2,005 research outputs found

    N-gram analysis of 970 microbial organisms reveals presence of biological language models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested previously that genome and proteome sequences show characteristics typical of natural-language texts such as "signature-style" word usage indicative of authors or topics, and that the algorithms originally developed for natural language processing may therefore be applied to genome sequences to draw biologically relevant conclusions. Following this approach of 'biological language modeling', statistical n-gram analysis has been applied for comparative analysis of whole proteome sequences of 44 organisms. It has been shown that a few particular amino acid n-grams are found in abundance in one organism but occurring very rarely in other organisms, thereby serving as genome signatures. At that time proteomes of only 44 organisms were available, thereby limiting the generalization of this hypothesis. Today nearly 1,000 genome sequences and corresponding translated sequences are available, making it feasible to test the existence of biological language models over the evolutionary tree.</p> <p>Results</p> <p>We studied whole proteome sequences of 970 microbial organisms using n-gram frequencies and cross-perplexity employing the Biological Language Modeling Toolkit and Patternix Revelio toolkit. Genus-specific signatures were observed even in a simple unigram distribution. By taking statistical n-gram model of one organism as reference and computing cross-perplexity of all other microbial proteomes with it, cross-perplexity was found to be predictive of branch distance of the phylogenetic tree. For example, a 4-gram model from proteome of <it>Shigellae flexneri 2a</it>, which belongs to the <it>Gammaproteobacteria </it>class showed a self-perplexity of 15.34 while the cross-perplexity of other organisms was in the range of 15.59 to 29.5 and was proportional to their branching distance in the evolutionary tree from <it>S. flexneri</it>. The organisms of this genus, which happen to be pathotypes of <it>E.coli</it>, also have the closest perplexity values with <it>E. coli.</it></p> <p>Conclusion</p> <p>Whole proteome sequences of microbial organisms have been shown to contain particular n-gram sequences in abundance in one organism but occurring very rarely in other organisms, thereby serving as proteome signatures. Further it has also been shown that perplexity, a statistical measure of similarity of n-gram composition, can be used to predict evolutionary distance within a genus in the phylogenetic tree.</p

    Emerging Vaccine Informatics

    Get PDF
    Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning

    Text Mining Infrastructure in R

    Get PDF
    During the last decade text mining has become a widely used discipline utilizing statistical and machine learning methods. We present the tm package which provides a framework for text mining applications within R. We give a survey on text mining facilities in R and explain how typical application tasks can be carried out using our framework. We present techniques for count-based analysis methods, text clustering, text classification and string kernels.

    Fast protein superfamily classification using principal component null space analysis.

    Get PDF
    The protein family classification problem, which consists of determining the family memberships of given unknown protein sequences, is very important for a biologist for many practical reasons, such as drug discovery, prediction of molecular functions and medical diagnosis. Neural networks and Bayesian methods have performed well on the protein classification problem, achieving accuracy ranging from 90% to 98% while running relatively slowly in the learning stage. In this thesis, we present a principal component null space analysis (PCNSA) linear classifier to the problem and report excellent results compared to those of neural networks and support vector machines. The two main parameters of PCNSA are linked to the high dimensionality of the dataset used, and were optimized in an exhaustive manner to maximize accuracy. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .F74. Source: Masters Abstracts International, Volume: 44-03, page: 1400. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here

    Deep learning methods for mining genomic sequence patterns

    Get PDF
    Nowadays, with the growing availability of large-scale genomic datasets and advanced computational techniques, more and more data-driven computational methods have been developed to analyze genomic data and help to solve incompletely understood biological problems. Among them, deep learning methods, have been proposed to automatically learn and recognize the functional activity of DNA sequences from genomics data. Techniques for efficient mining genomic sequence pattern will help to improve our understanding of gene regulation, and thus accelerate our progress toward using personal genomes in medicine. This dissertation focuses on the development of deep learning methods for mining genomic sequences. First, we compare the performance between deep learning models and traditional machine learning methods in recognizing various genomic sequence patterns. Through extensive experiments on both simulated data and real genomic sequence data, we demonstrate that an appropriate deep learning model can be generally made for successfully recognizing various genomic sequence patterns. Next, we develop deep learning methods to help solve two specific biological problems, (1) inference of polyadenylation code and (2) tRNA gene detection and functional prediction. Polyadenylation is a pervasive mechanism that has been used by Eukaryotes for regulating mRNA transcription, localization, and translation efficiency. Polyadenylation signals in the plant are particularly noisy and challenging to decipher. A deep convolutional neural network approach DeepPolyA is proposed to predict poly(A) site from the plant Arabidopsis thaliana genomic sequences. It employs various deep neural network architectures and demonstrates its superiority in comparison with competing methods, including classical machine learning algorithms and several popular deep learning models. Transfer RNAs (tRNAs) represent a highly complex class of genes and play a central role in protein translation. There remains a de facto tool, tRNAscan-SE, for identifying tRNA genes encoded in genomes. Despite its popularity and success, tRNAscan-SE is still not powerful enough to separate tRNAs from pseudo-tRNAs, and a significant number of false positives can be output as a result. To address this issue, tRNA-DL, a hybrid combination of convolutional neural network and recurrent neural network approach is proposed. It is shown that the proposed method can help to reduce the false positive rate of the state-of-art tRNA prediction tool tRNAscan-SE substantially. Coupled with tRNAscan-SE, tRNA-DL can serve as a useful complementary tool for tRNA annotation. Taken together, the experiments and applications demonstrate the superiority of deep learning in automatic feature generation for characterizing genomic sequence patterns

    Analysis Of DNA Motifs In The Human Genome

    Full text link
    DNA motifs include repeat elements, promoter elements and gene regulator elements, and play a critical role in the human genome. This thesis describes a genome-wide computational study on two groups of motifs: tandem repeats and core promoter elements. Tandem repeats in DNA sequences are extremely relevant in biological phenomena and diagnostic tools. Computational programs that discover tandem repeats generate a huge volume of data, which can be difficult to decipher without further organization. A new method is presented here to organize and rank detected tandem repeats through clustering and classification. Our work presents multiple ways of expressing tandem repeats using the n-gram model with different clustering distance measures. Analysis of the clusters for the tandem repeats in the human genome shows that the method yields a well-defined grouping in which similarity among repeats is apparent. Our new, alignment-free method facilitates the analysis of the myriad of tandem repeats replete in the human genome. We believe that this work will lead to new discoveries on the roles, origins, and significance of tandem repeats. As with tandem repeats, promoter sequences of genes contain binding sites for proteins that play critical roles in mediating expression levels. Promoter region binding proteins and their co-factors influence timing and context of transcription. Despite the critical regulatory role of these non-coding sequences, computational methods to identify and predict DNA binding sites are extremely limited. The work reported here analyzes the relative occurrence of core promoter elements (CPEs) in and around transcription start sites. We found that out of all the data sets 49\%-63\% upstream regions have either TATA box or DPE elements. Our results suggest the possibility of predicting transcription start sites through combining CPEs signals with other promoter signals such as CpG islands and clusters of specific transcription binding sites

    Molecular mechanisms underpinning aggregation in acidiphilium sp. C61 isolated from iron-rich pelagic aggregates

    Get PDF
    : Iron‐rich pelagic aggregates (iron snow) are hot spots for microbial interactions. Using iron snow isolates, we previously demonstrated that the iron‐oxidizer Acidithrix sp. C25 triggers Acidiphilium sp. C61 aggregation by producing the infochemical 2‐phenethylamine (PEA). Here, we showed slightly enhanced aggregate formation in the presence of PEA on different Acidiphilium spp. but not other iron‐snow microorganisms, including Acidocella sp. C78 and Ferrovum sp. PN‐J47. Next, we sequenced the Acidiphilium sp. C61 genome to reconstruct its metabolic potential. Pangenome analyses of Acidiphilium spp. genomes revealed the core genome contained 65 gene clusters associated with aggregation, including autoaggregation, motility, and biofilm formation. Screening the Acidiphilium sp. C61 genome revealed the presence of autotransporter, flagellar, and extracellular polymeric substances (EPS) production genes. RNA‐seq analyses of Acidiphilium sp. C61 incubations (+/− 10 μM PEA) indicated genes involved in energy production, respiration, and genetic processing were the most upregulated differentially expressed genes in the presence of PEA. Additionally, genes involved in flagellar basal body synthesis were highly upregulated, whereas the expression pattern of biofilm formation‐related genes was inconclusive. Our data shows aggregation is a common trait among Acidiphilium spp. and PEA stimulates the central cellular metabolism, potentially advantageous in aggregates rapidly falling through the water column

    Computational Biology and Chemistry

    Get PDF
    The use of computers and software tools in biochemistry (biology) has led to a deep revolution in basic sciences and medicine. Bioinformatics and systems biology are the direct results of this revolution. With the involvement of computers, software tools, and internet services in scientific disciplines comprising biology and chemistry, new terms, technologies, and methodologies appeared and established. Bioinformatic software tools, versatile databases, and easy internet access resulted in the occurrence of computational biology and chemistry. Today, we have new types of surveys and laboratories including “in silico studies” and “dry labs” in which bioinformaticians conduct their investigations to gain invaluable outcomes. These features have led to 3-dimensioned illustrations of different molecules and complexes to get a better understanding of nature

    A FAIR approach to genomics

    Get PDF
    The aim of this thesis was to increase our understanding on how genome information leads to function and phenotype. To address these questions, I developed a semantic systems biology framework capable of extracting knowledge, biological concepts and emergent system properties, from a vast array of publicly available genome information. In chapter 2, Empusa is described as an infrastructure that bridges the gap between the intended and actual content of a database. This infrastructure was used in chapters 3 and 4 to develop the framework. Chapter 3 describes the development of the Genome Biology Ontology Language and the GBOL stack of supporting tools enforcing consistency within and between the GBOL definitions in the ontology (OWL) and the Shape Expressions (ShEx) language describing the graph structure. A practical implementation of a semantic systems biology framework for FAIR (de novo) genome annotation is provided in chapter 4. The semantic framework and genome annotation tool described in this chapter has been used throughout this thesis to consistently, structurally and functionally annotate and mine microbial genomes used in chapter 5-10. In chapter 5, we introduced how the concept of protein domains and corresponding architectures can be used in comparative functional genomics to provide for a fast, efficient and scalable alternative to sequence-based methods. This allowed us to effectively compare and identify functional variations between hundreds to thousands of genomes. In chapter 6, we used 432 available complete Pseudomonas genomes to study the relationship between domain essentiality and persistence. In this chapter the focus was mainly on domains involved in metabolic functions. The metabolic domain space was explored for domain essentiality and persistence through the integration of heterogeneous data sources including six published metabolic models, a vast gene expression repository and transposon data. In chapter 7, the correlation between the expected and observed genotypes was explored using 16S-rRNA phylogeny and protein domain class content as input. In this chapter it was shown that domain class content yields a higher resolution in comparison to 16S-rRNA when analysing evolutionary distances. Using protein domain classes, we also were able to identify signifying domains, which may have important roles in shaping a species. To demonstrate the use of semantic systems biology workflows in a biotechnological setting we expanded the resource with more than 80.000 bacterial genomes. The genomic information of this resource was mined using a top down approach to identify strains having the trait for 1,3-propanediol production. This resulted in the molecular identification of 49 new species. In addition, we also experimentally verified that 4 species were capable of producing 1,3-propanediol. As discussed in chapter 10, the here developed semantic systems biology workflows were successfully applied in the discovery of key elements in symbiotic relationships, to improve functional genome annotation and in comparative genomics studies. Wet/dry-lab collaboration was often at the basis of the obtained results. The success of the collaboration between the wet and dry field, prompted me to develop an undergraduate course in which the concept of the “Moist” workflow was introduced (Chapter 9).</p
    corecore