69 research outputs found

    An Improved Observation Model for Super-Resolution under Affine Motion

    Full text link
    Super-resolution (SR) techniques make use of subpixel shifts between frames in an image sequence to yield higher-resolution images. We propose an original observation model devoted to the case of non isometric inter-frame motion as required, for instance, in the context of airborne imaging sensors. First, we describe how the main observation models used in the SR literature deal with motion, and we explain why they are not suited for non isometric motion. Then, we propose an extension of the observation model by Elad and Feuer adapted to affine motion. This model is based on a decomposition of affine transforms into successive shear transforms, each one efficiently implemented by row-by-row or column-by-column 1-D affine transforms. We demonstrate on synthetic and real sequences that our observation model incorporated in a SR reconstruction technique leads to better results in the case of variable scale motions and it provides equivalent results in the case of isometric motions

    Superresolution imaging: A survey of current techniques

    Full text link
    Cristóbal, G., Gil, E., Šroubek, F., Flusser, J., Miravet, C., Rodríguez, F. B., “Superresolution imaging: A survey of current techniques”, Proceedings of SPIE - The International Society for Optical Engineering, 7074, 2008. Copyright 2008. Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy, and may exhibit insufficient spatial and temporal resolution. In particular, several external effects blur images. Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution (SR). The stability of these methods depends on having more than one image of the same frame. Differences between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a variational method that minimizes a regularized energy function with respect to the high resolution image and blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described. Comparative experiments on real data illustrate the robustness and utilization of both methods.This research has been partially supported by the following grants: TEC2007-67025/TCM, TEC2006-28009-E, BFI-2003-07276, TIN-2004-04363-C03-03 by the Spanish Ministry of Science and Innovation, and by PROFIT projects FIT-070000-2003-475 and FIT-330100-2004-91. Also, this work has been partially supported by the Czech Ministry of Education under the project No. 1M0572 (Research Center DAR) and by the Czech Science Foundation under the project No. GACR 102/08/1593 and the CSIC-CAS bilateral project 2006CZ002

    Super-resolution Using Adaptive Wiener Filters

    Get PDF
    The spatial sampling rate of an imaging system is determined by the spacing of the detectors in the focal plane array (FPA). The spatial frequencies present in the image on the focal plane are band-limited by the optics. This is due to diffraction through a finite aperture. To guarantee that there will be no aliasing during image acquisiton, the Nyquist criterion dictates that the sampling rate must be greater than twice the cut-off frequency of the optics. However, optical designs involve a number of trade-offs and typical imaging systems are designed with some level of aliasing. We will refer to such systems as detector limited, as opposed to optically limited. Furthermore, with or without aliasing, imaging systems invariably suffer from diffraction blur, optical abberations, and noise. Multiframe super-resolution (SR) processing has proven to be successful in reducing aliasing and enhancing the resolution of images from detector limited imaging systems

    Mathematical analysis of super-resolution methodology

    Get PDF
    The attainment of super resolution (SR) from a sequence of degraded undersampled images could be viewed as reconstruction of the high-resolution (HR) image from a finite set of its projections on a sampling lattice. This can then be formulated as an optimization problem whose solution is obtained by minimizing a cost function. The approaches adopted and their analysis to solve the formulated optimization problem are crucial, The image acquisition scheme is important in the modeling of the degradation process. The need for model accuracy is undeniable in the attainment of SR along with the design of the algorithm whose robust implementation will produce the desired quality in the presence of model parameter uncertainty. To keep the presentation focused and of reasonable size, data acquisition with multisensors instead of, say a video camera is considered.published_or_final_versio

    Computational Imaging and its Application

    Get PDF
    Traditional optical imaging systems have constrained angular and spatial resolution, depth of field, field of view, tolerance to aberrations and environmental conditions, and other image quality limitations. Computational imaging provided an opportunity to create new functionality and improve the performance of imaging systems by encoding the information optically and decoding it computationally. The design of a computational imaging system balances hardware costs and the accuracy and complexity of the algorithms. In this thesis, two computational imaging systems are presented: Randomized Aperture Imaging and Laser Suppression Imaging. The former system increases the angular resolution of telescopes by replacing a continuous primary mirror with an array of light-weight small mirror elements, which potentially allows telescopes to have very large diameter at a reduced cost. The latter imaging system protects camera sensors from laser effects such as dazzle by use of a phase coded pupil plane mask. Machine learning and deep learning based algorithms were investigated to restore high-fidelity images from the coded acquisitions. The proposed imaging systems are verified by experiment and numerical modeling, and improved performances are demonstrated in comparison with the state-of-the-art

    An Efficient Algorithm for Video Super-Resolution Based On a Sequential Model

    Get PDF
    In this work, we propose a novel procedure for video super-resolution, that is the recovery of a sequence of high-resolution images from its low-resolution counterpart. Our approach is based on a "sequential" model (i.e., each high-resolution frame is supposed to be a displaced version of the preceding one) and considers the use of sparsity-enforcing priors. Both the recovery of the high-resolution images and the motion fields relating them is tackled. This leads to a large-dimensional, non-convex and non-smooth problem. We propose an algorithmic framework to address the latter. Our approach relies on fast gradient evaluation methods and modern optimization techniques for non-differentiable/non-convex problems. Unlike some other previous works, we show that there exists a provably-convergent method with a complexity linear in the problem dimensions. We assess the proposed optimization method on {several video benchmarks and emphasize its good performance with respect to the state of the art.}Comment: 37 pages, SIAM Journal on Imaging Sciences, 201

    Super-resolution:A comprehensive survey

    Get PDF

    A Variational Bayesian Superresolution Approach Using Adaptive Image Prior Model

    Get PDF
    The objective of superresolution is to reconstruct a high-resolution image by using the information of a set of low-resolution images. Recently, the variational Bayesian superresolution approach has been widely used. However, these methods cannot preserve edges well while removing noises. For this reason, we propose a new image prior model and establish a Bayesian superresolution reconstruction algorithm. In the proposed prior model, the degree of interaction between pixels is adjusted adaptively by an adaptive norm, which is derived based on the local image features. Moreover, in this paper, a monotonically decreasing function is used to calculate and update the single parameter, which is used to control the severity of penalizing image gradients in the proposed prior model. Thus, the proposed prior model is adaptive to the local image features thoroughly. With the proposed prior model, the edge details are preserved and noises are reduced simultaneously. A variational Bayesian inference is employed in this paper, and the formulas for calculating all the variables including the HR image, motion parameters, and hyperparameters are derived. These variables are refined progressively in an iterative manner. Experimental results show that the proposed SR approach is very efficient when compared to existing approaches

    Development Of A High Performance Mosaicing And Super-Resolution Algorithm

    Get PDF
    In this dissertation, a high-performance mosaicing and super-resolution algorithm is described. The scale invariant feature transform (SIFT)-based mosaicing algorithm builds an initial mosaic which is iteratively updated by the robust super resolution algorithm to achieve the final high-resolution mosaic. Two different types of datasets are used for testing: high altitude balloon data and unmanned aerial vehicle data. To evaluate our algorithm, five performance metrics are employed: mean square error, peak signal to noise ratio, singular value decomposition, slope of reciprocal singular value curve, and cumulative probability of blur detection. Extensive testing shows that the proposed algorithm is effective in improving the captured aerial data and the performance metrics are accurate in quantifying the evaluation of the algorithm
    • …
    corecore