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High Order Sliding Mode Block Control of Single
Phase Induction Motor

Guillermo Rubio-Astorga,Student Member, IEEE, Juan Diego Sánchez-Torres,Student Member, IEEE,
Jose Cañedo,Member, IEEE, and Alexander G. Loukianov,Member, IEEE

Abstract—A new sliding mode observer-based controller
for single-phase induction motor is designed. The proposed
control scheme is formulated using block control feedback
linearization technique and high order sliding mode algorithms
with measurements of the rotor speed and stator currents. The
stability of the complete closed-loop system included the rotor
flux second order sliding mode observer, is analyzed in the
presence of model uncertainty, namely, rotor resistance variation
and bounded time-varying load torque.

Index Terms—Sliding Mode Control; Single-Phase Induction
Motors; Robust Control; Nonlinear Systems.

I. NOMENCLATURE

λαr , λβr Rotor magnetic flux linkage components.
iαs, iβs Stator current components.
vαs, vβs Voltages of the main and auxiliary stator

windings.
ωr Rotor speed.
TL Load torque.
Rαs, Rβs Stator resistances main and auxiliary

winding.
Rr Rotor resistance.
Lαs, Lβs Stator inductances main and auxiliary

winding.
Lr Rotor inductance.
Lm Magnetization inductance.
J Rotor moment inertia.
np Numbers of pairs of poles.

II. I NTRODUCTION

T HE aim of this paper is to present an observer-based
controller using High Order Sliding Mode (HOSM)

algorithms for capacitor-run Single-Phase Induction Motor
(SPIM). The SPIM is widely used in many household
applications compressors, pumps, air conditioning systems,
washer, refrigerators, and other equipment which require low
power motors. These motors are basically powered directly
from a commercial source phase, and usually operated in an
open loop configuration, see [1] and references therein.

To improve the SPIM performance, a feedback control
scheme can be designed. This problem consists of three
subproblems:a) a feedback controller design mainly for speed
profile tracking and flux magnitude regulation,b) an observer
design to estimate the rotor flux, andc) stability analysis of
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the complete system closed by the designed observer-based
feedback.

It can be noted that the SPIM dynamical model is similar
to three phase motor (TPIM) one. Therefore, to solve the
first subproblem, an application of several feedback controllers
proposed for TPIM can be considered. For example, a classical
vector control with field orientation control (FOC) technique,
due to [2]; more recently, the application of back-stepping
[3], passivity-based control [4], [5], input-output feedback
linearization [6], [7], adaptive [8] and sliding mode (SM) [9]–
[13], including neural networks [14], [15] and discrete time
[16] controllers. However, the treatment of the SPIM control
design problem is different from the TPIM controller, since
the SPIM despite of symmetric TPIM has a basic control
input which applies to the main winding, and the auxiliary
winding is affected by the switched capacitor, it looks likea
”subactuated” system.

To apply, for instance, the vector control strategy for SPIM
case [17], a transformation of the state variables was employed
[18] eliminating the asymmetries and deriving the symmetrical
model. However, this transformation as well as the field
orientation control depends on the plant parameters that in
practice are subject to variations as a result of a change
in the system loading and/or in the system configuration.
Moreover, this control scheme does not take into account
practical constrain on the auxiliary control input that depends
on switching parameter which can take just two values.

Concerning the second subproblem, the rotor flux estimation
is usually obtained from machine model and the measurement
of the speed, stator voltages and currents [19], [20]. Several
flux observers have been proposed using adaptive [21],
[22], neural network [14], [15] and sliding mode (SM)
[10], [11], [23]–[25] approaches, including the cases of
fault detection [26] and fault tolerant [27] schemes. The
proposed observers strategies guarantee robustness in the
presence of plant model uncertainty. However, they provide
only asymptotic convergence of the flux observation error. A
robust second order SM finite time observer for an induction
motor has been proposed in [24]. This observer provides high
efficiency, however, the proposed design procedure requires
the knowledge oh the sliding function derivative, which is
unknown. Moreover, the proposed sliding function depends
on the motor parameters which in practice can vary. It can
be noted that, for the SPIM, a flux observer which uses
a linear compensator in the form of real differentiator, has
been designed in [28] for the nominal plant only, therefore,
this observer is sensitives to motor model uncertainty and to
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sensors noise due to using the real differentiator, moreover,
stability analysis of the closed-loop system included the
observer, was not carried on.

As far as stability analysis of the complete observer/control
system is concerned, the separation principle proposed in
[29], can be applied. However, this principle was developed
for a certain class of nonlinear minimum phase systems that
can be presented in observer canonical form, and then a
high gain observer can be designed. The induction motor
case covers a different observer/controller scenario, andthe
applicability of the observer/controller scheme described in
[29] is questionable, and by far not trivial. A more precise
substantiation of the induction motor observer/controller
coupling, is necessary.

Revising the previous works it is possible to see that they
have failed to design a complete robust SPIM controller
which include both the flux observer and speed and
capacitor control algorithms. For example, in [30]–[32],
[28] proposed a decoupling control vector for SPIM and
Flux-Oriented Control, where it is important to remove
the pair-electromagnetic pulsating and torque control. But
nevertheless there is no an auxiliary control for the switched
capacitor, while in [33]–[35], it was considered the problem
of controlling the capacitor only without any observer design.
Moreover, the proposed separately in the various papers
controllers and observers are sensitives the plant parameter
variation and external disturbance, namely the load torque.

In this paper, in spite of the previous works, we propose
a complete observer-based control scheme for the capacitor-
run SPIM in the presence of uncertainty caused by plant
parameter variations and external perturbations. The proposed
control scheme is based on the motor dynamic model including
the capacitor dynamics, described in a stationary reference
frame(αβ) fixed in the stator, that does not require any plant
parameter dependent transformation. This scheme includes:

1) A second-order SM observer which is designed to
estimate the rotor flux. It could be highlighted that the ideaof
applying a second order SM algorithm for electrical drives was
successively used to design the flux observer in [25]. In spite of
these results, the proposed observer is formulated such that the
estimation error dynamics have a SMsuper-twisting algorithm
structure [36], leading to a finite time and robust estimation.
This idea was previous proposed for mechanical systems in
[37] and, for the SPIM, was applied only in [38]. The designed
observer in spite of the previously works (including the SPIM
case [28]) ensures finite time estimation error convergencein
presence of motor parameter variation.

2) A motor speed basic controller which is designed
using the measured stator current and estimated rotor flux,
and applying a combination ofBlock Control feedback
linearization [39] and quasi-continuous SM [40] techniques, a
sliding manifold on which the control tracking error is finite
time zero, is formulated as shown in [41]. Then, again the
super twisting SM algorithm for the basic control input and
switching logic for the auxiliary input are proposed in order to
ensure the designed sliding manifold be a finite time attractive.
Comparing with [28] the proposed control scheme takes into
account practical constraints, improves the produced motor

torque by controlling the rotor flux, and exhibit robustness
of the closed-loop system avoiding the estimation of the load
torque, and allowing to overcome an uncertainty due to the
rotor resistance variations, improving the tracking accuracy.
As a result, the designed controller adjusts the equivalent
capacitance incrementing the SPIM electromagnetic torque
during start-up and improving its performance in steady state
reducing pair-electromagnetic pulsating.

Comparing again with previous works, the stability analysis
of the proposed complete closed-loop system is carried on.
The system is represented in the control and estimation error
state variables. Then, by using the SM finite time convergence
property, first the reaching phase to the sliding manifold, and
then the sliding motion stability is studied. That facilitates the
stability analysis of the complete closed-loop system.

In the following, Section III provides the considered model
of the SPIM. Sections IV and V describe the proposed
observer and controllers, including a detailed stability and
robustness analysis. Simulation results which demonstrate the
main characteristics of the proposed controller, are presented
in Section VII. Finally, in Section VIII the conclusions are
given.

III. M ATHEMATICAL MODEL FOR THESPIM

The dynamic model of the SPIM can be considered as the
model of an unsymmetrical2-phase(a, b) induction machine
in the variables of circuit elements. After the transformation
to a fixed frame(αβ) [42], the single phase induction motor
scheme with the stator current and the rotor flux as the state
variables, is presented in Fig. 1.
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Fig. 1: Single phase induction motor.

and its dynamic equations are given by

diαs
dt

=− c1a10iαs + c1c40λαr − c1c3npωrλβr

+ c1vαs +∆αs

diβs
dt

=− c2a20iβs + c2c40λβr
+ c2c3npωrλαr

+ c2vβs +∆βs

dλαr
dt

=− a30λαr + npωrλβr + a40iαs +∆αr

dλβr
dt

=− npωrλαr − a30λβr + a40iβs +∆βr

dωr

dt
=d1d2 (λβriαs − λαriβs)− d2TL.

(1)
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This model considers variations on rotor resistance of the
form

Rr(t) = Rr0 +∆Rr(t)

with ∆Rr(t) an unknown but bounded function of time,
leading to a set of uncertain model parameters

a1(t) = a10 +∆a1(t), a2(t) = a20 +∆a2(t),
a3(t) = a30 +∆a3(t), a4(t) = a40 +∆a4(t) and,
c4(t) = c40 +∆c4(t)

wherea10 = Rαs + (L2
m/L2

r)Rr0, a20 = Rβs + (L2
m/L2

r)Rr0,
a30 = (1/Lr)Rr0, a40 = (Lm/Lr)Rr0 and,c40 = (Lm/L2

r)Rr0

are the parameter nominal values.
The parametric uncertainties are presented by∆a1(t) =

∆a2(t) = (L2
m/L2

r)∆Rr(t), ∆a3(t) = (1/Lr)∆Rr(t),
∆a4(t) = (Lm/Lr)∆Rr(t), and∆c4(t) = (Lm/L2

r)∆Rr(t).
While the model parameters which do not depend on the

resistance variations are given byc1 = Lr/(LαsLr − L2
m),

c2 = Lr/(LβsLr − L2
m), c3 = Lm/Lr, d1 = (Lm/Lr)np and

d2 = 1/J.
Thus, the unknown terms in (1) are defined by

∆αs = ∆c4(t)c1λαr −∆a1(t)c1iαs,

∆βs = ∆c4(t)c2λβr −∆a2(t)c2iβs,

∆αr = −∆a3(t)λαr +∆a4(t)iαs and,

∆βr = −∆a3(t)λβr +∆a4(t)iβs.

The dynamics of the capacitor (see Fig.1) are given by

dvc
dt

= ω0Xciβs

whereXc is the capacitor reactance andω0 = 2πf , with f
being the fundamental frequency.

Using the relation between the voltagesvαs andvβs in (1)
of the form

vαs = vs

vβs = n−1vs − vcρ
(2)

where the switching parameterρ ∈ {0, 1}, the voltagevβs
yields to

vβs =

{

n−1vs − vc if ρ = 1
n−1vs if ρ = 0

being n−1vs as a referred voltage of the main winding to
the auxiliary winding withn = NA/NB, whereNA is the
number turns of main winding andNB is the number turns of
an auxiliary winding.

The switched capacitor circuit [1], which is shown in Fig.
1, consists of two parts: an ac capacitor and an electronic
switch. The switch must allow bidirectional current flow as in
a mechanical switch. The switch is short-circuited and opened
for each cycle. It is closed the instant the voltage across
the capacitor reaches zero. Thus, a zero voltage switching
is performed. Before the switch is closed, the current flows
through the capacitor which is placed in series with the
auxiliary winding. When the switch is short-circuited, the
current bypasses the capacitor, and the voltage across the
capacitor is zero. As a result, the voltage across the capacitor
may change only during the period of the switch being opened.

By closing and opening the switch periodically, the effective
value of the capacitor appears to be larger than the actual value
[35]. When the short-circuited period of the switch is longer,
the voltage across the capacitor is lower; however, the current
flowing through the auxiliary winding is increased. Therefore,
for a fixed frequency, it is obvious that the effective capacitor
is increased when the shorting period of the switch is longer.
So, it is possible to obtain a larger capacitor value to start
the induction motor by using just a small capacitor (running
capacitor) in parallel with a switch. The switch has a resistance
which ensures the operation frequency of the capacitor and the
relationship of change in the current to the switch, and it is
not damaged.

IV. SECOND ORDER SLIDING MODE OBSERVER FOR

ROTOR FLUXES

Having the rotor speedωr and stator currentiαs and iβs
measurements only, in this section a second order SM observer
is designed to estimate the rotor flux.

Consider the following transformation:

λ∗αr = λαr − l1iαs

λ∗βr = λβr − l2iβs
(3)

where l1 and l2 are the transformation gains to be chosen
later. Using (3), the perturbed flux and current dynamics (1)
are represented in new variablesλ∗αr andλ∗βr of the form

diαs
dt

=− p11iαs − p12npωriβs − q3npωrλ
∗
βr + q4λ

∗
αr

+ c1vαs +∆αs

diβs
dt

=− p21iβs + p22npωriαs + q5npωrλ
∗
αr + q6λ

∗
βr

+ c2vβs +∆βs

dλ∗αr
dt

=− l11λ
∗
αr + l12npωrλ

∗
βr + ς11npωriβs + ς12iαs

− q1vαs − l1∆αs +∆αr

dλ∗βr
dt

=− l21λ
∗
βr − l22npωrλ

∗
αr − ς21npωriαs + ς22iβs

− q2vβs − l2∆βs +∆βr

(4)

wherep11 = c1a10 − l1c1c40, p12 = l2c1c3, p21 = c2a20 −
l2c2c40, p22 = l1c2c3, l11 = a30 + l1c1c40, l12 = 1 + l1c1c3,
l21 = a30 + l2c2c40, l22 = 1 + l2c2c3, ς11 = l12l2, ς12 =
a40− l11l1+ l1c1a10, ς21 = l22l1, ς22 = a40− l21l2+ l2c2a20,
q1 = l1c1, q2 = l2c2, q3 = c1c3, q4 = c1c40, q5 = c2c3, and
q6 = c2c40.

Based on (4), a nonlinear observer is designed of the form
which leads to a second order SM structure of the observer
error dynamics (see Section VI). Thus, definingλ̂∗αr , λ̂∗βr, îαs,
andîβs as the estimates ofλ∗αr , λ∗βr, iαs, andiβs, respectively,
the observer is proposed as follows:
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dîαs
dt

=− p11 îαs − p12npωr îβs − q3npωrλ̂
∗
βr + q4λ̂

∗
αr

+ c1vαs + k1α
∣

∣̃iαs
∣

∣

1
2 sign

(

ĩαs
)

+ k3αĩαs

dîβs
dt

=− p21 îβs + p22npωr îαs + q5npωrλ̂
∗
αr + q6λ̂

∗
βr

+ c2vβs + k1β
∣

∣̃iβs
∣

∣

1
2 sign

(

ĩβs
)

+ k3β ĩβs

dλ̂∗αr
dt

=− l11λ̂
∗
αr + l12npωrλ̂

∗
βr + ς11npωriβs + ς12iαs

− q1vαs +
k2α
q4

sign
(

ĩαs
)

dλ̂∗βr
dt

=− l21λ̂
∗
βr − l22npωrλ̂

∗
αr − ς21npωriαs + ς22iβs

− q2vβs +
k2β
q6

sign
(

ĩβs
)

(5)

where ĩαs = iαs − îαs, and ĩβs = iβs − îβs are the observer
errors andkiα, kiβ > 0 for i = 1, 2, 3.

As a result, from (3), the rotor fluxes estimatesλ̂αr andλ̂βr
are obtained aŝλαr = λ̂∗αr + l1 îαs and λ̂βr = λ̂∗βr + l2îβs.

V. SLIDING MODE CONTROLLER DESIGN

Provided that the currents and speed are continuously
measured and the rotor fluxes are estimated, the objective here
is to design a SM controller which can effectively track the
desired speedωref and the module to the square of the rotor
flux φref reference signals by means of the continuous basic
controlvs and auxiliary controlρ as a discontinuous function.

A. Sliding Manifold Design

As first step, the state variablesx1 andx2 are defined as

x1 =
[

ωr φ
]T

and x2 =
[

iαs iβs
]T
. (6)

whereφ = |ψ|
2
= λ2αr + λ2βr. Then, using (6) the system

(1) can be represented in theNonlinear Block Controllable
form with disturbance [39], which consists of two blocks

dx1
dt

=f1 (φ) +B1 (λr)x2 +D1TL +∆r

dx2
dt

=f2 (ωr, λr, is) +B2u+∆s

(7)

where λr =
[

λαr λβr
]T

, u =
[

vαs vβs
]T

,

f1 (φ) =
[

f11 f12
]T

=
[

0 −2a30φ
]T

,

D1 =
[

−d2 0
]T

, f2 =
[

f21 f22
]T

, ∆r =
[

0 2∆αrλαr + 2∆βrλβr
]T

, ∆s =
[

∆αs ∆βs

]T
,

B1 (λr) =

[

d1d2λβr −d1d2λαr
2a40λαr 2a40λβr

]

and, B2 =
[

c1 0
0 c2

]

, with f21 = −a10c1iαs + c1c40λαr − c1c3ωrλβr

andf22 = −a20c2iβs + c2c3ωrλαr + c2c40λβr.
Taking into account that only the estimates of the rotor

fluxes are available for the control design, we define the
following estimate variableŝφ = λ̂2αr + λ̂2βr, λ̂r = (λ̂αr , λ̂βr)

and its errors̃φ = φ− φ̂, λ̃r = λr − λ̂r, respectively.

Setting thecontroller-used error andreal tracking errors,
respectively

ẑ1 =
[

z11 ẑ12
]T

, z1 =
[

z11 z12
]T

with z11 = ωr − ωref (t), ẑ12 = φ̂ − φref (t) and, z12 =
φ − φref (t) = φ̂ + φ̃ − φref (t) = ẑ12 + φ̃, the dynamics of
the first transformed block (7) become

dz1
dt

= f1

(

φ̂
)

+B1

(

λ̂r

)

x2 + Φ̃ + ∆̄1 (8)

where Φ̃ =
[

0 dφ̃
dt

]T

and ∆̄1 = D1TL + ∆r +
[

dωref (t)
dt

dφref (t)
dt

]T

.
To impose a desired dynamics forz1, the Block Control

technique [39] is applied. The desired valuex2des =
[

idesαs idesβs

]T
for the virtual controlx2 in (8) is proposed

of the form
dz0
dt

= ẑ1

dν2
dt

= −ka2

dẑ12
dt + |ẑ12|

1
2 sign(ẑ12)

∣

∣

dẑ12
dt

∣

∣+ |ẑ12|
1
2

dν1
dt

= −ka1

dz11
dt + |z11|

1
2 sign(z11)

∣

∣

dz11
dt

∣

∣+ |z11|
1
2

x2des = B−1
1 (λ̂r)

(

−f1(φ̂)−K0z0 −K1ẑ1 + ν
)

(9)

where z0 =
[

z01 z02
]T

, ν =
[

ν1 ν2
]T

, K0 =
diag(k11, k12), K1 = diag(k1, k2) with ka1, ka2, k11, k12
, k1 and, k2 being positive constants. Here, the derivatives
dz11
dt and dẑ12

dt are obtained using a SM differentiator [43].
Now, the error variablez2 is defined as follows:

z2 = x2 − x2des. (10)

Using the transformation (9)-(10), the system (7)-(8) is
represented in the new coordinatesz1, z2 =

[

z21 z22
]T

,
z21 = iαs − idesαs , z22 = iβs − idesβs of the form































dz0
dt = z1 − z̃1

dν1
dt = −ka1

dz11
dt

+|z11|
1
2 sign(z11)

| dz11dt |+|z11|
1
2

dν2
dt = −ka2

dẑ12
dt

+|ẑ12|
1
2 sign(ẑ12)

| dẑ12dt |+|ẑ12|
1
2

dz1
dt = −K0z0 −K1z1 + ν +B1(λ̂r)z2 + Φ̃ +∆1

(11)

{

dz2
dt = f2

(

ωr, λ̂s, is

)

+B2u+∆2 (12)

wherez̃1 =
[

0 φ̃
]T
, ∆1 = ∆̄1+K1z̃1, ∆2 = ∆r−

dx2des

dt .

B. Inducing Sliding Modes

To induce a SM motion on the manifold onz21 = 0 or
iαs = idesαs in the current loop (12), taking into account (2),
the basic controlvs is formulated as [36]

vs =− α1 |z21|
1/2 sign(z21)− α3z21 + u1 (13)

du1
dt

=− α2sign(z21)
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with α1 > 0, α2 > 0, andα3 > 0. And to induce a quasi-
sliding mode motion on the manifoldz22 = 0 or iβs = idesβs ,
the auxiliary controlρ for the capacitor is designed by means
of the following switching logic:

ρ =
1

2
sign(z22vc) +

1

2
. (14)

VI. STABILITY ANALYSIS OF THE OBSERVER-BASED

CONTROLLER

Substituting the control law (13) in (12) and using (4)-(5),
the closed-loop system in the controlz11, z12, z21, z22 and
observer̃iαs, ĩβs, λ̃∗αr , λ̃∗βr errors variables become







































































dz01
dt = z11

dz11
dt = −k1z11 − k11z01 + ν1

+∆11 + d1d2(λ̂βrz21 − λ̂αrz22)

dν1
dt = −ka1

dz11
dt

+|z11|
1
2 sign(z11)

| dz11dt |+|z11|
1
2

,

dz02
dt = z12 − φ̃

dz12
dt = −k2z12 − k12z02 + ν2

+∆12 + 2a40(λ̂αrz21 + λ̂βrz22)

dν2
dt = −ka2

dẑ12
dt

+|ẑ12|
1
2 sign(ẑ12)

| dẑ12dt |+|ẑ12|
1
2

(15)











dz21
dt = fs(λ̂r)− c1α1 |z21|

1
2 sign(z21)

−c1α3z21 + c1u1
du1

dt = −α2sign(z21)

(16)

{

dz22
dt = −a22z22 + f̄22 (z̄)− c2vcρ (17)















































dĩαs

dt = −k1α
∣

∣̃iαs
∣

∣

1
2 sign

(

ĩαs
)

− (k3α + p11) ĩαs +∆1α

dλ̃∗

αr

dt = −k2α

q4
sign

(

ĩαs
)

+∆2α

dĩβs

dt = −k1β
∣

∣̃iβs
∣

∣

1
2 sign

(

ĩβs
)

− (k3β + p21) ĩβs +∆1β

dλ̃∗

βr

dt = −
k2β

q6
sign

(

ĩβs
)

+∆2β

(18)

where

λ̃∗αr = λ∗αr − λ̂∗αr and λ̃∗βr = λ∗βr − λ̂∗βr

are the fluxes estimation errors, with the
following perturbations: ∆11 = −d2TL −

dωref (t)
dt ,

∆12 = 2∆αsλ̂αr + 2∆βsλ̂βr −
dφref (t)

dt + k
2
φ̃,

∆1α = −p12npωr ĩβs − q3npωrλ̃
∗
βr + q4λ̃

∗
αr + ∆αr,

∆2α = −l11λ̃
∗
αr + l12npωrλ̃

∗
βr − l1∆αr + ∆αs,

∆1β = p22npωr ĩα + q5npωrλ̃
∗
αr + q6λ̃

∗
βr + ∆βr,

∆2β = −l21λ̃
∗
βr − l22npωrλ̃

∗
αr + l2∆βr + ∆βs and

fs(λ̂r) = f21(λ̂r)− a10c1i
des
αs −

didesαs

dt +∆αr.
First, the finite time reaching phase stability will be

analyzed, and then a SM equation stability will be studied.

A. Finite Time Reaching Phase Stage Stability

To analyze the stability of the reaching phase stage for the
errors variables̃iαs, ĩβs, λ̃∗αr , λ̃∗βr, z21 and,z22 in (16)-(18),
the following bounds for the disturbance terms are considered

|∆1α|, |
d∆1α

dt
| < δ1α,

|∆2α| < δ2α,

|∆1β |, |
d∆1β

dt
| < δ1β, (19)

|∆2β | < δ2β and,
∣

∣

∣
fs(λ̂r)

∣

∣

∣
≤ δ1 |z21|+ δ2.

with positive constantsδ1, δ2, δ1α, δ2α, δ1β and,δ2β .
Taking into account the conditions (19) and following

the Lyapunov approach proposed in [44], if the gains for
the observer (5) and controller (13) are selected under the
conditions

k1α > 0, k1β > 0

k2α >
k1αδ2α + 1

9δ
2
2α

2
(

1
8k1α − δ2α

)k1α, k2β >
k1βδ2β + 1

9δ
2
2β

2
(

1
8k1β − δ2β

)k1β

k3α >
17

8
δ1α − p11, k3β >

17

8
δ1β − p21

α1 > 0, α2 > c1α1

(

δ2c1α1 +
1
9δ

2
2

)

2
(

1
8c1α1 − δ2

) , α3 >
17

8
δ1,

then the systems (15) and (18) state will reach the manifold
(̃iαs, ĩβs, λ̃

∗
αr, λ̃

∗
βr, z21) = (0, 0, 0, 0, 0) in finite time.

In SM motion on this manifold, the equivalent valuevs,eq
[19] of the controlvs is calculated as a continuous solution to
dz21
dt = fs(λr)− c1vs = 0 (16), of the form

vs,eq = c−1
1 fs(λr). (20)

Substituting (14) and (20) in the equation (17) yields

dz22
dt

= −a22z22 + f̄22 (z̄)− c2vc

[

1

2
sign(z22vc) +

1

2

]

(21)

where z̄ =
[

z11 z12 z22
]T

, a22 = a2c2 and f̄22 (z̄) =

f22 + c2 (nc1)
−1
fs(λr)− a22i

des
βs −

didesβs

dt +∆βr.
Here, f̄22 (z̄) is considered as a disturbance bounded by

∥

∥f̄22 (z̄)
∥

∥ ≤ γ1 |z22|+ γ2, γ1 > 0, γ2 > 0. (22)

Thus, to analyze the stability of (21) the quadratic Lyapunov
function candidateV = 1

2z
2
22 is proposed. Then, its time

derivative along the trajectories of (21) is calculated as

dV

dt
= −a22z

2
22 + f̄22 (z̄) z22 −

1

2
c2 (|z22vc|+ z22vc)

and, using (22) results in

dV

dt
≤ −(a22 − γ1)|z22|

2 + γ2|z22| −
1

2
c2 (|z22vc|+ z22vc) .

Assume now thata22 > γ1. For the casez22vc < 0 we have

dV

dt
≤ −(a22 − γ1)|z22|

2 + γ2|z22|.

Adding and subtracting the term(a22 − γ1)β1|z22|
2 with

0 < β1 < 1 yields

dV

dt
≤ −(a22 − γ1)(1 − β1)|z22|

2

− [(a22 − γ1)β1|z22| − γ2] |z22|

< − [(a22 − γ1)β1|z22| − γ2] |z22|.

https://www.researchgate.net/publication/224367928_A_Lyapunov_approach_to_second-order_sliding_mode_controllers_and_observers?el=1_x_8&enrichId=rgreq-95fb9b78-da70-4b68-96f8-e90d255b96aa&enrichSource=Y292ZXJQYWdlOzI2NDE5OTI4NTtBUzoxNjc0MTA2ODY1MDQ5NjBAMTQxNjkyNTIyNjEwOQ==
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If |z22| > ε1 with ε1 = γ2

(a22−γ1)β1
, then dV

dt < 0. Thus,
there existsT1 > 0 such that the solutionz22(t) satisfies [45]

|z22(t)| < ε1, ∀t ≥ t0 + T1.

On the other hand, for the casez22vc > 0, we have

dV

dt
≤ −(a22 − γ1)|z22|

2 − (c2 |vc| − γ2)|z22|.

If |vc| >
γ2

c2
, then

dV

dt
≤ −(c2v

− − γ2)|z22|

with v− = γ2

c2
+ ǫ andǫ > 0. Hence,z22(t) converges to zero

in finite time.
Now, if |vc| ≤ γ2

c2
then adding and subtracting

(a22 − γ1)β2|z22|
2 with 0 < β2 < 1, we have

dV

dt
< −

[

(a22 − γ1)β2|z22| − (γ2 − c2v
+)

]

|z22|

with v+ ∈ (− γ2

c2
, γ2

c2
). Thus, the solutionz22(t) satisfies

|z22(t)| < ε2, ∀t ≥ t0 + T2

for someT2 > 0 , whereε2 = γ2−c2v
+

(a22−γ1)β2
. Therefore, a quasi-

sliding motion is induced in the vicinity defined by|z22| < ε0,
whereε0 = max{ε1, ε2}.

B. Sliding Mode Equation Stability

The SM motion on the manifold(̃iαs, ĩβs, λ̃∗αr , λ̃
∗
βr, z21) =

(0, 0, 0, 0, 0) with the constraint|z22| ≤ ε0 is described by the
reduced order system (15)

dξ1
dt

= ξ2,
dξ2
dt

= ξ3,

dξ3
dt

= −k1ξ3 − k11ξ2 − ka1
ξ3 + |ξ2|

1
2 sign(ξ2)

|ξ2|+ |ξ2|
1
2

+ ∆̄11,

dξ4
dt

= ξ5,
dξ5
dt

= ξ6,

dξ6
dt

= −k2ξ6 − k12ξ5 − ka2
ξ6 + |ξ5|

1
2 sign(ξ5)

|ξ6|+ |ξ5|
1
2

+ ∆̄12,

where ξ1 = z01, ξ2 = dz01
dt = z11, ξ3 = dz11

dt , ξ4 = z02,
ξ5 = dz02

dt = z12, ξ6 = dz12
dt , ∆̄11 = d

dt (∆11 − d1d2λαrε)
and ∆̄12 = d

dt (∆12 + 2a40λβrε), with |ε| < ε0 and noticing
that ẑ12 = z12.

Assume that|∆̄11| < δ11 and |∆̄12| < δ12 with δ11, δ12 >
0. If ka1 > δ11 and ka2 > δ12 then the manifold
(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) = (zss01, 0, 0, z

ss
02, 0, 0) will be reached in

finite time [40], wherezss01 and zss02 are steady state values
for z01 and z02, respectively. So, a finite time SM motion
on the control tracking error manifold(z11, z12) = (0, 0) is
established despite of the disturbances∆11 and,∆12 which
are rejected in (15) by(k11zss01 − ν1,eq) and (k12zss02 − ν2,eq),
respectively. Hereν1,eq and ν2,eq are the equivalent control
values [19] calculated from (15) by puttingdz11dt = 0 and
dz12
dt = 0, respectively.
Finally, to limit the stator currents we propose the following

logic for the sliding variablesz21 andz22:

z21 =

{

iαs − îdesαs for |iαs| ≤ Imax

iαs for |iαs| > Imax

z22 =

{

iβs − îdesβs for |iβs| ≤ Imax

iβs for |iβs| > Imax

where Imax is a maximum admissible current value,Imax ≈
3Inom, andInom is the nominal value of the current module.

This current limit provides maximum electrical torque
produced by the motor during the closed-loop transient
process.

VII. N UMERICAL SIMULATION RESULTS

To verify the effectiveness and efficiency of the proposed
observer-based controller, numerical simulations are
conducted using the Euler integration method with a
time stepts = 1× 10−3.

Parameters and data of the SPIM are in the Table 1. [42]:

Single-Phase

H.P. 0.25 Vs 110 (V )

f 60 (Hz) np 2

n = NA

NB
1.18 Rαs 2.02 (Ω)

Rβs 5.13 (Ω) Rr 4.12 (Ω)

Lαs 0.1846(H) Lβs 0.1833 (H)

Lr 0.1828 (H) Lm 0.1772 (H)

J 0.0146 (Kg ·m2) kd 0 (Kg ·m2/s)

Imax 15 (A) Crun 35 µf

TABLE I: Parameters of SPIM

The controller gains are adjusted tok1 = k2 = 500,
k01 = k02 = 30, ka1

= ka2
= 5, α1 = 36, andα3 = 1.

And, the gains for the observer arek1α = 195, k1β = 140,
k3α = k3β = 7000, k2α = k2β = 0.02 and,l1 = l2 = 0.01.

For the simulation purposes, the initial conditions of the
state variables are selected to zero. Tracking performanceis
verified for the two plant outputs: driving the square of rotor
flux φ to a constant referenceφref = 0.15, and a speed profile
ωref for ωr, proposed as follows:

1) The SPIM starts on repose with the reference speed on
100 rad/sec.

2) At the first second, a change of the speed reference
– in ramp form – from100 rad/sec to120 rad/sec, is
presented.

3) Finally, at4 seconds, a change of the speed reference –
in negative ramp form – from120 rad/sec to100 rad/sec,
is presented.

In addition, the system is subject to disturbances which are
introduced as follows:

1) The SPIM starts on repose with a load torque of
1
2 + 0.1 sin(2.5t) N-m.

2) At 2 seconds, a30% increase in the value of the rotor
resistance is presented.

https://www.researchgate.net/publication/3032243_Quasi-continuous_high-order_sliding-mode_controllers?el=1_x_8&enrichId=rgreq-95fb9b78-da70-4b68-96f8-e90d255b96aa&enrichSource=Y292ZXJQYWdlOzI2NDE5OTI4NTtBUzoxNjc0MTA2ODY1MDQ5NjBAMTQxNjkyNTIyNjEwOQ==
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Fig. 2: Rotor speedωr and module to the square of rotor flux
φ.

The rotor speed tracking response is depicted in Fig. 2
which shows a satisfactory performance under the change of
the speed reference att = 1, 4 sec., where the speed tracking
effect is achieved almost totally after0.087 sec. Fig. 2 shows
the module to the square of the rotor fluxφ response too; it is
possible to see that the module is maintained over the given
reference.
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Fig. 3: Error of rotor flux in axis frameα β.

0 1 2 3 4 5 6
−10

−5

0

5

10

15

20

25

E
le

ct
ro

m
a

gn
e

tic
to

rq
ue

Time [Sec]

Fig. 4: Electromagnetic torqueTe.
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Fig. 5: Stator currents in axis frameα β.

The errors responses of rotor fluxes are shown in Fig. 3. The
electromagnetic torque response is depicted in Fig. 4, showing
that the torque has a high value20 N-m during the interval
[0, 0.088] sec. This high value ensures a fast response of the
speed (see Fig.2).

On the other hand, the stator currents (see Fig. 5) are in
the appropriate range during the start(0 < t < 0.2) that
corresponds to the proposed control algorithm.

Finally, in Fig. 6, the responses of the voltages are
presented, wherevαs is the super-twisting SM control and,
vβs is the discontinuous SM control.
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VIII. C ONCLUSIONS

A control scheme based on the Block Control technique,
quasi-continuous SM manifold design, and the second order
SM super-twisting algorithms, is proposed to track the rotor
angular speedωr and the square module of rotor fluxφ
of the SPIM subject to perturbations. A nonlinear observer
based on second order SM algorithms is designed to estimate
the rotor flux in presence of plant parameter variations. The
stability conditions of the complete closed-loop system with
the proposed observer-based control, are derived.

The simulation results show a robust performance of the
designed controller with respect to the disturbances caused by
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the load torque and the presence the rotor resistance variations.
Moreover, the proposed controller ensures the constraintson
the stator current.

In the near future, the proposed control scheme is planned
to be implemented and tested in a real time prototype. This
design will consist of two coupled motors: a single-phase to
be controlled motor and DC one. The aim of the last motor
is to emulate a desired load torque profile. The benchmark
will include a DSpace1104 acquisition card, a pulse-width-
modulation (PWM) unit for the power stage and a PC which
will serve as user interface.
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Jośe Cañedo (M93) was born in Mazatlán, México,
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