176 research outputs found

    Double-super-connected digraphs

    Get PDF
    AbstractA strongly connected digraph D is said to be super-connected if every minimum vertex-cut is the out-neighbor or in-neighbor set of a vertex. A strongly connected digraph D is said to be double-super-connected if every minimum vertex-cut is both the out-neighbor set of a vertex and the in-neighbor set of a vertex. In this paper, we characterize the double-super-connected line digraphs, Cartesian product and lexicographic product of two digraphs. Furthermore, we study double-super-connected Abelian Cayley digraphs and illustrate that there exist double-super-connected digraphs for any given order and minimum degree

    The mincut graph of a graph

    Full text link
    In this paper we introduce an intersection graph of a graph GG, with vertex set the minimum edge-cuts of GG. We find the minimum cut-set graphs of some well-known families of graphs and show that every graph is a minimum cut-set graph, henceforth called a \emph{mincut graph}. Furthermore, we show that non-isomorphic graphs can have isomorphic mincut graphs and ask the question whether there are sufficient conditions for two graphs to have isomorphic mincut graphs. We introduce the rr-intersection number of a graph GG, the smallest number of elements we need in SS in order to have a family F={S1,S2,Si}F=\{S_1, S_2 \ldots , S_i\} of subsets, such that Si=r|S_i|=r for each subset. Finally we investigate the effect of certain graph operations on the mincut graphs of some families of graphs

    Product of digraphs, (super) edge-magic valences and related problems

    Get PDF
    Discrete Mathematics, and in particular Graph Theory, has gained a lot of popularity during the last 7 decades. Among the many branches in Graph Theory, graph labelings has experimented a fast development, in particular during the last decade. One of the very important type of labelings are super edge-magic labelings introduced in 1998 by Enomoto et al. as a particular case of edge-magic labelings, introduced in 1970 by Kotzig and Rosa. An edge-magic labeling is a bijective mapping from the set of vertices and edges to [1, |V(G)|+|E(G)|], such that the sum of the labels of each edge and the incident vertices to it is constant. The constant is called the valence of the labeling. The edge-magic labeling is called super edge-magic if the smallest labels are assigned to the vertices. In this thesis, we consider three problems related to (super) edge-magic labelings and (di)graph products in which we use a family of super edge-magic digraphs as a second factor of the product. The digraph product we use, the h-product, was introduced by Figueroa-Centeno et al. in 2008. It is a generalization of the Kronecker product of digraphs. In Chapter 2, we study the super edge-magicness of graphs of equal order and size either by providing super edge-magic labelings of some elements in the family or proving that these labelings do not exist. The negative results are specially interesting since these kind of results are not common in the literature. Furthermore, the few results found in this direction usually meet one of the following reasons: too many vertices compared with the number of edges; too many edges compared with the number of vertices; or parity conditions. In our case, all previous reasons fail. In Chapter 3, we enlarge the family of perfect (super) edge-magic crowns. A crown is obtained from a cycle by adding the same number of pendant edges to each vertex of the cycle. Intuitively speaking, a (super) edge-magic graphs is perfect (super) edge-magic if all possible theoretical valences occur. The main result of the chapter is that the crowns defined by a cycle of length pq, where p and q are different odd primes, are perfect (super) edge-magic. We also provided lower bounds for the number of edge-magic valences of crowns. For graphs of equal order and size, the odd and the even labelling construction allows to obtain two edge-magic labelings from a particular super edge-magic labeling. The name refers to the parity of the vertex labels. In Chapter 4, we begin by providing some properties of odd and even labelling construction related to the (super) edge-magic labeling and also with respect to the digraph product. We also get a new application of the h-product by interchanging the role of the factors. This allows us to consider the classical conjecture of Godbold and Slater with respect to valences of cycles with a different point of view than the ones existing. Finally, we devote Chapter 5 to study the problem of edge-magic valences of crowns, in which even cycles appear, and to establish a relationship between super edge-magic graphs and graph decompositions. Some lower bounds on the number of (super) edge-magic valences are also established.La Matemàtica Discreta, i en particular la Teoria de Grafs, han guanyat molta popularitat durant les últimes set dècades. Entre les moltes branques de la Teoria de Grafs, els etiquetatges de grafs han experimentat un ràpid desenvolupament, especialment durant l'última dècada. Un dels tipus d'etiquetatges més importants són els etiquetatges super branca-màgics introduïts el 1998 per Enomoto et al. com un cas particular d'etiquetatges branca-màgics, introduïts el 1970 per Kotzig i Rosa. Un etiquetatge branca-màgic és una aplicació bijectiva del conjunt de vèrtexs i branques a [1, |V(G)|+|E(G)|], de manera que la suma de les etiquetes de cada branca i els vèrtexs incidents a ella és constant. La constant s'anomena valència de l'etiquetatge. L'etiquetatge branca-màgic s'anomena super branca-màgic si les etiquetes més petites s'assignen als vèrtexs. En aquesta tesi, considerem tres problemes relacionats amb etiquetatges (super) branca-màgic i productes de digrafs, en els que intervé una família de grafs super branca-màgic com a segon factor del producte. El producte de digrafs que usem, el producte h, va ser introduït per Figueroa-Centeno et al. el 2008. És una generalització del producte de Kronecker de digraphs. En el Capítol 2, estudiem el caràcter super branca-màgic de grafs d’ordre igual a mida, ja sigui proporcionant etiquetatges super branca-màgics d'alguns elements de la família o demostrant que aquests tipus d’etiquetatges no existeixen. Els resultats negatius són especialment interessants ja que aquest tipus de resultats no són comuns en la literatura. A més, els pocs resultats trobats en aquesta direcció solen encabir-se en una de les raons següents: massa vèrtexs en comparació amb el nombre de branques; massa branques en comparació amb el nombre de vèrtexs; o condicions de paritat. En el nostre cas, totes les raons anteriors fracassen. En el Capítol 3, ampliem la família de corones (super) branca-màgiques perfectes. Una corona és el graf que s’obté a partir d’un afegint el mateix nombre de branques a cada vèrtex del cicle. Intuïtivament parlant, un graf (super) branca màgic és (super) branca màgic si es donen totes les possibles valències teòriques. El resultat principal del capítol és que les corones definides per un cicle de longitud pq, on p i q són primers senars diferents, són (super) branca màgics perfectes. També proporcionem cotes inferiors per a la quantitat de valències màgiques de corones. Per a grafs d'igual ordre i mida, la construcció de l'etiquetatge senar i parell permet obtenir dos etiquetatges branca-màgics a partir d'un etiquetatge super branca-màgic. El nom fa referència a la paritat de les etiquetes de vèrtex. Al capítol 4, comencem proporcionant algunes propietats de la construcció de l'etiquetatge senar i parell relacionades amb l'etiquetatge (super) branca-màgic del que proven i també al producte h de dígrafs. També obtenim una nova aplicació del producte h intercanviant el paper dels factors. Això ens permet considerar la conjectura de Godbold i Slater respecte a les valències dels cicles des d’un punt de vista diferent a les existents. Finalment, dediquem el Capítol 5 a estudiar el problema de les valències branca-màgiques de les corones, en les que apareixen cicles parells, i a establir una relació entre els grafs super branca-màgic i les descomposicions de grafs. També s'estableixen alguns cotes inferiors del nombre de valències (super) branca-màgiques.Postprint (published version

    Enumerating super edge-magic labelings for the union of non-isomorphic graphs

    Get PDF
    A super edge-magic labeling of a graph G=(V,E) of order p and size q is a bijection f:V ∪E→{i}p+qi=1 such that: (1) f(u)+f(uv)+f(v)=k for all uv∈E; and (2) f(V )={i}pi=1. Furthermore, when G is a linear forest, the super edge-magic labeling of G is called strong if it has the extra property that if uv∈E(G) , u′,v′ ∈V (G) and dG (u,u′ )=dG (v,v′ )<+∞, then f(u)+f(v)=f(u′ )+f(v′ ). In this paper we introduce the concept of strong super edge-magic labeling of a graph G with respect to a linear forest F, and we study the super edge-magicness of an odd union of nonnecessarily isomorphic acyclic graphs. Furthermore, we find exponential lower bounds for the number of super edge-magic labelings of these unions. The case when G is not acyclic will be also considered.Preprin

    Characterization of eccentric digraphs

    Get PDF
    AbstractThe eccentric digraph ED(G) of a digraph G represents the binary relation, defined on the vertex set of G, of being ‘eccentric’; that is, there is an arc from u to v in ED(G) if and only if v is at maximum distance from u in G. A digraph G is said to be eccentric if there exists a digraph H such that G=ED(H). This paper is devoted to the study of the following two questions: what digraphs are eccentric and when the relation of being eccentric is symmetric.We present a characterization of eccentric digraphs, which in the undirected case says that a graph G is eccentric iff its complement graph G¯ is either self-centered of radius two or it is the union of complete graphs. As a consequence, we obtain that all trees except those with diameter 3 are eccentric digraphs. We also determine when ED(G) is symmetric in the cases when G is a graph or a digraph that is not strongly connected

    Quantum Hall Ground States, Binary Invariants, and Regular Graphs

    Full text link
    Extracting meaningful physical information out of a many-body wavefunction is often impractical. The polynomial nature of fractional quantum Hall (FQH) wavefunctions, however, provides a rare opportunity for a study by virtue of ground states alone. In this article, we investigate the general properties of FQH ground state polynomials. It turns out that the data carried by an FQH ground state can be essentially that of a (small) directed graph/matrix. We establish a correspondence between FQH ground states, binary invariants and regular graphs and briefly introduce all the necessary concepts. Utilizing methods from invariant theory and graph theory, we will then take a fresh look on physical properties of interest, e.g. squeezing properties, clustering properties, etc. Our methodology allows us to `unify' almost all of the previously constructed FQH ground states in the literature as special cases of a graph-based class of model FQH ground states, which we call \emph{accordion} model FQH states

    Product of digraphs, (super) edge-magic valences and related problems

    Get PDF
    Discrete Mathematics, and in particular Graph Theory, has gained a lot of popularity during the last 7 decades. Among the many branches in Graph Theory, graph labelings has experimented a fast development, in particular during the last decade. One of the very important type of labelings are super edge-magic labelings introduced in 1998 by Enomoto et al. as a particular case of edge-magic labelings, introduced in 1970 by Kotzig and Rosa. An edge-magic labeling is a bijective mapping from the set of vertices and edges to [1, |V(G)|+|E(G)|], such that the sum of the labels of each edge and the incident vertices to it is constant. The constant is called the valence of the labeling. The edge-magic labeling is called super edge-magic if the smallest labels are assigned to the vertices. In this thesis, we consider three problems related to (super) edge-magic labelings and (di)graph products in which we use a family of super edge-magic digraphs as a second factor of the product. The digraph product we use, the h-product, was introduced by Figueroa-Centeno et al. in 2008. It is a generalization of the Kronecker product of digraphs. In Chapter 2, we study the super edge-magicness of graphs of equal order and size either by providing super edge-magic labelings of some elements in the family or proving that these labelings do not exist. The negative results are specially interesting since these kind of results are not common in the literature. Furthermore, the few results found in this direction usually meet one of the following reasons: too many vertices compared with the number of edges; too many edges compared with the number of vertices; or parity conditions. In our case, all previous reasons fail. In Chapter 3, we enlarge the family of perfect (super) edge-magic crowns. A crown is obtained from a cycle by adding the same number of pendant edges to each vertex of the cycle. Intuitively speaking, a (super) edge-magic graphs is perfect (super) edge-magic if all possible theoretical valences occur. The main result of the chapter is that the crowns defined by a cycle of length pq, where p and q are different odd primes, are perfect (super) edge-magic. We also provided lower bounds for the number of edge-magic valences of crowns. For graphs of equal order and size, the odd and the even labelling construction allows to obtain two edge-magic labelings from a particular super edge-magic labeling. The name refers to the parity of the vertex labels. In Chapter 4, we begin by providing some properties of odd and even labelling construction related to the (super) edge-magic labeling and also with respect to the digraph product. We also get a new application of the h-product by interchanging the role of the factors. This allows us to consider the classical conjecture of Godbold and Slater with respect to valences of cycles with a different point of view than the ones existing. Finally, we devote Chapter 5 to study the problem of edge-magic valences of crowns, in which even cycles appear, and to establish a relationship between super edge-magic graphs and graph decompositions. Some lower bounds on the number of (super) edge-magic valences are also established.La Matemàtica Discreta, i en particular la Teoria de Grafs, han guanyat molta popularitat durant les últimes set dècades. Entre les moltes branques de la Teoria de Grafs, els etiquetatges de grafs han experimentat un ràpid desenvolupament, especialment durant l'última dècada. Un dels tipus d'etiquetatges més importants són els etiquetatges super branca-màgics introduïts el 1998 per Enomoto et al. com un cas particular d'etiquetatges branca-màgics, introduïts el 1970 per Kotzig i Rosa. Un etiquetatge branca-màgic és una aplicació bijectiva del conjunt de vèrtexs i branques a [1, |V(G)|+|E(G)|], de manera que la suma de les etiquetes de cada branca i els vèrtexs incidents a ella és constant. La constant s'anomena valència de l'etiquetatge. L'etiquetatge branca-màgic s'anomena super branca-màgic si les etiquetes més petites s'assignen als vèrtexs. En aquesta tesi, considerem tres problemes relacionats amb etiquetatges (super) branca-màgic i productes de digrafs, en els que intervé una família de grafs super branca-màgic com a segon factor del producte. El producte de digrafs que usem, el producte h, va ser introduït per Figueroa-Centeno et al. el 2008. És una generalització del producte de Kronecker de digraphs. En el Capítol 2, estudiem el caràcter super branca-màgic de grafs d’ordre igual a mida, ja sigui proporcionant etiquetatges super branca-màgics d'alguns elements de la família o demostrant que aquests tipus d’etiquetatges no existeixen. Els resultats negatius són especialment interessants ja que aquest tipus de resultats no són comuns en la literatura. A més, els pocs resultats trobats en aquesta direcció solen encabir-se en una de les raons següents: massa vèrtexs en comparació amb el nombre de branques; massa branques en comparació amb el nombre de vèrtexs; o condicions de paritat. En el nostre cas, totes les raons anteriors fracassen. En el Capítol 3, ampliem la família de corones (super) branca-màgiques perfectes. Una corona és el graf que s’obté a partir d’un afegint el mateix nombre de branques a cada vèrtex del cicle. Intuïtivament parlant, un graf (super) branca màgic és (super) branca màgic si es donen totes les possibles valències teòriques. El resultat principal del capítol és que les corones definides per un cicle de longitud pq, on p i q són primers senars diferents, són (super) branca màgics perfectes. També proporcionem cotes inferiors per a la quantitat de valències màgiques de corones. Per a grafs d'igual ordre i mida, la construcció de l'etiquetatge senar i parell permet obtenir dos etiquetatges branca-màgics a partir d'un etiquetatge super branca-màgic. El nom fa referència a la paritat de les etiquetes de vèrtex. Al capítol 4, comencem proporcionant algunes propietats de la construcció de l'etiquetatge senar i parell relacionades amb l'etiquetatge (super) branca-màgic del que proven i també al producte h de dígrafs. També obtenim una nova aplicació del producte h intercanviant el paper dels factors. Això ens permet considerar la conjectura de Godbold i Slater respecte a les valències dels cicles des d’un punt de vista diferent a les existents. Finalment, dediquem el Capítol 5 a estudiar el problema de les valències branca-màgiques de les corones, en les que apareixen cicles parells, i a establir una relació entre els grafs super branca-màgic i les descomposicions de grafs. També s'estableixen alguns cotes inferiors del nombre de valències (super) branca-màgiques

    Proceedings of the 3rd International Workshop on Optimal Networks Topologies IWONT 2010

    Get PDF
    Peer Reviewe
    corecore