4):185-365.

[Pascanu et al., 2014] Pascanu, R., Dauphin, Y. N., Ganguli, S., and Ben-
gio, Y. (2014). On the saddle point problem for non-convex optimization.
arXiv preprint arXiv: 1405.4604.

[Peng et al., 2013] Peng, B., Zhang, L., and Zhang, D. (2013). A survey
of graph theoretical approaches to image segmentation. Pattern Recog-
nition, 46(3):1020 — 1038.

86 CHAPTER 3

[Peng et al., 2009] Peng, J., Bo, L., and Xu, J. (2009). Conditional neural
fields. In Advances in Neural Information Processing Systems 22 (NIPS),
pages 1419-1427.

[Prabhavalkar and Fosler-Lussier, 2010] Prabhavalkar, R. and Fosler-
Lussier, E. (2010). Backpropagation training for multilayer conditional
random field based phone recognition. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5534-5537.

[Ros et al., 2015] Ros, G., Ramos, S., Granados, M., Bakhtiary, A.,
Vazquez, D., and Lopez, A. M. (2015). Vision-based offline-online
perception paradigm for autonomous driving. In Proceedings of the
IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 231-238.

[Schwing and Urtasun, 2015] Schwing, A. G. and Urtasun, R. (2015).
Fully connected deep structured networks. arXiv preprint
arXiv:1503.02351.

[Sermanet et al., 2013] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M.,
Fergus, R., and LeCun, Y. (2013). OverFeat: Integrated recognition,
localization and detection using convolutional networks. In Proceedings
of the International Conference on Learning Representations (ICLR).

[Shor et al., 1985] Shor, N. Z., Kiwiel, K. C., and Ruszcaynski, A. (1985).
Minimization methods for non-differentiable functions. Springer-Verlag
New York, Inc.

[Shotton et al., 2008] Shotton, J., Johnson, M., and Cipolla, R. (2008).
Semantic texton forests for image categorization and segmentation. In
Proceedings of the IEEE Conference on Computer vision and pattern
recognition (CVPR), pages 211-227.

[Shotton et al., 2009] Shotton, J., Winn, J., Rother, C., and Criminisi, A.
(2009). Textonboost for image understanding: Multi-class object recog-
nition and segmentation by jointly modeling texture, layout, and context.
International Journal of Computer Vision, 81(1):2-23.

[Sutskever et al., 2013] Sutskever, 1., Martens, J., Dahl, G., and Hinton,
G. (2013). On the importance of initialization and momentum in deep

NEURAL FACTORS IN STRUCTURAL SUPPORT VECTOR MACHINES 87

learning. In Proceedings of the 30th international conference on machine
learning (ICML), pages 1139-1147.

[Tola et al., 2010] Tola, E., Lepetit, V., and Fua, P. (2010). DAISY: An
efficient dense descriptor applied to wide baseline stereo. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(5):815-830.

[Tompson et al., 2014] Tompson, J. J., Jain, A., LeCun, Y., and Bregler,
C. (2014). Joint training of a convolutional network and a graphical
model for human pose estimation. In Advances in Neural Information
Processing Systems 27 (NIPS), pages 1799-1807.

[Tsochantaridis et al., 2005] Tsochantaridis, I., Joachims, T., Hofmann, T.,
and Altun, Y. (2005). Large margin methods for structured and inter-
dependent output variables. Journal of Machine Learning Research,
6:1453-1484.

[Vineet and Narayanan, 2009] Vineet, V. and Narayanan, P. (2009). Solv-
ing multilabel MRFs using incremental a-expansion on the GPUs. In
Proceedings of the 9th Asian Conference on Computer Vision (ACCV),
pages 633-643.

[Wang et al., 2013] Wang, X., Lin, L., Huang, L., and Yan, S. (2013).
Incorporating structural alternatives and sharing into hierarchy for mul-
ticlass object recognition and detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages
3334-3341.

[Xuetal., 2014] Xu, R., Chen, G., Xiong, C., Chen, W., and Corso, J. J.
(2014). Compositional structure learning for action understanding. arXiv
preprint arXiv:1410.5861.

[Yao et al., 2012] Yao,J., Fidler, S., and Urtasun, R. (2012). Describing the
scene as a whole: Joint object detection, scene classification and semantic
segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 702—709.

[Yuetal., 2009] Yu, D., Deng, L., and Wang, S. (2009). Learning in
the deep-structured conditional random fields. In NIPS Workshop Deep
Learning for Speech Recognition and Related Applications.

88 CHAPTER 3

[Zhang, 2004] Zhang, T. (2004). Statistical behavior and consistency of
classification methods based on convex risk minimization. Annals of
Statistics, 32(1):56-85.

Chapter 4

Variational Information
Maximizing Exploration

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck &
Pieter Abbeel, VIME: Variational Information Maximizing Exploration, In
Advances in Neural Information Processing Systems (NIPS), pp. 1109—
1117, Barcelona, Spain, 2016.

Makes use of the task and algorithm descriptions presented in

Yan Duan, Xi Chen, Rein Houthooft, John Schulman & Pieter Abbeel,
Benchmarking Deep Reinforcement Learning for Continuous Control, In
Proceedings of the 33rd International Conference on Machine Learning
(ICML), pp. 1329-1338, New York City, USA, 2016.

UC Berkeley, OpenAl, Ghent University — imec
* % *

Scalable and effective exploration remains a key challenge in reinforcement
learning (RL). While there are methods with optimality guarantees in the
setting of discrete state and action spaces, these methods cannot be applied
in high-dimensional deep RL scenarios. As such, most contemporary RL

90 CHAPTER 4

relies on simple heuristics such as epsilon-greedy exploration or adding
Gaussian noise to the controls. This chapter introduces Variational Infor-
mation Maximizing Exploration (VIME), an exploration strategy based on
maximization of information gain about the agent’s belief of environment
dynamics. We propose a practical implementation, using variational infer-
ence in Bayesian neural networks which efficiently handles continuous state
and action spaces. VIME modifies the MDP reward function, and can be
applied with several different underlying RL algorithms. We demonstrate
that VIME achieves significantly better performance compared to heuris-
tic exploration methods across a variety of continuous control tasks and
algorithms, including tasks with very sparse rewards.

4.1 Introduction

Reinforcement learning (RL) studies how an agent can maximize its cu-
mulative reward in a previously unknown environment, which it learns
about through experience. A long-standing problem is how to manage the
trade-off between exploration and exploitation. In exploration, the agent
experiments with novel strategies that may improve returns in the long run;
in exploitation, it maximizes rewards through behavior that is known to be
successful.

An effective exploration strategy allows the agent to generate trajecto-
ries that are maximally informative about the environment. For small tasks,
this trade-off can be handled effectively through Bayesian RL [Ghavamzadeh
etal.,2015] and PAC-MDP methods [Kakade et al., 2003, Kearns and Singh,
2002, Brafman and Tennenholtz, 2003, Auer, 2003, Pazis and Parr, 2013],
which offer formal guarantees. However, these guarantees assume discrete
state and action spaces. Hence, in settings where state-action discretiza-
tion is infeasible, many RL algorithms use heuristic exploration strategies.
Examples include acting randomly using e-greedy or Boltzmann explo-
ration [Mnih et al., 2015], and utilizing Gaussian noise on the controls in
policy gradient methods [Schulman et al., 2015]. These heuristics often
rely on random walk behavior which can be highly inefficient, for example
Boltzmann exploration requires a training time exponential in the number of
states in order to solve the well-known n-chain MDP [Osband et al., 2016b].

In between formal methods and simple heuristics, several works have
proposed to address the exploration problem using less formal, but more

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 91

expressive methods [Stadie et al., 2015, Osband et al., 2016a, Oh et al,,
2015, Hester and Stone, 2015, Subramanian et al., 2016]. However, none of
them fully address exploration in continuous control, as discretization of the
state-action space scales exponentially in its dimensionality. For example,
the Walker2D task [Duan et al., 2016] has a 26-dim state-action space. If
we assume a coarse discretization into 10 bins for each dimension, a table
of state-action visitation counts would require 10 entries.

This chapter proposes a curiosity-driven exploration strategy, making
use of information gain about the agent’s internal belief of the dynamics
model as a driving force. This principle can be traced back to the concepts of
curiosity and surprise [Schmidhuber, 1991, Sun et al., 2011, Itti and Baldi,
2005]. Within this framework, agents are encouraged to take actions that
result in states they deem surprising—i.e., states that cause large updates
to the dynamics model distribution. We propose a practical implementa-
tion of measuring information gain using variational inference. Herein,
the agent’s current understanding of the environment dynamics is repre-
sented by a Bayesian neural network (BNN) [Graves, 2011, Blundell et al.,
2015]. We also show how this can be interpreted as measuring compression
improvement, a proposed model of curiosity [Schmidhuber, 2010].

In contrast to previous curiosity-based approaches [Stadie et al., 2015,
Storck et al., 1995], our model scales naturally to continuous state and action
spaces. The presented approach is evaluated on a range of continuous control
tasks, and multiple underlying RL algorithms. Experimental results show
that VIME achieves significantly better performance than naive exploration
strategies.

4.2 Methodology

In Section 4.2.1, we establish notation for the subsequent equations. Next,
in Section 4.2.2, we explain the theoretical foundation of curiosity-driven
exploration. In Section 4.2.3 we describe how to adapt this idea to contin-
uous control, and we show how to build on recent advances in variational
inference for Bayesian neural networks (BNNs) to make this formulation
practical. Thereafter, we make explicit the intuitive link between compres-
sion improvement and the variational lower bound in Section 4.2.4. Finally,
Section 4.2.5 describes how our method is practically implemented.

92 CHAPTER 4

4.2.1 Preliminaries

This chapter assumes a finite-horizon discounted Markov decision process
(MDP), defined by (S, A, P, r, po,y,T), in which § C R” is a state set,
A € R™ an action set, P : S X A XS — Ryp a transition probability
distribution, r : S X A — R a bounded reward function, py : S — Ryg
an initial state distribution, y € (0, 1] a discount factor, and T the horizon.
States and actions viewed as random variables are abbreviated as S and A.
The presented models are based on the optimization of a stochastic policy
Tq : S XA — Ry, parametrized by @. Let u(m,) denote its expected
discounted return:

u(me) = Be

T
Zytr(s,, at)], “4.1)

t=0

where T = (50, ap, . . .) denotes the whole trajectory, with

50 ~ po(s0), 4.2)
a; ~ ny(asls;), and “4.3)
Ste1 ~ P(sra1lss, ar). 4.4

4.2.2 Curiosity

Our method builds on the theory of curiosity-driven exploration [Schmid-
huber, 1991, Schmidhuber, 2010, Storck et al., 1995, Sun et al., 2011], in
which the agent engages in systematic exploration by seeking out state-action
regions that are relatively unexplored. The agent models the environment
dynamics via a model p(s;+1|s;, as; 8), parametrized by the random variable
® with values 6§ € @. Assuming a prior p(6), it maintains a distribution
over dynamic models through a distribution over 6, which is updated in
a Bayesian manner (as opposed to a point estimate). The history of the
agent up until time step ¢ is denoted as &, = {sy,ay, ..., s;}. According to
curiosity-driven exploration [Sun et al., 2011], the agent should take actions
that maximize the reduction in uncertainty about the dynamics. This can be
formalized as maximizing the sum of reductions in entropy

Z (H(®&:, ar) — H(O|Si11, &1, ar)) 4.5

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 93

through a sequence of actions {a;}. According to information theory, the
individual terms equal the mutual information between the next state distri-
bution S, and the model parameter ®, namely / (S;+; ®|&;, a;). Therefore,
the agent is encouraged to take actions that lead to states that are maximally
informative about the dynamics model. Furthermore, we note that

I(S5:41;0O\&,a) =
Es, . ~2C1&.a0) [DRLIPOIEL, ar, s:40) I p(BIE)T], (4.6)

the KL divergence from the agent’s new belief over the dynamics model to
the old one, taking expectation over all possible next states according to the
true dynamics $. This KL divergence can be interpreted as information
gain.

If calculating the posterior dynamics distribution is tractable, it is
possible to optimize Eq. (4.6) directly by maintaining a belief over the
dynamics model [Sun et al., 2011]. However, this is not generally the case.
Therefore, a common practice [Kolter and Ng, 2009, Stadie et al., 2015] is
to use RL to approximate planning for maximal mutual information along a
trajectory Y; I (St+1; ®|&;, a;) by adding each term 7 (S;41; ®|&;, a;) as an
intrinsic reward, which captures the agent’s surprise in the form of a reward
function. This is practically realized by taking actions a, ~ m,(s;) and
sampling s;11 ~ P (-1, a;) in order to add Dxp[p(01&;, ar, si+1) 1| p(61€,)]
to the external reward. The trade-off between exploitation and exploration
can now be realized explicitly as follows:

r/(st’ ay, St+l) = V(St, al) + UDKL[P(0|§I, dg, St+l) ”p(glé:l)]’ (47)

with 7 € R, a hyperparameter controlling the urge to explore. In con-
clusion, the biggest practical issue with maximizing information gain for
exploration is that the computation of Eq. (4.7) requires calculating the
posterior p(0|&;, a, s:+1), which is generally intractable.

4.2.3 Variational Bayes

We propose a tractable solution to maximize the information gain objective
presented in the previous section. In a purely Bayesian setting, we can derive
the posterior distribution given a new state-action pair through Bayes’ rule

* POIENP (151160 ars 0)
P(St+l |§ta at)

p(6l&r ar, se41) = , (4.8)

94 CHAPTER 4

with p(0|&;,a;) = p(0|&;) as actions do not influence beliefs about the
environment [Sun et al.,, 2011]. Herein, the denominator is computed
through the integral

P(Sz+1|‘ft,az):LP(SHI|ft,az§9)P(9|§t)d9- 4.9)

In general, this integral tends to be intractable when using highly expressive
parametrized models (e.g., neural networks), which are often needed to
accurately capture the environment model in high-dimensional continuous
control.

We propose a practical solution through variational inference [Hinton
and Van Camp, 1993]. Herein, we embrace the fact that calculating the
posterior p(8]|D) for a data set D is intractable. Instead we approximate
it through an alternative distribution ¢(8; ¢), parameterized by ¢, by min-
imizing Dx1.[q(0; @) || p(6]D)]. This is done through maximization of the
variational lower bound L[q(6; ¢), D]:

L[q(0;), D] = Eo-q(:9) [log p(DI0)] — Dx1[q(0;) | p(D)]. (4.10)

Rather than computing information gain in Eq. (4.7) explicitly, we compute
an approximation to it, leading to the following total reward:

r'(se, ar, s141) = r(s, ar) + nDxilq(0; ¢e1) 190 ¢0)], (4.11)

with ¢, the updated and ¢, the old parameters representing the agent’s
belief. Natural candidates for parametrizing the agent’s dynamics model
are Bayesian neural networks (BNNs) [Graves, 2011], as they maintain a
distribution over their weights. This allows us to view the BNN as an infinite
neural network ensemble by integrating out its parameters:

p(ylx) = f@p(ylx; 0)q(6; ¢)db. (4.12)

In particular, we utilize a BNN parametrized by a fully factorized Gaussian
distribution [Blundell et al., 2015]. Practical BNN implementation details
are deferred to Section 4.2.5, while we give some intuition into the behavior
of BNNs in Appendix 4.A.

4.2.4 Compression

It is possible to derive an interesting relationship between compression
improvement—an intrinsic reward objective defined in [Schmidhuber,

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 95

2007], and the information gain of Eq. (4.6). In [Schmidhuber, 2007],
the agent’s curiosity is equated with compression improvement, measured
through

C(&r391-1) = C(&s ¢, (4.13)

where C(&; ¢) is the description length of ¢ using ¢ as a model. Further-
more, it is known that the negative variational lower bound can be viewed
as the description length [Graves, 2011]. Hence, we can write compression
improvement as

L{q(0: ¢:). &1 = LIq(6; ¢1-1), & (4.14)

In addition, an alternative formulation of the variational lower bound in Eq.
(4.10) is given by

Llq(6:¢),D]

p(6, D)
1 = 0;0)1
ogp(D) = | q6:)10g D2

Thus, compression improvement can now be written as

d6 +DkL[q(0;) [p(6|D)]. (4.15)

(log p(¢/) — DxL[q(6; ¢:) I p(81€1)])
— (log p(&é;) — Dxlq(0; ¢:—1) I p(BI€)T) . (4.16)

If we assume that ¢, perfectly optimizes the variational lower bound for
the history &;, then Dky[q(0; ¢,) | p(8]&)] = 0, which occurs when the
approximation equals the true posterior, i.e., g(0; ¢;) = p(6|&;). Hence,
compression improvement becomes

Dxo[p(61€:-1) | p(01&:)]. (4.17)

Therefore, optimizing for compression improvement comes down to opti-
mizing the KL divergence from the posterior given the past history &;_; to
the posterior given the total history &;. As such, we arrive at an alternative
way to encode curiosity than information gain, namely

DxLp(B1E) || p(01&+, ar s141)], (4.18)

its reversed KL divergence. In experiments, we noticed no significant
difference between the two KL divergence variants. This can be explained
as both variants are locally equal when introducing small changes to the
parameter distributions. Investigation of how to combine both information
gain and compression improvement is deferred to future work.

96 CHAPTER 4

4.2.5 Implementation

The complete method is summarized in Algorithm 4.1. We first set forth
implementation and parametrization details of the dynamics BNN. The
BNN weight distribution g(6; ¢) is given by the fully factorized Gaussian
distribution [Blundell et al., 2015]:

O]
90:¢) = [[N (0:lis 7). (4.19)
i=1
Hence, ¢ = {u, o}, with u the Gaussian’s mean vector and o the covariance
matrix diagonal. This is particularly convenient as it allows for a simple
analytical formulation of the KL divergence. This is described later in
this section. Because of the restriction oo > 0, the standard deviation of
the Gaussian BNN parameter is parametrized as o = log(1 + ¢), with
p € R [Blundell et al., 2015].
Now the training of the dynamics BNN through optimization of the
variational lower bound is described. The second term in Eq. (4.10) is
approximated through sampling

N
1
Eo-q(:¢) [log p(DI0)] ~ I § log p(D16y), (4.20)
i=1

with N samples drawn according to 8 ~ g(-; ¢) [Blundell et al., 2015].
Optimizing the variational lower bound in Eq. (4.10) in combination with
the reparametrization trick is called stochastic gradient variational Bayes
(SGVB) [Kingma et al., 2015] or Bayes by Backprop [Blundell et al., 2015].
Furthermore, we make use of the local reparametrization trick proposed
in [Kingma et al., 2015], in which sampling at the weights is replaced
by sampling the neuron pre-activations, which is more computationally
efficient and reduces gradient variance. The optimization of the variational
lower bound is done at regular intervals during the RL training process, by
sampling D from a FIFO replay pool that stores recent samples (s, @, S;+1)-
This is to break up the strong intratrajectory sample correlation which
destabilizes learning in favor of obtaining i.i.d. data [Mnih et al., 2015].
Moreover, it diminishes the effect of compounding posterior approximation
errors.

The posterior distribution of the dynamics parameter, which is needed
to compute the KL divergence in the total reward function r’ of Eq. (4.11),

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 97

Algorithm 4.1: Variational Information Maximizing Exploration

1 for each epoch n do

2 for each timestep ¢ in each trajectory generated during n do
3 Generate action a; ~ m,(s,) and sample state
Sev1 ~ PClEr ar), get r(se, ap).
4 Add triplet (sy, a;, s¢+1) to FIFO replay pool R.
5 Compute intrinsic reward Dk [¢(6; ¢;l+1) [1g(8; dn+1)]

through approximation VT H~!'V, following Eq. (4.26), or
by optimizing Eq. (4.21) to obtain ¢/ _,.

6 Divide Dki[q(6; ¢,’1+1) [l g(8; ¢n+1)] by median of previous
KL divergences.
7 Construct

r' (8¢, ar, se+1) < r(sp,a) +nDxLlq(0; ¢!,) 1g(6; dni1)],
following Eq. (4.11).

8 end

9 | Minimize Dxi[q(0; 1) | P(0)] = Eo~g (-0, [log p(DI6)]
following Eq. (4.10), with O sampled randomly from R,
leading to updated posterior g(6; ¢y+1)-

10 Use rewards {r’(s;, a;, s;+1)} to update policy r, using any
standard RL method.

11 end

can be computed through the following minimization

t(q(0;), s¢)
¢’ = arg min [Dxr[q(0;) 1q(0; ¢1-1)]1 —Eo~q(-¢) [log p(s:1ér a5 6)]]
txL(q(0; ¢))

(4.21)
where we replace the expectation over 8 with samples 8 ~ g(-; ¢). Because
we only update the model periodically based on samples drawn from the
replay pool, this optimization can be performed in parallel for each s;,
keeping ¢,_; fixed. Once ¢’ has been obtained, we can use it to compute
the intrinsic reward.

To optimize Eq. (4.21) efficiently, we only take a single second-order
step. This way, the gradient is rescaled according to the curvature of the KL,
divergence at the origin. As such, we compute Dk [q(6; ¢+ AAP) || q(6;)],

98 CHAPTER 4

with the update step A¢ defined as
Ap = H™ (O)V 4l (q(0; $), 50), (4.22)

in which H(¢) is the Hessian of €(g(0; ¢), s;). Since we assume that the
variational approximation is a fully factorized Gaussian, the KL divergence
from posterior to prior has a particularly simple form:

Dx1lq(6;9)11q(0;¢")] =

O] 2 ’ 2
1 o , (u — pe) 1O
Z<(;) +210g0‘i—210ga'i+o—£2)

i=1 i

2

Because this KL divergence is approximately quadratic in its parameters
and the log-likelihood term can be seen as locally linear compared to this
highly curved KL term, we approximate H by only calculating it for the
term KL term k1, (q(6; ¢)). This can be computed very efficiently in case
of a fully factorized Gaussian distribution, as this approximation becomes
a diagonal matrix. Looking at Eq. (4.23), we can calculate the following
Hessian at the origin. The ¢ and p! entries are defined as
8%tk 1

= 4.24
ou? log?(1+eri) (4.24)

9t 2pi
KL __2¢ ! , (4.25)
9p? (1+ef)2log?(1 + eri)

while all other entries are zero. Furthermore, it is also possible to ap-
proximate the KL divergence through a second-order Taylor expansion as
%A(bHAgb = % (H_IV)T H (H‘IV), since both the value and gradient of
the KL divergence are zero at the origin. This gives us

DkLlg(6; ¢ + AAP) 1(0; §)] = 57V TH ™! (Lki) VL. (4.26)

Note that H~!(fxy) is diagonal, so this expression can be computed effi-
ciently.

Instead of using the KL divergence Dk [q(6; ¢:+1) || g(8; ¢;)] directly
as an intrinsic reward in Eq. (4.11), we normalize it by division through

Recall that the standard deviation is parametrized as o= = log(1 + e”).

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 99

the average of the median? KL divergences taken over a fixed number
of previous trajectories. Rather than focusing on its absolute value, we
emphasize relative difference in KL divergence between samples. This
accomplishes the same effect since the variance of KL divergence converges
to zero, once the model is fully learned.

4.3 Experiments

In this section, we investigate (i) whether VIME can succeed in domains
that have extremely sparse rewards, (ii) whether VIME improves learning
when the reward is shaped to guide the agent towards its goal, and (iii) how
71, as used in in Eq. (4.7), trades off exploration and exploitation behavior.

All experiments make use of the rllab [Duan et al., 2016] benchmark
code base and the complementary continuous control tasks suite. The
following tasks are part of the experimental setup: CartPole (S C R*,
A c RY), CartPoleSwingup (S € R*, A R'), DoublePendulum (S € R,
A c RY), MountainCar (S € R, A ¢ R!), locomotion tasks HalfCheetah
(S € R®, A C R®), Walker2D (S C R2, A C R®), and the hierarchical
task SwimmerGather (S C R, A C R?). Performance is measured
through the average return (not including the intrinsic rewards) over the
trajectories generated (y-axis) at each iteration (x-axis). More specifically,
the darker-colored lines in each plot represent the median performance over
a fixed set of 10 random seeds while the shaded areas show the interquartile
range at each iteration. Moreover, the number in each legend shows this
performance measure, averaged over all iterations. The exact experimental
setup is described in Appendix 4.B.

Domains with sparse rewards are difficult to solve through naive ex-
ploration behavior because, before the agent obtains any reward, it lacks a
feedback signal on how to improve its policy. This allows us to test whether
an exploration strategy is truly capable of systematic exploration, rather
than improving existing RL algorithms by adding more hyperparameters.
Therefore, VIME is compared with heuristic exploration strategies on the
following tasks with sparse rewards. A reward of +1 is given when the
car escapes the valley on the right side in MountainCar; when the pole is
pointed upwards in CartPoleSwingup; and when the cheetah moves forward

2The median is used as it is more robust to KL divergence outliers.

100

CHAPTER 4

1.0
0.8
0.6
== TRPO (0.0)
== TRPO+VIME (1.0)
0.4 == TRPO+L2 (1.0)
0.2
0.0 :
0 20 20 80 100 120
200
= TRPO (0.0)

we= TRPO+VIME (103.7)
== TRPO+L2 (0.0)

150 frm e b L TG YL
100
50 /
0 ¥/
200 200 600 800 1000
60
== TRPO (0.0)
=== TRPO+VIME (103.7) : ‘
50H = a TRPO+L2 (0.0)
40
30
20
10
o PTRPITY N N
200 200 600 800 1000

Figure 4.1: TRPO+VIME versus TRPO on tasks with sparse rewards

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 101

YV VT vy
il
/ 400
{
| 300]
v
1 200 2 ¥ At
‘ e
g
o 22
#
-100 l‘
, w== TRPO (4926.8) -200 m== TRPO (158.9) g
/ TRPO+VIME (4925.8) l TRPO+VIME (204.4)
0 50 100 150 200 =3 100 200 300 400 500 600 700 800
(a) CartPole (b) CartPole Swingup
~200 -50
=100
400 A /
150 I
-600 200 ’
—800 -250 I
/ =300
1000 I
/'/ -350
-1200 —
— TRPO (-488.5) -400 [==TRPO (-67.1) -
TRPO+VIME (-358.8) ‘ TRPO+VIME (-61.8)

-450
200 200 600 800 1000 0 20 20 60 80 100 120

-1400

(c) DoublePendulum (d) MountainCar

Figure 4.2: Performance of TRPO with (+VIME) and without exploration for dif-
ferent continuous control tasks

over five units in HalfCheetah. We compare VIME with the following
baselines: only using Gaussian control noise [Duan et al., 2016] and using
the £2 BNN prediction error as an intrinsic reward, a continuous extension
of [Stadie et al., 2015]. TRPO [Schulman et al., 2015] is used as the RL
algorithm, as it performs very well compared to other methods [Duan et al.,
2016]. Figure 4.1 shows the performance results. We notice that using a
naive exploration performs very poorly, as it is almost never able to reach
the goal in any of the tasks. Similarly, using £> errors does not perform
well. In contrast, VIME performs much better, achieving the goal in most
cases. This experiment demonstrates that curiosity drives the agent to ex-
plore, even in the absence of any initial reward, where naive exploration
completely breaks down.

To further strengthen this point, we have evaluated VIME on the highly
difficult hierarchical task SwimmerGather in Figure 4.5 whose reward signal
is naturally sparse. In this task, a two-link robot needs to reach “apples”
while avoiding “bombs” that are perceived through a laser scanner. However,

102 CHAPTER 4

5000 200
e
i 150
4000 /I Ry T PN
I ’ 100 g e
/‘ W
50
[0 J’
/ =50
-100 /
'4
1000 - -150
== ERWR (4941.1) 200 = ERWR (83.6) .
e ERWR+VIME (4944.5) ‘ ERWR+VIME (91.5)
0 0 100 150 200 20 200 400 600 800 1000
(a) CartPole (b) CartPole Swingup

-200

-400

-600

-800

~1000

e ERWR (-412.3)
-250 == ERWR+VIME (-73.1) |

~1200

1400 = ERWR (-1035.3) —400}
== ERWR-+VIME (-694.6)
- —— -4
1600 200 700 600 500 000 20 50 100 150 200

(c) DoublePendulum (d) MountainCar

Figure 4.3: Performance of ERWR with (+VIME) and without exploration for dif-
ferent continuous control tasks

before it can make any forward progress, it has to learn complex locomotion
primitives in the absence of any reward. None of the RL methods tested
previously in [Duan et al., 2016] were able to make progress with naive
exploration. Remarkably, VIME leads the agent to acquire coherent motion
primitives without any reward guidance, achieving promising results on this
challenging task.

Next, we investigate whether VIME is widely applicable by (i) testing
it on environments where the reward is well shaped, and (ii) pairing it with
different RL methods. In addition to TRPO, we choose to equip REIN-
FORCE [Williams, 1992] and ERWR [Kober and Peters, 2009] with VIME
because these two algorithms usually suffer from premature convergence
to suboptimal policies [Duan et al., 2016, Peters and Schaal, 2007], which
can potentially be alleviated by better exploration. A description of these
algorithms can be found in Appendix 4.B.2.

Their performance is shown in Figures 4.2, 4.3, and 4.4 on several
well-established continuous control tasks. Furthermore, Figure 4.5 shows

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 103

5000

100

LAY
),‘p.u o
4000 £y 50
Py Y faied
| 0 IRy T \
Y
3000) i ey
"
/ N
2000
/ -100 Jl
1000
A -150
w== REINFORCE (3317.6) = REINFORCE (-5.8)
77/,/ REINFORCE+VIME (3343.4) REINFORCE +VIME (3.4)
0 200 400 600 800 1000 —200 200 400 600 800 1000
(a) CartPole (b) CartPoleSwingup
-50
200 s r————— s
—
=100
400 l
-150
00 [oer e onene S S }
=200
-800 v | /)
=250 I
-1000 The 300 [
g i I
-1200 f’" 350 |
~1400 e REINFORCE (-1127.3) -400 == REINFORCE (-186.1) -
REINFORCE+VIME (-756.2) l REINFORCE+VIME (-84.7)
~1600 —— —450
200 400 600 800 1000 100 200 300 400 500 600 700 800
(c) DoublePendulum (d) MountainCar

Figure 4.4: Performance of REINFORCE with (+VIME) and without exploration
for different continuous control tasks

the same comparison for the Walker2D locomotion task. In the majority of
cases, VIME leads to a significant performance gain over heuristic explo-
ration. Our exploration method allows the RL algorithms to converge faster,
and notably helps REINFORCE and ERWR avoid converging to a locally
optimal solution on DoublePendulum and MountainCar. We note that in
environments such as CartPole, a better exploration strategy is redundant
as following the policy gradient direction leads to the globally optimal so-
lution. Additionally, we tested adding Gaussian noise to the rewards as a
baseline, which did not improve performance.

To give an intuitive understanding of VIME’s exploration behavior,
the distribution of visited states for both naive exploration and VIME after
convergence is investigated. Figure 4.6 (right) shows that using Gaussian
control noise exhibits random walk behavior: the state visitation plot is more
condensed and ball-shaped around the center. In comparison, VIME leads
to a more diffused visitation pattern, exploring the states more efficiently,
and hence reaching the goal more quickly.

104 CHAPTER 4

2000 L
== TRPO (777.1)

== TRPO (0.0)
TRPO+VIME (1019.0) 0.35 TRPO+VIME (0.2)

1 0.
0.25
an 0.
Mv"‘— oy et W 0.15
il :
0.05
/ 0.
UK‘ 5K 10K 15K 20K 25K 500 1000 1500 2000
(a) Walker2D (b) SwimmerGather

Figure 4.5: Performance of TRPO with and without VIME on the high-dimensional
Walker2D locomotion task and the hierarchical task SwimmerGather

3 = TRPO
B S L L) “oOBRWR |
= = REINFORCE

10 10° 107 10" 10° 10'

Figure 4.6: VIME: performance over the first few iterations for TRPO, REIN-
FORCE, and ERWR in function of 7 on MountainCar (left); Comparison
of TRPO+VIME (red) and TRPO (blue) on MountainCar: visited states
until convergence (right).

Finally, we investigate how 7, as used in in Eq. (4.7), trades off explo-
ration and exploitation behavior. On the one hand, higher n values should
lead to a higher curiosity drive, causing more exploration. On the other
hand, very low 7 values should reduce VIME to traditional Gaussian con-
trol noise. Figure 4.6 (left) shows the performance on MountainCar for
different i values. Setting 7 too high clearly results in prioritizing explo-
ration over getting additional external reward. Too low of an n value reduces
the method to the baseline algorithm, as the intrinsic reward contribution
to the total reward r’ becomes negligible. Most importantly, this figure
highlights that there is a wide n range for which the task is best solved,
across different algorithms.

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 105

4.4 Related Work

A body of theoretically oriented work demonstrates exploration strategies
that are able to learn online in a previously unknown MDP and incur a
polynomial amount of regret—as a result, these algorithms find a near-
optimal policy in a polynomial amount of time. Some of these algorithms
are based on the principle of optimism under uncertainty: E* [Kearns and
Singh, 2002], R-Max [Brafman and Tennenholtz, 2003], UCRL [Jaksch
et al.,, 2010]. An alternative approach is Bayesian reinforcement learn-
ing methods, which maintain a distribution over possible MDPs [Kolter
and Ng, 2009, Guez et al., 2014, Sun et al., 2011, Ghavamzadeh et al.,
2015]. The optimism-based exploration strategies have been extended to
continuous state spaces, for example, [Pazis and Parr, 2013, Osband et al.,
2016b], however these methods do not accommodate nonlinear function
approximators (in contrast to VIME).

Practical RL algorithms often rely on simple exploration heuristics,
such as e-greedy and Boltzmann exploration [Sutton, 1998]. However,
these heuristics exhibit random walk exploratory behavior, which can lead
to exponential regret even in case of small MDPs [Osband et al., 2016b].

Our proposed method of utilizing information gain can be traced back to
[Storck et al., 1995], and has been further explored in [Sun et al., 2011, Still
and Precup, 2012, Little and Sommer, 2013]. Other metrics for curiosity
have also been proposed, including prediction error [Thrun, 1992, Stadie
etal., 2015], prediction error improvement [Lopes et al., 2012], and leverage
[Subramanian et al., 2016]. All these methods have only been tested on small
problems, and are not directly applicable to high dimensional continuous
control tasks. We refer the reader to [Schmidhuber, 2010, Oudeyer and
Kaplan, 2007] for an extensive review on curiosity and intrinsic rewards.

Recently, there have been various exploration strategies proposed in
the context of deep RL. [Stadie et al., 2015] proposes to use the £ prediction
error as the intrinsic reward. [Oh et al., 2015] performs approximate visita-
tion counting in a learned state embedding using Gaussian kernels. [Osband
et al., 2016a] proposes a form of Thompson sampling, training multiple
value functions using bootstrapping. Although these approaches can scale
up to high-dimensional state spaces, they generally assume discrete action
spaces. Finally, [Mohamed and Rezende, 2015] proposes a variational
method for information maximization in the context of optimizing empow-

106 CHAPTER 4

erment, which, as noted by [Salge et al., 2014], does not explicitly favor
exploration.

4.5 Conclusions

We have proposed Variational Information Maximizing Exploration
(VIME), a curiosity-driven exploration strategy for continuous control tasks.
Variational inference is used to approximate the posterior distribution of a
Bayesian neural network that represents the environment dynamics. Using
information gain in this learned dynamics model as intrinsic rewards allows
the agent to optimize for both external reward and intrinsic surprise simul-
taneously. Empirical results show that VIME performs significantly better
than heuristic exploration methods across various continuous control tasks
and algorithms. As future work, we would like to investigate measuring
surprise in the value function and using the learned dynamics model for
planning.

VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 107

4.A Bayesian Neural Networks (BNNs)

We demonstrate the behavior of a BNN [Blundell et al., 2015] when trained
on simple regression data. Figure 4.7 shows a snapshot of the behavior of
the BNN during training. In this figure, the red dots represent the regression
training data, which has a 1-dim input x and a 1-dim output. The input to the
BNN is constructed as x = [x, x2 x3, x4]. The green dots represent BNN
predictions, each for a differently sampled 6 value, according to g(-; @).
The color lines represent the output for different, but fixed, 6 samples. The
shaded areas represent the sampled output mean plus-minus one and two
standard deviations.

Figure 4.7: BNN output on a 1-dim regression task. Shaded areas: sampled output
mean + one/two standard deviations. Red dots: targets; green dots:
prediction samples. Colored lines: neural network functions for different
6 ~ q(-; ¢) samples.

The figure shows that the BNN output is very certain in the training
data range, while having high uncertainty otherwise. If we introduce data
outside of this training range, or data that is significantly different from
the training data, it will have a high impact on the parameter distribution
q(0; ¢). This is tested in Figure 4.8: previously unseen data is introduced
right before training iteration 10,000. The KL divergence from posterior to
prior (y-axis) is set out in function of the training iteration number (x-axis).
We see a sharp spike in the KL divergence curve, which represents the
BNN’s surprise about this novel data. This spike diminishes over time as
the BNN learns to fit this new data, becoming less surprised about it.

108 CHAPTER 4

3.0e-03

2.5e-03

2.0e-03 |

1.5e-03|

1.0e-03 |

5.0e-04 |

VI Y

L L
0.0e+00 5.0e+03 1.0e+04 1.5e+04 2.0e+04

Figure 4.8: Just before iteration 10,000 we introduce data outside the training data
range to the BNN. This results in a KL divergence spike, showing the
model’s surprise.

4.B Experimental Setup

In case of the classic tasks CartPole, CartPoleSwingup, DoublePendulum,
and MountainCar, as well as in the case of the hierarchical task Swim-
merGather, the dynamics BNN has one hidden layer of 32 units. For the
locomotion tasks Walker2D and HalfCheetah, the dynamics BNN has two
hidden layers of 64 units each. All hidden layers have rectified linear unit
(ReLU) nonlinearities, while no nonlinearity is applied to the output layer.
The number of samples drawn to approximate the variational lower bound
expectation term is fixed to 10. The batch size for the policy gradient meth-
ods is set to 5,000 samples, except for the SwimmerGather task, where it is
set to 50,000. The replay pool has a fixed size of 100,000 samples, with a
minimum size of 500 samples for all but the SwimmerGather task. In this
latter case, the replay pool has a size of 1,000,000 samples. The dynamics
BNN is updated each epoch, using 500 iterations of Adam [Kingma and Ba,
2015], with a batch size of 10, except for the SwimmerGather task, in which
5,000 iterations are used. The Adam learning rate is set to 0.0001 while the
batches are drawn randomly with replacement from the replay pool. In the
second-order KL divergence update step, A is set to 0.01. The BNN prior
weight distribution is a fully factorized Gaussian with ¢ sampled from a
different Gaussian distribution A (0, I), while p is fixed to log(1 +).
The classic tasks make use of a neural network policy with one layer

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 109

of 32 tanh units, while the locomotion tasks make use of a two-layer neural
network of 64 and 32 tanh units. The outputs are modeled by a fully
factorized Gaussian distribution N (g, o2), in which u is modeled as the
network output, while o is a parameter. The classic tasks make use of
a neural network baseline with one layer of 32 ReLU units, while the
locomotion tasks make use linear baseline function.

The tasks have the following state and action dimensions: CartPole,
S C R*, A c R!; CartPoleSwingup, S € R*, A < R!; DoublePendulum,
S C R, A C R!; MountainCar S € R3, A C R!; locomotion tasks
HalfCheetah, S € R?°, A C R®; and Walker2D, S € R*°, A C R®; and
hierarchical task SwimmerGather, S € R33, A € R2. The time horizon is

set to 7' = 500 for all tasks.

4.B.1 Environments

This section describes the environments used in the experiments in detail;
taken from [Duan et al., 2016]. They are shown visually in Figure 4.9.

CartPole This classic task in dynamics and control theory has been
originally described by [Stephenson, 1908], and first studied in a learning
context by [Donaldson, 1960], [Widrow, 1964], and [Michie and Chambers,
1968]. An inverted pendulum is mounted on a pivot point on a cart. The
cart itself is restricted to linear movement, achieved by applying horizontal
forces. Due to the system’s inherent instability, continuous cart movement
is needed to keep the pendulum upright. The observation consists of the
cart position x, pole angle 6, the cart velocity x, and the pole velocity 6.
The 1-dim action consists of the horizontal force applied to the cart body.
The reward function is given by r(s,a) = 10 — (1 — cos(6)) — 107||al|3.
The episode terminates when |x| > 2.4 or |6] > 0.2.

CartPoleSwingup A slightly more complex version of the previous
task has been proposed by [Kimura and Kobayashi, 1999] in which the
system should not only be able to balance the pole, but first succeed in
swinging it up into an upright position. This tasks extends the working
range of the inverted pendulum to 360°. This is a nonlinear extension of
the previous task [Doya, 2000]. The same observations and actions as in
CartPole are used. The reward function is given by r(s,a) = cos(d). The
episode terminates when |x| > 3, with a penalty of —100.

110 CHAPTER 4

Figure 4.9: Illustrations of the rllab tasks used in the experiments; from left to
right: CartPole, MountainCar, Walker2D, HalfCheetah, Swimmer-
Gather, DoublePendulum

MountainCar We implement a continuous version of the classic task
described by [Moore, 1990]. A car has to escape a valley by repetitive
application of tangential forces. Because the maximal tangential force is
limited, the car has to alternately drive up along the two slopes of the
valley in order to build up enough inertia to overcome gravity. This brings
a challenge of exploration, since before first reaching the goal among all
trials, a locally optimal solution exists, which is to drive to the point closest
to the target and stay there for the rest of the episode. The observation is
given by the horizontal position x and the horizontal velocity x of the car.
The reward is given by 7(s,a) = —1 + Xpejght, With Xpejgn the car’s vertical
offset. The episode terminates when the car reaches a target height of 0.6.
Hence the goal is to reach the target as soon as possible.

DoublePendulum This task extends the CartPole task by replacing the
single-link pole by a two-link rigid structure. Similar to this former task,
the goal is to stabilize the two-link pole near the upright position. This task
is more difficult than single-pole balancing, since the system is even more
unstable and requires the controller to actively maintain balance [Furuta
et al., 1978]. The observation includes the cart position x, joint angles (6,
and 6,), and joint velocities (6, and 6,). We encode each joint angle as its
sine and cosine values. The action is the same as in cart-pole tasks. The
reward is given by r (s, a) = IO—O.le[Zip = (Vip -2)2-1073 -9'% -5.1073 9%
where xp, yip are the coordinates of the tip of the pole. The episode is
terminated when y;, < 1.

The following two tasks are more challenging than the basic tasks due
to high degrees of freedom. In addition, a great amount of exploration
is needed to learn to move forward without getting stuck at local optima.
Since we put penalty on excessive controls as well as falling over, during the
initial stage of learning, when the robot is not yet able to move forward for

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 111

a sufficient distance without falling, apparent local optima exist including
staying at the origin or diving forward cautiously.

Walker2D [Levine and Koltun, 2013, Schulman et al., 2015] The
walker is a planar biped robot consisting of 7 links, corresponding to two
legs and a torso, along with 6 actuated joints. The 21-dim observation
includes joint angles, joint velocities, and the coordinates of center of mass.
The reward is given by (s, a) = v, —0.005- ||a||§. The episode is terminated
when Zpody < 0.8, Zpody > 2.0, or when |6,] > 1.0.

HalfCheetah [Wawrzyniski, 2007, Heess et al., 2015] The half-cheetah
is a planar biped robot with 9 rigid links, including two legs and a torso,
along with 6 actuated joints. The 20-dim observation includes joint angles,
joint velocities, and the coordinates of the center of mass. The reward is
given by r(s,a) = vy — 0.05 - ||a||§. No termination condition is applied.

Many real-world tasks exhibit hierarchical structure, where higher level
decisions can reuse lower level skills. For instance, robots can reuse loco-
motion skills when exploring the environment [Dietterich, 2000]. The
following task has hierarchical structure.

SwimmerGather For this task, the agent needs to learn to control the
swimmer robot to collect food and avoid bombs in a finite region. The
agent receives range sensor readings about nearby food and bomb units. It
is given a positive reward when it reaches a food unit, or a negative reward
when it reaches a bomb.

Sparse reward modifications In MountainCar, the agent receives a
reward of +1 when the goal state is reached, namely escaping the valley
from the right side. In CartPoleSwingup, the agent receives a reward of
+1 when cos(B) > 0.8, with S the pole angle. Therefore, the agent has to
figure out how to swing up the pole in the absence of any initial external
rewards. In HalfCheetah, the agent receives a reward of +1 when xpoqy > 5.
As such, it has to figure out how to move forward without any initial external
reward.

4.B.2 Reinforcement Learning Algorithms

This section describes the different reinforcement learning algorithms used
in the experiments; taken from [Duan et al., 2016].

112 CHAPTER 4

REINFORCE This algorithm [Williams, 1992] estimates the gradient of
expected return V, u(rm,) using the likelihood ratio trick:

N T

— 1 N
Vau(ma) = 5= ZZV(, log q (alls}) (RE - b1). (4.27)
i=1 1=0
where R = 3)1,_ y""~'ri, and ! is a baseline that only depends on the state

sf to reduce variance. Hereafter, an ascent step is taken in the direction of
the estimated gradient. This process continues until @ converges.

Episodic reward-weighted regression (ERWR) This algorithm [Kober
and Peters, 2009] formulates the policy optimization as an Expectation-
Maximization problem to avoid the need to manually choose learning rate,
and the method is guaranteed to converge to a locally optimal solution. At
each iteration, this algorithm optimizes a lower bound of the log-expected
return: @ = arg maxy L(a’), where

N T
_ i) i i i
L) =57 ; ; log 7a(aflst) p(R: - B1). (4.28)
Here, p : R = R is a function that transforms raw returns to nonnegative
values. Following [Deisenroth et al., 2013], we choose p to be p(R) =
R — Rpin, where Ry, is the minimum return among all trajectories collected

in the current iteration.

Trust Region Policy Optimization (TRPO) This algorithm [Schulman
etal., 2015] allows more precise control on the expected policy improvement
than using natural policy gradients through the introduction of a surrogate
loss. At each iteration, we solve the following constrained optimization
problem (replacing expectations with samples):

. ma(als)
maximize, Egp, a4, mAak(&G)]
73
s.t. Espo, [DKL(Tay Cl9) I (-19))] < 0kL, (4.29)

where p, = pr, is the discounted state-visitation frequencies induced by
T, Aa, (s, a) is estimated by the empirical return minus the baseline, and
OkL is a step size parameter which controls how much the policy is allowed
to change per iteration.

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 113

References

[Auer, 2003] Auer, P. (2003). Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning Research, 3:397—
422.

[Blundell et al., 2015] Blundell, C., Cornebise, J., Kavukcuoglu, K., and
Wierstra, D. (2015). Weight uncertainty in neural networks. In Proceed-
ings of the 32nd International Conference on Machine Learning (ICML),
pages 1613-1622.

[Brafman and Tennenholtz, 2003] Brafman, R. I. and Tennenholtz, M.
(2003). R-Max - a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3:213—
231.

[Deisenroth et al., 2013] Deisenroth, M. P., Neumann, G., and Peters, J.
(2013). A survey on policy search for robotics, foundations and trends
in robotics. Foundations and Trends in Robotics, 2(1-2):1-142.

[Dietterich, 2000] Dietterich, T. G. (2000). Hierarchical reinforcement
learning with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research, 13:227-303.

[Donaldson, 1960] Donaldson, P. E. K. (1960). Error decorrelation: a
technique for matching a class of functions. In Proceedings of the 3th
International Conference on Medical Electronics, pages 173-178.

[Doya, 2000] Doya, K. (2000). Reinforcement learning in continuous time
and space. Neural Computation, 12(1):219-245.

[Duan et al., 2016] Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. (2016). Benchmarking deep reinforcement learning for con-
tinous control. In Proceedings of the 33rd International Conference on
Machine Learning (ICML), pages 1329-1338.

[Furuta et al., 1978] Furuta, K., Okutani, T., and Sone, H. (1978). Com-
puter control of a double inverted pendulum. Computers & Electrical
Engineering, 5(1):67-84.

114 CHAPTER 4

[Ghavamzadeh et al., 2015] Ghavamzadeh, M., Mannor, S., Pineau, J.,
and Tamar, A. (2015). Bayesian reinforcement learning: A survey.
Foundations and Trends in Machine Learning, 8(5-6):359—-483.

[Graves, 2011] Graves, A. (2011). Practical variational inference for neural
networks. In Advances in Neural Information Processing Systems (NIPS),
pages 2348-2356.

[Guez et al., 2014] Guez, A., Heess, N., Silver, D., and Dayan, P. (2014).
Bayes-adaptive simulation-based search with value function approxima-
tion. In Advances in Neural Information Processing Systems 27 (NIPS),
pages 451-459.

[Heess et al., 2015] Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T.,
and Tassa, T. (2015). Learning continuous control policies by stochastic
value gradients. In Advances in Neural Information Processing Systems
28 (NIPS), pages 2926-2934.

[Hester and Stone, 2015] Hester, T. and Stone, P. (2015). Intrinsically
motivated model learning for developing curious robots. Artificial Intel-
ligence.

[Hinton and Van Camp, 1993] Hinton, G. E. and Van Camp, D. (1993).
Keeping the neural networks simple by minimizing the description length
of the weights. In COLT, pages 5-13.

[Itti and Baldi, 2005] Itti, L. and Baldi, P. F. (2005). Bayesian surprise
attracts human attention. In Advances in Neural Information Processing
Systems (NIPS), pages 547-554.

[Jaksch et al., 2010] Jaksch, T., Ortner, R., and Auer, P. (2010). Near-
optimal regret bounds for reinforcement learning. Journal of Machine
Learning Research, 11:1563—-1600.

[Kakade et al., 2003] Kakade, S. M., Kearns, M. J., and Langford, J.
(2003). Exploration in Metric State Spaces. Proceedings of the 20th
International Conference on Machine Learning (ICML), pages 306-312.

[Kearns and Singh, 2002] Kearns, M. and Singh, S. (2002). Near-
optimal reinforcement learning in polynomial time. Machine Learning,
49(2):209-232.

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 115

[Kimura and Kobayashi, 1999] Kimura, H. and Kobayashi, S. (1999).
Stochastic real-valued reinforcement learning to solve a nonlinear con-
trol problem. In IEEFE International Conference on Systems, Man, and
Cybernetics (SMC), pages 510-515.

[Kingma and Ba, 2015] Kingma, D. and Ba, J. (2015). Adam: A method
for stochastic optimization. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

[Kingma et al., 2015] Kingma, D. P., Salimans, T., and Welling, M.
(2015). Variational dropout and the local reparameterization trick. In
Advances in Neural Information Processing Systems (NIPS), pages 2575—
2583.

[Kober and Peters, 2009] Kober, J. and Peters, J. R. (2009). Policy search
for motor primitives in robotics. In Advances in Neural Information
Processing Systems 22 (NIPS), pages 849-856.

[Kolter and Ng, 2009] Kolter, J. Z. and Ng, A. Y. (2009). Near-Bayesian
exploration in polynomial time. In Proceedings of the 26th International
Conference on Machine Learning (ICML), pages 513-520.

[Levine and Koltun, 2013] Levine, S. and Koltun, V. (2013). Guided pol-
icy search. In Proceedings of the 30th International Conference on
Machine Learning (ICML), pages 1-9.

[Little and Sommer, 2013] Little, D. Y. and Sommer, F. T. (2013). Learn-
ing and exploration in action-perception loops. Frontiers in Neural Cir-
cuits, 7.

[Lopes et al., 2012] Lopes, M., Lang, T., Toussaint, M., and Oudeyer, P.-Y.
(2012). Exploration in model-based reinforcement learning by empiri-
cally estimating learning progress. In Advances in Neural Information
Processing Systems 25 (NIPS), pages 206-214.

[Michie and Chambers, 1968] Michie, D. and Chambers, R. A. (1968).
BOXES: An experiment in adaptive control. Machine Intelligence,
2:137-152.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,

116 CHAPTER 4

A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533.

[Mohamed and Rezende, 2015] Mohamed, S. and Rezende, D. J. (2015).
Variational information maximisation for intrinsically motivated rein-
forcement learning. In Advances in Neural Information Processing Sys-
tems 28 (NIPS), pages 2116-2124.

[Moore, 1990] Moore, A. (1990). Efficient memory-based learning for
robot control. Technical report, University of Cambridge, Computer
Laboratory.

[Ohetal., 2015] Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S.
(2015). Action-conditional video prediction using deep networks in
Atari games. In Advances in Neural Information Processing Systems 28

(NIPS), pages 2845-2853.

[Osband et al., 2016a] Osband, 1., Blundell, C., Pritzel, A., and Van Roy,
B. (2016a). Deep exploration via bootstrapped DQN. In Advances in
Neural Information Processing Systems 29 (NIPS), pages 4026—4034.

[Osband et al., 2016b] Osband, I., Van Roy, B., and Wen, Z. (2016b). Gen-
eralization and exploration via randomized value functions. In Proceed-
ings of the 33rd International Conference on Machine Learning (ICML),
pages 2377-2386.

[Oudeyer and Kaplan, 2007] Oudeyer, P.-Y. and Kaplan, F. (2007). Whatis
intrinsic motivation? A typology of computational approaches. Frontiers
in Neurorobotics, 1:6.

[Pazis and Parr, 2013] Pazis, J. and Parr, R. (2013). PAC optimal explo-
ration in continuous space Markov decision processes. In Proceedings
of the 27th AAAI Conference on Artificial Intelligence (AAAI).

[Peters and Schaal, 2007] Peters, J. and Schaal, S. (2007). Reinforcement
learning by reward-weighted regression for operational space control. In
Proceedings of the 24th International Conference on Machine Learning
(ICML), pages 745-750.

[Salge et al., 2014] Salge, C., Glackin, C., and Polani, D. (2014).
Empowerment—An Introduction, pages 67—114.

'VARIATIONAL INFORMATION MAXIMIZING EXPLORATION 117

[Schmidhuber, 1991] Schmidhuber, J. (1991). Curious model-building
control systems. In Proceedings of the International Joint Conference
on Neural Networks (IJCNN), pages 1458—1463.

[Schmidhuber, 2007] Schmidhuber, J. (2007). Simple algorithmic prin-
ciples of discovery, subjective beauty, selective attention, curiosity &
creativity. In Proceedings of the 10th International Conference on Dis-
covery Science (DS), pages 26-38.

[Schmidhuber, 2010] Schmidhuber, J. (2010). Formal theory of creativ-
ity, fun, and intrinsic motivation (1990-2010). [EEE Transactions on
Autonomous Mental Development, 2(3):230-247.

[Schulman et al., 2015] Schulman, J., Levine, S., Moritz, P., Jordan, M. L.,
and Abbeel, P. (2015). Trust region policy optimization. In Proceedings
of the 32nd International Conference on Machine Learning (ICML),
pages 1889-1897.

[Stadie et al., 2015] Stadie, B. C., Levine, S., and Abbeel, P. (2015). In-
centivizing exploration in reinforcement learning with deep predictive
models. arXiv preprint arXiv:1507.00814.

[Stephenson, 1908] Stephenson, A. (1908). On induced stability. Philo-
sophical Magazine, 15(86):233-236.

[Still and Precup, 2012] Still, S. and Precup, D. (2012). An information-
theoretic approach to curiosity-driven reinforcement learning. Theory in
Biosciences, 131(3):139-148.

[Storck et al., 1995] Storck, J., Hochreiter, S., and Schmidhuber, J. (1995).
Reinforcement driven information acquisition in non-deterministic envi-
ronments. In Proceedings of the 5th International Conference on Artifi-
cial Neural Networks (ICANN), pages 159-164.

[Subramanian et al., 2016] Subramanian, K., Isbell Jr, C. L., and Thomaz,
A. L. (2016). Exploration from demonstration for interactive reinforce-
ment learning. In Proceedings of the International Conference on Au-
tonomous Agents & Multiagent Systems (AAMAS), pages 447-456.

118 CHAPTER 4

[Sunetal., 2011] Sun, Y., Gomez, F., and Schmidhuber, J. (2011). Plan-
ning to be surprised: Optimal Bayesian exploration in dynamic environ-
ments. In Proceedings of the 4th International Conference on Artificial
General Intelligence (AGI), pages 41-51.

[Sutton, 1998] Sutton, R. S. (1998). Introduction to reinforcement learn-
ing. The MIT Press.

[Thrun, 1992] Thrun, S. B. (1992). Efficient exploration in reinforcement
learning. Technical report.

[Wawrzynski, 2007] Wawrzyfiski, P. (2007). Learning to control a 6-
degree-of-freedom walking robot. In Proceedings of the International
Conference on Computer as a Tool (EUROCON), pages 698-705.

[Widrow, 1964] Widrow, B. (1964). Pattern recognition and adaptive con-
trol. IEEE Transactions on Industry Applications, 83(74):269-2717.

[Williams, 1992] Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement learning. Machine
Learning, 8(3-4):229-256.

Chapter 5

A Study of Count-Based
Exploration for Deep
Reinforcement Learning

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan
Duan, John Schulman, Filip De Turck & Pieter Abbeel, #Exploration:
A Study of Count-Based Exploration for Deep Reinforcement Learning,
Deep Reinforcement Learning Workshop at Neural Information Processing
Systems (NIPS), 2016

UC Berkeley, OpenAl, Ghent University — imec
* %k

Count-based exploration algorithms are known to perform near-optimally
when used in conjunction with tabular reinforcement learning (RL) methods
for solving small discrete Markov decision processes (MDPs). It is generally
thought that count-based methods cannot be applied in high-dimensional
State spaces, since most states will only occur once. Recent deep RL explo-
ration strategies are able to deal with high-dimensional continuous state
spaces through complex heuristics, often relying on optimism in the face

120 CHAPTER 5

of uncertainty or intrinsic motivation. In this work, we describe a surpris-
ing finding: a simple generalization of the classic count-based approach
can reach near state-of-the-art performance on various high-dimensional
and/or continuous deep RL benchmarks. States are mapped to hash codes,
which allows to count their occurrences with a hash table. These counts
are then used as a reward bonus, according to the classic count-based
exploration theory. We find that simple hash functions can achieve surpris-
ingly good results on many challenging tasks. Furthermore, we show that
a domain-dependent learned hash code may further improve these results.
Detailed analysis reveals important aspects of a good hash function: i) Hav-
ing appropriate granularity, ii) Encoding information relevant to solving the
MDP. This exploration strategy achieves near state-of-the-art performance
on both continuous control tasks and Atari 2600 games, while providing a
simple yet powerful baseline for solving MDPs that require considerable
exploration.

5.1 Introduction

Reinforcement learning (RL) studies an agent acting in an initially unknown
environment, learning through trial and error to maximize rewards. It is
impossible for the agent to act near-optimally until it has sufficiently explored
the environment and identified all of the opportunities for high reward, in all
scenarios. A core challenge in RL is how to balance exploration—actively
seeking out novel states and actions that might yield high rewards and lead
to long-term gains; and exploitation—maximizing short-term rewards using
the agent’s current knowledge. While there are exploration techniques for
finite MDPs that enjoy theoretical guarantees, there are no fully satisfying
techniques for high-dimensional state spaces; therefore, developing more
general and robust exploration techniques is an active area of research.
Most of the recent state-of-the-art RL results have been obtained using
simple exploration strategies such as uniform sampling [Mnih et al., 2015]
and i.i.d./correlated Gaussian noise [Schulman et al., 2015, Lillicrap et al.,
2015]. Although these heuristics are sufficient in tasks with well-shaped re-
wards, the sample complexity can grow exponentially (with state space size)
in tasks with sparse rewards [Osband et al., 2016b]. Recently developed
exploration strategies for deep RL have led to significantly improved perfor-
mance on environments with sparse rewards. Bootstrapped DQN [Osband

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 121

etal., 2016a] led to faster learning in a range of Atari 2600 games by training
an ensemble of Q-functions. Intrinsic motivation methods using pseudo-
counts achieve state-of-the-art performance on Montezuma’s Revenge, an
extremely challenging Atari 2600 game [Bellemare et al., 2016]. Variational
Information Maximizing Exploration (VIME, [Houthooft et al., 2016]) en-
courages the agent to explore by acquiring information about environment
dynamics, and performs well on various robotic locomotion problems with
sparse rewards. However, we have not seen a very simple and fast method
that can work across different domains.

Some of the classic, theoretically-justified exploration methods are
based on counting state-action visitations, and turning this count into a
bonus reward. In the bandit setting, the well-known UCB algorithm of

[Lai and Robbins, 1985] chooses the action a, at time ¢ that maximizes

Flas)+ 2181\ here 7(ay) is the estimated reward, and n(a;) is the number
n(ar)

of times action a, was previously chosen. In the MDP setting, some of
the algorithms have similar structure, for example, Model Based Interval
Estimation—Exploration Bonus (MBIE-EB) of [Strehl and Littman, 2008]
counts state-action pairs with a table n(s, a) and adding a bonus reward of
nﬁ — (o encourage exploring less visited pairs. [Kolter and Ng,
2009] show that the inverse-square-root dependence is optimal. MBIE and
related algorithms assume that the augmented MDP is solved analytically
at each timestep, which is only practical for small finite state spaces.

the form

This chapter presents a simple approach for exploration, which ex-
tends classic counting-based methods to high-dimensional, continuous state
spaces. We discretize the state space with a hash function and apply a bonus
based on the state-visitation count. The hash function can be chosen to
appropriately balance generalization across states, and distinguishing be-
tween states. We select problems from rllab [Duan et al., 2016] and Atari
2600 [Bellemare et al., 2013] featuring sparse rewards, and demonstrate
near state-of-the-art performance on several games known to be hard for
naive exploration strategies. The main strength of the presented approach is
that it is fast, flexible and complementary to most existing RL algorithms.

In summary, this chapter proposes a generalization of classic count-
based exploration to high-dimensional spaces through hashing (Section 5.2);
demonstrates its effectiveness on challenging deep RL benchmark problems
and analyzes key components of well-designed hash functions (Section 5.3).

122 CHAPTER 5

5.2 Methodology

First the notation used throughout this chapter is described. Next, we
introduce count-based exploration through static hashing, after which count-
based exploration through learned hashing is set forth.

5.2.1 Notation

This chapter assumes a finite-horizon discounted Markov decision process
(MDP), defined by (S, A, P, r, po, . T), in which § is the state space, A
the action space, ¥ a transition probability distribution, r : S X A — R
a reward function, pg an initial state distribution, y € (0, 1] a discount
factor, and T the horizon. The goal of RL is to maximize the total expected
discounted reward E, o [ZLO v'r (s, a,)] over a policy 7, which outputs a
distribution over actions given a state.

5.2.2 Count-Based Exploration via Static Hashing

Our approach discretizes the state space with a hash function ¢ : S — Z.
An exploration bonus is added to the reward function, defined as

_B
Jn(9(s))

where 8 € R is the bonus coefficient. Initially the counts n(-) are set to
zero for the whole range of ¢. For every state s, encountered at time step
t, n(¢(s;)) is increased by one. The agent is trained with rewards (r + r*),
while performance is evaluated as the sum of rewards without bonuses.

Note that our approach is a departure from count-based exploration
methods such as MBIE-EB since we use a state-space count n(s) rather
than a state-action count n(s, a). State-action counts n(s, a) are investigated
in Appendix 5.D, but no significant performance gains over state counting
could be witnessed.

Clearly the performance of this method will strongly depend on the
choice of hash function ¢. One important choice we can make regards the
granularity of the discretization: we would like for “distant” states to be
be counted separately while “similar” states are merged. If desired, we can
incorporate prior knowledge into the choice of ¢, if there would be a set of
salient state features which are known to be relevant.

rf(s,a) = 5.1

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 123

Algorithm 5.1: Count-based exploration through static hashing

1 Define state preprocessor g : S — RP

2 (In case of SimHash) Initialize A € R**P with entries drawn i.i.d.
from the standard Gaussian distribution N (0, 1)

Initialize a hash table with values n(-) =0

for each iteration j do

Collect a set of state-action samples { (s, ap) }%:O with policy 7

Compute hash codes through any LSH method, e.g., for
SimHash, ¢(s,,) = sgn(Ag(sm))

7 Update the hash table counts Vm : 0 < m < M as

n($(sm)) — n($(sm)) + 1

A U A W

M
8 Update the policy m using rewards {r(sm, am) + %}

m=0

with any RL algorithm
9 end

Algorithm 5.1 summarizes our method. The main idea is to use
locality-sensitive hashing (LSH) to convert continuous, high-dimensional
data to discrete hash codes. LSH is a popular class of hash functions
for querying nearest neighbors based on certain similarity metrics [An-
doni and Indyk, 2006]. A computationally efficient type of LSH is
SimHash [Charikar, 2002], which measures similarity by angular distance.
SimHash retrieves a binary code of state s € S as

¢(s) = sgn(Ag(s)) € (-1, 1}F, (5.2)

where g : & — RP is an optional preprocessing function and A is a
k X D matrix with i.i.d. entries drawn from a standard Gaussian distribution
N (0,1). The value for k controls the granularity: higher values lead to
fewer collisions and are thus more likely to distinguish states.

5.2.3 Count-Based Exploration via Learned Hashing

When the MDP states have a complex structure, as is the case with image
observations, measuring their similarity directly in pixel space fails to pro-
vide the semantic similarity measure one would desire. Previous work in
computer vision [Lowe, 1999, Dalal and Triggs, 2005, Tola et al., 2010]

124 CHAPTER 5

Algorithm 5.2: Count-based exploration using learned hash codes

1 Define state preprocessor g : S — {0, 1} as the binary code
resulting from the autoencoder (AE)

2 Initialize A € R®¥*P with entries drawn i.i.d. from the standard
Gaussian distribution N (0, 1)

3 Initialize a hash table with values n(-) =0

4 for each iteration j do

5 Collect a set of state-action samples { (s, am)}l‘m’lzo with

policy &

6 Add the state samples {sm}fzo to a FIFO replay pool R

7 if j mod jypdare = O then

8 Update the AE loss function in Eq. (5.3) using samples

drawn from the replay pool {s, }f:’: | ~ R, for example

using stochastic gradient descent

9 end

10 Compute g(s,,) = [b(s;,)], the D-dim rounded hash code for

sm learned by the AE

1 Project g(s,,) to a lower dimension k via SimHash as

P(sm) = sgn(Ag(sm))

12 Update the hash table counts Vm : 0 < m < M as

n(¢(sm)) < n(Pp(sm)) + 1

13 Update the policy 7 using rewards

n(P(sm))

M

{V (Sms am) + L} with any RL algorithm
m=0

14 end

introduce manually designed feature representations of images that are suit-
able for semantic tasks including detection and classification. More recent
methods learn complex features directly from data by training convolu-
tional neural networks [Krizhevsky et al., 2012, Simonyan and Zisserman,
2014, He et al., 2015]. Considering these results, it may be difficult for
SimHash to cluster states appropriately using only raw pixels.

When the MDP states have a complex structure, as is the case with
image observations, measuring their similarity directly in pixel space fails
to provide the semantic similarity measure one would desire. Previous work
in computer vision [Lowe, 1999, Dalal and Triggs, 2005, Tola et al., 2010]
introduce manually designed feature representations of images that are suit-

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 125

\ . downsample : \ \
. ~
. dx
96X 5x5
96 x 24 x 24 1024 96 % 24 % 24

b() -
N 512 96 x5x5
96 x 11 x 11 96 x 10 x 10

2400
1x52%x52 1x52x52 64x52x%52

Figure 5.1: The autoencoder (AE) architecture; the solid block represents the dense
sigmoidal binary code layer, after which noise U(—a, a) is injected.

able for semantic tasks including detection and classification. More recent
methods learn complex features directly from data by training convolu-
tional neural networks [Krizhevsky et al., 2012, Simonyan and Zisserman,
2014, He et al., 2015]. Considering these results, it may be difficult for
a method such as SimHash to cluster states appropriately using only raw
pixels.

Therefore, rather than using SimHash, we propose to use an autoen-
coder (AE) to learn meaningful hash codes in one of its hidden layers as a
more advanced LSH method. This AE takes as input states s and contains
one special dense layer comprised of D sigmoid functions. By rounding
the sigmoid activations b(s) of this layer to their closest binary number
Lb(s)] € {0, 1}P, any state s can be binarized. This is illustrated in Fig-
ure 5.1 for a convolutional AE.

As such, the loss function over a set of collected states {s;} f\i | is defined
as

L(tsulyly) == Z [tog p(sa)

me [= bi(sa)? bi(s)?}], (53)

><|~

This objective function consists of a negative log-likelihood term and a
term that pressures the binary code layer to take on binary values, scaled
by 4 € Ry¢. The reasoning behind this latter term is that it might happen
that for particular states, a certain sigmoid unit is never used. Therefore,
its value might fluctuate around 1, causing the corresponding bit in binary

126 CHAPTER 5

code | b(s)] to flip over the agent lifetime. Adding this second loss term
ensures that an unused bit takes on an arbitrary binary value.

For Atari 2600 image inputs, since the pixel intensities are discrete
values in the range [0,255], we make use of a pixel-wise softmax output
layer [van den Oord et al., 2016] that shares weights between all pixels.
The architectural details are described in the Supplementary Material and
are depicted in Figure 5.1. Because the code dimension often needs to be
large in order to correctly reconstruct the input, we apply a downsampling
procedure to the resulting binary code | b(s)], which can be done through
random projection to a lower-dimensional space via SimHash as in Eq. (5.2).

On the one hand, it is important that the mapping from state to code
needs to remain relatively consistent over time, which is nontrivial as the
AE is constantly updated according to the latest data (Algorithm 5.2 line 8).
A solution is to downsample the binary code to a very low dimension, or
by slowing down the training process. On the other hand, the code has to
remain relatively unique for states that are both distinct and close together
on the image manifold. This is tackled both by the second term in Eq. (5.3)
and by the saturating behavior of the sigmoid units. States already well
represented by the AE tend to saturate the sigmoid activations, causing the
resulting loss gradients to be close to zero, making the code less prone to
change.

5.3 Experiments

Experiments were designed to investigate and answer the following research
questions:

1. Can count-based exploration through hashing improve performance
significantly across different domains? How does the proposed
method compare to the current state of the art in exploration for
deep RL?

2. What is the impact of learned or static state preprocessing on the
overall performance when image observations are used?

To answer question 1, we run the proposed method on deep RL benchmarks
(rllab and ALE) that feature sparse rewards, and compare it to other state-
of-the-art algorithms. Question 2 is answered by trying out different image

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 127

5 10 15 20 25 30 200 200 600 800 1000

— baseline
« VIME
4 200
0 = SimHash

-01

200 300 600 800 1000 200 400 600 800 1000

Figure 5.2: Mean average return of different algorithms on rllab tasks with sparse
rewards; the solid line represents the mean average return, while the
shaded area represents one standard deviation, over 5 seeds for the
baseline and SimHash.

preprocessors on Atari 2600 games. Trust Region Policy Optimization
(TRPO, [Schulman et al., 2015]; see also Appendix 4.B.2) is chosen as the
RL algorithm for all experiments, because it can handle both discrete and
continuous action spaces, it can conveniently ensure stable improvement
in the policy performance, and is relatively insensitive to hyperparameter
changes. The hyperparameters settings are reported in Appendix 5.A.

5.3.1 Continuous Control

The rllab benchmark [Duan et al., 2016] consists of various control tasks
to test deep RL algorithms. We selected several variants of the basic and
locomotion tasks that use sparse rewards, as shown previously in Figure 4.9,
and adopt the experimental setup as defined in [Houthooft et al., 2016]—a
description can be found in Appendix 4.B.1. These tasks are all highly
difficult to solve with naive exploration strategies, such as adding Gaussian
noise to the actions.

Figure 5.2 shows the results of TRPO (baseline), TRPO-SimHash, and

128 CHAPTER 5

VIME [Houthooft et al., 2016] on the classic tasks MountainCar and Cart-
PoleSwingup, the locomotion task HalfCheetah, and the hierarchical task
SwimmerGather. Using count-based exploration with hashing is capable
of reaching the goal in all environments (which corresponds to a nonzero
return), while baseline TRPO with Gaussian control noise fails completely.
Although TRPO-SimHash picks up the sparse reward on HalfCheetah, it
does not perform as well as VIME. In contrast, the performance of SimHash
is comparable with VIME on MountainCar, while it outperforms VIME on
SwimmerGather.

5.3.2 Arcade Learning Environment

The Arcade Learning Environment (ALE, [Bellemare et al., 2013]), which
consists of Atari 2600 video games, is an important benchmark for deep
RL due to its high-dimensional state space and wide variety of games. In
order to demonstrate the effectiveness of the proposed exploration strategy,
six games are selected featuring long horizons while requiring significant
exploration: Freeway, Frostbite, Gravitar, Montezuma’s Revenge, Solaris,
and Venture. The agent is trained for 500 iterations in all experiments, with
each iteration consisting of 0.1 M steps (the TRPO batch size, corresponds
to 0.4 M frames). Policies and value functions are neural networks with
identical architectures to [Mnih et al., 2016]. Although the policy and
baseline take into account the previous four frames, the counting algorithm
only looks at the latest frame.

BASS To compare with the autoencoder-based learned hash code, we
propose using Basic Abstraction of the ScreenShots (BASS, also called
Basic; see [Bellemare et al., 2013]) as a static preprocessing function g.
BASS is a hand-designed feature transformation for images in Atari 2600
games. BASS builds on the following observations specific to Atari: i) the
game screen has a low resolution, ii) most objects are large and monochrome,
and iii) winning depends mostly on knowing object locations and motions.
We designed an adapted version of BASS!, that divides the RGB screen into
square cells, computes the average intensity of each color channel inside
a cell, and assigns the resulting values to bins that uniformly partition the

I'The original BASS exploits the fact that at most 128 colors can appear on the screen. Our
adapted version does not make this assumption.

129

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING

“(sowexy W 001) sdas awn N Gz 1oy AJuo papiodar synsay
*9[qeredwod jou 2ouay ‘sdays owin
INOOS Y pauren sjudse ¢ doj uo paseq sem UOHEN[EAD J19Y) ‘g0 9109s 13q Pariodar [910T “[8 10 SIASUYZIA] S[YM

69¢ - 65PE - 0S1 6T Aunoo-opnasd
o stie Tt e . LOS ELe oLV
K sy 0 £8P 6orE - pee uy-dod NOQ
ket VN v psOT S09 coe e[LIOD |
7 R A D T T wor 00 >vompuSueng
086 80 o0 ar €891 | e NOQ-21anoq
Shp L9tF SL 8% pICS see USEHWIS-AV-Od L
919 0zl 85C #09 0SI€ b8z USEHWIS-SSVE-Od¥.L
€97 L68T 0 397 €89t 91g yseHwIS-[ox1d-Od YL
e 8z o ogy 698C ¢ol (uipseq) OdYL

2IMUSA SHE[OS BWNZIJUOIN IeJIABID) | JIQISOL] ABMISL]

*SPOYJoW INO SUOWE 153 9Y) I8 SIOQUUNU JI[RI] "S}NSAI 1S9q
Qeorpur srequnu odejpjog -sdojs awn A (G J0j Sururen Io)ye pIemal [ejo) a3eloAr ()09 LBV ('S 9[qeL

130 CHAPTER 5

10000

— AE
== baseline
800} | == bass

= SimHash

4000}

3000

2000

Figure 5.3: Atari 2600 games: the solid line is the mean average undiscounted return
per iteration, while the shaded areas represent the one standard deviation,
over 5 seeds for the baseline, TRPO-pixel-SimHash, and TRPO-BASS-
SimHash, while over 3 seeds for TRPO-AE-SimHash.

intensity range [0, 255]. Mathematically, let C be the cell size (width and
height), B the number of bins, (i, j) cell location, (x, y) pixel location, and
z the channel, then

feature(i, j, z) = [25% 2(xy)e celli,jy 12y, Z)J . (5.4

Afterwards, the resulting integer-valued feature tensor is converted to an
integer hash code (¢(s;) in Line 6 of Algorithm 5.1). A BASS feature
can be regarded as a miniature that efficiently encodes object locations, but
remains invariant to negligible object motions. It is easy to implement and

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 131

introduces little computation overhead. However, it is designed for generic
Atari game images and may not capture the structure of each specific game
very well.

We compare our results to double DQN [van Hasselt et al., 2016b],
dueling network [Wang et al., 2016], A3C+ [Bellemare et al., 2016], double
DQN with pseudo-counts [Bellemare et al., 2016], Gorila [Nair et al., 2015],
and DQN Pop-Art [van Hasselt et al., 2016a] on the “null op” metric2. We
show training curves in Figure 5.3 and summarize all results in Table 1.
Surprisingly, TRPO-pixel-SimHash already outperforms the baseline by a
large margin and beats the previous best result on Frostbite. TRPO-BASS-
SimHash achieves significant improvement over TRPO-pixel-SimHash on
Montezuma’s Revenge and Venture, where it captures object locations better
than other methods.3 TRPO-AE-SimHash achieves near state-of-the-art
performance on Freeway, Frostbite and Solaris.*

As observed in Table 1, preprocessing images with BASS or using
a learned hash code through the AE leads to much better performance on
Gravitar, Montezuma’s Revenge and Venture. Therefore, a static or adaptive
preprocessing step can be important for a good hash function.

In conclusion, our count-based exploration method is able to achieve re-
markable performance gains even with simple hash functions like SimHash
on the raw pixel space. If coupled with domain-dependent state preprocess-
ing techniques, it can sometimes achieve far better results.

5.4 Related Work

Classic count-based methods such as MBIE [Strehl and Littman, 2005],
MBIE-EB and [Kolter and Ng, 2009] solve an approximate Bellman equa-
tion as an inner loop before the agent takes an action [Strehl and Littman,
2008]. As such, bonus rewards are propagated immediately throughout the
state-action space. In contrast, contemporary deep RL algorithms prop-

2The agent takes no action for a random number (within 30) of frames at the beginning of
each episode.

3We provide videos of example game play and visualizations of the difference bew-
teen Pixel-SimHash and BASS-SimHash at https://www.youtube.com/playlist?list=PLAd-
UMX6FkBQALNWtY8nH1-pzYJA_1T55

“Note that some design choices in other algorithms also impact exploration, such as e-
greedy and entropy regularization. Nevertheless, it is still valuable to position our results
within the current literature.

https://www.youtube.com/playlist?list=PLAd-UMX6FkBQdLNWtY8nH1-pzYJA_1T55
https://www.youtube.com/playlist?list=PLAd-UMX6FkBQdLNWtY8nH1-pzYJA_1T55

132 CHAPTER 5

agate the bonus signal based on rollouts collected from interacting with
environments, with value-based [Mnih et al., 2015] or policy gradient-
based [Schulman et al., 2015, Mnih et al., 2016] methods, at limited speed.
In addition, our proposed method is intended to work with contemporary
deep RL algorithms, it differs from classical count-based method in that our
method relies on visiting unseen states first, before the bonus reward can be
assigned, making uninformed exploration strategies still a necessity at the
beginning. Filling the gaps between our method and classic theories is an
important direction of future research.

A related line of classical exploration methods is based on the idea
of optimism in the face of uncertainty [Brafman and Tennenholtz, 2002]
but not restricted to using counting to implement “optimism”, e.g., R-
Max [Brafman and Tennenholtz, 2002], UCRL [Jaksch et al., 2010], and
E3 [Kearns and Singh, 2002]. These methods, similar to MBIE and MBIE-
EB, have theoretical guarantees in tabular settings.

Bayesian RL methods [Kolter and Ng, 2009, Guez et al., 2014, Sun
et al., 2011, Ghavamzadeh et al., 2015], which keep track of a distribution
over MDPs, are an alternative to optimism-based methods. Extensions
to continuous state space have been proposed by [Pazis and Parr, 2013]
and [Osband et al., 2016b].

Another type of exploration is curiosity-based exploration. These
methods try to capture the agent’s surprise about transition dynamics. As
the agent tries to optimize for surprise, it naturally discovers novel states.
We refer the reader to [Schmidhuber, 2010] and [Oudeyer and Kaplan, 2007]
for an extensive review on curiosity and intrinsic rewards.

Several exploration strategies for deep RL have been proposed to handle
high-dimensional state space recently. [Houthooft et al., 2016] propose
VIME, in which information gain is measured in Bayesian neural networks
modeling the MDP dynamics, which is used an exploration bonus. [Stadie
et al., 2015] propose to use the prediction error of a learned dynamics
model as an exploration bonus. Thompson sampling through bootstrapping
is proposed by [Osband et al., 2016a], using bootstrapped Q-functions.

The most related exploration strategy is proposed by [Bellemare et al.,
2016], in which an exploration bonus is added inversely proportional to the
square root of a pseudo-count quantity. A state pseudo-count is derived
from its log-probability improvement according to a density model over
the state space, which in the limit converges to the empirical count. Our

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 133

method is similar to pseudo-count approach in the sense that both methods
are performing approximate counting to have the necessary generalization
over unseen states. The difference is that a density model has to be designed
and learned to achieve good generalization for pseudo-count whereas in our
case generalization is obtained by a wide range of simple hash functions (not
necessarily SimHash). Another interesting connection is that our method
also implies a density model p(s) = w over all visited states, where
N is the total number of states visited. Another method similar to hashing
is proposed by [Abel et al., 2016], which clusters states and counts cluster
centers instead of the true states, but this method has yet to be tested on
standard exploration benchmark problems.

5.5 Conclusions

This chapter demonstrates that a generalization of classical counting tech-
niques through hashing is able to provide an appropriate signal for explo-
ration, even in continuous and/or high-dimensional MDPs using function
approximators, resulting in near state-of-the-art performance across bench-
marks. It provides a simple yet powerful baseline for solving MDPs that
require informed exploration.

134 CHAPTER 5

5.A Hyperparameter Settings

For the rllab experiments, we used batch size 5000 for all tasks except
SwimmerGather, for which we used batch size 50000. CartpoleSwingup
makes use of a neural network policy with one layer of 32 tanh units. The
other tasks make use of a two layer neural network policy of 32 tanh units
each for MountainCar and HalfCheetah, and of 64 and 32 tanh units for
SwimmerGather. The outputs are modeled by a fully factorized Gaussian
distribution N (u, ol), in which y is modeled as the network output, while
o is a parameter. CartPoleSwingup makes use of a neural network baseline
with one layer of 32 ReLU units, while all other tasks make use of a
linear baseline function. For all tasks, we used TRPO step size 0.01 and
discount factor y = 0.99. We choose SimHash parameter k£ = 32 and bonus
coefficient § = 0.01, found through a coarse grid search.

For Atari experiments, a batch size of 100000 is used, while the KL
divergence step size is set to 0.01. The policy and baseline both have the
following architecture: 2 convolutional layers with respectively 16 and 32
filters, sizes 8 X 8 and 4 x 4, strides 4 and 2, using no padding, feeding into
a single hidden layer of 256 units. The nonlinearities are rectified linear
units (ReLLUs). The input frames are downsampled to 52 x 52. The input to
policy and baseline consists of the 4 previous frames, corresponding to the
frame skip of 4. The discount factor was set to y = 0.995. All inputs are
rescaled to [—1, 1] element-wise. All experiments used 5 different training
seeds, except the experiments with the learned hash code, which uses 3
different training seeds. Batch normalization [loffe and Szegedy, 2015] is
used at each policy and baseline layer. TRPO-pixel-SimHash uses binary
codes of size k = 256; BASS (TRPO-BASS-SimHash) extracts features
using cell size C = 20 and B = 20 bins. The autoencoder for the learned
embedding (TRPO-AE-SimHash) uses a binary hidden layer of 512 bit,
which are projected to 64 bit.

RAM states in Atari 2600 games are integer-valued vectors over length
128 in the range [0,255]. Experiments on Montezuma’s Revenge with
RAM observations use a policy consisting of 2 hidden layers, each of size
32. RAM states are rescaled to a range [—1, 1]. Unlike images, only the
current RAM is shown to the agent. Experiment results are averaged over
10 random seeds.

In addition, we apply counting Bloom filters [Fan et al., 2000] to

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 135

maintain a small hash table. Details can be found in Appendix 5.C.

The autoencoder used for the learned hash code has a 512 bit binary
code layer, using sigmoid units, to which uniform noise U(—a, a) with
a = 0.3 is added. The loss function Eq. (5.3), using 4 = 10, is updated
every jupdate = 3 iterations. The architecture looks as follows: an input
layer of size 52 x 52, representing the image luminance is followed by 3
consecutive 6 X 6 convolutional layers with stride 2 and 96 filters feed into
a fully connected layer of size 1024, which connects to the binary code
layer. This binary code layer feeds into a fully-connected layer of 1024
units, connecting to a fully-connected layer of 2400 units. This layer feeds
into 3 consecutive 6 X 6 transposed convolutional layers of which the final
one connects to a pixel-wise softmax layer with 64 bins, representing the
pixel intensities. Moreover, label smoothing is applied to the different
softmax bins, in which the log-probability of each of the bins is increased
by 0.003, before normalizing. The softmax weights are shared among each
pixel. All output nonlinearities are ReL.Us; Adam [Kingma and Ba, 2015]
is used as an optimization scheme; batch normalization [loffe and Szegedy,
2015] is applied to each layer. The architecture was shown in Figure 5.1 of
Section 5.2.3.

5.B Analysis of Learned Binary Representation

Figure 5.7 shows the reconstructions of several subsequent images accord-
ing to the autoencoder, while Figure 5.8 shows the corresponding codes.
Figures 5.4, 5.5, and 5.6 shows the downsampled codes learned by the
autoencoder for several Atari 2600 games (Frostbite, Freeway, and Mon-
tezuma’s Revenge). Each row depicts 50 consecutive frames (from O to 49,
going from left to right, top to bottom). The pictures in the right column
depict the binary codes that correspond with each of these frames (one
frame per row).

5.C Counting Bloom Filter/Count-Min Sketch

We experimented with directly building a hashing dictionary with keys
¢(s) and values the state counts, but observed an unnecessary increase in
computation time. Our implementation converts the integer hash codes into

136 CHAPTER 5

Figure 5.4: Frostbite, Freeway, and Montezuma’s Revenge: subsequent frames (left)
and corresponding code (right); the frames are ordered from left (starting
with frame number 0) to right, top to bottom; the vertical axis in the
right images correpond to the frame number.

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 137

Figure 5.5: Frostbite, Freeway, and Montezuma’s Revenge: subsequent frames (left)
and corresponding code (right); the frames are ordered from left (starting
with frame number 0) to right, top to bottom; the vertical axis in the
right images correpond to the frame number.

138 CHAPTER 5

Figure 5.6: Frostbite, Freeway, and Montezuma’s Revenge: subsequent frames (left)
and corresponding code (right); the frames are ordered from left (starting
with frame number 0) to right, top to bottom; the vertical axis in the
right images correpond to the frame number.

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 139

E E |

E E |

Figure 5.7: Freeway: subsequent frames; frames are ordered from left (starting with
frame number 0) to right, top to bottom; the vertical axis in the right
images correspond to the frame number. Within each image, the left
picture is the input frame, the middle picture the reconstruction, and the
right picture, the reconstruction error.

140 CHAPTER 5

Figure 5.8: Freeway: the learned hash codes corresponding to the frames in Fig-
ure 5.7

binary numbers and then into the “bytes” type in Python. The hash table is
a dictionary using those bytes as keys.

However, an alternative technique called Count-Min Sketch [Cormode
and Muthukrishnan, 2005], with a data structure identical to counting Bloom
filters [Fan et al., 2000], can count with a fixed integer array and thus
reduce computation time. Specifically, let m!, ..., m! bedistinct large prime
numbers and define ¢/ (s) = ¢(s) mod m/. The count of state s is returned
as minj<j<; n/ (q’)f(s)). To increase the count of s, we increment n/ (W(s))
by 1 for all j. Intuitively, the method replaces ¢ by weaker hash functions,
while it reduces the probability of over-counting by reporting counts agreed
by all such weaker hash functions. The final hash code is represented as
(6'().....8(9)).

Throughout all experiments above, the prime numbers for the counting
Bloom filter are 999931, 999953, 999959, 999961, 999979, and 999983,
which we abbreviate as “6 M”. In addition, we experimented with 6 other
prime numbers, each approximately 15 M, which we abbreviate as “00 M.
As we can see in Figure 5.9, counting states with a dictionary or with
Bloom filters lead to similar performance, but the computation time of
latter is lower. Moreover, there is little difference between direct counting
and using a very larger table for Bloom filters, as the average bonus rewards
are almost the same, indicating the same degree of exploration-exploitation
trade-off. On the other hand, Bloom filters require a fixed table size, which
may not be known beforehand.

Theory of Bloom Filters Bloom filters [Bloom, 1970] are popular for
determining whether a data sample s’ belongs to a dataset 9. Suppose we
have / functions ¢/ that independently assign each data sample to an integer
between 1 and m uniformly at random. Initially 1,2, ..., p are marked as

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 141

0.012

= direct count = direct count

7000 Bloom 6M ‘ 0010 Bloom 6M

6000]| == Bloom 90M == Bloom 90M
0.

P et
e o o SR
" ARHET
s Yt 0.008 D\
it Sean SNy
0.
- 100 200 300 200 500 0.00 100 200 300 300 500
(a) Mean average undiscounted return (b) Average bonus reward

Figure 5.9: Statistics of TRPO-pixel-SimHash (k = 256) on Frostbite. Solid lines
are the average, while the shaded areas represent the one standard devia-
tion. Results are derived from 10 random seeds. Direct counting with a
dictionary uses 2.7 times more computation than counting Bloom filters
(6 M or 90 M).

0. Then every s € D is “inserted” through marking ¢/ (s) as 1 for all j.
A new sample s’ is reported as a member of D only if ¢/ (s) are marked
as 1 for all j. A bloom filter has zero false negative rate (any s € D is
reported a member), while the false positive rate (probability of reporting a
nonmember as a member) decays exponentially in /.

Though Bloom filters support data insertion, it does not allow data
deletion. Counting Bloom filters [Fan et al., 2000] maintain a counter n(-)
for each number between 1 and p. Inserting/deleting s corresponds to in-
crementing/decrementing n(gb’ (s)) by 1 for all j. Similarly, s is considered

a member if Vj : n(¢f(s)) =0.

Count-Min sketch is designed to support memory-efficient counting
without introducing too many over-counts. It maintains a separate count n/
for each hash function ¢/ defined as ¢/ (s) = ¢(s) mod m/, where m/ is a
large prime number. For simplicity, we may assume that m/ ~ m Vj and ¢/
assigns s to any of 1, ..., m with uniform probability.

We now derive the probability of over-counting. Let s be a fixed data
sample (not necessarily inserted yet) and suppose a dataset D of N samples
are inserted. We assume that m! > N. Letn = ming <j< nj(fl)f(s)) be
the count returned by the Bloom filter. We are interested in computing
p(n > 0|s ¢ D). Due to assumptions about @', we know n/(¢(s)) ~

142 CHAPTER 5

Binomial (N, %) Therefore,

pn>0,s¢D)
p(s ¢ D)
_p(n>0)-p(seD)
- p(s ¢ D)
_p(n>0)
T p(s¢ D)
L P ($(5)) > 0)
(1= 1) 65)

(1= - 1/m")
((1 = 1/mHN
(1 —e_N/m)l

pn>0|s¢ D)=

efN/ml
~ (1 - e_N/m)l .

In particular, the probability of over-counting decays exponentially in /. We
refer the readers to [Cormode and Muthukrishnan, 2005] for other properties
of the Count-Min sketch.

5.D Robustness Analysis

This section investigates the robustness of the proposed approach.

5.D.1 Granularity

While our proposed method is able to achieve remarkable results without
requiring much tuning, the granularity of the hash function should be chosen
wisely. Granularity plays a critical role in count-based exploration, where
the hash function should cluster states without under-generalizing or over-
generalizing. Table 5.2 summarizes granularity parameters for our hash
functions. In Table 5.3 we summarize the performance of TRPO-pixel-
SimHash under different granularities. We choose Frostbite and Venture
on which TRPO-pixel-SimHash outperforms the baseline, and choose as
reward bonus coefficient § = 0.01 X 22—6 to keep average bonus rewards at

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 143

approximately the same scale. k = 16 only corresponds to 65536 distinct
hash codes, which is insufficient to distinguish between semantically distinct
states and hence leads to worse performance. We observed that k = 512
tends to capture trivial image details in Frostbite, leading the agent to
believe that every state is new and equally worth exploring. Similar results
are observed while tuning the granularity parameters for TRPO-BASS-
SimHash and TRPO-AE-SimHash.

Table 5.2: Granularity parameters of various hash functions

SimHash k: size of the binary code
BASS C: cell size; B: number of bins for each color channel
AE k: downstream SimHash parameter; binary code size

A: binarization parameter

SmartHash s: grid size for the agent’s (x, y) coordinates

Table 5.3: Average score at 50 M time steps achieved by TRPO-pixel-SimHash

k 16 64 128 256 512
Frostbite 3326 4029 3932 4683 1117
Venture 0 218 142 263 306

Table 5.4: Average score at 50 M time steps achieved by TRPO-SmartHash on Mon-
tezuma’s Revenge (RAM observations)

s 1 5 10 20 40 60
score 2598 2500 3533 3025 2500 1921

The best granularity depends on both the hash function and the MDP.
While adjusting granularity parameter, we observed that it is important to
lower the bonus coefficient as granularity is increased. This is because a
higher granularity is likely to cause lower state counts, leading to higher
bonus rewards that may overwhelm the true rewards.

144 CHAPTER 5

5.D.2 A Case Study of Montezuma’s Revenge

Montezuma’s Revenge is widely known for its extremely sparse rewards and
difficult exploration [Bellemare et al., 2016]. While our method does not
outperform [Bellemare et al., 2016] on this game, we investigate the reasons
behind this through various experiments. The experiment process below
again demonstrates the importance of a hash function having the correct
granularity and encoding relevant information for solving the MDP.

Table 5.5: Interpretation of particular RAM entries in Montezuma’s Revenge

RAM index Group Meaning

3 room room number

”””” 42 agent xcoordinate
43 agent y coordinate
52 agent orientation (left/right)

”””” 27 beamwalls onfoff
83 beam walls beam wall countdown (on: 0, off: 36 — 0)

”””” 0 counter countsfromO0 to 255 and repeats
55 counter death scene countdown

6T objects objects (doors, skull and key) in Ist room
47 skull x coordinate (both 1st and 2nd rooms)

Our first attempt is to use game RAM states instead of image obser-
vations as inputs to the policy (details in Appendix 5.A), which leads to a
game score of 2500 with TRPO-BASS-SimHash. Our second attempt is
to manually design a hash function that incorporates domain knowledge,
called SmartHash, which uses an integer-valued vector consisting of the
agent’s (x, y) location, room number and other useful RAM information as
the hash code. The best SmartHash agent is able to obtain a score of 3500.
Still the performance is not optimal. We observe that a slight change in the
agent’s coordinates does not always result in a semantically distinct state,
and thus the hash code may remain unchanged. Therefore we choose grid
size s and replace the x coordinate by | (x — Xmin)/s] (similarly for y). The
bonus coefficient is chosen as 8 = 0.01+/s to maintain the scale relative

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 145

8000

=== exact enemy locations
ignore enemies
6000} === random enemy location:

7000

5000

4000

3000 AN Fi g =

2000 ,,W‘/’"’ v Ly

1000 /“M st VY
e Y el

~1000

200 400 600 800 1000

Figure 5.10: SmartHash results on Montezuma’s Revenge (RAM observations): the
solid line is the mean average undiscounted return per iteration, while
the shaded areas represent the one standard deviation, over 5 seeds.

to the true reward> (see Table 5.4). Finally, the best agent is able to obtain
6600 total rewards after training for 1000 iterations (1000 M time steps),
with a grid size s = 10.

Table 5.5 lists the semantic interpretation of certain RAM entries in
Montezuma’s Revenge. SmartHash, as described in Section 5.D.2, makes
use of RAM indices 3, 42, 43, 27, and 67. “Beam walls” are deadly barriers
that occur periodically in some rooms.

During our pursuit, we had another interesting discovery that the ideal
hash function should not simply cluster states by their visual similarity, but
instead by their relevance to solving the MDP. We experimented with in-
cluding enemy locations in the first two rooms into SmartHash (s = 10), and
observed that average score dropped to 1672 (at iteration 1000). Though it
is important for the agent to dodge enemies, the agent also erroneously “en-
joys” watching enemy motions at distance (since new states are constantly
observed) and “forgets” that his main objective is to enter other rooms. An
alternative hash function keeps the same entry “enemy locations”, but in-
stead only puts randomly sampled values in it, which surprisingly achieves
better performance (3112). However, by ignoring enemy locations alto-
gether, the agent achieves a much higher score (5661) (see Figure 5.10). In
retrospect, we examine the hash codes generated by BASS-SimHash and
find that codes clearly distinguish between visually different states (includ-
ing various enemy locations), but fails to emphasize that the agent needs to

5The bonus scaling is chosen by assuming all states are visited uniformly and the average
bonus reward should remain the same for any grid size.

146 CHAPTER 5

explore different rooms. Again this example showcases the importance of
encoding relevant information in designing hash functions.

Apart from the experimental results shown in Table 5.1 and Table 5.3,
additional experiments have been performed to study several properties of
our algorithm.

Hyperparameter sensitivity To study the performance sensitivity to hy-
perparameter changes, we focus on evaluating TRPO-RAM-SimHash on
the Atari 2600 game Frostbite, where the method has a clear advantage
over the baseline. Because the final scores can vary between different ran-
dom seeds, we evaluated each set of hyperparameters with 30 seeds. To
reduce computation time and cost, RAM states are used instead of image
observations.

Table 5.6: TRPO-RAM-SimHash performance robustness to hyperparameter
changes on Frostbite

B
k 0 00l 005 01 02 04 08 16
- 397 - - - - - -
64 — 879 2464 2243 2489 1587 1107 441
128 — 1475 4248 2801 3239 3621 1543 395
256 — 2583 4497 4437 7849 3516 2260 374

The results are summarized in Table 5.6. Herein, k refers to the length
of the binary code for hashing while 8 is the multiplicative coefficient for
the reward bonus, as defined in Section 5.2.2. This table demonstrates that
most hyperparameter settings outperform the baseline (8 = 0) significantly.
Moreover, the final scores show a clear pattern in response to changing
hyperparameters. Small S-values lead to insufficient exploration, while
large [-values cause the bonus rewards to overwhelm the true rewards.
With a fixed k, the scores are roughly concave in 8, peaking at around
0.2. Higher granularity k leads to better performance. Therefore, it can be
concluded that the proposed exploration method is robust to hyperparameter
changes in comparison to the baseline, and that the best parameter settings
can obtained from a relatively coarse-grained grid search.

147

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING

96/vLE 8ECTI/09CC SLIE/9ISE TL8V/6V8L TevS/LEYY COPS/L6vy ¥8ST/€8SC 95T
a9e /668 IVOl/evST vy /1C9¢ 16CL/6€TE <C08Y/108C COEY/8¥Cy 808/ SLYI1 8¢C1
CrL/ 1vy CSOC/LOTT S86S/L8ST €TSS/ 68VC vS6E/eviC 16vI/voO¥C 9L6/6L8 9

91 80 0 0 N0 S00 10°0 A

ANqQIsOI] U0 YseHWIS-INVI-OddL
Sursn (ysers oy Jo ySur) Sununod uonoe-oJels pue (Yse[s oyl Jo 1J9[) Sununod eys usamleq uosiredwod soueuLIofIed (/G 9[qRL

148 CHAPTER 5

State and state-action counting Continuing the results in Table 5.6, the
performance of state-action counting is studied using the same experimental

. . . +_ B
setup, summarized in Table 5.7. In particular, a bonus reward r* = oD
B

instead of r* = 5 is assigned. These results show that the relative
performance of state counting compared to state-action counting depends
highly on the selected hyperparameter settings. However, we notice that
the best performance is achieved using state counting with k = 256 and
B =0.2.

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 149

References

[Abel et al., 2016] Abel, D., Agarwal, A., Diaz, F., Krishnamurthy, A., and
Schapire, R. E. (2016). Exploratory gradient boosting for reinforcement
learning in complex domains. arXiv preprint arXiv:1603.04119.

[Andoni and Indyk, 2006] Andoni, A. and Indyk, P. (2006). Near-optimal
hashing algorithms for approximate nearest neighbor in high dimensions.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 459-468.

[Bellemare et al., 2013] Bellemare, M. G., Naddaf, Y., Veness, J., and
Bowling, M. (2013). The arcade learning environment: An evaluation

platform for general agents. Journal of Artificial Intelligence Research,
47:253-279.

[Bellemare et al., 2016] Bellemare, M. G., Srinivasan, S., Ostrovski, G.,
Schaul, T., Saxton, D., and Munos, R. (2016). Unifying count-based
exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems 29 (NIPS), pages 1471-1479.

[Bloom, 1970] Bloom, B. H. (1970). Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM, 13(7):422-426.

[Brafman and Tennenholtz, 2002] Brafman, R. I. and Tennenholtz, M.
(2002). R-max-a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3:213—
231.

[Charikar, 2002] Charikar, M. S. (2002). Similarity estimation techniques
from rounding algorithms. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC), pages 380-388.

[Cormode and Muthukrishnan, 2005] Cormode, G. and Muthukrishnan,
S. (2005). An improved data stream summary: the count-min sketch and
its applications. Journal of Algorithms, 55(1):58-75.

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of
oriented gradients for human detection. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR), pages 886-893.

150 CHAPTER 5

[Duan et al., 2016] Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. (2016). Benchmarking deep reinforcement learning for con-
tinous control. In Proceedings of the 33rd International Conference on
Machine Learning (ICML), pages 1329-1338.

[Fan et al., 2000] Fan, L., Cao, P., Almeida, J., and Broder, A. Z. (2000).
Summary cache: A scalable wide-area web cache sharing protocol.
IEEE/ACM Transactions on Networking, 8(3):281-293.

[Ghavamzadeh et al., 2015] Ghavamzadeh, M., Mannor, S., Pineau, J.,
and Tamar, A. (2015). Bayesian reinforcement learning: A survey.
Foundations and Trends in Machine Learning, 8(5-6):359—483.

[Guez et al., 2014] Guez, A., Heess, N., Silver, D., and Dayan, P. (2014).
Bayes-adaptive simulation-based search with value function approxima-

tion. In Advances in Neural Information Processing Systems 27 (NIPS),
pages 451-459.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep
residual learning for image recognition.

[Houthooft et al., 2016] Houthooft, R., Chen, X., Duan, Y., Schulman, J.,
De Turck, F., and Abbeel, P. (2016). VIME: Variational information
maximizing exploration. In Advances in Neural Information Processing
Systems 29 (NIPS), pages 1109-1117.

[loffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch nor-
malization: Accelerating deep network training by reducing internal
covariate shift. In Proceedings of the 32nd International Conference on
Machine Learning (ICML), pages 448—456.

[Jaksch et al., 2010] Jaksch, T., Ortner, R., and Auer, P. (2010). Near-
optimal regret bounds for reinforcement learning. Journal of Machine
Learning Research, 11:1563—-1600.

[Kearns and Singh, 2002] Kearns, M. and Singh, S. (2002). Near-
optimal reinforcement learning in polynomial time. Machine Learning,
49(2):209-232.

[Kingma and Ba, 2015] Kingma, D. and Ba, J. (2015). Adam: A method
for stochastic optimization. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 151

[Kolter and Ng, 2009] Kolter, J. Z. and Ng, A. Y. (2009). Near-bayesian
exploration in polynomial time. In Proceedings of the 26th International
Conference on Machine Learning (ICML), pages 513-520.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, 1., and Hinton, G. E.
(2012). ImageNet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems 25 (NIPS), pages
1097-1105.

[Lai and Robbins, 1985] Lai, T. L. and Robbins, H. (1985). Asymptotically
efficient adaptive allocation rules. Advances in Applied Mathematics,
6(1):4-22.

[Lillicrap et al., 2015] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N.,
Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2015). Continuous control
with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

[Lowe, 1999] Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Proceedings of the 7th IEEE International Confer-
ence on Computer Vision (ICCV), pages 1150-1157.

[Mnih et al., 2016] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lilli-
crap, T. P, Harley, T., Silver, D., and Kavukcuoglu, K. (2016). Asyn-
chronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533.

[Nair et al., 2015] Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C.,
Fearon, R., De Maria, A., Panneershelvam, V., Suleyman, M., Beat-
tie, C., Petersen, S., et al. (2015). Massively parallel methods for deep
reinforcement learning. arXiv preprint arXiv:1507.04296.

[Osband et al., 2016a] Osband, 1., Blundell, C., Pritzel, A., and Van Roy,
B. (2016a). Deep exploration via bootstrapped DQN. In Advances in
Neural Information Processing Systems 29 (NIPS), pages 4026—4034.

152 CHAPTER 5

[Osband et al., 2016b] Osband, I., Van Roy, B., and Wen, Z. (2016b). Gen-
eralization and exploration via randomized value functions. In Proceed-
ings of the 33rd International Conference on Machine Learning (ICML),
pages 2377-2386.

[Oudeyer and Kaplan, 2007] Oudeyer, P.-Y. and Kaplan, F. (2007). Whatis
intrinsic motivation? A typology of computational approaches. Frontiers
in Neurorobotics, 1:6.

[Pazis and Parr, 2013] Pazis, J. and Parr, R. (2013). PAC optimal explo-
ration in continuous space Markov decision processes. In Proceedings
of the 27th AAAI Conference on Artificial Intelligence (AAAI).

[Schmidhuber, 2010] Schmidhuber, J. (2010). Formal theory of creativ-
ity, fun, and intrinsic motivation (1990-2010). [EEE Transactions on
Autonomous Mental Development, 2(3):230-247.

[Schulman et al., 2015] Schulman, J., Levine, S., Moritz, P., Jordan, M. I,
and Abbeel, P. (2015). Trust region policy optimization. In Proceedings
of the 32nd International Conference on Machine Learning (ICML),
pages 1889-1897.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014).
Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv: 1409.1556.

[Stadie et al., 2015] Stadie, B. C., Levine, S., and Abbeel, P. (2015). In-
centivizing exploration in reinforcement learning with deep predictive
models. arXiv preprint arXiv:1507.00814.

[Strehl and Littman, 2005] Strehl, A. L. and Littman, M. L. (2005). A
theoretical analysis of model-based interval estimation. In Proceedings
of the 21st International Conference on Machine Learning (ICML), pages
856-863.

[Strehl and Littman, 2008] Strehl, A. L. and Littman, M. L. (2008). An
analysis of model-based interval estimation for Markov decision pro-
cesses. Journal of Computer and System Sciences, 74(8):1309-1331.

CouNT-BASED EXPLORATION FOR DEEP REINFORCEMENT LEARNING 153

[Sunetal., 2011] Sun, Y., Gomez, F., and Schmidhuber, J. (2011). Plan-
ning to be surprised: Optimal Bayesian exploration in dynamic environ-
ments. In Proceedings of the 4th International Conference on Artificial
General Intelligence (AGI), pages 41-51.

[Tola et al., 2010] Tola, E., Lepetit, V., and Fua, P. (2010). DAISY: An
efficient dense descriptor applied to wide-baseline stereo. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(5):815-830.

[van den Oord et al., 2016] van den Oord, A., Kalchbrenner, N., and
Kavukcuoglu, K. (2016). Pixel recurrent neural networks. In Proceed-
ings of the 33rd International Conference on Machine Learning (ICML),
pages 1747-1756.

[van Hasselt et al., 2016a] van Hasselt, H., Guez, A., Hessel, M., and Sil-
ver, D. (2016a). Learning functions across many orders of magnitudes.
arXiv preprint arXiv:1602.07714.

[van Hasselt et al., 2016b] van Hasselt, H., Guez, A., and Silver, D.
(2016b). Deep reinforcement learning with double Q-learning. In Pro-
ceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI).

[Vezhnevets et al., 2016] Vezhnevets, A., Mnih, V., Agapiou, J., Osindero,
S., Graves, A., Vinyals, O., and Kavukcuoglu, K. (2016). Strategic atten-
tive writer for learning macro-actions. In Advances in Neural Information
Processing Systems 29 (NIPS).

[Wang et al., 2016] Wang, Z., de Freitas, N., and Lanctot, M. (2016). Du-
eling network architectures for deep reinforcement learning. In Proceed-
ings of the 33rd International Conference on Machine Learning (ICML),
pages 1995-2003.

Chapter 6

Conclusions and Future
Directions

Computers are no longer programmed directly for solving complex tasks
such as identifying objects in images, since these are simply too difficult
to be understood explicitly by a programmer. Instead, a paradigm shift
is occurring in which computers are instructed via a metaprogram, which
allows them to learn tasks based on data-driven pattern extraction. This
leads us to the domain of machine learning, which studies the creation of
artificial learning systems.

This thesis investigated several topics under the overarching concept
of structured decision making based on machine learning. This entails that
an artificial system outputs several predictions, while taking into account
their interrelations. Both spatially- and temporally-structured decision mak-
ing was researched, through use of structured prediction and reinforcement
learning respectively. Several novel methods have been proposed and ap-
plied to use cases such as autonomous vehicles, robot locomotion, and
autonomous video game playing.

6.1 Conclusions

In Chapters 2 and 3, structured decision making in the spatial domain is
investigated. We focused on advanced perception for autonomous vehicles,
which is essential for allowing such systems to understand their environment.

156 CHAPTER 6

Classification models were used to assign semantic classes to image pixels
originating from vehicle camera input. Because pixels are highly correlated,
a structured-output machine learning model was proposed in Chapter 2,
which classifies pixels simultaneously.

This model takes into account visual contextual cues between over-
segmentation regions within a second-order adjacency neighborhood. It is
formulated as an energy-based function using feature-dependent unary po-
tentials, and pairwise potentials that differentiate between adjacent neigh-
bors in a first- and second-degree neighborhood. After optimization by
means of max-margin learning, most-probable label assignments are ob-
tained through graph cuts inference using a-expansion. Quantitative and
qualitative results both indicate that using second-degree contextual in-
formation allows for highly accurate segmentations by better filtering out
spurious labels.

Furthermore, these methods were applied to image segmentation in
autonomous agricultural vehicles. For this task, the use of deep convolu-
tional neural networks (CNNs) as unary classification models was proposed,
as well as a CNN end-to-end segmentation method that predicts all pixel
labels directly. Both models were enhanced through transfer learning using
an independently trained classification model.

Chapter 3 digs deeper into the fabric of structured models. Herein,
a structured prediction model that integrates back-propagation and loss-
augmented inference into subgradient descent training of structural support
vector machines (SSVMs) is proposed. This model departs from the tra-
ditional bifurcated approach in which a unary classifier is trained indepen-
dently from the structured predictor. Furthermore, the SSVM factors are
extended to neural factors, which allows both unary and interaction factors to
be highly nonlinear functions of input features. Results on a complex image
segmentation task show that end-to-end SSVM training, and/or using neural
factors, leads to more accurate predictions than conventional subgradient
descent and N-slack cutting plane training. Moreover, a deep convolutional
implementation of the proposed method is applied to end-to-end training
and segmentation of autonomous vehicle visual data. The results demon-
strate that our model serves as a foundation for more advanced structured
models, e.g., by using latent variables, learned feature representations, or
complexer connectivity structures.

Temporally-structured decision making is investigated in Chapters 4

CoNcLUSIONS AND FUTURE DIRECTIONS 157

and 5. Herein, models were proposed for generating decision sequences
that are not correlated in space, but in time. Specifically, we focused on
reinforcement learning (RL), in which an agent learns to accomplish a goal
through rewards, in an initially unknown environment. A problem in these
RL decision making methods is balancing exploitation and exploration.

Therefore, Chapter 4 introduces Variational Information Maximiz-
ing Exploration (VIME), a curiosity-driven exploration strategy for high-
dimensional continuous control tasks. Variational inference is used to ap-
proximate the posterior distribution of a Bayesian neural network that rep-
resents the environment dynamics. Using information gain in this learned
dynamics model as intrinsic rewards allows the agent to optimize for both
external reward and intrinsic surprise simultaneously. Empirical results
show that VIME performs significantly better than heuristic exploration
methods across various continuous control tasks and RL algorithms.

Finally, in Chapter 5 an alternative exploration strategy to VIME is
studied. More specifically, we investigate the use of counting-based explo-
ration strategies in high-dimensional and/or continuous state-action spaces.
It is demonstrated that a generalization of classical counting techniques
through hashing is able to provide an appropriate signal for exploration, even
in continuous and/or high-dimensional Markov decision processes (MDPs)
using function approximation, resulting in near state-of-the-art performance
across benchmarks. These benchmarks consist of robot locomotion tasks,
basic continuous control tasks, and Atari 2600 video games, which the
agent has to learn through trial-and-error. Due to its simplicity, the pro-
posed method provides an easy yet powerful baseline for solving MDPs that
require informed exploration.

6.2 Future Directions

The research presented in the different chapters of this dissertation leads to
several future directions. This section introduces initial progress made by
the scientific community that should be further expanded, as well as ideas
and problems for which solutions still have to be conceived.

Structured prediction Although the research of Chapters 2 and 3 is
applied specifically to semantic segmentation with autonomous vehicles in
mind, it would be interesting to explore the proposed methods in more exotic

158 CHAPTER 6

use cases that require the prediction of multiple related output variables.
For example, predicting more complicated structures like graphs would be
highly interesting, which could be used to learn how to solve problems that
are generally not tackled through machine learning such as the traveling
salesman problem.

Since the studied structured prediction and semantic segmentation
models are trained through supervised learning, a major limitation is their
need for large amounts of labeled data. However, it can be very costly to
construct a fully-labeled dataset. For example in the autonomous agricul-
tural vehicle segmentation dataset, labeling one image could take as long
as 25 minutes by an experienced operator. A big leap forward could be
made by the ability to train such models using a combination of labeled and
weakly-labeled data [Zhang et al., 2015]. Examples of weakly-labeled data
in image segmentation could be images with partial ground truth labels and
labels in the form of bounding boxes. One could go even as far as attempt-
ing to improve segmentation methods through information extracted from
textual image descriptions. Another way forward would be the creation
of massive datasets by means of highly realistic virtual environments to
generate synthetic images together with their corresponding labelings.

Because the need to alleviate the burden of constructing a fully-labeled
dataset, transfer learning methods could prove to be highly useful. For ex-
ample the ability to transfer features learned through unsupervised learning
methods that require no ground truth labels, such as generative models,
would be highly valuable. These independently learned features could help
to bootstrap the structured prediction learning process, significantly lower-
ing its need for labeled data.

Furthermore, the methods proposed in Chapters 2 and 3 could be ex-
tended to the temporal domain, allowing the segmentation of video data
rather than still images, which could lead to more accurate predictions.
This could be done by enforcing consistency between the segmentations
of consecutive images via temporal superpixels [Chang et al., 2013], mak-
ing use of neural factors that span between multiple video frames, using
recurrent neural networks as unary classification models, or using 3-dim
temporal convolutions operations [Pigou et al., 2015] in the neural factors.

Furthermore, the combination of both reinforcement learning and
structured prediction is highly interesting. Current research efforsts focus
on the training of a structured predictor through actor-critic RL methods,

CoNcLUSIONS AND FUTURE DIRECTIONS 159

such as [Bahdanau et al., 2016]. Also, it would be fascinating to investigate
whether it is possible apply RL to autonomous vehicles [Sallab et al., 2016],
with the goal of learning robust driving behavior directly, avoiding the need
for explicit visual understanding of the vehicle surroundings.

Reinforcement learning One way to extend the research in Chapter 4 is
by using Bayesian neural networks for more than the transition dynamics
model alone. Representing the state or state-action value function by such
a network could allow for the measurement of surprise originating from a
change in belief about how states and policies relate to cumulative rewards.
This could prove to be helpful in environments such as board games, whose
very simple dynamics model causes the curiosity signal to die out rather
quickly. Another solution could be build RL algorithms that gracefully
transition to planning, as the dynamics model becomes more and more
accurate. Even though curiosity signal would still converge to zero quickly,
the agent could sample transitions in simulation. Moreover, mixing model
samples with real environment transitions could significantly reduce the RL
algorithm’s sample complexity.

Currently, the learned dynamics model tends to focus on features that
do not necessarily have a strong relation to the actual solving of the MDP.
This causes the agent to be highly surprised by environment dynamics that
do not align with its internal belief, but are irrelevant to accomplishing its
goal. It would be worthwhile to investigate alternative dynamics model
objectives to cross-entropy that focus particularly on salient environment
elements [Larsen et al., 2015]. One way could be to use an inverse dynamics
model combined with a forward model [Agrawal et al., 2016], which has
been shown to suppress irrelevant details. The study of general generative
models, such as PixelCNNs [van den Oord et al., 2016] or InfoGANs [Chen
et al., 2016], as a drive for curiosity-based exploration remains an ongoing
effort.

The combination of the methods in Chapters 4 and 5 with methods
that allow the agent to plan for surprising situations might be interesting.
One possibility is the combination of curiosity-driven exploration with em-
powerment [Gregor et al., 2016] in high-dimensional spaces. Furthermore,
the proposed methods have been generally applied in fully-observable MDP
settings. It is interesting to figure out what happens when they are used
in partially-observed MDPs (POMDPs), since the state observations will

160 CHAPTER 6

collide [Oh et al., 2016].

The assignment of different reward bonuses based on an underlying
hierarchy is another interesting future direction. This could be done through
assignment of different bonuses for different hashing granularity levels in
Chapter 5, or measuring surprise not as the total parameter distribution
change in Chapter 4, but measuring it separately for each individual neural
network layer. The question is whether this would lead to exploratory
signals that are correlated with higher-level environment features, such as
the room number in the Atari 2600 game Montezuma’s Revenge. Related
is the study about whether or not exploration naturally leads to hierarchical
policies. One possibility would be to combine the proposed exploration
strategies with a recurrent neural network policy, which might allow for
more accurate credit assignment, and investigate whether the hidden states
capture any form of hierarchical information.

RL models such as the policy or value function first have to learn
state representations through their learning algorithm, e.g., policy gradient.
However, this does not make use of all information present in the environ-
ment, which makes the learning of representations a slow process. Learning
a dynamics model such as in VIME makes use of environment information
differently. As such, sharing parameters between the learned dynamics
model and other RL models might significantly speed up learning.

CoNcLUSIONS AND FUTURE DIRECTIONS 161

References

[Agrawal et al., 2016] Agrawal, P., Nair, A., Abbeel, P., Malik, J., and
Levine, S. (2016). Learning to poke by poking: Experiential learning of

intuitive physics. In Advances In Neural Information Processing Systems
29 (NIPS).

[Bahdanau et al., 2016] Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe,
R., Pineau, J., Courville, A., and Bengio, Y. (2016). An actor-critic
algorithm for sequence prediction. arXiv preprint arXiv:1607.07086.

[Chang et al., 2013] Chang, J., Wei, D., and Fisher, J. W. (2013). A video
representation using temporal superpixels. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2051—
2058.

[Chen et al., 2016] Chen, X., Duan, Y., Houthooft, R., Schulman, J.,
Sutskever, 1., and Abbeel, P. (2016). InfoGAN: Interpretable representa-
tion learning by information maximizing generative adversarial nets. In
Advances In Neural Information Processing Systems 29 (NIPS), pages
2172-2180.

[Gregor et al., 2016] Gregor, K., Besse, F., Jimenez Rezende, D., Dani-
helka, I., and Wierstra, D. (2016). Towards conceptual compression. In
Advances in Neural Information Processing Systems 29 (NIPS), pages
3549-3557.

[Larsen et al., 2015] Larsen, A. B. L., Sgnderby, S. K., and Winther, O.
(2015). Autoencoding beyond pixels using a learned similarity metric.
arXiv preprint arXiv:1512.09300.

[Ohetal., 2016] Oh, J., Chockalingam, V., Singh, S., and Lee, H. (2016).
Control of memory, active perception, and action in minecraft. In Pro-
ceedings of the 33rd International Conference on Machine Learning
(ICML), pages 2790-2799.

[Pigou et al., 2015] Pigou, L., Oord, A. v. d., Dieleman, S., Van Her-
reweghe, M., and Dambre, J. (2015). Beyond temporal pooling: Recur-
rence and temporal convolutions for gesture recognition in video. arXiv
preprint arXiv:1506.01911.

162 CHAPTER 6

[Sallab et al., 2016] Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S.
(2016). End-to-end deep reinforcement learning for lane keeping assist.
arXiv preprint arXiv:1612.04340.

[van den Oord et al., 2016] van den Oord, A., Kalchbrenner, N., Espeholt,
L., Vinyals, O., Graves, A., et al. (2016). Conditional image generation
with pixelenn decoders. In Advances in Neural Information Processing
Systems 29 (NIPS), pages 4790-4798.

[Zhang et al., 2015] Zhang, Y., Chen, X., Li, J., Wang, C., and Xia, C.
(2015). Semantic object segmentation via detection in weakly labeled
video. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3641-3649.

	Title page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Summary
	Samenvatting
	Introduction
	Graphical Models
	Deep Learning
	Spatially-Structured Decision Making
	Temporally-Structured Decision Making
	Scientific Challenges and Contributions
	Publications
	Conference Proceedings
	Journals
	Patent Applications

	References

	Structured Prediction for Autonomous Vehicles
	Introduction
	Data Acquisition
	Preprocessing
	Region Over-segmentation
	Feature Extraction
	Convolutional Unary Classifier

	Structured Output Prediction
	Structural Support Vector Machines
	Max-margin Learning
	Reasoning
	End-to-end Segmentation

	Results and Discussion
	Related Work
	Conclusions
	References

	Neural Factors in Structural Support Vector Machines
	Introduction
	Related Work
	Methodology
	Integrated Back-propagation and Inference
	Neural Interaction Factors

	Experiments
	Experimental setup
	Results and Discussion

	Conclusion
	Application to Autonomous Vehicle Data
	Deep SSVM
	End-to-end Segmentation without SSVM
	Results and Discussion

	References

	Variational Information Maximizing Exploration
	Introduction
	Methodology
	Preliminaries
	Curiosity
	Variational Bayes
	Compression
	Implementation

	Experiments
	Related Work
	Conclusions
	Bayesian Neural Networks (BNNs)
	Experimental Setup
	Environments
	Reinforcement Learning Algorithms

	References

	Count-Based Exploration for Deep Reinforcement Learning
	Introduction
	Methodology
	Notation
	Count-Based Exploration via Static Hashing
	Count-Based Exploration via Learned Hashing

	Experiments
	Continuous Control
	Arcade Learning Environment

	Related Work
	Conclusions
	Hyperparameter Settings
	Analysis of Learned Binary Representation
	Counting Bloom Filter/Count-Min Sketch
	Robustness Analysis
	Granularity
	A Case Study of Montezuma's Revenge

	References

	Conclusions and Future Directions
	Conclusions
	Future Directions
	References

