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Abstract: Surface defect identification based on computer vision algorithms often leads to inade-
quate generalization ability due to large intraclass variation. Diversity in lighting conditions, noise
components, defect size, shape, and position make the problem challenging. To solve the problem,
this paper develops a pixel-level image augmentation method that is based on image-to-image
translation with generative adversarial neural networks (GANs) conditioned on fine-grained labels.
The GAN model proposed in this work, referred to as Magna-Defect-GAN, is capable of taking
control of the image generation process and producing image samples that are highly realistic in
terms of variations. Firstly, the surface defect dataset based on the magnetic particle inspection (MPI)
method is acquired in a controlled environment. Then, the Magna-Defect-GAN model is trained,
and new synthetic image samples with large intraclass variations are generated. These synthetic
image samples artificially inflate the training dataset size in terms of intraclass diversity. Finally, the
enlarged dataset is used to train a defect identification model. Experimental results demonstrate that
the Magna-Defect-GAN model can generate realistic and high-resolution surface defect images up to
the resolution of 512 × 512 in a controlled manner. We also show that this augmentation method can
boost accuracy and be easily adapted to any other surface defect identification models.

Keywords: class imbalance; convolutional neural network; defect detection; GAN; image augmentation;
limited data; synthetic images; transfer learning

1. Introduction

Nondestructive testing (NDT) plays an essential role in industrial applications that
can benefit directly from computer vision algorithms. They are widely employed in the
manufacturing sector to detect defects, including scratches, flaws, pores, leaks, fractures,
and cracks. In addition to impairing the aesthetic of the corresponding object, these defects
on the object surface may also have a negative impact on quality control or even pose
serious manufacturing safety risks [1]. The traditional procedures of performing NDT
methods are more susceptible to the effects of human factors, which can result in different
outcomes for the same test. Therefore, the incorporation of automation and computer
vision techniques is desirable. Computer vision models excel at inspecting object details
and defect detection tasks because of their speed, accuracy, and repeatability.

MPI is used to inspect a wide variety of manufactured products in different forms
including castings, forgings, and weldments. The principle of magnetism is used in MPI
to find defects in magnetic materials such as steel, iron, nickel, cobalt, etc. The first step
in MPI is to magnetize the component parallel to its surface that is to be inspected. In the
case of defects on or near the surface of the component, the defects create a leakage field.
Then, the iron particles in wet suspended form are applied onto the component. In the
places of leakage fields, the particles are attracted and clustered. The defects can provide
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visible indications under ultraviolet light [2]. There are several factors that influence the
effectiveness of MPI. The main factors include:

1. Part geometry: The shape and size of the part being inspected can affect the effective-
ness of the inspection. For example, it may be more difficult to detect defects in thin
or small parts compared to larger or thicker parts.

2. Material properties: The material properties of the part being inspected can also affect
the effectiveness of the inspection. For example, nonferromagnetic materials may not
be suitable for magnetic particle inspection.

3. Surface finish: a rough or uneven surface can make it more difficult to detect defects
using magnetic particle inspection.

4. Magnetizing force: The strength of the magnetizing force applied during the inspec-
tion can affect the sensitivity of the inspection. A stronger magnetizing force may be
more effective at detecting smaller defects.

5. Particle size and type: The size and type of magnetic particles used in the inspection
can also affect the effectiveness of the inspection. Smaller particles may be more
sensitive to defects but may be more difficult to see.

6. Light intensity: the intensity of the light used to illuminate the magnetic particles can
affect the visibility of the particles and the ability to detect defects.

Collecting defective images with different combinations of these factors (intraclass
variations) at a large scale is expensive due to the low possibility of defecting occurrence [3].
It leads to several difficulties in acquiring defect data with a high range of variability and
hence poor generalization ability of a defect detection model. One of the most challenging
tasks in developing a defect detection model is to improve its generalization ability.

To address the issue of the insufficient generalization ability of a defect detection
algorithm caused by the limited data problem, in this paper, an improved conditional mask-
to-image translation GAN-based data augmentation method is proposed. GAN-based
intraclass augmentation is used to artificially increase the size and diversity of the dataset,
which can improve the performance of the model. Intraclass image augmentation refers to
the process of applying various types of data augmentation techniques to images within
the same class in order to increase the variability of the training dataset. This can help
to improve the generalization performance of a machine learning model by providing it
with more examples of the same class with different variations. Unlike previous work,
for our generator, we use a U-Net-based network, we couple the mask embedding vector
with the latent noise vector and the discrete fine-grained guide labels (Figure 1), and for
our discriminator, we use a PatchGAN classifier [4]. Coupling embedding vectors with
fine-grained guide labels and latent noise vectors leads to conditioning the data generation
process in a controlled manner. With the mask, our Magna-Defect-GAN model can generate
diverse defect images, such as by changing defect size, shape, location, position, etc. We
also allow more diversity, such as by changing the background, thickness, and brightness
of the defects.
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To verify the effectiveness of the proposed network, we acquired a defect dataset
using a line scan camera from an MPI apparatus, located at Erreka Fastening solutions,
in a controlled manner. The Magna-Defect-GAN model is trained for augmenting data
samples. The defect detection accuracies of a convolutional neural network (CNN) model
before and after data augmentation are compared. The experimental results show that the
Magna-Defect-GAN is more robust in generating controllable realistic and high-resolution
defect images than other existing GAN models.

The key contributions of this paper are as follows: (1) we present a surface defect
dataset acquired from a line scan camera that is essential for defect detection in cylindrical
objects; (2) we propose combinations of the mask, latent vector, and guide vectors (back-
ground, thickness, and brightness vectors) as a means of controlling the conditions of the
synthesized images; (3) we present a novel conditional mask-to-image GAN that utilizes the
interpretable guide vectors, and the Magna-Defect-GAN is employed to augment training
data at pixel level; and (4) we validate the effectiveness of the proposed pixel-level data
augmentation by training the CNN model with various training schemes using synthetic
and original data. The defect detection model trained by the combination of original and
augmented data alleviates the problem of overfitting and overcomes all biases present in a
limited dataset. Several forms of biases in the limited dataset such as background, lighting,
defect position, shape, size, etc., are drastically lessened with the help of GAN-generated
synthetic images.

The remainder of the paper is structured as follows: In the next section, existing work
on the classical and GAN-based data augmentation methods are described in detail. In
Section 3, an experimental platform for defect image acquisition is established in the labora-
tory. The GAN-based data augmentation models are built to generate synthetic images for
enhancing intraclass diversity in a limited data regime, and some comparative experiments
are performed in Section 4 to test the efficacy of the GAN-based data augmentation. The
effectiveness of the Magna-Defect-GAN-based data augmentation is examined in Section 5,
and the findings are reported. In Section VI, conclusions are drawn.

2. Related Work

There are thousands of parameters in even a lightweight CNN model that need to
be trained. When employing deep CNN models with numerous layers or when working
with a small number of training images, there is a risk of overfitting. The most widely used
method to reduce overfitting is data augmentation, which artificially inflates the dataset
size. By exposing the defect detection model to a wider range of variations in the data, data
augmentation can help the model learn to generalize better and reduce overfitting. For
example, if the model is trained on images of defects that all have the same orientation,
it may not be able to recognize defects that have a different direction. However, if the
model is also trained on images of defects that are rotated or flipped, it may be able to
recognize defects in a wider range of orientations. This encompasses classic augmentation
techniques such as affine and color transformations [5]. Even though classic augmentation
techniques serve as an implicit regularization, they are limited in augmentation diversity.
Several methods have been introduced to increase the effectiveness of data augmentation.
Zhong et al. [6] proposed a random erasing augmentation technique to make sure that the
CNN pays attention to the entire image rather than its subset. Random erasing works by
discarding a random n×m rectangle patch in an image and masking it with random values.
The disadvantage of using random erasing in defect identification applications is that it is
not always a label-preserving augmentation. Moreno-Barea et al. [7] injected random noise
into images that can help the model to learn more robust features. Combining different
augmentation techniques can result in an enormously expanded dataset size. However, it is
not ensured to be beneficial. Cubuk et al. [8] proposed an autoaugment policy based on the
reinforcement learning algorithm to search for an optimal combination of augmentation
techniques. Perez and Wang [9] developed an augmentation method based on the neural
style transfer algorithm, which employs neural nets to transfer style and classify the image.
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Recently, GAN-based data augmentation gained momentum in the field of computer
vision [10]. GAN models can be used to create synthetic images such that they retain similar
characteristics to the original training data. One way to use GAN-generated synthetic
images in defect detection is to train a defect detection model on a combination of real and
synthetic images. Using GANs to generate synthetic images can be useful for augmenting
the training dataset for a defect detection model. By adding synthetic images to the training
dataset, it is possible to increase the diversity of the dataset and improve the generalization
ability of the model. The objective of GAN-based augmentation is to generate synthetic
images to increase diversity and the amount of the original dataset. Several modifications of
the original GAN [11] have been proposed to improve the performance and stability of GAN
training including DCGAN [12], Pro-GAN [13], LAPGAN [14], GRAN [15], D2GAN [16],
SinGAN [17], and MADGAN [18]. However, these GAN models have a limitation in that
the generated synthetic images cannot be controlled. Conditional variants of GANs such
as cGAN [4], ACGAN [19], VACGAN [20], info-GAN [21], and SCGAN [22] have been
proposed to overcome the limitation. GAN models have proved to excel at several other
computer vision tasks including image super-resolution [23], image denoising [24], and
text to image synthesis [25]. In the area of manufacturing, image-to-image translation is the
most pertinent use of GAN.

In 2016, P. Isola et al. [26] developed a conditional variant of GAN called Pix2Pix
(pixel to pixel) GAN as a general solution to image-to-image translation tasks. In this case,
the generator takes an image from one domain and is tasked to convert it into an image
in another domain by minimizing reconstruction as well as the adversarial loss. Several
variants of Pix2Pix GAN have been proposed to enhance the quality of the translated
images. To reduce the blurriness of the translated images, Wang et al. [27] replaced the
reconstruction loss with a feature-matching loss. Unsupervised variants of image-to-image
translation GANs such as Disco-GANs [28] and Cycle-GANs [29] were proposed.

The ability to generate industrial images with defects in a controlled manner is highly
desirable by the industry 4.0 machine learning community. In particular, given that the
pixels corresponding to the background are far more numerous than the pixels of defects, a
mask-guided stochastic generator for augmentation of industrial data could potentially
yield improvements in detection and classification algorithms. To actually realize this
gain, our model employs numerous strategies to produce controllable, realistic, and high-
resolution synthetic industrial images as well as to enhance the quality of images and
stabilize the training process. We propose a new GAN architecture that maps a given
mask input to the sample space more efficiently by coupling the mask embedding vector,
conditional label vector, and latent noise vector. Compared with the traditional image-to-
image translation GANs described above, the samples generated by the GAN model are
more diverse.

In the context of industrial images with surface defects, recently, several GAN-based
methods have been proposed. One of these methods is Mask2Defect GAN [30], which
proposes a GAN model to generate a large volume of surface defect images with different
features and shapes. The algorithm separates the generation process into two steps: the first
step uses the mask-to-defect construction network (M2DCNet) to render the defect details
according to the binary mask, and the second step uses the fake-to-real domain transfor-
mation GAN (F2RDT-GAN) to add background textures and transform the synthesized
defects from the rendered domain to the real defect domain.

Another method is the surface defect generative adversarial network (SDGAN) [31],
which utilizes D2 adversarial loss and cycle-consistency loss to generate high-quality and
diverse defect datasets using a small number of defect images. SDGAN incorporates two
diversity control discriminators and a cycle-consistency loss to generate defect images in a
more efficient and effective way. The introduction of the diversity control discriminators
allows one to control the diversity of the generated images, while the cycle-consistency
loss helps to ensure that the generated images are consistent with the input images. Defect-
GAN [32] is proposed to mimic defacement and restoration processes to generate realistic
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and diverse defect samples. Defect-GAN employs adaptive noise insertion to capture the
stochastic variations within defects. Kaiqiong et al. [33] proposed an entirely multiscale
GAN with a transformer to capture the intrinsic patterns of qualified samples of IC metal
package images at multiple scales. The proposed GAN model is designed to improve
the quality of the generated images by capturing the patterns of the images at multiple
scales. The multiscale architecture is achieved by using a set of convolutional layers with
different dilation rates to extract features at multiple scales. One of the key contributions of
the proposed GAN model is the use of a Swin Transformer decoder, which is designed to
strengthen the modeling ability of the GAN. The Swin Transformer decoder is a modified
version of the transformer decoder that is designed to handle images with high resolution.
Shuanlong et al. [34] proposed a novel approach for generating synthetic defects in metal
surfaces that is based on the concept of image inpainting. The proposed method regards
defect generation as a form of image inpainting, where defects are generated in nondefect
images in regions specified by defect masks.

Our proposed method, Magna-Defect-GAN, is better than the abovementioned meth-
ods in several ways. One key advantage is that our method maps a given mask input to
the sample space more efficiently by coupling the mask embedding vector, guide vector,
and latent noise vector. This allows for the generation of various images that are realistic
and captured under different thicknesses, brightness, and types of fasteners. In contrast,
previous methods require significant manual effort to create masks with all possible combi-
nations of defect parameters, such as defects with different thicknesses, brightness, etc. Our
method involves learning a disentangled representation to separate the different elements
of fastener images, such as the parameters of defects and the background. This makes it
useful for creating a large number of different defects, with varying thicknesses, bright-
ness, and backgrounds, by simply adjusting the guide vectors. Another advantage of our
method is that we propose to utilize the latent noise vector in addition to the guide vector
to improve the diversity of generated images. This allows for the generation of images
with different variations with respect to defects of different thicknesses, brightness, and
types of fasteners.

3. Materials and Methods

We require a method for pixel-level data augmentation to increase the intraclass variety
of the training dataset and strengthen the robustness of defect detection models with
limited data. The mask-to-image translation model, which creates images that resemble
those obtained in a different setting (lighting, texture, etc.), is a key part of our suggested
methodology. We first suggest the guide vector in the GAN model, which contains values
that are understandable by humans and is hence controllable and explicable. Using input
from the guide vector and mask, we then synthesize images with significant intraclass
variance. Finally, we use synthetic data to supplement the training dataset and develop a
reliable defect detection model. In this section, we first present a novel dataset of fastener
defects. Next, we present the Magna-Defect-GAN model and the guiding vector.

3.1. Line Scan Defect Dataset

We collected a new fastener defect dataset using a DALSA Linea 2k 7.04 um
2048 × 2−26 kHz-Color line scan camera since the frame cameras have their limitations in
resolution and high-speed imaging applications. Unlike a frame camera, which exposes
the entire area of the sensor and gives an entire image, a line scan camera exposes just a
single line of pixels. These single lines of pixels are stitched together to form a complete
frame. As opposed to frame cameras, line scan cameras need special optic systems. We
used 12 mm fixed focal length lenses and 600 mm field of view (FOV). In our study, the
linear array camera was used to capture MPI images because it allows for a larger field
of view and a higher resolution compared to an area array camera. Additionally, linear
array cameras have higher sensitivity and signal-to-noise ratio, which is important for
detecting small defects. Furthermore, linear array cameras can also provide a higher frame
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rate, which is useful in fast-moving production lines. Additionally, linear array cameras
are more cost effective and have a smaller form factor as compared to area array cameras.
Figure 2 compares the methods used by frame and line scan cameras for image capturing.
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Figure 2. Comparison of (a) Frame and (b) Line Scan Cameras in terms of how they capture images.

The line scan camera must capture images at precisely the same rate that the fastener
is being rotated—a too-fast scan rate, the image gets distorted; too slow, and some of the
original slices are missed. We used an encoder to synchronize the rotational movement of
the fastener as well as the triggering of the line scan camera to ensure that no unnecessary
stretching or shrinking happens on the resultant image (Figure 3).
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The collected defect dataset consists of 1050 RGB images. The dataset was collected
from a magnetic particle inspection apparatus located at Erreka Fastening solutions. The
images were collected in different environments (background, lighting, thickness, and
brightness). Ground truth masks and guide labels were labeled by experienced quality
engineers. Specifically, three components of defect images were annotated so that not only
defect shape, location, and numbers but also the thickness, brightness, and background of
the defects can be controlled. At the right end of the line scan image, we can see a sizable
dark green region that represents the background, which was stationary.

3.2. Fine-Grained Guide Label

In general, the thickness and brightness of the defect in an image depend on (1) particle
concentration, (2) lighting, and (3) material type of the fasteners (background). Since our
goal is, given a mask label, generating various images that are realistic and captured under
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different thicknesses, brightness, and types of fasteners, we propose to utilize thickness,
brightness, and background (guide vector) to guide an image generation process. Therefore,
given a mask label and a guide vector (e ∈ R3), a corresponding image is generated.

3.3. Preliminaries

GANs were introduced to make a generative model by having two models (generative
model G and discriminative model D) compete with each other. A generative model G
turns noise into an imitation of the data to try to trick the discriminator, and a discriminative
model D tries to identify real data from fakes created by the generator. Both G and D could
be a convolutional neural network. To create a synthetic image x, the generator takes a noise
vector from a prior noise distribution pz(z) and runs it through a differentiable function:
G(z)→ x . The learning procedure of GAN is to train a discriminator D and a generator
G in parallel. At each iteration, backpropagation is applied to adjust generator model
parameters G to minimize log(1− D(G(z))) and adjust discriminator model parameters D
to minimize logD(x). Therefore, the loss function of GANs can be written as:

LGAN(G, D) = Ex∼Pr(x)[logD(x)] + Ez∼Pz(z)[log(1− D(G(z)))] (1)

To have a control on the kind of image being generated, in cGANs, both the generator
G and discriminator D are conditioned on additional information such as class labels y. In
pix2pix GAN, both the generator G and discriminator D are conditioned on an input image
to generate a corresponding output image. In this case, adversarial loss can be formulated as:

LcGAN(G, D) = Ex∼Pr(x)[logD(x|y)] + Ez∼Pz(z)[log(1− D(G(z|y)))] (2)

3.4. Proposed Architecture
3.4.1. Generator Architecture

The main challenge to training an image-to-image translation GAN without latent
noise vector z is that the model would produce deterministic outputs. Wang et al. [35] used
latent noise vector z as an input to the generator model in addition to the mask label. To im-
prove the overall feature projection efficiency, our Magna-Defect-GAN model first performs
mask embedding in the generator before the latent projection layer. Figure 4 represents
the overall architecture of our Magna-Defect-GAN. The generator of our proposed GAN is
based on a U-Net style design that can be decomposed into two branches, namely, the mask
projection and the latent projection branch. First, the mask projection branch encodes the
input mask into the mask embedding (32-dimensional vector). This mask projection branch
consists of 7 convolution layers each with a stride of 2, each followed by a leaky rectified
linear unit (Leaky ReLU). After that, we concatenate latent noise vector z (132-dimensional
vector) and the guide label vector e with the mask embedding to improve sample space
mapping and provide diverse texture detail in the synthetic images. Finally, the latent
projection branch whose inputs are the latent noise vector z, which, in combination with
the mask embedding and guide label, generates an output image. An image mask input
provides the intended defect shape, position, and quantity, and a guide label provides the
necessary defect background and thickness to generate a defect image.

3.4.2. Discriminator Architecture

We employed a modified Patch-GAN architecture [26] for the discriminator. As
opposed to classifying the output and target image as being real or fake, the Patch-GAN
discriminator is designed to use a convolutional network that divides the input images into
NxN patches of the image and outputs a matrix of values. Consequently, the discriminator
gives feedback on each region or patch of the image, which enables high frequency and
encourages detailed outputs by the generator. To avoid the common tiling artifacts with
smaller patch sizes, 70 × 70 patches are typically used. However, we found that smaller
patches in combination with style transfer losses yield sharper images while eliminating
tiling artifacts. Consequently, we use a patch size of 16 × 16.
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Figure 4. The Magna-Defect-GAN model comprises a U-net style generator network, a discriminator
network, and a pretrained VGG feature extractor. The mask projection path in the Generator network
G is tasked with mapping input masks into image embeddings through encoder blocks. The latent
projection path is used to translate the combination of the image embeddings, guide vectors, and latent
noise vectors into the output image. The discriminator network D is trained to distinguish real and
generated images. The pretrained VGG network is used to extract features to calculate the style loss.

3.4.3. Loss Function

One of the key elements of GANs is the loss function that is used to train the GAN
models. Different types of loss functions can be used depending on the specific GAN
architecture and the desired properties of the generated samples.

The pix2pix loss function is commonly used in image-to-image translation tasks, such
as converting a sketch to an image or converting a daytime image to a nighttime image.
The main goal of the pix2pix loss function is to generate an output image that is as similar
as possible to the target image. To achieve this, the pix2pix loss function uses two main
components: the L1 loss and the adversarial loss.

The L1 loss, also known as the mean absolute error (MAE), compares the pixel-wise
differences between the generated image and the target image. It calculates the absolute
difference between each pixel in the generated image and the corresponding pixel in the
target image and then takes the average of all these differences. The L1 loss is a popular
choice for image-to-image translation tasks because it is less sensitive to outliers than the
L2 loss (mean squared error) and has been shown to produce sharper images. The L1 loss
is calculated as:

L1 = Ex,y,z ‖ x−G(z, y) ‖1 (3)

where x is the target image and G(z, y) is the generated image. The L1 loss is a good choice
for image-to-image translation tasks because it is able to capture the structural information
of the image.

The pix2pix GAN loss is used in combination with the L1 loss to ensure that the
generated image is not only similar to the target image but also visually realistic. The total
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loss function for the pix2pix method is a combination of the L1 loss and the adversarial
loss. The total loss function is defined as:

Lpix2pix = α ∗ L1 loss + (1− α) ∗ Ladv (4)

where α is a hyperparameter that controls the balance between the L1 loss and the adver-
sarial loss.

The CycleGAN loss function, on the other hand, uses a combination of the cycle-
consistency loss and the adversarial loss. The cycle-consistency loss, also known as the
cycle-consistency constraint, ensures that the generated image can be transformed back to
the original image. The cycle-consistency loss is calculated as the difference between the
original image and the transformed image. The cycle-consistency loss is defined as:

LCycle = Ex ‖ x−G(F(x)) ‖1 + Ey ‖ y− F(G(y)) ‖1 (5)

where x is the input image, y is the target image, G is the generator for the input image,
and F is the generator for the target image. The cycle-consistency loss ensures that the
generated image preserves the characteristics of the input image.

Adversarial loss is used to ensure that the generated image looks like a real image and
not a fake one. The total loss function for the CycleGAN method is a combination of the
cycle-consistency loss and the adversarial loss. The total loss function is defined as:

LCycleGAN = λ ∗ LCycle + Ladv (6)

where λ is a hyperparameter that controls the balance between the cycle-consistency loss
and the adversarial loss.

We used a combination of three different losses in our proposed GAN model, i.e.,
adversarial loss, style loss, and reconstruction loss.

• Adversarial loss is used to ensure that the generated images are realistic and not easily
distinguishable from the original images. This is done by training the generator to fool
the discriminator, which is trained to distinguish between real and fake images.

• Style loss is used to ensure that the generated images have the same style as the
original images. This is done by comparing the feature maps of the generated images
to the feature maps of the original images.

• Reconstruction loss is used to ensure that the generated images are similar to the original
images. This is done by comparing the generated images to the original images.

By combining these three types of losses, the GAN is able to generate high-quality
images that have the same style and structure as the original images while also being
realistic and difficult to distinguish from real images. This results in more realistic and
visually appealing generated images.

The adversarial loss in the Magna-Defect-GAN is essential to ensure and guide the gen-
erator to generate synthetic images that look real and are able to fool the discriminator. The
generator establishes a relationship between the source image mask y, guide vector e, and
the random noise image z to the target image x, i.e., y, z, e → x . The discriminator makes
a distinction between original and fake x| y, e . The adversarial loss can be represented as:

Ladv = Ey,e, x[logD(y|e, x )] + Ez,y,e[log(1−D(y, e, G(z, y|e)))] (7)

The conditional adversarial loss attempts to make the generated image look real.
However, line scan industrial images, different from natural images that have higher
diversity in texture, shape, and color, require intricate precision of internal structure. As a
result, an additional constraint is necessary to ensure that the generated images are similar
to the original. Therefore, we add a pixel-wise reconstruction loss to the adversarial loss
that measures the pixel-wise distance between the generated images and the original image
that is available at training time. Comparing the performance of utilizing L1 and L2 norms
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to ascertain the reconstruction loss, we observe that the L2 norm appears to perform better
for our task. Our reconstruction loss is defined as below:

Lrec = Ey,e,x ‖ x−G(z, y, e) ‖2
2 (8)

The abovementioned reconstruction loss ensures structural consistency between the
generated and original image. To make the training process more stable and minimize the
total textural deviation between the generated and original image, style loss could be used
as auxiliary regularization. We use the style loss to further improve the similarity between
the generated and the original image in terms of intricate visual appearance such as texture
and color. We employ style loss at multiple levels between the original and the generated
image with a pretrained VGG model in a way similar to an earlier work [36]. The style
information is measured as the degree of correlation between feature maps in a given layer.
The style loss is then calculated by matching the mean and standard deviation between
the feature maps computed by the generated image and the original image. We calculate
the pair-wise correlation between all the feature vectors in the filters for each style layer in
order to preserve similarity between the style image and the generated image based on the
spatial information. These feature correlations are given by Gram matrix Gl ∈ RNl×Nl , the
inner product between the vectorized feature maps in layer l:

Gl
ij =

Ml

∑
k=1

Fl
ikFl

jk (9)

Assume that there are Al filters in total, each with a feature map of size Bl, and that
we have Gl

ij, Hl
ij gram matrices for the style image and the generated image. Thus, we can

calculate the overall style loss as follows:

Lstyle = ∑
l

wl.
1

4A2
l B2

l
∑
i,j

(
Gl

i,j −Hl
i,j

)2
(10)

where the weight given to layer l is wl. Each wl, in this case, contains the value
1

Total number of style layers , i.e., 1
5 .

Total generator loss is calculated as a weighted combination of reconstruction loss,
style loss, and adversarial loss. Our final generator loss is formulated as:

Ltotal = λ1Ladv + λ2Lrec + λ3Lstyle (11)

where λ1, λ2, and λ3 regulate the relative weight of different loss terms. Although recon-
struction should take precedence during the optimization phase, the adversarial loss plays
a significant role in encouraging local realism of the synthesized output in our mask-to-
image translation problem. We conducted our studies with the following settings: λ1 = 10;
λ2 = λ3 = 0.1.

4. Experiments
4.1. Training Details

All the experiments were run on Google-cloud infrastructure using a single Nvidia
12 GB Titan X GPU. We randomly divided our data into 80% training set and 20% test set.
We trained the GAN model for an average of 200 epochs, and the generation of synthetic
images took about 0.0265 ms per image. We kept the learning rate constant for the first
100 epochs, after which it exponentially declined to zero during the following epochs. All
weights in the model were initialized from a Gaussian distribution with a mean of 0 and
standard deviation of 0.01.
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4.2. Evaluation Metrics

When evaluating the GAN model, it is important to consider not only fidelity, which
quantifies the quality of the generated images, but also the diversity. In other words, fidelity
measures image quality and diversity measures the variety of the generated images. A
good generator must produce a good variety of images. For instance, of all images in
the training dataset, the generator should model all types of defects, including defects in
different positions, shapes, and sizes. We use the Inception score (IS) and Fréchet Inception
Distance score (FID) to evaluate the performance of our Magna-Defect-GAN model. IS
attempts to measure both the fidelity and diversity of the generated images. The Inception
model pretrained on a fine-grained defect dataset is the backbone of the IS. Given image x
and label y, for a high fidelity and diverse input, the posterior probability of a label p(y|x)
computed using the Inception model should have a low entropy, and the marginal class
distribution

∫
P(y|x = G(z)) dz should have a high entropy. Mathematically, IS can be

represented as:
IS(G) = exp

(
Ex∼pa

DKL(p(y|x) ‖ p(y))
)

(12)

FID is the frequently used method to measure the feature distance between real and
generated images. Images from the training dataset and images generated by the generator
are transformed into a feature space by FID using the output of the last hidden layer in
Inception Net. Multivariate normal Fréchet Distance can be calculated as:

FID(x, g) =‖ µx − µg ‖ 2
2 + Tr(Σx + Σg − 2

(
ΣxΣg

) 1
2 (13)

where (µx,µg) and (Σx, Σg) represent the mean and covariance of the true and generated
features, respectively.

4.3. t-SNE Visualization

To provide more powerful evidence that the generated synthetic images, indeed,
contribute to the shape of the data manifold, we use a t-distributed stochastic neighbor
embedding (t-SNE) algorithm to visualize the distribution of training and generated image
samples by reducing high-dimensional data to a 2D plane. First, the t-SNE algorithm
converts the similarities between data points to joint probabilities and then aims to minimize
the KL divergence between the joint probability of the low-dimensional embedding and
the high-dimensional data.

4.4. Evaluation of Defect Classification

In order to assess the performance benefits obtained by utilizing GAN-based synthetic
images, we benchmark our approach with well-known existing CNN models, ResNet [37]
and EfficientNet [38], which are frequently in a number of defect classification applications.
The defect classification performances are compared for the following training approaches.
(a) Model trained only with the original dataset, (b) model trained with the augmented
dataset (traditional augmentation methods such as rotation, vertical/horizontal flips, zoom,
shear, and channel shifts), (c) model pretrained with synthetic dataset and fine-tuned with
the original dataset, (d) model pretrained with the ImageNet dataset and fine-tuned with
the augmented dataset, (e) model pretrained with the ImageNet dataset and fine-tuned
with the synthetic dataset, and (f) model pretrained with the ImageNet dataset and fine-
tuned with a mix of augmented and synthesized datasets. The metrics employed for the
performance comparison are precision, recall, F1 score, and binary accuracy.

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)
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F1 Score =
2.(precision.Recall)
(precision + Recall)

(16)

Accuracy =
TP + TN

TP + FP + TN + FN
(17)

where TP, TN, FP, and FN denote true positive (correctly identified defects), true negative
(correctly identified nondefect images), false positive (images erroneously classified as
defect), and false negative (images erroneously classified as nondefect), respectively.

5. Results and Discussion

The Magna-Defect-GAN model was trained using 780 nondefective images and
270 defective images. After training the model, diverse and realistic synthetic images
were generated by altering the input masks and guide vector. Because of the small train-
ing sample size, the augmented images by rotation, vertical/horizontal flips, zoom, and
shear were additionally incorporated. We present the synthesized images given a mask
and guiding vectors in Figure 5 to illustrate the controllability and explainability of the
Magna-Defect-GAN model.
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Figure 5 demonstrates how the proposed method can generate different fine-grained
images from a given mask by altering the guide vectors. The first column in Figure 5
depicts the input masks, while the second column depicts the GAN-generated images
given guide vectors. As illustrated in Figure 6, the generated images of the Magna-Defect-
GAN are almost identical to the training dataset with high-fidelity image-specific details
well preserved (e.g., defects, illumination, and background), while Pix2Pix and CycleGAN
show poor perceptual quality.
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Figure 6. Comparison between the Magna-Defect-GAN and different image translation approaches.

It is worth noting that other GAN models would potentially generate a number of
completely blank pixels on a defect region (Figure 6) in an effort to achieve greater diversity.
This is harmful for training a defect detection model since the model would struggle to
learn from the noisy images. However, our Magna-Defect-GAN model maintains both
structural consistency and fine-grained background details, which is beneficial for a defect
detection model to learn from different appearances of defects under different levels of
ambient lighting.

Figure 7 shows the data distribution of original and synthetic images after dimension-
ality reduction by the t-SNE algorithm. As this figure illustrates, the proposed algorithm
can generate data that not only overlap with the true data distribution but is also extremely
close to the underlying distribution of the training data. All the generated data that mimic
the real data distribution have not appeared in the training dataset. The proposed algo-
rithm can provide an efficient way to close gaps in the discrete manifold distribution and
supplement sources of variance that are difficult to augment in conventional methods.
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Figure 7. t-SNE visualization showing the effect of the Magna-Defect-GAN-based augmentation.

Our proposed method achieves better IS and FID scores (Table 1) compared to the rest
of the methods. There could be a couple of reasons for the better scores. First, coupling
the mask embedding vector, conditional label vector, and latent noise vector results in
better sample space mapping, which leads to diverse textures of fine-grained details in the



Sensors 2023, 23, 1861 14 of 17

synthesized images. Moreover, the use of style loss in the Magna-Defect-GAN improves the
fidelity of the generated image in terms of background attributes such as texture and color.

Table 1. Performance of the Magna-Defect-GAN Model.

Model Inception Score ↑ FID ↓
Cycle [29] 2.88 ± 0.25 91.56

Pix2Pix [26] 3.08 ± 0.31 65.09
Magna-Defect-GAN 3.88 ± 0.36 50.03

We investigated the use of GAN-generated images to supplement the training dataset
for the task of defect classification in the presence of a small number of training examples.
Our Magna-Defect-GAN model was employed for generating photorealistic and high-
resolution synthetic industrial images.

Using our proposed method, it is possible to generate images with large intraclass
variations such as defects with different thicknesses, brightness, types of fasteners, etc.
Furthermore, it is feasible to create realistic synthetic images that are similar to the training
data by using simulated masks with different forms, locations, and orientations. Table 2
summarizes the six sets of experiments that were carried out to compare different training
schemes. The defect classification accuracy and F1 score by the Resnet model trained with
the original data from scratch were 80.8% and 0.801, respectively. The efficientnet-B7 model
accuracy and F1 score were 89.8% and 0.893, respectively. When the training dataset was
augmented by applying random but realistic lighter data augmentation schemes such as
vertical/horizontal flips, zoom, and rotations, the model accuracy and F1 score of the Resnet
model were enhanced to 83.5% and 0.868, respectively. Additionally, by incorporating
the efficientnet-B7 model, the accuracy and F1 score further improved to 91.8% and 0.918,
respectively. Because the training data size is too small and does not contain enough data
samples to properly represent the greatest possible intraclass diversity, using the original
data samples alone resulted in low and unstable training and validation accuracy. The
training loss stabilized when the lighter data augmentation scheme was applied; however,
the validation loss remained unstable. The accuracy and F1 score of the Resnet model were
87.5% and 0.88, respectively, using synthetic images for pretraining and the original dataset
for fine-tuning. Additionally, the efficientnet-B7 model achieved an accuracy of 92.5% and
an F1 score of 0.925 when using the same pretraining and fine-tuning methods. Compared
with the results of the training model with the augmented dataset, the test accuracy and F1
score were comparable. The accuracy and AUC of the Resnet model increased from 83.5% to
89.8% and 0.868 to 0.919, respectively, when the ImageNet pretrained model was used and
fine-tuned with the augmented dataset. Additionally, the efficientnet-B7 model showed an
improvement in accuracy, increasing from 91.8% to 94.7%, and an increase in F1 score from
0.918 to 0.946. This is because the ImageNet dataset spans 21,000 object classes, the model
is encouraged to learn more features than it requires when it is pretrained with fine-grain
labels, and these excess features aid in network generalization, i.e., improving the testing
accuracy. In other words, fine-grain labels help learn more features than coarse-grained
labels (defect vs. nondefect).
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Table 2. Data Augmentation Experiments on Surface Defect Dataset.

Training Scheme Model Recall Precision F1-Score Accuracy

a ResNet [37] 0.684 0.969 0.801 0.808
EfficientNet-B7 [38] 0.847 0.945 0.893 0.898

b
ResNet [37] 0.873 0.865 0.868 0.835

EfficientNet-B7 [38] 0.895 0.943 0.918 0.918

c ResNet [37] 0.863 0.907 0.88 0.875
EfficientNet-B7 [38] 0.909 0.942 0.925 0.925

d
ResNet [37] 0.942 0.898 0.919 0.898

EfficientNet-B7 [38] 0.958 0.935 0.946 0.947

e ResNet [37] 0.945 0.934 0.939 0.927
EfficientNet-B7 [38] 0.961 0.972 0.966 0.964

f
ResNet [37] 0.955 0.94 0.947 0.935

EfficientNet-B7 [38] 0.969 0.977 0.973 0.972

When the synthetic images were used for fine-tuning, the accuracy and the F1 score
of the Resnet model were 92.7% and 0.939, respectively, using the ImageNet pretrained
model. The efficientnet-B7 model achieved an accuracy of 96.4% and an F1 score of 0.966
when fine-tuned with the synthetic images. The performance of defect detection models
using synthetic images is on par with the outcome of regular data augmentation. It is
observed that when the model was fine-tuned with a mix of synthetic and augmented data,
the accuracy and the F1 score of Resnet were 93.5% and 0.947, respectively, which is clearly
a better performance rate. Similarly, when using the efficientnet-B7 model, the accuracy
and F1 score were even higher at 97.2% and 0.973, respectively, further demonstrating the
effectiveness of using a mix of synthetic and augmented data in fine-tuning models. Both
traditional augmentations and GAN-generated synthetic images are extremely beneficial
to prevent overfitting when training a defect detection model with a limited dataset—the
former extrapolates the training data distribution and the latter generates more diverse
data by interpolating between the discrete data points in the manifold.

6. Conclusions

In this work, we addressed the problem of defect detection with limited data. For that
purpose, we proposed a GAN-based mask-to-image translation model for data augmenta-
tion. The main conclusions are listed below.

(1) By combining the mask embedding vector with the latent noise vector and the discrete
fine-grained guide labels, an improved conditional mask-to-image translation GAN
was proposed. Synthetic images with large intraclass diversity such as defect size,
shape, position, thickness, brightness, and background can be generated conditionally.

(2) The proposed model training process was more stable, and the generated data sample
was of higher quality when compared to the existing GAN models.

(3) GAN-based augmentation is a useful tool for bridging holes in the discrete training
data distribution and enhancing sources of intraclass variation that are challenging to
amplify in other ways, but they cannot expand the distribution beyond the training
dataset extremes.

(4) When training a defect detection model with a small dataset, a mix of conventional
augmentations and GAN-generated synthetic images are extremely helpful to avoid
overfitting. The conventional data augmentation extrapolates the training data distri-
bution, while the GAN-based synthetic images add more diversity by interpolating
between the discrete data points in the manifold.
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