

 Page 1 of 1

FedUni ResearchOnline
https://researchonline.federation.edu.au
Copyright Notice

This is the author’s version of a work that was accepted for publication in ACM Transactions on
Intelligent Systems and Technology. Changes resulting from the publishing process, such as peer
review, editing, corrections, structural formatting, and other quality control mechanisms may not be
reflected in this document.

Ning, Z., Dong, P., Wang, X., Rodrigues, J., & Xia, F. (2019). Deep Reinforcement Learning for
Vehicular Edge Computing: An Intelligent Offloading System. ACM Transactions on Intelligent
Systems and Technology (TIST), 10(6), 1–24.

https://doi.org/10.1145/3317572

Copyright © 2020 ACM Inc. All rights reserved.

CRICOS 00103D RTO 4909

https://researchonline.federation.edu.au/
https://doi.org/10.1145/3317572

60

Deep Reinforcement Learning for Vehicular Edge
Computing: An Intelligent Offloading System

ZHAOLONG NING, PEIRAN DONG, and XIAOJIE WANG, Dalian University
of Technology, China
JOEL J. P. C. RODRIGUES, National Institute of Telecommunications (Inatel), Santa Rita do
Sapucaí–MG, Brazil; Instituto de Telecomunicações, Portugal; Federal University of Piauí,
Teresina–PI, Brazil
FENG XIA, Dalian University of Technology, China and Federation University Australia,
Australia

The development of smart vehicles brings drivers and passengers a comfortable and safe environment. Vari-

ous emerging applications are promising to enrich users’ traveling experiences and daily life. However, how

to execute computing-intensive applications on resource-constrained vehicles still faces huge challenges. In

this article, we construct an intelligent offloading system for vehicular edge computing by leveraging deep

reinforcement learning. First, both the communication and computation states are modelled by finite Markov

chains. Moreover, the task scheduling and resource allocation strategy is formulated as a joint optimization

problem to maximize users’ Quality of Experience (QoE). Due to its complexity, the original problem is fur-

ther divided into two sub-optimization problems. A two-sided matching scheme and a deep reinforcement

learning approach are developed to schedule offloading requests and allocate network resources, respectively.

Performance evaluations illustrate the effectiveness and superiority of our constructed system.

CCS Concepts: • Networks → Network management;

This work has been partially supported by the National Natural Science Foundation of China under Grant 61572106 and

61971084, the China Postdoctoral Science Foundation under Grant 2018T110210, the State Key Laboratory of Integrated Ser-

vices Networks, Xidian University (ISN20-01), the State Key Laboratory for Novel Software Technology, Nanjing University

under Grant KFKT2018B04, Dalian Science and Technology Innovation Fund under Grant 2018J12GX048, National Natu-

ral Science Foundation of Chongqing under Grant cstc2019jcyj-msxmX0208. National Funding from the FCT—Fundação

para a Ciência e a Tecnologia—through the UID/EEA/50008/2019 Project; by RNP, with resources from MCTIC, Grant

No. 01250.075413/2018-04, under the Centro de Referência em Radiocomunicações—CRR project of the Instituto Nacional

de Telecomunicações (Inatel), Brazil; and by Brazilian National Council for Research and Development (CNPq) via Grant

No. 309335/2017-5.

Authors’ addresses: Z. Ning, Dalian University of Technology, Key laboratory for Ubiquitous Network and Service Soft-

ware of Liaoning Province, School of Software, Dalian, 116620, China, State Key Laboratory of Integrated Services Net-

works, Xidian University, Xi’an 710071, China, State Key Laboratory for Novel Software Technology, Nanjing Univer-

sity, Nanjing 210008, China and Chongqing Key Laboratory of Mobile Communications Technology, Chongqing Uni-

versity of Posts and Telecommunications, Chongqing 400065, China; email: zhaolongning@dlut.edu.cn; P. Dong and X.

Wang, Dalian University of Technology, School of Software, Dalian, 116620, China; emails: peiran_dong@outlook.com,

wangxj1988@mail.dlut.edu.cn; J. J. P. C. Rodrigues (corresponding author), National Institute of Telecommunications (Ina-

tel), Santa Rita do Sapucaí – MG, Brazil; Instituto de Telecomunicações, Portugal; Federal University of Piauí, Teresina – PI,

Brazil; email: joeljr@ieee.org; F. Xia (corresponding author), Dalian University of Technology, Key laboratory for Ubiqui-

tous Network and Service Software of Liaoning Province, School of Software, Dalian, 116620, China and School of Science,

Engineering and Information Technology, Federation University Australia, Australia; email: f.xia@acm.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2157-6904/2019/10-ART60 $15.00

https://doi.org/10.1145/3317572

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3317572

60:2 Z. Ning et al.

Additional Key Words and Phrases: Vehicular system, intelligent offloading, deep reinforcement learning,

edge computing

ACM Reference format:

Zhaolong Ning, Peiran Dong, Xiaojie Wang, Joel J. P. C. Rodrigues, and Feng Xia. 2019. Deep Reinforcement

Learning for Vehicular Edge Computing: An Intelligent Offloading System. ACM Trans. Intell. Syst. Technol.

10, 6, Article 60 (October 2019), 24 pages.

https://doi.org/10.1145/3317572

1 INTRODUCTION

With the rapid development of ubiquitous systems and smart vehicles, artificial intelligence–based
vehicular networks [37], known as a subset of Cyber Physical Systems (CPS)[22], have drawn in-
creased attention. Many researchers all over the world have been working on novel automotive
applications to create a more comfortable and safer driving environment. However, how to execute
these computing-intensive applications on vehicles still faces huge challenges, e.g., how to enable
real-time feedbacks between vehicles and network servers based on Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communication modes; how to provide efficient computing capa-
bilities for resource-constraint applications and reasonable resource allocations for vehicles and
infrastructures.
Initially, researchers propose the paradigm of Mobile Cloud Computing (MCC) [40], accumu-

lating rich computing and storage resources into cloud servers. Despite its powerful computing
capability, it is still difficult to satisfy the real-time response requirements of vehicular applica-
tions. Therefore, Mobile Edge Computing (MEC) is a promising alternative, the nodes of which
are in proximity of users. Compared with MCC, MEC can greatly reduce communication latency,
which scales exponentially with the increase of routing hops in vehicular networks [8]. More-
over, the diversity of MEC nodes significantly exploits potential computing resources over the
network, which also alleviates the workload of the central Base Station (BS) [4]. It should be noted
that more than RoadSide Units (RSUs)—any entities with the capability of computing, caching, or
networking—can be the platform of MEC. Since the constraint resource limits the capability of
MEC nodes, it is envisioned that the performance of traditional time- and energy-consuming net-
working methods [3, 5] can drop abruptly in vehicular networks. Therefore, it is urgent to develop
an efficient solution for the MEC environment.
Deep Reinforcement Learning (DRL) is a prospective technology to replace traditional methods.

Recently, machine learning has achieved remarkable achievements in many fields, such as image
processing, pattern recognition, and natural language processing. It is also involved in computing-
intensive applications, including autopilot and real-time navigation through V2V or V2I. However,
machine learning in MEC-enabled vehicular networks (i.e., vehicular edge computing) is still in its
infancy. A few researches attempt to leverage deep learning and convolutional neural networks
to predict traffic flows. However, DRL is rarely considered. To construct an intelligent offloading
system for vehicular edge computing and make it work well, there are three main challenges:

(1) Although DRL has achieved great success in Atari games and Go [17], its application in
vehicular networks is almost nonexistent. This is because vehicular networks are highly
dynamic, and the constraint in offloading systems is more implicit, flexible, and diverse
than the explicit rules of chess.

(2) Both DRL and traditional vehicular networks are investigated based on a sequence of cap-
tured images. However, no sequential images exist in our intelligent offloading system. How
to migrate DRL to vehicular networks without images is rather challenging.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

https://doi.org/10.1145/3317572

Intelligent Vehicular Edge Computing 60:3

(3) No matter playing chess or Atari games, there is usually one “agent” in a DRL model. Since
multiple vehicles participate in the intelligent offloading systems, it is difficult to construct
a suitable environment and build the corresponding DRL model.

In this article, a DRL method is integrated with vehicular edge computing to solve the computa-
tion offloading problem, where we jointly study the optimization of task scheduling and resource
allocation in vehicular networks. First, wemodel the architecture of communication and edge com-
puting, respectively. The channel state and the computation capability are finite continuous values
varying with time, where the state at the next moment is only related to the previous moment.
For ease of analysis, they are discretized and quantized into several levels and further modelled as
Finite-State Markov Chains (FSMC) [30]. Moreover, we model the mobility of vehicles by discrete
random jumps. The number of contacts between RSUs and vehicles follows a Poisson distribu-
tion, where the parameter represents the mobility intensity. Then, the joint optimization problem
of traffic scheduling and resource allocation in vehicular networks is formulated. Since the for-
mulated problem is constrained by different factors, and variables are coupled with each other,
we divide the original problem into two sub-optimization problems. For the first one, we decide
the priority of multiple vehicles by designing a utility function, reflecting the QoE level of users.
Then, the second sub-problem is formulated as a Reinforcement Learning (RL) problem, where we
illustrate four key elements: agents, system states, actions, and rewards, respectively. The main
contributions are summarized as follows:

(1) Based on the finite-state Markov chains, we jointly study the task scheduling and resource
allocation in vehicular networks and construct an intelligent offloading system. Specifically,
DRL is integrated with vehicular edge computing. We formulate an optimization problem
to maximize the QoE of users, while taking both energy consumption and execution delay
into consideration.

(2) Due to the high complexity of the formulated problem, it is divided into two sub-
optimization problems. In the first stage, we schedule tasks of multiple vehicles. A utility
function is defined to quantize the level of QoE. A two-sided matching scheme is proposed
to solve the formulated sub-problem, with the purpose of maximizing the total utilities.

(3) The decision making of resource allocation is resolved by leveraging a DRL algorithm in
the second stage. A deep Q network is improved by applying dropout regularization and
double deep Q networks to deal with the defect of overestimation. We identify the system
state, the action, and the reward function in our DRL model, whose target is to maximize
the cumulative reward through obtaining the optimal policy.

(4) Performance evaluations illustrate the effectiveness of our designed system, i.e., the pro-
posed two-sided matching scheme can approximate the performance of an exhaustive
searching scheme efficiently, and the improved DRL algorithm is superior to other methods
with various system parameters.

The rest of this article is organized as follows: In Section 2, we review the related work. We
illustrate the system model in Section 3. In Section 4, we formulate the optimization problem.
Section 5 illustrates the constructed intelligent offloading system. Two algorithms are specified in
Section 6 to solve the two sub-optimization problems, respectively. Performance evaluations are
provided in Section 7, and Section 8 concludes our work.

2 RELATEDWORK

Recently, deep learning and edge computing–based CPS have attracted the attention of many re-
searchers. We review three categories, including deep learning–based CPS, MEC-based CPS, and

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

60:4 Z. Ning et al.

deep learning for MEC. Since CPS contains various network systems, we choose vehicular net-
works as an example to introduce recent research progress.

2.1 Deep Learning–based CPS

Deep learning is generally utilized for pattern recognition and traffic prediction. The authors in
Reference [18] utilize unsupervised learning to cluster the urban smart card data, involving the
station-oriented and passenger-oriented views. The real-world data of the metropolitan area in
Rennes, France, are collected to find the distribution of traffic flow and the similarity among pas-
sengers. A cooperative neural network is tailored to construct a structural lane detection system
with the captured images in a real-world traffic scene [13]. First, a deep convolutional network is
devised to detect traffic signs and their geometric attributes. Second, recurrent neural networks
dealing with signal spatial distribution are difficult to be explicitly recognized. After millions of
traffic images are captured, how to efficiently retrieve these large amounts of data is a challenging
issue. A supervised hash coding scheme is designed to generate high-quality binary codes [35].
Convolutional neural networks are implemented to analyze the feature representation of images.
The quantized loss function compels that similar images are encoded by similar codes. Authors in
Reference [1] adopt Long Short TermMemory (LSTM)–based recurrent neural networks to predict
the real-time taxi demand. Different from traditional prediction, they do not forecast a determin-
istic value, but leverage mixture density networks to predict the probability distribution of taxi
demands. A new neural network training method is applied in Reference [16]. It takes the correla-
tions between space and time into consideration to predict traffic flow. The key idea of the training
method is using the greedy layerwise unsupervised learning scheme to preprocess the deep neural
network layer-by-layer, which reduces training time significantly.

2.2 MEC-based CPS

A tensor-based cooperative mobile computing system is constructed in Reference [28], where
cloud servers are in charge of processing large-scale and long-term data, such as global decision
making. MEC servers process small-scale and short-term data, such as real-time responses. A CPS
stream data processing pattern is proposed in Reference [36], which performs network services in
a distributedmanner through clustering edge devices. By investigatingMEC-based CPS, authors in
Reference [7] jointly study three cost-efficiency problems, including base station association, task
scheduling, and virtual machine deployment. To minimize the overall cost, they formulate the op-
timization problem into a mixed-integer non-linear programming problem and linearize it into
a mixed integer linear programming problem. Offloading in MEC-based vehicular networks has
been well investigated in the past few years. In Reference [20], a non-orthogonal multiple access–
based offloading scheme is designed for vehicular networks. Technologies of spectrum reuse and
efficient computing are leveraged to increase the transmission rate and the offloading efficiency.
Authors in Reference [27] put forward a three-layer real-time traffic management system in vehic-
ular networks. Both parked and moving vehicles are taken into account, and moving vehicles are
modelled as anM/M/1 queue. The optimization target is to minimize the average response time.

2.3 Deep Learning for MEC

The integration of deep learning and MEC has become a hot research area. A deep learning ap-
proach is developed in Reference [15] to find the optimal auction for computation resources of edge
computing in blockchain networks. It devises a monotone transform function to anonymize bid
prices. The softmax function and relu function are applied to compute the probability of winning
and the price for network resources, respectively. The residual battery capability and renewable
energy are considered in Reference [34]. It proposes a post-decision state–based RL algorithm,

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

Intelligent Vehicular Edge Computing 60:5

Fig. 1. The architecture of MEC-based vehicular networks.

which divides the power consumption of computation and green energy charging into two phases
and makes an auto-scaling allocation in the middle state. An RL-based evolved NodeB selection
algorithm is developed by jointly considering the blocking probability, communication rate, and
load balancing [14]. To decrease the number of duplicated contents in networks, a DRL method
for caching in smart cities is designed in Reference [10]. The agent in the system collects the sta-
tus from MEC servers and base stations and learns to choose the optimal action to get the best
policy for resource arrangement. Authors in Reference [9] study the device-to-device communi-
cations and social properties in network communication and design a trust-based social network
framework for networking and computing.
To the best of our knowledge, there are few researches on DRL for vehicular edge computing.

Although researches in References [23] and [11] study the DRL-based networking and caching, our
work focuses on the task scheduling and resource allocation of computation offloading in vehicular
networks, which achieves a good trade-off between the QoE of users and the profit of servers.

3 SYSTEMMODEL

As shown in Figure 1, a city-wide vehicular network can be divided into several zones according to
streets or other criteria. In each zone, there is a central BS with abundant computation resources.
Vehicles can communicate with the BS through Long Term Evolution (LTE). Similar with Refer-
ences [19, 41], we consider that cellular networks can fully cover urban areas. In addition, several
RSUs are deployed along roads within each zone. Note that RSUs are equipped with MEC servers.
Vehicles upload tasks to RSUs based on Dedicated Short Range Communications (DSRC), guar-
anteeing high quality of communications in a short range especially for one-hop communication.
RSUs are connected to each other through relay nodes [31] and obtain global information of ve-
hicular offloading tasks through the relay station. If RSUs merely communicate with vehicles and
BS, then BS has to take the role of traffic management center, resulting in a great burden of com-
munication and processing. For ease of description, we consider one zone in the urban area, and
the model can be easily extended to other zones.
We consider a zone-based vehicular network, including one BS, K RSUs, and U vehicles. With

the computation resources of MEC servers, RSUs can share the computing tasks of the BS, which
helps alleviate the overload of the BS and reduce the communication latency. LetK = {0, 1, . . . ,K }
and U = {1, . . . ,U } be the sets of RSUs and vehicles, respectively. We assume that vehicles only
upload tasks to RSUs through one-hop DSRC when they are in the communication range of RSUs.
In contrast, vehicles outside the communication range of RSUs can upload their tasks to the BS.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

60:6 Z. Ning et al.

We assume that each vehicle spends a period of time to upload its offloading tasks. Let T be
the duration time of communication, which can be divided into Ti time slots. Vehicles can offload
their tasks to the BS or RSUs. Let ai,k (t) denote the connection relationship among vehicles, RSUs
and the BS in time slot t , where ai,k (t) = 1 means that vehicle i connects to RSU k at time t ;
otherwise ai,k (t) = 0. Note that k = 0 indicates the BS is selected for connection. Each vehicle can
only connect to either one RSU or the BS during one time slot, thus the following constraint should
be satisfied: ∑

k ∈K
ai,k (t) = 1,∀i ∈ U . (1)

The whole network is operated by a central controller, such as traditional mobile network op-
erators. Network operators provide services of routing, caching and computing, and profit from
them. Therefore, there is a trade-off between users’ (i.e., vehicles) QoE and the profit of operators.
The purpose of our research is to find the optimal scheduling strategy to maximize the QoE of
vehicles while ensuring the revenue of network operators.
The mobility of vehicles is illustrated as follows. Although vehicles move randomly and their

position changes frequently, their positions have relatively small changes during a short period of
time. In discrete time periods, the movement of vehicles can be viewed as a discrete image that
jumps from one position to the next. Thus, we model the mobility of vehicles by discrete random
jumps, and the corresponding intensity is characterized by the average sojourn time among jumps.
Let Mi,k denote the number of contacts between RSU k and vehicle i within communication time
Ti , which follows a Poisson distribution with parameter λi,k . Herein, λi,k can be viewed as the
connect frequency, accounting for the mobility intensity.
Whenever a vehicle enters or exits the wireless coverage of an RSU, a message is sent to the RSU

to force that RSU to update its management list, and the RSU responds to the vehicle by transmit-
ting a message containing the information of available computing resources. Note that the RSU
may send amessage for denial of service when theMEC server is overloaded. Total communication
time Ti can be divided into two parts: RSU connection time T R

i and BS connection time T B
i .

3.1 Communication Model

Relying on BS, traditional network services will inevitably lead to high delays as the number
of tasks increases. To overcome this communication bottleneck, MEC is leveraged to reduce the
round-trip time of communication between vehicles and servers. In addition, information sharing
between RSUs can also reduce the communication burden of the BS. Considering that the wire-
less connections between vehicles and BS/RSUs are time-varying and memoryless, we model the
channel state as FSMC. There are several parameters that can determine the communication rate,
where the channel gain reflects the channel quality. Let variable γ ki denote the channel gain of the
wireless link between vehicle i and RSU k . Actually, the realistic wireless channel gain is a con-
tinuous variable. In our model, the value range of γ ki is discretized and quantized into L levels. Let

L = {ϒ0, . . . , ϒL−1} denote the state space of Markov chain: ϒ0, if γ
∗
0 � γ ki < γ

∗
1 ; ϒ1, if γ

∗
1 � γ ki < γ

∗
2 ;

. . . ; ϒL−1, if γ
k
i � γ ∗L−1. Furthermore, the realization of channel gain γ ki at time slot t is denoted

by Γki (t). We define the transition probability that Γki (t) changes from one state дs to another hs
asψдs ,hs (t). Here дs and hs are two states of γ

k
i , which belong to L. Therefore, we can obtain the

following L × L channel state transition probability matrix for the communication between vehicle
i and RSU k :

Ψk
i (t) =

[
ψдs ,hs (t)

]
L×L
, (2)

whereψдs ,hs (t) = Pr (Γki (t + 1) = hs | Γki (t) = дs), and дs ,hs ∈ L.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

Intelligent Vehicular Edge Computing 60:7

The limited spectrum resource has not been fully and efficiently utilized in Orthogonal Multiple
Access (OMA) [21]. To handle this problem, NOMA has been proposed as a promising solution
for 5G wireless networks, which is promising to combine the LTE-based Vehicle-to-Everything
(V2X) service and cellular network architectures and reduce the end-to-end latency [6]. NOMA
allows vehicles to access BS non-orthogonally. That is to say, multiple vehicles can upload data
concurrently on the same channel, which improves the spectrum efficiency.
Since each RSU only accesses one vehicle at a time, and BS can serve multiple vehicles at the

same time, we consider that the Orthogonal Frequency Division Multiple Access (OFDMA) tech-
nology is utilized for links between vehicles and RSUs, and the Non-Orthogonal Multiple Access
(NOMA) technology is leveraged for the link between vehicles and the BS. Thus, there is no inter-
ference when vehicles communicate with RSUs. The achievable instant data transmission rate at
time slot t can be calculated by:

υi,k (t) = bi,k (t) log2
�
�1 +

pi,k (t) (Γ
k
i (t))2

σ 2
�
� , (3)

where bi,k (t) represents the orthogonally allocated bandwidth from RSU k to vehicle i , k ∈
K and i ∈ U . Let B denote the whole available bandwidth in the zone. Thus,

∑
i ∈U,k ∈K bi,k (t) �

B. Variable pi,k (t) denotes the transmission power of vehicle i , and σ 2 is Gaussian white noise
power.
To copewith the interference caused by channel sharing amongmultiple vehicles, the Successive

Interference Cancellation (SIC) [24] can be adopted at the end-receivers (i.e., BS). Therefore, the
received signal of BS from vehicle i at time slot t can be computed by:

yi,0 (t) =
√
pi,0 (t)Γ

0
i (t) xi,0 (t) +

∑
n�i,n∈U

√
pn,0 (t)Γ

0
i (t) xn,0 (t) + σ , (4)

where x and y represent the sent signal of vehicles and received signal of BS, respectively. The
first part of yi,0 in Equation (4) is the effective signal from the target vehicle; the second part is the
interference signal from other vehicles sharing this channel; and the third part is the noise.
After receiving the signal, BS performs the SIC decoding scheme to reduce the interference

from other vehicles based on the decreasing order of channel gains [38]. For example, there are
two vehicles ui ,uj ∈ U . If γ 0

i > γ
0
j , then BS treats uj as the interference to ui , and cancels ui after

decoding it. When BS decodes uj , there is no interference. That is, for vehicle i , the interference
signal is a signal set that those vehicles with a smaller equivalent channel gain over it. We consider
that N vehicles share the same channel in the descending order of their channel gains: γ 0

1 � γ 0
2 �

· · · � γ 0
N
. Then the interference signals of vehicle n can be calculated by:

In =
N∑

i=n+1

pi,0
(
γ 0
i

)2
. (5)

We can obtain the data transmission rate between vehicle i and BS as follows:

υi,0 (t) = bi,0 (t) log2
�
�1 +

pi,0 (t) (Γ
k
i (t))2

σ 2 + Ii
�
� . (6)

Finally the communication rate of vehicle i can be obtained by:

Rcomm
i,k (t) = ai,k (t) υi,k (t) ,∀i ∈ U ,k ∈ K . (7)

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

60:8 Z. Ning et al.

The total communication rate of all vehicles accessed to RSU k cannot exceed its capacity, i.e.,∑
i ∈U

Rcomm
i,k (t) � Zk ,∀k ∈ K . (8)

Similarly, the total communication rate of vehicles in a zone cannot exceed the total capacity,
thus the following constraint should be met:∑

k ∈K

∑
i ∈U

Rcomm
i,k (t) � Z . (9)

3.2 Computation Model

In this article, we mainly focus on those applications whose offloading tasks can be divided into
several parts and processed on different platforms, such as online game, augmented reality, and
natural language processing. We define the uploaded computation task of vehicle i as ξi = {di , ci },
where di is the data size of the computation task, and ci is the required number of CPU cycles to
accomplish the task. After that, RSU or BS sends the computation result back to vehicle i . Since
MEC servers are located in the proximity of RSUs, the transmission time between them can be
ignored [26]. Moreover, the output data size of task offloading is often much less than that of input
data size. Thus, the transmission delay of backhaul (i.e., downlink) link is also ignored [2].
We define the computation capability (i.e., CPU cycles per second) of RSUs and BS k allocated to

vehicle i as fi,k . We assume that RSUs work in a preemptive manner, which means that they pro-
cess communication requests of vehicles sequentially (i.e.,

∑
i ∈U ai,k � 1,∀k ∈ K). Despite this,

multiple vehicles may share one MEC server when they move in the wireless coverage of the same
RSU. Due to the resource constraint of MEC servers, it is impossible to guarantee that all vehicles
are provided with full and sufficient computation capabilities. Thus, fi,k can be modelled as a
random variable and divided into N levels: ε = {ε0, ε1, . . . , εN−1}, where N denotes the number of
available computation capability states. Let Fi,k (t) be the instant computation capability at time

slot t . Similar to channel gain γ ki , we model fi,k as FSMC. The computation capability transition
probability matrix of instant computation capability Fi,k (t) is presented as:

Θi,k (t) = [θxs ,ys (t)]N×N , (10)

where θxs ,ys (t) = Pr (Fi,k (t + 1) = ys | Fi,k (t) = xs), and xs ,ys ∈ ε .
The task execution time of computation task ξi at RSU k can be calculated by: Δi,k = ci/fi,k .

Thus, the computation rate (i.e., bits per second) can be obtained by:

r
comp

i,k
=

di
Δi,k

=
fi,kdi

ci
. (11)

The instant computation rate of RSU k for vehicle i at time slot t is expressed as:

R
comp

i,k
(t) = ai,k (t)r

comp

i,k
(t) = ai,k (t)

Fi,k (t)di
ci

, (12)

where the data size of concurrent computation on the MEC server cannot exceed its computation
capacity. Therefore, the following constraint should be satisfied:∑

i ∈U
ai,k (t)di � Dk ,∀k ∈ K , (13)

whereDk denotes themaximumdata size that can be simultaneously processed on theMEC server.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

Intelligent Vehicular Edge Computing 60:9

4 PROBLEM FORMULATION

We formulate the optimization problem in this section. Since the matching problem over a period
of time is an NP-hard problem, the original problem is divided into two sub-optimization problems.

4.1 Optimization Objective

When a moving vehicle generates an offloading task, it detects available RSUs and BS around
and records the task-related information as well as available computing resource information.
Then, it sends this event to the nearby BS over LTE. After BS receives details of this event, it will
immediately perform resource allocation and broadcast the obtained schedule through RSUs in
a zone. Traditional BS is in charge of all tasks execution, which may cause a large traffic delay
and excessive energy consumption. Not only the user’s QoE cannot be guaranteed, but also the
network operator’s profit is very low. To maximize the QoE of vehicles while guaranteeing the
revenue of network operators (i.e., RSUs and BS in this article), a cooperative offloading network
system is constructed. The instant QoE of vehicles at time slot t can be obtained by:

Ri,k (t) = Rcomm
i,k (t) + Rcomp

i,k
(t). (14)

The joint optimization problem of Traffic Scheduling and Resource Allocation (TSRA) in our
system is formulated as follows:

max
ai,k (t)

R =
∑
i ∈U

∑
k ∈K

Mi,k∑
t=1

Ri,k (t), (15)

s.t. =

{
ai,k (t) ∈ {0, 1},∀i ∈ U ,k ∈ K ,
Equations (1) , (8) , (9) , (13) .

Since the formulated TSRA problem is constrained by different factors, coupled variables make
the optimization problem difficult to resolve. To address this issue and make a trade-off between
QoE of users and the revenue of network operators, we divide the original TSRA problem into
two sub-optimization problems. In the first stage, we decide the priority of multiple vehicles by
designing a utility function. Then, we leverage the improved Deep Q-Network (DQN) algorithm
to obtain the scheduling results and map each user to the corresponding RSU or BS.

4.2 Offloading Task Scheduling

It is common for multiple vehicles to select the same RSU at one time slot, leading to constraint (1)
not being satisfied. Therefore, the first sub-optimization problem takes QoE of users into account
and attempts to find a reasonable scheduling list of all vehicles without conflicting with each other.
We define a flexible utility function as the user satisfaction level. The value of the utility function

depends on the task, communication channel state, and distance between the vehicle and the RSU.
There are four parameters in the utility function: priority, urgency, channel gain, and distance.
Channel gain γ ki has been introduced in Section III-C, which reflects the communication channel
state. Distance �di,k is the Euclidean distance between the vehicle and the RSU or BS. Priority π (p)
sets the upper bound of the utility function, where priority level p ∈ {critical ,hiдh,medium, low }.
If an offloading request of a vehicle is responded to immediately, then its utility function takes
the upper bound of the corresponding task priority level, denoted by π (p). Otherwise, the value
of its utility function will decrease over time. Urgency ρ (r) is defined to model the exponential
decay rate of vehicles’ utility functions with the increase of response delay, where urgency level
r ∈ {extreme,hiдh,medium, low }. The higher the urgency level of the task is, the faster the utility
function decreases as the delay increases. The value of utility functions with different urgency
levels is illustrated in Reference [12] when the task priority level is fixed.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

60:10 Z. Ning et al.

As illustrated in Reference [29], it is critical to incorporate the sigmoidal behavior into the ve-
hicles’ utility function for resource allocation. We adopt the sigmoid-like function to model the

utility of vehicle i ∈ U with parameters priority π (i) (p), urgency ρ (i) (r), channel gain γ ki , and
distance �di,k as follows:

Yi,k =
π (i) (p)

�di,k + exp(−ρ (i) (r) (γ ki − bi,k))
, (16)

where constant parameter bi,k is used to fine-tune the utility function. Parameter π (i) (p) is similar

to the traditional weight factor, and ρ (i) (r) controls the steepness ofYi,k . The larger ρ (i) (r) is, the
faster Yi,k increases with γ ki .
We aim to maximize the average value of vehicles’ utilities. The optimization function is as

follows:

max
1

|U |
∑
i ∈U

ai,kYi,k , (17)

s.t. =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p ∈ {critical ,hiдh,medium, low },
r ∈ {extreme,hiдh,medium, low },
0 < �di,k � Δ,
ai,k ∈ {0, 1},∀i ∈ U ,∑

i ∈U ai,k (t) = 1,∀k ∈ K ,
Equation (1),

where Δ indicates the radius of RSUs’ wireless coverages. When vehicles independently select
different RSUs, there are different utility values, and vehicles strive to maximize their utilities to
ensure their own QoE. Due to the constraint that one RSU can only be accessed by one vehicle at
one time, it may conflict among offloading decisions.

4.3 Deep Reinforcement Learning–based Offloading

In this subsection, we formulate the resource allocation optimization problem as a DRL process.
After obtaining the service queue of vehicles by solving the task scheduling problem, we aim to
maximize the overall QoE of vehicles by determining the offloading decision of vehicles. Since
variables, the immense space of environment states, and system actions change dynamically over
time, it is almost impossible to solve this complicated problem with traditional optimization meth-
ods. Thus, we take advantage of the recent progressive DQN to yield system actions for vehicles
effectively and efficiently.
To reduce the round trip time, vehicles select the BS as the agent of DQN, responsible for in-

teracting with the environment and making decisions. We assume that the computing state of the
MEC server is updated in real time and shared among RSUs. The agent collects the status from
MEC servers and vehicles. The mobility of vehicles is obtained in real time through broadcast-
ing, as mentioned before. After that, the agent can make the offloading decision by constructing
the system state and choosing the optimal action. Finally, all optimal actions can be broadcast to
vehicles.
In the following, we identify the system state, actions, and the reward function in our DQN

model:

(1) System State
The state of communication channel gain and available computing capabilities are deter-
mined by the realization of channel gain γ ki and computation capability fi,k , respectively.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

Intelligent Vehicular Edge Computing 60:11

Consequently, the composite state χi (t) ∈ R2×K can be expressed as follows:

χi (t) = [Γ1i (t), Γ
2
i (t), . . . , Γ

K
i (t), Fi,1 (t), Fi,2 (t), . . . , Fi,K (t)]. (18)

(2) System Action
In a DQN, the agent is responsible to choose RSUs or BS to process the offloading task of
vehicle i . The offloading assignment is defined as a vector of binary variable ai,k (t), which
is presented by:

ai (t) = [ai,1 (t),ai,2 (t), . . . ,ai,K (t)]. (19)

(3) Reward Function
We aim to maximize the comprehensive QoE of vehicles, including the lease cost of the
spectrum bandwidth and the computing resource. Therefore, QoE Ri (t) is set as the reward
of our system. In addition, network operators charge vehicles for task execution and virtual
network accessing. Their unit prices are defined as ϕi per Mbps and τi per Mbps, respec-
tively. However, operators need to pay for bandwidth leasing, defined as δk per Hz for RSU
k . In addition, the energy consumption of task execution should be taken into consideration.
The unit cost of computation for RSU k is denoted by ηk per Joule. For unification, ςk is de-
fined as the energy consumption of running one CPU cycle for RSU k , whose unit is Watts
per Hz. What is more, the proportion of offloading tasks handled by RSUs is represented by
ϱi . We assume that offloading tasks can be divided into several parts and processed by MEC
servers and BS separately. When vehicles drive out of the communication range of RSUs
before accomplishing the offloading task, BS can continue to process the remaining tasks.
Finally, we define the reward function of vehicle i as:

Ri (t) =
∑
k ∈K
Rcomm
i,k (t) +

∑
k ∈K
Rcomp

i,k
(t)

=

K∑
k=1

(
τiR

comm
i,k − δkbi,k (t)

)
+
(
τiR

comm
i,0 − δkbi,0 (t)

)

+

K∑
k=1

(
ϱiϕiR

comp

i,k
− ηkci,kςk

)
+
(
(1 − ϱi)ϕiRcomp

i,0 − η0ci,0ς0
)

=

K∑
k=1

�
�τibi,k (t) log2

�
�1 +

pi,k (t) (Γ
k
i (t))

2

σ 2
�
� − δkbi,k (t)

�
�

+ ��τibi,0 (t) log2
�
�1 +

pi,0 (t) (Γ
k
i (t))

2

σ 2 + Ii
�
� − δkbi,k (t)

�
�

+

K∑
k=1

ai,k (t)ϱi

(
ϕi

Fi,k (t)di
ci

− ηkci,kςk
)
+ ai,0 (t) (1 − ϱi)

(
ϕi

Fi,0 (t)di
ci

− η0ci,0ς0
)
.

(20)

The agent can obtain immediate reward Ri (t) by performing the chosen action ai,k (t) at time
slot t . The goal of DQN is tomaximize the cumulative reward through obtaining the optimal policy.
Thus, the optimization problem can be formulated as follows:

Ri = max
ai,k (t)

T−1∑
t=0

ϵtRi,k (t), (21)

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

60:12 Z. Ning et al.

s.t. =
⎧⎪⎪⎨⎪⎪⎩
ai,k ∈ {0, 1},∀k ∈ K ,
0 � ϱi � 1,∀i ∈ U ,
Equation (8) , (9) , (13) ,

where parameter ϵ is the weight of QoE in each time slot , ϵ ∈ (0, 1].

5 INTEGRATED DEEP REINFORCEMENT LEARNING IN VEHICULAR NETWORKS

Before solving the formulated problem, this section briefly introduces the overview of RL and
integrated DQN in vehicular networks.

5.1 Reinforcement Learning in Vehicular Networks

There are four key elements in RL: agents, environment states, rewards, and actions. For each
episode, the agent chooses an action according to the current environment state and can get a re-
ward after executing the chosen action. The environment states are typically modeled as a Markov
Decision Process (MDP). As a result, an RL problem can be formulated as an optimal control prob-
lem in MDP. The space of environment states and actions are finite and explicit. The purpose of
leveraging RL for the agent is to maximize the total reward by taking a series of actions when
it interacts with the environment [39]. Since the computing and caching capabilities of vehicles
are limited, it is unreasonable to deploy the computation-intensive deep neural networks applica-
tions at each vehicle. Therefore, BS plays the role of the agent in our model, which intends to gain
profit (i.e., reward) through providing network services. Time-varying parameters channel state
γ ki and computation capability fi,k are environment states. The action space is available offloading
servers. The BS chooses actions to schedule vehicles for profit maximization. It can be viewed as
a typically RL problem.
Different from traditional machine learning methods (such as supervised learning), RL cannot

learn from tagged historical data even when they are provided by an experienced supervisor. The
trial-and-error search and the delayed reward are two remarkable features of RL [11]. The former is
tomake a trade-off between exploration and exploitation; the latter allows the agent to consider the
accumulated rewards of vehicles. Generally, RL algorithms include Q learning, SARSA, and DQN.

5.2 Integrated DQN

Traditional DRL has many drawbacks in practical applications, such as slow convergence and
overestimation. We adopt two methods to improve the DQN algorithm.

5.2.1 Dropout Regularization. Regularization decreases the number of network parameters and
transforms deep and complex neural networks into linear and simple networks to reduce the vari-
ance of DQN. After that, the parameter matrix becomes a sparse matrix. In our model, dropout
regularization reduces the complexity of parameter matrix θ by inactivating random parts of neu-
rons and setting their weights to zero. Since neurons are randomly discarded in each layer, the
trained neural network is much smaller than the normal network, and the over-fitting problem
can be avoided. In addition, the whole network cannot be biased towards certain features (e.g.,
the weight values of features are very large), because every feature can be discarded in dropout
regularization. Thus, the weight of each feature can be given a small value and is similar to L2 regu-
larization (| |θ | |22 =

∑#neurons
j=1 θ 2j = θ

Tθ). The most significant parameter in dropout regularization

is inactivation probability. For example, if we set the inactivation probability to 0.2, 20 percent
neurons can be inactivated. Random inactivation will reduce the expected result value. When we
perform dropout regularization on the hidden layer, the expected value of its output decreases by
the inactivation probability, which affects future predictions. Thus, we divide the result by inacti-
vation probability to keep its expected value unchanged. The specific implementation is as follows:

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

Intelligent Vehicular Edge Computing 60:13

Fig. 2. The procedure of the intelligent offloading system.

keep.prob = 0.8;

d3 = np.random.rand(a3.shape[0],a3.shape[1]) < keep.prob;

a3 = np.multiply(a3,d3);

a3 = a3/keep.prob;

z4 = np.dot(w4,a3) + b4.

(22)

5.2.2 Double DQN (DDQN). Based on the framework of Q learning, DQN uses convolutional
neural networks to represent the action-value function. However, DQN cannot overcome the in-
herent shortcomings of Q learning, i.e., overestimation.
To solve this problem, Hasselt [25] proposes DDQN to evaluate the selection of actions and

the evaluation of actions by using different value functions. We compare the differences among Q
learning, DQN, and DDQN from the formulation value function as follows:

Y
Q
t = Rt + γ max

a
Q (St+1,a;θt),

Y
DQN
t = Rt + γ max

a′
Q (St+1,a′;θ−t),

Y
DDQN
t = Rt + γQ

(
St+1, argmax

a
Q (St+1,a;θt);θ−t

)
.

(23)

In both Q learning and DQN, their action selection strategies are greedy. However, DDQN uses
a neural network to evaluate the selection strategy and approximates the true value function.

6 A DEEP REINFORCEMENT LEARNING–BASED INTELLIGENT OFFLOADING

SYSTEM

We have formulated the TSRA problem in Section 3 and divided it into two sub-optimization prob-
lems. In this section, we illustrate the intelligent offloading system, which contains two modules.
The first one is task scheduling among multiple vehicles, and a two-sided matching algorithm is
proposed to solve it. The second is resource allocation, and we implement the integrated DRL
method to resolve it.

6.1 System Overview

The whole offloading procedure is presented in Figure 2. On the first step, all vehicles broadcast
their position information and update their available RSUs list. After that, vehicles calculate util-

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

60:14 Z. Ning et al.

Table 1. System Variables

Variable Description
Vi Vehicle i
k RSU k
qv The number of RSUs that one vehicle can access simultaneously
qR The number of vehicles that one RSU can serve simultaneously
Pi The preference list of vehicle i
Yi,k The utility value of vehicle i with the serving of RSU k
Ak The accepted set of RSU k
Fk The forbidden list of RSU k
θ The weights of the evaluated Deep Q-Network
θ− The weights of the target Deep Q-Network

ity values and construct the corresponding preference list. Then, they send the offloading requests
to BS. On the third step, BS performs task scheduling and resource allocation and sends the task
assignment to RSUs. Finally, all vehicles send their offloading tasks to the corresponding RSUs.
Table 1 summarizes the mainly used system variables in this paper. The pseudo-code of our intel-
ligent offloading system is shown in Algorithm 1.

ALGORITHM 1: The Pseudo-code of the Intelligent Offloading System.

Vehicles broadcast their position information;

Vehicles send offloading requests to BS;

Task scheduling = Algorithm 3;

for each vehicle i in Task scheduling do

Algorithm 4;

end

BS sends task assignments to RSUs;

RSUs perform computation offloading;

6.2 Two-sided Matching for Task Scheduling

To resolve occurred conflicts during the scheduling of offloading requests, the scheduling process
is modelled as a two-sided matching model, and a Dynamic V2I Matching algorithm (DVIM) is
developed to find the optimal match. We consider that a vehicle can access up to qv RSUs simul-
taneously. An RSU can serve at most qR vehicles at one time. In addition, each RSU maintains two
lists: forbidden list Fk and accepted set Ak . Traditional static matching algorithms traverse the
complete set every time, which is time-consuming and wastes computing resources. To reduce the
computational complexity of our designed algorithm, users rejected by RSU k are added to the for-
bidden list. By default, they cannot be selected again in this round. Similarly, the accepted list is
leveraged to record current accepted offloading requests by RSU k .
We now elaborate the whole process of the DVIM algorithm. It starts with the initialization

of the forbidden list and accepted set. Next, each vehicle calculates its utility Yi,k if its task is
offloaded to RSU k , then all vehicles construct their preference list Pi in descending order ofYi,k .
In the matching iteration phase, each vehicle that has been matched with less than qv RSUs sends
offloading requests to the most preferred RSU in Pi and then removes this RSU from the preference
list of this vehicle. After all vehicles propose their requests, RSUs that have received proposals will

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

Intelligent Vehicular Edge Computing 60:15

ALGORITHM 2: The Pseudo-code of the Utility-based Selection Algorithm.

for each vehicle i = 1, 2, . . . ,U do

if vehicle i-matched-number < qv and Pi � ∅ then

Vehicle i proposes itself to Pi [1];
vehicle-propose = 1;

Remove Pi [1] from Pi ;
for each RSU k = 1, 2, . . . ,K do

if RSU khas received any proposal, denoted as Vi then
if Yk ({Vi } ∪ Ak)) > Yk ((Ak)) then

RSU k accepts the proposal from Vi ;

if | Ak |� qR then

for each vehicle i ∈ Ak do

Calculate Yk ((Ak \Vi));
end

Find the largest utility function in the above loop, denoted as Yk ((Ak \Vn));
Opposite number RSU k unmatch with Vn ;

Add vehicle n into Fk ;
end

else

Refuse the proposal from Vm ;

Add vehiclem into Fk ;
end

end

end

end

end

end

decide whether to accept them or not. Generally, RSUs accept those proposals that can increase
overall utility values. If RSU k has already matched up with qR vehicles, then it will unmatch with
the least important vehicle. Then all responses will be sent back to vehicles. Vehicles continue to
send requests when they match with less than qv RSUs and their preference lists are not empty.
The algorithm terminates when no more vehicles would like to send offloading requests.

6.3 Deep Reinforcement Learning–based Mobility-Aware Offloading

The second sub-optimization problem is a joint optimization problem of resource allocation and
offloading decision based on Markov chains. It is complicated when environment states in a se-
ries of time slots are taken into account. Therefore, an improved DRL method is designed. First,
experience replay memory D is initialized, which can hold N transitions. Action-value function
Q is initialized with random weight θ , and the target Q-network used to calculate the Tempo-
ral Difference (TD) target is also initialized with the same weight, i.e., θ− = θ . Next, offloading
requests are scheduled in the task. For each step in one event, a random RSU is selected from
the available accessing list with probability ε . Otherwise, a greedy strategy is leveraged to se-
lect the RSU with the largest Q-value of the current action-value function. After RSU k is cho-
sen, the immediate reward rt as well as the next states is observed. Therefore, a set of tran-
sition (observation,action, reward,next observation) can be obtained and stored in the replay
buffer. In the neural network learning phase, DQN randomly samples a mini-batch transition

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

60:16 Z. Ning et al.

ALGORITHM 3: The Pseudo-code of the DVIM Algorithm.

Initialize the forbidden list Fk to be empty;

Initialize the accepted set Ak to be empty;

for each vehicle i = 1, 2, . . . ,U do

for each RSU k = 1, 2, . . . ,K do

if vehicle i � Fk then

Calculate utility function value Yk (Vi);
end

end

end

Vehicle i constructs preference list Pi ;
matching-iteration = 1;

vehicle-propose = 0;

while matching-iteration = 1 or vehicle-propose = 1 do

matching-iteration += 1;

Algorithm 1;

end

from replay buffer D. For each sample, whether the next state is the termination state of the
event should be determined. If so, the TD target is r j , otherwise the target DQN is used to cal-
culate the TD target: yj = r j + γQ (x j+1,arдmaxa′ Q (x j+1,a′;θ);θ−). Then gradient descent with
the goal of minimizing the variance-error is performed to update the evaluated Q-network pa-
rameters: Δθ = α[r + γ maxa′ Q (s ′,a′;θ−) − Q (s,a;θ)]�Q (s,a;θ). Finally, the TD target network
parameters and random probability ε are updated everyC steps, which guarantees that the target
Q-network fits the action-value function well and accelerates the convergence speed. The above
process is shown in Algorithm 4.

7 PEFORMANCE EVALUATION

In this section, the performance of our proposed algorithms, i.e., DVIM andMobility-AwareDouble
DQN (MADD), are evaluated. For the first module, we compare DVIM algorithm with exhaustive
searching, a greedy method, and a random sorting method. Simulation results demonstrate that
DVIM achieves a good trade-off between network performance and execution time. For the sec-
ond module, MADD is evaluated to be superior to traditional DQN, Q learning, and two baseline
algorithms.

7.1 Simulation Setup

Before implementing DVIM algorithm, parameters in the function (Equation (17)) are clarified.
Authors in Reference [12] provide a joint probability distribution, where most offloading tasks
havemedium or low priorities and urgencies. Generally, significant tasks, such as traffic jams or
even traffic accidents, have critical or hiдh priorities and extreme or hiдh urgencies. Therefore,
we set the ratio of tasks at different levels as [0.1, 0.2, 0.4, 0.3] [12].

Priority levels define the maximum utility value that the offloading task can achieve, which

are set by π (i) (critical) = 8,π (i) (hiдh) = 4,π (i) (medium) = 8,π (i) (low) = 1. Urgency levels de-

termine the exponential decay rate of the utility function, which are set by ρ (i) (extreme) =
0.6, ρ (i) (hiдh) = 0.2, ρ (i) (medium) = 0.1, ρ (i) (low) = 0.01 [12]. Furthermore, we consider that
there are five RSUs and some vehicles with computation offloading requests within the communi-
cation range of BS. Performance indicators are as follows:

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

Intelligent Vehicular Edge Computing 60:17

ALGORITHM 4: The Pseudo-code of the Mobility-Aware DDQN.

Input: system states χi (t), available action space K ;

Output: maximum QoE Ri ;
Initialize the experience replay buffer D into capacity N ;

Initialize the evaluated Deep Q-Network with weights θ ;

Initialize the target Deep Q-Network with weights θ− = θ ;

for each episode i = 1, 2, . . . ,U do

Initialize observation s1, and pre-process sequence x1 = φ (s1);

for t = 1, 2, . . . ,T − 1 do
With probability ε select a random action ai,k (t) ;

Otherwise, select at = arдmaxai,k (t) Q (x ,a;θ);
Execute action ai,k (t) ;

Observe the immediate reward rt = Ri (t) and the next observation st+1.;

Process st+1 to be the next state xt+1 = φ (st+1)).;

Store transition (xt ,at , rt ,xt+1) into D;

Sample random mini-batch of transitions (x j ,ai , r j ,x j+1) from D;

if episode terminates at step j + 1 then
the target Q-value yj = r j ;

end

else

yj = r j + γQ (x j+1,arдmaxa′ Q ((x j+1,a′;θ));θ−);
end

Perform gradient decent on (yj − Q ((x j ,aj ;θ)))2;
Every C steps, update the target Deep Q-Network parameters and probability ε with rate σ and μ;

θ− = σθ + (1 − σ) θ−,
ε = ε − με .

end

end

(1) Total utilities: The optimization target of the DVIM algorithm is to maximize total utilities
of all vehicles, which measures QoE of users.

(2) Execution time: The time consumed for algorithms to obtain the task scheduling result.
(3) Average QoE: Average profit earned by network operators from vehicles.

For the second module, the key parameters are stated in Table 2. The transition probability
matrix is set as follows [11]:

Θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.25 0.125 0.0625 0.0625
0.0625 0.5 0.25 0.125 0.0625
0.0625 0.0625 0.5 0.25 0.125
0.125 0.0625 0.0625 0.5 0.25
0.25 0.125 0.0625 0.0625 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For communication states, we set transition probabilityγ ki = 0.7, andψдs ,hs (t) = 0.3. To implement
the DDQN-based MADD algorithm, TensorFlow 0.12.1 is employed with Python Anaconda 4.3 on
Ubuntu 16.04 LTS. Four schemes are compared with the MADD algorithm:

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

60:18 Z. Ning et al.

Table 2. Simulation Parameters

Parameter Value Description
U 10 The number of vehicles.
K 5 The number of RSUs.
di 10MB The data size of the offloading task.
ci 100Mcycles Required CPU cycles to complete a task.

bi,k /bi,0 1/4MHz The bandwidth of RSU k/BS allocated to vehicle i .
τi,k /τi,0 10/20 units/Mbps The unit charging-price for accessing the virtual network.
δi,k /δi,0 2/20 units/MHz The unit paid-price for leasing bandwidth.
ϕk /ϕ0 20/10 units/Mbps The unit charging-price for task execution.
ηk /η0 0.3/1 units/J The unit paid-price for energy consumption of computation.
ςk /ς0 0.1/0.2 W/Hz The unit energy consumption of running one CPU cycle.
fi,k [10,12,14,16,18]GHz The realization of the computation capability.

Fig. 3. Comparison of total utilities under different numbers of vehicles.

(1) DQN: Traditional DQNmethods use one value function to evaluate the selection of actions.
Generally, DQN methods tend to choose the action that maximizes the reward value of the
next step, leading to overestimation inevitably.

(2) Q learning: As a classic temporal difference algorithm, it always chooses the largest action
value at the next moment as the target. In addition, it also needs to record rewards of all
state-action pairs.

(3) A greedy method: Contrary to reinforcement learning, the greedy algorithm chooses the
action with the largest reward value at the current moment.

(4) Local computing: It is a baseline algorithm, where all vehicles offload their tasks to the local
BS.

7.2 Simulation Results

This subsection illustrates the performance evaluation of the intelligent offloading system, includ-
ing two modules: task scheduling and resource allocation.
Figure 3 shows the comparison of total utilities under different numbers of vehicles. When

the number of vehicles is relatively small, DVIM algorithm can almost perform as well as the

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

Intelligent Vehicular Edge Computing 60:19

Fig. 4. Comparison of total utilities in different types of vehicular networks.

exhaustive algorithm. Due to the randomness of the offloading task, total utilities increase non-
linearly with the increasing number of vehicles. When the number of vehicles is large (e.g., U
= 9), DVIM algorithm still maintains a good performance, which is only 5% lower than that of
the exhaustive algorithm. The greedy algorithm has a declined performance due to the increased
resource competition. The total utility of DVIM is 22% higher than that of the greedy method. In
summary, the performance of our proposed DVIM algorithm is close to the exhaustive algorithm.
It is superior to the greedy algorithm and the random algorithm, when the number of vehicles is
relatively large, i.e., the resource competition is fierce.
Figure 4 illustrates the comparison of total utilities in different types of vehicular networks. In

normal vehicular networks, the proportion of the four-level offloading tasks (critical or extreme ,
hiдh,medium, and low) is [0.1,0.2,0.4,0.3]. According to Reference [12], it is reasonable to assume
that 70% of tasks have medium or low priorities as well as urgencies. The result of the exhaus-
tive algorithm can be viewed as the upper bound. The proposed DVIM algorithm can achieve 98%
of the upper bound performance. It is 20% better than that of the greedy algorithm, and nearly
50% better than that of the random algorithm. In a local area or within a specific time period
(e.g., morning and evening traffic peaks), the proportion of tasks in each level changes with the
state of vehicular networks. High priority and urgent tasks related to traffic jams or accidents are
uploaded frequently. Thus, we also evaluate the performance of the DVIM algorithm in uniform
and urgent vehicular networks, where proportions are [0.25,0.25,0.25,0.25] and [0.4,0.4,0.1,0.1], re-
spectively. In uniform vehicular networks, the performance of DVIM is 3.4% lower than that of the
exhaustive searching and 41% higher than that of the greedymethod. In urgent vehicular networks,
DVIM can reach 93% of the upper bound, and increase 65% comparing with the greedy method.
The priority and urgency levels of offloading tasks in a normal environment are lower than their
counterparts in uniform and urgent environments. Therefore, the achievable upper bound of util-
ities is lower than those of the other two circumstances. In summary, considering both personal
priority and overall utilities, the performance of the DVIM algorithm can approximate to the up-
per bound obtained by the exhaustive algorithm and is 40% higher on average than the greedy
algorithm.
Execution time of different algorithms is compared in Figure 5. When there are five vehicles,

the execution time differences among the proposed DVIM, the greedy method, and the random
method are very close. The execution time of exhaustive searching is 10 times higher than that of
the other three algorithms. Moreover, the execution time of DVIM, the greedy method, and the

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

60:20 Z. Ning et al.

Fig. 5. Execution time of different algorithms.

Fig. 6. The average QoE varying from offloading data size.

randommethod grows slowly with the increasing number of vehicles, while that of the exhaustive
method grows exponentially, since the searching space increases dramatically. When the number
of vehicles equals to 10, the execution time of exhaustive searching is 500 times higher than that of
the other three algorithms. Although the exhaustive method can reach the upper bound, it is not
practical due to its high time complexity. In addition, it is demonstrated that our proposed DVIM
algorithm can approximate to the performance of the exhaustive algorithm with much lower time
consumption.
Figure 6 shows the effect of offloading data size di , varying from 10MB to 60MB. The overall

average QoE grows steadily with the increase of data size. The increasing speed of local computing
(i.e., all computation tasks are fulfilled by the BS) is the slowest among schemes. This is because
BS consumes more resources and energy than RSUs to transmit and compute large amounts of
data. With the burgeoning requirement of proximity and preemptive services, RSUs are suitable
to deal with large amounts of data. Since the DQN method cannot overcome the drawback of
overestimation, the performance of our proposed MADD algorithm is 15% higher than that of the
DQNmethod on average. Q learning and the greedymethod do not fully take the dynamic changes
of network states into account, whose performances are 25% and 35% lower than that of theMADD

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

Intelligent Vehicular Edge Computing 60:21

Fig. 7. The average QoE varying from the unit charging-price for virtual network accessing.

Fig. 8. The average QoE varying from the unit charging-price for task execution.

algorithm, respectively. In summary, the proposed MADD algorithm performs better than other
existing schemes. When the amount of the offloading data increases, the performance advantage
increases.
As shown in Figure 7, we evaluate the average QoE of vehicles varying with the change of

unit charging-price τi,k for virtual network accessing. We notice that the accessing fee is doubled
from 10 to 20, the overall QoE obtained by MADD only increases by 6.5% and 5.2% when the
accessing fee increases from 50 to 60. Thus, it is unreasonable that network operators gain more
profit by increasing the accessing fee without restriction. When the unit charging price is high,
price increasing may prompt users to choose BS.
The effect of ϕk , which is the unit charging price for task execution of RSU k , is shown in

Figure 8. When ϕk rises, the incoming of MEC-based offloading generally increases. Therefore, the
average QoE increases linearly with the rise of the unit charging price for task execution. Since
local computing does not occupy MEC servers, the average QoE stays the same. The performance
of the proposed MADD algorithm is about 12% and 20% higher than those of the DQN method
and the greedy method, respectively. This is because the target network is built separately, and the

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

60:22 Z. Ning et al.

overestimation problem is solved by applyingDDQN frameworks. In general, theMADDalgorithm
performs well in the local vehicular networks.

8 CONCLUSION

In this article, we focus on deep reinforcement learning for vehicular edge computing and con-
struct an intelligent offloading system. Network states are modeled as finite-state Markov chains.
The mobility of vehicles and non-orthogonal multiple access are also taken into consideration.
The offloading system contains two modules, i.e., task scheduling module and resource allocation
module. The joint optimization problem for these two modules is formulated with the objective
of maximizing total QoE of vehicles. Due to the NP-hardness of the formulated problem, it is
divided into two sub-optimization problems. For the first one, a two-sided matching approach
is designed to schedule offloading requests, with the purpose of maximizing utilities of vehi-
cles. A DDQN-based algorithm is developed to solve the second sub-problem. Numerical results
demonstrate that the matching algorithm in the first module can reach 95% of the exhaustive al-
gorithm in different network scenarios and decrease the execution time by more than 90%. For the
second module, DDQN-based algorithm performs 10% to 15% better than that of the traditional
DQN method. Therefore, our offloading system is efficient and effective. In our future work, we
will consider how to realize energy-efficient vehicular edge computing with favorable security
[32, 33].

REFERENCES

[1] Zhiguang Cao, Hongliang Guo, and Jie Zhang. 2018. A multiagent-based approach for vehicle routing by considering

both arriving on time and total travel time. ACM Trans. Intell. Syst. Technol. 9, 3 (2018), 25.

[2] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. 2016. Efficient multi-user computation offloading for mobile-edge

cloud computing. IEEE/ACM Trans. Netw. 5 (2016), 2795–2808.

[3] Ruilong Deng, Rongxing Lu, Chengzhe Lai, and Tom H. Luan. 2015. Towards power consumption-delay tradeoff by

workload allocation in cloud-fog computing. In Proceedings of the IEEE International Conference on Communications

(ICC’15). IEEE, 3909–3914.

[4] Ruilong Deng, Rongxing Lu, Chengzhe Lai, Tom H. Luan, and Hao Liang. 2016. Optimal workload allocation in fog-

cloud computing toward balanced delay and power consumption. IEEE Int. Things J. 3, 6 (2016), 1171–1181.

[5] Ruilong Deng, Zaiyue Yang, Jiming Chen, Navid Rahbari Asr, and Mo-Yuen Chow. 2014. Residential energy con-

sumption scheduling: A coupled-constraint game approach. IEEE Trans. Smart Grid 5, 3 (2014), 1340–1350.

[6] Boya Di, Lingyang Song, Yonghui Li, and Geoffrey Ye Li. 2017. Non-orthogonal multiple access for high-reliable and

low-latency V2X communications in 5G systems. IEEE J. Select. Areas Commun. 35, 10 (2017), 2383–2397.

[7] Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. 2017. Cost efficient resource management in fog

computing supported medical cyber-physical system. IEEE Trans. Emerg. Topics Comput. 5, 1 (2017), 108–119.

[8] Gabriel Guerrero-Contreras, Jose Luis Garrido, Sara Balderas-Diaz, and Carlos Rodriguez-Dominguez. 2017. A

context-aware architecture supporting service availability in mobile cloud computing. IEEE Trans. Serv. Comput. 10,

6 (2017), 956–968.

[9] Ying He, Chengchao Liang, Richard Yu, and Zhu Han. 2018. Trust-based social networks with computing, caching,

and communications: A deep reinforcement learning approach. IEEE Trans. Netw. Sci. Eng. DOI:10.1109/TNSE.2018.
2865183

[10] Ying He, F. Richard Yu, Nan Zhao, Victor C. M. Leung, and Hongxi Yin. 2017. Software-defined networks with mobile

edge computing and caching for smart cities: A big data deep reinforcement learning approach. IEEE Commun. Mag.

55, 12 (2017), 31–37.

[11] Ying He, Nan Zhao, and Hongxi Yin. 2018. Integrated networking, caching, and computing for connected vehicles:

A deep reinforcement learning approach. IEEE Trans. Vehic. Technol. 67, 1 (2018), 44–55.

[12] Bhavesh Khemka, Ryan Friese, Luis D. Briceno, Howard Jay Siegel, Anthony A. Maciejewski, Gregory A. Koenig,

Chris Groer, Gene Okonski, Marcia M. Hilton, Rajendra Rambharos et al. 2015. Utility functions and resource man-

agement in an oversubscribed heterogeneous computing environment. IEEE Trans. Comput. 64, 8 (2015), 2394–2407.

[13] Jun Li, Xue Mei, Danil Prokhorov, and Dacheng Tao. 2017. Deep neural network for structural prediction and lane

detection in traffic scene. IEEE Trans. Neural Netw. Learn. Syst. 28, 3 (2017), 690–703.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

https://doi.org/10.1109/TNSE.2018.2865183
https://doi.org/10.1109/TNSE.2018.2865183

Intelligent Vehicular Edge Computing 60:23

[14] Yu-Jui Liu, Shin-Ming Cheng, and Yu-Lin Hsueh. 2017. eNB selection for machine type communications using rein-

forcement learning based Markov decision process. IEEE Trans. Vehic. Technol. 66, 12 (2017), 11330–11338.

[15] Nguyen Cong Luong, Zehui Xiong, PingWang, and Dusit Niyato. 2018. Optimal auction for edge computing resource

management in mobile blockchain networks: A deep learning approach. In Proceedings of the IEEE International Con-

ference on Communications (ICC’18). IEEE, 1–6.

[16] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, Fei-Yue Wang et al. 2015. Traffic flow prediction with big data:

A deep learning approach. IEEE Trans. Intell. Transport. Syst. 16, 2 (2015), 865–873.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,

Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski et al. 2015. Human-level control through deep reinforce-

ment learning. Nature 518, 7540 (2015), 529.

[18] K. Mohamed, Etienne Côme, Latifa Oukhellou, and Michel Verleysen. 2017. Clustering smart card data for urban

mobility analysis. IEEE Trans. Intell. Transport. Syst. 18, 3 (2017), 712–728.

[19] Zhaolong Ning, Xiping Hu, Zhikui Chen, MengChu Zhou, Bin Hu, Jun Cheng, and Mohammad S. Obaidat. 2018. A

cooperative quality-aware service access system for social Internet of vehicles. IEEE Int. Things J. 5, 4 (2018), 2506–

2517.

[20] Zhaolong Ning, Xiaojie Wang, and Jun Huang. 2019. Mobile edge computing-enabled 5G vehicular networks: toward

the integration of communication and computing. IEEE Vehic. Technol. Mag. 14, 1 (2019), 54–61.

[21] ZhaolongNing, XiaojieWang, FengXia, and Joel Jose Rodrigues. 2019. Joint computation offloading, power allocation,

and channel assignment for 5G-enabled traffic management systems. IEEE Trans. Industr. Inform. 15, 5 (2019), 3058–

3067.

[22] Zhaolong Ning, Feng Xia, Noor Ullah, Xiangjie Kong, and Xiping Hu. 2017. Vehicular social networks: Enabling smart

mobility. IEEE Commun. Mag. 55, 5 (2017), 49–55.

[23] Le Thanh Tan and Rose Qingyang Hu. 2018. Mobility-aware edge caching and computing in vehicle networks: A

deep reinforcement learning. IEEE Trans. Vehic. Technol. 67, 11 (2018), 10190–10203.

[24] David Tse and Pramod Viswanath. 2005. Fundamentals of Wireless Communication. Cambridge University Press.

[25] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement learning with double Q-learning. In

Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI’05), Vol. 2. 5.

[26] Chenmeng Wang, Chengchao Liang, F. Richard Yu, Qianbin Chen, and Lun Tang. 2017. Computation offloading and

resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans. Wirel. Commun. 16, 8

(2017), 4924–4938.

[27] Xiaojie Wang, Zhaolong Ning, and Lei Wang. 2018. Offloading in Internet of vehicles: A fog-enabled real-time traffic

management system. IEEE Trans. Industr. Inform. 14, 10 (2018), 4568–4578.

[28] XiaokangWang, Laurence T. Yang, Xia Xie, Jirong Jin, and M. Jamal Deen. 2017. A cloud-edge computing framework

for cyber-physical-social services. IEEE Commun. Mag. 55, 11 (2017), 80–85.

[29] Zehua Wang, Derrick Wing Kwan Ng, Vincent W. S. Wong, and Robert Schober. 2017. Robust beamforming de-

sign in C-RAN with sigmoidal utility and capacity-limited backhaul. IEEE Trans. Wirel. Commun. 16, 9 (2017), 5583–

5598.

[30] Yifei Wei, F. Richard Yu, and Mei Song. 2010. Distributed optimal relay selection in wireless cooperative networks

with finite-state Markov channels. IEEE Trans. Vehic. Technol. 59, 5 (2010), 2149–2158.

[31] JinmingWen, Chao Ren, andArunKumar Sangaiah. 2018. Energy-efficient device-to-device edge computing network:

An approach offloading both traffic and computation. IEEE Commun. Mag. 56, 9 (2018), 96–102.

[32] Guangquan Xu, Jia Liu, Yanrong Lu, Xianjiao Zeng, Yao Zhang, and Xiaoming Li. 2018. A novel efficient MAKA

protocol with desynchronization for anonymous roaming service in global mobility networks. J. Netw. Comput. Appl.

107 (2018), 83–92.

[33] Guangquan Xu, Yao Zhang, Arun Kumar Sangaiah, Xiaohong Li, Aniello Castiglione, and Xi Zheng. 2019. CSP-E2:

An abuse-free contract signing protocol with low-storage TTP for energy-efficient electronic transaction ecosystems.

Inform. Sci. 476 (2019), 505–515.

[34] Jie Xu, Lixing Chen, and Shaolei Ren. 2017. Online learning for offloading and autoscaling in energy harvestingmobile

edge computing. IEEE Trans. Cog. Commun. Netw. 3, 3 (2017), 361–373.

[35] Chenggang Yan, Hongtao Xie, Dongbao Yang, Jian Yin, Yongdong Zhang, and Qionghai Dai. 2018. Supervised hash

coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans. Intell. Transport.

Syst. 19, 1 (2018), 284–295.

[36] Xianjiao Zeng, Guangquan Xu, Xi Zheng, Yang Xiang, and Wanlei Zhou. 2018. E-AUA: An efficient anonymous user

authentication protocol for mobile IoT. IEEE Int. Things J. 6, 2 (2018), 1506–1519. DOI:https://doi.org/10.1109/JIOT.
2018.2847447.

[37] Desheng Zhang, Tian He, and Fan Zhang. 2018. Real-time human mobility modeling with multi-view learning. ACM

Trans. Intell. Syst. Technol 9, 3 (2018), 22.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

https://doi.org/10.1109/JIOT.2018.2847447
https://doi.org/10.1109/JIOT.2018.2847447

60:24 Z. Ning et al.

[38] Shuhang Zhang, BoyaDi, Lingyang Song, and Yonghui Li. 2017. Sub-channel and power allocation for non-orthogonal

multiple access relay networks with amplify-and-forward protocol. IEEE Trans. Wirel. Commun. 16, 4 (2017), 2249–

2261.

[39] Zixing Zhang, Jürgen Geiger, Jouni Pohjalainen, Amr El-Desoky Mousa, Wenyu Jin, and Björn Schuller. 2018. Deep

learning for environmentally robust speech recognition: An overview of recent developments.ACMTrans. Intell. Syst.

Technol 9, 5 (2018), 49.

[40] Bowen Zhou and Rajkumar Buyya. 2018. Augmentation techniques for mobile cloud computing: A taxonomy, survey,

and future directions. ACM Comput. Surv. 51, 1 (2018), 13.

[41] Chao Zhu, Giancarlo Pastor, Yu Xiao, Yong Li, and Antti Ylae-Jaeaeski. 2018. Fog following me: Latency and qual-

ity balanced task allocation in vehicular fog computing. In Proceedings of the 15th IEEE International Conference on

Sensing, Communication, and Networking (SECON’18). IEEE, 1–9.

Received December 2018; revised February 2019; accepted March 2019

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 6, Article 60. Publication date: October 2019.

	Deep Reinforcement copyright
	FedUni ResearchOnline
	https://researchonline.federation.edu.au

	Deep Reinforcement Accepted

