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a b s t r a c t

A strongly connected digraph D is said to be super-connected if every minimum vertex-cut
is the out-neighbor or in-neighbor set of a vertex. A strongly connected digraph D is said to
be double-super-connected if every minimum vertex-cut is both the out-neighbor set of a
vertex and the in-neighbor set of a vertex. In this paper, we characterize the double-super-
connected line digraphs, Cartesian product and lexicographic product of two digraphs.
Furthermore,we study double-super-connectedAbelian Cayley digraphs and illustrate that
there exist double-super-connected digraphs for any given order and minimum degree.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

By a simple digraph D = (V (D), A(D)), we mean a directed graph without loops and multiple arcs. Let D = (V , A) be
a strongly connected digraph and let x and y be two distinct vertices of D. For a vertex x ∈ V , we use N+D (x) and N

−

D (x), or
simply N+(x) and N−(x), to denote the out-neighbor set and in-neighbor set of x in D, respectively. Set d+(x) = |N+(x)| and
d−(x) = |N−(x)|. As usual, δ+(D) and δ−(D) denote the minimum out-degree and minimum in-degree of D, respectively.
δ(D) = min{δ+(D), δ−(D)} denotes the minimum degree. If d+(x) = d−(x) = d for each vertex x ∈ V , then D is a d-regular
digraph. The reverse digraph of D is the digraph D(r) = (V , {(x, y)|(y, x) ∈ A});D is a symmetric digraph if A = A(r).
Let D1 = (V1, A1) and D2 = (V2, A2) be two digraphs, where V1 = {x1, x2, . . . , xn1} and V2 = {y1, y2, . . . , yn2}. The

line digraph of D1, denoted by L(D1), is the digraph with vertex set V (L(D1)) = {aij|aij = (xi, xj) ∈ A1}, and a vertex aij
is adjacent to a vertex ast in L(D1) if and only if xj = xs in D1. The Cartesian product D1 × D2 of D1 and D2 has vertex set
V1 × V2 and ((x1, y1), (x2, y2)) ∈ A(D1 × D2) if and only if either (x1, x2) ∈ A1 and y1 = y2, or x1 = x2 and (y1, y2) ∈ A2.
The lexicographic product D1[D2] of D1 and D2 has vertex set V1 × V2 and ((x1, y1), (x2, y2)) ∈ A(D1[D2]) if and only if either
(x1, x2) ∈ A1, or x1 = x2 and (y1, y2) ∈ A2. Let S1, S2, . . . , Sn1−1 and Sn1 be n1 digraphs. The digraph D1[S1, S2, . . . , Sn1 ] is
the digraph obtained from D1 by replacing the ith vertex of D1 by a copy of the digraph Si in such a way that for every arc
(xi, xj) in D1, D1[S1, S2, . . . , Sn1 ] contains all possible arcs from V (Si) to V (Sj). Furthermore, all the original arcs of Si are also
in D1[S1, S2, . . . , Sn1 ]. Clearly, if S1 ∼= S2 ∼= · · · ∼= Sn1 ∼= D2, then D1[S1, S2, . . . , Sn1 ] ∼= D1[D2].
A digraph D is said to be vertex-transitive if the automorphism group Aut(D) acts transitively on V , and is arc-transitive if

Aut(D) acts transitively on A. For a group G and a subset S ⊂ G \ {1}, the Cayley digraph Cay(G, S) is the digraph with vertex
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set G and arc set {(g, gs)|g ∈ G, s ∈ S}. In particular, if G is Abelian, then Cay(G, S) is an Abelian Cayley digraph; if G = Zn,
then Cay(Zn, S) is a circulant digraph. It is well known that a Cayley digraph is vertex-transitive.
The vertex-connectivity κ(D) (arc-connectivity λ(D)) is the minimum cardinality of all vertex-cuts (arc-cuts) of digraph

D. We call a digraph Dmaximally connected, or max-κ for short, if κ(D) = δ(D). A strongly connected digraph D is said to
be super-connected, or super-κ for short, if there exists a vertex x such that U = N+(x) or N−(x) for any minimum vertex-
cut U . It is hyper-connected, or hyper-κ for short, if the removal of any minimum vertex-cut results in exactly two strongly
connected components one of which is a singleton. A hyper-connected digraph is clearly super-connected. Now we give a
new definition:

Definition 1.1. A strongly connected digraph D is said to be double-super-connected if there exist two vertices x and y such
that U = N+(x) = N−(y) for every minimum vertex-cut U .

Double-super-connected digraphs are super-connected and super-connected symmetric digraphs are double-super-
connected. If D is a double-super-connected digraph, then δ+(D) = δ−(D).
Hamidoune and Tindell [2,3,8] studied super-connected Abelian Cayley digraphs. In [5,10,11], the authors studied the

connectivity of line graphs (digraphs). Shieh [7] studied the super-connected and super-edge-connected Cartesian product
of two regular graphs. Liu andMeng [4] studied the super-connected and super-arc-connected Cartesian product of digraphs.
Meng and Zhang [6] characterized the super-connected arc-transitive digraphs. In this paper, we will characterize the
double-super-connected line digraph, Cartesian product and lexicographic product of two digraphs. Furthermore, we will
study double-super-connected Abelian Cayley digraphs and illustrate that there is a double-super-connected digraph for
any given order and minimum degree.
All digraphs in this paper are finite. Notation and definitions not given here can be found in [1,9].

2. Operations on digraphs

Firstly, we give the characterization of the double-super-connected line digraphs.

Lemma 2.1 ([9]). Let D be a digraph; then λ(D) = κ(L(D)).

Theorem 2.2. Let D = (V , A) be a simple digraph; then L(D) is double-super-connected if and only if λ(D) = 1 and any cut-arc
(xi, xj) ∈ A satisfies that d+(xi) = d−(xj) = 1 in D.

Proof. If λ(D) = 1, then κ(L(D)) = 1 by Lemma 2.1. For each cut-vertex aij in L(D), aij = (xi, xj) ∈ A(D) is a cut-arc in
D; if it satisfies that d+(xi) = d−(xj) = 1, then there exist two vertices asi = (xs, xi), ajt = (xj, xt) ∈ V (L(D)) such that
N+(asi) = N−(ajt) = {aij} in L(D). Therefore L(D) is double-super-connected.
On the other hand, let L(D) be double-super-connected and U be a minimum vertex-cut of L(D). Thus there exist two

vertices aij = (xi, xj), ast = (xs, xt) ∈ V (L(D)) such that N+(aij) = U = N−(ast). By the definition of a line digraph, we know
that there are |U| parallel arcs from xj to xs in D. Since D is simple, we have |U| = 1. Thus κ(L(D)) = 1. Therefore λ(D) = 1
by Lemma 2.1. If d+(xi) 6= 1 or d−(xj) 6= 1 for any cut-arc (xi, xj) ∈ A(D), then there is no vertex asi such that N+(asi) = {aij}
or vertex ajt such that N+(ajt) = {aij}, a contradiction. �

Next, we characterize the double-super-connected Cartesian product D1 × D2 of two digraphs D1 and D2. In the following
part of this section, we will assume that δ(D) = δ+(D) = δ−(D) for digraph D. For convenience, we use the symbols ni, δi,
κi to denote the order, the minimum degree and the connectivity of digraph Di, respectively, for i = 1, 2.
By the definition of ‘‘double-super-connected’’, we know that if D1 × D2 is super-κ and there exists a vertex (x, y) ∈

V (D1 × D2) such that U = N+((x, y)) = N−((x, y)) for each minimum vertex-cut U of D1 × D2, then D1 × D2 is double-
super-connected. Thus, in the following theorem, we will consider that there exists a minimum vertex-cut U of D1 × D2
such that U = N+((x, y)) = N−((x, y)) does not hold for any vertex (x, y) ∈ V (D1 × D2).
The following theorem in [4] for κi = δi = 1 is useful in our proof.

Theorem 2.3 ([4]). Let D1 and D2 be two simple strongly connected digraphs and let δ+i = δ
−

i = δi for i = 1, 2. If δi = κi, then
D1 × D2 is super-κ if and only if D1 × D2 � D×

−→
Kn (D×

−→
Kn �

−→
K2 ×

−→
K2 ,
−→
K2 ×

−→
K3 ), where κ(D) = δ(D) = 1, n ≥ 2.

Therefore, if κi = δi = 1 for i = 1, 2, then D1 × D2 is super-κ if and only if D1 × D2 � D ×
−→
K2 , where D �

−→
K2 and

κ(D) = δ(D) = 1.

Theorem 2.4. Let D1 and D2 be two strongly connected digraphs; then D1 × D2 is double-super-connected if and only if the
following conditions hold:

(i) κi = δi = 1 for i = 1, 2,
(ii) D1 × D2 � D×

−→
K2 , where D �

−→
K2 and κ(D) = δ(D) = 1,

(iii) N−Di(N
+

Di
(x)) = {x} for any x ∈ Vi with d+(x) = 1, and N+Di(N

−

Di
(x)) = {x} for any x ∈ Vi with d−(x) = 1 for i = 1, 2.
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Proof. If (i) and (ii) hold, then D1 × D2 is super-κ by Theorem 2.3. By (i) and (iii), U = N+((x, y)) = {(x, y1), (x1, y)} =
N−((x1, y1)) for each minimum vertex-cut U; thus D1 × D2 is double-super-connected.
On the other hand, if D1 × D2 is double-super-connected, then D1 × D2 is super-κ . We first prove (i). Without loss

of generality, suppose that δ1 ≥ 2. We assume that U is a minimum vertex-cut of D1 × D2. Since D1 × D2 is double-
super-connected, there are two vertices (x, y) and (x′, y′)((x, y) 6= (x′, y′)) with N+((x, y)) = U = N−((x′, y′)). Set
N+D1(x) = {x1, . . . , xδ1}, N

+

D2
(y) = {y1, . . . , yδ2}, N

−

D1
(x′) = {x′1, . . . , x

′

δ1
}, N−D2(y

′) = {y′1, . . . , y
′

δ2
}; then

N+((x, y)) = {(x1, y), . . . , (xδ1 , y), (x, y1), . . . , (x, yδ2)},

N−((x′, y′)) = {(x′1, y
′), . . . , (x′δ1 , y

′), (x′, y′1), . . . , (x
′, y′δ2)}.

Since δ1 ≥ 2 and δ2 ≥ 1, we have N+((x, y)) 6= N−((x′, y′)), a contradiction, so (i) holds. By Theorem 2.3, if (i) holds and
D1×D2 is super-κ , then (ii) holds. Finally, we prove (iii). Without loss of generality, suppose that there exists a vertex x ∈ V1
with d+(x) = 1 such that N−D1(N

+

D1
(x)) = N−D1(x

′) = {x, x1, . . .} where N+D1(x) = x
′. For any vertex y ∈ V2 with d+(y) = 1,

let N+D2(y) = y
′; then U = N+((x, y)) = {(x′, y), (x, y′)} ( N−((x′, y′)) is a minimum vertex-cut of D1 × D2, and there is no

(x′′, y′′) ∈ V (D1 × D2) such that U = N−((x′′, y′′)), a contradiction. �

Lemma 2.5. Let D = (V , A) be a strongly connected d-regular digraph. If there exists a vertex y ∈ V such that U = N+D (y) =
N−D (y) for any vertex-cut U = N

+

D (x) (or N
−

D (x)), then D is a symmetric digraph.

Proof. Suppose thatD is not a symmetric digraph; then there is an arc (x, y) ∈ A and (y, x) 6∈ A. SinceD is strongly connected
regular digraph, there exists a vertex z ∈ V such that (z, x) ∈ A and (x, z) 6∈ A. Let N+(x) = {x1, x2, . . . , xd−1, y} = U ,
N−(x) = {x′1, x

′

2, . . . , x
′

d−1, z} = U ′; there exist two distinct vertices s, t ∈ V such that U = N+D (s) = N−D (s),
U ′ = N+D (t) = N

−

D (t). Let N
−(y) = {y1, y2, . . . , yd−2, s, x} = U ′′; there exists a vertex xi ∈ U(1 ≤ i ≤ d − 1) such

that U ′′ = N+D (xi) = N
−

D (xi). Since t 6∈ U
′′ and (xi, t), (t, xi) ∈ A, we have N+D (xi) = N

−

D (xi) = {y1, y2, . . . , yd−2, s, x, t}, a
contradiction. �

Theorem 2.6. Let D1 and D2 be two strongly connected regular digraphs. Then D1 × D2 is double-super-connected if and only if
one of the following conditions holds:

(i) D1 and D2 are symmetric digraphs and D1 × D2 is super-κ .
(ii) D1 and D2 are directed cycles except for D1 × D2 ∼=

−→
C2 ×

−→
Ck (k ≥ 3), where

−→
Ck denotes the directed cycle of length k.

Proof. If (i) holds, then D1 × D2 is a super-κ and symmetric digraph; thus, D1 × D2 is double-super-connected. If (ii) holds,
then D1 × D2 is double-super-connected by Theorem 2.4.
On the other hand, if D1 × D2 is double-super-connected, then D1 × D2 is super-κ; we consider two cases:

Case 1. If there exists a vertex (x, y) ∈ V (D1 × D2) such that U = N+((x, y)) = N−((x, y)) for any minimum vertex-cut U
of D1 × D2, then there exists a vertex x ∈ Vi such that U ′ = N+(x) = N−(x) for any vertex-cut U ′ = N+(z) (or N−(z)) of Di
for i = 1, 2. By Lemma 2.5, D1 and D2 are symmetric digraphs, (i) holds.
Case 2. If there exists a minimum vertex-cut U of D1 × D2 such that U = N+((x, y)) = N−((x, y)) does not hold for any
vertex (x, y) ∈ V (D1 × D2), then δ1 = δ2 = 1 by Theorem 2.4. Since D1 and D2 are strongly connected regular digraphs, we
have that D1 and D2 are directed cycles, so (ii) holds. �

Finally, we characterize the double-super-connected lexicographic product of two digraphs.

Proposition 2.7. Let D =
−→
Cn [S1, S2, . . . , Sn], where

−→
Cn denotes a directed cycle of length n, and let |V (Si)| be minimum for

some i ∈ {1, 2, . . . , n}. If there exist two vertices x ∈ V (Si−1), y ∈ V (Si+1) such that d+Si−1(x) = d
−

Si+1
(y) = 0, then D is

double-super-connected.

Proof. If D =
−→
Cn [S1, S2, . . . , Sn] and |V (Si)| is minimum for some i ∈ {1, 2, . . . , n}, then the vertex set of Si is a minimum

vertex-cut of D. If there exist two vertices x ∈ V (Si−1), y ∈ V (Si+1) such that d+Si−1(x) = d
−

Si+1
(y) = 0, then N+(x) = V (Si)

and N+(y) = V (Si); thus D is double-super-connected. �

The subdigraph Dxi2 is the digraph with vertex set {(xi, yj)|j = 1, 2, . . . , n2} and arc set {((xi, yj), (xi, yj′))|(yj, yj′) ∈ A2}.
Clearly, Dxi2 is isomorphic to digraph D2 for i = 1, 2, . . . , n1. The out-degree of the vertex (x, y) is d+D1[D2]((x, y)) =
d+D1(x)n2+d

+

D2
(y) and theminimumdegree of the digraphD1[D2] is δ1n2+δ2. From the definition of a lexicographic product,

it is easy to see that D1[D2] can be obtained from D1 by replacing each vertex of D1 with a copy of D2 in such a way that every
arc (xi, xj) in D1 contains all possible arcs from D

xi
2 to D

xj
2 .

It is clear that if D1 is an isolated vertex, then D1[D2] ∼= D2, and if D2 is an isolated vertex, then D1[D2] ∼= D1. In the
following, we always assume that D1 and D2 are strongly connected digraphs with at least two vertices.

Theorem 2.8. D1[D2] ismax-κ if and only if D1 is a complete graph and D2 ismax-κ .
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Proof. Suppose that D1 is not a complete graph. Let xi be a vertex of D1 with minimum degree and {xi1 , xi2 , . . . , xiδ1 } be
the out-neighbor (or in-neighbor) set of xi. Then the vertex set of ∪

δ1
j=1 D

xij
2 is a vertex-cut with cardinality δ1n2. So we have

δ1n2 < δ1n2 + δ2 (note that δ2 > 0). Thus D1[D2] is not max-κ . Furthermore, D2 must be max-κ , since otherwise, D1[D2]
cannot be max-κ . On the other hand, since D1 is a complete graph and D2 is max-κ , δ(D1[D2]) = n2(n1 − 1) + δ2. Assume
U is a minimum vertex-cut, and let j ∈ {1, 2, . . . , n1} and U ′ = ∪

n1
i=1,i6=j D

xi
2 ; then U

′
⊆ U . Otherwise, D1[D2] − U is strongly

connected. Thus (D1[D2] − U ′) ∼= D
xi
2 . Since D2 is max-κ , D1[D2] is max-κ . �

Similarly, we can give some necessary and sufficient conditions for a digraph to be super-κ , hyper-κ , and double-super-
connected. By Theorem 2.8, if D1 is a complete graph, then the connected properties of D1[D2] are similar to those of D2;
thus the following theorems can be obtained easily.

Theorem 2.9. D1[D2] is super-κ if and only if D1 is a complete graph and D2 is super-κ .

Theorem 2.10. D1[D2] is hyper-κ if and only if D1 is a complete graph and D2 is hyper-κ .

Theorem 2.11. D1[D2] is double-super-connected if and only if D1 is a complete graph and D2 is double-super-connected.

3. Double-super-connected Abelian Cayley digraphs

Let G be a finite Abelian group, and S ⊂ G \ {0}; then X = Cay(G, S) is an Abelian Cayley digraph. If |S| = |G| − 1, then
X is a complete graph. Now we consider |S| ≤ |G| − 2.

Lemma 3.1. Let X = Cay(G, S) be an Abelian Cayley digraph, and S = {s1, s2, . . . , sk}; then X = Cay(G, S) is double-super-
connected if and only if X is super-connected and there exists an ordering si1 , si2 , . . . , sik of S such that there is an element g of
G satisfying

sij+1 + sik−j = g (j = 0, 1, 2, . . . , k− 1).

Proof. If X is a double-super-connected digraph, then there are two vertices x, y ∈ V (X) such thatN+(x) = N−(y); without
loss of generality, let

N+(x) = {x+ s1, x+ s2, . . . , x+ sk},
N−(y) = {y− s1, y− s2, . . . , y− sk}.

For x+ s1 ∈ N+(x), there exists sj ∈ S such that x+ s1 = y− sj; thus y = x+ s1+ sj. For y− s1 ∈ N−(y), there exists si ∈ S
such that y− s1 = x+ si; thus y = x+ s1 + si. Therefore, we have si = sj.
Hence, there exists an ordering si1 , si2 , . . . , sik of S, such that

si1 + sik = si2 + sik−1 = · · · = sij+1 + sik−j = · · · = sik + si1 (j = 0, 1, 2, . . . k− 1).

Let sij+1 + sik−j = g ∈ G; then y = x+ g .
On the other hand, if X is super-κ and there exists an ordering si1 , si2 , . . . , sik of S such that there is an element g of G

satisfying sij+1 + sik−j = g (j = 0, 1, 2, . . . , k − 1), then there exists a vertex x such that U = N
+(x) or N−(x) for any

minimum vertex-cut U , say U = N+(x); thus U = N+(x) = {x+ si1 , x+ si2 , . . . , x+ sik}. Since sij+1 + sik−j = g , this implies
that U = {x + g − sik , x + g − sik−1 , . . . , x + g − si1} = N

−(x + g). Therefore, X = Cay(G, S) is double-super-connected.
The proof is completed. �

A subset P ⊂ G is said to be an arithmetic progression with difference dwhen P = {a, a+ d, . . . , a+ sd} for some a ∈ G,
s ∈ N . When G = Zn, and d = 1, we say that P is consecutive. A subset S is said to be a semi-progression when B = S ∪ {0}
is an arithmetic progression with difference d and {−d, d} ⊂ S.

Lemma 3.2 ([2]). Suppose S ∪ {0} is an arithmetic progression. Then X = Cay(G, S) is super-connected if and only if S is not a
semi-progression.

Theorem 3.3. Suppose S ∪ {0} is an arithmetic progression. Then Cay(G, S) is double-super-connected if and only if S is not a
semi-progression.

Proof. If S∪{0} is an arithmetic progression, then S is an arithmetic progressionwith difference d and S = {s1, s2, · · · , sk} =
{s1, s1+d, . . . , s1+(k−1)d}, where si = s1+(i−1)d. Therefore si+sk−i+1 = s1+(i−1)d+s1+(k−i)d = 2s1+(k−1)d ∈ G,
1 ≤ i ≤ k. By Lemmas 3.1 and 3.2, we know that Cay(G, S) is double-super-connected if and only if S is not a semi-
progression. �

Corollary 3.4. The Harary digraph Cay(Zn, {1, 2, . . . , s}) is double-super-connected for each 1 ≤ s < n− 1.
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Proof. Let S = {1, 2, . . . , s}; since S ∪ {0} = {0, 1, 2, . . . , s} and 1 ≤ s < n − 1, S ∪ {0} is an arithmetic progression and
−1 6∈ S, we have that S is not a semi-progression. Thus Cay(Zn, S) is double-super-connected by Theorem 3.3. �

For a digraph D of order n, if δ(D) = n− 1, then D is a complete digraph.

Corollary 3.5. There exist double-super-connected digraphs for any given order and minimum degree.

4. Conclusions

This paper introduces the notion of a double-super-connected digraph and characterizes being double-super-connected
for some particular digraphs. Lastly, we prove that there are double-super-connected digraphs of any given order and
maximum degree. In the future, readers could offer others criteria for determining whether certain digraphs are double-
super-connected or not. Furthermore, readers could characterize some particular digraphs being double-super-connected,
such as vertex-transitive digraphs, arc-transitive digraphs and so on.

Acknowledgements

The authors are extremely grateful to the referees for suggestions that led to correction and improvement of the paper.

References

[1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Athenaum Press Ltd., 2001.
[2] Y.O. Hamidoune, A.S. Llado, O. Serra, Vosperian and superconnected abelian Cayley digraphs, Graphs and Combinatorics 7 (1991) 143–152.
[3] Y.O. Hamidoune, Subsets with small sums in abelian groups I: The Vosper property, European Journal of Combinatorics 18 (1997) 541–556.
[4] J. Liu, J. Meng, Super-connected and super-arc-connected Cartesian product of digraphs, Information Processing Letters 108 (2008) 90–93.
[5] J. Meng, Superconnectivity and super edge-connectivity of line graphs, Graph Theory Notes of New York, XL (2001) 12–14.
[6] J. Meng, Z. Zhang, Super-connected arc-transitive digraphs, Discrete Applied Mathematics 157 (4) (2009) 653–658.
[7] B.S. Shieh, Super edge- and point-connectivities of the Cartesian product of regular graphs, Networks 40 (2) (2002) 91–96.
[8] R. Tindell, Connectivity of Cayley digraphs, in: D.Z. Du, D.F. Hsu (Eds.), Combinational Network Theory, Kluwer Academic Publishers, 1996, pp. 41–64.
[9] J.M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, 2001.
[10] J.M. Xu, M. Lü, M.J. Ma, A. Hellwig, Super connectivity of line graphs, Information Processing Letters 94 (2005) 191–195.
[11] Z. Zhang, F.X. Liu, J. Meng, Super-connected n-th iterated line digraphs, OR Transactions 9 (2) (2005) 35–39.


	Double-super-connected digraphs
	Introduction
	Operations on digraphs
	Double-super-connected Abelian Cayley digraphs
	Conclusions
	Acknowledgements
	References


