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Type-2 Fuzzy Hybrid Controller Network
for Robotic Systems

Fei Chao, Member, IEEE, Dajun Zhou, Chih-Min Lin, Fellow, IEEE, Longzhi Yang, Senior Member, IEEE,
Changle Zhou, and Changjing Shang

Abstract—Dynamic control, including robotic control, faces
both the theoretical challenge of obtaining accurate system
models and the practical difficulty of defining uncertain sys-
tem bounds. To facilitate such challenges, this paper proposes
a control system consisting of a novel type of fuzzy neural
network and a robust compensator controller. The new fuzzy
neural network is implemented by integrating a number of
key components embedded in a Type-2 fuzzy Cerebellar Model
Articulation Controller (CMAC) and a brain emotional learning
controller network (BELC), thereby mimicking an ideal sliding
mode controller. The system inputs are fed into the neural
network through a Type-2 fuzzy inference system (T2FIS),
with the results subsequently piped into sensory and emotional
channels which jointly produce the final outputs of the network.
That is, the proposed network estimates the non-linear equations
representing the ideal sliding mode controllers using a powerful
compensator controller with the support of T2FIS and BELC,
guaranteeing robust tracking of the dynamics of the controlled
systems. The adaptive dynamic tuning laws of the network are
developed by exploiting the popular brain emotional learning rule
and the Lyapunov function. The proposed system was applied
to a robot manipulator and a mobile robot, demonstrating its
efficacy and potential; and a comparative study with alternatives
indicates a significant improvement by the proposed system in
performing intelligent dynamic control.

Index Terms—Adaptive control, robot dynamic control, Type-2
inference system, brain emotion learning controller network.

I. INTRODUCTION

DYNAMIC control of robots is required to handle complex
uncertain situations [1], [2]. In particular, robot actuator

dynamics, such as those of robot manipulators or driven
wheels, determine the entire robot’s dynamic features and
system stability. Model-based adaptive control is a popular
strategy to solve robot dynamic problems [3]. All model-
based control systems, such as the dynamic sliding mode
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control (SMC) method, were developed on the establishment
of precise mathematical models of the controlled systems [4].
However, the difficulties of achieving precise and accurate
models often result in unsatisfactory performance of SMC con-
trollers [5]. To address this important issue, attempts have been
made to take the advantages of the learning ability of artificial
neural networks (ANN) to compensate the inefficiencies of the
SMC method regarding the uncertainties in building reliable
mathematical models, in an effort to successfully mimic ideal
SMC controllers [6].

The embrace of ANN in robot dynamic control invokes
two major challenges. First, the ANN in robot controllers
should ensure sufficient non-linear learning abilities, so as to
effectively approximate ideal controllers using on-line learning
laws. A Cerebellar Model Articulation Controller (CMAC) is
able to address non-linear problems, which has been adopted
in a wide variety of applications due to its rapid learning
convergence and simple structure [7], [8]. Adaptive neural
network controllers provide another solution, which have been
applied in a number tracking control problems of mobile
robots [3]. However, these studies only took the errors from the
outputs of the neural network-based controller as the learning
assessments for network weights updating. Yet, the overall
performance of the robot should also be considered during
the process of control parameter adjustment for better system
performance.

Second, neural network controllers must contain sufficient
adjustable parameters to deal with unexpected disturbances in
the dynamics of robotic systems under uncertain environment.
To enable the handling of such uncertainty, recent studies
on intelligent control suggested the direct incorporation of
human expertise into neural networks [7], [9]. Fuzzy infer-
ence systems have been employed as adaptive controllers for
robots [10]–[14], showing one of the most successful appli-
cations of fuzzy logic systems [15]–[20]. Naturally, neural
networks have been fuzzified in various ways to address
the presence of uncertainty [7], [21], [22], with a number
of successful applications in uncertain environments [23].
However, the limited adjustable parameters in conventional
fuzzy systems restrict the degree-of-freedoms in system design
and hence restrain the controller performance [24], which leads
to the requirement of a more desirable and effective solution
to handling complex control tasks.

The present work aims to address both challenges. The first
is tackled by proposing a new type of neural network, which
benefits from the adaptation of the key components of a fuzzy
CMAC and a brain emotional learning controller (BELC) [25],
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[26]. A typical BELC network consists of an sensory sub-
system and a neural network judgment sub-system [21]. The
network judgment sub-system indirectly impacts the outputs
of the sensory sub-system based on the input values [27],
[28]. The inputs of the two sub-systems are mapped from
the network inputs by a receptive-field mechanism inspired
from the CMAC network. The weights in the two sub-systems
are adjusted based on a performance parameter, which is
calculated from input and output pairs. After the emotional
learning process, the network integrates outputs from the two
sub-systems forming the final network outputs. Thanks to the
interaction of the two sub-systems, such a network structure
not only uses network output errors to adjust its network
weights, but also benefits from using the network’s emotional
output as an overall performance to tune its parameters.

The second challenge is dealt with by integrating a Type-
2 fuzzy inference system (T2FIS) into the proposed neural
network. In contrast to conventional Type-1 fuzzy sets, Type-
2 fuzzy sets provide further flexibility in handling uncertainties
as they contain more adjustable parameters helping minimize
the difficulty in uncertainty representation [24], [29]–[42].
As such, the employment of Type-2 fuzzy sets introduces
more degrees-of-freedom into system modeling [9], [43]–
[50]. Note that the inclusion of type-reduction of Type-2
fuzzy inference system also introduces extra computational
burden, but recently-developed techniques are very efficient,
even for general Type-2 fuzzy sets [51], [52]; the implication
of such extra computational effort is thus neglectable. Indeed,
many applications in robot control have been benefited from
the inclusion of Type-2 fuzzy systems [53]–[56]. Through
addressing both aforementioned challenges, the novel neural
network proposed herein integrates a T2FIS and components
from CMAC and BELC, resulting in a Type-2 Fuzzy Hybrid
Controller Neural Network (T2FHC).

With the support of the proposed T2FHC, this work further
develops an intelligent control system for dynamic non-linear
control of robots. In particular, by combining a purpose-built
compensator robust controller and the T2FHC, the resultant
intelligent controller implements a system of SMC that mimics
ideal SMC controllers. The intelligent controller has been
applied to a robot manipulator and a mobile robot, whilst
applications in other control fields can be readily identi-
fied. The simulation experimental investigations systematically
evaluate the proposed techniques, with competitive results
demonstrating their promising performance in dynamic robot
control. The main contributions of this work are twofold: 1)
a new brain emotional neural network integrating a Type-2
fuzzy inference system for great non-linear learning abilities,
and 2) a neural network based robotic controller built upon
a powerful compensator controller with the support of T2FIS
and BELC, guaranteeing the robust tracking of the dynamics
of robot systems.

II. BACKGROUND

A. Type-2 Fuzzy Cerebellar Model Articulation Controller
Network

A CMAC neural network contains a quantization layer
and an association weight memory layer, in addition to the

relatively trivial input and output layers. Each input activates
certain fields in the quantization layer, which subsequently
triggers certain association neurons in the association weight
memory layer. Form this, the output of CMAC is obtained
by computing the weighted summation of the quantized input
values. The CMAC has been fuzzified using Type-2 fuzzy sets
which effectively improves the quantization scheme allowing
for more accurate memory allocation [24].

In the implementation of Type-2 fuzzy CMAC, the input
values are firstly fuzzified using predefined interval Type-2
fuzzy sets, which effectively builds the quantization layer of
the Type-2 fuzzy CMAC network architecture. In the associ-
ation memory layer, neurons are represented as the activation
strengths based on the corresponding rules, each of which is
computed as the aggregation of the degrees of fulfillment of
upper and lower membership functions using a triangular norm
(T -norm) operator [57]. The fuzzified quantization scheme in
Type-2 CMAC can be represented as a fuzzy inference rule as
defined below:

IF x1 is F̃1 and x2 is F̃2 and · · · and xni is F̃ni ,

THEN Y = [wl wr],

where xj (1 ≤ j ≤ ni) denotes an input variable; ni denotes
the input dimensionality; F̃ denotes an interval Type-2 fuzzy
set; Y is the output of the rule; and wl and wr denote the
lower and upper membership degrees, respectively.

Compared to the conventional CMAC, a Type-2 fuzzy
CMAC network has an extra layer to perform type reduction
and defuzzification operations. The network’s output can be
concisely expressed by:

uT2CMAC =
1

2
[TRl(F , F ,W l) + TRr(F , F ,W r)], (1)

where F and F denote the lower and upper activation strengths
of an input; W l and W r impose the lower and upper bounds
on the activated association memory; and TRl(·) and TRr(·)
denote the lower and upper type reduction functions. As stated
above, a binary memory location in the internal memory of
the conventional CMAC represents the full contribution or
non-contribution of network input to each memory. However,
real-valued memories are implemented in the Type-2 fuzzy
CMAC networks to enable partial contributions of network
inputs towards the memories, which significantly improves the
system non-linear modeling ability.

B. Brain Emotional Learning Controller Network

A typical BELC network consists of an input space, a
memory space, and an output space. The architecture of
the memory is inspired by the functions of the amygdala
and orbitofrontal cortex of mammalian brains. The amygdala
memory represents a sensory network and the orbitofrontal
cortex memory is an emotional network in the memory space.
Computationally, the output of the amygdala-like memory, a,
is defined by a = ν ·SI , where SI denotes the network input
and ν is the gain in the amygdala memory. The output of the
orbitofrontal memory, o, is presented by o = w · SI , where
w denotes the gain in the orbitofrontal memory. These two
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memory systems influence each other to generate the overall
output by simply subtracting a from o:

uBELC = a− o = (ν − w) · SI. (2)

The learning of the BELC is mainly performed by the
sensory network, which has self-learning and adjustment pa-
rameters. The learning rule is defined by:

∆ν = α[SI ·max(0, d− a)], (3)

where α denotes the learning rate in the sensory network
and d is an emotional cue. The emotional network undergoes
stimulation by external factors and has an indirect impact
on the sensory network. The learning rule in the emotional
network is defined by:

∆w = β[SI · (uBELC − d)], (4)

where β denotes the learning rate in the emotional network,
and d is expressed by:

d = b · SI + c · uBELC , (5)

where b and c are the gain parameters, which are empirically
determined in practical control systems.

Eqns. (2-5) jointly imply that the sensory network directly
uses perceptions from the environment to generate control sig-
nals, and the emotional network uses the inputs and outputs of
the control system to assess the performance of the controller,
so as to fine adjust the output of the BELC network. The
convergence of such controller is guaranteed as proven in [27].

III. TYPE-2 FUZZY HYBRID CONTROLLER NEURAL
NETWORK

A. Network Structure

The proposed T2FHC is constructed with 6 layers, as illus-
trated in Fig. 1, including an input layer, a fuzzification layer, a
receptive-field layer, a weight memory layer, a summarisation
layer, and an output layer. The sub-structures of the input,
fuzzification and receptive-field layers are inspired by the
specification of a Type-2 CMAC neural network [24], and
those of the rest are adopted from a BELC network. In
particular, the inputs are fuzzified as Type-2 fuzzy sets by
the fuzzification layer, supporting the application of fuzzy
inference. The receptive-field layer calculates the activation
level of fuzzy rules. The weight memory layer consists of an
amygdala weight vector and an emotional weight vector which
share the same inputs from the receptive-field layer. The two
weight vectors are aggregated in the summarisation layer, and
then delivered to the output layer for the generation of the
final output.

1) Input layer X: The input of a T2FHC network is a
continuous multi-dimensional signal. For any given ni dimen-
sional input signal X = [x1, x2, · · · , xni ]T , each input state
variable must be quantized into discrete regions according to
its value space. The number of regions, nR, is regarded as
the resolution of the input layer. For example, Fig. 2 shows a
T2FHC network of two dimensions, each dimension contains
five regions and have the same number of partitions; thus, the
resolution of the input space is nR = 5.
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Fig. 1. Architecture of the proposed T2FHC, essentially integrating organi-
cally the key components of a Type-2 CMAC network and a BELC network.
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Fig. 2. Schematic diagram of two-dimensional T2FHC network operations
with nR = 5 and nT = 4.

2) Fuzzification layer F : This layer executes fuzzification
operations with respect to interval Type-2 fuzzy set repre-
sentation. The choice of such type of fuzzy sets is based
on the balance between expressiveness and computational
requirement. Interval Type-2 fuzzy sets represent the fuzziness
of Type-1 membership degrees as intervals, which essentially
extends the uncertainty representation ability of Type-1 fuzzy
sets, thus enables better handling of uncertainty, which may be
brought by unexpected disturbances in the dynamic of robotic
systems. In the meantime, interval Type-2 fuzzy sets require
less computational power compared to general Type-2 fuzzy
sets and other higher type fuzzy sets.

Each input dimension in F is evenly partitioned into a
number of regions, and a certain number of regions are
accumulated into a block. The number of such blocks (nB) is
usually larger than or equal to two; each block is represented
as an interval Type-2 fuzzy set with Gaussian membership
function used to describe the underlying Type-1 fuzzy sets.
Each dimension contains nT types of blocks, where nT ≤ nB .
Different types of blocks are obtained by shifting a certain
block to merge with its immediate neighboring regions. Take
Fig. 2 as an example, where x1 and x2 are the input variables
and nB = 2. Each dimension consists of four types of blocks
(namely, nT = 4), which are labeled as Tiers 1, 2, 3, and 4.
For x1, Tier 1 is divided into blocks A, and B; and for x2,
Tier 1 is divided into blocks a, and b. From Tier 1 to Tier 4,
a block shifts one region each time from 1 to 4.

The underlying Type-1 Gaussian membership function
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within each block can be represented as follows:

µF̃ ijk(xi) = T (xi,mijk, σijk)

= exp (− (xi −mijk)2

2 · σ2
ijk

),
(6)

where xi denotes the ith input; µF̃ ijk(xi), mijk, and σijk
indicate the membership function, uncertain mean, and uncer-
tain variance for the jth tier and kth block of the ith input,
respectively, and mijk is within the upper bound mijk and
lower bound mijk (i.e., mijk ∈ [mijk,mijk]). In addition, the
lower and upper membership degrees (µ

F̃ ijk
and µF̃ ijk) for

each input of µF̃ ijk are defined as:

µ
F̃ ijk

(xi) =

{
T (xi,mijk, σijk), xi <

mijk+mijk
2

T (xi,mijk, σijk), xi >
mijk+mijk

2 ,
(7)

µF̃ ijk(xi) =


T (xi,mijk, σijk), xi < mijk

1, mijk < xi < mijk

T (xi,mijk, σijk), xi > mijk.

(8)

To summarise, each block has three adjustable parameters: 1)
the upper bound of the uncertain mean m, 2) the lower bound
of the uncertain mean m, and 3) the variance value σ of the
Type-1 Gaussian membership function.

3) Receptive-field layer T : This layer consists of a batch
of “receptive-fields”; each receptive-field calculates the total
firing strength of its corresponding Tiers from all dimensions
usually through a product calculation. For instance, in Fig. 2,
the firing strength of the first receptive-field is the continuous
sequence of the outputs of multiplication operations of Tier 1
of x1 and Tier 1 of x2. The receptive-field layer of T2FHC is
formally defined as:

Fλ = [Fλ Fλ] = [

ni∏
i=1

µ
F̃ ijk

ni∏
i=1

µF̃ ijk]T , (9)

where Fλ denotes the λth receptive-field, λ ∈ {1, 2, · · · , nT }.
Recall that the outputs of the fuzzification layer are interval
Type-2 interval sets. Therefore, the outputs of the receptive-
field layer are also interval Type-2 fuzzy sets, which means
the output space is bounded by its lower bound, Fλ, and upper
bound, Fλ.

4) Weight memory layer W : The structure of the weight
memory layer is developed from a fuzzy BELC network. This
layer contains two memory spaces, including an amygdala-like
memory, νλq , and an orbitofrontal-like memory, wλq , which
simulate their counterparts in a human brain. Here, q in both
νλq and wλq denotes the qth output of the T2FHC network. For
simplicity, as with common approaches, in implementation,
each memory is expressed as a centroid set with a unity
membership grade [58]. Within this layer, each receptive-
field in the preceding receptive-field T is mapped onto a
corresponding weight in νλq and another in wλq . In addition,
each element in both νλq and wλq contains a left-most and a
right-most point; that is, νλq and wλq are obtained as follows:

νλq = [νlλq νrλq], (10)

wλq = [wlλq wrλq], (11)

where l and r indicate the left-most and right-most point of
the centroid set for νλq or wλq , respectively.

By adapting the updating rules of the BELC as specified
in Eqns. (3) and (4), whilst ensuring that the control system
implements the desirable backstepping control technology
[59], the updating rules of νλq and wλq are introduced in the
derivative form as:

ν̇λq = α[Fλ · (max[0, dq − aq])], (12)

ẇλq = β[Fλ · (uT2FHCq − dq)], (13)

where α and β are learning rates of the updating rules; aq
denotes the νλq’s output and uT2FHCq denotes the output of
wλq; and dp is an emotional parameter given by:

dq = bi · xi + cq · uT2FHCq , (14)

where, bi and cq are gain parameters. Note that the learning
objective of T2FHC is to obtaining the minimum value of dq ,
which is the sum of the input of the T2FHC and the qth output.

Presentation-wise, νλ and wλ share the same implementa-
tion structure that can be expressed as:

W =


w11 · · · w1o · · · w1p

...
. . .

...
. . .

...
wk1 · · · wko · · · wkp

...
. . .

...
. . .

...
wnT 1 · · · wnT o · · · wnT p

 , (15)

where p is the dimensionality of the network’s output.
5) Summarisation layer S: The summarisation layer

summarises the values of the two spaces and reduces the
fuzzy type. In the Type-1 fuzzy BELC network, the out-
put of the amygdala-like memory is defined as aq =∑nλ
λ=1 fλqνλq; and that of the orbitofrontal-like memory as

oq =
∑nλ
λ=1 fλqwλq [5]. The T2FHC herein generalises this,

and the output of the summarisation layer therefore is:

Snet = aq − oq =

nλ∑
λ=1

Fλq(νλq − wλq) =

nλ∑
λ=1

FλqZλq, (16)

where Zλq is the summarised weight, which is defined by:

Zλq = [Zlλq Zrλq]
T = [(νlλq − wlλq) (νrλq − wrλq)]T . (17)

The type-reduction method as reported in [24] is applied
here to convert interval Type-2 fuzzy sets into Type-1 ones
(although any established reduction method available in the
literature may be adapted as an alternative for this):

ylq =

∑L
λ=1 FλZlλq +

∑nλ
λ=L+1 FλZlλq∑L

λ=1 Fλ +
∑nλ
λ=L+1 Fλ

(18)

yrq =

∑R
λ=1 FλZrλq +

∑nλ
λ=R+1 FλZrλq∑R

λ=1 Fλ +
∑nλ
λ=R+1 Fλ

, (19)

where Zλq = [Zlλq Zrλq]
T = [Zl1q, Z

l
2q, · · · , Zlnλq Zr1q,

Zr2q,· · · , Zrnλq]
T ; and L and R indicate the left-most and

right-most points of the summarisation layer. Details regarding
the computation of L andR are beyond the scope of this paper
but can be found in [24].
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6) Output layer Y : This is a trivial but necessary final
layer within the proposed network. It performs defuzzification
operation to produce crisp outputs. In implementation, the qth

output is simply computed by:

Yq =
ylq + yrq

2
, (20)

which completes the entire computation process of a T2FHC.

B. Rule Updating

As described above, a T2FHC contains seven tunable pa-
rameters, which are miλ, miλ, σiλ, νlλq , ν

r
λq , w

l
λq , and wrλq .

Based on the gradient descent method, the updating rules of
these parameters can be devised as summarized below:

miλ(k + 1) = miλ(k) + ˙̂miλ, (21)

miλ(k + 1) = miλ(k) + ˙̂miλ, (22)

σiλ(k + 1) = σiλ(k) + ˙̂σliλ + ˙̂σriλ, (23)

νlλq(k + 1) = νlλq(k) + ν̇lλq, (24)

νrλq(k + 1) = νrλq(k) + ν̇rλq, (25)

wlλq(k + 1) = wlλq(k) + ẇlλq, (26)

wrλq(k + 1) = wrλq(k) + ẇrλq, (27)

where ˙̂miλ and ˙̂miλ denote the adjustments of the lower and
upper bound of miλ; ˙̂σliλ and ˙̂σriλ denote the adjustments of
σiλ from Zlλ and Zrλ; and (ν̇lλq , ν̇

r
λq), and (ẇlλq , ẇ

r
λq) indicate

the left and right bound weight adjustments of νλq and wλq ,
respectively.

For parameters ˙̂miλ, ˙̂miλ, ˙̂σliλ and ˙̂σriλ, L and R determine
the left-most and right-most positions of the Summarisation
layer, and the right-most position is generally not smaller than
the left-most one (i.e., R ≥ L). Therefore, the adjustments of
these include three different situations: 1) λ ≤ L, 2) L < λ ≤
R, and 3) λ > R. Similarly, for the four weights νlλq , ν

r
λq ,

wlλq , and wrλq , whilst their adjustment is based on the update
rule of BELC as defined in Eqns. (12-14), the adjusting method
for the λth left or right bound weights is determined by the
output of the λth receptive-field Fλ. As such, Eqns. (12) and
(13) must be rewritten on the basis of Fλ and therefore, the
computation must also be divided into the three situations.

Algorithm 1 The T2FHC network
1: Normalize each dimension (xi) of X from 0 to nR;
2: Compute Fλ using Eqns. (7) to (9);
3: Calculate Zλq in Eqn. (17), and then ylq and yrq in Eqns.

(18) and (19);
4: Derive the output Yq of the network by Eqn. (20);
5: Update miλ, miλ, σiλ, νlλq , ν

r
λq , w

l
λq , and wrλq using the

updating rules from Eqn. (21) to Eqn. (55).

For conciseness, the adjustments in the three situations are
summarised as follows:

Situation 1: λ ≤ L
˙̂miλ = ηm · Fmiλ · Ẑrλ · s(e(t)) (28)
˙̂miλ = ηm · Fmiλ · Ẑlλ · s(e(t)) (29)
˙̂σliλ = ησ · Fσiλ · Ẑlλ · s(e(t)) (30)
˙̂σriλ = ησ · Fσiλ · Ẑrλ · s(e(t)) (31)

Flλ =
Fλ∑L

λ=1 Fλ +
∑nL
λ=L+1 Fλ

(32)

Frλ =
Fλ∑R

λ=1 Fλ +
∑nR
λ=R+1 Fλ

(33)

ν̇lλq = α[Flλ · (max[0, dq − aq])] (34)

ẇlλq = β[Flλ · (uT2FHCq − dq)] (35)

ν̇rλq = α[Frλ · (max[0, dq − aq])] (36)

ẇrλq = β[Frλ · (uT2FHCq − dq)] (37)

Situation 2: L < λ ≤ R

˙̂miλ = ηm · Fmiλ ·
Ẑlλ + Ẑrλ

2
· s(e(t)) (38)

˙̂miλ = 0 (39)
˙̂σliλ = ησ · Fσiλ · Ẑlλ · s(e(t)) (40)
˙̂σriλ = ησ · Fσiλ · Ẑrλ · s(e(t)) (41)

Flλ =
Fλ∑L

λ=1 Fλ +
∑nL
λ=L+1 Fλ

(42)

Frλ =
Fλ∑R

λ=1 Fλ +
∑nR
λ=R+1 Fλ

(43)

ν̇lλq = α[Flλ · (max[0, dq − aq])] (44)

ẇlλq = β[Flλ · (uT2FHCq − dq)] (45)

ν̇rλq = α[Frλ · (max[0, dq − aq])] (46)

ẇrλq = β[Frλ · (uT2FHCq − dq)] (47)

Situation 3: λ > R
˙̂miλ = ηm · Fmiλ · Ẑlλ · s(e(t)) (48)
˙̂miλ = ηm · Fmiλ · Ẑrλ · s(e(t)) (49)
˙̂σliλ = ησ · Fσiλ · Ẑlλ · s(e(t)) (50)
˙̂σriλ = ησ · Fσiλ · Ẑrλ · s(e(t)) (51)

Flλ =
Fλ∑L

λ=1 Fλ +
∑nL
λ=L+1 Fλ

(52)

Frλ =
Fλ∑R

λ=1 Fλ +
∑nR
λ=R+1 Fλ

(53)

ν̇lλq = α[Flλ · (max[0, dq − aq])] (54)

ẇlλq = β[Flλ · (uT2FHCq − dq)] (55)

ν̇rλq = α[Frλ · (max[0, dq − aq])]ẇrλq = β[Frλ · (uT2FHCq − dq)]
(56)

The working procedure of the proposed T2FHC network
is summarised in Algorithm 1. The computational complexity
of the algorithm depends on the number of inputs (ni), the
number of block types (nT ), and the number of outputs
(no). The values of ni and no are determined once the con-
trolled system is specified. In Algorithm 1, the computational
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complexity of Fλ is O(ni ∗ nT ); the computations of ylq
and yrq depend on the Karnik-Mendel Algorithms [24], and
the Karnik-Mendel algorithms are proven to be of super-
exponential convergence based on the work of [60], which is
therefore approximated as O(KMT (nT )). The computational
complexity of the proposed T2FHC network can then be
summarised as O(ni ∗ nT + 2 ∗KMT (nT ) ∗ no).

IV. FUZZY SLIDING MODE CONTROL USING T2FHC

The novel signal processing neural network T2FHC pre-
sented in Section III is utilised herein to form a new controller
for non-linear control problems. The structure of the proposed
controller is illustrated in Fig. 3, which takes the errors of a
non-linear system that need to be minimized as inputs, and
produces acceptable control values as system outputs. The
controller is comprised of three interconnected sub-systems,
including a sliding surface generator, a T2FHC, and a baseline
robust controller. The input error values are first processed to
form a sliding surface, which is then fed into the other two
sub-systems for control signal generation. The control signals
generated from both controllers are then aggregated to produce
the final output of the overall control system.

Fig. 3. T2FHC-based robust control for uncertain non-linear robotic systems.

Without losing generality, suppose that the state vector of
an nth order uncertain non-linear robotic system is expressed
as:

x(n)(t) = f(x(t)) +G(x(t))u(t) + d(t), (57)

where x(t) = [x1(t) x2(t) · · · xκ(t)]T ∈ Rκ denotes the
output of the system; x(t) = [xT (t) ẋT (t) · · · x(n−1)T (t)]
denotes the state vector of the system; κ denotes the dimen-
sionality of the input or output of the system which are the
same in this particular application; f(x(t)) ∈ Rκ denotes
an unknown, but bounded non-linear function; G(x(t)) ∈
Rκ denotes an unknown, but bounded control input gain
matrix G(x(t)) ∈ Rκ×κ; d(t) ∈ Rκ indicates the distur-
bance: d(t) = [d1(t) d2(t) · · · , dκ(t)]T ∈ Rκ; u(t) =
[u1(t) u2(t) · · · uκ(t)]T ∈ Rκ denotes the output of the
sliding mode controller.

The objective of the (overall) controller is to enable the
system trajectory x(t) to match a desired reference trajectory
xd(t) ∈ Rκ. To reflect this, the tracking error e(t) ∈ Rκ

is defined as: e(t) = xd(t) − x(t). By considering the state
vector of the system x(t), the tracking error vector, e(t), of
the system can therefore be defined as:

e(t) = [eT ėT · · · e(n−1)T ]T . (58)

In the proposed approach, as shown in Fig. 3, a sliding
surface is defined by:

s(e(t)) = e(n−1)(t)+ζ1e
(n−2)(t)+· · ·+ζn−1e(t)+ζn

∫ t

0

e(t)dt,

(59)
where s = [s1 s2 · · · sκ]T , ζi = diag(ζi1, ζi2, · · · , ζiκ),
i = 1, 2, · · · , n, with each element in ζij being a positive
constant. In particular, ζi is defined to ensure the satisfaction of
the Hurwitz characteristic polynomial. Differentiating s(e(t))
with respect to time leads to:

ṡ(e(t)) = e(n)(t) + ζ1e
(n−1)(t) + · · ·+ ζne(t)

= CT ė(t) + KTe(t),
(60)

where C = [0 0 · · · I]T , and K = [ζn ζn−1 · · · ζ1]T

denotes the feedback gain matrix. Note that the output of the
sliding mode controller is obtained by aggregating the outputs
of both T2FHC (uT2FHC) and the baseline robust controller
(uRC) such that:

u = uT2FHC + uRC . (61)

Using the nominal function and constant gain, Eqn. (57)
can be re-expressed as:

x(n)(t) = fn(x(t)) + Gnu(t) + l(x(t), t), (62)

where fn(x(t)) denotes the nominal version of f(x(t)); Gn

indicates the nominal constant gain of G(x(t)) which must
be positive and invertible; and l(x(t)) represents the lumped
uncertainty in the model.

If there exists an ideal situation where fn(x(t)), Gn, and
l(x(t)) are known, an ideal controller can be obtained by:

uISM = G−1n [x
(n)
d −fn(x)− l(x, t)+KTe+%sgn[s(e(t))],

(63)
where %sgn[s(e(t))] denotes the constant reaching law of the
sliding mode controller, % > 0; and s denotes the system error
e processed by the sliding surface. It follows that:

ṡ(e(t)) = Gn[uISM − u]− %sgn[s(e(t))]. (64)

Suppose that an optimal T2FHC neural network, u∗T2FHC ,
is known to learn the ideal sliding mode controller, uISM . In
this case, uISM should then be:

uISM = u∗T2FHC(X,Z∗,m∗,σ∗) + ε = Z∗TF∗ + ε, (65)

where Z∗, m∗, σ∗, and F∗ are the optimal parameters of Z,
m, σ, and F, respectively; F is defined in Eqn. (9); and ε
denotes a minimum reconstructed error vector.

Unfortunately, as indicated previously, such an ideal control
network can hardly be obtained. The alternative approach
proposed herein is to approximate the optimal T2FHC. For
this purpose, Eqn. (61) can be rewritten as:

u = ûT2FHC(X, Ẑ, m̂, σ̂) + uRC = ẐT F̂ + uRC . (66)

Then, by substituting (64) with (65) and (66), the following
can be derived:
ṡ(e(t)) = Gn[u∗T2FHC + ε− ûT2FHC − uRC ]− %sgn[s(e(t))]

= Gn[Z∗TF∗ − ẐT F̂ + ε− uRC ]− %sgn[s(e(t))]

= Gn[Z̃TF∗ + ẐT F̃ + ε− uRC ]− %sgn[s(e(t))],
(67)
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where Z̃ = Z∗− Ẑ and F̃ = F∗− F̂. Hence, according to the
T2FHC’s structure, the following holds:

ũT2FHC = u∗T2FHC − ûT2FHC = Z∗TF∗ − ẐTF∗

= (Z∗T − ẐT )F∗.
(68)

Recall that Eqn. (14) expresses the emotional parameter in the
learning rules. Thus, both Z∗ and Ẑ need to be computed in
a way to minimize the system error s(e(t)) and hence, the
corresponding network output. This implies that a bounded
extreme small real number γ exists such that:

lim |ũT2FHCq | = lim |(Z∗Tq − ẐTq )F∗| = |γq|. (69)

In this study, the Taylor linearization method is used to
expand the receptive-field membership functions into partially
linear ones. Thus, F̃ can be obtained as follows:

F̃ =



F̃1

...
F̃λ
...

F̃nλ

 =



(∂F1

∂m )T

...
(∂Fλ∂m )T

...
(
∂Fnλ
∂m )T

 |m=m̂(m∗ − m̂)

+



(∂F1

∂σ )T

...
(∂Fλ∂σ )T

...
(
∂Fnλ
∂σ )T

 |σ=σ̂(σ∗ − σ̂) + β

≡ fmm̃+ fσσ̃ + β,

(70)

where β is a vector of higher order terms; and ∂Fλ
∂m and ∂Fλ

∂σ
are defined as follows:

[
∂Fλ
∂m

] = [0, · · · , 0︸ ︷︷ ︸
(λ−1)ni

,
∂Fλ
∂m1λ

, · · · , ∂Fλ
∂mniλ

, 0, · · · , 0︸ ︷︷ ︸
(n−λ)ni

], (71)

[
∂Fλ
∂σ

] = [0, · · · , 0︸ ︷︷ ︸
(λ−1)ni

,
∂Fλ
∂σ1λ

, · · · , ∂Fλ
∂σniλ

, 0, · · · , 0︸ ︷︷ ︸
(n−λ)ni

]. (72)

Then, substituting Eqns. (70) and (69) by Eqn. (67), the
following can be generated:

ṡ(e(t))

= Gn[γ + ẐT (fmm̃+ fσσ̃ + β) + ε− uRC ]− %sgn[s(e(t))]

= Gn[ẐT (fmm̃+ fσσ̃) + ẐTβ + ε+ γ − uRC)]− %sgn[s(e(t))]

= Gn[ẐT (fmm̃+ fσσ̃) + ω − uRC)]− %sgn[s(e(t))],
(73)

where ω denotes the approximation error: ω = ẐTβ + ε +
γ. Putting the above together leads to the following theorem
which guarantees the stability of the proposed control system.

Theorem 1 For a non-linear robotic system represented by
Eqn. (57), an intelligent control system T2FHC as specified in
Eqn. (61) is guaranteed to be stable if the following conditions
are satisfied:

1) The adaptive rules of T2FHC are designed as follows:

˙̂m = ηmf
T
mẐs(e(t)), (74)

Fig. 4. (a) A simulated three-link robot manipulator; (b) A simulated two-
wheeled differentially driven mobile robot.

˙̂σ = ησf
T
σ Ẑs(e(t)), (75)

where ηm and ησ denote the diagonal positive constant
learning-rate matrices of ˙̂m and ˙̂σ, respectively, and
where ˙̂m and ˙̂σ must be used in accordance with
the three situations of the Type-2 inference system as
specified in Section III-B.

2) The robust controller is designed as follows:

uRC = (2R2)−1(R2 + I)s(e(t)), (76)

where R is a positive diagonal matrix, R =
diag(φ1, φ2, · · · , φi), and φi is a robust attenuation
coefficient that can be adjusted externally.

Theorem 1 can be proofed using the Lyapunov stability
theory, which is provided in the online supplementary.

V. APPLICATIONS IN INTELLIGENT ROBOT CONTROL

The proposed controller with the new T2FHC was applied
to two typical robotic systems, a simulated three-link robot
manipulator and a mobile robot, to verify its efficacy. A com-
parative study is also included in this section to demonstrate
the performance of controller over a number of alternative
approaches, including a PID controller, an SMC with fuzzy
brain emotional learning controller network (FBELC) [5], and
an SMC with fuzzy CMAC network (FCMAC) [22].

A. Robot Manipulator Control

1) Simulation Experimental Setup: The configuration of
the simulated three-link robot manipulator employed in this
experiment is shown in Fig. 4 (a). All three joints, whose angle
values are labeled as θ1, θ2, and θ3, are rotation mechanisms.
The upper and lower limbs are labeled as a2 and a3, and a1
is the link from the robot frame to the second joint. The non-
linear dynamic equation of the manipulator is described using
the following second-order differential equation:

M(q)q̈ +C(q, q̇)q̇ + g(q) + τd = τ , (77)

where q is a position vector indicating joint angles; q̇ is a
velocity vector of the joints; q̈ is an acceleration vector of
the joints; M(q) is a moment of inertia; C(q, q̇) denotes the
coriolis and centripetal force; g(q) denotes the gravitational
force; τd denotes an external disturbance; and τ denotes an
input torque vector. The gravity acceleration, g, is set to
9.8m/s.
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TABLE I
PARAMETERS OF THE ROBOT MANIPULATOR

Items i = 1 i = 2 i = 3

ai(m) 0.6 0.5 0.4

li(m) 0.3 0.25 0.2

mli(kg) 3.0 1.8 1.5

mmi (kg) 0.3 0.3 0.3

Imi (kgm2) 12.0× 10−3 12.0× 10−3 12.0× 10−3

Ili(kgm
2) 50.45× 10−3 32.68× 10−3 30.47× 10−3

kri (kgm
2) 1.0 1.0 1.0

The system parameters of the manipulator are summarised
in Table I, where ai indicates the link length; li indicates the
distance between the centre of mass and the joint of a link;
ml
i indicates the link mass; mm

i denotes the motor mass of
the joint; Imi denotes the moment of inertia of the link; I li
denotes the moment of inertia link’s center of mass; and kri
represents the gearbox reduction ratio of the motor.

The dynamic equation of the robot manipulator is defined
by:

ẍ(t) = f(x(t)) +G(x(t))u(t) + d(t), (78)

where x(t) is defined by:

x(t) , [q1(t) q2(t) q3(t)]T = [x1(t) x2(t) x3(t)]T .
(79)

From which, it follows that:

f(x(t)) = −M−1(q)[C(q, q̇)q̇ + g(q)] (80)

G(x(t) = M−1(q) (81)

d(t) = −M−1(q)τd. (82)

The external disturbance is given as:

τd = χ ·

0.2 sin(2t)
0.1 cos(2t)
0.1 sin(t)

 , (83)

and the initial conditions of the robot manipulator are defined
as x(t) = [−0.3 0.1 − 0.4]T and ẋ(t) = [0 0 0]T ; χ
denotes the disturbance level, which was set to 5, 10, 20 in
the experiments.

In the simulation, two reference modes of the manipulator
were set. The manipulator needed to track the first reference
mode when the robot started to move; after 15 seconds, the
robot needed to track the second reference mode. The two
reference modes are defined as follows:

ref1 =

0.5 sin(t+ 2.5) + 0.35 cos(2t+ 1.5)
0.2(sin(t) + sin(2t))

0.13− 0.1(sin(t) + sin(2t))

 , (84)

ref2 =

0.5(sin(2t) + cos(t+ 1))
0.15 sin(2t) cos(t+ 1)
0.1(cos(2t)− sin(t))

 , (85)

where the time unit is set to 0.001s. The sliding hyperplane
is designed as: s(e(t)) = 10e + 0.55ė(t); and the robust
controller is designed as: R = 0.075I3×3. In particular, for
fair comparison, both FBELC and FCMAC methods were
designed to share the same robust controller with T2FHC.

TABLE II
INITIALISED PARAMETER VALUES OF THE PROPOSED NEURAL NETWORK

Robot Manipulator Mobile Robot
ni 3 2
nR 5 5
nT 4 4
nB 2 2
nλ 8 8

miλ
[−2.5,−1.9,−1.3,−0.7,

−0.1, 0.5, 1.1, 1.7]
[−4.6,−3.4,−2.2,−1.0,

0.2, 1.4, 2.6, 3.8]

miλ
[−1.7,−1.1,−0.5, 0.1,

0.7, 1.3, 1.9, 2.5]
[−3.8,−2.6,−1.4,−0.2,

1.0, 2.2, 3.4, 4.6]
σiλ 1.2 1.0

ηm, ησ 0.001 0.001
α, β 0.5, 0.5 0.8, 0.8
b, c 10, 1 200, 1

The parameters of the T2FHC network were initialized as
listed in Table II, where ni denotes the dimensionality of the
network inputs; nR indicates the number of regions in the
input layer; nT denotes the number of block types; nB is the
number of blocks; nλ denotes the number of receptive-fields;
miλ, miλ, and σiλ denote the Gaussian function parameters;
ηm and ησ are the brain emotional learning rates; and b and
c are the gain parameters of the brain emotional learning.

2) Results: Simulation results of the position responses and
tracking errors using different controllers are shown in Fig. 5.
Sub-figures 5a, 5b, and 5c illustrate the simulated position
responses and tracking errors of Joints 1, 2, and 3. Each sub-
figure contains the reference trajectory (the red solid line),
the PID output trajectory (the dotted line), the FBELC output
trajectory (the dot-dashed line), the FCMAC output trajectory
(the dashed line), and the proposed T2FHC output trajectory
(the blue solid line).

In each of the sub-figures, the upper row shows the cor-
responding controller’s joint trajectory and the bottom row
shows the errors between the controller’s trajectory and the
reference trajectory. Note that the tracking trajectories of the
robot were changed after 15 seconds, which led to sudden
changes at the 15th second for all the simulated trajectories.
For Joint 1, all four controllers successfully followed the
reference trajectory after a settling down period. However,
PID controller’s performance in Joint 2 was much worse
than those of other neural network controllers. Such poor
performances indicate that each joint motor requires a separate
PID parameter setup, rather than being fixed to a single one.
Yet, optimizing a range of different PID parameters would
require significant human intervention. In contrast to this, all
the three neural network based controllers can educe tracking
errors automatically, through their online tuning ability.

Examining the results more closely, as reflected by Fig. 5a,
since Joint 1 handled forces that were exerted from Joints
2 and 3, all controllers performed less stable for Joint 1 than
Joints 2 and 3. At the 15th second, the errors of all controllers
reached around −0.8rad. In particular, the FBELC could not
converge rapidly, it always had a tracking delay at the 0th
second and the 15th second. Joint 2 also needed to tackle
the force exerted from Joint 3; however, the force was much
smaller than that of Joint 1. Thus, all the neural network based
controllers generated relatively better performance, with the
largest error in the 15th second being about 0.2rad. Since
Joint 3 was the terminal joint in the robot manipulator, no
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(a)

(b)

(c)

Fig. 5. Simulation results of position responses and tracking errors with
different PID, FBELC, FCMAC, and T2FHC controllers: (a) Results in Joint
1; (b) Results in Joint 2; (c) Results in Joint 3.

exerted force needed to be considered; the trajectories of all
controllers were close to the reference.

The performances of the FCMAC and T2FHC in Joints 2
and 3 were close to each other, both controllers could rapidly
converge in reducing the tracking errors. The FCMAC only
showed a slight lead in Joint 2. However, in Joint 1, the T2FHC
controller performed much better than the FCMAC controller.
Indeed, the trajectories of the T2FHC always achieved the
fastest convergence amongst all four controllers.

To demonstrate the disturbance resistance of the proposed
network controller, the quantitative comparisons of the PID,
FBELC, FCMAC, HC, FHC and the proposed T2FHC under
the three levels of disturbances are summarised in Table III.
Amongst them, the HC is essentially the proposed T2FHC
without the use of Type-2 fuzzy sets, and the FHC is the
proposed hybrid controller neural network with Type-1 fuzzy
sets. The accumulated RMSE values for Joints 1, 2 and
3 were used to measure the overall performance over the

TABLE III
COMPARISON OF PID, FBELC, FCMAC, AND T2FHC CONTROLLERS

FOR ROBOT MANIPULATOR (RMSE × 0.01)

χ JOINT PID FBELC FCMAC HC FHC T2FHC

5
Joint 1 3.167 2.675 2.703 8.141 2.628 2.464
Joint 2 1.398 0.473 0.392 3.612 0.390 0.387
Joint 3 1.921 1.426 1.427 1.707 1.423 1.405

10
Joint 1 3.176 2.675 2.701 8.149 2.627 2.445
Joint 2 1.403 0.474 0.392 3.573 0.385 0.384
Joint 3 1.926 1.414 1.427 1.703 1.427 1.405

20
Joint 1 3.209 2.675 2.700 8.157 2.625 2.445
Joint 2 1.422 0.475 0.391 3.530 0.386 0.384
Joint 3 1.942 1.414 1.427 1.699 1.422 1.405

period of [0s, 30s]. As can be seen from the table, the RMSE
values of the three neural network based controllers are all
less than that of the PID controller. Importantly, the T2FHC
achieved the best performance in all the joints amongst all
controllers. Besides, Joint 1 played a more important role in
the entire robot manipulator’s tracking precision. Thus, overall,
the T2FHC controller achieved the best control performance
in this experiment. Note that: the fuzzy sets in the T2HFC
and FHC are represented by a set of Gaussian functions
with the parameters of uncertain means and variances. These
parameters are randomly initialised and can be adjusted by
using the updating rules designed in this paper. Therefore, the
parameters are totally different from their initial values.

Fig. 6 shows the control efforts of the FBELC, FCMAC,
and T2FHC network controllers for the joints; the left column
shows the efforts during [0s, 0.5s] and the right does those
during [14.9s, 15.5s]. When the reference trajectory changed,
the FBELC controller immediately reacted to the errors;
however, both the FCMAC and the T2FHC controller could
not generate any response until their robust controllers have
reduced the errors to a certain level (until after about 0.03s).
This is because the sliding surface would sharply increase the
input values s(e(t)) when the tracking trajectory changed,
and the increased values were out of the input range of the
FCMAC and T2FHC networks. Since these two networks
contain a multiplicative mechanism as defined in Eqn. (9), F
tends to being 0. However, the FBELC does not contain such
a mechanism, and its react speed is thus faster than the other
two. Unfortunately, such a fast speed caused the poor tracking
performance as shown in Figs. 5. This situation implies that
overly sensitive to reaction can lead to unexpected vibrations.

Different from the FCMAC, however, the proposed T2FHC
utilizes a Type-2 fuzzy inference mechanism, which contains a
larger input range than that of the FCMAC. Thus, the reacting
speed of the T2FHC is faster than that of the FCMAC. Also,
in Fig. 6, the T2FHC used less time to stabilise its output; in
contrast, the FCMAC generated considerable vibrations that
reduced the overall accuracy of the manipulator. Therefore,
once again, the T2FHC offered the best control performance
for the robot manipulator in the experiment.

B. Mobile Robot Control

1) Simulation Experimental Setup: Fig. 4 (b) illustrates a
typical mobile robot with two differentially driven coaxial
wheels and a front passive wheel. The coaxial wheels are
driven by two independent motors, and the passive wheel
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(a)

(b)

(c)

Fig. 6. Simulation results on control efforts of FBELC, FCMAC, and T2FHC
network controllers in three joints: (a) Results in Joint 1; (b) Results in Joint
2; and (c) Results in Joint 3.

simply assists to keep the balance. In this figure, r denotes
the radius of the wheel, 2R denotes the distance between
the two wheels, C denotes the centre of gravity of the robot,
(xc, yc) denotes the geometry centre position of the robot, P
denotes the midpoint of the two wheels’ axis, and θ denotes the
robot’s orientation against to the reference coordinate system.
The position of the mobile robot in the reference coordinate
system is expressed as q = [xc yc θ]T . It follows that
q̇ = [ẋc ẏc θ̇], where v(t) = [υ $]T , υ and $ are the
translational and angular velocities of the robot.

In general, the dynamics of a mobile robot with n general-
ized coordinates can be expressed as:

M(q)q̈+C(q, q̇)q̇+g(q) +F (q̇) + τd = B(q)τ −A(q)ψ,
(86)

where q is the position and orientation vector of the robot;
q̇ is the velocity vector of the position and orientation; q̈ is
the acceleration vector of the position and orientation; M(q)
is the moment of inertia; C(q, q̇) denotes the coriolis and
centripetal force; g(q) denotes the gravitational force and for
the mobile robot moving on horizontal ground, g(q) = 0;
τ denotes an input torque vector; B(q) denotes an input
transformation matrix; F (q̇) denotes a friction vector; τd
indicates an external disturbance; A(q) denotes a constraint
matrix; and ψ denotes a Lagrange multiplier vector.

The mobile robot is required to track the reference trajec-
tory, which is defined by qr = [xr yr θr]

T . This means
that the tracking error, ep, can be obtained by:

ep =

e1e2
e3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

xr − xyr − y
θr − θ

 , (87)

and ėp is defined by:

ėp =

$e2 − υ + υr cos e3
−$e1 + υr sin θe3

$r −$

 . (88)

In order to track the given velocity reference model, the
approach reported in [61] is adapted to calculate the desired
translational and angular velocities, which is defined by:

vd =

[
υd
$d

]
=

[
υr cos e3 + k1e1

υr + k2υre2 sin e3
e3

+ k3e3

]
, (89)

where k1, k2, and k3 are implementation parameters. Thus,
the velocity error ev is calculated by:

ev = vd − v = [eυ(t) e$(t)]T . (90)

Eqn. (90) implies that the following relationships hold between
the torques of the left and right wheels, and υ and $:{

υ ∝ τr + τl

$ ∝ τr − τl
. (91)

Without losing generality, denote the output of the controller
as u = [u1 u2]T . It follows that τr = u1+u2

2 and τl = u1−u2

2 .
In this simulation experimental investigation, the parameters of
the mobile robot were set as follows: m = 10kg, I = 5kg ·m2,
R = 0.2m, r = 0.05m, d = 0.05m, F (q̇) = 0. In addition,
the disturbance, τd, is defined as:

τd = χ ·
[

2.5 sin(4t)
2.5 cos(4t)

]
, (92)

where χ denotes the disturbance level, which was set to 5, 10,
20 in the experiments. The reference trajectory is defined as:

θ̇r = $rT

ẋr = υr cos 2θr

ẏr = υr sin θr,

(93)

where the initial values of the reference trajectory were υr =
0.2m/s, $ = 0.1rad/s, θr = 0; and the time unit, T , was set
to 0.01s.

The starting positions of the reference trajectory and the
robots were qr = [2 0 π

2 ]T and q = [1 1 π
2 ]2, respec-

tively; the parameters of the velocity reference model were set
to: k1 = 4, k2 = 80, and k3 = 1; the sliding hyperplane for
the mobile robot was designed as: s(e(t)) = 10e+ 0.01ė(t);
and the robust controller was designed as: R = 0.5I2×2. The
initialization parameters of the T2FHC network is summarised
in Table II.

2) Results: Fig. 7 demonstrates the simulated position
response of the mobile robot over 65s. In this figure, the
color codes of the trajectory lines were identical to those
used previously. The left figure presents the entire tracking
process and the right one is a magnified version of the tracking
trajectory over the period of [0s, 10s]. The performances
of the T2FHC and FCMAC controllers were very close to
each other, with almost coincide trajectories both reaching
the reference trajectory earlier than the FBELC. The PID
controller was underperformed compared with the rest; it had
a longer vibration time. Thus, the T2FHC and FCMAC offered
relatively better results.

The convergence performances in terms of the robot posi-
tion errors of the compared four controllers is illustrated in
Fig. 8. The three plots in the upper row indicate the errors in
x, y, and θ; and the other three in the bottom row indicate the
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Fig. 7. Simulation results of PID, FBELC, FCMAC, and T2FHC controllers
for moving-target tracking.

Fig. 8. Position errors of PID, FBELC, FCMAC, and T2FHC controllers:
the upper-row plots indicate errors in x, y, and θ; and the bottom-row plots
show magnifications of those upper ones.

magnified versions of those upper ones after a few seconds of
tracking. The T2FHC and FCMAC controllers generated very
similar results regarding the position tracking errors. Although
the FBELC controller also generated a similar result with those
of the T2FHC and FCMAC controllers in x, it took longer
to converge in y and θ, with particularly a significant longer
convergence in y.

The velocity tracking errors of the robot is presented in
Fig. 9. The two plots in the upper row show the translational
and angular velocities (υ,$), whilst the middle and bottom
rows show the corresponding magnifications of the upper ones
over the period of [0s, 3s]. This figure clearly reveals the
performance differences between the T2FHC and FCMAC
controllers. The convergence speed of the T2FHC controller
was much faster than that of the FCMAC, with the former
converging at 0.75s in both υ and $ and the latter at 1.2s
in υ and 0.9s in $. Additionally, this figure also shows that
the performance of the FBELC controller is better than that
of the FCMAC in υ, but it performed least satisfactorily in $
amongst all the neural network-based controllers. Neverthe-
less, it still outperformed the PID controller which required a
long convergence time in both υ and $.

Also to demonstrate the disturbance resistance of the pro-
posed network controller, quantitative performance compar-
isons of using the PID, FBELC, FCMAC, and T2FHC for
mobile robot control under the three levels of disturbance
are summarized in Table IV. The accumulated RMSE values
over the entire tracking process of the robot’s position Pe,
orientation θ, translational velocity υ, and angular velocity $
were used to measure the performance. This table reflects a
very similar phenomenon with that in the simulated robotic
manipulator: the proposed T2FHC network controller per-
formed the best regarding the position, orientation, and angular

Fig. 9. Velocity errors of PID, FBELC, FCMAC, and T2FHC controllers:
Upper row shows translational and angular velocities, and middle and bottom
rows show two magnifications of those upper ones over [0s, 3s].

TABLE IV
COMPARISON OF PID, FBELC, FCMAC, AND T2FHC CONTROLLERS

FOR MOBILE ROBOT (RMSE × 0.01)

χ ERR PID FBELC FCMAC HC FHC T2FHC

5

Pe 2.631 2.484 2.386 2.500 2.380 2.332
θe 9.599 7.455e 6.815 9.149 6.810 6.423
υe 11.40 8.491 6.749 11.830 6.758 4.520
$e 101.1 82.02 67.25 15.00 67.25 50.51

10

Pe 2.964 2.496 2.390 2.501 2.409 2.340
θe 11.55 7.448 6.793 9.161 6.813 6.422
υe 11.63 8.510 6.745 11.86 6.791 4.529
$e 102.8 82.35 67.51 150.3 67.52 50.64

20

Pe 3.611 2.513 2.656 2.504 3.069 2.350
θe 16.45 7.442 7.382 9.180 6.846 6.430
υe 12.39 8.548 26.30 11.89 21.53 4.546
$e 106.61 82.74 68.19 150.6 68.15 50.79

velocity tracking. As with all other simulation experimental
results, the PID controller was unable to perform so good as
any of the neural network-based controllers.

C. Discussion and Analysis

1) Discussions: In both simulation experiments as reported
in Sections V-A and V-B, the FCMAC, FBELC, and T2FHC
used the same number of Gaussian function units, with each
network employing 8 receptive-fields. Given this common
ground, overall the T2FHC managed to perform the best
in terms of control effectiveness. It also achieved the best
performance in terms of error convergence rate. These ben-
efits resulted from the Type-2 fuzzy inference system in the
proposed T2FHC network; since the Type-2 system involves
more adjustable parameters than the Type-1 fuzzy system used
in the other two networks, so as to be able to handle more
complex uncertainties.

The final interval Type-2 fuzzy sets for the two experiments
are illustrated in Fig. 10. Recall that each input dimension was
evenly partitioned into four regions, which were accumulated
into 2 blocks in both experiments each represented by an
interval Type-2 fuzzy set. The final blocks of the T2FHC for
the manipulator control regarding the three system inputs are
demonstrated in Figs. 10-(a-c), whilst those for the mobile
robot control are illustrated in Figs. 10-(d-e). It can be realized
from this figure that the shape of each of these final Type-
2 fuzzy set is different from those of other fuzzy sets due
to the application of the adaptive updating rules designed in
Section III-B. This figure therefore confirms the effectiveness
of the automatic rule updating mechanism in the proposed
T2FHC.
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Fig. 10. The evolved Type 2 fuzzy sets of T2FHC controllers with χ = 5. (a)
Input x1 of the manipulator control; (b) Input x2 of the manipulator control;
(c) Input x3 of the manipulator control; (d) Input x1 of the mobile robot
control; and (e) Input x2 of the mobile robot control.

The performance of T2FHC in mobile robot position track-
ing offers significant improvements against the use of FCMAC
and FBELC. In contrast to the robot manipulator, the non-
linear property exhibited by the mobile robot dynamics is not
complicated. Therefore, the application of the T2FHC in the
robot manipulator simulation experiment can better reveal its
powerful ability in handling uncertainties, non-linearity and
dynamics. In particular, Joint 1 of the manipulator needed to
deal with the exerted efforts from the upper and lower limbs;
also Joint 1 itself had the heaviest motor mass. Under such
harsh conditions, the T2FHC network controller achieved an
excellent performance, representing the best amongst all the
examined controllers. To summarise, the simulation experi-
mental investigations confirm that the proposed T2FHC is
more capable of dealing with external disturbance, including
that led by the influence of modeling uncertainties.

2) Statistical Analysis: Ten additional repeated experiments
for each robotic system with χ = 5, 10 and 20 were
also conducted to confirm the statistical significance of the
improvement led by the proposed method. The average of
the accumulated RMSEs over the ten repeated experiments
are summarized in Table V. From this table, it is clear that
the proposed T2FHC consistently outperformed all other ref-
erenced controllers, given that the average accumulated RMSE
values led by the T2FHC are all smaller than their counterparts
resulted from other referenced approaches. This demonstrates
the stability of the proposed system in producing improved
control results, which re-validates the proposed system and
reassures its efficacy in dynamic robotic control.

The t-test was additionally conducted for the above ex-
periment as reported in Table V to investigate the statistical
significance of the performance of the proposed T2FHC. The
null hypothesis was carried out for the t-test; thus, the p-
values of FBELC, FCMAC, HC, and FHC against T2FHC are
summarized in Table VI, which exhibits that all the p-values
are much less than 0.05. Therefore, the performance of the
T2FHC-based controller is largely different to those from other
referenced approaches, despite of its confirmed superiority as
demonstrated in Table V.

VI. CONCLUSION

This paper has proposed a novel fuzzy neural network that
integrates the key components of Type-2 fuzzy CMAC and

TABLE V
STATISTICAL ANALYSIS OF FBELC, FCMAC, HC, FHC, AND T2FHC

Items FBELC FCMAC HC FHC T2FHC
J1-5 2.675e-02 2.702e-02 8.120e-02 2.628e-02 2.452e-02
J2-5 4.770e-03 3.921e-03 3.679e-02 3.896e-02 3.830e-03
J3-5 1.413e-02 1.426e-02 1.714e-02 1.422e-02 1.405e-02
J1-10 2.674e-02 2.702e-02 8.154e-02 2.627e-02 2.442e-02
J2-10 4.749e-03 3.917e-03 3.570e-02 3.863e-03 3.846e-03
J3-10 1.413e-02 1.428e-02 1.717e-02 1.423e-02 1.405e-02
J1-20 2.680e-02 2.702e-02 8.157e-02 2.625e-02 2.448e-02
J2-20 4.776e-03 3.918e-03 3.573e-02 3.865e-03 3.836e-03
J3-20 1.415e-02 1.427e-02 1.724e-02 1.423e-02 1.407e-02
P -5 2.486e-02 2.387e-02 2.499e-02 2.381e-02 2.333e-02
θ-5 7.456e-02 6.816e-02 9.144e-02 6.806e-02 6.423e-02
υ-5 8.489e-02 6.746e-02 1.187e-01 6.764e-02 4.517e-02
$-5 8.211e-01 6.724e-01 1.497e-00 6.725e-01 5.051e-01
P -10 2.496e-02 2.391e-02 2.500e-02 2.410e-02 2.339e-02
θ-10 7.450e-02 6.833e-02 9.168e-02 6.816e-02 6.423e-02
υ-10 8.498e-02 6.781e-02 1.179e-01 6.789e-02 4.530e-02
$-10 8.224e-01 6.725e-01 1.502e-00 6.752e-01 5.061e-01
P -20 2.512e-02 2.687e-02 2.504e-02 3.010e-02 2.351e-02
θ-20 7.454e-02 7.384e-02 9.185e-02 6.891e-02 6.429e-02
υ-20 8.495e-02 2.681e-01 1.187e-01 2.154e-01 4.547e-02
$-20 8.266e-01 6.815e-01 1.516e-00 6.820e-01 5.079e-01

TABLE VI
p-VALUES OF FBELC, FCMAC, HC, AND FHC AGAINST T2FHC

Items FBELC FCMAC HC FHC
J1-5 2.003e-12 3.802e-13 3.590e-21 1.126e-11
J2-5 1.193e-11 1.194e-05 2.466e-13 4.970e-02
J3-5 7.034e-05 9.328e-17 2.631e-12 2.284e-14
J1-10 1.741e-08 1.159e-08 2.909e-20 4.445e-07
J2-10 1.210e-12 3.503e-09 4.831e-12 4.416e-05
J3-10 8.121e-07 2.593e-18 5.190e-11 2.599e-16
J1-20 3.374e-07 2.627e-07 1.205e-19 1.287e-05
J2-20 9.419e-15 8.127e-03 2.492e-13 4.044e-02
J3-20 7.676e-06 3.014e-13 3.413e-12 1.531e-12
P -5 1.230e-13 6.166e-14 1.449e-19 1.061e-11
θ-5 1.241e-12 3.163e-16 7.848e-24 1.753e-16
υ-5 9.596e-18 8.263e-21 5.362e-17 9.455e-21
$-5 3.780e-20 3.651e-31 1.475e-25 4.229e-31
P -10 1.978e-14 1.805e-17 4.480e-20 1.906e-14
θ-10 1.607e-12 1.501e-22 5.369e-25 9.961e-17
υ-10 5.056e-19 5.185e-26 1.511e-18 1.934e-23
$-10 2.722e-19 2.364e-39 5.831e-25 1.083e-34
P -20 8.857e-15 1.294e-06 3.805e-19 4.380e-06
θ-20 1.573e-13 5.485e-07 3.468e-25 1.451e-02
υ-20 3.409e-21 5.591e-07 4.725e-18 4.227e-07
$-20 8.551e-23 2.149e-23 7.101e-25 9.178e-23

BELC. The resultant network has also been combined with
a sliding mode controller for performing dynamic non-linear
control. It has been theoretically proven that the system imple-
menting the proposed approach is asymptotically stable with
guaranteed convergence. Simulation experimental studies have
demonstrated that the implemented system using the T2FHC
led to preciser position tracking and more favorable stability
in comparison with the results generated using alternative,
recently-developed network-based controllers, such as fuzzy
CMAC and fuzzy BELC (all of these beat the classical PID
controllers significantly). This shows the potential of the pro-
posed approach for real-world applications, especially when
concerning multiple-degrees of freedom robot manipulators.

This research can be further improved in several directions.
The parameters used in the T2FHC provide great flexibility
in modeling non-linearity and uncertainty, but they need to be
initialised using empirical knowledge. It is therefore of great
practical significance to investigate the automation of such
initialization process in an effort to prompt the applicability of
the proposed approach. In addition, it is worthwhile to study
the interpretability of Type-2 fuzzy sets and the generalisability
of the proposed method.
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