1,301 research outputs found

    Joint interpolation of multi-sensor sea surface geophysical fields using non-local and statistical priors

    No full text
    This work addresses the joint analysis of multi-source and multi-resolution remote sensing data for the interpolation of high-resolution geophysical fields. As case-study application, we consider the interpolation of sea surface temperature fields. We propose a novel statistical model, which combines two key features: an exemplar-based prior and second-order statistical priors. The exemplar-based prior, referred to as a non-local prior, exploits similarities between local patches (small field regions) to interpolate missing data areas from previously observed exemplars. This non-local prior also sets an explicit conditioning between the multi-sensor data. Two complementary statistical priors, namely a prior on the spatial covariance and a prior on the marginal distribution of the high-resolution details, are considered as sea surface geophysical fields are expected to depict specific spectral and marginal features in relation to the underlying turbulent ocean dynamics. We report experiments on both synthetic data and real SST data. These experiments demonstrate the contributions of the proposed combination of non-local and statistical priors to interpolate visually-consistent and geophysically-sound SST fields from multi-source satellite data. We further discuss the key features and parameterizations of this model as well as its relevance with respect to classical interpolation techniques

    Two-Stream Convolutional Networks for Dynamic Texture Synthesis

    Get PDF
    This thesis introduces a two-stream model for dynamic texture synthesis. The model is based on pre-trained convolutional networks (ConvNets) that target two independent tasks: (i) object recognition, and (ii) optical flow regression. Given an input dynamic texture, statistics of filter responses from the object recognition and optical flow ConvNets encapsulate the per-frame appearance and dynamics of the input texture, respectively. To synthesize a dynamic texture, a randomly initialized input sequence is optimized to match the feature statistics from each stream of an example texture. In addition, the synthesis approach is applied to combine the texture appearance from one texture with the dynamics of another to generate entirely novel dynamic textures. Overall, the proposed approach generates high quality samples that match both the framewise appearance and temporal evolution of input texture. Finally, a quantitative evaluation of the proposed dynamic texture synthesis approach is performed via a large-scale user study

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Structure-aware image denoising, super-resolution, and enhancement methods

    Get PDF
    Denoising, super-resolution and structure enhancement are classical image processing applications. The motive behind their existence is to aid our visual analysis of raw digital images. Despite tremendous progress in these fields, certain difficult problems are still open to research. For example, denoising and super-resolution techniques which possess all the following properties, are very scarce: They must preserve critical structures like corners, should be robust to the type of noise distribution, avoid undesirable artefacts, and also be fast. The area of structure enhancement also has an unresolved issue: Very little efforts have been put into designing models that can tackle anisotropic deformations in the image acquisition process. In this thesis, we design novel methods in the form of partial differential equations, patch-based approaches and variational models to overcome the aforementioned obstacles. In most cases, our methods outperform the existing approaches in both quality and speed, despite being applicable to a broader range of practical situations.Entrauschen, Superresolution und Strukturverbesserung sind klassische Anwendungen der Bildverarbeitung. Ihre Existenz bedingt sich in dem Bestreben, die visuelle Begutachtung digitaler Bildrohdaten zu unterstützen. Trotz erheblicher Fortschritte in diesen Feldern bedürfen bestimmte schwierige Probleme noch weiterer Forschung. So sind beispielsweise Entrauschungsund Superresolutionsverfahren, welche alle der folgenden Eingenschaften besitzen, sehr selten: die Erhaltung wichtiger Strukturen wie Ecken, Robustheit bezüglich der Rauschverteilung, Vermeidung unerwünschter Artefakte und niedrige Laufzeit. Auch im Gebiet der Strukturverbesserung liegt ein ungelöstes Problem vor: Bisher wurde nur sehr wenig Forschungsaufwand in die Entwicklung von Modellen investieret, welche anisotrope Deformationen in bildgebenden Verfahren bewältigen können. In dieser Arbeit entwerfen wir neue Methoden in Form von partiellen Differentialgleichungen, patch-basierten Ansätzen und Variationsmodellen um die oben erwähnten Hindernisse zu überwinden. In den meisten Fällen übertreffen unsere Methoden nicht nur qualitativ die bisher verwendeten Ansätze, sondern lösen die gestellten Aufgaben auch schneller. Zudem decken wir mit unseren Modellen einen breiteren Bereich praktischer Fragestellungen ab

    Intraclass image augmentation for defect detection using generative adversarial neural networks

    Get PDF
    Surface defect identification based on computer vision algorithms often leads to inadequate generalization ability due to large intraclass variation. Diversity in lighting conditions, noise components, defect size, shape, and position make the problem challenging. To solve the problem, this paper develops a pixel-level image augmentation method that is based on image-to-image translation with generative adversarial neural networks (GANs) conditioned on fine-grained labels. The GAN model proposed in this work, referred to as Magna-Defect-GAN, is capable of taking control of the image generation process and producing image samples that are highly realistic in terms of variations. Firstly, the surface defect dataset based on the magnetic particle inspection (MPI) method is acquired in a controlled environment. Then, the Magna-Defect-GAN model is trained, and new synthetic image samples with large intraclass variations are generated. These synthetic image samples artificially inflate the training dataset size in terms of intraclass diversity. Finally, the enlarged dataset is used to train a defect identification model. Experimental results demonstrate that the Magna-Defect-GAN model can generate realistic and high-resolution surface defect images up to the resolution of 512 Ă— 512 in a controlled manner. We also show that this augmentation method can boost accuracy and be easily adapted to any other surface defect identification models
    • …
    corecore