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The objective of superresolution is to reconstruct a high-resolution image by using the information of a set of low-resolution
images. Recently, the variational Bayesian superresolution approach has beenwidely used. However, thesemethods cannot preserve
edges well while removing noises. For this reason, we propose a new image prior model and establish a Bayesian superresolution
reconstruction algorithm. In the proposed priormodel, the degree of interaction between pixels is adjusted adaptively by an adaptive
norm, which is derived based on the local image features. Moreover, in this paper, a monotonically decreasing function is used to
calculate and update the single parameter, which is used to control the severity of penalizing image gradients in the proposed prior
model. Thus, the proposed prior model is adaptive to the local image features thoroughly. With the proposed prior model, the
edge details are preserved and noises are reduced simultaneously. A variational Bayesian inference is employed in this paper, and
the formulas for calculating all the variables including the HR image, motion parameters, and hyperparameters are derived. These
variables are refined progressively in an iterative manner. Experimental results show that the proposed SR approach is very efficient
when compared to existing approaches.

1. Introduction

Superresolution (SR) technique [1–5] is an important branch
in image fusion technology which targets the reconstruction
of a high-resolution (HR) image from a set of degraded
low-resolution (LR) images. The LR images are usually
affected by warping, blurring, downsampling, and noising.
Due to advancement of the technology, superresolution has
been widely used in a broad range of applications such as
computer vision, medical imaging, public safety, andmilitary
reconnaissance.

SR is a typically ill-posed inverse problem that is hard to
solve without the introduction of some prior image infor-
mation [6–8]. Thus, a number of regularization-based SR
approaches have been proposed [9–11] by incorporating the
prior knowledge of the unknown high-resolution image in

the regularization strategy [12]. The authors in [9] proposed
a regularization-based SR approach based on the Tikhonov
regularizer using 𝐿2 norm. It can remove noises effectively;
however, it also blurs the image edges. Farsiu et al. [10]
proposed the bilateral total variation (BTV) regularizer,
which penalized gradient magnitudes measured by 𝐿1 norm,
with the intention of preserving edges in the reconstruction.
However, the BTV regularizer often produces artifacts in the
smoothed regions due to the use of 𝐿1 norm [11]. In [11], the
authors improved BTV with the norm 𝜌(𝑥, 𝑎) = 𝑎√𝑎2 + 𝑥2 −

𝑎
2, where 𝑥 is the gradient value and 𝑎 is a positive scale

parameter, and proposed the bilateral edge-preserving (BEP)
regularizer. This new norm can adaptively use 𝐿1 and 𝐿2

norms, and the transition from 𝐿1 to 𝐿2 can be controlled
by modifying the positive scale parameter 𝑎. Unfortunately,
the BEP regularizer employed a fixed scale parameter for
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the whole image and ignored the local image features. With
this drawback, it cannot well control the level of punishment
to local gradients.

It is well known that accurate registration which refers
to the estimation of motion information is a very important
factor in the success of the SR reconstruction method [13].
The above SR methods only registered the observations once
before reconstructing the HR image. This is not a robust
method.The error caused by an inaccurate registrationwould
produce poor effects in the reconstruction process [13]. Other
than the motion parameters, the hyperparameters related to
the image prior model and the noise model could intimately
affect the image reconstructing quality [12]. Recently, the
variational Bayesian method has been used for SR [14–16].
This method approximates the joint posterior distribution of
the unknowns, including the HR image, the motion parame-
ters, and the hyperparameters, using a tractable distribution
by minimizing the Kullback-Leibler (KL) divergence and by
estimating the unknowns simultaneously in each iteration.

The Bayesian approach uses a prior model to estimate
a priori knowledge of the unknown HR image. For edge-
preservation, the variational Bayesian approaches based on
TV prior model [14] and ℓ1 prior model [16] have been
proposed. In these two priormodels, the gradientmagnitudes
are measured by the 𝐿1 norm, and consequently both of
them can preserve edges. Compared with the TV prior, the
ℓ1 prior contains two model parameters, which constrain
certain preferred edge directions [15, 16]. However, the 𝐿1

norm may not always distinguish the real image features
from the effects of errors caused by inaccurate registration
and additive Gaussian noise. Therefore, some artifacts will
be produced in the smoothed image regions. Villena et
al. made progress by combining the TV prior model and
simultaneous autoregressive (SAR) (i.e., based on 𝐿2 norm)
prior model [15]. A similar approach is also applied to
the ℓ1 prior model. The problem is that it is difficult to
choose a proper parameter to balance the priors in the
combination.

In this paper, a variational Bayesian estimate of the HR
image, the motion parameters, and the hyperparameters are
proposed and derived and then given a set of LR images. In
order to overcome the difficulty of aforementioned SR meth-
ods, an adaptive image prior model is proposed, in which the
degree of interaction between pixels is adjusted adaptively by
using the norm 𝜌(𝑥, 𝑎) in order to preserve edges and remove
noises. It is important to note that we propose a method
for automatically estimating the scale parameters (i.e., 𝑎) to
the proposed prior model. Information needed to determine
these scale parameters is updated iteratively based on the
available estimated HR image. Experiment results show the
effectiveness of the proposed SR method.

The rest of this paper is organized as follows: the obser-
vation model and a Bayesian framework for image SR are
described in Section 2. The adaptive image prior model is
sketched in Section 3.The proposed SR approach is presented
in Section 4. Experimental results are demonstrated in
Section 5. Finally, the conclusion is given in Section 6. In
addition, Appendix is presented at the end of the paper
showing the solving process in detail.

2. The Problem Formulation

We formulate the problem to be solved in this section.
The formulation is divided into the observation model and
hierarchical Bayesian framework which are discussed below.

2.1. The Observation Model. Formulating an observation
model that relates the original HR image to the LR observa-
tions is the first step to fully analyze the SR reconstruction
problem.

Let 𝑢 denote the original HR image of size 𝑃
1
𝑁
1
× 𝑃
2
𝑁
2
,

and each observed LR image is of size 𝑁
1
× 𝑁
2
. 𝑃
1
and

𝑃
2
denote the downsampling factors in the horizontal and

vertical directions, respectively.TheHR image and LR images
are written in lexicographical notations as the vectors of
sizes 𝑃

1
𝑁
1
𝑃
2
𝑁
2

× 1 and 𝑁
1
𝑁
2

× 1, respectively. In this
work, the image acquisition process is modeled by geometric
transformation, blurring, downsampling, and adding with
white Gaussian noise. Thus, the following popular matrix
notation [15] is adopted to describe the acquisition process:

V
𝑘
= 𝐴𝐻

𝑘
𝐶 (𝑠
𝑘
) 𝑢 + 𝜀

𝑘
1 ≤ 𝑘 ≤ 𝐿, (1)

where V
𝑘
is one of a set (𝐿) of LR images,𝐴 (the dimension of

𝐴 is𝑁
1
𝑁
2
×𝑃
1
𝑁
1
𝑃
2
𝑁
2
) is the downsampling matrix,𝐻

𝑘
(the

dimension of𝐻
𝑘
is𝑃
1
𝑁
1
𝑃
2
𝑁
2
×𝑃
1
𝑁
1
𝑃
2
𝑁
2
) is the blurmatrix,

𝐶(𝑠
𝑘
) (the dimension of𝐶(𝑠

𝑘
) is𝑃
1
𝑁
1
𝑃
2
𝑁
2
×𝑃
1
𝑁
1
𝑃
2
𝑁
2
) is the

warp matrix, and 𝜀
𝑘
(the dimension of 𝜀

𝑘
is 𝑁
1
𝑁
2
× 1) is the

additive white Gaussian noise.
The motion that occurs during the image acquisition is

represented by warp matrix 𝐶(𝑠
𝑘
). In this paper, we assume

that the motion includes global rotation and translation;
that is, 𝑠

𝑘
= (𝜃
𝑘
, 𝑥
𝑘
, 𝑦
𝑘
)
𝑇, where 𝜃

𝑘
, 𝑥
𝑘
, and 𝑦

𝑘
are the

rotation angle and the displacement in horizontal direction
and vertical direction of the 𝑘th HR image, respectively,
relative to the reference frame. In this study, we assume that
the blur matrices 𝐻

𝑘
are determined by sensors. The sensor

PSF is usually modeled as a spatial averaging operator, and
the characteristics of this blur are usually assumed to be
known. Under these assumptions, the matrices𝐻

𝑘
and 𝐶(𝑠

𝑘
)

have a block circulant with circulant block structure. The
downsampling matrix𝐴 is determined by the downsampling
factors𝑃

1
and𝑃
2
, and it generates LR images from the warped

and blurred HR image.
For convenience, we define 𝐵(𝑠

𝑘
) = 𝐴𝐻

𝑘
𝐶(𝑠
𝑘
) and V =

{V
𝑘
}, where {⋅} is a set.

2.2. The Hierarchical Bayesian Framework. We use a hier-
archical Bayesian framework [17] to model the acquisition
process, the HR image 𝑢, the motion parameters {𝑠

𝑘
}, and the

hyperparameters 𝛼 and {𝛽
𝑘
}. Parameters 𝛼 and {𝛽

𝑘
} are the

model parameters of our proposed prior model and the noise
model, respectively. Thus, we can obtain the following joint
posterior distribution of 𝑢, {𝑠

𝑘
}, {𝛽
𝑘
}, and 𝛼 given V by using

the Bayes rule:

𝑝 (𝑢, {𝑠
𝑘
} , {𝛽
𝑘
} , 𝛼 | V)

=
𝑝 (V | 𝑢, {𝑠

𝑘
} , {𝛽
𝑘
}) 𝑝 (𝑢 | 𝛼) 𝑝 ({𝑠

𝑘
}) 𝑝 ({𝛽

𝑘
}) 𝑝 (𝛼)

𝑝 (V)
,

(2)
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where 𝑝(V | 𝑢, {𝑠
𝑘
}, {𝛽
𝑘
}) represents the conditional distribu-

tion of the LR images V and 𝑝(𝑢 | 𝛼), 𝑝({𝑠
𝑘
}), 𝑝({𝛽

𝑘
}), and

𝑝(𝛼) are prior distributions for the unknown image 𝑢, the
motion parameters {𝑠

𝑘
}, and the hyperparameters {𝛽

𝑘
} and

𝛼, respectively.
Suppose that the noise 𝜀

𝑘
in the LR image V

𝑘
(𝑘 =

1, 2, . . . , 𝐿) is the white Gaussian noise with a zero-mean
distribution 𝜀

𝑘
∼ N(0, 𝛽

−1

𝑘
), and we can write

𝑝 (𝜀
𝑘
| 𝛽
𝑘
) ∝ 𝛽

𝑁
1
𝑁
2
/2

𝑘
exp [−

𝛽
𝑘

2

𝜀𝑘


2

2
] , (3)

where ‖ ⋅ ‖
2
denotes the 𝐿2 norm of a given vector ⋅.

Due to 𝜀
𝑘

= V
𝑘
− 𝐵(𝑠
𝑘
)𝑢, we can obtain the conditional

distribution of the LR image V
𝑘
,

𝑝 (V
𝑘
| 𝑢, 𝑠
𝑘
, 𝛽
𝑘
)

∝ 𝛽
𝑁
1
𝑁
2
/2

𝑘
exp [−

𝛽
𝑘

2

V𝑘 − 𝐵 (𝑠
𝑘
) 𝑢



2

2
] .

(4)

Moreover, if we assume the statistical independence of
noises among the LR images, we can obtain the conditional
distribution of the LR images V

𝑝 (V | 𝑢, {𝑠
𝑘
} , {𝛽
𝑘
}) =

𝐿

∏

𝑘=1

𝑝 (V
𝑘
| 𝑢, 𝑠
𝑘
, 𝛽
𝑘
) . (5)

By using the available registration algorithm, the initial
values of motion parameters can be obtained. However, the
obtained initial values are often inaccurate. In this paper, we
refine the values of motion parameters by modeling them as
stochastic variables following Gaussian distributions (𝑠

𝑘
∼

N(𝑠
0

𝑘
, 𝛿
𝑘
)), which is similar to the model used in [15].

The prior distributions for the hyperparameters are
defined to be Gamma distributions (𝑡 ∼ Γ(𝑎

𝑡
, 𝑏
𝑡
), 𝑡 ∈

{𝛼, {𝛽
𝑘
}}). Gamma distributions for the hyperparameters

were selected because they are conjugate for the variance of
the Gaussian distribution; therefore, the posteriors will also
have Gamma distributions in the Bayesian formulation [18].

Our proposed adaptive image prior model, denoted by
𝑝(𝑢 | 𝛼), will be presented in the next section.

3. The Proposed Adaptive Image Prior Model

In this section,we propose an adaptive image priormodel and
then present amethod to calculate the scale parameter 𝑎 used
in the proposed prior model.

3.1. The Adaptive Image Prior Model. The adaptive norm
𝜌(𝑥, 𝑎) = 𝑎√𝑎2 + 𝑥2 − 𝑎

2 is used to measure the horizontal
and vertical gradients in which 𝑥 is the gradient value and 𝑎 is
a positive scale parameter.These parameters are to determine
the severity of penalizing image gradients. A new adaptive
image prior model is proposed and defined as follows:

𝑝 (𝑢 | 𝛼) ∝ (𝛼
1
𝛼
2
)
𝑁/4

⋅ exp{−

𝑁

∑

𝑖=1

[𝛼
1
𝜌 (∇
𝑥

𝑖
𝑢, 𝑎
𝑖,1
) + 𝛼
2
𝜌 (∇
𝑦

𝑖
𝑢, 𝑎
𝑖,2
)]} ,

(6)

where 𝑁 = 𝑃
1
𝑁
1
× 𝑃
2
𝑁
2
is the number of pixels in the

HR image. Symbols ∇
𝑥

𝑖
𝑢 and ∇

𝑦

𝑖
𝑢 represent the horizontal

and vertical gradient components, respectively, for the pixel
𝑖, 𝛼 = {𝛼

1
, 𝛼
2
} is the hyperparameter of this prior controlling

the degree of regularization, and 𝑎
𝑖,1

and 𝑎
𝑖,2

are the scale
parameters of the adaptive norms measuring the horizontal
and vertical gradient component, respectively, of pixel 𝑖.

If we take the logarithm, (6) becomes

log (𝑝 (𝑢 | 𝛼))

∝ −

𝑁

∑

𝑖=1

[𝛼
1
𝜌 (∇
𝑥

𝑖
𝑢, 𝑎
𝑖,1
) + 𝛼
2
𝜌 (∇
𝑦

𝑖
𝑢, 𝑎
𝑖,2
)] ,

(7)

where log(𝑝(𝑢 | 𝛼)) is proportional to a linear combination
of 𝜌((∇𝑥

𝑖
𝑢), 𝑎
𝑖,1
) and 𝜌((∇

𝑦

𝑖
𝑢), 𝑎
𝑖,2
), 𝑖 = 1, . . . , 𝑁. Equation (7)

is strictly a convex function because 𝜌(𝑥, 𝑎) is strictly convex
[11].

In addition, log(𝑝(𝑢 | 𝛼)) is adaptive, because the
following approximations of 𝜌(𝑥, 𝑎) can be obtained with the
assumption that parameter 𝑎 is fixed:

𝜌 (𝑥, 𝑎) ≈
1

2
𝑥
2 when 𝑥 → 0, (8)

𝜌 (𝑥, 𝑎) ≈ 𝑎 |𝑥| − 𝑎
2 when 𝑥 → ∞. (9)

Thus, 𝜌((∇𝑥
𝑖
𝑢), 𝑎
𝑖,1
) or 𝜌((∇

𝑦

𝑖
𝑢), 𝑎
𝑖,2
), 𝑖 = 1, . . . , 𝑁, in (7) can

use either 𝐿1 norm (i.e., (9)) or 𝐿2 norm (i.e., (8)) adaptively
based on the evaluation of the local image features.

Thus, the expression 𝐹 = 𝛼
1
𝜌(∇
𝑥

𝑖
𝑢, 𝑎
𝑖,1
) + 𝛼
2
𝜌(∇
𝑦

𝑖
𝑢, 𝑎
𝑖,2
)

can be approximated as

𝐹 ≈
𝛼
1

2

∇
𝑥

𝑖
𝑢


2

+ 𝛼
2
(𝑎
𝑖,2

∇
𝑦

𝑖
𝑢
 − (𝑎
𝑖,2
)
2

) ,

when ∇
𝑥

𝑖
𝑢
 → 0,

∇
𝑦

𝑖
𝑢
 → ∞;

(10)

𝐹 ≈ 𝛼
1
(𝑎
𝑖,1

∇
𝑥

𝑖
𝑢
 − (𝑎
𝑖,1
)
2

) +
𝛼
2

2

∇
𝑦

𝑖
𝑢


2

,

when ∇
𝑥

𝑖
𝑢
 → ∞,

∇
𝑦

𝑖
𝑢
 → 0;

(11)

𝐹 ≈ 𝛼
1
(𝑎
𝑖,1

∇
𝑥

𝑖
𝑢
 − (𝑎
𝑖,1
)
2

) + 𝛼
2
(𝑎
𝑖,2

∇
𝑦

𝑖
𝑢
 − (𝑎
𝑖,2
)
2

) ,

when ∇
𝑥

𝑖
𝑢
 → ∞,

∇
𝑦

𝑖
𝑢
 → ∞;

(12)

𝐹 ≈
𝛼
1

2

∇
𝑥

𝑖
𝑢


2

+
𝛼
2

2

∇
𝑦

𝑖
𝑢


2

,

when ∇
𝑥

𝑖
𝑢
 → 0,

∇
𝑦

𝑖
𝑢
 → 0.

(13)

For example, if there exists an edge along the hor-
izontal direction in an LR image, |∇

𝑦

𝑖
𝑢| of the pixel at

the edge is relatively large while |∇
𝑥

𝑖
𝑢| is small. Thus,

𝑎
𝑖,2
√(𝑎
𝑖,2
)
2
+ |∇
𝑦

𝑖
𝑢|2−(𝑎

𝑖,2
)
2 approximates to 𝑎

𝑖,2
|∇
𝑦

𝑖
𝑢|−(𝑎

𝑖,2
)
2

and 𝑎
𝑖,1
√(𝑎
𝑖,1
)
2
+ |∇
𝑥

𝑖
𝑢|2−(𝑎

𝑖,1
)
2 approximates to (1/2)|∇

𝑥

𝑖
𝑢|
2.

Therefore, 𝐹 approximates to (10). In the SR process based
on (10), when the LR pixel splits in both horizontal and
vertical directions into a block ofHR pixels, the large gradient
magnitude in the vertical direction will be preserved due
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to the 𝐿1 norm, and the small gradient magnitude in the
horizontal direction will be smoothed due to the 𝐿2 norm.
Thus whenever there exists an edge along horizontal or
vertical direction, 𝑎√𝑎2 + | ⋅ |2 − 𝑎

2 can act as the 𝐿1 norm
in the direction perpendicular to the edge, preserving large
gradients, and, at the same time, 𝑎√𝑎2 + | ⋅ |2 − 𝑎

2 can act
as the 𝐿2 norm in the direction along the edge, obtaining
relatively ideal smoothing effects. In (12), when |∇

𝑥

𝑖
𝑢| → ∞

and |∇
𝑦

𝑖
𝑢| → ∞, the 𝐿1 norm acts on both horizontal

and vertical directions, to preserve the edges. In (13), when
|∇
𝑥

𝑖
𝑢| → 0 and |∇

𝑦

𝑖
𝑢| → 0, the noise will be effectively

removed.

3.2. Adaptive Calculation of Parameter 𝑎. It is known that
the gradients produced by edges should be preserved, while
the gradients produced by errors, which suffer from inac-
curate registration and additive Gaussian noise, need to be
smoothed. Thus, the severity of penalizing image gradients
should be determined according to the local image features.
In 𝜌(𝑥, 𝑎), the scale parameter, 𝑎, can control the severity
of penalizing local gradients. For the gradients produced by
errors, 𝐿2 norm is a good choice. In this case, the scale
parameter should be set as a large value. When the value of
the scale parameter increases, 𝜌(𝑥, 𝑎) accepts a larger range
of errors and handles them like 𝐿2 norm [11]. Otherwise,
it should be set as a small value. Therefore, the property of
scale parameter should be constrained with the following
conditions: (1) its value is determined according to the local
image features, (2) the value is inversely proportional to
gradient magnitudes, and (3) the value is larger than zero.

We use the well-known monotonically decreasing func-
tion [19] to calculate 𝑎

𝑖,1
, and 𝑎

𝑖,2
in (6),

𝑎
𝑖,1

=
1

1 +
∇
𝑥

𝑖
𝑢


2
,

𝑎
𝑖,2

=
1

1 +
∇
𝑦

𝑖
𝑢


2
,

1 ≤ 𝑖 ≤ 𝑁,

(14)

where |∇𝑥
𝑖
𝑢| and |∇

𝑦

𝑖
𝑢| represent themagnitudes of horizontal

and vertical gradient components, respectively, for the pixel
𝑖.

For convenience, we use the symbol R to represent 𝑎
𝑖,1
,

and 𝑎
𝑖,2
; that is,R = {𝑎

𝑖,1
, 𝑎
𝑖,2
, 1 ≤ 𝑖 ≤ 𝑁}.

4. Variational Bayesian Superresolution

The variational Bayesian inference [14] is utilized to estimate
the unknowns. This variational Bayesian technique approx-
imates the true posterior distribution 𝑝(𝑢, {𝑠

𝑘
}, 𝛼, {𝛽

𝑘
} |

V) analytically by a tractable distribution 𝑞(𝑢, {𝑠
𝑘
}, 𝛼, {𝛽

𝑘
})

that minimizes the KL divergence, which can measure the
difference between the two distributions 𝑝(𝑢, {𝑠

𝑘
}, 𝛼, {𝛽

𝑘
} |

V) and 𝑞(𝑢, {𝑠
𝑘
}, 𝛼, {𝛽

𝑘
}). That is to say, by minimizing this

KL divergence, we can obtain the optimal approximation
distribution. Thus, we can obtain the following expression:

𝑞 (Ω) = argmin
𝑞(Ω)

𝐶KL (𝑞 (Ω) ‖ 𝑝 (Ω) | V)

= ∫ 𝑞 (Ω) log(
𝑞 (Ω)

𝑝 (Ω | V)
) 𝑑Ω

= ∫𝑞 (Ω) log(
𝑞 (Ω)

𝑝 (Ω, V)
) 𝑑Ω + const

= 𝐸 (𝑞 (Ω) , V) + const,

(15)

where Ω = {𝑢, {𝑠
𝑘
}, {𝛽
𝑘
}, 𝛼} and 𝑝(Ω, V) = 𝑝(V |

𝑢, {𝑠
𝑘
}, {𝛽
𝑘
})𝑝(𝑢 | 𝛼)𝑝(𝛼)𝑝({𝛽

𝑘
})𝑝({𝑠

𝑘
}).

Thus, (11) can be rewritten as

𝑞 (Ω) = argmin
𝑞(Ω)

𝐸 (𝑞 (Ω) , V) . (16)

Because (16) cannot be evaluated due to the form of (6), the
inequality√𝑒 ≤ (𝑒+𝑔)/2√𝑔with 𝑒 ≥ 0, 𝑔 > 0 is employed in
(6). This inequality was used in [14, 15]. Then, we can obtain

𝑝 (𝑢 | 𝛼) ≥ (𝛼
1
𝛼
2
)
𝑁/4 exp

{{

{{

{

−

𝑁

∑

𝑖=1

[
[

[

𝛼
1
(𝑎
𝑖,1

(∇
𝑥

𝑖
𝑢)
2

+ 𝑎
2

𝑖,1
+ 𝑔
𝑥

𝑖

2√𝑔
𝑥

𝑖

− 𝑎
2

𝑖,1
) + 𝛼

2
(𝑎
𝑖,2

(∇
𝑦

𝑖
𝑢)
2

+ 𝑎
2

𝑖,2
+ 𝑔
𝑦

𝑖

2√𝑔
𝑦

𝑖

− 𝑎
2

𝑖,2
)

]
]

]

}}

}}

}

= 𝑍 (𝛼, 𝑢, 𝑔) ,

(17)

where 𝑔 = {𝑔
𝑥

𝑖
, 𝑔
𝑦

𝑖
| 𝑖 = 1, . . . , 𝑁}, the auxiliary variables

𝑔
𝑥

𝑖
and 𝑔

𝑦

𝑖
are related to the unknown HR image, and they

need to be estimated (see (22)).Thus, we can obtain the upper
bound of 𝐸(𝑞(Ω), V)

𝐸 (𝑞 (Ω) , V) ≤ ∫ 𝑞 (Ω) log
𝑞 (Ω)

𝐾 (Ω, V, 𝑔)

= 𝐸 (𝑞 (Ω) , V, 𝑔) ,

(18)

where 𝐾(Ω, V, 𝑔) = 𝑝(V | 𝑢, {𝑠
𝑘
}, {𝛽
𝑘
})𝑍(𝛼, 𝑢, 𝑔)𝑝(𝛼)𝑝({𝛽

𝑘
})

𝑝({𝑠
𝑘
}).

As shown in [20], the minimization of 𝐸(𝑞(Ω), V)
can be replaced by the minimization of its upper bound
𝐸(𝑞(Ω), V, 𝑔). Thus, we can obtain the distributions 𝑞(𝑢),
𝑞({𝑠
𝑘
}), 𝑞({𝛽

𝑘
}), and 𝑞(𝛼) and 𝑔 by minimizing 𝐸(𝑞(Ω), V, 𝑔);

that is,

𝑞 (Ω) = argmin
𝑞(Ω)

𝐸 (𝑞 (Ω) , V) . (19)
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The details of equations derivation are given in Appendix
at the end of this paper. We obtain for the posterior distribu-
tion 𝑞(𝑢) the multivariate Gaussian with mean value

⟨𝑢⟩ = Σ
𝑢
[∑

𝑘

⟨𝛽
𝑘
⟩ 𝐵 (⟨𝑠

𝑘
⟩)
𝑇 V
𝑘
] (20)

and covariance

Σ
𝑢
= [

[

∑

𝑘

⟨𝛽
𝑘
⟩ 𝐵 (⟨𝑠

𝑘
⟩)
𝑇

𝐵 (⟨𝑠
𝑘
⟩)

+ ∑

𝑘

∑

𝑖

∑

𝑗

𝜉
𝑘𝑖𝑗

𝑂
𝑘𝑖
(⟨𝑠
𝑘
⟩)
𝑇

𝑂
𝑘𝑗

(⟨𝑠
𝑘
⟩)

+ (⟨𝛼
1
⟩ (∇
𝑥
)
𝑇

𝑊(𝑔
𝑥
) (∇
𝑥
)

+ ⟨𝛼
2
⟩ (∇
𝑦
)
𝑇

𝑊(𝑔
𝑦
) (∇
𝑦
))]

]

−1

,

(21)

where ⟨⋅⟩ denotes the expected value of ⋅, 𝑇 denotes the
transposed operator, 𝜉

𝑘𝑖𝑗
is a 3 × 3 region in the covariance

matrix Λ
𝑘
in (24), 𝑂

𝑘𝑟
(⟨𝑠
𝑘
⟩) = 𝐴𝐻

𝑘
𝑁
𝑘
, 𝑟 = 1, 2, 3, where𝑁

1
,

𝑁
2
, and 𝑁

3
denote partial derivatives of 𝐶(𝑠

𝑘
) for 𝜃

𝑘
, 𝑥
𝑘
, and

𝑦
𝑘
, respectively, and 𝑊(𝑔), ∀𝑔 ∈ (𝑅

+
)
𝑁 is a diagonal matrix,

in which the element on the diagonal is𝑊(𝑔)
𝑖𝑖
= 1/√𝑔

𝑖
.

Then, the following expressions are obtained for:

𝑔
𝑥

𝑖
= ⟨(∇

𝑥

𝑖
𝑢)
2

+ 𝑎
2
⟩
𝑞(𝑢)

,

𝑔
𝑦

𝑖
= ⟨(∇

𝑦

𝑖
𝑢)
2

+ 𝑎
2
⟩
𝑞(𝑢)

,

(22)

where ⟨⋅⟩
𝑞(∗)

denotes the expected value of ⋅ using 𝑞(∗).
We also obtain for the posterior distribution 𝑞({𝑠

𝑘
}) the

multivariate Gaussian with mean value

⟨𝑠
𝑘
⟩ = Λ

𝑘
[(𝛿
𝑘
)
−1

𝑠
0

𝑘

+ ⟨𝛽
𝑘
⟩ (Γ
𝑘
⟨𝑠
𝑘
⟩ + Ψ
𝑘
⟨𝑠
𝑘
⟩ + 𝑄
𝑘
− Φ
𝑘
)]

(23)

and covariance

Λ
𝑘
= ((𝛿
𝑘
)
−1

+ ⟨𝛽
𝑘
⟩ (Γ
𝑘
+ Ψ
𝑘
))
−1

. (24)

In (23) and (24), Φ
𝑘𝑖

= trace[𝐵(⟨𝑠
𝑘
⟩)
𝑇
𝑂
𝑘𝑗
(⟨𝑠
𝑘
⟩)Σ
𝑢
], Ψ
𝑘𝑖𝑗

=

trace[𝑂
𝑘𝑖
(⟨𝑠
𝑘
⟩)
𝑇
𝑂
𝑘𝑗
(⟨𝑠
𝑘
⟩)Σ
𝑢
], Γ
𝑘𝑖𝑗

= Υ
𝑇

𝑘𝑖
Υ
𝑘𝑗

with Υ
𝑘

= [𝑂
𝑘1

(⟨𝑠
𝑘
⟩)⟨𝑢⟩, 𝑂

𝑘2
(⟨𝑠
𝑘
⟩)⟨𝑢⟩, 𝑂

𝑘3
(⟨𝑠
𝑘
⟩)⟨𝑢⟩], and 𝑄

𝑘𝑖
= (V

𝑘
−

𝐵(⟨𝑠
𝑘
⟩)
𝑇
𝑂
𝑘𝑖
(⟨𝑠
𝑘
⟩)⟨𝑢⟩), for 𝑖, 𝑗 = 1, 2, 3.

Finally, we obtain the mean values of the hyperparameter
distributions, which are used to estimate hyperparameters,

⟨𝛽
𝑘
⟩ =

𝑁
1
𝑁
2
/2 + 𝑎

𝛽
𝑘

(1/2) ⟨
V𝑘 − 𝐵 (𝑠

𝑘
) 𝑢



2

2
⟩
𝑞(𝑢)

+ 𝑏
𝛽
𝑘

, (25)

⟨𝛼
1
⟩ =

𝑁 + 𝑎
𝛼
1

2∑
𝑖
(𝑎√𝑔

𝑥

𝑖
− 𝑎2) + 𝑏

𝛼
1

, (26)

⟨𝛼
2
⟩ =

𝑁 + 𝑎
𝛼
2

2∑
𝑖
(𝑎√𝑔

𝑦

𝑖
− 𝑎2) + 𝑏

𝛼
2

. (27)

At each iteration step, after obtaining the HR image, the
scale parametersR are updated using (10). We now conclude
our algorithm (Algorithm 1).

5. Experimental Results

Wewill give our experimental results in detail in this section.
The experimental environment and parameter settings are
presented in Section 5.1. The evaluation standards and sim-
ulated experimental results obtained by four popularly used
SR approaches and our proposed SR approach are illustrated
in Section 5.2. Some of the results on real dataset are given in
Section 5.3.

5.1. General Description. Wecompare the performance of our
proposed approachwith the bicubic approach, the BEPmodel
[11] based approach, the ℓ1 model [16] based approach, the
TVmodel [14] based approach, and the SARmodel [15] based
approach in terms of Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity (SSIM) values [21], and thorough visual
inspection. The images presented in Figure 1 were chosen for
the simulation test. We used MATLAB R2009a on a 3.0GHz
Pentium Dual core computer with 4.0GB RAM.

We need to derive a set of LR images from original
images in the experiments. These LR images should have
been generated with subpixel motion, rotation, blurring,
downsampling, and noise addition. In the experiments, we let
𝜃
𝑘
∈ (−3∘, 3∘), 𝑥

𝑘
∈ (−1, 1), 𝑦

𝑘
∈ (−1, 1), 𝑘 = 1, 2, 3, 4, 5, and the

transformation of LR images be variant from each other. 3 × 3
average andGaussian blurring operators with deviation equal
to 1 were used in the simulation. The downsampling factors
were 𝑃

1
= 2 and 𝑃

2
= 2. Finally, additive zero-mean white

Gaussian noises were added to the LR images with Signal-
to-Noise Ratio (SNR) levels of 1 dB, 5 dB, 10 dB, and 30 dB,
respectively.Thus, in each level, five LR images were obtained
from each of the original images. The initial parameters used
in the experiments were set as follows: our proposedmethod:
𝑔
𝑥0

𝑖
= |∇
𝑥

𝑖
𝑢
0
|
2
+ (𝑎
0

𝑖,1
)
2, 𝑔𝑦0
𝑖

= |∇
𝑦

𝑖
𝑢
0
|
2
+ (𝑎
0

𝑖,2
)
2, 𝑎0
𝑖,1

= 1/(1 +

|∇
𝑥

𝑖
𝑢
0
|
2
), 𝑎0
𝑖,2

= 1/(1 + |∇
𝑦

𝑖
𝑢
0
|
2
), 𝛼0
1

= (𝑁/4)/∑
𝑖
(𝑎
0

𝑖,1
√𝑔
𝑥0

𝑖
−

(𝑎
0

𝑖,1
)
2
), and𝛼

0

2
= (𝑁/4)/∑

𝑖
(𝑎
0

𝑖,2
√𝑔
𝑦0

𝑖
−(𝑎
0

𝑖,2
)
2
); the ℓ1method:

𝑔
𝑥0

𝑖
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𝑥

𝑖
𝑢
0
|
2, 𝑔𝑦0
𝑖
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𝑖
𝑢
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𝑖
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Input:
The observations {V

𝑘
}; The motion parameters {𝑠0

𝑘
}; The hyper-parameters {𝛽0

𝑘
},

𝛼
0; The scale parametersR0; The parameters 𝑔0.

Output:
The HR image 𝑢;

(1) Use the Bicubic interpolation of the first LR image V
1
as initial value 𝑢

0 for the HR image.
(2) 𝑛 = 1;
(3) repeat
(4) Compute 𝑢

𝑛 by using (20) and (21);
(5) Compute 𝑔

𝑛 by using (22);
(6) Compute 𝑠

𝑛

𝑘
by using (23) and (24);

(7) Compute 𝛽
𝑛

𝑘
by using (25);

(8) Compute 𝛼
𝑛 by using (26) and (27);

(9) ComputeR𝑛 by using (14);
(10) 𝑛 = 𝑛 + 1;
(11) until convergence criterion is met
(12) Set 𝑢 = 𝑢

𝑛.

Algorithm 1: Our iterative SR algorithm.

(a) (b)

Figure 1: The 128 × 128 test images: (a) “zebra” and (b) “car.”

𝛼
0

= (𝑁/4)/∑
𝑖
√𝑔
0

𝑖
; the SAR method: 𝛼0 = (𝑁/2)/‖ℏ𝑢

0
‖
2

2

with Laplacian operator ℏ; the BEP method: 𝑔𝑥0
𝑖

= |𝑢
0

𝑖
−

𝑠
𝑙

𝑥
𝑠
𝑚

𝑦
𝑢
0

𝑖
|
2
+(𝑎
0

𝑖,1
)
2, where𝑎 is the scale parameter, 𝑠𝑙

𝑥
and 𝑠
𝑚

𝑦
shift

𝑢
0

𝑖
by 𝑙 and𝑚 pixels in the horizontal and vertical directions,

respectively, and these parameters are selected to obtain the
best reconstructions; consider 𝛼

0
= (𝑁/4)/∑

𝑖
√𝑔
0

𝑖
. For

all the methods, a bicubic interpolation of V
1
is used as

initial value 𝑢
0, 𝛽0
𝑘

= 𝑁/‖V
𝑘
− 𝐵(𝑠
𝑘
)𝑢
0
‖
2

2
, the initial motion

parameters were estimated using the method proposed in
[22], 𝛿

𝑘
= 0, and 𝑎

𝑡
= 𝑏
𝑡

= 0, 𝑡 ∈ {𝛼
1
, 𝛼
2
, {𝛽
𝑘
}}. In our

work, the convergence of the algorithmswas setwith the same
criterion ‖𝑢

𝑛+1
− 𝑢
𝑛
‖
2

2
/‖𝑢
𝑛
‖
2

2
≤ 10
−5.

5.2. Simulation Experiments. We used LR images derived
from artificial HR images to test our proposed approach.
The PSNR and SSIM are used to evaluate the reconstruction

quality of different approaches. The first set of experiments
was with the high level of noise (i.e., SNR = 1 dB and SNR
= 5 dB). For the second set of experiments, white Gaussian
noises with SNR = 10 dB and SNR = 30 dB were used and the
motion parameters were estimated in each iteration.

In the first set of experiments, we will show the improve-
ment of our proposed approach in heavy noise (i.e., SNR =
1 dB and SNR = 5 dB). Tables 1 and 2 show the PSNR values of
all the estimated HR images in heavy noise with average blur
and Gaussian blur. Based on the PSNR values, our proposed
method shows a good performance. Moreover, Tables 1 and
2 give the corresponding SSIM values that also demonstrate
the efficiency of our proposed method.

For the second set of experiments, themotion parameters
were estimated. In order to further illustrate the effective-
ness of our approach, we will present the reconstruction
results for “zebra” and “car” images in noise with SNR =
10 dB and SNR = 30 dB, respectively. Tables 3 and 4 show
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(a) Bicubic (b) SAR (c) ℓ1

(d) TV (e) BEP (f) Ours

(g) Error image of bicubic interpolation (h) Error image of SAR (i) Error image of ℓ1

(j) Error image of TV (k) Error image of BEP (l) Error image of ours

Figure 2: Results obtained by applying different approaches to LR zebra images corrupted with Gaussian blur and white Gaussian noise with
SNR = 10 dB and their corresponding error images. Brighter pixels represent a large error in error image.
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(a) Bicubic (b) SAR (c) ℓ1

(d) TV (e) BEP (f) Ours

(g) Error image of bicubic interpolation (h) Error image of SAR (i) Error image of ℓ1

(j) Error image of TV (k) Error image of BEP (l) Error image of ours

Figure 3: Results obtained by applying different approaches to LR car images corrupted with average blur and white Gaussian noise with
SNR = 30 dB and their corresponding error images. Brighter pixels represent a large error in error image.
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(a) Bicubic (b) SAR (c) ℓ1

(d) TV (e) BEP (f) Ours

Figure 4: The reconstructed images for “Adyoron” sequence obtained by different approaches. A subimage is enlarged and displayed at the
right bottom corner in the image.

Table 1: Comparisons of PSNR and SSIM with average blur and
white Gaussian noise with SNR = 1 dB and SNR = 5 dB.

SNR Bicubic SAR ℓ1 TV BEP Ours

Zebra
1 dB PSNR 18.51 21.15 21.62 20.24 21.72 22.27

SSIM 0.5645 0.6894 0.6780 0.6410 0.6953 0.7086

5 dB PSNR 18.63 22.39 22.63 22.29 22.70 24.06
SSIM 0.5645 0.7858 0.7889 0.7840 0.7905 0.8020

Car
1 dB PSNR 26.20 30.33 28.27 28.48 29.93 30.73

SSIM 0.7369 0.8365 0.7601 0.7697 0.8025 0.8563

5 dB PSNR 26.20 32.27 30.35 32.57 31.57 33.03
SSIM 0.7370 0.8938 0.8640 0.8957 0.8475 0.9121

the comparisons of PSNR values of bicubic approach, BEP
approach, ℓ1 approach, SAR approach, TV approach, and our
approach. Tables 3 and 4 also give the SSIM results of these
approaches with average blur and Gaussian blur, respectively.
From Tables 3 and 4, we can see the improvement of our
proposed approach over other testedmethods. Among all the
approaches tested, the proposed method achieves the highest
PSNR and SSIM values on both test images.

Table 2: Comparisons of PSNR and SSIM with Gaussian blur and
white Gaussian noise with SNR = 1 dB and SNR = 5 dB.

SNR Bicubic SAR ℓ1 TV BEP Ours

Zebra
1 dB PSNR 18.97 21.44 21.00 21.06 21.46 22.04

SSIM 0.6072 0.7053 0.6733 0.6742 0.7108 0.7255

5 dB PSNR 19.08 22.90 23.12 23.95 22.74 24.41
SSIM 0.6072 0.8012 0.7977 0.8173 0.7197 0.8236

Car
1 dB PSNR 26.56 30.27 29.40 29.43 30.41 31.45

SSIM 0.7511 0.8417 0.7771 0.7956 0.8573 0.8660

5 dB PSNR 26.77 32.86 33.06 33.61 32.16 34.64
SSIM 0.7512 0.8930 0.8869 0.9021 0.6576 0.9288

For visual quality comparison, the error images, that
is, the difference between the estimated HR image and the
original image, are shown in Figures 2 and 3. Our proposed
approach can preserve edge details well. Figures 2(g)–2(l)
and 3(g)–3(l) show the corresponding error images to the
reconstructed images obtained with different approaches.
Brighter pixels represent a large error. From these error
images, the difference between different SR approaches is
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(a) Bicubic (b) SAR (c) ℓ1

(d) TV (e) BEP (f) Ours

Figure 5: The reconstructed images for “EIA” sequence obtained by different approaches. A subimage is enlarged and displayed at the right
bottom corner in the image.

Table 3: Comparisons of PSNR and SSIM with average blur and
white Gaussian noise with SNR = 10 dB and SNR = 30 dB.

SNR Bicubic SAR ℓ1 TV BEP Ours

Zebra
10 dB PSNR 19.22 23.73 26.41 25.62 25.81 26.90

SSIM 0.6745 0.8247 0.8420 0.8360 0.8102 0.8766

30 dB PSNR 19.23 37.09 42.88 41.17 43.34 43.87
SSIM 0.6768 0.9207 0.9252 0.8744 0.9261 0.9413

Car
10 dB PSNR 26.45 34.51 35.95 35.96 34.98 36.32

SSIM 0.7690 0.8898 0.8857 0.8866 0.8816 0.9197

30 dB PSNR 26.45 38.73 40.29 39.81 44.78 48.74
SSIM 0.7710 0.9036 0.9160 0.9169 0.9288 0.9461

clearly observed. In general, our proposed approach can
obtain the highest PSNR and SSIMvalues, with the best visual
quality.

5.3. Experiments on Real Data. The performance of our
approach is tested with real dataset. The datasets are
those popular used video sequences, downloaded from

Table 4: Comparisons of PSNR and SSIM with Gaussian blur and
white Gaussian noise with SNR = 10 dB and SNR = 30 dB.

SNR Bicubic SAR ℓ1 TV BEP Ours

Zebra
10 dB PSNR 19.39 24.20 26.74 25.33 25.80 27.72

SSIM 0.6868 0.8364 0.8537 0.8510 0.8756 0.9167

30 dB PSNR 19.39 37.49 40.34 39.01 40.97 42.32
SSIM 0.6874 0.9128 0.9208 0.9194 0.9265 0.9491

Car
10 dB PSNR 26.77 34.98 36.09 36.01 36.26 36.55

SSIM 0.7793 0.8969 0.8956 0.8951 0.8325 0.9246

30 dB PSNR 26.78 44.11 46.14 46.17 47.58 49.01
SSIM 0.7812 0.9238 0.9246 0.9242 0.8624 0.9468

Milanfar’s website https://users.soe.ucsc.edu/∼milanfar/soft-
ware/sr-datasets.html. The first ten LR images were used to
reconstruct the HR image.

Figures 4 and 5 present the obtained HR images for two
of the image sequences downloaded. In Figures 4 and 5, the
HR images obtained by the bicubic and SAR approaches are
still blurred. In addition, there exist artifacts in theHR images
obtained by the BEP, ℓ1, and TV approaches. Our approach
is superior to the approaches compared.



Mathematical Problems in Engineering 11

6. Conclusions

The errors caused by inaccurate registration and noises
in the traditional regularization-based SR methods often
produce unsatisfactory results in the reconstruction. Thus,
the variational Bayesian method, which can simultaneously
estimate the HR image, the motion parameters, and the
hyperparameters, has been used to improve the recon-
struction quality. However, the existing variational Bayesian
approaches cannot adapt to local image features.Therefore, in
this paper, a Bayesian SR approach is proposed by designing a
new adaptive image prior model, based on an adaptive norm.

Our adaptive image prior model can be adjusted auto-
matically based on the evaluation of the local image features;
therefore, this new model not only preserves edge details but
also avoids artifacts in the smoothed regions.We also propose
a method for automatically estimating the scale parameters
for the proposed adaptive image prior model. Information
needed to determine these scale parameters is updated in
each iteration step based on the available estimated HR
image, and they are calculated by using a monotonically
decreasing function. In our approach, the acquisition process,
the HR image, the motion parameters, and the hyperparam-
eters are modeled in a stochastic sense by using a hierarchical
Bayesian framework. And all unknowns are estimated by
employing the variational Bayesian inference.

The experimental results show that the HR images
obtained with our SR approach are better than those previ-
ously tested. In the proposed adaptive image prior model,
we only calculate the gradients of neighboring pixels at the
top and left of the center pixel for fast computation. We
will investigate further for the prior on the selection of 4-
neighbourhood or 8-neighbourhood in order to improve the
proposed algorithm in our future work.

Appendix

In this section we show how the calculations of all the
unknowns are carried out.

Because all the unknowns are independent, the following
expressions are obtained from (19):

𝑞 (𝑢)

= argmin
𝑞(𝑢)

𝐸 (𝑞 (𝑢) 𝑎 ({𝑠
𝑘
}) 𝑞 (𝛼) 𝑞 ({𝛽

𝑘
}) , V, 𝑔) ,

(A.1)
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𝑔

𝐸 (𝑞 (𝑢) 𝑞 ({𝑠
𝑘
}) 𝑞 (𝛼) 𝑞 ({𝛽
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}) , V, 𝑔) , (A.2)

𝑞 (𝑠
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)
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}) , V, 𝑔) ,

(A.3)

𝑞 (𝛽
𝑘
)
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𝐸 (𝑞 (𝑢) 𝑞 ({𝑠
𝑘
}) 𝑞 (𝛼) 𝑞 ({𝛽

𝑘
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(A.4)

𝑞 (𝛼)
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(A.5)

From (A.1), we can obtain
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(A.6)

where ⟨⋅⟩
𝑞(∗)

denotes the expected value using 𝑞(∗) and ⟨⋅⟩ is
used for simplicity in the rest of this paper.

In order to calculate ⟨‖V
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(A.12), resulting in

𝐶 (𝑠
𝑘
)

≈ 𝐶 (⟨𝑠
𝑘
⟩)

+ [𝑁
1
(⟨𝑠
𝑘
⟩) ,𝑁
2
(⟨𝑠
𝑘
⟩) ,𝑁
3
(⟨𝑠
𝑘
⟩)] (𝑠
𝑘
− ⟨𝑠
𝑘
⟩) .

(A.7)

Then, 𝐵(𝑠
𝑘
) is approximated by
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Then the following approximation of ⟨‖V
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Substituting (A.9) into (A.6), the covariance andmean values
of 𝑞(𝑢) can be calculated as
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From (A.3), we can obtain
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where 𝑇 denotes the transposed operator.
The approximation of ⟨‖V
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The mean values of the distributions in (A.15) are given
by
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