39 research outputs found

    On Nie-Tan operator and type-reduction of interval type-2 fuzzy sets

    Get PDF
    Type-reduction of type-2 fuzzy sets is considered to be a defuzzification bottleneck because of the computational complexity involved in the process of type-reduction. In this research, we prove that the closed-form Nie-Tan operator, which outputs the average of the upper and lower bounds of the footprint of uncertainty, is actually an accurate method for defuzzifing interval type-2 fuzzy sets

    Application of Interval Type-2 Fuzzy Logic System in Short Term Load Forecasting on Special Days

    Get PDF
    This paper presents the application of Interval Type-2 fuzzy logic systems (Interval Type-2 FLS) in short term load forecasting (STLF) on special days, study case in Bali Indonesia. Type-2 FLS is characterized by a concept called footprint of uncertainty (FOU) that provides the extra mathematical dimension that equips Type-2 FLS with the potential to outperform their Type-1 counterparts. While a Type-2 FLS has the capability to model more complex relationships, the output of a Type-2 fuzzy inference engine needs to be type-reduced. Type reduction is used by applying the Karnik-Mendel (KM) iterative algorithm. This type reduction maps the output of Type-2 FSs into Type-1 FSs then the defuzzification with centroid method converts that Type-1 reduced FSs into a number. The proposed method was tested with the actual load data of special days using 4 days peak load before special days and at the time of special day for the year 2002-2006. There are 20 items of special days in Bali that are used to be forecasted in the year 2005 and 2006 respectively. The test results showed an accurate forecasting with the mean average percentage error of 1.0335% and 1.5683% in the year 2005 and 2006 respectively

    Global Research Performance on the Design and Applications of Type-2 Fuzzy Logic Systems: A Bibliometric Analysis

    Get PDF
    There has been a significant contribution to scientific literature in the design and applications of Type-2 fuzzy logic systems (T2FLS). The T2FLSs found applications in many aspects of our daily lives, such as engineering, pure science, medicine and social sciences. The online web of science was searched to identify the 100 most frequently cited papers published on the design and application of T2FLS from 1980 to 2016. The articles were analyzed based on authorship, source title, country of origin, institution, document type, web of science category, and year of publication. The correlation between the average citation per year (ACY) and the total citation (TC) was analyzed. It was found that there is a strong relationship between the ACY and TC (r = 0.91643, P<0.01), based on the papers consider in this research.  The “Type -2 fuzzy sets made simple” authored by Mendel and John (2002), published in IEEE Transactions on Fuzzy Systems received the highest TC as well as the ACY. The future trend in this research domain was also analyzed. The present analysis may serve as a guide for selecting qualitative literature especially to the beginners in the field of T2FLS

    A Review on the Development of Fuzzy Classifiers with Improved Interpretability and Accuracy Parameters

    Get PDF
    This review paper of fuzzy classifiers with improved interpretability and accuracy param-eter discussed the most fundamental aspect of very effective and powerful tools in form of probabilistic reasoning, The fuzzy logic concept allows the effective realization of ap-proximate, vague, uncertain, dynamic, and more realistic conditions, which is closer to the actual physical world and human thinking. The fuzzy theory has the competency to catch the lack of preciseness of linguistic terms in a speech of natural language. The fuzzy theory provides a more significant competency to model humans like com-mon-sense reasoning and conclusion making to fuzzy set and rules as good membership function. Also, in this paper reviews discussed the evaluation of the fuzzy set, type-1, type-2, and interval type-2 fuzzy system from traditional Boolean crisp set logic along with interpretability and accuracy issues in the fuzzy system

    Comparación entre el Índice de Yager y el Centroide para Reducción de tipo de un Número Difuso Tipo-2 de Intervalo

    Get PDF
    Context: There is a need for ranking and defuzzification of Interval Type-2 fuzzy sets (IT2FS), in particular Interval Type-2 fuzzy numbers (IT2FN). To do so, we use the classical Yager Index Rank (YIR) for fuzzy sets to IT2FNs in order to find an alternative to the centroid of an IT2FN.Method: We use a simulation strategy to compare the results of the centroid and the YIR of an IT2FN. This way, we simulate 1000 IT2FNs of the following three kinds: gaussian, triangular, and non symmetrical in order to compare their centroids and YIRs.Results: After performing the simulations, we compute some statistics about its behavior such as the degree of subsethood, equality and the size of the Footprint of Uncertainty (FOU) of an IT2FN. A description of the obtained results shows that the YIR is less wide than centroid of an IT2FN.Conclusions: In general, YIR is less complex to obtain than the centroid of an IT2FN, which is highly desirable in practical applications such as fuzzy decision making and control. Some other properties regarding its size and location are also discussed.Contexto: Hay una necesidad por defuzzificar y rankear Conjuntos Difusos Tipo-2 de Intervalo (IT2FS), en particular Números Difusos Tipo-2 de Intervalo (IT2FN). Para ello, usamos el Índice de Yager (YIR) para conjuntos difusos aplicado a IT2FNs con el fin de encontrar una alternativa al centroide de un IT2FN.Método: Usamos una estrategia de simulación para comparar los resultados del centroide y del YIR de un IT2FN. Así pues, simulamos 1000 IT2FNs de cada uno de los siguientes tres tipos: gausianos, triangulares y asimétricos para comparar sus centroides y YIRs.Resultados: Después de realizar las simulaciones, se calculan algunas estadísticas de su comportamiento como el grado de cobertura y de igualdad relativas del YIR respecto al centroide así como el tamaño de la Huella de Incertidumbre (FOU) de un IT2FN. La descripción de los resultados obtenidos muestra que el YIR es menos amplio que el centroide.Conclusiones: En general, el YIR es menos complejo de obtener que el centroide de un IT2FN, lo cual es altamente deseable en aplicaciones prácticas como toma de decisiones y control. Otras propiedades relacionadas con su tamaño y ubicación también son discutidas

    Centroide de un Conjunto Difuso Tipo-2 de Intervalo: Continuo vs. Discreto

    Get PDF
    Karnik-Mendel algorithm involves execution of two independent procedures for computing the centroid of an interval type-2 fuzzy set: the first one for computing the left endpoint of the interval centroid (which is denoted by c l ), and the second one for computing its right counterpart (which is denoted by c r ). Convergence of the discrete version of the algorithm to compute the centroid is known, whereas convergence of the continuous version may exhibit some issues. This paper shows that the calculation of c l and c r are really the same problem on the discrete version, and also we describe some problems related with the convergence of the centroid on its continuous version.El algoritmo de Karnik-Mendel presenta siempre dos procedimientos independientes para calcular el centroide de un conjunto difuso tipo-2 de intervalo: el primero calculando su extremo izquierdo (denotado como c l ) y el segundo calculando su extremo derecho (denotado como c r ). Esto a´un es cierto en diferentes versiones del algoritmo que han sido propuestas en la literatura. En la versión discreta del centroide no hay problemas relacionados con la convergencia dado que existe un número finito de términos para sumar. Por otro lado, la versión continua tiene algunos problemas relacionados con la convergencia. Este artículo presenta una discusión simple donde se muestra que el cálculo de c l y c r en su versión discreta es el mismo problema y no dos problemas diferentes. También se muestran algunos problemas relacionados con la convergencia del centroide en su versión continua

    Type-2 Fuzzy Hybrid Controller Network for Robotic Systems

    Get PDF
    Dynamic control, including robotic control, faces both the theoretical challenge of obtaining accurate system models and the practical difficulty of defining uncertain system bounds. To facilitate such challenges, this paper proposes a control system consisting of a novel type of fuzzy neural network and a robust compensator controller. The new fuzzy neural network is implemented by integrating a number of key components embedded in a Type-2 fuzzy cerebellar model articulation controller (CMAC) and a brain emotional learning controller (BELC) network, thereby mimicking an ideal sliding mode controller. The system inputs are fed into the neural network through a Type-2 fuzzy inference system (T2FIS), with the results subsequently piped into sensory and emotional channels which jointly produce the final outputs of the network. That is, the proposed network estimates the nonlinear equations representing the ideal sliding mode controllers using a powerful compensator controller with the support of T2FIS and BELC, guaranteeing robust tracking of the dynamics of the controlled systems. The adaptive dynamic tuning laws of the network are developed by exploiting the popular brain emotional learning rule and the Lyapunov function. The proposed system was applied to a robot manipulator and a mobile robot, demonstrating its efficacy and potential; and a comparative study with alternatives indicates a significant improvement by the proposed system in performing the intelligent dynamic control

    Stabilizing control of two-wheeled wheelchair with movable payload using optimized interval type-2 fuzzy logic

    Get PDF
    The control schemes of a wheelchair having two wheels with movable payload utilizing the concept of a double-link inverted pendulum have been investigated in this article. The proposed wheelchair has been simulated using SimWise 4D software considering the most efficient parameters. These parameters are extracted using the spiral dynamic algorithm while being controlled with interval type-2 fuzzy logic controller (IT2FLC). The robustness and stability of the implemented controller are assessed under different situations including standing upright, forward motion and application of varying directions and magnitudes of outer disturbances to movable (up and down) system payload. It is shown that the two-wheeled wheelchair adopted by the newly introduced controller has achieved a 94% drop in torque for both Link1 and Link2 and more than 98% fall in distance travelled in comparison with fuzzy logic control type-1 (FLCT1) controller employed in an earlier design. The present study has further considered the increased nonlinearity and complexity of the additional moving payload. From the outcome of this study, it is obvious that the proposed IT2FLC-spiral dynamic algorithm demonstrates better performance than FLCT1 to manage the uncertainties and nonlinearities in case of a movable payload two-wheel wheelchair system
    corecore