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Abstract

Context: There is a need for ranking and defuzzification of Interval Type-2 fuzzy sets (IT2FS), in
particular Interval Type-2 fuzzy numbers (IT2FN). To do so, we use the classical Yager Index Rank
(YIR) for fuzzy sets to IT2FNs in order to find an alternative to the centroid of an IT2FN.

Method: We use a simulation strategy to compare the results of the centroid and the YIR of an IT2FN.
This way, we simulate 1000 IT2FNs of the following three kinds: gaussian, triangular, and non sym-
metrical in order to compare their centroids and YIRs.

Results: After performing the simulations, we compute some statistics about its behavior such as the
degree of subsethood, equality and the size of the Footprint of Uncertainty (FOU) of an IT2FN. A
description of the obtained results shows that the YIR is less wide than centroid of an IT2FN.

Conclusions: In general, YIR is less complex to obtain than the centroid of an IT2FN, which is highly
desirable in practical applications such as fuzzy decision making and control. Some other properties
regarding its size and location are also discussed.
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A Comparison Between the Centroid and the Yager Index Rank for Type Reduction of an Interval Type-2 Fuzzy Number
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Resumen
Contexto: Hay una necesidad por defuzzificar y rankear Conjuntos Difusos Tipo-2 de Intervalo
(IT2FS), en particular Números Difusos Tipo-2 de Intervalo (IT2FN). Para ello, usamos el Índice de
Yager (YIR) para conjuntos difusos aplicado a IT2FNs con el fin de encontrar una alternativa al cen-
troide de un IT2FN.
Método: Usamos una estrategia de simulación para comparar los resultados del centroide y del YIR
de un IT2FN. Ası́ pues, simulamos 1000 IT2FNs de cada uno de los siguientes tres tipos: gausianos,
triangulares y asimétricos para comparar sus centroides y YIRs.
Resultados: Después de realizar las simulaciones, se calculan algunas estadı́sticas de su compor-
tamiento como el grado de cobertura y de igualdad relativas del YIR respecto al centroide ası́ como el
tamaño de la Huella de Incertidumbre (FOU) de un IT2FN. La descripción de los resultados obtenidos
muestra que el YIR es menos amplio que el centroide.
Conclusiones: En general, el YIR es menos complejo de obtener que el centroide de un IT2FN, lo cual
es altamente deseable en aplicaciones prácticas como toma de decisiones y control. Otas propiedades
relacionadas con su tamaño y ubicación también son diiscutidas.
Palabras clave: Números Difusos Tipo-2 de Intervalo, Índice de Yager, Ranking.

1. Introduction

The use of fuzzy sets in last decades have become an important tool to solve problems that in-
volve non probabilistic uncertainty. One of the most important open problems when using fuzzy
sets regards to the way to find a crisp measure that represents the behavior of the set. This process is
known as Type reduction, and the case of an Interval Type-2 Fuzzy Number (IT2FN) is even more
complex than classical fuzzy sets. Also the low availability of efficient Type reduction methods
leads to analyze the properties of the most used ones, the IASCO algorithm (see Melgarejo [12])
which comes from the Enhanced Karnik-Mendel algorithm (EKM) (see Karnik & Mendel [22])
and the Yager Index Rank (YIR) for IT2FNs in this case.

Fuzzy sets are specially useful in engineering problems whose statistical information is unreliable
or absent, and one of the possible ways to obtain information is via experts opinions and percep-
tions. Type-2 fuzzy sets cover uncertainty coming from multiple experts perceptions, and the way
how they perceive the the problem, so its applicability in engineering is wide, specially in control
and decision making problems where multiple experts are involved (see Hu et al [7], Kahraman et
al [9], Melgarejo & Peña [13], and Mendel & Wu [19]).

Following the results presented in WEA 2015 (see Figueroa-Garcı́a & Pachón-Neira [6]), this
time we compare the centroid to Yager index for type reduction of IT2FNs in order to see their
properties. To do so, we simulate 1000 IT2FNs of three shapes: triangular, gaussian, and non
symmetric triangular membership functions and compute their centroids, Yager indexes, and other
interesting measures to provide some useful information to readers who want to implement Type-2
fuzzy sets/systems.

The paper is organized into 6 sections; Section 1 introduces the main problem; Section 2 presents
some basics about Type-2 fuzzy sets; Section 3 introduces the centroid and Yager index of an
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IT2FN; Section 4 presents the methodology used for comparing both methods; In section 5, the
results of the experiments are presented, and finally Section 6 presents some concluding remarks
of the study.

2. Basics on Interval Type-2 fuzzy sets
In this paper, we do not make any distinction between definitions of IVFSs and Interval Type-2

fuzzy sets (IT2FSs) given by Mendel [15] since they are equivalent (see Mendel [17], Bustince [2],
Bustince et al. [1], and Türksen [21]). A Type-2 fuzzy set is then:

Ã : X → F([0, 1]) (1)

Ã = {((x, u), Jx, fx(u)) |x ∈ X;u ∈ Jx ⊆ [0, 1]} (2)

Ã =

∫
x∈X

∫
u∈Jx

fx(u)/(x, u), Jx ⊆ [0, 1] (3)

where Ã represents uncertainty around the word A, Jx is the primary membership of x, u is its
domain of uncertainty, and F2(X) is the class of all Type-2 fuzzy sets (see Mendel [15], [19]).

This way, Ã is composed by an infinite amount of embedded Type-1 fuzzy sets namely Ae. Every
element x has associated a set of primary memberships Jx weighted by a Secondary fuzzy set fx(u)
where u is the domain of uncertainty of x, u ∈ Jx ⊆ [0, 1]. Now, an IT2FS is a simplification of a
T2FS since its secondary membership function is assumed to be 1, as shown as follows.

Ã =

∫
x∈X

∫
u∈Jx

1/(x, u) =

∫
x∈X

[∫
u∈Jx

1/u

]/
x, (4)

where x, u are the primary and secondary variables, and fx(u)/u = 1 is the secondary membership
function.

Uncertainty about the word A is conveyed by the union of all of Jx into the Footprint Of Uncer-
tainty of Ã, namely FOU(Ã), which is bounded by two functions: An Upper membership function
UMF(Ã) = µ̄Ã(x) ≡ AU and a Lower membership function LMF(Ã) = µ

Ã
(x) ≡ AL. FOU(Ã) is

shown in Figure 1.

In Figure 1, Ã is an IT2FS, the universe of discourse for the primary variable x is the set x ∈ X ,
the support of Ã, supp(Ã) is the interval x ∈ [x̌, x̂] and µÃ is a triangular membership function
with parameters x̌, x̂, x̌, x̂ and x̄.

Definition 2.1 (α-cut of an IT2FS) Figueroa-Garcı́a, Chalco-Cano & Román-Flores [5] have de-
fined the α-cut of an IT2FS as follows:

αÃ =
[
[ǍU

α , Ǎ
L
α], [Â

L
α, Â

U
α ]
]
. (5)

where αAe = {x |µAe(x) ⩾ α} is an α-cut done over an embedded set Ae ∈ Ã. The symbol
∫

denotes fuzzy union, so αÃ is the union of all αAe.
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A graphical representation of αÃ is provided in Figure 2.
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Ã

1

Jx

µÃ
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Figure 1. Interval Type-2 Fuzzy set Ã

1

µÃ
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Figure 2. αÃ of the set Ã

2.1. Type-2 fuzzy numbers
In this paper, a Type-2 fuzzy number (T2FN) is considered as the extension of a Type-1 fuzzy

number. This means that Ã is an T2FS whose UMF and LMF are fuzzy numbers (e.g. normal and
convex fuzzy subsets of R, Zadeh [25]). αA is closed interval for all α ∈ [0, 1], and its support
supp(A) is defined over R. This also means that a fuzzy number is a normal and convex fuzzy set,
as shown as follows.

Definition 2.2 (Type-2 Fuzzy Number) Let Ã ∈ F2(R). Then, Ã is a Type-2 Fuzzy Number
(T2FN) iff there exists a closed interval [a, b] ̸= ∅ for each UMF (µ̄Ã) and LMF (µ

Ã
) such that

µÃ(x, u) =


1 for x ∈ [a, b], u ∈ Jx ⊆ [0, 1]

l(x, u) for x ∈ [−∞, a], u ∈ Jx ⊆ [0, 1]
r(x, u) for x ∈ [b,∞], u ∈ Jx ⊆ [0, 1]

(6)

where l : (−∞, a) → F([0, 1]), u ∈ Jx ⊆ [0, 1] is monotonic non-decreasing, continuous from
the right, and l(x, u) = 0 for x < ω1, and r : (b,∞) → F([0, 1]), u ∈ Jx ⊆ [0, 1] is monotonic
non-increasing, continuous from the left, and r(x, u) = 0 for x > ω2.

3. Type reduction of an IT2FS

Consider a crisp set SA(x), a classical fuzzy set A(x), and an IT2FS Ã(x), all of them related to
the word A. The Type reduction process is simply the process of going from Ã(x) to SA(x) using
functions (or methods) namely f . This is:

Ã(x)
f1−→ A(x)

f2−→ SA(x)

To do so, we introduce two methods: a centroid based method called the IASCO algorithm, and
the YIR method as follows.
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3.1. Centroid of an IT2FS

The IASCO algorithm proposed by Melgarejo in [12] is an improvement of the Enhanced Karnik-
Mendel algorithm (See Karnik & Mendel in [22]) for Type-reduction of an Interval Type-2 fuzzy
set. Given a set Ã, its centroid C(Ã) is composed by an interval set of centroids bounded by
two values min{C(Ã)} = Cl(Ã) and max{C(Ã)} = Cr(Ã). Every point enclosed into C(Ã) =
[Cl(Ã), Cu(Ã)] is also a possible centroid of Ã, so there is an infinite amount of centroids enclosed
into C(Ã) (see Wu and Mendel [22], [23], Mendel and Liu [18], Karnik and Mendel [10], and
Melgarejo [3]), as follows:

C(Ã) = 1/[cl(Ã); cr(Ã)] (7)

where Ã is an interval Type-2 fuzzy set, cl(Ã) and cr(Ã) are the upper and lower centroids. The
main equations of the Enhanced Karnik-Mendel (EKM) algorithm for computing C(Ã) (see Wu &
Mendel [22]) are provided as follows:

cl(Ã) =

∑N
i=1 xif i

+
∑k

i=1 xi

(
f i − f

i

)
∑N

i=1 f i
+

∑k
i=1

(
f i − f

i

) (8)

cr(Ã) =

∑N
i=1 xif i −

∑k
i=1 xi

(
f i − f

i

)
∑N

i=1 f i −
∑k

i=1

(
f i − f

i

) (9)

where f and f are the UMF and LMF of Ã.

Other authors like Melgarejo [12] proposed the algorithm IASCO (Iterative Algorithm With Stop
Condition) which improves the computation of C(Ã), as shown as follows:

D0 =
N∑
i=1

xif i
(10)

P0 =
N∑
i=1

f
i

(11)

cmin = xN (12)

starting with k = 0, increasing k = k + 1 and computing D0 and P0 for each increment, then we
have

Dk = Dk−1 + xk

[
fk − f

k

]
(13)

Pk = Pk−1 +
[
fk − f

k

]
(14)

cl(k) =
Dk

Pk

(15)

if cl(k) ≤ cmin then cmin = cl(k) otherwise stop and do cl = cmin.
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In a similar way, to find cr from (9) the recursions are:

D0 =
N∑
i=1

xif̄i (16)

P0 =
N∑
i=1

f̄i (17)

cmax = xN (18)

starting with k = 0, increasing k = k + 1 and computing D0 and P0 for each increment, then we
have

Dk = Dk−1 − xk[f̄k − f
k
] (19)

Pk = Pk−1 − [f̄k − f
k
] (20)

cr(k) =
Dk

Pk

(21)

if cr(k) ⩾ cmax then cmax = cl(k) otherwise stop and do cr = cmax

If the above condition is satisfied at some point stops the iteration cycle; the latest results are
those for cl(Ã) and cr(Ã).

3.2. Yager Index rank for IT2FNs

Ronald Yager [24] has proposed one of the most important ranking methods for fuzzy sets. Based
on the works of Figueroa-Garcı́a & Pachón-Neira [6], Chaudhuri & Rosenfeld [4], and Hung &
Yang [8] regarding α levels for computing distances, we present the Yager Index for IT2FNs as
follows:

I(Ã) :=
1

2

∫
[0,1]

[ǍU
α + ÂL

α, Ǎ
L
α + ÂU

α ] dα, (22)

in the continuous case, and

I(Ã) :=
1

2

n∑
i=1

[
(ǍU

αi
+ ÂL

αi
), (ǍL

αi
+ ÂU

αi
)/2

]
∆αi

, (23)

in the discrete case, where ∆αi
= αi − αi−1 is the size of the partition (also known as the step size

of the Riemmann’s integral).

YIR leads to an interval set defined as I(Ã) := [Il(Ã) + Ir(Ã)] which is easier to obtain than
C(Ã) in the sense that any IT2FN is α-convex, so the computation of I(Ã) leads in some cases to
closed forms. There is a limitation when using YIR over discrete variables: there is no a guarantee
of having convex α-cuts, so we encourage readers to use any interpolation and/or approximation
method in cases where αÃ leads to open intervals.

230 INGENIERÍA • VOL. 21 • NO. 2 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
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4. Methodology of comparison
The relation between C(Ã) and I(Ã) is measured via subsethood between sets (see Kosko [11],

Nguyen & Kreinovich [20], and Figueroa-Garcı́a, Chalco-Cano & Román-Flores [5]). Consider
two sets C(Ã), I(Ã) the set equality and subsethood between C(Ã), I(Ã) are defined as follows:

d= =
|C(Ã) ∩ I(Ã)|
|C(Ã) ∪ I(Ã)|

, (24)

d⊆ =
|C(Ã) ∩ I(Ã)|

|C(Ã)|
(25)

To do so, we have defined the following measures to compare C(Ãi) to I(Ãi):

• Center of centroid Cc(Ã) = (cl(Ã) + cr(Ã))/2

• Length of centroid lc(Ã) = cr(Ã)− cl(Ã)

• Center of YIR Ic(Ã) = (Il(Ã) + Ir(Ã))/2

• Length of YIR lI(Ã) = Ir(Ã)− Il(Ã)

• Footprint of Uncertainty FOU(Ã) =
∫
x
µ̄Ãdx−

∫
x
µ
Ã
dx

• Set equality d=,i and subsethood d⊆,i

Now, we have performed 1000 simulations of three different different IT2FNs:

• Triangular: TU(ǎ, ā, â), TL(ǎ, ā, â),

• Gaussian: GU(ā, â), GL(ā, ǎ),

• Non symmetric triangular (see Figure 3).

We have selected those shapes due to applicability in control and decision making problems and
its easiness to implement in real world applications (see Wu & Mendel [19], Mendel [14], [16]).

µÃ

x ∈ Xa1 a2 d2 d1

α2

b1

α1

b2 c

1

Figure 3. Non symmetric triangular IT2FN

A description of the procedure is shown in Procedure 1.
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Procedure 1 Simulation methodology
for i : 1 → 1000 do

Simulate an IT2FN Ãi

Compute C(Ãi), I(Ãi), Cc(Ãi), Ic(Ãi), and FOU(Ãi)
If Cl < Il, set yl,i = 1, 0 otherwise. If Cr > Ir , set yr,i = 1, 0 otherwise
Compute d=,i and d⊆,i, set D=,i = d=,i + d=,i−1 and D⊆,i = d⊆,i + d⊆,i−1

Compute FOUi=FOU(Ãi)+FOU(Ãi−1)
Compute lC,i and lI,i, if lC,i > lI,i set Li = 1, 0 otherwise

end for
Compute FOU, l̄C , l̄I , L̄, D̄=, D̄⊆, C̄c, Īc

5. Results
After computing all measures shown in last section, we collect the results of the simulation proce-

dure in Table I. This way, we present the average values for d=, d⊆ namely D̄=, D̄⊆ and the average
values FOU, L̄, C̄c, Īc per type of IT2FN.

In Table I, Center is the average of all central parameters of all simulated IT2FNs. Note that Īc(Ã)
and C̄c(Ã) are very close to the central parameter of every set. This indicates that both methods are
close to most possible granule of Ã which is somehow an expected property. Another interesting
finding is that centroid is as wider as the support of Ã is, while YIR is as wider as the FOU is.

For triangular IT2FNs, a 71% of cases fulfill I(Ã) ⊆ C(Ã), a 83% of cases fulfill Cl(Ã) ⩽ Il(Ã),
a 88% of cases fulfill Cr(Ã) ⩾ Ir(Ã), and a 100% of cases lc(Ã) ⩾ lI(Ã).

For gaussian IT2FNs, a 100% of cases fulfill I(Ã) ⊆ C(Ã), a 100% of cases fulfill Cl(Ã) ⩽
Il(Ã), a 100% of cases fulfill Cr(Ã) ⩾ Ir(Ã), and a 100% of cases lc(Ã) ⩾ lI(Ã). This happens
due to the inherent symmetry of gaussian distribution which leads to centroid and YIR to converge
to the same central value, and again YIR is less wide than centroid.

For non symmetric IT2FNs, a 57% of cases fulfill I(Ã) ⊆ C(Ã), a 98% of cases fulfill Cl(Ã) ⩽
Il(Ã), a 59% of cases fulfill Cr(Ã) ⩾ Ir(Ã), and a 99% of cases lc(Ã) ⩾ lI(Ã). In this case YIR
is still less wide than centroid, but due to the asymmetry of its left shape the YIR is greater than
centroid.

Table I. Main results of the experiments over each set shape
Shape Center Cc(Ã) Ic(Ã) lc(Ã) lI(Ã) FOU(Ã) L̄ D̄= D̄⊆

Triangular 29.87 30.10 30.04 6.99 5.11 10.21 0.56 0.685 0.699
Gaussian 75.17 75.17 75.17 5.74 3.06 6.12 0.07 0.602 0.602
Non-sym. 43.66 40.05 41.33 10.6 6.69 16.96 0.23 0.99 0.98

In Table I, L̄ is the average of times that Cc(Ã) > Ic(Ã) which means that even when the cen-
ters of YIR and centroid are similar, there are small numerical differences. For instance, only a
7% of all gaussian simulations show this behavior (due to small numerical differences) even when
all simulated gaussian IT2FNs were symmetric. It is also clear that this behavior changes in non
symmetric IT2FNs.

In general, both centroid and YIR represent the central value of Ã in a good way with some
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numerical differences. While YIR is a function of α, the centroid is a function of the support of Ã
which finally leads to different results.

6. Concluding Remarks
From a computational point of view, the IASCO and EKM algorithms use expensive routines

whose results are wider measures than the YIR. In most of cases, the centroid is a wider measure
than the YIR. For gaussian IT2FNs, a 100% of times the centroid contains the YIR, while for trian-
gular IT2FNs only a 71% the centroid contains YIR. It seems that the FOU of Ã has a relationship
to I(Ã), C(Ã) since as large the FOU is, as large I(Ã), C(Ã) are. Future works will corroborate
those results.

In general, the YIR seems to be an easier way to compute the expected value of Ã than C(Ã)
due to its simplicity and good relationship to its FOU. Evidently, the shape of the set infers on
the properties of I(Ã), C(Ã), so we recommend to keep in mind that C(Ã) is wider than I(Ã).
For gaussian shapes, both I(Ã), C(Ã) obtains the same Ic(Ã), Cc(Ã), for non symmetric triangular
shapes most of times Ic(Ã) > Cc(Ã), and for triangular shapes near a half of cases I(Ã) > C(Ã).

For practical applications, we recommend the use of YIR over centroid since YIR has closed
equations while IASCO and EKM algorithms are iterative methods. Note that YIR has been de-
signed for IT2FNs while IASCO and EKM algorithms have been designed for all kinds of IT2FSs.

This way, YIR has a great potential in fuzzy optimization, resolution of fuzzy equations, hard-
ware implementation of fuzzy controllers, and other applications where iterative computations are
neither allowed nor feasible.

Future work
Other experiments can be performed in the future to see other properties of I(Ã), C(Ã) in other

fields such computation of fuzzy functions, fuzzy optimization, fuzzy decision making, etc. Also,
some theoretical differences between YIR and centroid could be interesting to be analyzed such as
the relationship between I(Ã) and FOU(Ã) and the sizes of I(Ã), C(Ã).
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José de Caldas - Bogotá, Colombia. e-mail: diego.pachon@outlook.es

Juan Carlos Figueroa-Garcı́a
He is an Assistant Professor at the Engineering Faculty of the Universidad Distrital Francisco José de Caldas - Bogotá,
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