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Abstract

This thesis introduces a two-stream model for dynamic texture synthesis. The

model is based on pre-trained convolutional networks (ConvNets) that target two

independent tasks: (i) object recognition, and (ii) optical flow regression. Given an

input dynamic texture, statistics of filter responses from the object recognition and

optical flow ConvNets encapsulate the per-frame appearance and dynamics of the

input texture, respectively. To synthesize a dynamic texture, a randomly initial-

ized input sequence is optimized to match the feature statistics from each stream

of an example texture. In addition, the synthesis approach is applied to combine

the texture appearance from one texture with the dynamics of another to generate

entirely novel dynamic textures. Overall, the proposed approach generates high

quality samples that match both the framewise appearance and temporal evolu-

tion of input texture. Finally, a quantitative evaluation of the proposed dynamic

texture synthesis approach is performed via a large-scale user study.
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Chapter 1

Introduction

1.1 Motivation

The natural world is rich in visual texture. While a precise definition of texture

remains to be found, most research consider it as visual patterns that exhibit local

variations while maintaining global homogeneity, as shown in Fig. 1.1.

Textures can be static or dynamic: static textures exist in two-dimensional

(2D) image space (e.g ., grass and water) while dynamic textures extend the no-

tion across time (e.g ., fluttering grass and wavy water). As a result, local spatial

variations and global homogeneity extend across space and time. These tem-

poral patterns have previously been studied under a variety of names, including

turbulent flow [32] (for extracting optical flow from fluids undergoing irregular

fluctuations), temporal textures [47] (for recognition of moving patterns such as

windblown trees or rippling water), time-varying textures [5] (for synthesizing

stochastically-moving patterns), dynamic textures [13] (for modelling and synthe-

sizing stochastically-moving patterns), textured motion [64] (for modelling and
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Figure 1.1: Definition of a static texture. A static texture is a visual pattern that
exhibits local spatial variations while maintaining global homogeneity. Observ-
ing small apertures across the texture should reveal visual content that appears
roughly the same, captured as feature statistics.

synthesizing patterns undergoing stochastic or consistent motion), and spacetime

textures [12] (for classifying dynamic patterns). In this thesis, the term “dynamic

texture” is adopted.

Both static and dynamic texture cues play important roles in our perception

of surfaces. Understanding and characterizing these patterns has long been a

problem of interest in human perception, computer vision, and computer graphics.

In computer vision, studying the underlying statistics of textures allows us to gain

insight as to how these complex structures can be interpreted and how we may be

able to leverage this knowledge to inform certain vision-related tasks. Examples

of such tasks include shape-from-texture [25], material recognition [10, 2], texture

synthesis [31], and more recently, image style transfer [22]. In terms of specific

applications, there are many in the creative-industry including, but not limited to,

computer-generated imagery, digital painting, and image editing.

Shape-from-texture involves recovering the three-dimensional (3D) shape of an

object from a 2D image by using texture as a cue. Gibson [25] proposed the texture

gradient as the primary basis of surface perception by humans. He conjectured

that neighbouring areas on a textured surface are perceived differently only due

2



algorithm

Figure 1.2: Texture synthesis is the process of algorithmically constructing a tex-
ture (right) that matches or extends a given source texture (left) by taking advan-
tage of its structural content.

to differences in surface orientation and distance from the observer.

Material recognition in computer vision involves recognizing material categories

(e.g ., fabric, water, and wood) from an image based on the visual appearance

of surfaces. The visual appearance of a surface depends on several factors [10,

2], such as illumination, geometric structure at various scales, viewing direction,

and surface reflectance properties, e.g ., the Bidirectional Reflectance Distribution

Function (BRDF) [46]. Notably, texture can be useful for distinguishing materials.

For example, wood and water each have unique texture that easily distinguishes

the two. Dana et al . [10] introduced the Bidirectional Texture Function (BTF)

and demonstrated that the visual appearance of materials can be characterized by

measuring texture.

Texture synthesis (Fig. 1.2) is the process of algorithmically constructing a

texture that matches or extends a given source texture by taking advantage of its

structural content. Heeger and Bergen [31] took advantage of the fact that two

textures are often difficult to discriminate when they produce a similar distribution

of responses from a bank of linear filters. They used a combination of Laplacian and

3



Content

Style

Output

Figure 1.3: Image style transfer. The goal is to synthesize a texture (right) from
an input “style” image (bottom-left) while constraining the process in order to
preserve the semantic content of an input “content” image (top-left).

steerable pyramids to deconstruct a given texture and synthesized a new texture

by matching the distributions of responses from each pyramid level. Portilla and

Simoncelli [50] extended this approach by including complex “analytical” filters

that allowed them to utilize measures of local phase and energy in their texture

descriptors. More recently, Gatys et al . [21] demonstrated impressive results for

texture synthesis by using a convolutional network (ConvNet) instead of a linear

bank of filters to model the non-linear spatial statistics of a given texture.

Image style transfer (Fig. 1.3) is a recent technique where the goal is to re-

compose an image in the “style” (e.g ., texture) of another image. This can be

considered as a texture transfer problem, as previously demonstrated by Efros et

al . [15], where they transferred a given texture to another image by stitching to-

gether small patches of the given texture while conforming to the luminance of the

4



other image. Although the simplicity of their approach was attractive, it failed

for highly structured textures due to patch boundary inconsistencies, limiting the

selection of acceptable textures. Gatys et al . [21] modified their previous Con-

vNet for texture synthesis to support texture transfer by including an additional

objective that enforced the synthesized texture to match the semantic content of

a given image, resulting in an image style transfer [22]. Unlike the patch-based

method of Efros et al . [15], Gatys et al .’s approach of using a ConvNet was more

robust to textures with long-range consistencies.

Motivated by the ConvNet model of Gatys et al . [21] for texture synthesis, the

focus of this thesis is on the synthesis of dynamic texture samples, as captured

in video, based on a single exemplar through the use of ConvNets. Inspired by

Gatys et al .’s [22] method of image style transfer, a novel form of style transfer for

dynamic textures is presented as well.

1.2 Summary of thesis

Many common dynamic textures are naturally described by the ensemble of ap-

pearance and dynamics (i.e., spatial and temporal pattern variation) of their con-

stituent elements. In this thesis, a factored analysis of dynamic textures in terms

of their appearance and dynamics is proposed. This factored analysis is then used

to enable dynamic texture synthesis based on an example dynamic texture as in-

put. It also enables a novel form of style transfer where the target appearance and

dynamics can be taken from different sources—termed dynamics style transfer. An

overview of dynamic texture synthesis and dynamics style transfer is shown in Fig.

1.4.

5



appearance & 
dynamics target output

Dynamic Texture Synthesis

appearance target

output

dynamics target

Dynamics Style Transfer

Figure 1.4: Dynamic texture synthesis and dynamics style transfer. (top) Given
an input dynamic texture as the target, the two-stream model synthesizes a novel
dynamic texture that preserves the target’s appearance and dynamics character-
istics. (bottom) The two-stream approach enables synthesis that combines the
texture appearance from one target with the dynamics from another, resulting in
a composition of the two.
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The proposed model is constructed from two ConvNets: an appearance stream

and a dynamics stream, which have been pre-trained for object recognition and

optical flow regression, respectively. Similar to previous work on spatial textures

[21, 31, 50], an input dynamic texture is summarized in terms of a set of spa-

tiotemporal statistics of filter outputs from each stream. The appearance stream

models the per-frame appearance of the input texture, while the dynamics stream

models its temporal dynamics. The synthesis process consists of optimizing a ran-

domly initialized noise pattern such that its spatiotemporal statistics from each

stream match those of the input texture. The architecture is inspired by insights

from human perception and neuroscience. In particular, psychophysical studies

[9] show that humans are able to perceive the structure of a dynamic texture

even in the absence of appearance cues, suggesting that the two streams are effec-

tively independent. Similarly, the two-stream hypothesis [26] models the human

visual cortex in terms of two pathways, the ventral stream (involved with object

recognition) and the dorsal stream (involved with motion processing). Two-stream

networks have also been used for video understanding tasks in computer vision,

with particular attention to action recognition [57, 18].

In this thesis, the two-stream analysis of dynamic textures is applied to texture

synthesis. A range of dynamic textures are considered and it is demonstrated that

the proposed approach generates novel, high quality samples that match both the

frame-wise appearance and temporal evolution of an input example. Further, as

stated previously, the factorization of appearance and dynamics enables a novel

form of style transfer, where the dynamics of one texture are combined with the

appearance of a different one, cf . [22]. This can even be done using a single image

as an appearance target, which allows static images to be animated. Finally, the

7



perceived realism of the generated textures is validated through an extensive user

study.

1.3 Contributions

The contributions of this work span both theory and application. Specifically,

this thesis presents the key components for creating the proposed dynamic texture

synthesis model, resulting in four primary contributions to the dynamic texture

literature.

1. Factored representation of appearance and dynamics. First, theo-

retical insight into the characterization of dynamic textures is provided by

building a novel factored representation of both appearance and dynamics.

Qualitatively, the two-stream representation is effective in generating visu-

ally compelling, novel instances of a wide range of dynamic textures.

2. Motion energy representation of dynamics via a ConvNet. Second,

for the representation of dynamics, a novel ConvNet based on a “marginal-

ized” motion energy model [11, 12] is constructed and trained on the proxy

task of optical flow regression. This representation of dynamics provides a

substantial improvement to the quality of synthesized textures when com-

pared to using optical flow directly.

3. Dynamics style transfer. Third, a novel form of style transfer is demon-

strated, where the dynamics of a dynamic texture can be mixed with the

spatial appearance of a different (static or dynamic) texture. This is enabled

by the proposed factored representation.

8



4. Quantitative evaluation via user study. Finally, a quantitative evalua-

tion on the limitations of the method is performed through the inclusion of a

broad range of textures and an extensive user study. This analysis provides

insight for the types of characteristics of temporal imagery that may cause a

breakdown of the proposed model. These insights may point to future work

to address limitations of the proposed model.

9



Chapter 2

Background

This chapter aims to summarize the relevant theory and mathematics of convo-

lutional networks, static and dynamic texture synthesis, image style transfer, and

representations of dynamics so as to provide sufficient background information for

the following chapters. Research related to this thesis is covered simultaneously.

2.1 Convolutional networks

This section provides a brief summary of convolutional networks; a more thorough

overview can be found in texts (e.g ., [27]) and review articles (e.g ., [29]).

A convolutional network (ConvNet) is a feed-forward computational graph of

processing nodes for approximating non-linear functions. It is commonly used

in analyzing visual imagery and is a class of artificial neural networks (ANNs),

which are computational systems inspired by biological neural networks. Con-

vNets perform tasks (e.g ., classifying objects or regressing the angle of rotated

handwritten digits) by processing an input, X 2 RHx⇥Wx⇥Cx , in a feed-forward

10



manner via a series of linear and non-linear transformations and producing an

output, Y 2 RHy⇥Wy⇥Cy , relevant to the task (such as the class of an object).

Here, H⇤ ⇥W⇤ represents the spatial dimensions and C⇤ represents the number of

channels (i.e., the “depth” of the input). For example, a 3-channel colour image

input with 256⇥256 spatial locations is represented as X 2 R256⇥256⇥3, where each

spatial location contains three pixel intensities, corresponding to the amount of in-

tensity of the colours Red, Green, and Blue (RGB), respectively. Each non-linear

transformation acts as a point of demarcation in the network known as a layer.

ConvNets typically consist of multiple layers, each containing a collection of nodes

sometimes called neurons. At each spatial-channel location of the input to a layer,

a neuron computes local non-linear transformations, e.g ., �̄(x) = max (0,�(x))

(known as the rectified linear unit or ReLU [45]). At a single location of the input,

x ⌘ (x, y, z), the non-linear transformation performed by this neuron produces

an output called a feature activation, �̄(x) 2 R. The set of activations produced

by a neuron at every location of the input is known as an activation or feature

map, �̄ 2 RH�̄⇥W�̄⇥C�̄ . At the l-th layer of the network and for each location x

of the input map, the input to each neuron is the weighted linear combination of

activations from local, neighbouring neurons at the previous layer, l � 1:

�
l(x) =

�
wl ⇤ �̄

l�1(x)
�
+ b

l

=

0

@
X

(i,j,k)2⌦

wl(i, j, k)�̄l�1(x � i, y � j, z � k)

1

A+ b
l
,

(2.1)

where wl are the weights (or filter) applied to the input �̄
l�1(x), ⌦ is a spatial-

channel neighbourhood centered about x, bl is an offset term known as the bias,
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and ⇤ represents the convolution (or filtering) operator. Colloquially, the term

“convolution” is often used to describe the combined process of convolving over

an input and subsequently computing its activation. Convolutions are performed

at each location of the input, operating on a localized area of influence called its

receptive field. ConvNets are distinguished from most other ANNs in that the

weights associated with a convolution are shared across the entire input. Specif-

ically, when convolving over an input, instead of using a unique filter for each

location, the same filter is reused—this is called weight sharing. The idea is that if

a filter is important for capturing a feature (e.g ., edge, corner, face, etc.) at a par-

ticular location, then it is assumed that the filter is important at other locations

as well since the same feature may appear elsewhere. At the base of the ConvNet,

inputs are typically images while inputs at intermediate layers are activation maps

(e.g ., �̄ 2 RH�̄⇥W�̄⇥C�̄).

Pooling

ConvNets commonly include pooling layers that combine regions of activations

into a single activation in the next layer. There are two commonly used types of

pooling: average pooling, which uses the average value from each of region of acti-

vations at the previous layer, and max pooling, which uses the max value instead.

Pooling provides a degree of translation-invariance to ConvNets by making them

less affected by small changes in the positions of input activations. It is typically

followed by a downsample operation to reduce spatial resolution.

12



Normalization

Widely used in ConvNets are normalization layers that serve to inhibit or bind local

activations to a certain range. Normalization is typically done across channels,

such as with the commonly used divisive normalization:

�̂
l

i
(x) =

�̄
l

i
(x)

P
C

j=1 �̄
l

j
(x) + ✏

, (2.2)

where �̄
l

i
(x) is an activation from the i-th channel at spatial position x, C is the

total number of channels, and ✏ is a small value to prevent division by zero. An

issue with using unbounded activation functions (e.g ., ReLU) with convolutions

in a ConvNet is that their outputs keep increasing with increasing contrast of the

input. This dependency on contrast magnitude makes it difficult to determine

whether a high response is indicative of a salient feature or high input contrast.

Thus, divisive normalization binds unbounded activations across channels such

that information about the magnitude of contrast is discarded in favour of a rep-

resentation based only on relative variations in contrast across input activations,

i.e., the underlying feature patterns of the input.

Training a convolutional network

ConvNets “learn” to perform tasks through an iterative process called training,

which involves optimizing their weights based on an objective over training data

(e.g ., input images with corresponding expected outputs). At each iteration, an

input is fed through the network to produce an output that is subsequently eval-

uated against the expected, i.e., groundtruth, output for the given input. This

evaluation is known as the loss function and represents the network’s performance

13



on the task. Implicitly, it also represents the objective the network must achieve,

e.g ., minimizing classification or regression error. Starting from the loss, the net-

work adjusts its weights and biases at each layer via the gradient of the loss with

respect to the weights and biases at that layer. The adjustment of weights and

biases via the gradient of the loss function is called backpropagation [27]. After a

suitable amount of training iterations, this gradient descent process is terminated.

2.1.1 Two-stream convolutional networks

In the context of video analysis, two-stream ConvNets [57, 18] are a class of Con-

vNets that separate processing of input temporal imagery into two recognition

streams (spatial and temporal), each with its own task. They are inspired by the

two-stream hypothesis [26] that models the human visual cortex in terms of two

pathways, the ventral stream (involved with object recognition) and the dorsal

stream (involved with motion processing).

Both streams are implemented as ConvNets with the overall intent to decou-

ple processing of spatial and temporal information. This decoupling allows each

network to be trained on separate tasks, e.g ., the spatial ConvNet can be trained

on object recognition and the temporal ConvNet can be trained on motion recog-

nition. Furthermore, the decoupled spatial ConvNet can take advantage of the

availability of large amounts of annotated image data for training, e.g ., the Ima-

geNet dataset [54]. Two-stream ConvNets have been successfully used for video

understanding tasks in computer vision, with particular attention to action recog-

nition [57, 18].
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2.2 Parametric texture synthesis

Texture synthesis is the process of algorithmically constructing a texture that

matches or extends a given source texture by taking advantage of its structural

content. There are two general approaches that have dominated the texture syn-

thesis literature: non-parametric sampling approaches that synthesize a texture by

sampling pixels of a given source texture [16, 39, 55, 66], and statistical parametric

models that aim to synthesize a texture by sampling from a parameterized model

of the source texture. As the proposed approach is an instance of a parametric

model, this section will focus on these parametric approaches.

The statistical characterization of visual textures was introduced in the seminal

work of Julesz [36]. He conjectured that particular statistics of pixel intensities

were sufficient to partition textures into metameric (i.e., perceptually indistin-

guishable) classes. Later work leveraged this notion for static texture synthesis

[31, 50]. In particular, inspired by models of the early stages of visual process-

ing, statistics of (handcrafted) multi-scale oriented filter responses were used to

optimize an initial noise pattern to match the filter response statistics of an input

texture.

More recently, Gatys et al . [21] demonstrated impressive results by replacing

the handcrafted linear filter bank with the learned filters from the VGG-19 [58]

ConvNet pre-trained on the ImageNet [54] dataset for the task of object recog-

nition. Textures were modelled in terms of the normalized correlations between

activation maps within several layers of the network.

15



2.2.1 Texture synthesis using a convolutional network

Since the two-stream approach to dynamic texture synthesis proposed in this thesis

is an extension of the Gatys et al . [21] texture synthesis model, it is useful to

describe their approach here. Given a target texture as input, let Al 2 RNl⇥Ml be

its row-vectorized activation maps at the l-th layer of a ConvNet, where Nl and

Ml denote the number of activation maps and the number of spatial locations,

respectively (in the case of Gatys et al . [21], they used the VGG-19 ConvNet, and

they normalized the network by scaling its weights such that the mean activation of

each convolutional filter over images and positions is equal to one). The normalized

correlations between activation maps within a layer are encapsulated by a Gram

matrix, Gl 2 RNl⇥Nl , whose entries are given by:

G
l

ij
=

1

NlMl

MlX

k=1

A
l

ik
A

l

jk
, (2.3)

where A
l

ik
denotes the activation of feature i at location k in layer l on the target

texture. Given a synthesized texture as input, similarly, let its row-vectorized

activation maps be Âl 2 RNl⇥Ml and its normalized activation map correlations

be the Gram matrix, Ĝl 2 RNl⇥Nl , whose entries are given by:

Ĝ
l

ij
=

1

NlMl

MlX

k=1

Â
l

ik
Â

l

jk
. (2.4)

The final objective is defined as the average of the mean squared error between

the Gram matrices of the target texture and that of the synthesized texture:

L =
1

L

X

l

kGl � Ĝlk2
F
, (2.5)
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where L is the number of ConvNet layers used when computing Gram matrices and

k · kF is the Frobenius norm. In the case of Gatys et al . [21], Gram matrices were

computed on layers conv1_1, pool1, pool2, pool3, and pool4. Through systematic

evaluation, they reported these layers to be qualitatively superior to other layer

subsets for texture synthesis. To note, the Gram matrix is positive semidefinite

and thus exists in a non-Euclidean space. Non-Euclidean metrics (e.g ., the Log-

Euclidean [4]) may be more suitable than the Frobenius norm, however, following

Gatys et al .’s [21] implementation, the Frobenius norm is used here instead. Gatys

et al . did not investigate using other metrics, so this may be worth exploring for

future work.

Before synthesizing a texture, an initial forward pass through the ConvNet is

performed with the target texture as input. The target texture’s Gram matrices

across various layers in the network are computed and stored to be used in the

final objective for the synthesis process, Eq. 2.5. Then the synthesized texture

is initialized with Independent and Identically Distributed (IID) Gaussian noise.

The final objective, Eq. 2.5, is minimized with respect to the synthesized texture.

With each iteration of the optimization process, the pixel values of the synthe-

sized texture are updated to appear increasingly perceptually similar to the target

texture. An overview of this process is presented in Fig. 2.1.
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Figure 2.1: Gatys et al .’s [21] approach to static texture synthesis with the VGG-
19 [58] convolutional network. Only the first layer of VGG-19 is shown. (1) An
initial forward pass is performed with the target texture. Its Gram matrices across
various layers are computed and stored. (2) The total L2 loss between the Gram
matrices of the synthesized texture and the target is computed. (3) The loss is
optimized with respect to the synthesized texture (with the weights of VGG-19
fixed), updating it to appear as perceptually similar to the target as possible.
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Figure 2.2: Computing the Gram matrix from the activation maps of a layer.
Activation maps are first reshaped to row vectors, then the Gram matrix is realized
by computing a matrix multiplication between the row-vectorized activation maps
and their transpose.

2.2.2 The Gram matrix as a texture metric

Before explaining the Gram matrix as a suitable texture metric, it is necessary to

first understand the mathematics behind it. The Gram matrix, G 2 Rn⇥n, of a

set of m-dimensional vectors, v1, . . . , vn 2 Rm, is the symmetric matrix of inner

products, whose entries are given by Gij = hvi, vji. Essentially, the Gram matrix is

a covariance matrix describing which of its input vectors are correlated with each

other. In the case of Gatys et al .’s [21] texture synthesis with a ConvNet, the set

of vectors used to compute the Gram matrix are row-vectorized activation maps

(Fig. 2.2).

The hierarchical feature representations learned by ConvNets have been shown

to be powerful for difficult visual perceptive tasks such as object recognition

[38, 58], significantly outperforming previous models that have relied on hand-
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crafted approaches. Significantly, Movshon and Simoncelli [44] have suggested that

given the texture-like features that can be captured in the intermediate stages of

these ConvNets, images synthesized from these representations may prove useful

as stimuli in perceptual or physiological investigations. This suggests that Con-

vNets may be a suitable basis for modelling textures, and consequently, texture

synthesis.

In texture synthesis, the Gram matrix computed on activations measures the

amount that co-located features tend to activate together. It transforms the

spatially-varying feature space into a stationary, spatially-invariant one. Since

textures exhibit stationary statistics (i.e., the visual content is spatially homoge-

neous), by computing Gram matrices across several layers, a stationary, multi-scale

representation of the input image in terms of its texture information is achieved.

2.2.3 Image style transfer

In subsequent work, Gatys et al .’s [22] texture model was used in image style

transfer, where the style of one image was combined with the image content of

another to produce a new image. This was achieved by appending an additional

term to Eq. 2.5 that enforced the synthesized texture to match the semantic content

of the given content image. Specifically,

L =
1

Lstyle

X

l

kGl � Ĝlk2
F

+
1

Lcontent

X

l

kAl � Âlk2
F
, (2.6)

where Lstyle and Lcontent are the number of VGG-19 layers used when computing

Gram matrices and activation maps, respectively. Gram matrices are computed

on the same layers as before, and activation maps are computed on layer conv4_2.
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To briefly review, the Gram matrix of activation maps conveys a notion of

texture, or “style”, describing which features tend to activate together. Although

the style of the style image is preserved, the global arrangement of its features

are not. By including the objective of matching the features of the content image,

however, the global arrangement of semantic image content from the content image

is preserved. This results in a synthesized image that contains the content of the

content image and the style of the style image. The idea of transferring style from

one image to another serves as a loose inspiration for the novel dynamics style

transfer enabled by the proposed two-stream model. Although with dynamics

style transfer, content is not preserved, as it is only a transfer of texture dynamics

encompassed by a texture synthesis process.

2.3 Dynamic texture synthesis

Dynamic textures extend from static textures with an additional temporal dimen-

sion. The stationarity of spatial statistics of static textures also applies to the

temporal domain of dynamic textures.

Unlike static texture synthesis, dynamic texture synthesis has not been as

deeply explored. Loosely related—although tangential to dynamic texture syn-

thesis and the proposed dynamics style transfer—Ruder et al . [53] extended the

image style transfer model of Gatys et al . [22] to video by using optical flow to

enforce temporal consistency of the resulting imagery. Although their model pro-

duced a video output, their core approach focused on an analysis of static style

on a per-frame basis. This is tangential to the proposed approach since dynamic

textures require an analysis across space and time.
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Variants of linear autoregressive models have been studied [60, 13, 64, 19] that

jointly model the appearance and dynamics of spatiotemporal patterns. More re-

cent work has considered ConvNets as a basis for modelling dynamic textures. Xie

et al . [67] proposed a spatiotemporal generative model where each dynamic tex-

ture is modelled as a random field defined by multiscale, spatiotemporal ConvNet

filter responses and dynamic textures are realized by sampling the model. Unlike

the proposed approach, which assumes pre-trained fixed networks, Xie et al .’s [67]

approach requires their ConvNet weights to be trained using the input texture

prior to synthesis. The manner in which they model dynamic textures appears to

limit synthesis to a reconstruction, not an extrapolation, of the original sequence,

limiting the generalizability of their approach, e.g ., synthesizing textures beyond

the spatiotemporal extent of the input. A recent unpublished work by Funke et al .

[20] described preliminary results extending the framework of Gatys et al . [21] to

model and synthesize dynamic textures by computing a Gram matrix of filter acti-

vations over a small spatiotemporal window. In contrast, the proposed two-stream

filtering architecture is more expressive as the dynamics stream is specifically tuned

to spatiotemporal dynamics. Moreover, the factorization in terms of appearance

and dynamics enables a novel form of style transfer, where the dynamics of one

pattern are transferred to the appearance of another to generate an entirely new

dynamic texture. This work is the first to demonstrate this form of style transfer.

2.4 Representations of dynamics

Numerous representations of dynamics in temporal imagery have been explored,

each with their own limitations and level of abstraction. Figure 2.3 illustrates an
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Figure 2.3: Dynamics representation spectrum (adapted from Derpanis [11]).
Common abstractions of dynamics of temporal imagery and their respective level
of commitment to an underlying model.

organization of several extant representations of temporal imagery dynamics. At

one extreme, no commitment to an abstraction is made, the raw pixelwise intensity

is used directly. This representation fails to leverage the rich underlying structure

in the data. The remaining representations are discussed below.

2.4.1 Optical flow

At the other extreme of Fig. 2.3, a two-dimensional (2D) vector field is used to

represent the dynamics of the input temporal imagery. This vector field is known

as optical flow. It is used to represent the apparent motion of image pixels be-

tween two consecutive frames that is caused by the movement of objects or the

camera. Each vector in the 2D vector field represents a displacement consisting

of a horizontal and vertical component, describing the movement of pixels from

one frame to the next. Figure 2.4 provides a visualization of optical flow. The

recovery of optical flow from temporal imagery has long been studied in com-

puter vision. Traditionally, it has been addressed by handcrafted approaches e.g .,

[33, 43, 52]. Recently, ConvNet approaches have been demonstrated as viable
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Figure 2.4: Optical flow visualization. Optical flow is a 2D displacement vector
field used to represent the apparent motion of image pixels between two consecu-
tive frames, caused by the movement of objects or the camera. Pictured are two,
super-imposed, consecutive frames taken from the KITTI dataset [24]. The corre-
sponding optical flow is visualized as an array of green arrows. Note that this is
just a sample of the motions that optical flow can characterize.

alternatives [14, 34, 51, 68].

A limitation of optical flow is its reliance on a single coherent movement for

each pixel and its underlying assumption on brightness constancy, which is difficult

to justify for the spectrum of dynamics one encounters in the real world. Examples

of dynamics that optical flow fails to capture include flickering, semi-transparent

motion, and stochastic dynamics. These are some of the dynamics typically ex-

hibited by dynamic textures. Therefore, optical flow is not a suitable substrate for

representing the spectrum of dynamics in dynamic textures.

2.4.2 Marginalized spacetime oriented energies

Between the two extremes lies the representation of dynamics that aims to cap-

ture a distribution of measurements of spacetime orientations in the input tempo-

ral imagery. Unlike flow-based analyses that focus on the apparent motion (i.e.,
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translation) present in the data, measurements of spacetime orientations take a

geometric and generalized approach in capturing spacetime structures : oriented

structures in the spatiotemporal domain that manifest themselves as motion or

non-motion, e.g ., flickering, stochastic dynamics, etc.

Previous work [3, 17, 30, 56, 65, 48, 12] has shown that the velocity of image

content (i.e., motion) can be interpreted as a 3D oriented structure in the x-y-t

spatiotemporal domain. Furthermore, in the frequency domain, the signal energy

of these oriented structures lie on a plane through the origin where the slant of the

plane is defined by the velocity of the image content. For example, in the case where

a spacetime structure is defined by the image velocity (u, v)>, the unit normal of

the plane is given by n̂ = (u, v, 1)>/||(u, v, 1)>||. Hence, energy models of visual

motion, like those presented in these works, are described as “oriented energy” or

“motion energy” models, and they attempt to identify this orientation-plane (and

hence the pattern’s velocity) via a set of image filtering operations. Specifically,

given an input image sequence, these models consist of an alternating sequence

of linear and non-linear operations that yield a distributed representation (i.e.,

implicitly coded) of pixelwise optical flow. These models have been motivated and

studied in a variety of contexts, including computer vision, visual neuroscience,

and visual psychology

Whereas motion indicates a single, dominant orientation in the spatiotempo-

ral and frequency domains, non-motion can indicate an unconstrained, undercon-

strained, multi-dominant, heterogeneous, or isotropic orientation. For example, an

unconstrained orientation corresponds to structure-less imagery (e.g ., image of a

clear sky) in the spatiotemporal domain and point energy response in the origin in

the frequency domain; and a multi-dominant orientation corresponds to multiple,
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super-imposed spacetime structures in the spatiotemporal domain (e.g ., waterfall

over a stationary background) and multiple, super-imposed oriented planes in the

frequency domain. These, along with the other orientations, are visualized in Fig.

2.5.

This thesis adopts the Marginalized Spacetime Oriented Energy (MSOE) ap-

proach of Derpanis and Wildes [12] in representing the observed distribution of

dynamics (i.e. motion and non-motion) of an input dynamic texture. They con-

jectured that the constituent spacetime orientations for a spectrum of common

visual patterns (e.g ., dynamic textures) can serve as a basis for describing the

temporal variation of an image sequence. They successfully applied their model

for the task of dynamic texture recognition; here it is used for the task of dynamic

texture synthesis. Significantly, a completely analytically-defined oriented energy

ConvNet model provides the current state-of-the-art for the related task of dy-

namic texture recognition [28]. The proposed two-stream architecture adopts the

MSOE model by encoding it as a ConvNet that serves as the representation of

observed dynamics of input dynamic textures—the dynamics stream. The same

computational steps are used, however, the handcrafted filters of the MSOE model

are not used and are learned instead so that they are better tuned to deal with

the noise distributions encountered in natural imagery. The construction of the

ConvNet is discussed in the next chapter and the MSOE model is reviewed here.
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Figure 2.5: Dynamic texture spectrum (figure from Derpanis and Wildes [12],
Copyright c� 2012, IEEE). The top and middle rows depict prototypical dynamic
textures in the frequency and spatiotemporal domains, respectively. From left-to-
right, an increasing amount of spacetime structures are superimposed in a texture.
The bottom row depicts a seven bin histogram of the relative spacetime-oriented
structure (or lack thereof) present in each dynamic texture. The first histogram
bin captures lack of structure. The remaining histogram bins from left-to-right
correspond to spacetime orientations selective for static, rightward motion, upward
motion, leftward motion, downward motion and flicker structure.
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Given input temporal imagery, I 2 RT⇥H⇥W (time ⇥ height ⇥ width), a bank

of oriented 3D filters, e.g ., Gaussian third derivative filters G3 2 RT⇥H⇥W , which

are sensitive to a range of spatiotemporal orientations, are each applied:

E
✓̂
= G3✓̂

⇤ I , (2.7)

where ⇤ denotes convolution, and G3✓̂
is a Gaussian third derivative filter oriented

in the direction of the 3D unit vector ✓̂ which lies along the filter’s symmetry axis.

Each of these filtering operations results in a spacetime volume of filter responses,

E
✓̂
. These filter responses are then rectified (squared) and pooled over local space-

time regions to make the responses robust to the phase of the input signal, i.e.,

robust to the alignment of the filter with the underlying image structure:

Ē
✓̂
=

X

(x,y,t)2⌦

E
✓̂
(x, y, t)2 . (2.8)

At this point, each oriented energy measurement includes measurement of spatial

orientation. This means that spatial image structures will affect the responses of

the bank of oriented filters, making them dependent on spatial appearance. This

dependence is unwanted as it can occur at an otherwise coherent dynamic re-

gion, e.g ., a surface with varying spatial appearance exhibiting a single, dominant

motion. Thus, a description consisting purely of pattern dynamics is sought. To

remove this difficulty, the spatial orientation component of each filter is discounted

via “marginalization”. Specifically, filter responses consistent with the same tem-
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poral orientation (not necessarily the same spatial orientation), ✓̂i, are summed:

En̂ =
NX

i=1

E
✓̂i
, (2.9)

where n̂ denotes the unit normal of the plane in frequency-space that the spacetime

structures captured by these filters lie upon (implicitly describing a single temporal

orientation), and N denotes the number of these filters. These responses provide

a pixelwise distributed measure of which spacetime structures (discounting spatial

information) are present in the input. However, these responses are confounded by

local image contrast that makes it difficult to determine whether a high response

is indicative of the presence of a spacetime structure or simply due to high image

contrast. To address this ambiguity, an L1 normalization is applied across oriented

filter responses which results in a representation that is robust to local appearance

variations but highly selective to spacetime orientation:

Ên̂i =
En̂iP

M

j=1 En̂j + ✏
, (2.10)

where Ên̂i denotes an oriented filter response from Eq. 2.9 corresponding to a

plane in frequency-space with unit normal n̂i, and ✏ is a small value (e.g ., 1e�12)

to avoid division by zero.
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Chapter 3

Technical approach

The proposed two-stream approach consists of an appearance stream, representing

the static (texture) appearance of each frame, and a dynamics stream, representing

temporal variations between frames. Each stream consists of a ConvNet whose

activation statistics are used to characterize the dynamic texture. Synthesizing a

dynamic texture is formulated as an optimization problem with the objective of

matching activation statistics between the target and synthesized textures. The

dynamic texture synthesis approach is summarized in Fig. 3.1 and the individual

pieces are described in turn in the following sections.

3.1 Texture model: Appearance stream

The appearance stream follows the static texture model introduced by Gatys et al .

[21] which was summarized in the previous chapter (Sec. 2.2.1). To briefly review,

the key idea is that correlations between activation maps (i.e., normalized Gram

matrices) in a ConvNet trained for object recognition (e.g ., VGG-19 [58]) capture
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Figure 3.1: Two-stream dynamic texture generation. Two sets of Gram matrices
represent a dynamic texture’s appearance and dynamics. Matching these statis-
tics allows for the generation of novel textures as well as style transfer between
textures. Here, Gl and Ĝ

l are the Gram matrices of activations A
l and Â

l (or D
l

and D̂
l) corresponding to the target and synthesized sequence, respectively, com-

puted at layer l of the appearance stream (or dynamics stream) and averaged over
time T (or T � 1). Ll

appearance is the appearance loss at layer l, computed as the
squared Frobenius norm between G

l and Ĝ
l from the appearance stream. Simi-

larly, Ll

dynamics is the dynamics loss at layer l for the dynamics stream. By summing
each loss computed at various layers, we arrive at Lappearance and Ldynamics, which,
when summed, form the combined dynamic texture loss, Ldynamic texture, that is to
be minimized.

texture appearance. The same publicly available normalized VGG-19 ConvNet [58]

used by Gatys et al . [21] is used here. The proposed appearance stream utilizes

this model by simply applying it indepedently to each frame of the synthesized

and target texture.
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3.1.1 Target texture appearance

To capture the appearance of an input dynamic texture, an initial forward pass

through VGG-19 is performed with each frame of the image sequence to compute

the feature activations (filter responses), Alt 2 RNl⇥Ml , for various levels in the

network, where Nl and Ml denote the number of feature activations and the number

of spatial locations of layer l at time t, respectively. The auto-correlations of the

filter responses in a particular layer are averaged over the frames and encapsulated

by a Gram matrix, Gl 2 RNl⇥Nl , whose entries are given by:

G
l

ij
=

1

TNlMl

TX

t=1

MlX

k=1

A
lt

ik
A

lt

jk
, (3.1)

where T denotes the number of input frames and A
lt

ik
denotes the activation of

feature i at location k in layer l on the target frame t.

3.1.2 Synthesized texture appearance

The synthesized texture appearance is similarly represented by a Gram matrix,

Ĝlt 2 RNl⇥Nl , whose activations are given by:

Ĝ
lt

ij
=

1

NlMl

MlX

k=1

Â
lt

ik
Â

lt

jk
, (3.2)

where Â
lt

ik
denotes the activation of feature i at location k in layer l on the syn-

thesized frame t.
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3.1.3 Appearance loss

The appearance loss, Lappearance, is defined as the temporal average of the mean

squared error between the Gram matrix of the input texture and that of the

synthesized texture computed at each frame:

Lappearance =
1

LappTout

ToutX

t=1

X

l

kGl � Ĝltk2
F
, (3.3)

where Lapp is the number of VGG-19 layers used to compute Gram matrices, Tout

is the number of frames being generated in the output, and k · kF is the Frobenius

norm. Consistent with previous work [21], Gram matrices are computed on the

following layers: conv1_1, pool1, pool2, pool3, and pool4. Through systematic eval-

uation, Gatys et al . [21] reported these layers were qualitatively superior to other

layer subsets for static texture synthesis. Furthermore, they reported that only a

subset of layers are required to synthesize textures that are almost indistinguish-

able from the input texture, so long as the chosen layers span a wide spectrum of

receptive fields (i.e., using early, mid, and later layers of the network).

3.2 Texture model: Dynamics stream

Parallel to the appearance stream ConvNet is a ConvNet designed for captur-

ing texture dynamics. There are three primary goals in designing this dynamics

stream.

1. The activations of the ConvNet should represent the temporal variation of

the input pattern.
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2. The activations should be largely invariant to the appearance (i.e., spatial

content) of the images (which should be characterized by the appearance

stream described above).

3. The dynamics representation should be differentiable to enable synthesis via

a ConvNet.

By analogy to the appearance stream, an obvious choice is a ConvNet archi-

tecture suited for computing optical flow (e.g ., [14, 34]) which is naturally differ-

entiable. However, with most such models it is unclear how invariant their layers

are to appearance. Instead, a novel network architecture is proposed which is

motivated by the spacetime-oriented energy model [12, 56].

3.2.1 Review: Marginalized spacetime oriented energies

This section is only intended to briefly review the aspects of the Marginalized

Spacetime Oriented Energies (MSOE) model [12] that are most relevant to the

following section; a more thorough overview can be found in the previous chapter

(Sec. 2.4.2).

A significant limitation of optical flow is its reliance on a single coherent move-

ment for each pixel and its underlying assumption on brightness constancy, which

only partially describes the dynamics one may encounter in the real world, and

thus in dynamic textures. In response, Derpanis and Wildes [12] showed that

the constituent spacetime orientations for a spectrum of common visual patterns

can serve as a basis for describing the temporal variation of an image sequence.

Their observation motivated a motion oriented-energy approach to representing

dynamics, rather than a flow-based approach. By constructing a set of 3D ori-
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ented filters designed to capture spacetime structures beyond just translational

motion, they demonstrated a successful application of the approach for dynamic

texture recognition [12].

Motion energy models may form an ideal basis for the dynamics stream of the

proposed dynamic texture synthesis ConvNet. As such, the MSOE model proposed

by Derpanis and Wildes [12] is used to motivate the network architecture.

3.2.2 ConvNet architecture

Using this model as the basis, the following convolutional network is proposed.

The ConvNet input is a pair of temporally consecutive greyscale images, I 2

RT⇥H⇥W⇥C (time⇥height⇥width⇥channels), where C = 1 and T = 2. From here

forth, the channel dimension (C) will be omitted for simplicity. Each input pair is

first normalized to have zero-mean and unit variance (i.e., contrast normalization

or “instance normalization” [63]), as follows:

IN =
I � µ

� + ⌘
, (3.4)

where µ is the average pixel value of the input pair, � is the standard deviation of

the input pair, and ⌘ is a small value (1e�12) to prevent dividing by zero. This

step provides a level of invariance to overall brightness and contrast (i.e., global

additive and multiplicative signal variations) as well as eases the training process of

the ConvNet [40]. The first layer consists of a 3D convolution over the normalized

input pair with a bank of 32 3D filters of size 2⇥ 11⇥ 11 (time ⇥ height ⇥ width),
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resulting in an output of spacetime oriented energy measurements:

EF (x) = F ⇤ IN(x) , (3.5)

where EF denotes the response of filter F (of size 2⇥ 11⇥ 11) after a convolution,

⇤, centered about x ⌘ (t, x, y). In handcrafted approaches (e.g ., [12]), a bank of

oriented 3D Gaussian third derivative filters is often used, which require only 10

orientations as a spanning basis. Moreover, these filters typically exceed a temporal

extent of T = 2 to capture a wider range of temporal frequencies. Here, however,

an overcomplete bank of 32 learned 3D filters with a temporal extent of T = 2 is

used. This approach is taken for two reasons. First, 3D Gaussian third derivative

filters are one of the many types of filters one can use for measuring oriented energy

(e.g ., one can use 3D Gaussian fourth derivative, Gabor, lognormal, or causal-

time filters [11]), so it is not required to restrict the network to a smaller filter

bank. Specifically, since these filters are being learned, it is within the capacity of

the network to learn a wide variety of oriented filters beyond 3D Gaussian third

derivative filters. Second, due to GPU memory limitations, the temporal extent

of filters are limited to the temporal extent common for optical flow groundtruth

imagery, T = 2. Although this restriction limits the range of temporal frequencies

that can be captured in dynamic textures, it is still effective in enabling dynamic

texture synthesis with dynamic textures spanning a wide range of dynamics, as

shown in the next chapter.

After computing spacetime oriented energy measurements, a squaring activa-

tion function and 5 ⇥ 5 spatial max-pooling (with a stride of one) is applied to
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make the responses robust to local signal phase:

ĒF (x) = max
i2⌦

{EF (i)
2} , (3.6)

where ⌦ is a 5 ⇥ 5 spatial neighbourhood centered about x. A 2D convolution

follows with 64 filters of size 1 ⇥ 1 that combines energy measurements that are

consistent with the same frequency domain plane:

EG(x) = G ⇤ ĒF (x) , (3.7)

where EG denotes the response of filter G (of size 1⇥1) after a convolution. Finally,

to remove local contrast dependence, an L1 divisive normalization is applied to each

spatial location:

ĒG(x) =
EG(x)

kEG(x)k1 + ✏
, (3.8)

where k · k1 is the L1 norm computed over the filter responses of all filters and ✏ is

a small value (1e�12) to prevent dividing by zero.

To capture spacetime orientations beyond those capable with the limited re-

ceptive fields used in the initial layer, a five-level spatial Gaussian pyramid is com-

puted. Each pyramid level is processed independently with the same spacetime-

oriented energy model and then bilinearly upsampled to the original resolution

and concatenated:

E(x) =
�
ĒG(x), ĒG(x#⇥2)"⇥2, . . . , ĒG(x#⇥2k�1)"⇥2k�1 , ĒG(x#⇥2k)"⇥2k

�
, (3.9)

where (·)#⇥n and (·)"⇥n denote an n-times downsample and upsample, respectively,
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Figure 3.2: Dynamics stream ConvNet. The ConvNet is based on a spacetime-
oriented energy model [12, 56] and is trained for optical flow regression. Three
scales are shown for illustration; in practice five scales are used.

and k+1 denotes the number of pyramid levels. This final output of the dynamics

encoding stage is named the “concatenation layer”.

Training

Prior energy model instantiations (e.g ., [3, 12, 56]) used handcrafted filter weights.

While a similar approach could be followed here, instead the weights are learned so

that they better deal with the noise distributions encountered in natural imagery.

To train the network weights, additional decoding layers are added that take the

concatenated distributed representation from the concatenation layer and apply a

3⇥ 3 convolution (with 64 filters), ReLU activation, and a 1⇥ 1 convolution (with

2 filters) that yields a two channel output encoding the optical flow directly. The

proposed architecture is illustrated in Fig. 3.2.

For training, the standard average endpoint error (aEPE) flow metric (i.e.,
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L2 norm) is used between the predicted flow and the ground truth flow as the

loss. Since no large-scale optical flow dataset exists that captures natural imagery

with groundtruth flow, the assembly of a new dataset was necessary. Videos from

an unlabeled video dataset are fed through an existing flow estimator to produce

optical flow groundtruth for training, cf . [61]. For the unlabeled video dataset, the

UCF101 dataset for action recognition [59] is used as it contains a wide variety of

complex movements of natural imagery. The synthetic Flying Chairs dataset [14]

was also considered as it contained ground truth optical flow; however, training the

dynamics stream on this dataset reduced the overall quality of synthesized dynamic

textures. This can be explained by the limited motions and appearances exhibited

by the rigid objects in Flying Chairs, which is undesirable for estimating motion of

dynamic textures. For producing the optical flow groundtruth, the EpicFlow [52]

model is used for its state-of-the-art performance (at the time of experimentation)

on optical flow regression.

The distribution of movement directions in UCF101 is biased to left-to-right

and right-to-left motions, which is undesirable as dynamic textures are not nec-

essarily restricted to certain directions of motion. To combat this dataset bias,

geometric data augmentations similar to those used by FlowNet [14] are used to

equalize the distribution of movement directions in the generated dataset. Addi-

tionally, photometric data augmentations similar to those used by FlowNet [14] are

used here as well. These augmentations include an image rotation with a rotation

amount uniformly sampled from the range [�180�, 180�]; left-right and up-down

flipping with a 50% chance; additive gaussian noise with a sigma uniformly sampled

from the range [0, 0.04 ⇤ 255]; gamma correction with a gamma value uniformly

sampled from the range [0.7, 1.5]; additive brightness change with the additive
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value normally sampled from the distribution N (µ = 0, � = 0.2 ⇤ 255); and a

multiplicative brightness change with the multiplicative value uniformly sampled

from the range [0.2, 1.4]. Each of these augmentations are done in random order.

The aEPE loss is optimized using Adam [37].

Optical flow is chosen as the proxy task (as opposed to dynamic texture recogni-

tion [12]) for learning the multiscale distributed representation of dynamics because

of the ease of obtaining large amounts of optical flow groundtruth for training. Al-

though optical flow is not a suitable representation of the dynamics in dynamic

textures, evidence suggests that it is sufficient enough to induce the encoding stage

to learn the MSOE model within its representational capacity. For example, in-

spection of the learned filters in the initial layer of the encoding stage showed

evidence of spacetime-oriented filters, consistent with the handcrafted filters used

in previous work [12]. This point is illustrated in Fig. 3.3. Furthermore, and shown

in the next chapter (Fig. 4.4), there is evidence that the learned representation

of dynamics is largely invariant to appearance, another indication that an MSOE

model has been learned.

3.2.3 Target texture dynamics

Similar to the appearance stream, filter response correlations in a particular layer

of the dynamics stream are averaged over the number of image frame pairs and

encapsulated by a Gram matrix, Gl 2 RNl⇥Nl , whose entries are given by:

G
l

ij
=

1

(T � 1)NlMl

T�1X

t=1

MlX

k=1

D
l(t, t+1)
ik

D
l(t, t+1)
jk

, (3.10)

40



(a) Frame 1 (b) Frame 2

Figure 3.3: Learned spatiotemporal filters in the first layer of the dynamics stream.
(a) and (b) each depict a temporal slice of the learned filters (2 ⇥ 11 ⇥ 11), op-
erating on the first and second frame of an input pair, respectively. Inspection
of the learned filters reveals structures consistent with the handcrafted temporal
derivative filters used in previous work [12] (e.g ., row 3, col 1 captures rightward
movement and row 8, col 1 captures down-right movement).
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where D
l(t, t+1)
ik

denotes the activation of feature i at location k in layer l on the

target frames t and t+ 1.

3.2.4 Synthesized texture dynamics

The dynamics of the synthesized texture is represented by a Gram matrix of filter

response correlations computed separately for each pair of frames, Ĝl(t, t+1) 2

RNl⇥Nl , with entries:

Ĝ
l(t, t+1)
ij

=
1

NlMl

MlX

k=1

D̂
l(t, t+1)
ik

D̂
l(t, t+1)
jk

, (3.11)

where D̂
l(t, t+1)
ik

denotes the activation of feature i at location k in layer l on the

synthesized frames t and t+ 1.

3.2.5 Dynamics loss

The dynamics loss, Ldynamics, is defined as the average of the mean squared error

between the Gram matrices of the input texture and those of the generated texture:

Ldynamics =
1

Ldyn(Tout � 1)

Tout�1X

t=1

X

l

kGl � Ĝl(t, t+1)k2
F
, (3.12)

where Ldyn is the number of ConvNet layers being used in the dynamics stream to

compute Gram matrices.

The Gram matrix is computed on the output of the concatenation layer, where

the multiscale distributed representation of orientations is stored. While it is

tempting to use the predicted optical flow output from the network’s decoder

stage, this generally yields poor results as shown in the evaluation. Due to the
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complex, temporal variation present in dynamic textures, they contain a variety

of local spacetime orientations rather than a single dominant orientation. As a

result, the flow estimates will tend to be an average of the underlying orientation

measurements and consequently not descriptive. A comparison between the tex-

ture synthesis results using the concatenation layer and the predicted flow output

is provided in Chapter 4.

3.3 Dynamic texture synthesis

The overall dynamic texture loss consists of the combination of the appearance

loss, Eq. (3.3), and the dynamics loss, Eq. (3.12):

Ldynamic texture = ↵Lappearance + �Ldynamics , (3.13)

where ↵ = 1e9 and � = 1e15 are the weighting factors for the appearance and

dynamics content, respectively. Dynamic textures are implicitly defined as the

(local) minima of this loss. Textures are generated by optimizing Eq. (3.13) with

respect to the synthesized spacetime volume, i.e., the pixels of the video. Vari-

ations in the resulting texture are found by initializing the optimization process

using IID Gaussian noise. Consistent with previous work [21], L-BFGS [42] is used

for optimization. Dynamic texture synthesis results are provided in Chapter 4.

3.3.1 Incremental texture synthesis

Naive application of the outlined approach will consume increasing amounts of

memory (in this case, GPU memory) used by the ConvNet as the temporal extent
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(i.e., number of frames) of the dynamic texture grows; this fact makes it imprac-

tical to process and generate longer sequences. Instead, long sequences can be

incrementally generated by separating the sequence into subsequences and opti-

mizing them sequentially. Fig. 3.4 shows a visualization of the incremental texture

synthesis process.

This process is realized by initializing the first frame of a subsequence as the

last frame from the previous subsequence and keeping it fixed throughout the

optimization. The remaining frames of the subsequence are initialized randomly

and optimized as above. This approach ensures temporal consistency across syn-

thesized subsequences and can be viewed as a form of coordinate descent for the

full sequence objective. Specifically, each subsequence can be viewed as a coordi-

nate/direction of the full sequence objective that is to be minimized over, while

keeping the other coordinates (i.e., other subsequences) fixed. This approach can

also be viewed as a form of non-linear autoregression where the output variable

(in this case, the current subsequence) non-linearly depends on its previous values

(previously synthesized subsequence) and a stochastic term (randomly initialized

frames of the current subsequence). The flexibility of this framework allows other

texture generation problems to be handled simply by altering the initialization of

frames and controlling which frames or frame regions are updated.

3.3.2 Temporally-endless texture synthesis

An interesting extension that was explored were dynamic textures where there

is no discernible temporal seam between the last and first frames. Played as a

loop, these textures appear to be temporally endless. This is trivially achieved by
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synthesized

Synthesize next
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Initialize and keep
constant

Combine

Figure 3.4: Incremental texture synthesis. Long sequences can be incrementally
generated by separating the sequence into subsequences and optimizing them se-
quentially. The last frame (blue border) of a previously synthesized subsequence
(left) is used to initialize the first frame of the next subsequence (middle) and
is kept fixed throughout optimization. The remaining frames of the subsequence
(yellow border) are initialized randomly and optimized as per usual. Finally, the
two subsequences are combined to produce a longer sequence (right).

adding an additional term to the dynamics loss (Eq. 3.12) that ties the last frame

to the first:

Ldynamics =
1

LdynTout

 
Tout�1X

t=1

X

l

kGl � Ĝl(t, t+1)k2
F
+
X

l

kGl � Ĝl(Tout, 1)k2
F

!
.

(3.14)

3.3.3 Dynamics style transfer

The underlying assumption of the proposed model is that the appearance and dy-

namics of dynamic textures can be factorized. As such, it should allow for the

transfer of the dynamics of one texture onto the appearance of another. This op-

eration can be likened to “style transfer”, where style, in this case, is characterized

by dynamics. Style transfer has previously been explored for static imagery, called

image style transfer [22, 7, 23]. Dynamics style transfer is accomplished with the

proposed model by performing the same optimization as described in Sec. 3.3, but
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with the target Gram matrices for appearance and dynamics computed from two

different textures, respectively.

3.4 Summary

This chapter presented the technical approach of the proposed ConvNet for dy-

namic texture synthesis, including its various extensions. The ConvNet imple-

mented a factored approach in separately modelling the appearance (i.e., spatial

content) and dynamics information (i.e., temporal variation) of an input dynamic

texture. It consisted of two main components: an appearance stream and a dy-

namics stream. Each stream consisted of a ConvNet whose activation correlations

(i.e., Gram matrices) were used to characterize the dynamic texture. The appear-

ance stream was an adaptation of the static texture model introduced by Gatys

et al . [21]. Here it was utilized by applying it independently to each frame of the

dynamic texture, arriving at a purely appearance-wise description of it.

Parallel to the appearance stream is the dynamics stream, which was designed

for purely capturing texture dynamics while forgoing appearance. Dynamic tex-

tures exhibit complex temporal variations that can not be adequately modelled by

optical flow alone. Thus, a novel ConvNet was proposed, taking inspiration from

spacetime-oriented energy models [12, 56] that can characterize temporal imagery

beyond the capabilities of optical flow. Namely, the Marginalized Spatiotemporal

Oriented Energies (MSOE) model introduced by Derpanis and Wildes [12] was

adapted to a ConvNet, which was trained through the proxy task of predicting

optical flow.

Dynamic textures were synthesized by optimizing each stream’s objective with
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respect to the synthesized texture. Both streams followed the objective of min-

imizing the distances between activation correlations of the synthesized dynamic

texture and target dynamic texture.

Finally, this chapter presented three extensions to the proposed model: in-

cremental texture synthesis, temporally-endless texture synthesis, and dynamics

style transfer. Incremental texture synthesis provided a solution to memory-

constraints brought upon by the synthesis of long dynamic textures by introducing

an incremental synthesis process over subsequences of the entire dynamic texture.

Temporally-endless texture synthesis included an additional constraint on the dy-

namics objective that tied the last and first frame of the synthesized dynamic

texture, producing dynamic textures that appeared to be endlessly looping. Dy-

namics style transfer took advantage of the two-stream factorization of appearance

and dynamics to synthesize dynamic textures that combine the texture appearance

from one target with the dynamics from another.
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Chapter 4

Evaluation

The goal of (dynamic) texture synthesis is to generate samples that are indistin-

guishable from the real input target texture by a human observer. In this chapter,

a variety of synthesis results are presented, including qualitative comparisons with

extant methods and a user study to quantitatively evaluate the realism of the

synthesized results. Given their temporal nature, the results are best viewed as

videos, which are available on the project page: ryersonvisionlab.github.io/

two-stream-projpage. The two-stream architecture was implemented using Ten-

sorFlow [1], an open source machine learning framework. Results were synthesized

using an NVIDIA Titan X (Pascal) GPU and synthesis times ranged between one

to three hours (corresponding to 6, 000 optimization iterations) to generate 12

frames with an image resolution of 256 ⇥ 256. The parameters of the dynamics

stream were set as follows: ↵ = 1e9, � = 1e15, ✏ = 1e�12, and ⌘ = 1e�12. For

the full synthesis results and source code, please refer to the supplemental material

available on the project page.
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4.1 Qualitative results

In this section, a qualitative analysis is performed on the tasks of dynamic texture

synthesis, incremental texture synthesis, temporally-endless texture synthesis, and

dynamics style transfer.

4.1.1 Dynamic texture synthesis

The dynamic texture synthesis process was applied to a wide range of textures

selected from the DynTex [49] database and others that were collected in-the-wild.

The collected textures include ones that adhere to the texture assumptions of

this thesis (i.e., spatiotemporal homogeneity) and ones that do not. Included in

the supplemental material are synthesized results of nearly 60 different textures

that encapsulate a range of phenomena, such as flowing water, waves, clouds, fire,

rippling flags, waving plants, and schools of fish. Some sample frames are shown

in Fig. 4.1 and Fig. 4.2 but readers are encouraged to view the videos to fully

appreciate the results.

Figure 4.1 and Fig. 4.2 show some example success cases with the two-stream

method where appearance and dynamics characteristics from the target are reli-

ably preserved in the synthesized result. For example, the upward fiery dynamics

and flickering appearance of fireplace_1, the outward dynamics of the explosive

splash of lava, the wispy fluid dynamics of smoke_1, the flowing vegetation in

underwater_vegetation_1, and the downward rippling flow of water_3, are all

captured in the synthesized results.
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fireplace_1
(original)

fireplace_1
(synthesized)

lava
(original)

lava
(synthesized)

smoke_1
(original)

smoke_1
(synthesized)

Figure 4.1: Dynamic texture synthesis success examples. Names correspond to
files in the supplemental material.

50



underwater_
vegetation_1

(original)

underwater_
vegetation_1
(synthesized)

water_3
(original)

water_3
(synthesized)

Figure 4.2: Dynamic texture synthesis success examples. Names correspond to
files in the supplemental material.
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Failure modes

Example failure modes of the two-stream method are presented in Fig. 4.3. In

general, most failures result from inputs that violate the underlying assumption of

a dynamic texture, i.e., the appearance and/or dynamics are not spatiotemporally

homogeneous. In the case of the escalator example, the long edge structures

in the appearance are not spatially homogeneous, and the dynamics vary due to

perspective effects that change the motion from purely downward to downward and

outward. The resulting synthesized texture captures an overall downward motion

but lacks the perspective effects and is unable to consistently reproduce the long

edge structures. This is consistent with previous observations on static texture

synthesis [21] and suggests it is a limitation of the Gram matrix representation

used in the appearance stream.

Another example is the flag sequence where the rippling dynamics are rel-

atively homogeneous across the pattern but the appearance varies spatially. As

expected, the synthesized texture does not faithfully reproduce the appearance;

however, it does exhibit plausible rippling dynamics.

Also shown in Fig. 4.3 is the cranberries sequence, which consists of a com-

bination of swirling and wave dynamics. The model faithfully reproduces the

appearance but is unable to capture the spatially varying dynamics. Interestingly,

it still produces a result which is statistically indistinguishable from real in the

user study discussed in Sec. 4.2.
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escalator
(original)

escalator
(synthesized)

flag
(original)

flag
(synthesized)

cranberries
(original)

cranberries
(synthesized)

Figure 4.3: Dynamic texture synthesis failure examples. In these cases, the failures
are attributed to either the appearance or the dynamics not being homogeneous.
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Appearance vs. dynamics streams

Two experiments were conducted to verify that the appearance and dynamics

streams were capturing complementary information. To validate that the texture

generation of multiple frames would not induce dynamics consistent with the input,

frames were synthesized starting from randomly generated noise but only using

the appearance statistics and corresponding loss, i.e., Eq. 3.3. As expected, this

produced frames that were valid textures but with no coherent dynamics present.

To examine the dynamics, see fish in the supplemental material.

Similarly, to validate that the dynamics stream did not inadvertently include

appearance information, dynamic textures were synthesized using the dynamics

loss only, i.e., Eq. 3.12. The resulting frames had no visible appearance and had

an extremely low dynamic range, i.e., the standard deviation of pixel intensities

was 10 for values in [0, 255]. This indicates a general invariance to appearance

and suggests that the two-stream dynamic texture representation has factored

appearance and dynamics, as desired. Results for a sequence containing a school

of fish are shown in Fig. 4.4 with enhanced contrast.

4.1.2 Incremental texture synthesis

Dynamic textures synthesized incrementally, as described in Sec. 3.3.1, are in-

cluded in the supplemental. Sequences as long as 122 frames (using 11 frame

subsequences) were synthesized with no observed divergence or degradation. The

resulting textures were perceptually indistinguishable from those synthesized with

the typical batch process.
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target
(fish)

appearance
only

dynamics
only

both streams

Figure 4.4: Two-stream dynamic texture synthesis versus dynamics-only and
appearance-only texture synthesis. (top row) Target dynamic texture. (second
row) Texture synthesis without dynamics constraints shows consistent per-frame
appearance but no temporal coherence. (third row) Texture synthesis without
appearance constraints shows limited per-frame appearance with pixel intensities
having a standard deviation of 10. (bottom row) Including both streams induces
consistent appearance and dynamics.

4.1.3 Temporally-endless texture synthesis

An example of a synthesized temporally-endless dynamic texture is shown in Fig.

4.5. As described in Sec. 3.3.2, the dynamic texture appears temporally endless,

i.e., there is no apparent temporal discontinuity between the last and first frames.
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Frame T

no temporal
seam

temporal
seam

Frame 1

Figure 4.5: Temporally-endless texture synthesis. (top row) Target texture. (bot-
tom row) Synthesized texture. By adding an additional loss to the dynamics
stream that ties the last frame to the first, the synthesized dynamic texture ap-
pears to be temporally endless. Note the lack of an abrupt appearance change
(i.e., temporal seam) between the last frame and the first frame of the synthesized
dynamic texture.

4.1.4 Dynamics style transfer

A dynamics style transfer results is shown in Fig. 4.7 (top row), using two real

videos as the appearance and dynamics target, respectively. Additional exam-

ples are available in the supplemental material. When performing dynamics style

transfer it is important that the appearance structure of both targets to be simi-

lar in scale and semantics, otherwise, the synthesized dynamic textures will look

unnatural. For instance, transferring the dynamics of a flame onto a water scene

will generally produce implausible results (Fig. 4.6).

The dynamics of a texture can also be applied to a static input image, as the

target Gram matrices for the appearance loss can be computed on just a single

frame. This allows us to effectively animate regions of a static image. The result

of this process can be striking and is visualized in Fig. 4.7 (second, third, and

bottom rows), where the appearance is taken from a painting and the dynamics

from a real world video.
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appearance
target synthesized output

Figure 4.6: Dynamics style transfer with incompatible appearance and dynam-
ics targets. The dynamics from fireplace_1 are unsuccessfully transferred to a
painting of ocean water.
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appearance
target synthesized output

Figure 4.7: Dynamics style transfer. (top row) Appearance of still water was
used with the dynamics of a different water dynamic texture (water_4). (second
row) The appearance of a painting of fire was used with the dynamics of a real
fire (fireplace_1). (third row) The appearance of a painting of ocean water
was used with the dynamics of a water dynamic texture (water_4). (bottom
row) The appearance of a painting of a waterfall was used with the dynamics of a
waterfall dynamic texture (waterfall). Animated results and additional examples
are available in the supplemental material.
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4.2 User study

Quantitative evaluation for (dynamic) texture synthesis is a particularly challeng-

ing task as there is no single correct output when synthesizing new samples of a

texture. Like in other image generation tasks (e.g ., rendering), human perception

is ultimately the most important measure. Thus, a user study was performed to

evaluate the perceived realism of the synthesized dynamic textures.

Similar to previous image synthesis work (e.g ., [8]), a perceptual experiment

was conducted with human observers to quantitatively evaluate the synthesis re-

sults. A two-way alternative forced-choice (2AFC) evaluation was employed on

Amazon Mechanical Turk (AMT) with 200 different users. Each user performed

59 pairwise comparisons between a synthesized dynamic texture and its target.

Users were asked to choose which dynamic texture appeared more realistic af-

ter viewing the textures independently (with a brief delay between viewing each

texture) for an exposure time sampled randomly from discrete intervals between

0.3 and 4.8 seconds. Measures were taken to control the experimental conditions

and minimize the possibility of low quality data. Appendix A.1 provides further

experimental details of the user study.

For comparison, a baseline was constructed by using the flow decode layer in

the dynamics loss of Eq. 3.12. This approach corresponds with attempting to

mimic the optical flow statistics of the texture directly. Textures were synthesized

with this model and the user study was repeated with an additional 200 users.

To differentiate between the models, “Flow decode layer” and “Concat layer” are

labelled in the figures to describe the baseline and final model, respectively. An

example comparing a dynamic texture synthesized on the baseline and final model
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target
(waterfall)

flow decode
layer

(baseline)

concatenation
layer (final)

Figure 4.8: Comparison with a dynamic texture synthesized using optical-flow di-
rectly. (top row) Target dynamic texture. (middle row) Dynamic texture synthesis
when using the “Flow decode layer” on the dynamics stream. This is the baseline
model and corresponds to attempting to mimic the optical flow statistics of the
texture directly. The dynamics of the waterfall are poorly captured, lacking the
downward motion exhibited by the target. (bottom row) Dynamic texture synthe-
sis when using the “Concat layer” on the dynamics stream. This is the final model.
The downward motion and overall dynamics of the target are reliably captured.

is shown in Fig. 4.8.

The results of this study are summarized in Fig. 4.9 which shows user accuracy

in differentiating real versus synthesized textures as a function of time for both

methods. Accuracies are reported with a 95% confidence level, i.e., a margin of

error that is between ±1.96 standard deviations from the mean (p-value of 0.05).

Overall, users are able to correctly identify the real texture 66.1%±2.5% of the time

for brief exposures of 0.3 seconds. This rises to 79.6%±1.1% with exposures of 1.2

seconds and higher. Note that “perfect” synthesis results would have an accuracy

of 50%, indicating that users were unable to differentiate between the real and

synthesized textures and higher accuracy indicating less convincing textures.
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Figure 4.9: Time-limited pairwise comparisons across all textures with 95% sta-
tistical confidence intervals.

The results clearly show that the use of the concatenation layer’s activations

is far more effective than the flow decode layer. This is not surprising, as optical

flow alone is known to be unreliable on many textures, particularly those with

translucent and/or chaotic dynamics (e.g ., water, smoke, flames, etc.). Specifi-

cally, its assumptions of a single coherent movement for each pixel and brightness

constancy are violated. Also evident in these results is the time-dependant nature

of perception for textures from both models. Users’ ability to identify the synthe-

sized texture improved as exposure times increased to 1.2 seconds and remained

relatively flat for longer exposures.

To better understand the performance of the proposed approach, the results

were grouped and analyzed in terms of appearance and dynamics characteristics.

For appearance, the taxonomy presented in [41] was used to group textures as

either regular/near-regular (e.g ., periodic tiling and brick wall), irregular (e.g ., a
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field of flowers), or stochastic/near-stochastic (e.g ., tv static or water). For dy-

namics, the textures were grouped as either spatially-consistent (e.g ., closeup of

rippling sea water) or spatially-inconsistent (e.g ., rippling sea water viewed at an

angle, causing inconsistent dynamics due to perspective distortion). The finer-

grained dynamics taxonomy presented by Derpanis and Wildes [12] was not used

here in its entirety because certain categories of dynamics were under-represented

in the database of collected dynamic textures, e.g ., unconstrained and undercon-

strained dynamics. Furthermore, there were dynamic textures that were difficult to

categorize under their taxonomy (i.e., dynamic textures with inconsistent dynam-

ics). To maintain statistically-meaningful results, the dominant, multi-dominant,

heterogeneous, and isotropic dynamics groups of Derpanis and Wildes [12] were

merged into the spatially-consistent group, covering roughly half of the collected

dynamic textures, and the spatially-inconsistent group was created to cover the

rest. Results based on these groupings can be seen in Fig. 4.10.

A full breakdown of the user study results by dynamic texture and grouping

can be found in Appendix A.3. Here some of the overall trends are discussed.

Appearance-based analysis

Based on appearance it is clear that textures with large-scale spatial consistencies

(regular, near-regular, and irregular textures) tend to perform poorly. Examples

being flag and fountain_2 with user accuracies of 98.9%±1.6% and 90.8%±4.3%

averaged across all exposures, respectively. This result is not unexpected and is

a fundamental limitation of the local nature of the Gram matrix representation

used in the appearance stream which was observed in static texture synthesis

[21]. In contrast, stochastic and near-stochastic dynamic textures performed sig-
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Figure 4.10: Time-limited pairwise comparisons across all textures, grouped by
appearance (top) and dynamics (bottom). Shown with 95% statistical confidence
intervals.

nificantly better as their smaller-scale local variations are well captured by the

appearance stream, for instance water_1 and lava which had average accuracies

of 53.8% ± 7.4% and 55.6% ± 7.4%, respectively, making them both statistically

indistinguishable from real.

63



Dynamics-based analysis

In terms of dynamics, the user study showed that textures with spatially-consistent

dynamics (e.g ., tv_static, water_*, and calm_water_*) perform significantly

better than those with spatially-inconsistent dynamics (e.g ., candle_flame, fountain_

2, and snake_*), where the dynamics drastically differ across spatial locations. For

example, tv_static and calm_water_6 have average accuracies of 48.6% ± 7.4%

and 63.2% ± 7.2%, respectively, while candle_flame and snake_5 have average

accuracies of 92.4% ± 4% and 92.1% ± 4%, respectively. Overall, the two-stream

model is capable of reproducing a full spectrum of spatially-consistent dynamics.

However, as the appearance shifts from containing small-scale spatial consistencies

to containing large-scale spatial consistencies, performance degrades. This pat-

tern was evident in the user study where the best-performing textures typically

consisted of a stochastic or near-stochastic appearance with spatially-consistent

dynamics. In contrast, the worst-performing textures consisted of regular, near-

regular, or irregular appearance with spatially-inconsistent dynamics.

4.3 Qualitative comparisons

In this section, a qualitative comparison with the extant methods of Funke et

al . [20] and Xie et al . [67] is performed. Generally, results from the proposed

two-stream model are found to be qualitatively comparable or better than these

methods.

To note, Funke et al . provided results on only five textures and of those only

four are dynamic textures in the sense that their appearance and dynamics are spa-

tiotemporally coherent. Their results on these sequences (cranberries, flames,
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target
(leaves)

Funke et al .
[20]

two-stream
model

Figure 4.11: Qualitative comparison with Funke et al .’s [20] model on one of the
sequences used in their work. Note that this sequence does not follow the thesis’
assumption of a dynamic texture, in the sense that the appearance and/or dynam-
ics are not spatiotemporally homogeneous. (top row) Target sequence. (middle
row) Dynamic texture synthesis when using Funke et al .’s model. The model fails
to capture the up-right motion of the leaves. (bottom row) Dynamic texture syn-
thesis when using the proposed two-stream model. The up-right motion of the
leaves is captured. Results are best viewed in video.

leaves, and water_5) are included in the folder funke under dynamic_texture_

synthesis/comparisons in the supplementary material. The results from the

two-stream model are included as well. An example on the leaves sequence is

shown in Fig. 4.11.

Results are also compared on nine dynamic textures chosen to cover the full

range of the dynamics and appearance groupings introduced in the user study.

Publicly available code from Funke et al . and Xie et al . is used to produce their

results with their default parameter settings. For Funke et al .’s model, the pa-

rameters used are �t = 4 and T = 12 (recall that target dynamic textures consist

of 12 frames). For the spatiotemporal and temporal models from Xie et al ., the
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parameters used are T = 1200 and M̃ = 3. A comparison between the results

from the proposed two-stream model, Funke et al .’s model, and Xie et al .’s model

on the nine dynamic textures are included in the folder xie_and_funke under

dynamic_texture_synthesis/comparisons. An example on the smoke_plume_1

dynamic texture is shown in Fig. 4.12.

Note for Xie et al ., comparisons are made with their spatiotemporal model,

labelled “Xie et al. (ST)”, designed for dynamic textures with both spatial and

temporal homogeneity, and their temporal model, labelled “Xie et al. (FC)”, de-

signed for dynamic textures with only temporal homogeneity.
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target
(smoke_
plume_1)

Funke et al .
[20]

Xie et al .
[67] (ST)

Xie et al .
[67] (FC)

two-stream
model

Figure 4.12: Qualitative comparison with Funke et al .’s [20] and Xie et al .’s [67]
models on one of the dynamic textures collected in this thesis. (top row) Target
dynamic texture. (second row) Dynamic texture synthesis when using Funke et
al .’s model. (third row) Dynamic texture synthesis when using Xie et al .’s spa-
tiotemporal model. (fourth row) Dynamic texture synthesis when using Xie et
al .’s temporal model. (bottom row) Dynamic texture synthesis when using the
proposed two-stream model.
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Overall, the results from the proposed two-stream model appear qualitatively

better, showing more temporal coherence and similarity in dynamics as well as

fewer spatial and temporal artifacts, such as blur and flicker, respectively. This

may be a natural consequence of the limited representation of dynamics in both

Funke et al .’s and Xie et al .’s models. Although the spatiotemporal model of Xie

et al . [67] is able to synthesize dynamic textures that lack spatial homogeneity

(e.g ., bamboo and escalator), note that their method appears to not be able

to synthesize novel dynamic textures, i.e., it appears to faithfully reproduce the

target texture, reducing the generalizability (e.g ., synthesis of textures beyond the

spatiotemporal extent of the input) of their approach, and thus its applicability.

As a consequence of jointly modelling appearance and dynamics, both methods

[20, 67] are not capable of the novel form of style transfer that was demonstrated

above. This capability was enabled by the factored representation of dynamics

and appearance. Furthermore, the spatiotemporal extent of the output sequence

generated by Xie et al .’s [67] method is limited to being equal to the input. The

proposed approach does not share this limitation.

4.4 Discussion

This chapter provided a qualitative analysis on a variety of results obtained using

the proposed two-stream model for dynamic texture synthesis, incremental texture

synthesis, temporally-endless texture synthesis, and dynamics style transfer. For

dynamic texture synthesis, it was shown that both the appearance and dynam-

ics streams were required to synthesize dynamic textures that matched both the

framewise appearance of the target and its dynamics. For incremental texture syn-
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thesis, it was shown that incrementally synthesized dynamic textures exhibited no

divergence or degradation when compared to those synthesized using the typical

batch process. For temporally-endless texture synthesis, it was shown that the

synthesized dynamic textures exhibited no apparent temporal discontinuity be-

tween the last and first frames. For dynamics style transfer, it was shown that the

dynamics of one dynamic texture can be successfully combined with the appear-

ance of another, under the stipulation that the appearance and dynamics targets

came from textures similar in scale and semantics.

Additionally, a large-scale user study was performed to quantitatively evaluate

the realism of dynamic textures synthesized by the proposed model by comparing

synthesized results with their respective targets. An evaluation on a baseline ver-

sion of the model was performed as well. Overall, dynamic textures synthesized

by the two-stream model were able to fool users 33.9%± 2.5% of the time for brief

exposures. In contrast, dynamic textures synthesized by the baseline model were

able to fool users 10.2%± 1.8% of the time. Although the final two-stream model

was statistically better than the baseline model, users were still able to reliably

tell the difference between real and synthesized for longer exposure times. Specifi-

cally, 79.6%± 1.1% of the time, they could distinguish real from synthesized when

exposure times were 1.2 seconds or higher. It is possible that for longer exposure

times, spatial artifacts (e.g ., chromatic aberration and noise) of the synthesized

texture may have served as cues for distinguishing between real and synthesized.

These artifacts suggest room for improvement on the representation of appearance

and has been left for future work.

Finally, a qualitative comparison with two extant methods for dynamic texture

synthesis was performed. Overall, the results from the proposed two-stream model
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were shown to be qualitatively better than the compared methods, showing more

temporal coherence and similarity in dynamics as well as fewer spatial and tem-

poral artifacts. Furthermore, it is unclear how the other methods can be applied

to the novel dynamics style transfer, as can the proposed two-stream model.
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Chapter 5

Conclusion

5.1 Thesis summary

This thesis presented a novel, two-stream analysis of dynamic textures using Con-

vNets to independently represent appearance and dynamics statistics, culminating

in four primary contributions to the dynamic texture literature spanning both the-

ory and application.

First, theoretical insight into the characterization of dynamic textures is pro-

vided by building a novel factored representation of both appearance and dynam-

ics. Second, for the representation of dynamics, a novel ConvNet based on the

“marginalized” spacetime-oriented energy model of Derpanis and Wildes [12] was

constructed. It was shown to provide a substantial improvement on the temporal

coherence of synthesized dynamic textures when compared to using a dynamics

representation based purely on optical flow. Third, a novel form of style transfer

was demonstrated, where the appearance and dynamics information from differ-

ent texture sources are combined to produce a compelling composition of the two.
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This capability was shown to be enabled by the factored two-stream representa-

tion of appearance and dynamics. Finally, the model was applied to a variety

of dynamic texture synthesis tasks and it was shown that, so long as the input

textures followed the thesis’ assumptions of a dynamic texture, i.e., have spatially

invariant statistics and spatiotemporally invariant dynamics, the resulting synthe-

sized textures were compelling. This point was validated both qualitatively and

quantitatively through a large user study and comparisons with extant methods

for dynamic texture synthesis.

Beyond the theoretical implications of this thesis lie numerous applications in

the creative-industry including, but not limited to, computer-generated imagery,

digital painting, and image editing. More broadly, the ability to animate static

imagery via dynamics style transfer can meaningfully contribute to the emerging

artistic medium of computer-generated art.

5.2 Future work

Consequently, a few limitations were revealed; however, in light of the implications

of some of the experiments (e.g ., dynamics style transfer), potential avenues for

artistic exploration have been revealed as well. These have been left as directions

for future work. This section will first describe the aforementioned limitations and

propose possible solutions, then it will outline some interesting potential artistic

applications as well as some extensions to the model to enable these applications.

First, much like has been reported in recent image style transfer work [22],

results in this thesis show that high frequency noise and chromatic aberrations

are a problem in generation. Another issue that arises is when the model fails to
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capture textures with spatially-varying appearance, (e.g ., flag in Fig. 4.3) and

spatially-inconsistent dynamics (e.g ., escalator in Fig. 4.3). By collapsing the

local statistics into a Gram matrix, the spatial and temporal pattern organization

is lost. Simple post-processing methods, e.g ., blurring, may alleviate issues with

noise and chromatic aberration, but holistically, these appearance-based issues

point to a need for a better representation of appearance. To preserve spatial

structure, Berger et al . [6] experimented with incorporating long range consistency

in ConvNet-based texture synthesis by computing multiple Gram matrices at a

layer instead of one. Specifically, rather than computing correlations between

activations at a single spatial position, correlations between activations across

spatial positions were computed as well. Although this approach seems promising,

it is worth noting that it is computationally expensive due to the additional Gram

computations.

The multiscale distributed representation of dynamics in the dynamics stream

was implicitly learned through the proxy task of optical flow regression. Although

optical flow was sufficient to produce spacetime-oriented filters, it is unclear how

its limitations in modelling complex dynamics affects the dynamics modelling ca-

pacity of the learned filters. The abundance of optical flow groundtruth was a

motivating factor for its usage; however, for future work, it would be interesting

to compare with other, seemingly more suitable, proxy tasks, such as dynamic

texture recognition [12].

The proposed two-stream model used a learned approach for instantiating the

filter weights of the MSOE dynamics representation [12]. Although most of the

synthesized dynamic textures appeared to be perceptually similar to their targets,

it remains to be seen how the learned dynamics representation compares to a hand-
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crafted dynamics representation [12]. An advantage of a handcrafted approach is

having analytically-defined oriented filters that do not need to be learned through a

possibly noisy proxy task. It is not clear if using handcrafted filters would improve

results, however, it is worth comparing against in future work. Likewise, inter-

esting comparisons could be made with using a handcrafted, rather than learned,

appearance stream representation via spatially-oriented energy filters, e.g ., 2D

Gaussian n-th derivative oriented filters.

The user study quantitatively compared the final two-stream model with a

baseline model. Although a qualitative comparison was made with previously pro-

posed approaches for dynamic texture synthesis [20, 67], the user study did not

include a comparison with these approaches. The addition of a quantitative com-

parison between the two-stream model and the extant approaches could further

illustrate the advantages of the two-stream model that were outlined in the quali-

tative comparison. Additionally, it would be interesting to quantitatively compare

with the handcrafted approach [12] mentioned in the previous paragraph.

Due to GPU memory limitations, the temporal extent of the learned spacetime-

oriented filters in the first layer of the dynamics stream was restricted to T =

2. In spite of this limitation, the two-stream model still managed to synthesize

impressive results. However, a small temporal extent limits the range of temporal

frequencies that can be captured, thus limiting the range of dynamics that can be

modelled. For future work, it would be interesting to investigate the relationship

between the quality of synthesized dynamic textures and the temporal extent of

the filters in the first layer of the dynamics stream.

ConvNet-based texture synthesis models use a Euclidean metric (i.e., the

Frobenius norm) for measuring the distance between the Gram matrices of the tar-
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get and synthesized textures. The Gram matrix is a positive semidefinite matrix,

existing in a non-Euclidean space. Thus, non-Euclidean metrics may be more suit-

able to use. For example, the log-Euclidean [4] metric provides many benefits over

the Frobenius norm; notably, it is scale-invariant and it defines a minimal geodesic

distance on the manifold of positive semidefinite matrices. Minimal geodesic dis-

tances are useful in applications for smoothly interpolating between two positive

semidefinite matrices, e.g ., Gram matrices. For texture synthesis, this may trans-

late to higher quality intermediately-synthesized textures during optimization, and

possibly faster convergence.

Beyond addressing these limitations, a natural next step would be to extend the

idea of a factorized representation into feed-forward generative networks that have

found success in static image synthesis, e.g ., [35, 62]. These networks move the

computational burden of the optimization process to a learning stage, where given

a single example of a texture, a compact “generator” ConvNet is trained to generate

multiple samples of the same texture. The same texture-modelling ConvNet used

before is kept as the “perceptual” loss, measuring similarity in activation statistics

between the synthesized and target textures. These networks have shown to be

hundreds of times faster than the traditional approach introduced by Gatys et al .

[21], on which the two-stream model is based.

Dynamics style transfer is an exciting application of the two-stream model

that encourages further exploration on texture-based artistic tools. Like image

style transfer [22], however, it is limited in its ability to allow artists granular

control over visual aesthetics. Recently, there has been some progress extending

image style transfer to include control over spatial location and colour information

across spatial scales [23]. An extension to dynamics style transfer could involve
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incorporating this technique to allow artists to decide which (textured) regions of

an image to transfer dynamics to. A metaphorical “motion brush”.
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Appendix

A.1 Experimental procedure

Provided here are the experimental details of the user study using Amazon Me-

chanical Turk (AMT). Experimental trials were grouped into batches of Human

Intelligence Tasks (HITs) for users to complete. Each HIT consisted of 59 pairwise

comparisons between a synthesized dynamic texture and its target. Users were

asked to choose which texture appeared more realistic after viewing each texture

independently for an exposure time (in seconds) sampled randomly from the set

{0.3, 0.4, 0.6, 1.2, 2.4, 3.6, 4.8}. Note that 12 frames of the dynamic texture corre-

sponds to 1.2 seconds, i.e., 10 frames per second. Since the dynamic textures were

collected from various sources with varying framerates, a canonical framerate was

chosen for all input and synthesized dynamic textures. 10 frames per second was

chosen to allow sufficient viewing time (1.2 seconds) while maintaining easily dis-

tinguishable dynamics. Before viewing a dynamic texture, a centred dot is flashed

twice to indicate to the user where to look (left or right). To prepare users for

the task, the first three comparisons were used for warm-up, exposing them to the

shortest (0.3s), median (1.2s), and longest (4.8s) durations. To prevent spamming

and bias, the experiment was constrained as follows:

87



target
(water_1)

synthesized

sentinel

Figure A.1: Example of a sentinel dynamic texture for the user study. (top row)
Target dynamic texture. (middle row) An obviously-unrealistic synthesized dy-
namic texture (a sentinel example). Achieved by terminating synthesis early (100
optimization iterations). (bottom row) Dynamic texture synthesized after 6, 000
optimization iterations.

1. Users could make a choice only after both dynamic textures were shown;

2. The next texture comparison could only be made after a decision was made

for the current comparison;

3. A choice could not be changed after the next pair of dynamic textures were

shown;

4. Users were each restricted to a single HIT.

Obvious unrealistic dynamic textures were synthesized by terminating synthesis

early (100 iterations) and were used as sentinel tests. An example is shown in Fig.

A.1.

Three of the 59 pairwise comparisons were sentinels and results from users who
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gave incorrect answers on any of the sentinel comparisons were not used. The

left-right order of textures within a pair, display order within a pair, and order of

pairs within a HIT, were randomized. An example of a HIT is shown in a video

included with the supplemental material: HIT_example.mp4.

Users were paid $2 USD per HIT, and were required to have at least a 98% HIT

approval rating, greater than or equal to 5000 HITs approved, and to be residing

in the US. Results were collected from 200 unique users to evaluate the final model

(which uses the “Concat layer”) and another 200 to evaluate the baseline model

(which uses the “Flow decode layer”).

A.2 Qualitative results

Provided in the supplemental material are videos showcasing the qualitative re-

sults of the two-stream model, including the experiments mentioned in the main

manuscript. The videos are in MP4 format (H.264 codec) and are best viewed in

a loop. They are enclosed in the following folders in the supplemental:

• target_textures: This folder contains the 59 dynamic textures used as

targets for synthesis.

• dynamic_texture_synthesis: This folder contains synthesized dynamic

textures where the appearance and dynamics targets are the same. Specif-

ically, it contains the folders comparisons, using_concatenation_layer,

and using_flow_decode_layer.

• using_concatenation_layer: This folder contains synthesized dynamic

textures where the concatenation layer was used for computing the Gram
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matrices on the dynamics stream. These are the results from the final model.

It contains the folders appearance_stream_only, dynamics_stream_only,

full_synthesis, incrementally_synthesized, and temporally_endless.

• using_flow_decode_layer: This folder contains synthesized dynamic tex-

tures where the predicted flow output is used for computing the Gram ma-

trices on the dynamics stream. These are the results from the baseline. It

contains the folder full_synthesis.

• full_synthesis: This folder contains regularly-synthesized dynamic tex-

tures, i.e., not incrementally-generated, nor temporally-endless, etc.

• appearance_stream_only: This folder contains dynamic textures synthe-

sized using only the appearance stream of the two-stream model. The dy-

namics stream is not used.

• dynamics_stream_only: This folder contains a dynamic texture synthesized

using only the dynamics stream of the two-stream model. The appearance

stream is not used.

• incrementally_synthesized: This folder contains dynamic textures syn-

thesized using the incremental process outlined in Sec. 3.3.1 in the main

manuscript.

• temporally_endless: This folder contains a synthesized dynamic texture

(smoke_plume_1) where there is no discernible temporal seam between the

last and first frames. Played as a loop, it appears to be temporally endless,

thus, it is presented in animated GIF format.
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• dynamics_style_transfer: This folder contains synthesized dynamic tex-

tures where the appearance and dynamics targets are different. Also included

are videos where the synthesized dynamic texture is “pasted” back onto the

original image it was cropped from, showing a proof-of-concept of dynamics

style transfer as an artistic tool.

• comparisons/funke: This folder contains four dynamic texture synthesis

comparisons between the two-stream model and a recent (unpublished) ap-

proach [20]. The dynamic textures chosen are those reported by Funke et al .

[20] which exhibit spatiotemporal homogeneity. For ease of comparison, the

results from both models have been concatenated with their corresponding

targets.

• comparisons/xie_and_funke: This folder contains nine dynamic texture

synthesis comparisons between the two-stream model, Funke et al .’s [20],

and Xie et al .’s [67]. The dynamic textures chosen cover the full range

of the appearance and dynamics groupings listed in Sec. 4.2. For ease of

comparison, the results from all models have been concatenated with their

corresponding targets.

A.3 Full user study results

Figures A.2a and A.2b show histograms of the average user accuracy on each

texture, averaged over a range of exposure times. The histogram bars are ordered

from lowest to highest accuracy, based on the results when using the final model.

Tables A.1 and A.2 show the average user accuracy on each texture when using
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the final model. The results are averaged over exposure times. Similarly, Tables

A.3 and A.4 show the results when using the baseline.

Tables A.5 and A.6 show the average user accuracy on texture appearance

groups when using the final model. The results are averaged over exposure times.

Similarly, Tables A.7 and A.8 show the results when using the baseline.

Tables A.9 and A.10 show the average user accuracy on texture dynamics

groups when using the final model. The results are averaged over exposure times.

Similarly, Tables A.11 and A.12 show the results when using the baseline.

Tables A.13 and A.14 show the average user accuracy over all textures when

using the final model. The results are averaged over exposure times. Similarly,

Tables A.15 and A.16 show the results when using the baseline.
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(a) Short exposure times (300-600 ms).

(b) Long exposure times (1200-4800 ms).

Figure A.2: Per-texture accuracies averaged over exposure times. Each texture accuracy includes a margin of error
with a 95% statistical confidence.
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Dynamic texture 300 ms.
ants 0.625±0.194
bamboo 0.769±0.162
birds 0.609±0.199
boiling_water_1 0.806±0.139
boiling_water_2 0.533±0.252
calm_water 0.607±0.181
calm_water_2 0.44±0.195
calm_water_3 0.813±0.135
calm_water_4 0.727±0.186
calm_water_5 0.609±0.199
calm_water_6 0.6±0.248
candle_flame 0.806±0.139
candy_1 0.81±0.168
candy_2 0.5±0.219
coral 0.591±0.205
cranberries 0.48±0.196
escalator 0.792±0.162
fireplace_1 0.909±0.12
fish 0.571±0.212
flag 1.0±0.0
flag_2 0.964±0.069
flames 0.72±0.176
flushing_water 0.5±0.209
fountain_1 0.435±0.203
fountain_2 0.929±0.095
fur 0.452±0.175
grass_1 0.813±0.135
grass_2 0.632±0.217
grass_3 0.8±0.175
ink 0.476±0.214
lava 0.458±0.199
plants 0.632±0.217
sea_1 0.6±0.192
sea_2 0.542±0.199
shiny_circles 0.517±0.182
shower_water_1 0.767±0.151
sky_clouds_1 0.667±0.202
sky_clouds_2 0.792±0.162
smoke_1 0.538±0.192
smoke_2 0.478±0.204
smoke_3 0.769±0.162
smoke_plume_1 0.724±0.163
snake_1 0.862±0.126
snake_2 0.72±0.176
snake_3 0.643±0.177
snake_4 0.643±0.177
snake_5 0.826±0.155
tv_static 0.538±0.192
underwater_vegetation_1 0.656±0.165
water_1 0.556±0.23
water_4 0.375±0.237
water_2 0.632±0.217
water_3 0.545±0.208
water_5 0.688±0.161
waterfall 0.571±0.183
waterfall_2 0.444±0.187

400 ms.
0.333±0.161
0.786±0.215
0.786±0.152
0.88±0.127
0.842±0.164
0.571±0.212
0.621±0.177
0.5±0.245
0.654±0.183
0.773±0.175
0.773±0.175
0.75±0.212
0.839±0.129
0.429±0.212
0.81±0.168
0.318±0.195
0.733±0.158
0.952±0.091
0.65±0.209
1.0±0.0
1.0±0.0
0.909±0.12
0.565±0.203
0.688±0.227
0.826±0.155
0.538±0.192
0.778±0.192
0.667±0.202
0.903±0.104
0.714±0.167
0.346±0.183
0.667±0.202
0.769±0.162
0.625±0.168
0.741±0.165
0.903±0.104
0.737±0.198
0.938±0.119
0.731±0.17
0.727±0.186
0.833±0.149
0.783±0.169
0.704±0.172
0.708±0.182
0.773±0.175
0.815±0.147
0.947±0.1
0.63±0.182
0.5±0.231
0.32±0.183
0.586±0.179
0.64±0.188
0.741±0.165
0.667±0.218
0.586±0.179
0.364±0.201

600 ms.
0.714±0.193
0.842±0.164
0.615±0.187
0.846±0.196
0.7±0.164
0.615±0.187
0.622±0.156
0.667±0.169
0.65±0.209
0.591±0.205
0.643±0.177
1.0±0.0
0.788±0.139
0.727±0.186
0.826±0.155
0.593±0.185
0.696±0.188
0.897±0.111
0.656±0.165
0.964±0.069
1.0±0.0
0.913±0.115
0.552±0.181
0.808±0.151
0.815±0.147
0.621±0.177
0.667±0.202
0.767±0.151
0.95±0.096
0.679±0.173
0.556±0.23
0.652±0.195
0.826±0.155
0.581±0.174
0.8±0.175
0.75±0.16
0.613±0.171
0.97±0.058
0.741±0.165
0.6±0.215
0.938±0.119
0.81±0.168
0.826±0.155
0.813±0.191
0.917±0.111
0.714±0.193
0.889±0.103
0.423±0.19
0.579±0.222
0.667±0.169
0.652±0.195
0.52±0.196
0.75±0.173
0.586±0.179
0.688±0.227
0.583±0.197

1200 ms.
0.536±0.185
0.906±0.101
0.542±0.199
0.714±0.193
0.87±0.138
0.636±0.164
0.7±0.201
0.7±0.201
0.767±0.151
0.609±0.199
0.5±0.2
0.909±0.12
0.9±0.131
0.636±0.164
0.815±0.147
0.64±0.188
0.967±0.064
0.917±0.111
0.652±0.195
0.968±0.062
0.923±0.102
0.889±0.119
0.871±0.118
0.833±0.149
1.0±0.0
0.75±0.15
0.792±0.162
0.88±0.127
0.958±0.08
0.724±0.163
0.733±0.158
0.767±0.151
0.955±0.087
0.75±0.173
0.609±0.199
1.0±0.0
0.72±0.176
0.957±0.083
0.471±0.237
0.72±0.176
0.821±0.142
0.963±0.071
0.88±0.127
0.958±0.08
0.87±0.138
1.0±0.0
0.875±0.132
0.615±0.187
0.821±0.142
0.727±0.186
0.826±0.155
0.739±0.179
0.833±0.149
0.759±0.156
0.792±0.162
0.75±0.16

2400 ms.
0.636±0.201
0.95±0.096
0.867±0.122
0.97±0.058
0.731±0.17
0.75±0.19
0.652±0.195
0.824±0.181
0.875±0.132
0.708±0.182
0.519±0.188
1.0±0.0
0.938±0.119
0.652±0.195
0.773±0.175
0.548±0.175
0.933±0.126
1.0±0.0
0.696±0.188
1.0±0.0
1.0±0.0
0.889±0.119
0.92±0.106
0.788±0.139
0.905±0.126
0.737±0.198
0.735±0.148
1.0±0.0
1.0±0.0
0.808±0.151
0.593±0.185
0.806±0.139
0.857±0.15
0.75±0.19
0.9±0.131
0.952±0.091
0.652±0.195
0.92±0.106
0.895±0.138
0.5±0.173
0.931±0.092
0.84±0.144
0.905±0.126
0.852±0.134
0.913±0.115
0.917±0.111
0.923±0.102
0.227±0.175
0.813±0.191
0.571±0.212
0.706±0.153
0.667±0.202
0.771±0.139
0.65±0.209
0.696±0.188
0.37±0.182

3600 ms.
0.857±0.15
0.938±0.084
0.682±0.195
0.96±0.077
0.852±0.134
0.762±0.182
0.773±0.175
0.63±0.182
0.848±0.122
0.724±0.163
0.765±0.202
1.0±0.0
0.963±0.071
0.724±0.163
0.885±0.123
0.519±0.188
0.926±0.099
0.962±0.074
0.692±0.177
1.0±0.0
1.0±0.0
0.875±0.132
0.917±0.111
0.667±0.189
0.967±0.064
0.526±0.225
0.895±0.138
0.88±0.127
0.92±0.106
0.783±0.169
0.522±0.204
0.857±0.15
0.964±0.069
0.533±0.252
0.767±0.151
0.87±0.138
0.571±0.259
0.889±0.119
0.76±0.167
0.724±0.163
0.968±0.062
0.778±0.157
1.0±0.0
0.9±0.107
1.0±0.0
0.889±0.119
1.0±0.0
0.619±0.208
0.733±0.158
0.583±0.197
0.818±0.161
0.724±0.163
0.652±0.195
0.652±0.195
0.731±0.17
0.632±0.217

4800 ms.
0.704±0.172
0.926±0.099
0.778±0.192
0.963±0.071
1.0±0.0
0.762±0.182
0.706±0.217
0.781±0.143
0.682±0.195
0.786±0.152
0.658±0.151
0.968±0.062
0.952±0.091
0.741±0.165
0.828±0.137
0.524±0.214
0.815±0.147
1.0±0.0
0.5±0.179
1.0±0.0
0.966±0.066
0.833±0.133
1.0±0.0
0.808±0.151
0.933±0.089
0.667±0.218
0.826±0.155
0.813±0.135
0.889±0.119
0.87±0.138
0.652±0.195
0.96±0.077
0.88±0.127
0.808±0.151
0.652±0.195
0.889±0.145
0.714±0.15
0.962±0.074
0.588±0.165
0.63±0.182
1.0±0.0
0.87±0.138
1.0±0.0
0.88±0.127
0.964±0.069
0.852±0.134
1.0±0.0
0.333±0.178
0.821±0.142
0.394±0.167
0.917±0.111
0.7±0.164
0.682±0.195
0.667±0.189
0.833±0.133
0.452±0.175

Table A.1: Per-texture accuracies using the concatenation layer. Each texture
accuracy includes a margin of error with a 95% statistical confidence.
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Dynamic texture Short (300-600 ms.)
ants 0.526±0.111
bamboo 0.797±0.103
birds 0.675±0.105
boiling_water_1 0.841±0.086
boiling_water_2 0.703±0.112
calm_water 0.6±0.111
calm_water_2 0.571±0.102
calm_water_3 0.692±0.102
calm_water_4 0.676±0.111
calm_water_5 0.657±0.114
calm_water_6 0.677±0.114
candle_flame 0.861±0.08
candy_1 0.812±0.083
candy_2 0.556±0.123
coral 0.742±0.106
cranberries 0.473±0.114
escalator 0.74±0.098
fireplace_1 0.917±0.064
fish 0.63±0.111
flag 0.987±0.025
flag_2 0.985±0.03
flames 0.843±0.085
flushing_water 0.541±0.114
fountain_1 0.646±0.116
fountain_2 0.859±0.077
fur 0.535±0.105
grass_1 0.761±0.099
grass_2 0.7±0.107
grass_3 0.887±0.074
ink 0.636±0.107
lava 0.441±0.118
plants 0.651±0.118
sea_1 0.73±0.101
sea_2 0.586±0.103
shiny_circles 0.671±0.106
shower_water_1 0.809±0.082
sky_clouds_1 0.662±0.11
sky_clouds_2 0.904±0.068
smoke_1 0.671±0.104
smoke_2 0.6±0.119
smoke_3 0.833±0.09
smoke_plume_1 0.767±0.097
snake_1 0.797±0.089
snake_2 0.738±0.107
snake_3 0.77±0.096
snake_4 0.724±0.101
snake_5 0.885±0.071
tv_static 0.532±0.11
underwater_vegetation_1 0.594±0.116
water_1 0.521±0.115
water_4 0.559±0.118
water_2 0.594±0.116
water_3 0.685±0.107
water_5 0.646±0.105
waterfall 0.603±0.112
waterfall_2 0.466±0.114

Long (1200-4800 ms.)
0.673±0.093
0.928±0.048
0.723±0.09
0.915±0.053
0.864±0.066
0.716±0.091
0.707±0.098
0.729±0.089
0.798±0.075
0.712±0.087
0.604±0.093
0.97±0.033
0.94±0.051
0.688±0.086
0.827±0.073
0.558±0.095
0.909±0.057
0.971±0.032
0.627±0.094
0.99±0.02
0.971±0.032
0.87±0.063
0.918±0.054
0.776±0.079
0.947±0.045
0.682±0.097
0.8±0.078
0.88±0.064
0.941±0.046
0.792±0.079
0.631±0.093
0.841±0.069
0.917±0.055
0.729±0.094
0.729±0.089
0.93±0.054
0.68±0.093
0.931±0.05
0.674±0.094
0.637±0.089
0.927±0.049
0.863±0.067
0.947±0.045
0.896±0.058
0.94±0.047
0.903±0.06
0.95±0.043
0.448±0.099
0.794±0.078
0.55±0.098
0.806±0.076
0.709±0.088
0.74±0.084
0.688±0.093
0.767±0.082
0.543±0.095

All (300-4800 ms.)
0.608±0.072
0.882±0.048
0.702±0.069
0.886±0.047
0.802±0.06
0.665±0.071
0.636±0.072
0.713±0.067
0.751±0.064
0.69±0.069
0.632±0.072
0.924±0.04
0.876±0.05
0.64±0.071
0.794±0.061
0.522±0.073
0.835±0.055
0.949±0.033
0.629±0.072
0.989±0.016
0.976±0.023
0.86±0.051
0.756±0.064
0.727±0.067
0.908±0.043
0.609±0.073
0.784±0.062
0.806±0.059
0.919±0.041
0.725±0.066
0.556±0.074
0.771±0.063
0.835±0.056
0.657±0.071
0.703±0.068
0.869±0.05
0.673±0.071
0.92±0.04
0.672±0.07
0.624±0.071
0.892±0.046
0.823±0.057
0.879±0.049
0.836±0.055
0.868±0.05
0.822±0.058
0.921±0.04
0.486±0.074
0.713±0.068
0.538±0.074
0.708±0.068
0.663±0.071
0.718±0.066
0.669±0.07
0.699±0.068
0.511±0.073

Table A.2: Per-texture accuracies averaged over a range of exposure times, using
the concatenation layer. Each texture accuracy includes a margin of error with a
95% statistical confidence.
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Dynamic texture 300 ms.
ants 0.933±0.126
bamboo 1.0±0.0
birds 0.895±0.138
boiling_water_1 0.846±0.196
boiling_water_2 0.808±0.151
calm_water 0.929±0.135
calm_water_2 1.0±0.0
calm_water_3 1.0±0.0
calm_water_4 0.875±0.162
calm_water_5 1.0±0.0
calm_water_6 0.913±0.115
candle_flame 0.944±0.106
candy_1 0.765±0.202
candy_2 0.864±0.143
coral 0.84±0.144
cranberries 0.75±0.212
escalator 0.947±0.1
fireplace_1 0.905±0.126
fish 0.933±0.089
flag 0.875±0.162
flag_2 0.958±0.08
flames 0.667±0.189
flushing_water 0.941±0.112
fountain_1 0.609±0.199
fountain_2 0.95±0.096
fur 0.818±0.161
grass_1 0.952±0.091
grass_2 1.0±0.0
grass_3 1.0±0.0
ink 0.947±0.1
lava 0.952±0.091
plants 0.9±0.131
sea_1 0.889±0.145
sea_2 0.85±0.156
shiny_circles 0.808±0.151
shower_water_1 0.941±0.112
sky_clouds_1 1.0±0.0
sky_clouds_2 0.941±0.112
smoke_1 0.867±0.172
smoke_2 0.667±0.239
smoke_3 1.0±0.0
smoke_plume_1 1.0±0.0
snake_1 0.941±0.112
snake_2 0.958±0.08
snake_3 0.957±0.083
snake_4 1.0±0.0
snake_5 0.909±0.12
tv_static 0.684±0.209
underwater_vegetation_1 0.857±0.183
water_1 0.929±0.135
water_4 0.778±0.272
water_2 0.867±0.172
water_3 0.737±0.198
water_5 1.0±0.0
waterfall 0.947±0.1
waterfall_2 0.941±0.112

400 ms.
0.9±0.186
0.944±0.106
0.652±0.195
0.895±0.138
0.889±0.119
0.963±0.071
1.0±0.0
1.0±0.0
0.947±0.1
0.897±0.111
1.0±0.0
1.0±0.0
0.87±0.138
0.875±0.132
0.957±0.083
0.917±0.111
1.0±0.0
0.765±0.202
0.957±0.083
1.0±0.0
1.0±0.0
0.75±0.19
0.88±0.127
0.65±0.209
1.0±0.0
0.95±0.096
0.938±0.119
0.92±0.106
1.0±0.0
0.962±0.074
1.0±0.0
1.0±0.0
1.0±0.0
0.857±0.183
0.8±0.175
0.857±0.15
1.0±0.0
1.0±0.0
0.773±0.175
0.957±0.083
1.0±0.0
0.958±0.08
1.0±0.0
0.917±0.111
1.0±0.0
0.947±0.1
1.0±0.0
0.588±0.234
0.958±0.08
0.778±0.192
1.0±0.0
1.0±0.0
0.905±0.126
0.944±0.106
0.933±0.126
0.88±0.127

600 ms.
0.913±0.115
1.0±0.0
0.933±0.126
0.957±0.083
0.714±0.193
1.0±0.0
0.966±0.066
0.957±0.083
1.0±0.0
1.0±0.0
0.958±0.08
1.0±0.0
0.938±0.119
1.0±0.0
1.0±0.0
0.926±0.099
1.0±0.0
0.923±0.102
0.944±0.106
1.0±0.0
1.0±0.0
0.722±0.207
0.727±0.186
0.769±0.229
0.947±0.1
1.0±0.0
0.917±0.111
1.0±0.0
0.958±0.08
0.96±0.077
0.941±0.112
1.0±0.0
1.0±0.0
1.0±0.0
0.75±0.19
0.923±0.102
0.947±0.1
0.941±0.112
0.846±0.139
1.0±0.0
1.0±0.0
0.964±0.069
1.0±0.0
0.962±0.074
1.0±0.0
1.0±0.0
1.0±0.0
0.64±0.188
0.952±0.091
0.952±0.091
0.889±0.119
0.962±0.074
0.938±0.119
1.0±0.0
0.952±0.091
0.947±0.1

1200 ms.
0.963±0.071
1.0±0.0
0.947±0.1
0.96±0.077
0.95±0.096
0.962±0.074
1.0±0.0
0.941±0.112
1.0±0.0
0.857±0.15
1.0±0.0
1.0±0.0
0.905±0.126
1.0±0.0
1.0±0.0
0.958±0.08
1.0±0.0
0.867±0.172
0.87±0.138
0.958±0.08
1.0±0.0
0.789±0.183
1.0±0.0
0.913±0.115
0.952±0.091
0.955±0.087
1.0±0.0
0.913±0.115
0.923±0.145
1.0±0.0
1.0±0.0
1.0±0.0
1.0±0.0
0.955±0.087
0.88±0.127
0.929±0.135
1.0±0.0
1.0±0.0
0.889±0.145
1.0±0.0
0.96±0.077
1.0±0.0
1.0±0.0
1.0±0.0
1.0±0.0
0.957±0.083
1.0±0.0
0.778±0.192
1.0±0.0
0.929±0.095
1.0±0.0
1.0±0.0
0.897±0.111
1.0±0.0
0.85±0.156
1.0±0.0

2400 ms.
1.0±0.0
1.0±0.0
0.9±0.131
0.92±0.106
0.857±0.183
0.952±0.091
1.0±0.0
0.955±0.087
1.0±0.0
1.0±0.0
1.0±0.0
1.0±0.0
0.846±0.139
0.96±0.077
0.941±0.112
0.867±0.172
1.0±0.0
0.929±0.095
1.0±0.0
1.0±0.0
1.0±0.0
0.826±0.155
0.8±0.157
0.762±0.182
1.0±0.0
1.0±0.0
1.0±0.0
0.95±0.096
1.0±0.0
1.0±0.0
0.906±0.101
1.0±0.0
1.0±0.0
1.0±0.0
0.8±0.202
1.0±0.0
1.0±0.0
0.933±0.126
0.944±0.106
0.947±0.1
1.0±0.0
0.955±0.087
1.0±0.0
1.0±0.0
1.0±0.0
0.95±0.096
1.0±0.0
0.55±0.218
1.0±0.0
0.889±0.145
1.0±0.0
1.0±0.0
1.0±0.0
1.0±0.0
0.929±0.095
0.773±0.175

3600 ms.
1.0±0.0
1.0±0.0
0.913±0.115
0.952±0.091
0.889±0.145
1.0±0.0
1.0±0.0
0.96±0.077
1.0±0.0
0.944±0.106
1.0±0.0
1.0±0.0
0.81±0.168
0.952±0.091
1.0±0.0
0.95±0.096
1.0±0.0
0.947±0.1
1.0±0.0
1.0±0.0
1.0±0.0
0.917±0.111
0.906±0.101
0.818±0.161
1.0±0.0
1.0±0.0
0.958±0.08
1.0±0.0
1.0±0.0
1.0±0.0
1.0±0.0
0.958±0.08
0.958±0.08
0.968±0.062
0.96±0.077
1.0±0.0
1.0±0.0
0.96±0.077
0.929±0.095
1.0±0.0
1.0±0.0
1.0±0.0
1.0±0.0
1.0±0.0
0.905±0.126
1.0±0.0
1.0±0.0
0.76±0.167
1.0±0.0
1.0±0.0
0.909±0.12
0.955±0.087
0.875±0.132
0.933±0.089
0.926±0.099
0.905±0.126

4800 ms.
0.885±0.123
1.0±0.0
0.966±0.066
1.0±0.0
0.92±0.106
1.0±0.0
0.941±0.112
1.0±0.0
1.0±0.0
1.0±0.0
1.0±0.0
1.0±0.0
0.8±0.157
0.95±0.096
1.0±0.0
1.0±0.0
1.0±0.0
1.0±0.0
1.0±0.0
0.947±0.1
0.938±0.119
0.842±0.164
0.867±0.172
0.895±0.138
1.0±0.0
1.0±0.0
1.0±0.0
0.895±0.138
1.0±0.0
0.813±0.191
0.95±0.096
0.958±0.08
0.889±0.145
1.0±0.0
0.9±0.131
1.0±0.0
1.0±0.0
1.0±0.0
0.95±0.096
0.909±0.12
1.0±0.0
1.0±0.0
1.0±0.0
0.955±0.087
1.0±0.0
1.0±0.0
1.0±0.0
0.783±0.169
1.0±0.0
0.88±0.127
1.0±0.0
1.0±0.0
0.909±0.12
0.962±0.074
1.0±0.0
0.9±0.131

Table A.3: Per-texture accuracies using the flow decode layer. Each texture accu-
racy includes a margin of error with a 95% statistical confidence.
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Dynamic texture Short (300-600 ms.)
ants 0.917±0.078
bamboo 0.983±0.034
birds 0.807±0.102
boiling_water_1 0.909±0.076
boiling_water_2 0.811±0.089
calm_water 0.963±0.05
calm_water_2 0.986±0.027
calm_water_3 0.985±0.029
calm_water_4 0.95±0.055
calm_water_5 0.954±0.051
calm_water_6 0.956±0.049
candle_flame 0.986±0.028
candy_1 0.857±0.092
candy_2 0.912±0.067
coral 0.932±0.057
cranberries 0.881±0.078
escalator 0.98±0.038
fireplace_1 0.875±0.081
fish 0.944±0.054
flag 0.963±0.05
flag_2 0.987±0.025
flames 0.71±0.113
flushing_water 0.844±0.089
fountain_1 0.661±0.124
fountain_2 0.96±0.054
fur 0.917±0.07
grass_1 0.934±0.062
grass_2 0.969±0.042
grass_3 0.983±0.034
ink 0.957±0.047
lava 0.966±0.046
plants 0.964±0.049
sea_1 0.968±0.044
sea_2 0.902±0.082
shiny_circles 0.788±0.099
shower_water_1 0.906±0.071
sky_clouds_1 0.985±0.029
sky_clouds_2 0.966±0.046
smoke_1 0.825±0.094
smoke_2 0.91±0.068
smoke_3 1.0±0.0
smoke_plume_1 0.972±0.038
snake_1 0.983±0.032
snake_2 0.946±0.052
snake_3 0.986±0.026
snake_4 0.984±0.03
snake_5 0.964±0.049
tv_static 0.639±0.121
underwater_vegetation_1 0.932±0.064
water_1 0.887±0.085
water_4 0.907±0.077
water_2 0.95±0.055
water_3 0.857±0.092
water_5 0.981±0.037
waterfall 0.945±0.06
waterfall_2 0.918±0.069

Long (1200-4800 ms.)
0.959±0.039
1.0±0.0
0.934±0.051
0.955±0.044
0.909±0.064
0.979±0.028
0.988±0.024
0.964±0.04
1.0±0.0
0.948±0.05
1.0±0.0
1.0±0.0
0.839±0.075
0.963±0.042
0.985±0.029
0.952±0.046
1.0±0.0
0.94±0.051
0.961±0.043
0.979±0.029
0.985±0.029
0.847±0.077
0.884±0.068
0.847±0.077
0.989±0.021
0.988±0.023
0.988±0.023
0.939±0.052
0.989±0.022
0.963±0.041
0.956±0.043
0.978±0.03
0.965±0.039
0.979±0.029
0.894±0.065
0.988±0.023
1.0±0.0
0.978±0.031
0.929±0.055
0.964±0.04
0.989±0.022
0.986±0.026
1.0±0.0
0.986±0.027
0.973±0.037
0.975±0.034
1.0±0.0
0.721±0.095
1.0±0.0
0.921±0.056
0.978±0.03
0.988±0.023
0.914±0.057
0.969±0.035
0.921±0.056
0.897±0.064

All (300-4800 ms.)
0.945±0.037
0.993±0.013
0.885±0.051
0.937±0.04
0.861±0.055
0.974±0.026
0.987±0.018
0.974±0.026
0.979±0.023
0.951±0.036
0.98±0.023
0.993±0.014
0.846±0.058
0.939±0.039
0.957±0.033
0.92±0.043
0.993±0.014
0.912±0.046
0.953±0.034
0.973±0.026
0.986±0.019
0.789±0.066
0.867±0.054
0.773±0.069
0.979±0.023
0.958±0.033
0.966±0.03
0.952±0.034
0.986±0.019
0.96±0.031
0.96±0.032
0.972±0.027
0.966±0.029
0.952±0.035
0.848±0.057
0.952±0.034
0.993±0.014
0.973±0.026
0.884±0.052
0.94±0.038
0.993±0.013
0.979±0.023
0.993±0.013
0.966±0.03
0.98±0.023
0.979±0.023
0.986±0.019
0.687±0.075
0.972±0.027
0.908±0.047
0.952±0.035
0.972±0.027
0.893±0.05
0.973±0.026
0.931±0.042
0.905±0.047

Table A.4: Per-texture accuracies averaged over a range of exposure times, using
the flow decode layer. Each texture accuracy includes a margin of error with a
95% statistical confidence.
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Appearance group 300 ms.
Regular & Near-regular 0.702±0.098
Irregular 0.806±0.046
Stochastic & Near-stochastic 0.616±0.03

400 ms.
0.74±0.101
0.853±0.044
0.658±0.029

600 ms.
0.838±0.088
0.837±0.043
0.687±0.028

1200 ms.
0.84±0.083
0.903±0.036
0.76±0.026

2400 ms.
0.954±0.051
0.909±0.037
0.751±0.026

3600 ms.
0.878±0.074
0.919±0.031
0.776±0.026

4800 ms.
0.827±0.082
0.902±0.035
0.762±0.025

Table A.5: Accuracies of textures grouped by appearances, using the concatenation
layer. Each texture accuracy includes a margin of error with a 95% statistical
confidence.

Appearance group Short (300-600 ms.)
Regular & Near-regular 0.756±0.056
Irregular 0.831±0.026
Stochastic & Near-stochastic 0.654±0.017

Long (1200-4800 ms.)
0.871±0.038
0.908±0.017
0.762±0.013

All (300-4800 ms.)
0.821±0.033
0.875±0.015
0.717±0.01

Table A.6: Accuracies of textures grouped by appearances, averaged over a range
of exposure times, using the concatenation layer. Each texture accuracy includes
a margin of error with a 95% statistical confidence.

Appearance group 300 ms.
Regular & Near-regular 0.889±0.078
Irregular 0.89±0.041
Stochastic & Near-stochastic 0.901±0.021

400 ms.
0.933±0.063
0.942±0.031
0.916±0.018

600 ms.
0.921±0.067
0.957±0.026
0.937±0.016

1200 ms.
0.961±0.043
0.953±0.028
0.957±0.014

2400 ms.
0.948±0.057
0.96±0.025
0.945±0.015

3600 ms.
0.984±0.031
0.968±0.022
0.955±0.013

4800 ms.
0.964±0.049
0.947±0.029
0.96±0.013

Table A.7: Accuracies of textures grouped by appearances, using the flow decode
layer. Each texture accuracy includes a margin of error with a 95% statistical
confidence.

Appearance group Short (300-600 ms.)
Regular & Near-regular 0.914±0.04
Irregular 0.93±0.019
Stochastic & Near-stochastic 0.919±0.011

Long (1200-4800 ms.)
0.964±0.023
0.957±0.013
0.954±0.007

All (300-4800 ms.)
0.943±0.022
0.946±0.011
0.939±0.006

Table A.8: Accuracies of textures grouped by appearances, averaged over a range
of exposure times, using the flow decode layer. Each texture accuracy includes a
margin of error with a 95% statistical confidence.
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Dynamics group 300 ms.
Spatially-consistent 0.625±0.032
Spatially-inconsistent 0.721±0.039

400 ms.
0.664±0.032
0.763±0.039

600 ms.
0.698±0.03
0.777±0.037

1200 ms.
0.741±0.028
0.885±0.028

2400 ms.
0.753±0.028
0.854±0.032

3600 ms.
0.762±0.028
0.902±0.026

4800 ms.
0.755±0.028
0.861±0.029

Table A.9: Accuracies of textures grouped by dynamics, using the concatenation
layer. Each texture accuracy includes a margin of error with a 95% statistical
confidence.

Dynamics group Short (300-600 ms.)
Spatially-consistent 0.663±0.018
Spatially-inconsistent 0.753±0.022

Long (1200-4800 ms.)
0.753±0.014
0.876±0.015

All (300-4800 ms.)
0.715±0.011
0.823±0.013

Table A.10: Accuracies of textures grouped by dynamics, averaged over a range
of exposure times, using the concatenation layer. Each texture accuracy includes
a margin of error with a 95% statistical confidence.

Dynamics group 300 ms.
Spatially-consistent 0.886±0.024
Spatially-inconsistent 0.92±0.027

400 ms.
0.911±0.02
0.942±0.023

600 ms.
0.934±0.018
0.949±0.021

1200 ms.
0.947±0.016
0.974±0.016

2400 ms.
0.945±0.016
0.954±0.02

3600 ms.
0.955±0.014
0.966±0.017

4800 ms.
0.954±0.015
0.964±0.018

Table A.11: Accuracies of textures grouped by dynamics, using the flow decode
layer. Each texture accuracy includes a margin of error with a 95% statistical
confidence.

Dynamics group Short (300-600 ms.)
Spatially-consistent 0.911±0.012
Spatially-inconsistent 0.937±0.013

Long (1200-4800 ms.)
0.95±0.008
0.964±0.009

All (300-4800 ms.)
0.934±0.007
0.953±0.008

Table A.12: Accuracies of textures grouped by dynamics, averaged over a range
of exposure times, using the flow decode layer. Each texture accuracy includes a
margin of error with a 95% statistical confidence.
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Group 300 ms.
All textures 0.661±0.025

400 ms.
0.699±0.025

600 ms.
0.726±0.023

1200 ms.
0.791±0.021

2400 ms.
0.788±0.022

3600 ms.
0.812±0.021

4800 ms.
0.793±0.021

Table A.13: Average accuracy over all textures, using the concatenation layer.
Each texture accuracy includes a margin of error with a 95% statistical confidence.

Group Short (300-600 ms.)
All textures 0.695±0.014

Long (1200-4800 ms.)
0.796±0.011

All (300-4800 ms.)
0.754±0.009

Table A.14: Average accuracy over all textures, averaged over a range of exposure
times, using the concatenation layer. Each texture accuracy includes a margin of
error with a 95% statistical confidence.

Group 300 ms.
All textures 0.898±0.018

400 ms.
0.922±0.015

600 ms.
0.94±0.013

1200 ms.
0.956±0.012

2400 ms.
0.948±0.013

3600 ms.
0.959±0.011

4800 ms.
0.957±0.012

Table A.15: Average accuracy over all textures, using the flow decode layer. Each
texture accuracy includes a margin of error with a 95% statistical confidence.

Group Short (300-600 ms.)
All textures 0.921±0.009

Long (1200-4800 ms.)
0.955±0.006

All (300-4800 ms.)
0.941±0.005

Table A.16: Average accuracy over all textures, averaged over a range of exposure
times, using the flow decode layer. Each texture accuracy includes a margin of
error with a 95% statistical confidence.
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