Double-super-connected digraphs ${ }^{\star}$

Juan Liu ${ }^{\text {a,b }}$, Jixiang Meng ${ }^{\text {b,* }}$, Zhao Zhang ${ }^{\text {b }}$
${ }^{\text {a College of Mathematics-Physics and Information Sciences, Xinjiang Normal University, Urumqi, Xinjiang, 830054, PR China }}$
${ }^{\text {b }}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China

A R T I C L E IN F O

Article history:

Received 26 November 2008
Received in revised form 29 January 2010
Accepted 4 February 2010
Available online 19 March 2010

Keywords:

Super-connected
Double-super-connected
Line digraphs
Cartesian product
Lexicographic product

Abstract

A strongly connected digraph D is said to be super-connected if every minimum vertex-cut is the out-neighbor or in-neighbor set of a vertex. A strongly connected digraph D is said to be double-super-connected if every minimum vertex-cut is both the out-neighbor set of a vertex and the in-neighbor set of a vertex. In this paper, we characterize the double-superconnected line digraphs, Cartesian product and lexicographic product of two digraphs. Furthermore, we study double-super-connected Abelian Cayley digraphs and illustrate that there exist double-super-connected digraphs for any given order and minimum degree.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

By a simple digraph $D=(V(D), A(D))$, we mean a directed graph without loops and multiple arcs. Let $D=(V, A)$ be a strongly connected digraph and let x and y be two distinct vertices of D. For a vertex $x \in V$, we use $N_{D}^{+}(x)$ and $N_{D}^{-}(x)$, or simply $N^{+}(x)$ and $N^{-}(x)$, to denote the out-neighbor set and in-neighbor set of x in D, respectively. Set $d^{+}(x)=\left|N^{+}(x)\right|$ and $d^{-}(x)=\left|N^{-}(x)\right|$. As usual, $\delta^{+}(D)$ and $\delta^{-}(D)$ denote the minimum out-degree and minimum in-degree of D, respectively. $\delta(D)=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\}$ denotes the minimum degree. If $d^{+}(x)=d^{-}(x)=d$ for each vertex $x \in V$, then D is a d-regular digraph. The reverse digraph of D is the digraph $D^{(r)}=(V,\{(x, y) \mid(y, x) \in A\}) ; D$ is a symmetric digraph if $A=A^{(r)}$.

Let $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ be two digraphs, where $V_{1}=\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$ and $V_{2}=\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$. The line digraph of D_{1}, denoted by $L\left(D_{1}\right)$, is the digraph with vertex set $V\left(L\left(D_{1}\right)\right)=\left\{a_{i j} \mid a_{i j}=\left(x_{i}, x_{j}\right) \in A_{1}\right\}$, and a vertex $a_{i j}$ is adjacent to a vertex $a_{s t}$ in $L\left(D_{1}\right)$ if and only if $x_{j}=x_{s}$ in D_{1}. The Cartesian product $D_{1} \times D_{2}$ of D_{1} and D_{2} has vertex set $V_{1} \times V_{2}$ and $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in A\left(D_{1} \times D_{2}\right)$ if and only if either $\left(x_{1}, x_{2}\right) \in A_{1}$ and $y_{1}=y_{2}$, or $x_{1}=x_{2}$ and $\left(y_{1}, y_{2}\right) \in A_{2}$. The lexicographic product $D_{1}\left[D_{2}\right]$ of D_{1} and D_{2} has vertex set $V_{1} \times V_{2}$ and $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in A\left(D_{1}\left[D_{2}\right]\right)$ if and only if either $\left(x_{1}, x_{2}\right) \in A_{1}$, or $x_{1}=x_{2}$ and $\left(y_{1}, y_{2}\right) \in A_{2}$. Let $S_{1}, S_{2}, \ldots, S_{n_{1}-1}$ and $S_{n_{1}}$ be n_{1} digraphs. The digraph $D_{1}\left[S_{1}, S_{2}, \ldots, S_{n_{1}}\right]$ is the digraph obtained from D_{1} by replacing the i th vertex of D_{1} by a copy of the digraph S_{i} in such a way that for every arc $\left(x_{i}, x_{j}\right)$ in $D_{1}, D_{1}\left[S_{1}, S_{2}, \ldots, S_{n_{1}}\right]$ contains all possible arcs from $V\left(S_{i}\right)$ to $V\left(S_{j}\right)$. Furthermore, all the original arcs of S_{i} are also in $D_{1}\left[S_{1}, S_{2}, \ldots, S_{n_{1}}\right]$. Clearly, if $S_{1} \cong S_{2} \cong \ldots \cong S_{n_{1}} \cong D_{2}$, then $D_{1}\left[S_{1}, S_{2}, \ldots, S_{n_{1}}\right] \cong D_{1}\left[D_{2}\right]$.

A digraph D is said to be vertex-transitive if the automorphism group $\operatorname{Aut}(D)$ acts transitively on V, and is arc-transitive if $\operatorname{Aut}(D)$ acts transitively on A. For a group G and a subset $S \subset G \backslash\{1\}$, the Cayley digraph Cay (G, S) is the digraph with vertex

[^0]set G and arc set $\{(g, g s) \mid g \in G, s \in S\}$. In particular, if G is Abelian, then $\operatorname{Cay}(G, S)$ is an Abelian Cayley digraph; if $G=Z_{n}$, then $\operatorname{Cay}\left(Z_{n}, S\right)$ is a circulant digraph. It is well known that a Cayley digraph is vertex-transitive.

The vertex-connectivity $\kappa(D)$ (arc-connectivity $\lambda(D)$) is the minimum cardinality of all vertex-cuts (arc-cuts) of digraph D. We call a digraph D maximally connected, or max- κ for short, if $\kappa(D)=\delta(D)$. A strongly connected digraph D is said to be super-connected, or super- κ for short, if there exists a vertex x such that $U=N^{+}(x)$ or $N^{-}(x)$ for any minimum vertexcut U. It is hyper-connected, or hyper- κ for short, if the removal of any minimum vertex-cut results in exactly two strongly connected components one of which is a singleton. A hyper-connected digraph is clearly super-connected. Now we give a new definition:

Definition 1.1. A strongly connected digraph D is said to be double-super-connected if there exist two vertices x and y such that $U=N^{+}(x)=N^{-}(y)$ for every minimum vertex-cut U.
Double-super-connected digraphs are super-connected and super-connected symmetric digraphs are double-superconnected. If D is a double-super-connected digraph, then $\delta^{+}(D)=\delta^{-}(D)$.

Hamidoune and Tindell $[2,3,8]$ studied super-connected Abelian Cayley digraphs. In [5,10,11], the authors studied the connectivity of line graphs (digraphs). Shieh [7] studied the super-connected and super-edge-connected Cartesian product of two regular graphs. Liu and Meng [4] studied the super-connected and super-arc-connected Cartesian product of digraphs. Meng and Zhang [6] characterized the super-connected arc-transitive digraphs. In this paper, we will characterize the double-super-connected line digraph, Cartesian product and lexicographic product of two digraphs. Furthermore, we will study double-super-connected Abelian Cayley digraphs and illustrate that there is a double-super-connected digraph for any given order and minimum degree.

All digraphs in this paper are finite. Notation and definitions not given here can be found in $[1,9]$.

2. Operations on digraphs

Firstly, we give the characterization of the double-super-connected line digraphs.
Lemma 2.1 ([9]). Let D be a digraph; then $\lambda(D)=\kappa(L(D))$.
Theorem 2.2. Let $D=(V, A)$ be a simple digraph; then $L(D)$ is double-super-connected if and only if $\lambda(D)=1$ and any cut-arc $\left(x_{i}, x_{j}\right) \in A$ satisfies that $d^{+}\left(x_{i}\right)=d^{-}\left(x_{j}\right)=1$ in D.
Proof. If $\lambda(D)=1$, then $\kappa(L(D))=1$ by Lemma 2.1. For each cut-vertex $a_{i j}$ in $L(D), a_{i j}=\left(x_{i}, x_{j}\right) \in A(D)$ is a cut-arc in D; if it satisfies that $d^{+}\left(x_{i}\right)=d^{-}\left(x_{j}\right)=1$, then there exist two vertices $a_{s i}=\left(x_{s}, x_{i}\right), a_{j t}=\left(x_{j}, x_{t}\right) \in V(L(D))$ such that $N^{+}\left(a_{s i}\right)=N^{-}\left(a_{j t}\right)=\left\{a_{i j}\right\}$ in $L(D)$. Therefore $L(D)$ is double-super-connected.

On the other hand, let $L(D)$ be double-super-connected and U be a minimum vertex-cut of $L(D)$. Thus there exist two vertices $a_{i j}=\left(x_{i}, x_{j}\right), a_{s t}=\left(x_{s}, x_{t}\right) \in V(L(D))$ such that $N^{+}\left(a_{i j}\right)=U=N^{-}\left(a_{s t}\right)$. By the definition of a line digraph, we know that there are $|U|$ parallel arcs from x_{j} to x_{s} in D. Since D is simple, we have $|U|=1$. Thus $\kappa(L(D))=1$. Therefore $\lambda(D)=1$ by Lemma 2.1. If $d^{+}\left(x_{i}\right) \neq 1$ or $d^{-}\left(x_{j}\right) \neq 1$ for any cut-arc $\left(x_{i}, x_{j}\right) \in A(D)$, then there is no vertex $a_{s i}$ such that $N^{+}\left(a_{s i}\right)=\left\{a_{i j}\right\}$ or vertex $a_{j t}$ such that $N^{+}\left(a_{j t}\right)=\left\{a_{i j}\right\}$, a contradiction.

Next, we characterize the double-super-connected Cartesian product $D_{1} \times D_{2}$ of two digraphs D_{1} and D_{2}. In the following part of this section, we will assume that $\delta(D)=\delta^{+}(D)=\delta^{-}(D)$ for digraph D. For convenience, we use the symbols n_{i}, δ_{i}, κ_{i} to denote the order, the minimum degree and the connectivity of digraph D_{i}, respectively, for $i=1,2$.

By the definition of "double-super-connected", we know that if $D_{1} \times D_{2}$ is super- κ and there exists a vertex $(x, y) \in$ $V\left(D_{1} \times D_{2}\right)$ such that $U=N^{+}((x, y))=N^{-}((x, y))$ for each minimum vertex-cut U of $D_{1} \times D_{2}$, then $D_{1} \times D_{2}$ is double-super-connected. Thus, in the following theorem, we will consider that there exists a minimum vertex-cut U of $D_{1} \times D_{2}$ such that $U=N^{+}((x, y))=N^{-}((x, y))$ does not hold for any vertex $(x, y) \in V\left(D_{1} \times D_{2}\right)$.

The following theorem in [4] for $\kappa_{i}=\delta_{i}=1$ is useful in our proof.
Theorem 2.3 ([4]). Let D_{1} and D_{2} be two simple strongly connected digraphs and let $\delta_{i}^{+}=\delta_{i}^{-}=\delta_{i}$ for $i=1$, 2 . If $\delta_{i}=\kappa_{i}$, then $D_{1} \times D_{2}$ is super- κ if and only if $D_{1} \times D_{2} \nexists D \times \overrightarrow{K_{n}}\left(D \times \overrightarrow{K_{n}} \nexists \overrightarrow{K_{2}} \times \overrightarrow{K_{2}}, \overrightarrow{K_{2}} \times \overrightarrow{K_{3}}\right)$, where $\kappa(D)=\delta(D)=1, n \geq 2$.
Therefore, if $\kappa_{i}=\delta_{i}=1$ for $i=1,2$, then $D_{1} \times D_{2}$ is super $-\kappa$ if and only if $D_{1} \times D_{2} \not \not D \times \overrightarrow{K_{2}}$, where $D \nexists \overrightarrow{K_{2}}$ and $\kappa(D)=\delta(D)=1$.

Theorem 2.4. Let D_{1} and D_{2} be two strongly connected digraphs; then $D_{1} \times D_{2}$ is double-super-connected if and only if the following conditions hold:
(i) $\kappa_{i}=\delta_{i}=1$ for $i=1,2$,
(ii) $D_{1} \times D_{2} \not \approx D \times \overrightarrow{K_{2}}$, where $D \nexists \overrightarrow{K_{2}}$ and $\kappa(D)=\delta(D)=1$,
(iii) $N_{D_{i}}^{-}\left(N_{D_{i}}^{+}(x)\right)=\{x\}$ for any $x \in V_{i}$ with $d^{+}(x)=1$, and $N_{D_{i}}^{+}\left(N_{D_{i}}^{-}(x)\right)=\{x\}$ for any $x \in V_{i}$ with $d^{-}(x)=1$ for $i=1,2$.

Proof. If (i) and (ii) hold, then $D_{1} \times D_{2}$ is super- κ by Theorem 2.3. By (i) and (iii), $U=N^{+}((x, y))=\left\{\left(x, y_{1}\right),\left(x_{1}, y\right)\right\}=$ $N^{-}\left(\left(x_{1}, y_{1}\right)\right)$ for each minimum vertex-cut U; thus $D_{1} \times D_{2}$ is double-super-connected.

On the other hand, if $D_{1} \times D_{2}$ is double-super-connected, then $D_{1} \times D_{2}$ is super- κ. We first prove (i). Without loss of generality, suppose that $\delta_{1} \geq 2$. We assume that U is a minimum vertex-cut of $D_{1} \times D_{2}$. Since $D_{1} \times D_{2}$ is double-super-connected, there are two vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right)\left((x, y) \neq\left(x^{\prime}, y^{\prime}\right)\right)$ with $N^{+}((x, y))=U=N^{-}\left(\left(x^{\prime}, y^{\prime}\right)\right)$. Set $N_{D_{1}}^{+}(x)=\left\{x_{1}, \ldots, x_{\delta_{1}}\right\}, N_{D_{2}}^{+}(y)=\left\{y_{1}, \ldots, y_{\delta_{2}}\right\}, N_{D_{1}}^{-}\left(x^{\prime}\right)=\left\{x_{1}^{\prime}, \ldots, x_{\delta_{1}}^{\prime}\right\}, N_{D_{2}}^{-}\left(y^{\prime}\right)=\left\{y_{1}^{\prime}, \ldots, y_{\delta_{2}}^{\prime}\right\}$; then

$$
\begin{aligned}
& N^{+}((x, y))=\left\{\left(x_{1}, y\right), \ldots,\left(x_{\delta_{1}}, y\right),\left(x, y_{1}\right), \ldots,\left(x, y_{\delta_{2}}\right)\right\}, \\
& N^{-}\left(\left(x^{\prime}, y^{\prime}\right)\right)=\left\{\left(x_{1}^{\prime}, y^{\prime}\right), \ldots,\left(x_{\delta_{1}}^{\prime}, y^{\prime}\right),\left(x^{\prime}, y_{1}^{\prime}\right), \ldots,\left(x^{\prime}, y_{\delta_{2}}^{\prime}\right)\right\} .
\end{aligned}
$$

Since $\delta_{1} \geq 2$ and $\delta_{2} \geq 1$, we have $N^{+}((x, y)) \neq N^{-}\left(\left(x^{\prime}, y^{\prime}\right)\right)$, a contradiction, so (i) holds. By Theorem 2.3, if (i) holds and $D_{1} \times D_{2}$ is super- κ, then (ii) holds. Finally, we prove (iii). Without loss of generality, suppose that there exists a vertex $x \in V_{1}$ with $d^{+}(x)=1$ such that $N_{D_{1}}^{-}\left(N_{D_{1}}^{+}(x)\right)=N_{D_{1}}^{-}\left(x^{\prime}\right)=\left\{x, x_{1}, \ldots\right\}$ where $N_{D_{1}}^{+}(x)=x^{\prime}$. For any vertex $y \in V_{2}$ with $d^{+}(y)=1$, let $N_{D_{2}}^{+}(y)=y^{\prime}$; then $U=N^{+}((x, y))=\left\{\left(x^{\prime}, y\right),\left(x, y^{\prime}\right)\right\} \subsetneq N^{-}\left(\left(x^{\prime}, y^{\prime}\right)\right)$ is a minimum vertex-cut of $D_{1} \times D_{2}$, and there is no $\left(x^{\prime \prime}, y^{\prime \prime}\right) \in V\left(D_{1} \times D_{2}\right)$ such that $U=N^{-}\left(\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)$, a contradiction.

Lemma 2.5. Let $D=(V, A)$ be a strongly connected d-regular digraph. If there exists a vertex $y \in V$ such that $U=N_{D}^{+}(y)=$ $N_{D}^{-}(y)$ for any vertex-cut $U=N_{D}^{+}(x)$ (or $N_{D}^{-}(x)$), then D is a symmetric digraph.
Proof. Suppose that D is not a symmetric digraph; then there is an $\operatorname{arc}(x, y) \in A$ and $(y, x) \notin A$. Since D is strongly connected regular digraph, there exists a vertex $z \in V$ such that $(z, x) \in A$ and $(x, z) \notin A$. Let $N^{+}(x)=\left\{x_{1}, x_{2}, \ldots, x_{d-1}, y\right\}=U$, $N^{-}(x)=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{d-1}^{\prime}, z\right\}=U^{\prime}$; there exist two distinct vertices $s, t \in V$ such that $U=N_{D}^{+}(s)=N_{D}^{-}(s)$, $U^{\prime}=N_{D}^{+}(t)=N_{D}^{-}(t)$. Let $N^{-}(y)=\left\{y_{1}, y_{2}, \ldots, y_{d-2}, s, x\right\}=U^{\prime \prime}$; there exists a vertex $x_{i} \in U(1 \leq i \leq d-1)$ such that $U^{\prime \prime}=N_{D}^{+}\left(x_{i}\right)=N_{D}^{-}\left(x_{i}\right)$. Since $t \notin U^{\prime \prime}$ and $\left(x_{i}, t\right),\left(t, x_{i}\right) \in A$, we have $N_{D}^{+}\left(x_{i}\right)=N_{D}^{-}\left(x_{i}\right)=\left\{y_{1}, y_{2}, \ldots, y_{d-2}, s, x, t\right\}$, a contradiction.

Theorem 2.6. Let D_{1} and D_{2} be two strongly connected regular digraphs. Then $D_{1} \times D_{2}$ is double-super-connected if and only if one of the following conditions holds:
(i) D_{1} and D_{2} are symmetric digraphs and $D_{1} \times D_{2}$ is super- κ.
(ii) D_{1} and D_{2} are directed cycles except for $D_{1} \times D_{2} \cong \overrightarrow{C_{2}} \times \overrightarrow{C_{k}}(k \geq 3)$, where \vec{C}_{k} denotes the directed cycle of length k.

Proof. If (i) holds, then $D_{1} \times D_{2}$ is a super- κ and symmetric digraph; thus, $D_{1} \times D_{2}$ is double-super-connected. If (ii) holds, then $D_{1} \times D_{2}$ is double-super-connected by Theorem 2.4.

On the other hand, if $D_{1} \times D_{2}$ is double-super-connected, then $D_{1} \times D_{2}$ is super- κ; we consider two cases:
Case 1. If there exists a vertex $(x, y) \in V\left(D_{1} \times D_{2}\right)$ such that $U=N^{+}((x, y))=N^{-}((x, y))$ for any minimum vertex-cut U of $D_{1} \times D_{2}$, then there exists a vertex $x \in V_{i}$ such that $U^{\prime}=N^{+}(x)=N^{-}(x)$ for any vertex-cut $U^{\prime}=N^{+}(z)$ (or $N^{-}(z)$) of D_{i} for $i=1$, 2 . By Lemma $2.5, D_{1}$ and D_{2} are symmetric digraphs, (i) holds.
Case 2. If there exists a minimum vertex-cut U of $D_{1} \times D_{2}$ such that $U=N^{+}((x, y))=N^{-}((x, y))$ does not hold for any vertex $(x, y) \in V\left(D_{1} \times D_{2}\right)$, then $\delta_{1}=\delta_{2}=1$ by Theorem 2.4. Since D_{1} and D_{2} are strongly connected regular digraphs, we have that D_{1} and D_{2} are directed cycles, so (ii) holds.

Finally, we characterize the double-super-connected lexicographic product of two digraphs.
Proposition 2.7. Let $D=\vec{C}_{n}\left[S_{1}, S_{2}, \ldots, S_{n}\right]$, where \vec{C}_{n} denotes a directed cycle of length n, and let $\left|V\left(S_{i}\right)\right|$ be minimum for some $i \in\{1,2, \ldots, n\}$. If there exist two vertices $x \in V\left(S_{i-1}\right), y \in V\left(S_{i+1}\right)$ such that $d_{S_{i-1}}^{+}(x)=d_{S_{i+1}}^{-}(y)=0$, then D is double-super-connected.
Proof. If $D=\overrightarrow{C_{n}}\left[S_{1}, S_{2}, \ldots, S_{n}\right]$ and $\left|V\left(S_{i}\right)\right|$ is minimum for some $i \in\{1,2, \ldots, n\}$, then the vertex set of S_{i} is a minimum vertex-cut of D. If there exist two vertices $x \in V\left(S_{i-1}\right), y \in V\left(S_{i+1}\right)$ such that $d_{S_{i-1}}^{+}(x)=d_{S_{i+1}}^{-}(y)=0$, then $N^{+}(x)=V\left(S_{i}\right)$ and $N^{+}(y)=V\left(S_{i}\right)$; thus D is double-super-connected.
The subdigraph $D_{2}^{x_{i}}$ is the digraph with vertex set $\left\{\left(x_{i}, y_{j}\right) \mid j=1,2, \ldots, n_{2}\right\}$ and arc set $\left\{\left(\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j^{\prime}}\right)\right) \mid\left(y_{j}, y_{j^{\prime}}\right) \in A_{2}\right\}$. Clearly, $D_{2}^{x_{i}}$ is isomorphic to digraph D_{2} for $i=1,2, \ldots, n_{1}$. The out-degree of the vertex (x, y) is $d_{D_{1}\left[D_{2}\right]}^{+}((x, y))=$ $d_{D_{1}}^{+}(x) n_{2}+d_{D_{2}}^{+}(y)$ and the minimum degree of the digraph $D_{1}\left[D_{2}\right]$ is $\delta_{1} n_{2}+\delta_{2}$. From the definition of a lexicographic product, it is easy to see that $D_{1}\left[D_{2}\right]$ can be obtained from D_{1} by replacing each vertex of D_{1} with a copy of D_{2} in such a way that every $\operatorname{arc}\left(x_{i}, x_{j}\right)$ in D_{1} contains all possible arcs from $D_{2}^{x_{i}}$ to $D_{2}^{x_{j}}$.

It is clear that if D_{1} is an isolated vertex, then $D_{1}\left[D_{2}\right] \cong D_{2}$, and if D_{2} is an isolated vertex, then $D_{1}\left[D_{2}\right] \cong D_{1}$. In the following, we always assume that D_{1} and D_{2} are strongly connected digraphs with at least two vertices.

Theorem 2.8. $D_{1}\left[D_{2}\right]$ is max- κ if and only if D_{1} is a complete graph and D_{2} is max- κ.

Proof. Suppose that D_{1} is not a complete graph. Let x_{i} be a vertex of D_{1} with minimum degree and $\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{1}}\right\}$ be the out-neighbor (or in-neighbor) set of x_{i}. Then the vertex set of $\cup_{j=1}^{\delta_{1}} D_{2}^{x_{i j}}$ is a vertex-cut with cardinality $\delta_{1} n_{2}$. So we have $\delta_{1} n_{2}<\delta_{1} n_{2}+\delta_{2}$ (note that $\delta_{2}>0$). Thus $D_{1}\left[D_{2}\right]$ is not max- κ. Furthermore, D_{2} must be max- κ, since otherwise, $D_{1}\left[D_{2}\right]$ cannot be max- κ. On the other hand, since D_{1} is a complete graph and D_{2} is max $-\kappa, \delta\left(D_{1}\left[D_{2}\right]\right)=n_{2}\left(n_{1}-1\right)+\delta_{2}$. Assume U is a minimum vertex-cut, and let $j \in\left\{1,2, \ldots, n_{1}\right\}$ and $U^{\prime}=\cup_{i=1, i \neq j}^{n_{1}} D_{2}^{x_{i}}$; then $U^{\prime} \subseteq U$. Otherwise, $D_{1}\left[D_{2}\right]-U$ is strongly connected. Thus $\left(D_{1}\left[D_{2}\right]-U^{\prime}\right) \cong D_{2}^{x_{i}}$. Since D_{2} is max- $\kappa, D_{1}\left[D_{2}\right]$ is max- κ.
Similarly, we can give some necessary and sufficient conditions for a digraph to be super- κ, hyper- κ, and double-superconnected. By Theorem 2.8, if D_{1} is a complete graph, then the connected properties of $D_{1}\left[D_{2}\right]$ are similar to those of D_{2}; thus the following theorems can be obtained easily.

Theorem 2.9. $D_{1}\left[D_{2}\right]$ is super- κ if and only if D_{1} is a complete graph and D_{2} is super- κ.
Theorem 2.10. $D_{1}\left[D_{2}\right]$ is hyper- κ if and only if D_{1} is a complete graph and D_{2} is hyper- κ.
Theorem 2.11. $D_{1}\left[D_{2}\right]$ is double-super-connected if and only if D_{1} is a complete graph and D_{2} is double-super-connected.

3. Double-super-connected Abelian Cayley digraphs

Let G be a finite Abelian group, and $S \subset G \backslash\{0\}$; then $X=\operatorname{Cay}(G, S)$ is an Abelian Cayley digraph. If $|S|=|G|-1$, then X is a complete graph. Now we consider $|S| \leq|G|-2$.

Lemma 3.1. Let $X=\operatorname{Cay}(G, S)$ be an Abelian Cayley digraph, and $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$; then $X=\operatorname{Cay}(G, S)$ is double-superconnected if and only if X is super-connected and there exists an ordering $s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{k}}$ of S such that there is an element g of G satisfying

$$
s_{i_{j+1}}+s_{i_{k-j}}=g \quad(j=0,1,2, \ldots, k-1) .
$$

Proof. If X is a double-super-connected digraph, then there are two vertices $x, y \in V(X)$ such that $N^{+}(x)=N^{-}(y)$; without loss of generality, let

$$
\begin{aligned}
& N^{+}(x)=\left\{x+s_{1}, x+s_{2}, \ldots, x+s_{k}\right\}, \\
& N^{-}(y)=\left\{y-s_{1}, y-s_{2}, \ldots, y-s_{k}\right\} .
\end{aligned}
$$

For $x+s_{1} \in N^{+}(x)$, there exists $s_{j} \in S$ such that $x+s_{1}=y-s_{j}$; thus $y=x+s_{1}+s_{j}$. For $y-s_{1} \in N^{-}(y)$, there exists $s_{i} \in S$ such that $y-s_{1}=x+s_{i}$; thus $y=x+s_{1}+s_{i}$. Therefore, we have $s_{i}=s_{j}$.

Hence, there exists an ordering $s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{k}}$ of S, such that

$$
s_{i_{1}}+s_{i_{k}}=s_{i_{2}}+s_{i_{k-1}}=\cdots=s_{i_{j+1}}+s_{i_{k-j}}=\cdots=s_{i_{k}}+s_{i_{1}} \quad(j=0,1,2, \ldots k-1)
$$

Let $s_{i_{j+1}}+s_{i_{k-j}}=g \in G$; then $y=x+g$.
On the other hand, if X is super- κ and there exists an ordering $s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{k}}$ of S such that there is an element g of G satisfying $s_{i_{j+1}}+s_{i_{k-j}}=g(j=0,1,2, \ldots, k-1)$, then there exists a vertex x such that $U=N^{+}(x)$ or $N^{-}(x)$ for any minimum vertex-cut U, say $U=N^{+}(x)$; thus $U=N^{+}(x)=\left\{x+s_{i_{1}}, x+s_{i_{2}}, \ldots, x+s_{i_{k}}\right\}$. Since $s_{i_{j+1}}+s_{i_{k-j}}=g$, this implies that $U=\left\{x+g-s_{i_{k}}, x+g-s_{i_{k-1}}, \ldots, x+g-s_{i_{1}}\right\}=N^{-}(x+g)$. Therefore, $X=\operatorname{Cay}(G, S)$ is double-super-connected. The proof is completed.

A subset $P \subset G$ is said to be an arithmetic progression with difference d when $P=\{a, a+d, \ldots, a+s d\}$ for some $a \in G$, $s \in N$. When $G=Z_{n}$, and $d=1$, we say that P is consecutive. A subset S is said to be a semi-progression when $B=S \cup\{0\}$ is an arithmetic progression with difference d and $\{-d, d\} \subset S$.

Lemma 3.2 ([2]). Suppose $S \cup\{0\}$ is an arithmetic progression. Then $X=\operatorname{Cay}(G, S)$ is super-connected if and only if S is not a semi-progression.

Theorem 3.3. Suppose $S \cup\{0\}$ is an arithmetic progression. Then $\operatorname{Cay}(G, S)$ is double-super-connected if and only if S is not a semi-progression.
Proof. If $S \cup\{0\}$ is an arithmetic progression, then S is an arithmetic progression with difference d and $S=\left\{s_{1}, s_{2}, \cdots, s_{k}\right\}=$ $\left\{s_{1}, s_{1}+d, \ldots, s_{1}+(k-1) d\right\}$, where $s_{i}=s_{1}+(i-1) d$. Therefore $s_{i}+s_{k-i+1}=s_{1}+(i-1) d+s_{1}+(k-i) d=2 s_{1}+(k-1) d \in G$, $1 \leq i \leq k$. By Lemmas 3.1 and 3.2, we know that $\operatorname{Cay}(G, S)$ is double-super-connected if and only if S is not a semiprogression.

Corollary 3.4. The Harary digraph $\operatorname{Cay}\left(Z_{n},\{1,2, \ldots, s\}\right)$ is double-super-connected for each $1 \leq s<n-1$.

Proof. Let $S=\{1,2, \ldots, s\}$; since $S \cup\{0\}=\{0,1,2, \ldots, s\}$ and $1 \leq s<n-1, S \cup\{0\}$ is an arithmetic progression and $-1 \notin S$, we have that S is not a semi-progression. Thus $\operatorname{Cay}\left(Z_{n}, S\right)$ is double-super-connected by Theorem 3.3.

For a digraph D of order n, if $\delta(D)=n-1$, then D is a complete digraph.
Corollary 3.5. There exist double-super-connected digraphs for any given order and minimum degree.

4. Conclusions

This paper introduces the notion of a double-super-connected digraph and characterizes being double-super-connected for some particular digraphs. Lastly, we prove that there are double-super-connected digraphs of any given order and maximum degree. In the future, readers could offer others criteria for determining whether certain digraphs are double-super-connected or not. Furthermore, readers could characterize some particular digraphs being double-super-connected, such as vertex-transitive digraphs, arc-transitive digraphs and so on.

Acknowledgements

The authors are extremely grateful to the referees for suggestions that led to correction and improvement of the paper.

References

[1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Athenaum Press Ltd., 2001.
[2] Y.O. Hamidoune, A.S. Llado, O. Serra, Vosperian and superconnected abelian Cayley digraphs, Graphs and Combinatorics 7 (1991) $143-152$.
[3] Y.O. Hamidoune, Subsets with small sums in abelian groups I: The Vosper property, European Journal of Combinatorics 18 (1997) $541-556$.
[4] J. Liu, J. Meng, Super-connected and super-arc-connected Cartesian product of digraphs, Information Processing Letters 108 (2008) 90-93.
[5] J. Meng, Superconnectivity and super edge-connectivity of line graphs, Graph Theory Notes of New York, XL (2001) 12-14.
[6] J. Meng, Z. Zhang, Super-connected arc-transitive digraphs, Discrete Applied Mathematics 157 (4) (2009) 653-658.
[7] B.S. Shieh, Super edge- and point-connectivities of the Cartesian product of regular graphs, Networks 40 (2) (2002) 91-96.
[8] R. Tindell, Connectivity of Cayley digraphs, in: D.Z. Du, D.F. Hsu (Eds.), Combinational Network Theory, Kluwer Academic Publishers, 1996, pp. 41-64.
[9] J.M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, 2001.
[10] J.M. Xu, M. Lü, M.J. Ma, A. Hellwig, Super connectivity of line graphs, Information Processing Letters 94 (2005) 191-195.
[11] Z. Zhang, F.X. Liu, J. Meng, Super-connected n-th iterated line digraphs, OR Transactions 9 (2) (2005) 35-39.

[^0]: the research was supported by the research fund for the doctoral program of Xinjiang Normal University (xjnubs0908), NSFC (10971255), the Key Project of Chinese Ministry of Education (208161), Program for New Century Excellent Talents in University, and the Project-sponsored by SRF for ROCS, SEM.

 * Corresponding author.

 E-mail address: liujuan1999@126.com (J. Liu).

