1,828 research outputs found

    An Integral Sliding Mode Observer for Linear Systems

    Get PDF
    In this paper a sliding-mode observer for linear time-invariant systems is proposed. The observer is based on integral sliding modes and the equivalent control method. In order to induce a sliding mode in the output error, a second order sliding mode algorithm is used. Convergence proofs of the proposed observer are presented. In order to expose the features of this proposal, a design example over a DC motor model is exposed, noiseless and noisy measurements cases are considered. For this case, the simulation shows the high performance of the integral observer.ITESO, A.C.Universidad Nacional de ColombiaCINVESTAV-IP

    Sensorless control of a DC series motor

    Get PDF
    International audienceIn this paper a sensorless speed control for a DC series motor is presented. In this context, an observability analysis is performed, revealing that the system is inobservable at zero current. In order to overcome this problem we propose the joint use of an estimator and an observer, the latter being based on second order sliding modes techniques. The simulation results highlight the good performance of the proposed control

    Genetic algorithm optimized robust nonlinear observer for a wind turbine system based on permanent magnet synchronous generator

    Get PDF
    © 2022 ISA. Published by Elsevier Ltd. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.isatra.2022.02.004This paper presents an optimal control scheme for a Permanent Magnet Synchronous Generator (PMSG) coupled to a wind turbine operating without a position sensor. This sensorless scheme includes two observers: The first observer uses the flux to estimate the speed. However, an increase in the temperature or a degradation of the permanent magnet characteristics will result in a demagnetization of the machine causing a drop in the flux. The second observer is therefore used to estimate these changes in the flux from the speed and guaranties the stability of the system. This structure leads to a better exchange of information between the two observers, eliminates the problem of encoder and compensates for the demagnetization problem. To improve the precision of the speed estimator, the gain of the non-linear observer is optimized using Genetic Algorithm (GA) and the speed is obtained from a modified Phase Locked Loop (PLL) method using an optimized Sliding Mode Controller (SMC). Furthermore, to enhance the convergence speed of this observer scheme and improve the performance of the system a Fast Super Twisting Sliding Mode Control (FSTSMC) is introduced to reinforce the SMC strategy. A series of simulations are presented to show the effectiveness and robustness of proposed observer scheme.Peer reviewe

    High-Order Sliding Mode Block Control of Single-Phase Induction Motor

    Get PDF
    A new sliding mode (SM) observer-based controller for single-phase induction motor is designed. The proposed control scheme is formulated using block control feedback linearization technique and high-order SM algorithms with measurements of the rotor speed and stator currents. The stability of the complete closed-loop system, including the rotor flux second-order SM observer, is analyzed in the presence of model uncertainty, namely, rotor resistance variation and bounded timevarying load torque.CINVESTA

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems
    • …
    corecore