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Introduction 
In this workshop, the benefits of Proximity Perception in robotics, especially to those unfamiliar with 
it, have been highlighted. An important aspect was to encourage networking within the research 
community as well as to bridge the gap to the industry supporting technology transfer. 

Regarding the broader objectives of the workshop, we observe that Proximity Perception 
technologies have the potential to play an essential role in service, industrial robotics, Human-Robot 
Collaboration (HRC), compliant robotics applications and even bio-inspired robotics. On the one 
hand, designs of robotic graspers that include Proximity Sensors enable novel control strategies for 
exploration, grasping and manipulation. On the other hand, the sensors allow safety features to fulfill 
leading technical specifications such as ISO/TS 15066 for the operation of collaborative robots and 
improve the autonomy and perception of robotic systems in all fields. 

These proceedings contain the papers accepted and presented during the poster session of the 
workshop. 

Talks held at the workshop: 

Full body proximity sensing and human-robot interaction via sensor/actuator augmented skins 
Nikolaus Correll, 
University of Colorado at Boulder 

Proximity sensors for grasping applications in robotics 
Jelizaveta Konstantinova, 
Ocado Technology and Queen Mary University of London 

 
Electric field sensing for bio-inspired underwater robotics 

Frédéric Boyer and Vincent Lebastard, 
IMT Atlantique Bretagne-Pays de la Loire Ecole Mines-Telecom 

Vision-based tactile sensor FingerVision for fragile object manipulation 
Akihiko Yamaguchi, 
Tohoku University 

Reliable and context related grasping for autonomous mobile robots 
Hansruedi Früh, 
F&P Robotics 

LiDAR and 3D Imaging for Robotics and Automated Mobility 
Norbert Druml, 
Infineon Technologies AG 

 

  

 

  

For more information, 
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Enhanced Human-Machine Interaction by Combining Proximity
Sensing with Global Perception

Christoph Heindl∗, Markus Ikeda∗, Gernot Stübl∗, Andreas Pichler∗ and Josef Scharinger∗∗

Abstract— The raise of collaborative robotics has led to wide
range of sensor technologies to detect human-machine inter-
actions: at short distances, proximity sensors detect nontactile
gestures virtually occlusion-free, while at medium distances,
active depth sensors are frequently used to infer human
intentions. We describe an optical system for large workspaces
to capture human pose based on a single panoramic color
camera. Despite the two-dimensional input, our system is able
to predict metric 3D pose information over larger field of
views than would be possible with active depth measurement
cameras. We merge posture context with proximity perception
to reduce occlusions and improve accuracy at long distances.
We demonstrate the capabilities of our system in two use cases
involving multiple humans and robots.

I. INTRODUCTION

Proximity perception is an active research field, aiming to
equip robotics with nontactile near-field sensors to advance
robot autonomy and human-machine interoperability. While
proximity sensing is a compelling concept on close-up range,
it fails to recognize spatio-temporal events on moderate
distances from the robot [1]. These events, however, provide
important information to create a more robust and intuitive
set of interaction patterns.

In previous works, optical systems were increasingly used
to close this information gap. Many approaches integrate
active depth cameras to detect human key points and measure
distances between objects in the environment. The downsides
of active depth sensors are the short operating range, the
sensitivity to extraneous light and the increased occlusion
caused by the camera-projector arrangement.

We describe an optical system that complements proximity
perception by observing human and machines from a bird’s-
eye perspective (see Figure 1). Even though our system
works solely with color images from one single panoramic
camera, it delivers pose information for humans and robots
in a metric space. We combine the provided pose informa-
tion with near-field measurements from proximity sensors
to robustly detect human-machine interaction patterns. We
demonstrate the benefits of merging complementary input
modalities in two use cases involving multiple robots and
humans 1.

∗Visual Computing and Robotics, PROFACTOR GmbH, Austria
christoph.heindl@profactor.at

∗∗Institute of Computational Perception, Johannes Kepler University,
Austria josef.scharinger@jku.at

1Demonstration video https://youtu.be/1X0xF3m36BA

Fig. 1. Our system complements proximity sensing (left) with global
perception from a bird’s-eye perspective in real-time (right). Based on a
color input image, we estimate the following features shown superimposed
in the right image: human pose (dots connected by lines), worker orientation
(white triangle) and the recent movement trajectory (red path on floor).
The majority of these measurements are available in a metric 3D space
and combined with proximity perception to coordinate human-machine
interactions.

A. Related Work

Vision based human-machine interaction has been studied
before. Guanglong et al. [2] combine RGB-D cameras and
inertial measurement units to detect human gestures for robot
learning. Zimmermann et al. [3] use depth-based devices to
record human instructions for teaching a service robot.

Systems based on depth cameras are also used to study
human-robot safety aspects. Fabrizio et al. [4] describe
a depth sensing enabled device to compute distances to
dynamic obstacles for collision avoidance. Švarnỳ et al. [5]
propose using 2D keypoint detection merged with RGB-
D data to measure distances between a robot and a single
human operator.

B. Contributions

The proposed system has a number of benefits. Our
system works with a readily available single wide-angle color
camera, eliminating the range limitations of active depth
devices. The inference step builds on recent advances in pose
estimation, enabling our system to answer complex image
related queries robustly. In addition to instantaneous pose,
we track individual humans to provide pose trajectories over
time. Although the detection step takes place in image space,
the majority of predictions are elevated to a metric 3D space,
enabling natural fusion with near-field sensors to create a
richer set of human-machine interactions.
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II. METHOD

Figure 3 illustrates the core components of our system.
These are detailed in the following sub-sections.

A. View Synthesis

In order to process panoramic color images, we first syn-
thesize one or more synthetic rectilinear views (see Figure 2).
View synthesis assumes a virtual pinhole camera P that is
potentially rotated with respect to the physical source frame
S. Next, every virtual camera pixel uP is mapped to a
corresponding source pixel uS using the method described
in [6]. The computed pixel position is bilinearly interpolated
to determine the final color value associated with uP .

Fig. 2. View synthesis from panoramic color images. A virtual rectilinear
camera image (right) is created from a highly distorted spherical image
region (left).

B. Pose Estimation

To compute the 2D pose of humans and robots, we first
predict 2D keypoints from synthesized color views (see Fig-
ure 7 b,d). We use neural network architectures, depicted in
Figure 4 based on works of Cao et al. [7] and Heindl et al. [8]
to perform keypoint localization. Each network, composed of
a series of Deep Convolutional Neural Networks (DCNNs),
regresses keypoint coordinates by transforming the input
color images xP ∈ R3×H×W into keypoint belief maps
b̂P ∈ RC×H×W . Here H,W are image height and width
and C is the number of output keypoints (6 for robots,
25 for humans). Each belief map encodes the likelihood of
observing a particular keypoint in a specific image region.
We train these networks with both real [7] and artificially
generated images [8].

In a subsequent step, 2D poses are transformed into a
metric space via a set of homographies. In particular, we
propose the use of an image-to-ground homography HG

P ∈
R3×3, to map image positions to metric ground coordinates
as follows

uG = D
(
HG

P

[
uPx , u

P
y , 1

]T)
, (1)

where D(·) is the dehomogenization operator
[
x′, y′

]
=[

x/z, y/z
]
. Because such mappings are accurate only for

body parts sufficiently close to the ground (such as foot
positions), we use a statistical body model to gain the
ability to map extra keypoints such as hips and shoulders.
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+

Fig. 3. System Overview. Our approach considers panoramic images as
input; these are synthesized to form one or more rectilinear views. Deeply
learned neural networks then predict 2D human and robot pose keypoints.
These detections are subsequently lifted to a 3D metric space using
homographies of planes. Next, our system fuses near-field measurements
with human/robot pose context to create location-aware events. These events
in turn lead to environmental reactions defined by the application scenario.

These additional points serve to predict body orientation
and to stabilize body positions in case of partial occlusions.
Regarding robots, we map only the base joints to determine
their location.

C. Multiple Object Tracking

We filter and track human trajectories using a Kalman
filter, assuming a linear dynamic motion model (see Figure 1,
7d). All operations are performed in ground plane coordi-
nates to avoid perspective effects. To assign newly detected
poses to existing ones, we create a bipartite graph: Given
a set of pose detections Dt and a set of forward predicted
poses Pt at time t, we add an edge edp for every possible
combination of detected d ∈ Dt and tracked p ∈ P t poses to
the graph. The cost Cdp associated with edge edp is computed
as the Euclidean distance between the ground positions of
d and p. We use the method of Kuhn et al. [9] to solve
for the optimal assignments and update the Kalman filters
correspondingly.

x
VGG DCNN1

f
+

b1 DCNNi
bi
b
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P P P

P

Fig. 4. Joint localization architecture [8]. First, base features f are
extracted from input image xP . An initial Deep Convolutional Neural
Network (DCNN) performs initial joint belief prediction bP

1 . A series of
DCNNs then refines belief prediction to generate the final prediction b̂P .

D. Merging Pose Information with Proximity Measurements

Pose information alone has already proven useful in our
experiments with human-robot interaction. However, line-of-
sight occlusions and large object distances limit the system’s
ability to measure small movements accurately. Therefore,
we merge global pose context with gestures detected by a
proximity device2.

2https://www.leapmotion.com/
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In particular, we treat data fusion as a probabilistic clas-
sification problem and consider the presence of gestures
intended for robot r to be latent random variables C ∈ {0, 1}.
At each time-step we observe the following noisy features: a)
a confidence level of the (possibly carried) proximity sensor
for an active gesture Fg ∈ [0, 1], b) the relative position of
the operator closest to the robot in ground plane coordinates
Fxy ∈ R2 and c) the orientation of the operator with
respect to the robot, expressed as the cosine of the angle
Fo ∈ [−1, 1]. Given the observations F = {Fg, Fxy, Fo},
we compute the posterior probability of the presence of a
command p(C | F) using Bayes theorem

p(C | F) =
p(F | C)p(C)

p(F)
.

For computational reasons, we introduce the following inde-
pendence assumptions

(f ⊥⊥ g | C) ∀f, g ∈ F , f 6= g.

That is, all observed features are independent from each other
given the state of command C. Thus, the posterior probability
simplifies to

p(C | F) =
1

Z
p(C)

∏
f∈F

p(f | C),

where Z is the partition function given by

Z =
∑

c∈{0,1}

p(C=c)
∏
f∈F

p(f | C=c).

Our model, shown graphically in Figure 5, follows the
structure of a naı̈ve Bayes classifier. We assume the following
underlying probability distributions

C ∼ Bernoulli(θ)
Fg | C=c ∼ Beta(ac, bc)

Fxy | C=c ∼ Categorical(αc)

Fo | C=c ∼ Normal(µc, σc).

Here, Categorical(αc) refers to a two-dimensional distribu-
tion with bin probabilities αc. We have chosen to model the
conditional probability p(Fo | C) using a normal distribu-
tion for practical reasons. Strictly speaking, using a normal
distribution is an improper assumption because its support is
(−∞,∞) and not [0, 1]. However, probabilities beyond ±3σ
quickly drop to zero and therefore do not pose a problem for
our use case.

The parameters of our model are estimated in a semi-
supervised fashion. That is, we consider F to be observed for
all training samples. In addition, we observe C for a fraction
of training samples. The parameters of each distribution
are estimated by maximizing the joint likelihood of fully
observed and partially observed samples using a variant of
expectation maximization (see Appendix A for details).

C

Fg

Fxy

Fo

F

Bernoulli

θ

Beta

ac bc

N

µc σc

Cat

αc

Fig. 5. Probabilistic data fusion. The presence of a command intended for
robot r is modelled as a binary latent random variable C. Our model jointly
considers a) gesture device confidence Fg , b) position of human Fxy and
c) orientation of operator Fo to predict the posterior probability of C.

III. EVALUATION

A. Experimental Setup

We perform all experiments in an environment that covers
the volume of 10× 8× 3.5 m using a single color cam-
era with resolution 2464× 2056 px, mounted 3.5 m above
ground. We estimate the ground plane homography using
a chessboard object. Our setup consists of two robots: an
UR10 and a KUKA iiwa, both of which are placed in close
proximity to each other (see Figure 7a). We use a standard
computing unit equipped with a single NVIDIA GeForce
GTX 1080 Ti for pose estimation at 15 Hz. The gesture
sensing device is connected to a portable Laptop. ZeroMQ3

is used to exchange messages between all computing entities.

B. Pose Estimation Accuracy

In this work we consider metric accuracies, as image
accuracies have been reported previously [6], [8]. Assuming
an error-free intrinsic camera matrix, the uncertainty in
detecting point correspondences for homography estimation
is measured to be σC = 3.5 px. The parameter uncertainties
of HG

P are estimated using the method of Criminsi et al. [10].
The uncertainty of 2D keypoint detection is σP = 15 px. We
transform input uncertainties to measurement uncertainties
by propagating errors through Equation 1 to the first order.
Table I lists measurement uncertainties as a function of
object-to-camera distance.

Distance Uncertainty

3 m 0.05 m
10 m 0.30 m

TABLE I
MEASUREMENT UNCERTAINTIES AS A FUNCTION OF OBJECT DISTANCE.

C. Classification Accuracy

To evaluate the data fusion approach, we conduct several
experiments using the robot orchestration use case (see Sec-
tion IV). For training we record 4500 observations of F . This

3https://zeromq.org/
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corresponds to 5 min of possible human-robot interaction.
In a downstream step, we manually label C based on visual
inspection. We then train several types of classifiers assuming
a fully observed (FO), i.e. F ∪ {C}, to partially observed
(PO), i.e. just F , ratio of 2 %. Figure 6 shows the advantages
of our proposed naı̈ve Bayes method with semi-supervised
training compared to a) classical naı̈ve Bayes, b) SVM and c)
a neural network. All classifiers are evaluated on a separate
fully annotated test set of 5000 samples.
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NB - AP 0.79, F1 0.88
NB-SEM - AP 0.92, F1 0.92
SVM - AP 0.84, F1 0.88
NN - AP 0.74, F1 0.87

Fig. 6. Gesture classification performance. Each curve represents the
precision/recall of one of the following classifiers: naı̈ve Bayes (NB), naı̈ve
Bayes trained with unlabelled data (NB-SEM), support vector machine
(SVM), neural network (NN). All classifiers are trained on 2 % of annotated
data. Only NB-SEM additionally makes use of unlabeled data. Also shown:
Average Precision (AP) and macro F1 score.

IV. DEMONSTRATIONS

We demonstrate the interaction potential of our system in
two use cases (UCs)4:

UC1 We orchestrate multiple robots by placing a near-
field gesture-sensitive device in the hands of an op-
erator. The operator’s position and orientation with
respect to the robots is used to predict the intended
receiver of gesture commands (see Figure 7 a,b).

UC2 We show an adaptive robot speed control to
simplify human-machine cooperation. As humans
approach, we automatically decelerate the robot.
Likewise, we accelerate the robot to full operating
speed as humans leave (see Figure 7 c,d).

V. CONCLUSION AND DISCUSSION

We present a single monocular camera-based system to
provide real-time pose detection for human-machine inter-
action at large scales. Albeit our system does not sense
depth directly, we develop a homography based solution
to lift pose predictions to a metric 3D space. Furthermore,
we show that merging global vision context and proximity

4Video link is provided in footnote 1.

Fig. 7. Use Cases (UCs); (a,b) UC1 Robot orchestration - operator’s
position and orientation selects the intended robot to receive near-field
gesture commands; (c,d) UC2 Robot Interaction - adjusting robot speed
in human presence for near-field interaction.

data in a probabilistic framework helps to maintain robust
detection over long distances. Finally, we present the results
of a semi-monitored learning approach to data fusion that
increases classification accuracy when only a few marked
training samples are available.
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APPENDIX

A. Semi-Supervised Expectation Maximization

In semi-supervised training we assume that for a fraction
of training samples we know the value of the latent variable
C, while for a usually much larger fraction of data we
don’t. Following the notation introduced in Section II-D, we
assume to be given N complete observations corresponding
to the set {(Ci,F i)}i≤N of random variables. In addition
M partial observations of {F̃ j}j≤M are provided. All ob-
servations are considered to be independent and identically
distributed. The model’s global parameters are collected
in Ω = {θ, ac, bc, αc, µc, σc}. Figure 8 shows a graphical
representation illustrating the situation.

Ci

F i

Ω C̃j

F̃ j

i ≤ N j ≤M

Fig. 8. Generative latent variable model with random variables grouped
into fully and partially observed samples. Global model parameters are
collected in Ω.

The joint probability given Ω factors as follows

p(C,F , C̃, F̃ | Ω) =
N∏
i=1

p(Ci,F i | Ω)

M∏
j=1

p(C̃j , F̃ j | Ω).
(2)

where we denote {Ci}i≤N by C and do similar for the other
variables. We seek to optimize Ω by maximizing the log-
likelihood of the observables

Ω∗ = arg max
Ω

log p(C,F , F̃ | Ω),

which requires integrating over latent C̃. Following
the objective of semi-supervised expectation maximiza-
tion (EM) [11] gives

(q̂, Ω̂) = arg max
q,Ω

L(q,Ω)

= arg max
q,Ω

[
log p(C,F | Ω)+

EC̃∼q(C̃) log
p(C̃, F̃ | Ω)

q(C̃)

]
, (3)

where q is a tractable distribution over C̃. Expectation
maximization then iteratively optimizes for q (E-step) and Ω
(M-step) in an alternating scheme, until a (local) maximum
is reached. At iteration t + 1, the solution to the E-step for

our model is given by

qt+1(C̃) = p(C̃ | C,F , F̃ ,Ωt)

=

M∏
j=1

p(C̃j | F̃ j ,Ωt) =

M∏
j=1

qt+1
j (C̃j) (4)

where we made use of the independence assumptions under-
lying our model. The E-Step is thus equal to the original EM
algorithm [12]. The M-step updates the parameters Ω of our
model as follows

Ωt+1 = arg max
Ω

L(qt+1,Ω)

= arg max
Ω

[(
N∑
i=1

log p(Ci|Ω) + log p(F i|Ci,Ω)

)
+

M∑
j=1

∑
c∈{0,1}

qt+1
j (C̃j =c) log p(C̃j =c, F̃ j | Ω)

]
, (5)

which follows from Equation 3 by applying the models
independence assumptions and considering qt+1(C̃) to be
constant. In Equation 5 the fully observed samples serve as
a guidance bias for the optimization procedure. Finally, we
solve for Ωt+1 by setting the gradient to zero

∇Ω L(qt+1,Ω) = 0.

At https://github.com/cheind/proximity-fusion we
provide source code for reproducibility.

B. Additional Classification Experiments

Table II compares the macro F1 scores of different classi-
fication approaches at varying fractions of full observations.
Especially when only few annotated data points are available,
our method outperforms the other classifier variants.

NB NB-SEM SVM NN
Fraction FO

0.02 0.79 0.92 0.84 0.74
0.20 0.91 0.93 0.91 0.93
0.80 0.92 0.94 0.93 0.94

TABLE II
F1 MACRO SCORES OF GESTURE CLASSIFIERS AT VARYING LEVELS OF

FULLY OBSERVED DATA (FO). SEE FIGURE 6 FOR ABBREVIATIONS.
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Extended Delta Compression Algorithm for Scanning LiDAR Raw Data
Handling

Ievgeniia Maksymova 1,2, Christian Steger 2 and Norbert Druml 1

Abstract— LiDAR sensors are widely used in robotic applica-
tions for depth image acquisition, and generate tens of frames
per second that are transformed into a 3D point cloud. Each of
these frames contains a pixel matrix of an entire field of view. In
scanning LiDAR a frame is acquired sequentially and requires
big on-chip memory arrays or a high speed interface for data to
be transferred to ECU. In this paper we compare efficiency of
existing lossless algorithms when applied to raw LiDAR data,
and propose a lossless compression algorithm that is intended
to reduce a required on-chip memory and/or relax speed
requirement on an interface. The simulation results showed
that achievable compression rate is > 38% independently from
distance to target or receiving circuit resolution.

I. INTRODUCTION

Due to advances and minituarization of the LiDAR tech-
nology, the sensor’s application field has been expanded to
robotics and unmanned aerial vehicles (UAV) [1]. LiDARs
are widely used in mobile robots for a corridor mapping in
a railway track inspections [2], pedestrian detection in urban
scenarios [3], collision avoidance in hazardous and difficult
accessible environments [4]. In recent years, also then au-
tomotive industry turned its attention to this technology in
attempt to reach higher autonomous driving levels [5].

Along with an application field expansion, technical re-
quirements of LiDAR sensors have also changed by address-
ing longer range (> 200m), higher resolution and frame rate,
and lower production costs (< $200). A scanning LiDAR
that uses MEMS mirrors for beam steering could potentially
fulfill all aforementioned requirements. However, scanning
long-range LiDAR sensors acquire frame data sequentially
and require an intermediate memory before an entire frame
can be processed into a 3D point cloud. The size of this
memory is driven by the sensor’s parameters such as range,
resolution, an oversampling factor etc. [6]

3D point cloud computing is typically done using a com-
plex DSP within the LiDAR sensor. This approach allows
to produce results faster, requires big memory arrays for
an intermediate data storage, custom implemented special

1Infineon Technologies Austria AG {ievgeniia.maksymova;
norbert.druml}@infineon.com

2Institute of Technical Informatics, TU Graz steger@tugraz.at
The authors would like to thank the Austrian Federal Ministry for

Transport, Innovation and Technology which funded the ODeLiA project
under the grant agreement no 860032.

functions and a long development cycle. Nevertheless, there
are scenarios (e.g. sensor fusion) when raw data from several
sensors shall be fused with the help of an external electronic
computing unit (ECU). In this case the frame data shall be
transferred from the sensor to ECU with a very high speed
interface (Gb/s) and the internal memory array requirements
could be relaxed. Both approaches have the same issue - high
power consumption caused by either a big memory, or a very
high speed interface.

In this paper we compare various low-level lossless com-
pression algorithms that could be used in LiDAR sensors for
a memory size reduction or improved bandwidth utilization.
The algorithm comparison performed using several factors
such as an implementation complexity, compression speed
and effectiveness. Finally, a simple, yet effective compression
algorithm is proposed that could be beneficial for battery-
powered robots, e.g. UAV, and systems with a high frame
rate requirements such as autonomous vehicles.

II. STATE-OF-THE-ART

There are two main components in raw LiDAR data. First,
an echo signal with a certain amplitude that depends on the
target reflectance and the distance to a target. Second, a noise
signal that can have several sources, e.g. an ambient noise or
a shot noise of a receiving circuitry. Figure 1 shows two sets
of measured LiDAR raw data that are done with different
objects in the field of view with a distance up to 150 meters.

Fig. 1. Measured raw LiDAR data of targets with a high reflectance (left)
and a low reflectance (right)

The dictionary-based compression algorithms require mul-
tiple iterations for building up a dictionary that later has to be
saved or sent along with the compressed data for a successful
data decompression. Thus, these algorithms are not effective
for the LiDAR raw data compression.
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Golomb-Rice Coding (GRC) compresses a data stream X
of a length N using a tunable parameter M that is chosen
to be a power of 2. The coding is performed by representing
every value Xi as a sequence of 0’s followed by 1 [7]. The
number of 0s is defined by an integer result value of Xi

divided by M . The reminder of this division is converted to
log2(M) bits and adjusted to the 0’s sequence.

In Delta Encoding (DE), the first value in a data stream is
always written out the same as the original value. Following
values are representing the difference between the current
and the previous value in the data stream (delta). The
codeword is S bits long to allow a delta ranging from −2S−1

to 2S−1 − 1. When a delta is too large to be represented by
S bits, the original current value is stored as a codeword.

Symmetric Segmented Delta encoding algorithm (SSD)
is a modified version of the delta encoding algorithm that
computes deltas as the absolute value of the difference, which
is then segmented in one of four segments [8]. Each of four
segments has a defined base that is used as a threshold for a
proper segment placement, and an offset that represents the
reminder between the delta and the base. The output data is
then stored as a delta sign bit, followed by a segment number
and an offset.

As it can be observed in Figure 1, LiDAR data contains a
DC component. Thus, removing this DC component through
a careful selection of algorithm specific parameters (M ,
S, base and offset) might improve resulting compression
ratios, as less bits will be required to represent the same data.

III. EXTENDED DELTA ENCODING ALGORITHM

The proposed Extended Delta Compression algorithm
(EDC) is a derivative of the delta encoding algorithm that
is used for data stream compression. The compression
flowchart of EDC is shown in Figure 2. Every sample in
the original data stream is a bw bit wide positive number.
The maximum bit width reduction of a data stream sample
bx is defined before the compression begins. The first value
is always written out the same as the original value, while
all computed delta values are compared with the 2bw−bx

value. In case a signed delta value is outside of the range, an
overshoot is detected; the position of this overshoot is stored
along with the full 2bw−1 bits wide delta value. Once all data
has been encoded, the overshoot information is prefixed to
the deltas as shown in Figure 3, where K is the number
of occurred overshoots, P − array are their positions, and
r − array are delta values.

The decompression flowchart is shown in Figure 4. First,
the number of overshoots that occurred during compression
(K) and their positions (P array) are extracted from the data
stream. Second, the current sample’s index is compared with
values in P-array and the bit width of the current delta is
defined. Then the difference between adjacent samples is
calculated, resulting in lossless reconstruction of sampled
data. As compressed data is a data stream, the pointer plsb
is used for tracking the position of the next sample and is

Fig. 2. Compression flowchart of the extended delta encoding

Fig. 3. Compressed data packet format.

incremented on a cycle base with the bitwidth of the current
sample.

Fig. 4. Decompression flowchart of the extended delta encoding

IV. SIMULATION RESULTS

Aforementioned algorithms are implemented in MATLAB
and evaluated through a set of characteristics: compression
ratio, compression speed, and algorithm complexity. The
simulations were done using datasets acquired with a LiDAR
demonstrator in a laboratory setup for collision avoidance.
The following conditions were used: distance to a target
ranging from 1m to 100m, weather factors set to no light,
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bright light and rain, targets with reflectance levels ranging
from 10% to 95%. The data has been digitized using ADC
with two arbitrary ADC bit width values, 6 bits and 10 bits, to
evaluate algorithms efficiency. Table I presents the evaluation
results.

The compression ratio is used to evaluate algorithm per-
formance and can be defined as

CompressionRatio = (1− CompressedSize

OriginalSize
) ∗ 100%

The speed of compression is evaluated in cycles required to
complete the compression process of a data stream with N
samples, assuming a cycle per operand. The complexity is
defined by the amount of required hardware (e.g. buffers,
adders, multipliers etc.) for an algorithm implementation.

TABLE I
COMPRESSION ALGORITHMS EVALUATION RESULTS

Algorithm Speed Complexity C.Ratio C.Ratio
in cycles ADC 6b ADC 10b

DE 7*N +++ 19% 19%
GRC 7*N ++ -1.2% 1%
SSD 14*N + 16% 28%
EDC 9*N ++ 47% 38%

The Golomb-Rice Compression algorithm showed a very
poor performance as the data DC value is far distanced
from any of power of 2. The Delta Encoding showed a
steady compression ratio independently from the data bit
width. The Symmetric Segmented Delta encoding showed a
tendency to have a better performance with high resolution
data. The Extended Delta compression algorithm showed a
good compression results (> 38%) independently from the
data bit width or the data set.

V. DISCUSSIONS AND CONCLUSIONS

In recent years, mobile robots, UAV and autonomous vehi-
cles are more often using LiDAR sensors for depth imaging
and range detection. LiDAR data acquisition, processing
and transfer are resource demanding, which is a limiting
factor for many compact and battery-powered applications.
Through incorporating a raw data compression in a scanning
LiDAR sensor, the sensor’s memory demands could be
optimized and complex high speed interfaces for data transfer
between the sensor and the ECU could be eliminated. In
this work the Extended Delta Compression algorithm was
presented that is capable to compress LiDAR raw data by
more than 38%, and the effectiveness of several low-level
compression algorithms was compared.

As a continuation of this work, the proposed EDC algo-
rithm will be used for a design optimizations of our LiDAR
demonstrator, such as optimizing its interface bandwidth uti-
lization. Moreover, as it has a good theoretical compression
ratio and it is possible to calculate the maximum length of
a compressed stream, it might be used to reduce on-chip
memory needed to store a frame.
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3D Pose Estimation of Proximity Sensors with Self-Measurement for
Calibration

Yitao Ding, Felix Wilhelm, and Ulrike Thomas

Abstract— The increasing number of sensing modules in a
proximity servoing system for robotic applications requires
new calibration methods. An exact pose calibration is essential
for a correct obstacle detection. In this paper, we present a
method for locating single proximity sensors on the surface of
a robot based on the sensor’s measurements of its environment,
including self measurements of the robot. The algorithm relies
on stochastic sampling methods to minimize the error between
measured proximity data and simulated data by altering the
poses of the simulated sensors. The simulation uses a virtual
3D reproduction of the robot and its environment.

I. INTRODUCTION

This paper focuses on the localization of proximity sensors
on the surface of the robot which can be used for the calibra-
tion of their poses. The calibration is gaining importance with
increasing number of sensor modules, especially for flexible
sensor skin designs, where an exact location after application
is unknown. Accurate poses are in particular essential for
a correct estimation of obstacles in 3D space. An error in
sensor poses directly have negative impact on the sensor’s
forward kinematics and thus affects the calculated obstacle
position in 3D space. The proposed method can be used for
rough pose estimations and error detection of the system
during operation. In combination with existing methods the
accuracy and calculation time can be improved by either fine
tuning the results of the existing methods or providing a
starting point for optimization.

The localization of the sensor modules can be categorized
in accurate positioning by design, manual calibration, and au-
tomatic calibration. Precisely manufactured mounting points
on the sensors which fit to reference points on the robot have
little deviation in their positioning. However, this method
confines the flexibility of such systems and requires specially
designed parts for different mounting locations on a robot. A
precise pose calibration for randomly placed sensors on the
robot can be performed manually by measuring the sensor
position with a 3D measurement arm. This method delivers
precise measurements but is time consuming, especially
with higher numbers of sensing elements. Furthermore this
task has to be repeated in full extend in case the sensor
arrangement has been changed. Therefore, an automatic cal-
ibration method is needed to solve this problem. In the past,
approaches have been shown based on external 2D/3D vision

All authors are with the Lab of Robotics and Human-Machine-
Interaction at Chemnitz University of Technology, 09126 SN
Chemnitz, Germany. Emails: {yitao.ding, felix.wilhelm,
ulrike.thomas}@etit.tu-chemnitz.de

systems. In general, visual markers, such as AprilTags [1],
provide pose information which can be used for localization
when placed on the sensors. These markers require flat
surfaces while the surface of the robot and sensors are often
curved. Also, pose estimation algorithms for point cloud
information [2] are a reasonable solution. In [3] an approach
is presented which reconstructs the sensor poses from 2D
images taken of the sensor’s LEDs. However, the aforemen-
tioned methods rely on external sensing mechanisms which
require calibration with respect to the robot frame. One
solution to eliminate any further measurement equipment is
to take advantage of the intrinsic information of the sensors
and the robot system including the workcell. The authors in
[4] exploit data from integrated acceleration sensors of the
sensor modules and robot joint states to estimate the location
with respect to their joint. In combination with the robot’s
forward kinematics the position on the link can be recovered.

Our similar approach only uses already available informa-
tion. More precisely, the presented method works with time-
of-flight information which are compared to data generated
from a simulated environment. The environment is a virtual
3D reproduction of the robot and its surroundings where the
robot’s joints and sensor poses can be altered. Therefore,
the estimation process uses the self-measurements of the
robot and the workcell. In this process, a particle filter [5]
generates different hypotheses of the virtual sensor locations,
resulting in varying forward kinematics and thus creating
different virtual proximity measurements in the virtual 3D
space. The hypothesis with the smallest difference to the
real measurement represent the most likely real world 3D
location of the according sensor.

II. POSE ESTIMATION

A given proximity sensor with unknown location p ∈ R5

(note: rotational invariance around the measurement direction
of the sensors reduces one degree of freedom in orientation)
on the robot’s surface generates different measurement pat-
terns a ∈ Rk during k timesteps according to its location p,
the robot joint state qn with n degree of freedoms (DOF),
and the environment. Combined with the assumption of a
static environment, these patterns are used for the estimation
of the sensor location by comparison with patterns ah of
different location hypotheses h ∈ [1, . . . ,m] generated in
the virtual environment. This task can be formulated as an

2nd Workshop on Proximity Perception
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019), Macau, China
Published under the Creative Commons license (CC BY-NC-ND) at KITopen



optimization problem of:

min Q(h) =

n∑
i=1

|ai − ahi | . (1)

The optimization structure (Fig. 1) includes a particle
filter to avoid solutions in local minima and two stochastic
optimization stages for finer local optimization. The series
of k measurements reduces errors caused by sensor noise
and inaccuracies in the 3D model. For example, objects in
the real world unconsidered in the 3D model result in few
outliers. Noisy inaccuracies of the models result in noisy
readings which can be compensated with higher count of k.
Of course our method fails when general offsets are present
or when the percentage readings of inaccurate objects are
large.
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Fig. 1: Optimization Structure.

A. Particle Filter

Depending on the environment the sensor measurements
a are not necessarily unique for all possible poses p and can
be ambiguous. The particle filter for sensor pose estimation
is a modification of a prior work [6]. Originally, it is used for
pose estimation of grasped objects within a robotic gripper,
in which ambiguous results (pose of grasped cylinder) can be
described with the final distribution of the particles. While
standard numerical optimization may converge into a local
minimum, particle filters lower the likelihood due to their
resampling process by randomly choosing different starting
parameters.

Let P define a set of particles ρ of a particle filter with
poses p(q) represented as transformation matrix controlled
by q and their series of proximity measurements a performed
at p. First, we randomly seed w particles within the robot’s
surface hull approximated by a hollow cylinder for each
link (Fig. 2). The orientation of these particles are most
likely pointing in normal direction from the center of the
cylinder. Thus, to obtain a normal distribution on a sphere
the Bingham distribution [7] is used. With resampling, new
particles ρi+1 are picked randomly from Pi where lower
cost Q particles have higher probability of being picked.
Normal distributed noise is added afterwards. Particles ρ with
Q above a certain threshold are uniformly distributed again.

After the resampling process the particle distribution resem-
bles the likelihood for a certain pose. Iterated resampling
in combination of randomly reseeding particles refine the
results and the particle with ρmin(Q(h)) approaches the global
minimum.
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Fig. 2: Initial distribution of sensor poses within a link and
distribution after first resampling. Green: real sensor pose.

B. Local Stochastic Optimization

The goal of the particle filter is to find a suitable starting
point for local optimization. We maintain the particle nature
of the particle filter in the local optimization step and
iteratively reseed only ρmin(Q(h)) with w new particles with a
Gaussian and Bingham probabilistic density function, which
resembles a stochastic optimization method. The second
stage has lower variance σ2 for finer sampling and more
accurate results.

C. Simulation Environment

We use V-REP [8] as simulation environment to generate
virtual measurements which supports a variety of sensors in-
cluding laser range sensors and capacitive proximity sensors.
In the environment, robotic manipulators and 3D objects can
be manipulated and combined to kinematic structures. The
remote API for MATLAB (used in this work), Python and C
provides easy integration into other systems. For this paper,
the environment consist of a Kuka LBR iiwa 7 R800 and a
ground plane to constrain measurements to a minimum of
objects. Furthermore, in most cases the shape of the robot is
known.

III. RESULTS

To generate the reference signal a, we conducted real
world measurements at 49 different joint configurations
with a single sensor element placed on the end-effector.
The estimations were performed with different amounts of
particles n = [100, 250, 500, 1000] with 40 estimations for
each particle size. Each estimation consists of 5 iterations of
the particle filter and 10 iterations of each local optimizer.
Fig. 4 illustrates the progression of Q during the iterations.
The search space is limited to a hollow cylinder with an
inner radius of 0.15m, outer radius of 0.25m, and height of
0.4m.
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(a) (b)

(c) (d)

Fig. 3: Simulation environment in V-REP. a) Initial uniform
distribution; b) after resampling; c) coarse sampling; d) fine
sampling.
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Fig. 4: Progression of Q with 1000 particles. Red: particle
filter; blue: coarse sampling; green: fine sampling.

In Fig. 5 the mean absolute error (MAE) of the estimated
position and orientation is shown with different amount of
particles. The MAE is higher with 100 particles because the
low number of particles result in local minima. With increas-
ing particle numbers a reliable Euclidean MAE of below
20mm is achievable. The lower MAE in x-direction along
the measurement direction compared to y- and z-direction
is caused by higher accuracy of the sensor readings, while
poses in the other axis create similar readings. Furthermore
the sensor position and the search space (Fig. 2) is limited
by the thickness of the hollow cylinder and leads to a higher
particle density in x-direction.

The orientation error is calculated with the reference
direction vector vr and the estimated direction ve. The error
is then converted into degree representation.

eDeg = arccos

(
vrve

|vr| |ve|

)
· 180
π

(2)

IV. CONCLUSIONS

The novel concept of using self-measurements for pose
estimation is feasible. The advantage of independence means
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Fig. 5: Pose error after estimation with standard deviation.
No. of particles: blue 100, red 250, brown 500, black 1000.

that estimation algorithm can be applied on any existing
hardware without further external measurement equipment.
The accuracy in position and orientation are not outstanding,
but are in a reasonable range. The fact that we can achieve
these results with simple random sampling based methods
shows that there is potential for improvement which can lead
to higher accuracy.
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