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1.1 Introduction

The spatial sampling rate of an imaging system is determined by the spac-
ing of the detectors in the focal plane array (FPA). The spatial frequencies
present in the image on the focal plane are band-limited by the optics. This
is due to diffraction through a finite aperture. To guarantee that there will be
no aliasing during image acquisiton, the Nyquist criterion dictates that the
sampling rate must be greater than twice the cut-off frequency of the optics.
However, optical designs involve a number of trade-offs and typical imaging
systems are designed with some level of aliasing. We will refer to such sys-
tems as detector limited, as opposed to optically limited. Furthermore, with
or without aliasing, imaging systems invariably suffer from diffraction blur,
optical abberations, and noise.

Multiframe super-resolution (SR) processing has proven to be successful
in reducing aliasing and enhancing the resolution of images from detector lim-
ited imaging systems [25]. If relative motion between the scene and camera is
present, sampling diversity is provided by the multiple looks at the scene that
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can be exploited to combat undersampling. Such processing can be viewed
as trading temporal resolution for spatial resolution. This allows us to reduce
or eliminate aliasing artifacts. Furthermore, if aliasing can be reduced to a
minimal level, linear restoration techniques can be successfully applied to de-
convolve the blurring effects of the system point spread function (PSF). Note
that if little or no aliasing is present in the uncompensated imaging system,
single frame restoration may be a more appropriate choice for many applica-
tions. If one does employ multiframe SR, it is critical that the motion include
a subpixel component and be estimated accurately.

A class of computationally simple multiframe SR methods are those based
on nonuniform interpolation [1, 2, 10–12,19, 23, 26, 28, 30, 33–36]. Such meth-
ods are of particular interest for implementing SR in real-time or soft real-time.
These nonuniform interpolation based methods typically begin by using im-
age registration to position the observed pixel values from each frame onto a
common high resolution (HR) grid. However, the extra samples are generally
distributed nonuniformly, unless the motion is very carefully controlled. The
nonuniformly sampled HR grid is of little practical use. Therefore, a nonuni-
form interpolation operation is used to create a uniformly sampled high reso-
lution (HR) image with reduced aliasing. The nonuniform interpolation based
SR methods then typically employ a restoration step to reduce the blurring
effects of the system PSF.

Most nonuniform interpolation based SR methods use independent inter-
polation and restoration steps. One potential downside of this is that an inde-
pendent restoration step may aggravate artifacts from an imperfect nonuni-
form interpolation step. For example, when the distribution of low resolution
pixels on the HR grid is poor, any nonuniform interpolation step will suffer. An
independent restoration step can easily exaggerate any resulting artifacts. A
new approach, using an adaptive Wiener filter (AWF), combines the nonuni-
form interpolation and restoration into a single step [14, 15, 22]. This provides
potential computational savings as well as robustness to the spatial distribu-
tion of low resolution pixels.

The AWF SR method forms a nonuniformly sampled HR grid in the tra-
ditional way. However, the AWF method produces the final output pixels
with a single spatially-adaptive weighted sum operation using a finite moving
window. Here each output HR pixel is formed as a weighted sum of neighbor-
ing observed pixels from the nonuniform HR grid. By designing appropriate
weights, the output from this single weighted sum operation is not only on a
uniform grid, but also restored from the system PSF. Note that the weights
in the AWF SR approach are optimized for the specific local spatial arrange-
ment of the neighboring pixels on the HR grid. In contrast, when independent
nonuniform interpolation and restoration steps are used, the restoration step
does not exploit knowledge of the original distribution of the observed pixels.
Rather, it only sees a uniform HR produced the nonuniform interpolation.

Some variations of the AWF SR have been explored. In [22], the HR grid
is discrete and the spatial locations of the observed pixels are quantized to
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fit on the discrete grid. If more than one observed pixel falls at a particular
location, those multitemporal pixel values are averaged to fill the HR grid
location. Furthermore, the work in [22] uses vector quantization on the pixel
intensities to select the weights used for each observation window, in addi-
tion to the specific spatial distribution of samples. Empirical models for the
required correlations are used in [22] based on training data. In contrast, the
work in [14] uses an unquantized HR grid and theoretical parametric corre-
lation models. This eliminates the need for training data and reduces error
due to sample position quantization. Local estimates of the signal variance
are employed in [14] to allow the weights to adapt to both the spatial distri-
bution of samples and the local signal-to-noise ratio. The vector quantization
in [22] and locally adaptive SNR in [14] have been observed to be beneficial
in moderate to low SNR application. In high SNRs, these extra steps may not
be necessary and can be avoided to reduce computational complexity.

The central challenge with the AWF SR method lies in determining the
weights. The approach for designing the filter weights for the AWF SR method
is based on a finite impulse response Wiener filter. Using correlation models,
weights that minimize the mean squared error (MSE) are found. The approach
is adaptive in the sense that as the spatial distribution of samples in the HR
grid vary with the position of the observation window, so do the weights.
Furthermore, spatially varying local statistics may be used to modify the
correlation model for each observation window position. Note that for pure
global translational motion, the spatial distribution of samples on the HR grid
is periodic. This means that the number of filter weights required is relatively
small. Since computing the weights is the bulk of the computational load, such
imagery can be processed very fast with the AWF SR algorithm, even with a
non-quantized HR grid [14]. For non-translational motion, a potentially unique
spatial pattern can be seen for each observation window. While it is possible
to calculate all of these on-the-fly, this is a high computational burden. The
work in [15] has proposed a modified version of the AWF SR algorithm that
uses a specially selected partial observation window applied to a quantized
HR grid. The partial observation window and quantized HR grid reduces the
number of distinct spatial patterns observed, reducing the number of weights
to be computed. With a reduced number of weight vectors, these can all be
precomputed prior to processing video. This allows the AWF SR algorithm
to process frames with very little computational load (given the precomputed
weights), even for non-translational motion.

In this chapter, we review the AWF SR methods. We discuss the observa-
tion models used including motion models and system PSF models. Also, a
number of experimental results are presented to demonstrate the performance
of the AWF SR methods. The organization of the remainder of the chapter is
as follows. Section 1.2 presents the relevant observation models for the AWF
SR methods. The AWF SR algorithms are presented in Section 1.3. Exper-
imental results are provided in Section 1.4 and conclusions are presented in
Section 1.5.



6 Book title goes here

FIGURE 1.1

Observation model relating the desired 2-D continuous scene, d(x, y), and the
observed LR frames.

1.2 Observation Model

In this section we begin with the overall image formation model. We then
discuss the motion model, registration, and finally the system PSF model.

1.2.1 Image Formation Model

The low resolution (LR) image formation model is shown in Figure 1.1. The
model is used for many SR algorithms including those in [14, 22]. The model
begins with a desired 2-D continuous scene, d(x, y). Here this desired im-
age is assumed to be geometrically aligned with one of the observed frames,
referred to as the reference frame. A geometric transformation is used to ac-
count for any motion between acquired frames, dk(x, y) = Tpk

{d(x, y)}, for
k = 1, 2, ..., P , and the reference frame. Note that the transformation depends
on the motion model parameters in pk. Details of the motion model are pre-
sented in Section 1.2.2. Blurring from the system PSF [14, 17] occurs next in
the observation model, yielding fk(x, y) = dk(x, y) ∗ h(x, y), where h(x, y) is
the system PSF. More will be said about the PSF in Section 1.2.4. The FPA
in the camera serves to sample the scene for each frame yielding the vector
of samples denoted f(k) for frame k. Here we shall assume that the detec-
tor pitch is not sufficiently small to meet the Nyquist criterion, hence the
need for multiframe SR. Finally, additive noise corrupts the samples yielding
g(k) = f(k)+n(k), where n(k) contains the additive noise samples. Note that
ideal sampling of the scene would give rise to the ideal image, represented here
in lexicographical form as the vector z = [z1, z2, . . . , zK ]T . An equivalent and
entirely discrete observation model can be found to relate z to the observed
frames g(k) using an impulse invariant PSF and downsampling [17].
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TABLE 1.1

Undersamping factors for two imaging systems considered here.

Imaging Optics Cutoff Detector Sampling Under-
System Frequency (ρc) Pitch Frequency sampling
1 Amber F/3 83.3 cyc/mm 50 µm 20 cyc/mm 8.33×
2 L-3 F/3 83.3 cyc/mm 20 µm 50 cyc/mm 3.33×

Let is now consider undersampling in the observation model. First note
that the optics serve to bandlimit the image in the focal plane. For example,
the radial cut-off frequency associated with PSF from diffraction-limited optics
with a circular exit pupil is [13] ρc =

1
λN

, whereN is the f-number of the optics
and λ is the wavelength of light. To avoid aliasing, the FPA must sample at
more than twice this cut-off frequency. This dictates that to avoid aliasing,
the detector pitch must be less than λN

2 . Consider two imaging systems in
Table 1.1 that will be used for experimental results in this chapter. System
1 uses a 256 × 256 Amber FPA with detector pitch of 50µm and the optics
have an f-number of N = 3. System 2 uses a 20µm pitch 640× 512 FPA from
L-3 Cincinnati Electronics also equipped with N = 3 optics. Both systems
produce 14 bit data. As can be seen in Table 1.1, both systems allow for the
acquisition of aliased imagery with the selected optics. This is very common in
imaging system design, since the desire for wide field-of-view small f-number
optics often outweighs concerns over aliasing. Thus, such systems may be
considered detector limited. Multiframe SR methods are a good choice for
resolution enhancement for such systems, given that the pixel motion can be
reliably estimated with subpixel accuracy.

Given this observation model in Fig. 1.1, one approach to SR is to treat this
as an inverse problem. This generally leads to iterative image reconstruction
SR algorithms that seek to find a z that would give rise to the observed
g(k) when put through a discrete observation model and be consistent with
prior statistical models [4, 7–9, 16–18,21, 24, 31, 39]. However, these iterative
approaches can be computationally costly. A simpler and often faster class of
SR algorithms is based on nonuniform interpolation [1, 2, 10–12, 19, 23, 26, 28,
30, 33–36]. To understand these, consider the case where the motion model
and the PSF degradation processes commute [11]. For such cases, consider
switching the order of the motion model and PSF in the block diagram in
Fig. 1.1. Now the motion model and uniform sampling blocks are back-to-
back. These can equivalently be combined into a single nonuniform sampling
block. That is, motion followed by sampling is equivalent to simply altering the
sampling locations according to the motion. Such an alternative observation
model is shown in Fig. 1.2. This figure includes a block diagram along with a
representation of the imagery at various stages in the observation model.

Using registration, the LR pixels can be placed on a common HR grid
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FIGURE 1.2

Alternative observation model relating a desired 2-D continuous scene, d(x, y),
with a set of corresponding LR frames. This model is appropriate when the
motion model and PSF commute.

represented by g in Fig. 1.2. Nonuniform interpolation can be used to estimate
a uniform grid of samples of f(x, y) at or above the Nyquist rate. Finally,
image restoration can be applied to reduce noise and reduce the blur caused
by the system PSF, yielding an estimate of z. Note that the motion model and
PSF operations commute for translational motion due to the shift invariance
property of convolution. For a circularly symmetric PSF, it can be shown
that they also commute for rotation. With other types of motion, the PSF
and motion do not necessarily commute. In such cases, the observation model
in Fig. 1.2 does not strictly apply and hence the interpolation-restoration SR
approaches which are based on Fig. 1.2 may be less effective. However, we have
observed that useful results can often be obtained for other types of motion
models using the interpolation-restoration approaches. In this chapter, we
compare the performance of several interpolation-restoration SR approaches
applied to affine motion. Note that for high levels of affine zoom or skew, one
might expect some degradation in performance because such motion does not
commute with the PSF blur. With a highly non-circularly symmetric PSF, we
might also expect to see problems with rotational motion.

1.2.2 Image Motion Model

Consider a static 3-D scene and a moving camera acquiring video for SR. The
resulting 2-D optical flow models for various scenarios are summarized in Table
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TABLE 1.2

2-D optical flow models based on relative motion between a 3-D rigid scene
and camera [38].

Flow Type Model When Applicable
Affine vx(x, y) = p1x + p2y + p3 Planar scene with

vy(x, y) = p4x + p5y + p6 orthographic projection

Quadratic vx(x, y) ≈ p1y + p2xy + p3x
2 + p4 Approx. for perspective projection

(8) = ωZy +
ωXxy

l
−

ωY x2

l
− ωY l projection with camera angle

vy(x, y) ≈ p5x + p6xy + p7y
2 + p8 variation only. ωX , ωY , ωZ are camera

= −ωZx −
ωY xy

l
+

ωXy2

l
+ ωX l angles in radians, l is focal length

Quadratic vx(x, y) ≈ Approx. for planar scene with
(10) p1x+ p2y + p3x

2 + p4xy + p5 full perspective projection
vy(x, y) ≈

p6x + p7y + p8y
2 + p9xy + p10

Planar vx(x, y) =
p1+p2x+p3y

p7+p8x+p9y
− x Exact for planar scene

Projective vy(x, y) =
p4+p5x+p6y

p7+p8x+p9y
− y with full perspective projection

1.2 [38]. Note that for a planar scene and orthographic projection, the 2-D flow
is affine. However, for the more realistic perspective projection case, but still
with a planar scene, the flow is nonlinear and can be approximated with a
quadratic flow model. For non-planar scenes and arbitrary camera motion, the
2-D motion is dependent on the specific 3-D scene geometry. In most cases the
scene 3-D geometry is not known and estimating it is an extremely demanding
problem in its own right. Furthermore, occlusion effects and motion parallax
that can lead to discontinuities in the 2-D flow for general camera motion
and non-planar scenes. These factors make accurate subpixel registration of
multiple frames to a common grid for SR a very difficult task. It is interesting
to note that when no translational camera motion is present (i.e., stationary
camera with angular camera pointing motion only), a simple quadratic model
is a good approximation, even for a non-planar scene. In this camera angle
variation only scenario, there are no motion parallax or occlusion effects to
contend with and the 2-D optical flow is not scene dependent. From Table 1.2,
it can be seen that for relatively small image regions, the resulting 2-D flow can
be approximated by a affine model for the camera angle variation only case.
This is particularly true for longer focal length optics (as the nonlinear terms
are divided by the focal length). Thus, perhaps one of the most favorable
acquisition scenarios for video for SR involves a camera at a fixed location
panning and/or rotating from that fixed position relative to a static scene.

In this chapter, we focus on an affine motion model. Although it does not
fully capture all of types of motion in Table 1.2, it can often serve as a useful
approximation and has a number of useful properties. In particular, it only
has 6 parameters to estimate and multiple sequential affine transformations is
still an affine transformation. Thus, we can register each frame to the previous
frame and then accumulate these to reference all the frames to a common
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frame or HR grid. Iterative and multiscale registration approaches also benefit
from the accumulation property of affine flow.

1.2.3 Image Registration

For the experimental results presented here, we use a global gradient-based
least-squares algorithm for estimating the affine parameters [5, 17, 27]. To de-
fine the affine registration algorithm, consider relating a new frame d(x, y)
to a prior frame d̃(x, y) through 2-D optical flow. Neglecting occlusion effects
and noise this is given by

d(x, y) = d̃(x̃, ỹ) = d̃ (x+ vx(x, y), y + vy(x, y)) , (1.1)

where vx(x, y) and vy(x, y) are the polynomial optical flow functions. A trun-
cated Taylor series approximation for small motions allows us to express this
as

d(x, y) ≈ d̃(x, y) + vx(x, y)gx(x, y) + vy(x, y)gy(x, y). (1.2)

Now that we have removed the polynomial functions vx(x, y) and vy(x, y)

from the argument of d̃(·), we get a set of linear equations (one per pixel) that
can be solved using least squares. If we assume affine flow, then vx(x, y) =
p1x+ p2y + p3 and vy(x, y) = p4x + p5y + p6. Because of the truncated Tay-
lor series approximation, the least squares estimate is accurate only for small
motions. To address this, an iterative approach is recommended. Here the ini-
tial registration parameters are found between two images using the method
described above. Then one of the images is repositioned using interpolation
according to the registration estimate and a new estimate is formed. This
process repeats until the final incremental estimate is judged to be sufficiently
small. The final registration estimate is formed by accumulating all of the
incremental estimates. The repositioning at each iteration is always done di-
rectly from the original image (using the currently accumulated transform
estimate) so as to avoid accumulating interpolation errors.

While this iterative method extends the useful range of the registration
technique, it may still fail if the initial estimate moves the image in wrong
direction. This can happen with very large motions between frames. So to
deal with very large motions, a multiscale approach is recommended. Here
the registration begins using low resolution versions of the two images and
the iterative registration technique is applied. These registration parameters
are used to initialize the registration at the next resolution level. This contin-
ues until registration at the full resolution is complete. Finally, for improved
numerical stability, it is recommended that the x, y coordinates of the center
of the image be represented as 0, 0 when setting up the least squares equations.

The affine registration method described can be applied to the entire im-
age. However, to deal with more complex motion, it might be beneficial to
use a piecewise affine model. That is, break the image up into subimages and
estimate affine parameters for each subimage. A practical way to do this and
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deal with large motions is to first do a global affine registration with the entire
image and then refine these estimates in subimages with local affine estimates.
Note that as the size of the subimages gets smaller, fewer equations are used in
the least squares estimate. Hence, the accuracy of the subpixel flow estimate
can be expected to suffer. Thus, a tradeoff must be found to balance the the
accuracy of the model parameter estimate (favoring larger subimages) with
the accuracy of the flow model itself (favoring smaller subimages).

Note that deformable scene motion, or simply a non-static scene, greatly
complicates the registration process [39]. Numerous additional registration
parameters need to be estimated. Changing pose of objects within the scene
as well as occlusion further complicate matters in the general motion case. This
makes subpixel registration accuracy across the full image very difficult, if not
impossible. Furthermore, because the image data being used for registration is
aliased and noisy, highly overdetermined linear equations are generally needed
to get an accurate estimate. Joint SR and registration approaches with global
motion models have been proposed to improve registration in the presence of
high levels of aliasing [6, 16, 29]. Handling various types of more complex scene
motion is an ongoing area of research in multiframe SR.

1.2.4 System Point Spread Function

In this section, we address the modeling of the system PSF. We begin by
modeling the optical transfer function (OTF) with three components as follows

H(u, v) = Hdif(u, v)Habr(u, v)Hdet(u, v), (1.3)

where u and v are the horizontal and vertical spatial frequencies in cycles per
milimeter. Diffraction limited optics contributesHdif(u, v), optical aberrations
contribute Habr(u, v), and detector integration contributes Hdet(u, v). Other
factors such as defocus, motion blur and atmospheric effects are not considered
here, but could be included if they are deemed to be significant in a particular
application. The blurring effects from diffraction limited optics with a circular
pupil function are described by the following OTF [13]

Hdif (u, v) =







2
π

[

cos−1 (ρ/ρc)− (ρ/ρc)

√

1− (ρ/ρc)
2

]

for ρ < ρc

0 else
,

(1.4)
where ρ =

√
u2 + v2 and ρc =

1
λN

. It is this function that provides the band-
limiting of the continuous scene, and consequently determines the necessary
detector spacing to prevent aliasing. Even very well designed optical systems
are likely to have aberrations which alter this diffraction limited model. One
such aberration model is given by the following OTF [32]

Habr(u, v) =

{

1− (WRMS/0.18)
2(1− 4(ρ/ρc − 0.5))2 for ρ < ρc
0 else

. (1.5)
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Note that for a well tuned system, WRMS = 1/14 may be a good choice [32].
Finally, the detector component of the frequency response, Hdet(u, v), is ob-
tained from the Fourier transform of the function describing the active area
of an individual detector (assuming all detectors in the FPA have the same
active area shape). Cross sections of the overall 2-D modulation transfer func-
tion (MTF) and its components are shown in Fig. 1.3 for the imaging systems
in Table 1.1. Note that the MTF is simply the magnitude of the OTF. Here,
we assume λ = 4 µm and WRMS = 1/14. It can been seen that the detector
MTF dominates the Amber system because of the relatively large detectors
in the FPA. For the L-3 system, the optics dominates the overall MTF. Note
that the Nyquist frequency in both cases is below the cut-off frequency of the
optics. Any frequency content above the Nyquist frequency is “folded” into
lower frequencies, creating aliasing artifacts. In addition to aliasing, another
important thing to note from Fig. 1.3 is that, like most any imaging system,
the MTF is not flat and high frequencies are attenuated (reducing image de-
tail). The problem is that one cannot simply apply a high-boost filter to the
imagery to restore the attenuated frequencies due to aliasing. However, if the
effective sampling rate is increased by a multi-frame nonuniform interpolation
process, such restoration is then possible. The system PSF can be found by
taking the inverse Fourier transform of the optical transfer function. These
are shown in Fig. 1.4. Note that the discrete impulse invariant PSF can be
found by sampling this PSF at spacings of the detector pitch divided by the
SR upsampling factor.

1.3 AWF SR Algorithms

The AWF SR algorithms use g(k), for k = 1, 2, . . . , P to form an estimate of
z, denoted ẑ. The SR algorithms can be applied to video using a temporal
sliding window of frames, or it can be used to generate a single output from an
input sequence. The effective sampling rate for the estimated image is defined
to be L times greater than that of the observed imagery. Ideally, L would
selected to meet the Nyquist criterion. However, often a lower value of L may
be sufficient to provide a useful result with minimal aliasing. Inspection of the
system MTF can be useful in making this selection.

The basic AWF SR algorithm is illustrated in the block diagram in Fig.
1.5. As mentioned above, registration allows us to create a nonuniform HR
grid image denoted g in Fig. 1.5. A moving window filter spanning Wx ×
Wy HR pixels processes this HR grid to produce the final output. Let the
pixel values spanned by the moving window at position i be denoted gi =
[gi,1, gi,2, . . . , gi,Ki

]T , where Ki is the number of LR pixels within the i’th
observation window.

For each observation window, an estimate of the pixel at the center of the
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FIGURE 1.3

Cross sections of the overall theoretical 2-D MTF and its components with
λ = 4 µm and WRMS = 1/14 for (a) Imaging System 1 (Amber FPA) in Table
1.1 and (b) Imaging System 2 (L-3 FPA) in Table 1.1.
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FIGURE 1.4

Theoretical PSF with λ = 4 µm and WRMS = 1/14 for (a) Imaging System 1
(Amber FPA) in Table 1.1 and (b) Imaging System 2 (L-3 FPA) in Table 1.1.
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FIGURE 1.5

Overview of the proposed SR algorithm.

observation window is formed as a weighted sum. This is expressed as

ẑi = wT
i gi, (1.6)

where ẑi is the estimate of the i’th pixel in the desired image z and wi is a Ki

by 1 vector of weights. It is also possible to use the samples in one observation
window to estimate multiple output pixels [14, 15, 22]. Consequently the ob-
servation window would move by multiple pixel positions at a time. This can
have computational advantages including needing to compute or lookup fewer
weight vectors. The minimum mean squared error weights are found using the
well known Wiener solution

wi = R−1
i pi, (1.7)

where Ri = E{gig
T
i } and pi = E{zigT

i }. The weights are normalized so that
they sum to 1 to eliminate potential artifacts from variable DC response of
adaptive filter.

The required statistics are found empirically in [22] based on training im-
ages. A quantized HR grid and a full autocorrelation matrix and crosscorrela-
tion vector can be estimated from fully populated observation windows at the
HR grid resolution. Then, when a partially populated observation windows
are encountered, the full autocorrelation matrix and crosscorrelation vector
can be subsampled as needed. This allows us to compute the weights using
(1.7). The method in [22] also goes one step farther, and uses vector quanti-
zation to partition on observation space and estimates a full autocorrelation
matrix and crosscorrelation vector for each partition [3, 33]. These statistics
are tuned to specific structures such as edges, lines and flat regions. This is one
way to deal with the non-stationarity of most image data for image restora-
tion [3, 33]. The work in [14, 15] employs a parametric autocorrelation model
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for the desired underlying image and generates all of the necessary statistics
from that. Both a global and spatially varying model are considered in [14].
The spatially varying model, like the vector quantization approach, seeks to
treat the non-stationary nature of the image data. Both the vector quantiza-
tion approach in [22] and the spatially varying approach in [14] are beneficial
with moderate and high levels of noise. Under relatively high signal-to-noise
ratio conditions, this added complexity generally does not improve perfor-
mance [20]. Thus, for high SNR environments, a simple wide sense stationary
(WSS) auto-correlation model may be the best choice.

The modeling of the autocorrelation matrix and crosscorrelation vector
is described in detail in [14, 22]. However, we repeat the key steps of the
WSS model from [14] for convenience. First let gi = fi + ni, where fi is the
noise-free version of the i’th observation vector gi and ni is a random noise
vector. Assuming a zero-mean uncorrelated noise vector with independent and
identically distributed elements of variance σ2

n, the autocorrelation matrix for
the observation vector is given by

Ri = E{gig
T
i } = E{fifTi }+ σ2

nI. (1.8)

The cross-correlation vector is given by

pi = E{zigT
i } = E{zifTi }. (1.9)

Continuing to follow the analysis in [14], let us now assume a WSS autocorre-
lation function, rdd(x, y), for the desired image d(x, y). The cross-correlation
function between d(x, y) and f(x, y), as shown in Fig. 1.2, can be expressed
in terms of rdd(x, y) [37] as

rdf (x, y) = rdd(x, y) ∗ h(x, y). (1.10)

The autocorrelation of f(x, y) is given by

rff (x, y) = rdd(x, y) ∗ h(x, y) ∗ h(−x,−y). (1.11)

Evaluating (1.11) based on the distances between the samples in gi yields
E{fifTi }. Incorporating the noise term to this result yields Ri as expressed in
(1.8). Similarly, evaluating (1.10) based on the distances between the samples
in gi and the desired sample position gives us pi from (1.9). The desired im-
age autocorrelations, rdd(x, y), can be obtained empirically from statistically
representative training images or defined using a parametric model. Here we
use the same circularly-symmetric parametric model as that used in [14]. This
model is given by

rdd(x, y) = σ2
dρ
√

x2+y2

, (1.12)

where σ2
d is the variance of the desired image and ρ controls the decay of the

autocorrelation with distance.
It is interesting to observe how the AWF SR weights vary with the spa-

tial distribution of samples within the partial observation window. Figure 1.6
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shows weights for distinct spatial distributions of samples. For these results

we have selected L = 3, ρ = 0.75,
σ2
d

σ2
n
= 100 and a PSF computed for Imaging

System 2 in Table 1.1. The weights are shown with the same colomap where
middle gray is 0. It can be seen that these minimum MSE weights change in
non-trivial ways as the spatial distribution of samples changes. Note that Fig.
1.6(a) shows the case where only the reference frame pixels are present in the
observation window. This can occur when using only a single frame or when
no motion in that area of the image is present. Here the AWF SR is effec-
tively performing single frame interpolation and restoration. In Fig. 1.6(d),
the observation window is fully populated. In this case, with AWF weighting
is equivalent to that of a standard FIR Wiener filter operating on the HR
grid.

The number of possible spatial patterns in a given observation window on
the quantized HR grid is 2b, where b = WxWy − WxWy

L2 . For the 15× 15 win-
dow shown in Fig. 1.6, this amounts to 2200 patterns. For an unquantized HR
grid, there are an infinite number of possible patterns. Thus, it is generally
impractical to precompute all of the weights prior to processing video, even
on a quantized HR grid. However, in [15], a partial observation window is pro-
posed that includes the uniform reference frame samples within the Wx ×Wy

window plus the M closest samples to the output position. This is illustrated
in Fig. 1.7 where the positions outlined form the partial observation window.
The M closest samples to the output are highlighted. Note that the reference
pixels are guaranteed to be present, whereas the other samples may or may
not be present, depending on the motion between frames. An upper bound on
the number of filter weights to be precomputed using this partial observation
window is given by L22M [15]. Thus, with a suitable choice of M , it is possible
to precompute and store all of the weights. This makes processing frames very
fast as will be seen in Section 1.4.

1.4 Experimental Results

In this section, a number of experimental results are presented where we com-
pare the performance of the AWF SR methods to several other benchmark
techniques. All of the SR methods applied are listed in Table 1.3. We use sim-
ulated data for quantitative analysis and real infrared imagery for subjective
analysis in a true application.

1.4.1 SR Results for Simulated Data

The simulated LR frames are generated with different types of affine motion.
We use 8 bit images with L = 3, the PSF for System 2 in Table 1.1, and
a noise standard deviation of 2. The SR is done with P = 9 LR frames of
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FIGURE 1.6

AWF SR filter weights for various spatial distribution of samples. Weights
with only the reference frame samples (no motion) is shown in (a). Weights
for a fully populated observation window are shown in (d). All weights are
shown with the same colormap where middle gray is zero.
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FIGURE 1.7

Partial observation window used by the Fast AWF SR algorithm in [15].

size 180× 134. For the affine motion, the translation parameters are Gaussian
and have a mean of zero and standard deviation of 2 LR pixel spacings. The
rotation angle is Gaussian has a mean of zero and standard deviation of 5
degrees. The shear is horizontal only and the parameter is Gaussian with
zero mean and a standard deviation of 0.05 and the zoom factor is Gaussian
with a mean of 1 and standard deviation of 0.05. A three level multiscale
affine registration is employed with 5 iterations using bicubic interpolation at
each level. The image results are shown in Fig. 1.8 where the motion includes
translation, rotation, shear and zoom. These image show a 250 × 250 region
of interest (ROI) from the processed imagery. Fig. 1.8(a) shows the true HR
image. The first (and reference) frame zoomed using bicubic interpolation is
shown in Fig. 1.8(b). The partially populated HR grid is shown in Fig. 1.8(c).
The SR outputs for all of the SR methods in Table 1.3 make up the rest of
Fig. 1.8. The noise-to-signal ratios (NSRs) that provided the lowest MSE are
used for each method. The AWF SR outputs use an NSR of 0.01. The WNN
method uses an NSR of 0.04 and the Delaunay SR method uses an NSR of
0.02. The RLS method uses a regularization parameter of λ = 0.01 with 20
iterations [17].

Table 1.4 shows the MSE results for the SR methods along with the average
run time (excluding registration). The processing was done on a Pentium 4
CPU with a clock speed of 2.8 GHz. Note that the registration of the 9 frames
took 3.31 seconds. As noted in [15] this can be sped up using fewer levels
and bilinear interpolation. When processing video, only one new frame needs
to be registered to the previous frame to produce an output frame. This is
because the affine parameters relating each frame to the reference frame can
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TABLE 1.3

SR Algorithm Table

Name Description

Fast AWF Adaptive Wiener filter method using quantized HR spa-
tial grid and partial observation window with precomputed
weights [15]. Simultaneous nonuniform interpolation and
restoration.

Full AWF Adaptive Wiener filter method in [14] adapted for affine
motion and using a discrete (quantized) HR spatial grid.
Full observation window is used and the optimum weights
are computed for each window on the fly. Simultaneous
nonuniform interpolation and restoration.

WNN Weighted nearest neighbor method in [2, 12] adapted for
affine motion. Nonuniform interpolation done using an in-
verse distance based weighting of the nearest 4 neighbors.
Restoration is done with an FFT based Wiener filter.

Delaunay Based on the method in [19] adapted for affine motion.
Nonuniform interpolation done using Delaunay triangula-
tion. Restoration is done with an FFT based Wiener filter.

RLS Regularized least squares interative SR method in [17]
adapted for affine motion. This method does not assume
the PSF blurring and motion models commute.

be determined by accumulating the incremental frame-to-frame registration
parameters. It should be noted, however, that with approach, registration
errors may also accumulate. Notwithstanding this, we have observed that this
can generally be a very effective video registration method. Note that single
frame bicubic interpolation output has, by far, the highest MSE. All of the
multiframe SR methods produce a much lower MSE. The RLS SR method
with 20 iterations produces the lowest MSE in this experiment, but at the
cost of a high run time. The Fast AWF has the lowest run time with MSEs
comparable to WNN and RLS with 5 iterations.

1.4.2 SR Results for Infrared Video Data

The first infrared dataset used for evaluating the SR methods is one obtain
with Imaging System 1 in Table 1.1. These results are shown in Figure 1.9.
The camera is mounted on a stationary tripod and is manually panned and
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FIGURE 1.8

Output images for the simulated image sequence with L = 3 and P = 9. (a)
Desired image (b) single frame bicubic interpolation, (c) partially populated
high resolution grid after registration (d) output of the fast AWF method with
partial observation window and precomputed weights, (e) full AWF method
with weights computed on the fly (f) WNN with 4 nearest neighbors (g)
Delaunay triangulation based output (h) RLS method.
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TABLE 1.4

MSE for the various SR algorithms with affine motion (L = 3 and P = 9).

Algorithm Translation Rotation Shear Zoom All Time (s)
Bicubic 253.64 253.64 253.64 253.64 253.64 0.357
Fast AWF 141.20 157.25 185.58 158.46 152.23 0.811
Full AWF 127.36 143.65 181.50 144.51 139.26 57.238
WNN 141.93 162.82 211.37 163.95 164.85 1.784
Delaunay 121.36 137.44 191.06 141.20 144.29 21.105
RLS (20 Iterations) 107.40 118.20 167.74 120.40 114.55 275.337
RLS (5 Iterations) 141.32 151.64 182.73 150.88 149.50 67.204

rotated acquiring a 30 Hz video sequence. The SR methods use P = 20 frames
and form output images of size 256 × 256 with L = 4. Bicubic interpolation
of the first (reference) frame is shown in Fig. 1.9(a). The partially populated
HR grid is shown in Fig. 1.9(b). The output for the Fast AWF, Full AWF,
WNN and RLS methods are shown in Fig. 1.9(c)-(f), respectively. The NSR
for the AWF methods is 0.05. The NSR for the WNN method is 0.1. The RLS
method uses 10 iterations and λ = 0.01. The tuning parameters have been
chosen based on subjective image quality. Because of the high level of aliasing
for this imaging system, the aliasing artifacts are rather obvious in Fig. 1.9(a).
Most prominently, the artifacts take on the form of jagged diagonal edges.
Overall blurring of the image is also evident from the detector dominated
PSF. It is clear that if single frame restoration is applied to this imagery,
the aliasing artifacts would only be pronounced. The multiframe SR methods
clearly reduce aliasing and sharpen the imagery. The RLS again appears to
provide the best results. However the fast SR methods like the Fast AWF
and WNN provide a significantly enhanced image (compared with bicubic
interpolation) in a small fraction of the run time of the RLS method.

Finally, results obtained with data from Imaging System 2 in Table 1.1
are shown in Figure 1.10. This camera is also mounted on a stationary tripod
and is manually panned and rotated acquiring a 30 Hz video sequence. The
SR methods use P = 9 frames and form output images of size 230× 220 with
L = 3. Bicubic interpolation of the first (reference) frame is shown in Fig.
1.10(a). The partially populated HR grid is shown in Fig. 1.10(b). The output
for the Fast AWF, Full AWF, WNN and RLS methods are shown in Fig.
1.10(c)-(f), respectively. The tuning parameters used on the previous dataset
are also applied here. While the aliasing here is more subtle, the results appear
to be consistent with those for the previous dataset.
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FIGURE 1.9

Outputs for image sequence from the tripod mounted Amber imager with
L = 4 and P = 20. (a) Single frame bicubic interpolation, (b) partially popu-
lated high resolution grid (c) Fast AWF with partial observation window and
precomputed weights, (d) Full AWF with weights computed on the fly, (e)
WNN with 4 nearest neighbors, (f) RLS method.
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FIGURE 1.10

Outputs for image sequence from the tripod mounted L-3 imager with L = 3
and P = 9. (a) Single frame bicubic interpolation, (b) partially populated
high resolution grid (c) Fast AWF with partial observation window and pre-
computed weights, (d) Full AWF with weights computed on the fly, (e) WNN
with 4 nearest neighbors, (f) RLS method.
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1.5 Conclusions

The AWF SR methods are a type of nonuniform interpolation based SR al-
gorithm. A distinctive feature of the AWF SR methods, however, is that the
nonuniform interpolation and restoration are done simultaneously in a single
weighted sum operation. The weights are determined based on FIR Wiener
filter theory and they adapt to the specific spatial distribution of LR samples
in the nonuniformly populated HR grid. Various methods have been explored
in the literature for modeling the correlation statistics needed to determine
the weights. Spatially varying statistics based on vector quantization [22] and
local variance [14] have been used. The spatially varying statistics provide the
most benefit in low signal-to-noise environments. In high signal-to-noise envi-
ronments, like those considered here, a global statistical model is very effective
and simpler to implement.

One of the main benefits of the AWF SR method is the potential for fast
processing. Furthermore, the method is robust to the spatial distribution of
LR pixels on the HR grid and it degrades gracefully towards the case where
no motion is present (or only one frame is used). For translational motion,
the number of distinct weight vectors needed for the Full AWF is small, and
this allows for fast processing. The Fast AWF SR algorithm precomputes all
of the weights for any motion model using a partial observation window [15].

The experimental results show that iterative SR methods, like the RLS,
generally provide the best results. However these have a high computational
complexity. The Fast AWF SR method is observed to have the shortest run
time of any of the SR methods tested, with performance comparable to that
of WNN and the RLS with 5 iterations. Delaunay SR was a notable performer
in that the MSE was comparable to that of the Full AWF and it had a shorter
run time. However, the run time for Delaunay SR was still much longer than
that of the Fast AWF.

This chapter has also explored motion models for multiframe SR. It is
noted that perhaps the most favorable conditions for SR are for a camera that
is panning and tilting from a stationary location with a static scene. In that
case, the 2-D optical flow is approximately quadratic, but can be effectively
modeled as affine in small regions (or piecewise affine for large areas). With the
stationary camera and static scene, no motion parallax, occulusion, or object
pose variations are present and the optical flow is independent of the 3-D
scene. Using the affine or piecewise affine model for this scenario, it is usually
possible to form a highly overdetermined set of linear equations to solve for
the motion parameters. With many equations and few motion parameters, it
is often possible to get sufficiently accurate estimates, even in the presence of
aliasing and noise.
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