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Bacteria represent the most abundant and species-rich group of organisms,

demonstrating an enormous range of genetic variation, amidst the domains of life

(Whitman, Coleman, and Wiebe, 1998). Due to the development of very a↵ord-

able high throughput sequencing technologies, sequencing and analysis of this vast

repertoire are in a period of exponential growth. Collecting bacterial sequences,

however, is only the essential first step in gaining a systems level understanding of

societal relevant microorganisms and microbial ecosystems. The next critical step is

to give biochemical, physiological, and ecological meaning to the genome informa-

tion obtained and to transform newly obtained actionable knowledge into applica-

tions of biotechnological, medical and environmental interest. The objective of this

thesis is to increase our understanding on how microbial genome information leads

to function. To achieve this, I will use a FAIR by design Semantic Systems Biology

approach to genomics to study i) the relationship between the microbial genome and

its functionome and ii) the impact of species diversity on the functional landscape.

In the following paragraphs I will discuss a number of essential elements of my

research; the bacterial species concept, FAIR data and the requirement for data in-

teroperability, and the role of Semantic Web technology in the development of the

top-down workflows used to reach the goals.

The bacterial species concept

Comparative genomics is a branch of genomics in which the genomic features of dif-

ferent species are compared to study basic biological similarities and di↵erences as

well as evolutionary relationships. Species of animals and plants have come to be

understood as cohesive groups because there are evolutionary mechanisms to con-

strain diversity within a species. In sexual species, such as most animals and plants,

the force constraining diversity within species is understood to be genetic exchange,

yielding o↵spring that remains reproducible as well. This evolutionary force ensures

a flow of genetic information that remains within a species. Since bacterial species

do not have a sexual reproduction cycle one would assume that also within bacteria

the genetic pool remains fairly consistent within a microbial line. However, evolu-

tion in microbes happens at a much faster rate and through various means. One is a

much faster growth rate which allows for a fast accumulation of mutations in their
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genome, thereby acquiring or losing particular functionalities. The acquisition of

new functions from the environment through Horizontal Gene Transfer (HGT) can,

in a single step, also dramatically change the cell’s repertoire of metabolic capabil-

ities (Dutta and Pan, 2002). It has also shown that gene loss is a source of genetic

variation that can cause adaptation to phenotypic diversity (Paul, Sokurenko, and

Chattopadhyay, 2016; Albalat and Cañestro, 2016; Ochman and Moran, 2001). Ad-

ditionally, in bacterial species gene fusion/fission and domain duplications are fre-

quent events that lead to multi-domain proteins of di↵erent composition with new

or altered functionalities (Doolittle, 1995).

While bacterial species are believed to exist, the nature of the cohesive evolu-

tionary forces required to constrain the genetic diversity within a bacterial species

is unclear. Since the current methodologies to define species groups such as 16S-

rRNA sequence similarity (Kim et al., 2014) or Average Nucleotide Identity (ANI)

(Konstantinidis and Tiedje, 2005) use a practical metric for species definition,

these methods can lead to artificial species assignments because they are methodi-

cally unlinked to the biological mechanisms that lead to cohesion. Currently used

methodologies in comparative functional genomics usually follow a sequence based

(bottom-up) approach and assume that protein encoding genes within a clade have

a shared common ancestor. Since bacterial genes have the potential of being hor-

izontally acquired this mechanism can have a great impact on the overall genetic

landscape and on the correct identification of members of a given species. Incorrect

inclusion of new strains in a clade can have a large influence on the core genome,

defined as the genetic core shared among the members of a given clade under study,

while the pan-genome defined as the overall genetic diversity observed in a clade,

can be overestimated.

FAIR data

Performing meta-analysis on large species groups and linking a broader range of

genotypic diversity by computational means, requires that these results are Inter-

operable and Reusable for further analysis. FAIR data is a world-wide initiative,

initiated by a group of academia, industry, funding agencies, and scholarly publish-

ers, to make data Findable, Accessible, Interoperable and Reusable (Wilkinson et
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al., 2016). These FAIR principles are in place with extra emphasis on enabling and

enhancing the reusability of data by machines in addition to individuals. To make

data interoperable by machines, SemanticWeb technologies can be applied. Already

several platforms have been developed that align with the FAIR principles. FAIR-

DOM is a combination of SEEK (Wolstencroft et al., 2015), a web-based resource for

sharing heterogeneous scientific research datasets, models or simulations, processes

and research outcomes, and openBIS, a system for managing biological data (Baril-

lari et al., 2016). Both systems have implemented a semantic representation of the

data using the Resource Description Framework (RDF) data model. Other resources,

such as UniProt, have converted the entire database into this representation allowing

individuals as well as computers to mine these resources e�ciently (UniProt Con-

sortium, 2017). In addition various e↵orts have been performed on the fairification

of existing datasets making them more FAIR (Find FAIR Data tools n.d.). FAIRifica-

tion means that the resource data and the metadata are made machine-readable, in

which the metadata clearly describes how the data can be accessed and reproduced,

and that the metadata can be found by machines. The data FAIRifcation process

includes:

1. Original data retrieval

2. Dataset identification and analysis

3. Definition of the semantic model

4. Data transformation

5. License assignment

6. Metadata definition

7. FAIR Data resource deployment (data, metadata, license)

When working according to FAIR by design principles, datasets are generated

directly according to FAIR principles in which data and metadata are in a linked

format. This can be achieved through the development and usage of computational

applications and workflows in which data can be consistently appended with meta-

data.
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Interoperability, formats and minimal information models

As Findability and Accessibility mostly concern organisational issues and data

reusability grossly depends on the format, the key component in determining the

FAIRness of a data set is the level of interoperability. Interoperability and reusabil-

ity of data requires a larger e↵ort at the data level. Translating computational pre-

dictions in interoperable data sets, requires sophisticated minimal information stan-

dards. These standards, often defined as ontologies describe the definitions of the

properties and relations between concepts or data which can correspond to a broad

range of domains.

As comparative genomics strongly depends on computer-based analysis and uses

multiple heterogenous data sources to extract genomic features, data interoperabil-

ity is essential. For bottom up approaches that work from sequence to function, a

high level of interoperability already existed early on. This is due to standardisation

of the FASTA sequence file format which originated from the development of FASTP,

one of the first protein similarity search programs (Lipman and Pearson, 1985), Dic-

tated by being the first, the FASTA format is accepted by most if not all sequence

analysis tools. The format is also well understood by users and provides a simple

representation of any given sequence. The format starts with a “>” symbol followed

by an identifier and optionally a description. On the next line(s), the correspond-

ing DNA or amino acid sequence is found using either a standard representation of

DNA bases by single characters that specify either a single base or a set of bases as

defined by the International Union of Pure and Applied Chemistry (IUPAC) (Comm,

1970) or the single characters amino acid code in case of a protein sequence (JCBN,

1983). A more line by line format is GFF, which is a tabular format consisting of 9

fields making it easier to generate, parse and index at the cost of only storing ba-

sic genetic information (GFF and GVF specification documents n.d.). Other formats

such as the GenBank or EMBL format are capable to capture more complex data

structures of which some are related to project meta-data such as project identifiers,

articles with corresponding authors, releases/last update dates and sample related

information such as taxonomy, location of isolation, strain and organism identifiers

(The DDBJ/EMBL/GenBank Feature Table: Definition 2014).
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1 gene 1430. .1552
2 / locus_tag ="MS6671_01090 "
3 CDS 1430. .1552
4 / locus_tag ="MS6671_01090 "
5 / in ference ="ab i n i t i o pred ic t ion : Prodigal : 2 . 6 0 "
6 / codon_start=1
7 / t r an s l _ t ab l e=11
8 /product=" hypothet i ca l prote in "

Figure 1.1: Gene entry in Genbank format

Nevertheless, it remains extremely cumbersome to parse and integrate compu-

tationally derived genetic data from the current formats. Electronically inferred

predictions such as the location of a gene on a sequence, mostly lack provenance

related information. Therefore, when parsing this data it remains unclear what

algorithm and which version was used to predict, for instance, the genes on a given

genome. Although, hardly used, it is possible to provide such information using the

inference tag (Figure 1).

In the example shown in Figure 1, a gene and its corresponding CDS have been

predicted using Prodigal 2.60. Adding this information greatly improves the repro-

ducibility for genome annotation although, this essential information is absent in

nearly all annotated genomes. Additional information provided by a gene predic-

tion program, for each given gene the element wise provenance, such as the putative

ribosomal binding site, the GC content and more importantly, a confidence score are

also absent as no standard is available for storing this type of information. As a con-

sequence, with the current standards in genome annotation, the resulting data is far

from being interoperable and therefore reusable.

Bottom up methods in comparative genomics

As previously discussed, the FASTA format displays a high level of Interoperabil-

ity and if it were not for Darwinian evolution, a direct comparison between species

scoring the presence or absence of gene sequences would be very well possible. Due

to the occurrence of accepted mutations, insertions and deletions, between species

the sequences of genetic elements will di↵er but still can show an acceptable level
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of similarity. For protein encoding genes, mutations can lead to missense mutations

resulting in an amino acid change but not necessarily a change of function. Impor-

tant concepts here are homology, orthology and paralogy meaning that orthologs

present in di↵erent species are derived from some common ancestor and therefore

probably have the same or very similar function in these species (Wolf and Koonin,

2012). A number of methods have been developed to automatically cluster ortholo-

gous sequences e.g InParanoid (Sonnhammer and Östlund, 2014), PanOct (Fouts et

al., 2012), OrthoMCL (Li, Stoeckert, and Roos, 2003) or ProteinOrtho (Lechner et al.,

2011). The method that is applied in these orthology detection and clustering tools

is an exhaustive all-vs-all BLAST (Basic Local Alignment Search Tool) comparison

in which all protein sequences between two or more species are compared. When

multiple genomes are studied, an all-vs-all pair-wise comparison is performed to

identify cliques of proteins that are highly similar at sequence level (Figure 1.2).

Due to protein architectures dynamics, in which protein domains are exchanged,

shu✏ed, duplicated or deleted, a phenomenon called domain chaining can create

articulation points resulting in a merger of di↵erent cliques. Moreover, each protein

family has an intrinsic molecular clock and protein sequences change faster than the

corresponding protein structures. Proteins with the same function might therefore

end up in di↵erent cliques due to a low sequence similarity. Articulation points can

of course be reduced using amore stringent sequence similarity threshold. However,

this will also lead to a lower sensitivity.

In general, pair-wise sequence comparison methods have a number of shortcom-

ings; the computational cost scales quadratically (Sonnhammer and Östlund, 2014)

and comparisons are often limited to hundreds of genomes while currently we have

more than 100.000 bacterial genomes in the public repositories. For certain species,

especially the pathogens, such as Pseudomonas aeruginosa and Streptococcus pneumo-

niae we already have more than thousands of genome sequences at ENA (Leinonen

et al., 2010) and PATRIC (Wattam et al., 2016), illustrating that a within species

comparison of these organisms using a bottom-up approach to identify cliques of

functionally similar proteins does not compute anymore, even when more advanced

parallel set ups are used.
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Figure 1.2: Orthology detection using an all-vs-all bi-directional BLAST method. A) For
each genetic element cliques are formed representing individual cluster of orthologous genes. B)
Due to recombination events and domain chaining, subnetworks are formed in which individual
genetic elements can function as articulation points merging di↵erent gene clusters. Separation of
the subnetwork in individual clusters is highly dependent on the predefined threshold.

Top down functional comparative genomics

It could be argued that since functional annotations in principle can be directly

compared and analysed, thereby omitting the needs of comparing the underlying se-

quences, a top-down approach, working from function to sequence, would be more

straight-forward and better scalable. However, the data and element wise prove-

nance of a functional assignment to a protein sequence is rarely available and pub-

lished functional assignments are currently not interoperable as di↵erent vocabu-

laries are used.

To obtain a consistent functional annotation, di↵erent methodologies have been

developed. Most commonly used are InterProScan (Jones et al., 2014), which is

a collection of annotation modules and Eggnog-mapper (Huerta-Cepas, Forslund,

et al., 2017), which uses precomputed clusters and phylogenies from the eggNOG

database (Huerta-Cepas, Szklarczyk, et al., 2016). Using protein sequences as an

input both methods allow to functionally annotate large sets of sequences according

to highly curated reference sets. However, to warrant a high level of interoperability

a direct link of the functional annotations obtained with the provenance is essen-

tial. For instance, the transition of PFAM 30.0 to 31.0 resulted in 415 new families

and the removal of 9 families. If a set of genomes annotated with version 30.0 or

31.0 were compared this could result in a technical di↵erence of 424 PFAM do-

mains. Storage of a functional prediction should therefore be performed in a highly
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standardised fashion that includes all element-wise and dataset-wise provenance

enabling to completely retrace the annotation approach taken.

In summary, current large scale functional comparisons based on bottom-up se-

quence similarity approaches is challenged by methodological problems, such as

the need of defining arbitrarily generalised minimal alignment length and similar-

ity cut-o↵ for all sequences analysed, and is hampered by the high computational

cost, as it scales quadratically with the number of genome sequences to be com-

pared. As the aim of this thesis is to study i) the relationship between the microbial

genome and its functionome and ii) the impact of species diversity on the functional

landscape, the main focus of this thesis lies mainly not in the evolutionary origin

of a protein sequence but in similarity and diversity of bacterial functional land-

scapes, which is best studied in a Top-Down approach working from function to

sequence. To mitigate problems associated with such an approach, Semantic Web

and Linked Data technologies are used. In essence, Semantic technologies allow for

a direct linkage of appropriate historical, data-wise, and element-wise provenance

to a computational prediction.

Semantic Web

Semantic Web, an extension for the World Wide Web or the internet, is part of the

World Wide Web Consortium and is in place to facilitate a common framework for

data exchange across boundaries (Berners-Lee, Hendler, and Lassila, 2001). The two

most common standards of the Semantic Web are the data format standard, which is

the Resource Description Framework (RDF), and the corresponding query language

called SPARQL (SPARQL Protocol and RDF Query Language).

The data infrastructure of the Semantic Web provides an e�cient and flexible

environment allowing to easily absorb heterogeneous data and enables to build

database structures on the fly in a distributed and decentralised environment. This

in contrast to currently more commonly used database systems such as MySQL,

which is a relational database management system allowing to store data according

to a fixed schema and is intended to be used as a central point of entry.

As shown in Figure 1.3 in the RDF data model, data is represented as triples, a

subject, predicate and an object. Triples can be linked using the object node as a



16

Figure 1.3: A visual representation of an RDF graph (Source Consortium et al., 2014)

subject node for another triple statement. Through this approach a graph database

is created, and all relations are defined with predicates. By using a graph struc-

ture, any defined relation between essentially di↵erent “things” can be established.

For example, although they are completely di↵erent “things” there is a direct link

between the painter Leonardo Da Vinci and the “Mona Lisa”. Using the RDF data

model, all kinds of heterogenous datasets can be converted in a graph structure.

One of the largest biological datasets available in RDF from a single SPARQL

endpoint is the UniProt database. This database consists of 41,016,681,408 triples

(as of Augsust 2018) and 17 sub databases or so-called named graphs. It contains

a wide set of information with regards to proteins and their functional annotation,

pathway related information, article citations and taxonomic information. As it is a

public endpoint, private and/or public databases, that use UniProt identifiers, can

remotely connect and remain up to date when new information becomes available.

Data Provenance

When obtaining data from a public endpoint, it is important that the data is de-

scribed including the provenance. For example, when a statement is made that

Leonardo Da Vinci painted the Mona Lisa it is important to also mention where

this information originated from and how this information was obtained. Prove-
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Figure 1.4: A WikiData entry. Contains the given name of Leonardo da Vinci with asosciated
provenance which shows that his name was stated in an Integrated Authority File and that this
information was retrieved on the 21th of July in 2015.

nance is additional information on top of the link that is established and is as im-

portant as the actual information. Provenance can be subdivided into dataset-wise

and element-wise provenance. In the realm of comparative genomics, data-set wise

provenance is additional information defining the programs used, versions thereof

and selected parameters for the complete annotation of the (set of) sequences under

study. The element-wise provenance is the statistical evidence of a computational

prediction, such as the confidence score of a given gene prediction or the E-value of

a blast similarity score.

When this important information is lacking, the reliability of the statement could

be questioned. However, in practice this information is often still lacking in many

public repositories. Currently WikiData, a free and open knowledge base is the

only and largest resource that adds data and element-wise provenance as a rule (See

Figure 1.4).

Ontologies

Due to the dynamic structure of RDF, everybody can create their own graph/ontol-

ogy which could make it di�cult to understand the complexity of such a database,

resulting in a low level of Interoperability. As many topics are shared among dif-

ferent databases, using the same ontology would allow for distributed and decen-

tralised environment. Ontologies such as FOAF (Friend Of A Friend), an ontol-

ogy to describe persons and their social network, Prov-O for the storage of prove-

nance and BIBO, the Bibliographic Ontology for the storage of documents and au-
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thor related information are widely used for a large variety of databases (Brickley

and Miller, 2007; Lebo et al., 2013; Giasson et al., 2008). When a public endpoint

contains data aligning with an ontology, it is common that such an ontology is de-

scribed in detail and made available for others to query its data. Websites such as

https://bioportal.bioontology.org allow ontology developers to store their on-

tology with regards to biological information, which in turn simplifies exchange of

already existing ontologies or finding new ones that suit your needs when trans-

forming data into RDF.

To make sure that your dataset is according to the ontology that has been de-

scribed, we developed RDF2Graph (Dam et al., 2015), an application to recover,

understand and most importantly to validate or generate the ontology of an RDF

resource.

In an e↵ort to standardise the integration of biological information, several bio-

ontologies already have been developed. The Gene Ontology, describes concepts/-

classes used to describe gene function, and relationships between these concepts.

(The Gene Ontology Consortium, 2015). FALDO is an ontology that can be used

to describe the location of nucleotide and protein features in genome annotations

(Bolleman et al., 2014). Similarly the Sequence Ontology (SO) (Eilbeck et al., 2005)

was designed to categorise sequence features used in biological sequence annotation

and BioPax, an ontology to facilitate integration, exchange, visualisation and analy-

sis of biological pathway data (Community, 2010). These ontologies are all based on

the semantic framework, allowing them to be easily integrated into a single database

and to communicate with external resources containing additional information.

Unlocking genome information using a FAIR by design Semantic

Systems Biology approach

To unlock the full potential of genomic information, for comparative genomes or for

function-based mining, an ontology that describes and combines already existing

ontologies into an entity allowing to transform already existing annotation and com-

plement with new annotation methods is essential. The extendable Genome Biology

Ontology Language (GBOL) and corresponding Stack of supporting tools has been

https://bioportal.bioontology.org
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Figure 1.5: Comparison between a classical annotation pipeline and a semantic annotation
platform. In the semantic annotation platform (left) the tool meets the data and all computational
results including data and element-wise provenance are stored in a linked format in a persistent
data store. In the annotation pipeline (right) in each step, an (arbitrary) threshold is used to filter
the data. Data provenance is usually not stored as this requires a more complex data management
system.

developed to cope with genomic data and is described in chapter 3. GBOL allows

for a complete description of genetic information, localisation as well as functional

annotation from a variety of applications linked to the full chain of provenance. As

it remains di�cult during the development of parsers or conversion code to adhere

to the predefined ontology, the GBOL Stack supports the code developer through

an Application Programming Interface (API) thereby safeguarding a match between

the converted data and the ontology.

In the course of this thesis, SAPP was developed as an extension to the ontol-

ogy and corresponding API’s. SAPP is a tool independent platform and stands for

a Semantic Annotation Platform with Provenance (Figure 1.5). The software inte-

grated with the platform is extendable and currently consists of various modules

for the conversion of existing annotation files in FASTA, GFF, GenBank and EMBL

format in RDF. Additionally, SAPP can perform a FAIR by design de novo structural

and functional prediction of genetic elements using a vast array of (complementary)

prediction tools. SAPP will be discussed in chapter 4.

Development of dynamic top-down Semantic Systems Biology workflows

Through the development of SAPP and the incorporation of GBOL and correspond-

ing Stack, biological data and derived computational predictions can be accessed
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through a single SPARQL endpoint. By using this endpoint, it possible to com-

pare various gene prediction approaches using a single query and to analyse and

compare already existing functional annotation and descriptions with de novo pre-

dictions. For functional comparisons protein architectures are used, using (Pfam)

protein domains as building blocks. By treating each protein domain as an indepen-

dent functional unit, domain order can be used as a proxy for function. The full set

of domain architectures thus represents the functional landscape of a given strain.
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Thesis outline

To enable Semantic Web technologies and to ensure consistency within and between

the described ontologies, Empusa was developed. The exact implementation is de-

scribed in chapter 2 and was used in the development of various ontologies. To

transform biological data into a semantic structure, to enable a higher level of inter-

operability and reusability of these datasets, the here developed GBOL ontology is

described in chapter 3. This chapter describes in detail the reasoning behind the on-

tology and the benefit of the corresponding Stack. Chapter 4 describes the platform

that is essential for the conversion and annotation of biological data formats through

an RDF infrastructure. It enables biological data to become more interoperable and

reusable through the incorporation of provenance from a variety of modules for the

prediction and annotation of sequences. This platform has been widely used in a

number of papers and throughout this thesis in chapter 5-8. In chapter 5, protein

domain architectures were identified to be a fast, e�cient and scalable alternative

to sequence-based methods which in turn can have large applications in the field of

comparative functional (meta-)genomics. By identifying the usability of protein do-

mains for comparative genomics we applied the principles to Pseudomonas in chap-

ter 6, where genome data was integrated with its functional landscape, combined

with metabolic and expression data. Through this integration, essential genes were

detected to be highly persistent according to the protein domain profile, showing

that non-essential genes tend to more frequently exchange functional information.

Since protein domains have proven to be useful for the characterisation of the func-

tional landscape of an organism it was investigated to what extend 16S distances

di↵er from the functional diversity. In chapter 7, a large study was performed on

5713 high quality genome assemblies obtained from public resources and it was

shown that the functional landscape can provide a more detailed view on closely

related species in contrast to a single gene such as 16S. The increased granularity in

this approach allows to perform large scale comparisons which in turn paves the way

to new applications to identify phenotypic properties from its functional landscape.

In chapter 8, we translated this approach into a Knowledge Discovery in Databases

workflow and applied it to identify strains capable of producing 1,3-Propanediol



22

using glycerol as a precursor. The initial analysis was performed on 84,329 bac-

terial genomes harbouring 2,661 species in total and resulted in the identification

of 178 new candidate species that are able to degrade glycerol and produce 1,3-

propanediol. Chapter 9, presents a new undergraduate course that is aimed to close

the gap between computational and experimental studies. In this course students

use moist-lab techniques to identify phenotypic properties of an unknown organism

and learn to unravel the genotypic properties corresponding to these phenotypes.

Chapter 10 describes how Semantic Systems Biology has shaped the research field

and how this is applied to functional and comparative genomics and how this can

be incorporated in future research.
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Abstract

The RDF data model facilitates integration of diverse data available in structured

and semi-structured formats. This flexibility makes RDF an e�cient alternative to

develop resources integrating heterogeneous data sets. To obtain an RDF graph with

a low amount of errors and internal redundancy, the chosen ontology must be con-

sistently applied. However, with each addition of new diverse data the ontology

must evolve thereby increasing its complexity, which could lead to accumulation of

unintended erroneous composites. Thus, for the development of graph databases

that are continuously enriched with new, heterogeneous diverse data there is a need

for a gatekeeping system that compares the intended content described in the ontol-

ogy with the actual content of the resource.

Here we present Empusa, a tool that has been developed to facilitate the creation

of composite RDF resources from disparate sources. Empusa can be used to con-

vert a schema into an associated application programming interface (API) that can

be used to perform data consistency checks and generates Markdown documenta-

tion to make persistent URLs resolvable. In this way, the use of Empusa ensures

consistency within and between the ontology (OWL), the Shape Expressions (ShEx)

describing the graph structure, and the content of the resource.
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Background & Summary

Semantic Web technologies provide information retrieval and management systems

to integrate heterogeneous data from disparate sources (Berners-Lee, Hendler, and

Lassila, 2001). The RDF data model is a W3C standard for storage of information in

the form of self-descriptive Subject, Predicate and Object triples that can be linked

in an RDF-graph (Brickley and Guha, 2004; organisation, 2014). The use of retriev-

able controlled vocabularies enables integration of heterogeneous diverse data from

di↵erent sources in a single repository and SPARQL can be used to query the so

generated resources (Prud’hommeaux and Seaborne, 2008; Aranda et al., 2013).

By themselves, RDF graphs have no predefined structure nor a schema, and the

structure of an RDF resource can vary as new triples are added. Therefore, a formal

definition of the relations among the terms, called an ontology, is required to e�-

ciently retrieve linked information from these resources. Structural information can

be encoded usingWebOntology Language (OWL) files (Bao et al., 2012). RDFS is an-

other, related, standard to define the structure of an RDF resource (Brickley, Guha,

and McBride, 2014). In this standard, each object can be defined as an instance of

a class and each link as the realisation of a property. Shape Expressions (ShEx) is a

standard to describe, validate and transform RDF data. One of the goals of this stan-

dard is to create an easy to read language for the validation of instance data (Solbrig

and Prud’hommeaux, 2014; Boneva et al., 2014; Prud’hommeaux, Labra Gayo, and

Solbrig, 2014).

In previous work, we developed RDF2Graph, a tool to automatically recover the

structure of an RDF resource and to generate a visualisation, ShEx file and/or an

OWL ontology thereof (J. C. v. Dam et al., 2015). Application of RDF2Graph to

resources providing data in the RDF data model in the life sciences domain such as

Reactome, ChEBI, UniProt, or those transformed by the Bio2RDF project (Belleau

et al., 2008; Croft et al., 2014; Hastings et al., 2013; Jupp et al., 2014; Bateman

et al., 2017) showed mismatches between the retrieved data structure and the one

described in the OWL definition of the particular resource. The main reason for this

lack of consistency is the flexibility provided by RDF: the data graph is a free format,

the ontology defines the structure but does not enforce it.
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In the development of RDF resources, transformation of existing data into the

RDF data model is often a source of errors such as typing errors in the predicates,

instances with missing attributes, instances that did have a non-unique IRI, and

instances that had no type defined, among others. Development of tools that directly

use the RDF data model as means to store their output may therefore be essential to

unlock the potential of these technologies in the life sciences. An example of a such

tool is the Semantic Annotation Platform with Provenance (SAPP) (Koehorst et al.,

2018), that can automatically annotate genome sequences using standard tools and

directly store the annotation results and their provenance in the RDF data model

using the Genome Biology Ontology Language (GBOL) (J. C. J. v. Dam et al., 2017).

Development of such tools would be greatly facilitated by supporting tools able to

read an ontology definition and generate code that can be used for data generation,

export and validation.

Here we present Empusa, that has been developed to facilitate the creation of

RDF resources, which are validated upon creation (figure 2.1). Empusa uses an

OWL and a simplified version of ShEx, defining an ontology, and generates an as-

sociated application programming interface (API) that can be used to perform data

consistency checks. The use of Empusa ensures consistency within and between the

ontology (OWL), the Shape Expressions (ShEx) describing the graph structure and

the content of the resource. In addition, Markdown documentation is generated,

making URLs related to the ontology resolvable (Gruber, 2004).

Methods

The input definition of Empusa is a combination between OWL and a simplified

version of ShEx, which can be edited within Protégé (Musen, 2015). The classes are

defined in OWL, whereas the properties are defined in each class under the anno-

tation property propertyDefinitions encoded within a simplified format of the ShEx

standard. Additionally predefined value sets can be defined by adding a subclass

to the EnumeratedValueClass. For instance a FileType can only be one element of a

predefined list (e.g. CSV, TXT, TSV).

The RDFS standard is used to define the subClassOf relationships between the
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Figure 2.1: Simplified overview of the workflow to manage consistent integration of new
diverse data with existing resources. Empusa enables error control as it compares the intended
content, described in the ontology, with the actual content of the resource. For this, Empusa checks
whether or not Subjects and Objects have the properties that the ontology demands. Empusa builds
upon RDF2Graph(J. C. v. Dam et al., 2015), a tool to automatically recover the structure of an RDF
resource, to generate a visualisation, ShEx file, and/or an OWL ontology thereof.

classes, whereas the ShEx standard is used to define the properties of each class.

Properties of the class are defined through the annotation property propertyDefini-

tions as shown in figure 2.2. For each property the multiplicity and the expected

type of the target value can be defined. The multiplicity can either be: 0..1 indicat-

ing that the property is optional and at most one reference is allowed; 1..1 indicating

that one and only reference is allowed; 0..N for optional properties with multiple al-

lowed references; and 1..N for properties that must have at least one reference. The

‘=’ and ‘⇠’ sign can be used to define the references to be stored as an ordered or

numbered list to ensure that the elements are numbered. Target value types can

also be defined. The type of the target value can be either: A simple value (String,

Integer or Double, among others); Another class (for example a Protein); Or an IRI,

referencing an external resource or ontology or to a sub-ontology (value set). Within

the ontology, sub- ontologies (value sets) can be defined under the EnumeratedValue

class. Every sub-class of EnumeratedValue class represents one sub ontology. All
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Figure 2.2: Empusa file definition. Left: The input definition file (combining OWL and SHeX) is
used to provide an ontology (here the GBOL(J. C. J. v. Dam et al., 2017) ontology is used as exam-
ple). Empusa generates as output: an OWL file definition, a ShEx file that can be used for instance
validation, the corresponding documentation in Markdown format, and R and Java APIs. Right
Example input file. Properties within a class can be defined with the propertyDefinitons annotation
property. As an example, the Region class has been highlighted. Value sets (sub-ontologies) can be
defined under the EnumeratedValueClass class, for example the StrandPosition value set.

subsequent sub-classes are elements of the sub-ontology of which it is sub-classed

from. A class/sub-class structure can be defined for these elements within the sub-

ontology.

The Empusa code generator uses this definition to generate: (i) An OWL file

definition. It should be noted that the OWL file definition is generated as it remains

general consensus within the field of semantics that these files are created for each

ontology. (ii) A full ShEx file that can be used to validate a data set containing

information that is encodedwith the ontology. (iii) An R and Java API, which one can

use to generate the data with the encoding of the defined ontology. This API ensures

that the multiplicities and referenced types are correct and prevents many errors in

the data export. (iv) A full documentation of the ontology based on mkdocs. The

rdfs:label and skos:description properties can be used within the ontology to add a

description about the classes and a comment line above each property definition in

the simplified ShEx definition and can be used to add a description to each property.
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Code availability

Empusa is written in Java with Gradle as build system. Empusa codebase is available

at http://www.gitlab.com/Empusa under the MIT license. Documentation and tu-

torials can be found at associated website http://empusa.org.

Discussion

Empusa was developed primarily to help develop ontologies focusing on their func-

tion as a database schema for RDF resources. The design principles "modularity",

"human readability", and "annotation" are followed to ensure that the so generated

ontology can be easily extended (Bizer, Heath, and Berners-Lee, 2009). Empusa can

automatically and consistently generate an OWL and a ShEx definition, ontology

documentation in Markdown, an API, a JSON-LD framing file and a visualisation.

Empusa uses parts of the RDF2Graph tool (J. C. v. Dam et al., 2015) to generate a

representation that can be subsequently used to generate a visualisation within Cy-

toscape (Shannon et al., 2003). This allows users to browse the complete ontology

intuitively.

Development of Empusa was closely related to the development of the GBOL

stack (J. C. J. v. Dam et al., 2017) and the associated tool SAPP (Koehorst et al.,

2018). GBOL enables interoperable genome annotation, as it deploys and extends

existing ontologies to represent genomic entities, their properties and associated

provenance. The GBOL stack contains over 80.000 lines of R and Java code, OWL

and ShEx definition files, and documentation files (mkdocs format). Generating

such a large amount of code would entail 1 year of manual work (considering an

e�ciency of 50 lines per hour) (Nawrocki and Wojciechowski, 2001).

Moreover, during the development of the GBOL ontology countless updates were

made to correctly encapsulate all the data and associated provenance. Most of these

updates were based on insights gained through the data encoding process. Man-

ually updating the code, without using the supporting Empusa tool, would have

entailed so much work that it would still be an on-going process. Thus, the Empusa

code generator can serve to reduce the time (and costs) associated to development of

ontologies and tools.

http://www.gitlab.com/Empusa
http://empusa.org
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In conclusion, the Empusa code generator can be used to develop new ontolo-

gies combined with automatic generation of API and documentation. This reduces

the complexity and time to extend and develop ontologies and tools able to exploit

the full potential of Semantic Web technologies for heterogeneous data integration.

Moreover, Empusa enables the validation of the generated resources and the verifi-

cation of the consistency of the exported data thereby bridging the gap between the

intended and the actual content of RDF resources.
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Abstract

A standard structured format is used by the public sequence databases to present

genome annotations. A prerequisite for a direct functional comparison is consistent

annotation of the genetic elements with evidence statements. However, the current

format provides limited support for data mining, hampering comparative analyses

at large scale.

The provenance of a genome annotation describes the contextual details and

derivation history of the process that resulted in the annotation. To enable interop-

erability of genome annotations, we have developed the Genome Biology Ontology

Language (GBOL) and associated infrastructure (GBOL stack). GBOL is provenance

aware and thus provides a consistent representation of functional genome annota-

tions linked to the provenance. GBOL is modular in design, extendible and linked to

existing ontologies. The GBOL stack of supporting tools enforces consistency within

and between the GBOL definitions in the ontology (OWL) and the Shape Expressions

(ShEx) language describing the graph structure. Modules have been developed to se-

rialise the linked data (RDF) and to generate a plain text format files.

The main rationale for applying formalised information models is to improve

the exchange of information. GBOL uses and extends current ontologies to provide

a formal representation of genomic entities, along with their properties and rela-

tions. The deliberate integration of data provenance in the ontology enables review

of automatically obtained genome annotations at a large scale. The GBOL stack fa-

cilitates consistent usage of the ontology.
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Introduction

Advances in sequencing technologies have turned genomics into a data-rich scien-

tific discipline in which the total assembled and subsequently annotated sequence

data doubles every 30 months (ENA, 2017). To support the growth in data through-

put, automated annotation algorithms have become an indispensable supplement to

manual annotation (NCBI, 2015; Seemann, 2014) and currently, automatic annota-

tions in the UniProt database outnumber manual annotations 100-fold (Consortium

et al., 2014).

Functional genome comparison has been used to identify diagnostic markers, to

develop e↵ective treatments, and to understand genotype -phenotype associations

(Dutilh et al., 2013; Cooper et al., 2013; Alföldi and Lindblad-Toh, 2013). The vol-

ume and heterogeneity of genome annotation data has created a unique type of big

data challenge, namely how to transform computational predicted annotations into

actionable knowledge. Tapping into these available resources is only e�ciently done

by computational means and requires a consistent interlinking of data so that data

becomes Findable, Accessible, Interoperable and Reusable (FAIR) (Wilkinson et al.,

2016).

The format for sharing of public genome sequence annotation data has been de-

veloped and is maintained by the International Nucleotide Sequence Database Col-

laboration (INSDC) a long-standing foundational initiative that operates between

the DDBJ, EMBL-EBI and NCBI public repositories. However, tradeo↵s between

simplicity, human readability and representational power left little support for in-

teroperability, i.e. the ability of computer systems to directly make use of infor-

mation. The /inference qualifier provides a structured description of evidence that

supports feature identification or assignment. Thus, within the standard formats,

data provenance of computational annotations could be stored under this optional

inference tag but this tag is not designed to be used for contextual, element-wise

provenance.

Currently, most annotations rely on computational predictions of structure or

function, and the choice of thresholds for confidence scores becomes a key consider-

ation. Tracking the provenance of genome annotations becomes essential for scien-
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tific reproducibility and to enable critical reexamination of analyses. However, such

meta-analysis is currently very time-consuming. E�cient meta-analysis would re-

quire a framework able to accommodate the various types of annotations (e.g. gene

prediction, homology, protein domains) directly linked to the supporting statisti-

cal evidence. Presently, no machine-readable infrastructure exists to directly query

genome annotations linked to the historical and contextual provenance. The World

Wide Web consortium provides the Semantic Web and the Resource Description

Framework (RDF) data model, supporting these requirements. For RDF, ontologies

are essential as they provide consistency in the meaning of data elements and in the

relationship between them (Hoehndorf, Schofield, and Gkoutos, 2015).

In this respect, ontologies already exist for various aspects of biology (Bard and

Rhee, 2004). The Sequence Ontology (SO) (Galdzicki et al., 2014) was presented over

12 years ago and was designed as a complete terminology of unambiguous terms

related to genetics. However, it was never intended to function as a file format or

database schema, and provides no support for linked sets of data attributes. Further-

more, it has limited support for storing based-on provenance except for some exper-

imental codes. FALDO’s (Bolleman et al., 2014) only purpose is to unambiguously

store genetic locations on a sequence. The Synthetic Biology Open Language (SBOL)

(Galdzicki et al., 2014) was successfully designed to describe complete synthetic

constructs and the interactions between each of the elements. None of these stan-

dards were designed to consistently store feature predictions with evidence prove-

nance and therefore none of these tools provides a complete representation of the

genomic information linked to the provenance it is based on.

To meet the requirements and to ensure interoperability of computational pre-

dictions, we developed an extendable provenance-centered infrastructure for inter-

operable genome annotations. The here presented infrastructure consists of two

main elements; Firstly, the Genome Biology Ontology Language (GBOL), which di-

rectly integrates evidence provenance for the whole dataset and for each included

element (dataset- and element- wise provenance). Secondly, the "GBOL stack" of

enforcing tools facilitates the consistent usage of ontologies. GBOL is modular in

design, extendible and linked to existing ontologies. Empusa has been developed as

part of the GBOL stack to ensure consistency within and between ontology (OWL),
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the API and the Shape Expressions (ShEx) describing the graph structure. This en-

ables the use of SPARQL queries to include contextual details in large scale func-

tional analyses. Modules have been developed to serialise the linked data (RDF) and

to generate a plain text format files.

Results

Ontology structure

GBOL is a genome annotation ontology developed for the application of semantic

web technologies in genome annotation and mining. As such GBOL provides the

means to consistently describe computationally inferred genome annotations of bi-

ological objects typically found in a genome sequence annotation data file in the

public repositories. Additionally, it can describe the linked data provenance of the

extraction process of genetic information from genome sequences.

An overview of the structure of GBOL is shown in Figure 3.1. The ontology con-

tains 251 classes that can be categorised into 6 broad domains (Table 3.1). In GBOL,

sequences have features, which in turn have genomic locations on the sequence. The

authority of this relationship is derived from the data provenance that captures both

the statistical basis of each individual annotation (element-wise provenance) as well

as the programs and parameters used for the complete set of sequences under study

(dataset-wise provenance). All annotations for a given sequence can be packed into

a single entity called a document.

Table 3.1: Overview of domains, classes and properties described by the the GBOL ontology. Note
that some properties might be in multiple sub domains.

Sub domain Classes Properties Value
sets

Genomic locations 16 17 1
Genes
transcripts and features 114 133 17
Document structure 27 107 7
Dataset-wise provenance 22 54 0
Element-wise provenance 5 9 0
BIBO 59 90 2
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Figure 3.1: The GBOL ontology structure: Network based view generated using RDF2Graph
(Dam et al., 2015) the GBOL core ontology. Nodes represent types. Blue edges represent subClassOf
relationships whereas grey edges represent unique type links. A unique type link is defined as a
unique tuple: type of subject, predicate, (data)type of object. Arrow heads indicate the forward
multiplicity of the unique type links: 0..1 and 1..1 multiplicities are indicated by diamonds; 0..N
and 1..N multiplicities are indicated by circles. Neighbourhood of nodes marked in yellow is further
expanded in Figures 4-8

Design principles

GBOL was developed focussing on its function as as file format and as database

schema and has the following design principles: modularity, human readability, and

annotation. These principles ensure that the ontology can be easily extended (Bizer,

Heath, and Berners-Lee, 2009).

Modularity: The number of classes in the main class tree is kept as small as

possible and elements within the data are described with attributes when possible.

Furthermore, classes are included in the main class tree only when there are unique

properties in a class or in one of the sibling classes. This approach ensures that sub-

ontologies can be managed as separate entities within the main ontology and that we

can use existing ontologies. As an example the class RegulationSite has an attribute

regulatoryClass, which denotes the type of regulation with a separate set of classes

of which all are instances of the regulatory class.
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To further simplify the ontology, every attribute is defined as a direct property

within the class that links to either a string, an integer, another object or a class in

an enumeration set. For each class in which the attribute is used, an ‘all values from’

axiom is used, with an optional minimal and/or maximal cardinality constraint. The

’all values from’ axiom enforces all referenced objects to be of the expected type,

which is not the case with the ’some values of’ axiom and therefore we excluded the

use of the ‘some values of’ axiom. This approach is fundamentally di↵erent from

the principle used in the SO, in which attributes are defined using the ’has quality’

property in combination with the ‘some values of’ axiom that references to a class.

Human Readability: All names within the ontology adhere to a set of basic prin-

ciples to increase (human) readability of the ontology. All class names represent the

underlying biological concept as closely as possible avoiding the use of unreadable

numbers. All classes start with uppercase whereas properties start with lowercase.

All words are spelled out, and white spaces are left out of the names, instead the next

word starts with uppercase. In this way, the class ‘exact position’ becomes ‘ExactPo-

sition’ and the property ‘regulatory class’ becomes ‘regulatoryClass’. Furthermore,

where possible, the names are shortened with abbreviations, as long as they remain

understandable for a human reader (e.g. XRef instead of CrossReference).

Annotation: All classes and terms within the ontology are annotated with a short

definition; an optional comment with additional usage information; an optional ed-

itorial comment relating to the development of the ontology itself; an optional ddbj

label indicating the presence in the GenBank standard; and an optional SKOS (Miles

et al., 2005) exact match to relate classes to terms in existing ontologies.

The GBOL infrastructure

An infrastructure enabling interoperable genome annotations integrated with

provenance requires the following characteristics: i) An OWL (Antoniou and Van

Harmelen, 2004) encoded definition of an ontology. ii) An infrastructure to enhance

and simplify its usage, consisting of an interface (API) that allows to use Java and

R. iii) A file format that can be obtained from serialising the linked data (RDF) us-

ing a lightweight Linked Data format (JSON-LD) (Sporny, Kellogg, and Lanthaler,

2013) which is subsequently serialised as YAML (Ben-Kiki, Evans, and Net, 2009).
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Figure 3.2: Schematic of an interoperable provenance centered genome annotation pipeline.
The GBOL stack (dashed box) provides the Genome Biology Ontology Language (GBOL) (Yellow)
and associated infrastructure to keep it consistent and extendable (Empusa). The SAPP module
functions as an interface for (standardly used) genome annotation tools. Using the JAVA API,
SAPP retrieves raw genome data from the triple store, runs genome annotation tools in batch and
uses the GBOL ontology to automatically store their predictions and associated data provenance
directly as RDF triples in the triple store database (Blue). Stored predicted functional annotations,
data provenance and linked meta-data can be queried within JAVA and R with SPARQL and by
using a web interface (Green). Parsers have been developed for conversion of annotation files in
standardly used formats (Orange).

This format mimics the layout of the current format for sharing of public genome

sequence annotation data, but has integrated support to add additional information.

iv) A ShEx definition for data conformance validation to enhance data consistency

(Prud’hommeaux, Labra Gayo, and Solbrig, 2014). And v) a tool to convert existing

GenBank and EMBL format files into the GBOL format.

GBOL data can be stored in any of the linked data formats (RDF), such as Turtle.

The generated API can be used to access the genomic information encoded within

the GBOL format, which includes a data consistency validation. The API directly

reads from and directly modifies the RDF data structure upon usage of any of the

data model functions. This enables the usage of SPARQL within the client code,
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which can run a SPARQL query and directly use the resulting objects nodes in the

API. Moreover, the RDF data can be structured into a tree with the JSON-LD framing

API into JSON-LD, which, in turn, can be further serialized as YAML resulting in

a human readable format for sharing of public genome sequence annotation data.

By addition of standard annotation tools, the GBOL stack can be at the core of a

provenance-centered genome annotation framework (Figure 3.2).

Embedding with other ontologies

GBOL is embedded in the corpus of currently developed web technologies and when

possible we have integrated existing ontologies such as: FALDO (Bolleman et al.,

2014), PROV-O (Lebo et al., 2013), SO (Eilbeck et al., 2005), SBOL (Galdzicki et al.,

2014), BIBO (Giasson et al., 2008), WikiData (Mitraka et al., 2015), FOAF (Brickley

and Miller, 2007), Gene ontology (GO) (Ashburner et al., 2000) and the Evidence

ontology (Chibucos et al., 2014) as depicted in Figure 3.3. Annotation of genomic

location is inspired by FALDO ontology, although several elements had to be modi-

fied. The PROV-O ontology was used and extended to store data provenance. When-

ever applicable, we added a cross-link to exact matching terms within the FALDO,

SO and SBOL ontologies. Identification of persons and institutions is done through

the FOAF ontology and BIBO is used to identify publications.

GBOL does not represent a vocabulary to describe genetic, molecular or cellular

functions. Instead, terms can be cross-referenced to the many vocabularies that

provide functional descriptions to the (products of) genetic elements, such as Gene

Ontology, Enzyme commission (EC) numbers, and the CHEBI and RHEA databases

(Degtyarenko et al., 2008; Alcántara et al., 2012), among others.

Key GBOL classes

Common elements in genome annotations include di↵erent classes of DNA

molecules such as chromosomes, plasmids and contigs, genes, transcripts, exons,

introns, proteins, protein domains and functional annotations. The following sec-

tions summarize the key classes of the ontology. An extensive description for each

element can be found in the documentation available at http://gbol.life/0.1/.

http://gbol.life/0.1/
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Figure 3.3: Embedding of the GBOL ontology with already existing ontologies. FALDO, ProvO, GO,
EC, RHEA and SO are existing ontologies. Classes are in yellow and an explanation is provided in
the main text.

Genomic locations: Genomic locations of all features in GBOL is captured with

the Location, Position and StrandPosition classes, which are inspired by the FALDO

ontology and represented in Figure 3.4. The Location and its subclasses together with

the StrandPosition define an interval on the Sequence, whereas Position defines a sin-

gle position in a sequence. A location can be either: i) A region which has begin and

end positions; ii) A collection of regions (ordered or unordered); iii) A single base at

a given position; or iv) an InBetween location denoting a location between two bases

after the base of which the position is given. Each region, base and in-between loca-

tion can be defined to be located on the forward, reverse or both strands, although

no strand should be specified if the sequence is a single stranded DNA sequence

or a protein sequence. It should be noted that elements of a collection of regions

can be located on di↵erent sequences. This can be used to encode cases in which an

otherwise indistinguishable genetic element is located on multiple chromosomes.

Exactly known positions can be indicated using the ExactPosition class containing

the position property. Otherwise a not exactly known position, also called fuzzy
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Figure 3.4: Graphical view of the GBOL ontology for genomic locations. An explanation of the
classes is provided in the main text.

position, can be indicated using either the BeforePosition class containing the position

property, the AfterPosition class containing the position property, the InRangePosition

class containing the beginPosition and endPosition properties or the OneOfPosition

class containing multiple position properties.

Genes, transcripts and other commonly encountered genomic features: GBOL

has a consistent model for storing genes, exons, (alternatively spliced) transcripts,

coding sequences and proteins. Central to this model is the Sequence class that can

have multiple annotations represented in the Feature class. An overview is provided

in Figure 3.5.

In GBOL a sequence can be specified as a nucleic acid (NA) or a protein sequence.

The sequence is attached to the Sequence class via the sequence property, provided

in the DNA, RNA or protein encoding standard. NA-sequences can represent tran-

scripts or other elements such as chromosomes, plasmids, sca↵olds, contigs or reads.

No distinction is made between DNA and RNA and the strandType denotes that it

is either a double or single stranded DNA or RNA. As indicated in Figure 3.5 the

type of sequence determines the features it might be associated to (ProteinFeature,

NAFeature or TranscriptFeature),
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Figure 3.5: Graphical view of the GBOL ontology for genes, transcripts and other commonly en-
countered genomic features. An explanation of the classes is provided in the main text

Typically, each GBOLDocument contains one or more NASequences (e.g. Chro-

mosome, Contig, mRNA), which can have multiple features including all gene, exon,

intron, sequence variations, and structural, regulatory and repeat annotations. Each

gene is linked to its associated exons, introns and transcripts. Due to alternative

splicing a gene can have multiple transcripts. Each transcript has its own unique

list of exons, which is linked through the exonList and associated exonList class to all

associated exons. A transcript can be either a mRNA, ncRNA, rRNA, tmRNA, tRNA,

precursor RNA or a miscellaneous RNA. The type of transcript determines the as-

sociated features: mRNA transcripts can have features linked to coding sequence

(CDS), 5’-UTR, 3’- UTR and poly A tail.

The mRNA translation table is defined with the translTable property from the

parent sequence. The association between CDS and the encoded protein is preserved

and information about the translation is stored if it is di↵erent from the default
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translation (for example, use of alternative stop codons).

Each protein has a unique IRI (http://gbol.life/0.1/protein/<SHA-384>) based

on the SHA-384 hash of its sequence. This makes it possible to combine protein

information from heterogeneous sources, as a protein can be associated to several

CDS features. All information related to the protein which is unique to the genome

(such as location) should be stored in the CDS feature. Protein annotation features

may include, among other, conserved regions, protein domains, binding sites, 3D

structure, signal peptides, transmembrane regions, and immunoglobulin regions.

Operons can be defined with the Operon feature, to which other genomic features,

such as genes, can be associated. Additionally, viral genome integration can be de-

noted using the IntegratedVirus feature.

Provenance related classes

Three types of provenance can be distinguished. Metadata refers to the owners of

the samples, the biological origin, culture conditions etc. Dataset- and element-

wise provenance pertain to the annotation process. All data within a single data

collection stored in GBOL is based on the GBOLDataSet, which holds among other,

references to all included samples, sequences, organisms, annotation results and

linked databases. An overview of the document structure is given in Figure 3.6.

A sequence originates from a sample and samples are related to one or multiple

organisms. The sample property which links to the Sample class describes where,

when, how, by whom and from what the sample was collected. The fields follow

the GenBank format. The organism property describes the taxonomic reference, its

scientific name and its taxonomic lineage.

All annotations made within the GBOLDataSet have associated provenance and

should originate from one of the listed annotation results, so that correspondence

with originating databases is preserved. The Database and the GBOLDataSet classes

are both sub classed from the void ontology, Dataset class contains a general de-

scription, including among other title, description, comment, license, version, data

download address, SPARQL endpoint URI, and URL encoding.

Dataset-wise provenance: Storage of the dataset-wise provenance is based on

the PROV-O ontology in which the Entity, Agent and Activity classes are central. An
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Figure 3.6: Graphical view of the GBOL Document structure. An explanation of the classes is
provided in the main text

activity can use and generate entities, which are executed (wasAssociatedWith) by

an agent. As a result, an entity can be attributed to an agent. The GBOLDataset,

AnnotationResult, GBOLLinkSet and Database classes (indicated in Figure 3.6 and

3.7) are subclasses from the PROV-O ontology Entity class, so that for each of these

objects provenance on how, when and by whom they were created can be associated.

In GBOL an Entity is either a file or an annotation result. The annotation re-

sult is a set of triples contained within a GBOL document, whereas a file represents

a physical file either on a computer or network. An agent can either be a curator,

person, organisation or annotation software. For the annotation software a version

and code repository with associated commit identifier is included to enable univocal

identification. For a curator, an ORCID (Haak et al., 2012) must be specified so that

each curator can be uniquely identified together with his/her organisation. Both Per-

son and Organization are sub-classed from the FOAF ontology to include additional

information such as name and email address.

Within GBOL, each activity is an annotation activity, which can be either an auto-

matic process or a manual curation activity, with a start and end time. An automatic

annotation must be associated with a software agent and the set of parameters used
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Figure 3.7: Graphical view of the GBOL Dataset-wise provenance. An explanation of the classes is
provided in the main text

must be specified including the corresponding input and/or output files. Finally,

manual curation must be associated with a curator.

Element-wise provenance and qualifiers: In addition to the dataset-wise prove-

nance, GBOL is able to capture an additional layer of element-wise provenance, as

the provenance of all the annotation in GBOL is captured per property per feature

with the FeatureProvenance, as shown in Figure 3.8. For properties that could have

items from multiple sources, we have defined the Qualifiers, each with its own as-

sociated provenance. A qualifier can either be a citation, note or cross reference

(indicated by xref ). A citation can hold a reference to literature encoded with the

BIBO ontology.

Annotations are linked to the provenance object either through the provenance

property of the qualifiers or the onProperty property of the Provenance feature. The

provenance object links to both the dataset-wise provenance and the element-wise

provenance. The origin links the provenance with the dataset-wise provenance (An-

notationResult), which includes among other the creation time, identity of the creat-

ing agent and the used parameters, as previously mentioned. The annotation links

to the element-wise provenance (ProvenanceAnnotation), which includes: A free text
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Figure 3.8: Graphical view of the GBOL element-wise provenance. An explanation of the classes is
provided in the main text

note to describe the annotation; A list of references supporting the note; An ex-

perimental code, preferably from the Evidence Ontology to qualify the evidence

supporting the conclusion; An optional derivedFrom that links to other features on

which it is based.

Finally, each annotation tool generates its own evidence statements, often em-

bedded in a statistical framework, characteristic of the algorithmic approach taken,

such as p-values, bit scores, matching regions or any other scoring system. To store

tool specific confidence scores, a subclass of the ProvenanceAnnotation class can be

created. Some example classes include Blast, HMM and SignalP associated with the

output of corresponding tools (Camacho et al., 2009; Rabiner and Juang, 1986; Pe-

tersen et al., 2011) However, these classes are not part of the GBOL ontology itself.

Empusa

During the development of the standard, di�culties were encountered in manag-

ing the large set of properties and structures in the OWL and ShEx definitions and

the API needed to encode the annotation information in conjunction with the as-

sociated provenance. Moreover, Analyses of various public repositories have shown
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that inconsistent, non-enforced usage of ontologies leads to mismatches between the

descriptive OWL file and the actual content (Dam et al., 2015). In order to shorten

the development cycle and to maintain consistency within and between the OWL

and ShEx definitions and the API, a standalone tool was developed named Empusa.

The input definition of Empusa is a combination between OWL and a simplified

version of ShEx, which can be edited within Protégé (Musen, 2015). The classes are

defined in OWL, whereas the properties are defined in each class under the annota-

tion property ‘propertyDefinitions’ encoded within a simplified format of the ShEx

standard. Additionally predefined value sets (for example all regulatory types) can

be defined by adding a subclass to the EnumeratedValueClass. Each subclass of the

value set is represented as one element within the value set. As standalone tool,

Empusa can automatically and consistently generate an OWL and a ShEx definition,

ontology documentation in markdown, an API, a JSON-LD framing file and a visu-

alisation. Empusa uses parts of the RDF2Graph tool (Dam et al., 2015) to generate

a representation that can be subsequently used to generate a visualisation within

Cytoscape (Shannon et al., 2003). This allows users to browse the complete ontology

intuitively.

Discussion

Comparative genome analysis is essential to understand the mechanisms underly-

ing evolution and adaptation. Ideally, comparative genomics should be performed

at the functional level, as this is highly scalable and more resistant to phylogenetic

distances (Koehorst, Saccenti, et al., 2016). However, as functional annotation is

performed in a non consistent manner the current practical level of interoperability

is at the sequence level. Many tools exists to obtain orthologous clusters which are

shaped by a generalised acceptance threshold for similarity and alignment length

which is a trade-o↵ between sensitivity and false discovery (Fouts et al., 2012; Li,

Stoeckert, and Roos, 2003). At large scales these analysis are hampered by the high

computational cost for finding bi-directional best matches. We have shown (Koe-

horst, Saccenti, et al., 2016) that functional comparison, based on consistently anno-

tated protein domains, provides a fast, e�cient and scalable alternative.
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The prerequisite of a direct comparative functional analysis is consistent anno-

tation of the genetic elements with evidence statements. Recording the provenance

allows class-specific cut-o↵s for each individual annotation. Element-wise prove-

nance enhances the re-usability of the annotations, and allows the development of

methods to combine evidence statements, often derived from complex statistical

frameworks, into confidence statements. Element-wise provenance also enables a

quick re-evaluation of evidence, for instance by using a tunable cut-o↵ score.

GBOL has been developed to explore available genome sequences using the min-

ing possibilities of linked data. As a result, GBOL has evolved to consistently cap-

ture annotation data generated by the Semantic Annotation Platform with Prove-

nance (SAPP), available at http://semantics.systemsbiology.nl. Previous ver-

sions of the GBOL ontology have been used to compare 432 Pseudomonas strains

through integration of genomic, functional, metabolic and expression data (Koe-

horst, Van Dam, et al., 2016). Here GBOL was essential to capture, store and

interlink the genomic and functional annotation data. Strikingly, over 432 Pseu-

domonas strains, consistent de-novo annotation yielded 838 additional GO-terms

and 146 additional protein domains which would not have been identified using

the original gene predictions. In addition to determining the functional pan- and

core genome of a species, comparative genomics also enables the investigation of

genotype-phenotype associations. In (Kamminga et al., 2017) we consistently func-

tionally annotated and compared 80 publicly available mycoplasma genomes. The

resulting semantic framework allowed us to e�ciently query for functional di↵eren-

tiation of variousmycoplasma species in relation to host specificity and phylogenetic

distance.

Consistent functional annotation within a semantic framework requires a stan-

dardised ontology for the annotated elements and the associated based-on prove-

nance. Linked data ensures that queries can be performed, mining multiple se-

quences at once, thereby providing a scalable alternative for large scale genome

comparisons. The GBOL stack provides the ontology and corresponding API that

enables the incorporation of functional annotation and provenance reducing com-

plexity and is the outcome of e↵orts in a number of studies related to functional

comparative genomics. Currently the GBOL stack is being used in various col-

http://semantics.systemsbiology.nl
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laborative projects to handle genomic data of organisms across all domains of life

(DIGISAL, 2017; INFECT, 2017; MycoSynVac, 2017; EmPowerPutida, 2017).

GBOL has been primarily designed to handle genomic annotation. However,

it has been designed in a modular and extensible manner so that in the future it

can be extended to host other omics data types as proteomics and transcriptomics.

The modular design of GBOL ensures that other ontologies can be incorporated and

managed as separate entities. For instance, the majority of the feature and sequence

classes within GBOL can be connected with those from the Sequence Ontology and

are therefore linked with the skos:exactMatch predicate. The major di↵erence be-

tween GBOL and SO is that SO has been defined as vocabulary of terms related to

genetic elements, whereas the GBOL classes have been designed to describe genetic

annotation and elements located on a sequence and is inspired on the principles of

the GenBank format. However, still a number of features in the SO are not currently

available in GBOL and future work should focus on including them. Another possi-

ble extension would be to link to other Minimum Information Standards like MIGS

and extensions thereof (MIMARKS, MIxS) (Field et al., 2008; Yilmaz et al., 2011)

and cross domain experiment reporting standards like ISA-tab (Rocca-Serra et al.,

2011). Other possible extensions relate to the development of the sub-ontologies

GBOL links to. For instance, BIBO is used to store information on literature ref-

erences, however the OWL ontology file of BIBO has to be further improved, as it

does not specify to which classes all of the properties should belong. Therefore we

have chosen to include a less consistent representation of the properties by adding

all properties to the root class bibo:Document.

Empusa, a core part of the GBOL stack, ensures the correct usage of the ontol-

ogy through the provided R and JAVA API. We have ensured that Empusa can be

used independently of GBOL (documentation available at http://gbol.life) and

therefore can be used to develop new ontologies combined with an automatically

generated API and documentation. This reduces the complexity and time to extend

and develop ontologies with corresponding API’s and ensures consistent and correct

usage of a defined ontology.

http://gbol.life
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Conclusions

Large scale analysis of heterogeneous biological data is hampered by lack of inter-

operability. To improve the exchange of information formalised information mod-

els are required. GBOL provides a formal representation of genomic entities, their

properties and relations. The GBOL Stack provides a framework to enforce consis-

tent and correct usage of GBOL. The semantic basis and the integration of prove-

nance enables FAIR genome annotations, thereby unlocking the potential of func-

tional genome annotation data.

Methods

The GBOL ontology is OWL encoded and a ShEx schema is provided. All supporting

software (Java and R API, Empusa) are written in Java with Gradle as build system.

We use JENA (Jena, 2013) for handling and loading the RDF data into a triple store.

Protégé was used for editing the ontology (Musen, 2015).

Storage of the genomic location is inspired by FALDO, although several elements

had to be modified e.g. to account for features that start and end on di↵erent se-

quences. Di↵erences include: i) StrandPosition is not subclassed from Position. In-

stead, an additional property is added to the region, base and InBetween location,

this is done because these location object types can have both a strand position and

an index position on the sequence. ii) The reference property is not part of a Position,

but of a Location, because a location that starts on one sequence and ends on another

sequence is an undefined sequence. iii) The BaseLocation and the InBetweenLocation

classes have been added to the ontology. iv) The BaseLocation, InBetweenLocation,

CollectionOfRegions and Region are children of the Location class, such that the rest

of the ontology can incorporate these classes. v) The before and after positions have

been explicitly defined to include their semantics. vi) The classes sub-classed from

FuzzyPosition have an integer to denote the position and do not point to another po-

sition object, which could allow for arbitrary complex location denotations. vii) The

N- and C-terminal positions have been removed and all indexes are counted from

the N-terminal side. Counting from the C-terminal side can be calculated based on

the sequence length. viii) The reflective properties beginOf and endOf have been
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removed, because a position can also be referenced by the added base location. For

consistency we have redefined all FALDO elements within our own namespace.

Cross-links to exact matching terms from other ontologies (such as FALDO, SO

and SBOL ) where added using skos:exactMatch. Additionally, several properties

within the ontology point to existing ontologies, for instance: i) The signalTarget

property of SignalPeptide, the modificationFunction of ModifiedResidue and the or-

ganelle of Sample are interlinked with GO terms. ii) The experiment property of

ProvenanceAnnotation, which denotes upon which evidence the annotation is based

on, should point, where possible, to a term within the Evidence Ontology. iii) The

residue property of ModifiedResidue must point to a term within the Protein Modifi-

cation Ontology (Montecchi-Palazzi et al., 2008). iv) GBOL includes the GO terms

for tissueType of the Sample class and points, when possible, to a term within the

BRENDA Tissue and Enzyme Source Ontology (Schomburg et al., 2004).

The source file of the ontology encoded in the Empusa and associated generated

OWL definition, ShEx schema and visualization for Cytoscape available at http:

//www.gitlab.com/GBOL under the MIT license. The generated Java and R API are

available at https://gitlab.com/gbol/GBOLapi and https://gitlab.com/gbol/

RGBOLApi under the MIT license. The conversion module, which is part of SAPP, is

available at http://www.gitlab.com/SAPP/conversion under theMIT license. The

supporting Empusa code generator is available at http://www.gitlab.com/Empusa

under the MIT license. All projects are coded in Java and are based on the Gradle

build system. All terms are resolvable and can be browsed for at the associated

website http://gbol.life/0.1/.
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Abstract

To unlock the full potential of genome data and to enhance data interoperability and

reusability of genome annotations we have developed SAPP, a Semantic Annotation

Platform with Provenance. SAPP is designed as an infrastructure supporting FAIR

de novo computational genomics but can also be used to process and analyse exist-

ing genome annotations. SAPP automatically predicts, tracks and stores structural

and functional annotations and associated dataset- and element-wise provenance

in a Linked Data format, thereby enabling information mining and retrieval with

Semantic Web technologies. This greatly reduces the administrative burden of han-

dling multiple analysis tools and versions thereof and facilitates multi-level large

scale comparative analysis.

Availability

SAPP is written in JAVA and freely available at

https://gitlab.com/sapp and runs on Unix-like operating systems. The docu-

mentation, examples and a tutorial are available at

https://sapp.gitlab.io.

https://gitlab.com/sapp
https://sapp.gitlab.io


Semantic Annotation Platform with Provenance

4

69

Introduction

Managing the genomic data deluge puts specific emphasis on the ability of machines

to automatically find and use the data. To meet this demand and to extract maxi-

mum benefit from research investments, digital objects should be Findable, Acces-

sible, Interoperable and Reusable (i.e. FAIR) (Wilkinson et al., 2016).

Genome annotation data is usually findable and accessible through public repos-

itories in which the data is linked to metadata providing detailed descriptions of the

data acquisition and generation process. Interoperability reflects the potential for

seamless integration of data from independent sources. Currently, genome compar-

isons usually involve a laborious process of data retrieval, modification and stan-

dardisation (canonicalization). Reusability requires rich metadata with provenance

for each annotation. Current standard formats (GenBank, EMBL or GFF3) retain

the output of the prediction tools (for example for gene identification) but only

when they score better than a predefined, often pragmatic, prediction threshold.

Detailed information of the actual prediction scores is lost. This hampers critical

re-examination of the results.

Because existing genome annotation data is hard to be made FAIR and manag-

ing of FAIR genome annotation data requires a considerable administrative load, we

developed SAPP, a semantic framework for large scale comparative functional ge-

nomics studies. SAPP can automatically annotate genome sequences using standard

tools. The unique characteristic of SAPP is that the annotation results and their

provenance are stored in a Linked Data format, thus enabling the deployment of

mining capabilities of the Semantic Web. As the automatic annotations are incor-

porated into a dynamic framework, SAPP supports periodic querying, comparison

and linking of diverse annotation sources, resulting in up-to-date genome annota-

tions. By interrogating metadata as part of a digital annotation object, annotation

data becomes interoperable as the extraction procedure requires no additional stan-

dardisation process.
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Implementation

SAPP accepts annotated and non-annotated sequence files which are converted into

an RDF data structure using the GBOL ontology (Dam et al., 2017). Within SAPP,

structural and functional annotation is performed using add-on modules incorpo-

rating existing standard annotation tools such as Prodigal and Augustus (Hyatt et

al., 2010; Stanke and Morgenstern, 2005). Modules for tRNA, tmRNA, rRNAs, pro-

tein domain and CRISPR repeats annotation are also available. New modules can

be added. Annotation data and metadata are stored in a compressed graph database

(Fernández et al., 2013), as shown in Figure 4.1A.

Genome annotations can be exported to standard formats. All data can be di-

rectly queried and compared using the SPARQL endpoint or via the GBOL API

(Java/R). Complex queries can be performed on multiple genomes while simulta-

neously taking meta-data into account. A SPARQL query example is provided in

Figure 4.1B. Examples to query SAPP from R, Java or Python, a tutorial and a list of

publications in which SAPP was used can be found at http://sapp.gitlab.io.

Figure 4.1: A: The conversion module imports genome sequences in common formats. Annotation
modules perform common tasks such as gene, tRNA, protein and protein domain annotation. Re-
sults are stored as Linked Data and consistency is ensured by the GBOL stack. B: SPARQL query
to retrieve the E-value score of the instances of the protein domain PF00465 across multiple bac-
terial genomes. C: Distribution of E-values for protein domain PF00465 across multiple bacterial
genomes: note the multimodality of the distribution. D: Principal component analysis of functional
similarities of 100 bacterial genomes from the Streptococcus (blue) and the Staphylococcus (orange)
genera. PC1 and PC2 account for 51.4% and 10.1% of the variance in the dataset respectively.

http://sapp.gitlab.io
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Results and Discussion

Reproducible computational research requires a management system that links data

with data provenance. Interoperability requires a strictly defined ontology. Using

and sharing Linked Data based on controlled vocabularies and ontologies ensures

the interoperability and reusability of the data. SAPP functionalities are unique

since none of the existing de novo annotation pipelines implement Semantic Web

technologies. SAPP generated data fulfil the applicable requirements for data FAIR-

ness proposed by (Wilkinson et al., 2016).

For input and output, these tools interact directly with the database thereby forc-

ing automatic linkage of data and provenance. In this way there is no need to work

with predefined thresholds on the parameters controlling the annotation output.

SAPP uses a controlled vocabulary to describe genome annotations. Consistency is

ensured through the GBOL Stack (Dam et al., 2017).

The GBOL ontology enables consistent genome annotation while integrating

dataset-wise and element-wise provenance. The element-wise provenance is the sta-

tistical basis or score of each individual annotation, whereas the dataset-wise prove-

nance refers to the programs, versions thereof and parameters used for the complete

annotation of the (set of) sequences under study.

GBOL makes use of existing ontologies: PROV-O for activity capturing (Lebo et

al., 2013); FOAF for agent information (Brickley and Miller, 2007); BIBO for article

information stored within the annotation files (Giasson et al., 2008); SO for sequence

information (Eilbeck et al., 2005); FALDO for genomic location (Bolleman et al.,

2014), among many others. We refer the reader to (Dam et al., 2017) for detailed

information on the integrated ontologies and the data model.

Annotations can be evaluated through critical examination of the provenance.

The use of SPARQL allows complex queries across data annotated with SAPP and

in direct comparison of these annotations with external resources, such as UniProt.

Additionally for specific questions, likelihood values can be integrated, normalized

or corrected for multiple testing. For instance, study of E-value distribution on in-

stances of a protein domain across multiple genomes can inform optimal threshold

selection, as shown in Figure 4.1C. SAPP implements existing tools: consistency of
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SAPP annotation and a comparison with deposited annotations is shown and dis-

cussed in (Koehorst, Van Dam, et al., 2016).

By querying multiple consistently annotated genomes simultaneously, large

scale functional comparisons can be performed without additional conversion steps

(Figure 4.1D and (Koehorst, Saccenti, et al., 2016)).

These examples demonstrate that by adopting FAIR principles to genome anno-

tation, knowledge discovery is facilitated.
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Abstract

A functional comparative genome analysis is essential to understand the mecha-

nisms underlying bacterial evolution and adaptation. Detection of functional or-

thologs using standard global sequence similarity methods faces several problems;

the need for defining arbitrary acceptance thresholds for similarity and alignment

length, lateral gene acquisition and the high computational cost for finding bi-

directional best matches at a large scale. We investigated the use of protein do-

main architectures for large scale functional comparative analysis as an alternative

method. The performance of both approaches was assessed through functional com-

parison of 446 bacterial genomes sampled at di↵erent taxonomic levels. We show

that protein domain architectures provide a fast and e�cient alternative to methods

based on sequence similarity to identify groups of functionally equivalent proteins

within and across taxonomic boundaries, and it is suitable for large scale compara-

tive analysis. Running bothmethods in parallel pinpoints potential functional adap-

tations that may add to bacterial fitness.
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Introduction

Comparative analysis of genome sequences has been pivotal to unravel mechanisms

shaping bacterial evolution like gene duplication, loss and acquisition (Puigbò et

al., 2014; J Peter Gogarten, W. F. Doolittle, and Lawrence, 2002), , and helped in

shedding light on pathogenesis and genotype-phenotype associations (Dutilh et al.,

2013; Pallen and Wren, 2007).

Comparative analysis relies on the identification of sets of orthologous and par-

alogous genes and subsequent transfer of function to the encoding proteins. Tech-

nically, orthologs are defined as best bi-directional hits (BBH) obtained via pairwise

sequence comparison among multiple species and thus exploits sequence similarity

for functional grouping. Sequence similarity-based (SB) methods present a num-

ber of shortcomings. First, a generalised minimal alignment length and similarity

cut-o↵ need to be arbitrarily selected for all, which may hamper proper functional

grouping. Second, sequence and function might di↵er across evolutionary scales.

Protein sequences change faster than protein structures and proteins with same

function but with low sequence similarity have been identified (Joshi and Xu, 2007;

Kuipers et al., 2009). SB methods may fail to group them hampering a functional

comparison. This limitation becomes evenmore critical when comparing either phy-

logenetically distant genomes or gene sequences that were acquired with horizontal

gene transfer events. Recent technological advancements are resulting in thousands

of organisms and billions of proteins being sequenced (Goodwin, McPherson, and

McCombie, 2016), which increases the need of methods able to perform compar-

isons at the larger scales.

To overcome these bottlenecks, protein domains have been suggested as an al-

ternative for defining groups of functionally equivalent proteins (Yang, R. F. Doolit-

tle, and Bourne, 2005; L.-G. Snipen and Ussery, 2013; Koehorst et al., 2017) and

have been used to perform comparative analyses of Escherichia coli (L.-G. Snipen

and Ussery, 2013), Pseudomonas (Koehorst et al., 2017), Streptococcus (Saccenti et

al., 2015) and for protein functional annotation (Addou et al., 2009; Thakur and

Guttman, 2016). A protein domain architecture describes the arrangement of do-

mains contained in a protein and is exemplified in Figure 5.1. As protein domains
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Figure 5.1: Domain architecture as a formal description of functional equivalence. Although
the proteins obviously share a common core, four distinct domain architectures involving six protein
domains were observed in (1) Enterobacteriacee, (2) Helicobacter pylori, (3) Pseudomonas and (4)
Cyanobacteria.

capture key structural and functional features, protein domain architectures may

be considered to be better proxies to describe functional equivalence than a global

sequence similarity (Ponting and Russell, 2002). The concept of using the domain

architecture to precisely describe the extent of functional equivalence is exempli-

fied in Figure 5.2. Moreover, once the probabilistic domain models have been de-

fined, mining large sets of individual genome sequences for their occurrences is a

considerably less demanding computational task than an exploration of all possible

bi-directional hits between them (Eddy, 1998; Van Domselaar et al., 2005).

Domain architectures have been shown to be preserved at large phylogenetic dis-

tances both in prokaryotes and eukaryotes (Koonin, Wolf, and Karev, 2002; Kum-

merfeld and Teichmann, 2009). This lead to the use of protein domain architectures

to classify and identify evolutionarily related proteins and to detect homologs even

across evolutionarily distant species (Björklund et al., 2005; Fong et al., 2007; Song,
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Sedgewick, and Durand, 2007; B. Lee and D. Lee, 2009). Structural information en-

coded in domain architectures has also been deployed to accelerate sequence search

methods and to provide better homology detection. Examples are CDART (Geer

et al., 2002) which finds homologous proteins across significant evolutionary dis-

tances using domain profiles rather than direct sequence similarity, or DeltaBlast

(Boratyn et al., 2012) where a database of pre-constructed position-specific score

matrix is queried before searching a protein-sequence database. Considering pro-

tein domain content, order, recurrence and position has been shown to increase the

accuracy of protein function prediction (Messih et al., 2012) and has led to the de-

velopment of tools for protein functional annotation, such as UniProt-DAAC (Do⁄an

et al., 2016) which uses domain architecture comparison and classification for the

automatic functional annotation of large protein sets. The systematic assessment

and use of domain architectures is enabled by databases containing protein domain

information such as UniProt (The UniProt Consortium, 2015), Pfam (Robert D. Finn

et al., 2016), TIGRFAMs (Haft, Selengut, and White, 2003), InterPro (Mitchell et al.,

2015), SMART (Letunic, Doerks, and Bork, 2015) and PROSITE (Sigrist et al., 2012),

that also provide graphical view of domain architectures.

Building on these observations we aim at exploring the potential of domain

architecture-based (DAB) methods for large scale functional comparative analysis

by comparing functionally equivalent sets of proteins, defined using domain archi-

tectures, with standard clusters of orthogonal proteins obtained with SB methods.

We compared the SB and DAB approach by analysing i) the retrieved number of sin-

gletons (i.e. clusters containing only one protein) and ii) the characteristics of the in-

ferred pan- and core-genome size considering a selection of bacterial genomes (both

gram positive and negative) sampled at di↵erent taxonomic levels (species, genus,

family, order and phylum). We show that the DAB approach provides a fast and

e�cient alternative to SB methods to identify groups of functionally equivalent/re-

lated proteins for comparative genome analysis and that the functional pan-genome

is more closed in comparison to the sequence based pan-genome. DAB approaches

can complement standardly applied sequence similarity methods and can pinpoint

potential functional adaptations.
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Figure 5.2: Relationship between Domain Architecture Based (DAB) and Sequence Similar-
ity based (SB) clustering with respect to functional annotation. Domains are probabilistic
models of amino acids coordinates obtained by hidden Markov modelling (HMM) built from (struc-
ture based) multiple sequence alignments. Domain architectures are linear combinations of these
domains representing the functional potential of a given protein sequence and constitute the input
for DAB clustering. SB-orthology clusters inherit functional annotations via best bi-directional hits
above a predefined sequence similarity cut-o↵ score.
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Table 5.1: Comparison between DAB and SB clustering. DAB has been performed using HMM
from Pfam (29.0) and InterPro (interproscan-5.17-56.0). Fraction refers to the fraction of proteins
with at least one (InterPro or PFAM) protein domain. Core- and pan- indicate the sizes of the core-
and pan- genomes (based on the sample) and singletons refer to the number of clusters with only
one protein.

Fraction DAB Pfam DAB InterPro SB
Taxon Name InterPro | PFAM Core- Pan- Singletons Core- Pan- Singletons Core- Pan- Singletons
Species H. pylori 0,82 ± 0,01 | 0,81 ± 0,01 724 1334 142 534 2888 853 1036 1503 295
Species L. monocytogenes 0,89 ± 0,01 | 0,88 ± 0,02 1333 2142 309 1414 3415 847 2294 2937 746
Genus Bacillus 0,87 ± 0,03 | 0,85 ± 0,03 792 5984 1474 342 16349 6745 885 9903 5505
Genus Pseudomonas 0,88 ± 0,02 | 0,87 ± 0,02 1113 6572 1554 646 19387 7444 1453 12204 4838
Genus Streptococcus 0,87 ± 0,02 | 0,85 ± 0,02 535 3435 845 244 8265 3276 716 4468 2116
Family Enterobacteriaceae 0,91 ± 0,04 | 0,90 ± 0,05 146 6690 1664 20 19590 8173 197 10899 6715
Order Corynebacteriales 0,83 ± 0,05 | 0,80 ± 0,06 475 6022 1719 130 22558 10554 605 12632 9087
Phylum Cyanobacteria 0,77 ± 0,04 | 0,74 ± 0,05 400 9752 4428 120 27421 16140 511 10575 11154

Methods

Bacterial species were chosen on the basis of the availability of fully sequenced

genomes in the public domain: two species (Listeria monocytogenes and Helicobacter

pylori), three genera (Streptococcus, Pseudomonas, Bacillus), one family (Enterobacte-

riaceae), one order (Corynebacteriales), and one phylum (Cyanobacteria) were se-

lected. For each, 60 genome sequences were considered, except for L. monocytogenes

for which only 26 complete genome sequences were available. Maximal diversity

among genome sequences was ensured by sampling divergent species (when possi-

ble) at each taxonomic level. Genome sequences were retrieved from the European

Nucleotide Archive database (www.ebi.ac.uk/ena). A full list of genomes analysed

is available in the Data availability section.

De novo genome annotation

To avoid bias due to di↵erent algorithms used for the annotation of the original

deposited genome sequences, all genomes were de novo re-annotated using the

SAPP framework (1.0.0) (Koehorst et al., 2017). In particular, the FASTA2RDF,

GeneCaller (implementing Prodigal 2.6.2) (Hyatt et al., 2010) and InterPro (imple-

menting interproscan-5.17-56.0) (Jones et al., 2014) modules were used to handle

and re-annotate the genome sequences, and to store the results in the RDF data

model. This resulted in 446 annotated genomes (7⇥60 genomes and 1⇥26 genomes)

with provenance. For each annotation step, the provenance information (E-value cut

o↵, score, originating tool or database) was stored together with annotation infor-

www.ebi.ac.uk/ena
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mation in a graph database (RDF-model) and can be reproduced through the SAPP

framework (http://semantics.systemsbiology.nl).

Retrieval of domain architecture

The positions (start and end on the protein sequence) of domains having Pfam

(Robert D. Finn et al., 2016), TIGRFAMs (Haft, Selengut, and White, 2003) and

InterPro (Mitchell et al., 2015) identifiers were extracted through SPARQL querying

of the graph database and domain architectures were retrieved for each protein in-

dividually. InterPro aggregates protein domain signatures from di↵erent databases.

Here no pruning for redundancies has been done. Identification of domains was

done using the intrinsic InterPro cut-o↵ that represents in each case the e-values

and the scoring systems of the member databases (Mitchell et al., 2015). The do-

main starting position was used to assess relative position in the case of overlapping

domains; alphabetic ordering was used to order domains with the same starting po-

sition or when the distance between the starting position of overlapping domains

was < 3 amino acids.

Labels indicating N-C terminal order of identified domains were assigned to each

protein using the starting position of the domains: the same labels were assigned to

proteins sharing the same domain architecture.

Sequence similarity based clustering

To make a direct comparison possible, only protein sequences containing at least

one protein domain signature were considered for analysis. BBH were obtained

using Blastp (2.2.28+) with an E-value cuto↵ of 10�5 and -max_target_seqs of 105.

OrthaGogue (1.0.3) (Ekseth, Kuiper, and Mironov, 2013) combined with MCL (14-

137) (Dongen, 2000) was used to identify protein clusters on the base of sequence

similarity.

Domain architecture based clustering

Domain architecture based clusters were built by clustering proteins with the same

labels using bash terminal commands (sort, awk). The number of proteins sharing a

http://semantics.systemsbiology.nl


Protein Domain Architectures

5

85

given domain architecture in each genome was stored in a 446⇥ 21054 (genomes ⇥
domain architectures) matrix. From this matrix a binarised presence-absence matrix

was obtained and used solely for principal component analysis.

Heaps’ law fitting and pan-genome openness assessment

AHeaps’ law model was fit to the abundance matrices using 5⇥103 random genome

ordering permutations and the micropan R package (L. Snipen and Liland, 2015).

Software

SAPP, a Semantic Annotation Pipeline with Provenance, stores results in a graph

database (Koehorst et al., 2017) used for genome handling and annotation and is

available at http://semantics.systemsbiology.nl. Matrix manipulations and

multivariate analysis were performed using the R software (3.2.2).

Results

SB and DAB approaches were compared by considering eight sets of genome se-

quences sampled at di↵erent taxonomic levels, from species to order, preserving

phylogenetic diversity (see Table 5.1). Each set contained 60 genome sequences, ex-

cept for Listeria monocytogenes for which only 26 complete genomes were publicly

available. To facilitate the comparison between DAB and SB clusters only protein se-

quences that contained at least one domain were considered. On average, 85% of the

protein sequences contain at least one domain from the InterPro database (see Table

5.1). Values range from 77±4% for Cyanobacteria to 91± 4% for Enterobacteriaceae

(which include E. coli). Since the overall results were the same for gram negative

and gram positive bacteria, we will show and comment only on results for the lat-

ter. Results obtained for gram negative bacteria are shown in the Data availability

section.

Cluster formation based on sequence similarity

A standard BBH workflow was used to obtain SB protein clusters for the eight sets.

We started by calculating the total number of clusters, corresponding to the pan-

http://semantics.systemsbiology.nl
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genome size, as shown in Table 5.1. Then we considered protein cluster persistence,

that is the number of genomes where at least one member of the cluster is present,

divided by the total number of genomes considered. Results are shown in Figure

5.3.

The ratio between the size of the core-genome (clusters with persistence of 1, i.e.

present in all genomes) and the number of singletons decreased with evolutionary

distance (see Table 5.1). It ranged from 3.51 and 3.07 at species level (H. pylori and L.

monocytogenes respectively) to 0.05 and 0.06 when considering members of the same

order (Corynebacteriales) and phylum (Cyanobacteria) respectively. A similar pat-

tern is observed when directly comparing the sizes of the pan- and core- genomes of

the sampled genomes. Within the gram negative bacteria this ratio ranges from 0.69

for members of the same species (H. pylori) to 0.05 for members of the same phylum

(Cyanobacteria) with intermediate values (0.12) for sequences from the same genus

(Pseudomonas).

Cluster formation based on domain architectures

Domain architectures directly rely on the definition of protein domainmodels: those

were retrieved from Pfam, InterPro and TIGRFAMs databases. However, TIGR-

FAMs results were not further considered due to a lower coverage (Table 5.1). As

expected partly overlapping results were obtained when di↵erent domain databases

were used. The number of singletons was larger when using InterPro rather than

Pfam and for the latter we also observed larger core-genome size. These discrep-

ancies can be due to the fact that InterPro aggregates di↵erent resources (including

Pfam and TIGRFAMs) and domain signatures arising from di↵erent databases are

integrated with di↵erent identifiers in InterPro. In light of this we focused on results

obtained by using Pfam whose current release (30.0) contains hidden Markov mod-

els for over 16300 domain families. Size and persistence of groups of functionally

equivalent proteins obtained using Pfam domains are presented in Figure 5.4.

Similar to what has been observed in the SB case we observed a decrease of the

ratio between the size of the core genome and the number of singletons when higher

taxonomic levels are considered. For organisms of the same species (H. pylori and

L. monocytogenes) the ratio was 5.09 and 4.30, respectively, while for member of the
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Figure 5.3: Persistence of sequence similarity based (SB) clusters. Cluster persistence is defined
as the relative number of genomes with at least one protein assigned to the cluster. The frequency of
SB clusters according to their persistence is shown.

same order (Corynebacteriales) and phylum (Cyanobacteria) it was 0.55 and 0.009

respectively. Similarly, also the ratio between the size of the core- and pan-genome

decreases as higher taxonomic levels are considered, ranging from 0.54 for H. pylori

to 0.04 for Cyanobacteria.

Comparison of DAB and SB clusters

We compared the clusters obtained using both approaches and the proteins assigned

to them. The number of one-to-one relationships (indicating a complete agreement)

between SB and DAB clusters is indicated in Table 5.2 and ranges from 648 (for H.

pylori) to 1680 (in Pseudomonas) corresponding to 50% and 25% of the pan-genome.

This indicates that results of SB and DAB clustering tend to be more similar when

working at closer phylogenetic distances. However, more complicated cases occur
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Figure 5.4: Persistence of domain architecture based (DAB) clusters. The frequency of DAB
clusters according to their persistence is shown

Table 5.2: Number of identical clusters found with SB and DAB.

Group Clusters
H. pylori 648
L. monocytogenes 1085
Bacillus 1439
Pseudomonas 1680
Streptococcus 961
Enterobacteriaceae 1649
Corynebacteriales 1034
Cyanobacteria 1127

when proteins in a single SB cluster are assigned to various DAB clusters including

singletons and vice versa. An overview of the possible mismatches between SB and

DAB clusters is in Figure 5.5. The observed frequency of the di↵erent types of cluster

mismatches are given in Figure 5.6. We observed that single domain architectures

predominated the one-to-one clusters as is shown in Table 5.3
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Figure 5.5: Summary of possible mismatches between DAB and SB clusters. Mismatches of
SB and DAB derived clusters (marked by S and D respectively) can occur in two directions. Panel A:
possible cases of mismatch when counting the number of SB clusters the sequences in a DAB cluster
are assigned to. 1d ! 1s denotes that all sequences from the D cluster are assigned to the same S
cluster. 1d ! Ns denotes that sequences in a single D cluster are assigned to N distinct S clusters
with N � 1. Similarly, (panel B) 1s!Nd denotes that sequences in a single S cluster are assigned
to N distinct D clusters with N � 1

Table 5.3: Composition in terms of domains (#domains) of domain architecture found within iden-
tical (one-to-one) SB and DAB clusters
#Domains H. pylori L. monocytogenes Bacillus Pseudomonas Streptococcus Enterobacteriaceae Cyanobacteria Corynebacteriales

1 463 768 1119 1185 734 1312 867 772
2 133 207 229 333 164 246 182 192
3 40 76 65 107 43 64 57 45
4 8 23 18 37 13 15 14 16
5 3 9 3 10 5 6 4 5
6 0 2 2 5 1 3 3 4
7 1 0 1 3 1 3 0 0
8 0 0 1 0 0 0 0 0
9 0 0 1 0 0 0 0 0

For L. monocytogenes we found 378 1d ! 1s DAB cluster mismatches, (Figure

5.5, panel A, top case) meaning that in those cases sequences in a DAB cluster are

a subset of the sequences in the corresponding SB cluster. This lower number of

sequences in the DAB cluster could be due to, for instance an insertion or expansion

of a domain, leading to SB clustered sequences with partly overlapping but distinct

domain architectures as is depicted in Figure 5.1. Similarly, there are 399 1s! 1d

clusters. Each of these cases represent a sequence cluster where all the sequences

share the same domain architecture, though other sequences exist with the same

architecture that have not been included in the cluster due to a too low similarity

score. The low similarity between sequences with the same domain architecture

could be due to a horizontal acquisition of the gene or to a fast protein evolution

at the sequence level. Genes acquired from high phylogenetic distances can greatly
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Figure 5.6: Comparison between DAB and SB clusters. On the left DAB is used as a reference
and each bar represents the relative frequency of one DAB cluster containing sequences assigned to
{1,2, . . . ,5} and 6 or more SB clusters and one-to-one represents the relative frequency of identical
cluster. Similarly, on the right SB is used as a reference. Axis labels follow notation in Figure 5.5

vary in sequence while presenting the same domain architecture.

Proteins contained in a single DAB cluster but assigned to multiple SB clusters

contain mostly ABC transporters-like (PF00005) or Major Facilitator Superfamily

(MFS, PF07690) domains. This is not surprising considering that such generic func-

tions are usually associated with a high sequence diversity. Conversely, ABC trans-

porters are found in multiple DAB clusters. However, many of them are grouped

into a single SB cluster with ATPase domain containing proteins (1s!Nd case).

We observed distinct architectures with one of two very similar domains, the

GDSL-like Lipase/Acylhydrolase and the GDSL-like Lipase/Acylhydrolase family

domain (PF00657 and PF13472 respectively) and those architectures were often

seen clustered using a SB approach. However, architectures containing both do-

mains were also identified, pointing to a degree of functional di↵erence as a result

of convergent or divergent evolution. Still, the corresponding sequences remain

similar enough as to be indistinguishable when a SB approach is used.

For SB clustering we also observed the case of identical protein sequences not

clustered together, probably because of the tie breaking implementation when BBH

are scored.
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In all cases we found the size of both the pan- and the core-genome to be larger

when a SB approach is used to identify gene clusters and SB approaches lead to a

larger number of singletons than DAB ones. This indicates that DAB clusters are

assigned to several SB clusters, many of them consisting of just one protein.

When going from species to phylum level, the ratio between the number of DAB

and SB singletons changes from 0.48 and 0.41 (for H. pylori and L. monocytogenes

respectively) to 0.19 and 0.40 when considering organisms of a higher taxonomic

level (Corynebacteriales and Cyanobacteria respectively).

We investigated the predicted size of the pan-genome upon addition of new se-

quences. Heaps’ law regression can be used to estimate whether the pan-genome is

open or closed (Tettelin et al., 2005) through the fitting of the decay parameter ↵;

↵ < 1 indicates openness of the pan-genome (indicating that possibly many clusters

remain to be identified within the considered set of sequences), while ↵ > 1 indi-

cates a closed one; the ↵ values are given in Table 5.4. In all cases the pan-genome

is predicted to be open; however, ↵ values obtained using DAB clusters (↵DAB) are

systematically closer to one than the ↵SB obtained with the standard sequence simi-

larity approach.

The ↵DAB value retrieved for L. monocytogenes is strikingly low. Heaps law re-

gression relies on the selected genomes providing a uniform sampling of selected

taxon, here species. Analysis of the domain content of the selected genomes shows

a divergent behaviour of strain LA111 (genome id GCA_000382925-1). This be-

haviour is clear in Figure 5.7, where GCA_000382925-1 appears as an outlier of the

L. monocytogenes group. Removal of this outlier leads to ↵DAB = 1.04 and ↵SB = 0.64,

which emphasizes the need for uniform sampling prior to Heaps regression analysis.

DAB comparison across multiple taxa

DAB clusters can be labelled by their domain architecture and since this is a formal

description of functional equivalence, results of independently obtained analyses

can be combined. Figure 5.7 shows the results of a principal component analy-

sis of the combined DAB clusters for selected genomes from eight taxa. The first
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Table 5.4: Decay parameter ↵ of the Heaps regression model using DAB and SB clustering

↵DAB ↵SB

H. pylori 0.95 0.42
L. monocytogenes 0.77 (1.04⇤) 0.50 (0.64⇤)
Bacillus 0.93 0.59
Pseudomonas 0.94 0.61
Streptococcus 0.87 0.72
Enterobacteriaceae 0.99 0.74
Cyanobacteria 0.64 0.58
Corynebacteriales 0.88 0.52

↵ < 1 indicates an open pan-genome.
⇤Values obtained upon removal of sequence GCA_000382925.1

two components account for a relatively low explained variance (29%) still group-

ing of genomes from the same taxa is apparent. High functional similarity among

genomes of the same species (H. pylori and L. monocytogenes) is reflected by the com-

pact clustering, while phylogenetically more distant genomes appear scattered in

the functional space defined by the principal components.

Discussion

We have shown that domain architecture-based methods can be used as an e↵ective

approach to identify clusters of functionally equivalent proteins, leading to results

similar to those obtained by classical methods based on sequence similarity.

To assess whether DAB results were consistent with those of SB methods, we

have chosen OrthaGogue as a representative of the latter class. Several tools such as

COGNITOR (DavidM. Kristensen et al., 2010) andMultiPARANOID (Alexeyenko et

al., 2006) are available that implement di↵erent algorithm solutions to identify ho-

mologous sequences. However, despite di↵erent implementations, they all rely on

sequence similarity as a proxy for functional equivalence. Here we considered SB

methods as a golden standard for functional comparative genomics, especially when

organisms within close evolutionary proximity are considered. Our aim was to in-

vestigate whether using HMMs instead of sequence similarity would yield similar

results, thereby justifying their use for large scale functional genome comparisons.

Regarding domain architectures, we have explored di↵erent alternatives, as we have
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Figure 5.7: Large scale functional comparison of species. Principal component analysis of
functional similarities of 446 genomes based on the presence/absence of domain architectures on the
corresponding genomes. The variance explained by the first two components is indicated on axes
labels.

seen that the chosen database or set of reference domains plays a critical role; for ex-

ample, the low coverage of TIGRFAM prevents the obtaining of reasonable clusters.

The DAB approach takes advantage of the large computational e↵ort that has

already been devoted to the identification and definition of protein domains in ded-

icated databases such as Pfam. Protein domain models are build using large scale

sequence comparisons which is an extremely computationally intensive task. How-

ever, once the domain models are defined, mining a sequence for domain occur-

rences is a much less demanding task. The task with the higher computational load

(the definition of the domains) is performed only once and results can be stored and

re-used for further analysis. This provides an e↵ective scalable approach for large



94

scale functional comparisons which by and large is independent of phylogenetic

distances between species.

The chosen set of domain models and the database used as a reference greatly

impact the results. InterPro aggregates protein domain signatures from di↵erent

databases, which leads to redundancy of the domain models. This redundancy

causes overlaps between the entries and an increase of the granularity of the clus-

ters retrieved. This can bias downwards the size of the pan-genome and upwards the

size of the core- genome, as shown in Table 1. In InterPro this redundancy is taken

into account by implementing a hierarchy of protein families and domains. The en-

tries at the top of these hierarchies correspond to broad families or domains that

share higher level structure and/or function. The entries at the bottom correspond

to specific functional subfamilies or structural/functional sub-classes of domains

(Mitchell et al., 2015). Using InterPro for DAB clustering would require taking into

account the hierarchy of protein families and domains. However, this would pose

challenges of its own and would require discrimination of the functional equiva-

lence of di↵erent signatures within the same hierarchy.

Another source of redundancy are functionally equivalent domains from dis-

tantly related sequences. Pfam represents this through related families, termed

clans, where relationships may be defined by similarity of sequence, structure or

profile-HMM. Clans might contain functionally equivalent domains; however, it is

not clear whether this is always the case as the criteria for clan definition include

functional similarity but not functional equivalence (Robert D Finn et al., 2006).

Members of a clan have diverging sequences and very often SB approaches would

recognise the evolutionary distance between the sequences and group them in dif-

ferent clusters. If we were to assume that members of a clan are functionally equiv-

alent and collect them in the same DA cluster, we will have a higher number of cases

where a single DA cluster is split in multiple sequence clusters 1d!Ns. In addition,

there would be a higher number of cases of sequence clusters with the same DA

though none exactly matching the DA clusters (1s!1d cases).

In many cases a one-to-one correspondence could be established between DAB

and SB clusters indicating that often the sequence can be used as a proxy for func-

tion. At first this may seem a trivial result, however it has a profound implication.
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Domain model databases (in this case Pfam) contain enough information, encoded

by known domain models, to represent the quasi totality of biological function en-

coded in the bacterial sequences analysed in this study. However, it is important to

stress that the comparisons have been performed considering sequences with known

domains, representing currently around 85% of the genome coding content, a num-

ber that will only increase in the future.

A significant advantage of the DAB method over the SB method is that the do-

main architecture captured within a cluster can be used as a formal description

of the function. Currently, more than 20% of all separable domains in the Pfam

database, are so-called domains of unknown function (DUF). Although in bacterial

species they are often essential (Goodacre, Gerlo↵, and Uetz, 2013). With the DAB

method they are formally included and often semantically linked to one or more

domains of known function.

The starting position of the domains was used to generate labels indicating N-C

terminal order of identified domains. The labels were used only for clustering as

proteins sharing the same labels were assigned to the same clusters. When using the

mid-point or the C-terminal position, labelling could be a↵ected however, it does

not a↵ect the obtained clusters.

A content-wise formal labelling of DAB clusters makes a seamless integration of

multiple independently performed DAB analysis possible. This allows for a compar-

ison of potential functionomes across taxonomic boundaries, as presented in Figure

5.7, while new genomes can be added at a computational cost O(n), with n the num-

ber of genomes to be analysed. On the other hand, addition of a new genome using

an SB approach requires a new set of all-against-all sequence comparisons which

comes at a O(n2) computational cost. However, approaches have been proposed to

overcome these shortcomings of SB methods, such as COGNITOR which reduces

the computational to O(n) by using pre-computed databases. In this respect, the

DAB approach is similar to the approach implemented in COGNITOR, by searching

against existing databases of domain architectures.

The bimodal shape of the distributions presented in Figures 5.3 and 5.4 indicates

the relative role of horizontal gene transfer and vertical descent when shaping bac-

terial genomes. The first peak accounts for sequences (or functions) only present
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in a small number of genome sequences which have been likely acquired by hori-

zontal gene transfer. The second peak accounts for high persistence genetic regions

representing genes (or functions) belonging to the taxon core which has been likely

acquired by vertical descent.

A measure of the impact of vertical descent and horizontal gene transfer is pro-

vided by the ratio between the core- and pan- genome sizes. The number of single-

tons provides a measure of the number of genes horizontally acquired from species

outside the considered group.

Two of the most prominent di↵erences between the two approaches are the num-

ber of retrieved singletons and the core- to pan- genome size ratio. Multiple mem-

bers of the same taxon might acquire the same function through horizontal gene

transfer (Soucy, Huang, and Johann Peter Gogarten, 2015). This is likely to occur

given that they would have similar physiological characteristics, hence they would

tend to occupy a similar niche or, at least, more similar than when comparing species

from di↵erent taxa. As the origin of the horizontally acquired genes may vary for

each organism, an SB approach will correctly recognise the heterologous origin of

the corresponding sequences and those will be assigned to singletons. However,

the probabilistic hidden Markov models used for domain recognition are better at

recognising the functional similarity of the considered sequences and clusters them

together.

Another indication of the relative impact of horizontal and vertical gene acqui-

sition events is provided by the openness or closedness of the genome. Values for

the decay parameter ↵ in Table 5.3 indicate a relatively large impact by horizontal

gene transfer. Within the considered taxa we observed ↵DAB > ↵SB, meaning that

the sequence diversity is larger than the functional diversity. Upon addition of new

genomes to the sample the rate of addition of new sequence clusters appears higher

than the rate of the addition of new functions.

Limitations of DAB approaches

We have shown that domain architecture-based methods can be used as an e↵ective

approach to identify clusters of functionally equivalent proteins, leading to results

similar to those obtained by classical methods based on sequence similarity. How-
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ever, whether DAB methods are more accurate than SB methods to assess functional

equivalence will require further analysis. In this light, results of functional con-

servation for both approaches could be compared in terms of GO similarity and/or

EC number (Altenho↵ and Dessimoz, 2009; David M Kristensen, 2016). Partial do-

main hits might arise as a result of alignment, annotation and sequence assembly

artefacts. To reduce the number of partial domain hits additional pruning could

be implemented to distinguish these cases. However, this is an open problem that

requires caution as it could influence the functional capacity of an organism and

clustering approaches using DA.

The performance of DAB methods may be sub-optimal when dealing with newly

sequenced genomes that are not yet well-characterised enough to have all of their

domains present in domain databases, since DAB methods will be unable to handle

unknown architectural types. Around 15% of the genome coding content corre-

sponds to sequences with no identified protein domains. DAB approaches can be

complemented with SB methods to consider these sequences or even protein se-

quences with low domain coverage, possible indicating the location of protein do-

mains yet to be identified. Since DAB methods rely on the constant upgrading of

public resources like UniProt and Pfam databases, an initial assessment of domain

coverage appears as a sine qua non condition for application of these methods. DAB

approaches could be used to assess the consistency of existing orthologous groups in

terms of their domain architectures, at least when domain architectures are expected

to be completely known in advance (for instance in the case of micro-evolutionary

variations within a species where mutational events may disrupt a protein’s func-

tion). For other purposes, such as the discovery of a new phyla of cellular life that

contains radically di↵erent domain architectures, global similarity methods may be

preferred (David M Kristensen, 2016).

Conclusions

As protein domain databases have evolved to the point where DAB and SB ap-

proaches produce similar results in closely related organisms, the DAB approach

provides a fast and e�cient alternative to SB methods to identify groups of func-
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tionally equivalent/related proteins for comparative genome analysis. The lower

computational cost of DAB approaches makes them the better choice for large scale

comparisons involving hundreds of genomes.

Highly redundant databases, such as InterPro, are best suited for domain based

protein annotation, though are as not e↵ective for DAB clustering if the goal is to

identify clusters of functionally equivalent proteins. To enable DAB approaches for

highly structured databases, such as InterPro, the hierarchy of protein families and

domains within has to be explicitly considered. Currently Pfam is a better alterna-

tive for this task.

Di↵erences between DAB and SB approaches increase when the goal is to

study bacterial groups spanning wider evolutionary distances. The functional pan-

genome is more closed in comparison to the sequence based pan-genome. Both

methods have a distinct approach towards horizontally transferred genes, and the

DAB approach has the potential to detect functional equivalence even when se-

quence similarities are low.

Complementing the standardly applied sequence similarity methods with a DAB

approach pinpoints potential functional protein adaptations that may add to the

overall fitness.
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Figure 5.8: Persistence of Sequence Based (SB) clusters. Cluster persistence is defined as the rel-
ative number of genomes with at least one protein assigned to the cluster. The plots show frequency
of SB clusters according to their persistence. Publicly available and complete genome sequences as-
signed to each taxon were selected so that phylogenetic diversity within the taxon was preserved, as
described in materials and methods. 60 distinct genome sequences were considered for each of the
depicted taxa.
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Figure 5.9: Persistence of Domain Architecture Based (DAB) clusters. The plots show the
frequency of DAB clusters according to their persistence.



Protein Domain Architectures

5

101

Bibliography

Addou, Sarah, Robert Rentzsch, David Lee, and Christine A. Orengo (2009).

“Domain-Based and Family-Specific Sequence Identity Thresholds Increase the

Levels of Reliable Protein Function Transfer”. In: Journal of Molecular Biology 387.

doi: 10.1016/j.jmb.2008.12.045.

Alexeyenko, Andrey, Ivica Tamas, Gang Liu, and Erik L L Sonnhammer (2006). “Au-

tomatic clustering of orthologs and inparalogs shared by multiple proteomes”.

In: Bioinformatics. Vol. 22. doi: 10.1093/bioinformatics/btl213.

Altenho↵, AdrianM and Christophe Dessimoz (2009). “Phylogenetic and Functional

Assessment of Orthologs Inference Projects and Methods”. In: PLoS Comput Biol

5. doi: 10.1371/journal.pcbi.1000262.

Björklund, Åsa K, Diana Ekman, Sara Light, Johannes Frey-Skött, and Arne Elofsson

(2005). “Domain rearrangements in protein evolution”. In: Journal of molecular

biology 353.

Boratyn, Grzegorz M et al. (2012). “Domain enhanced lookup time accelerated

BLAST”. In: Biology Direct 7. doi: 10.1186/1745-6150-7-12.

Do⁄an, Tunca et al. (2016). “UniProt-DAAC: Domain Architecture Alignment and

Classification, a New Method for Automatic Functional Annotation in UniPro-

tKB”. In: Bioinformatics.

Dongen, Stijn van (2000). “Graph Clustering by Flow Simulation, PhD thesis, Uni-

versity of Utrecht”. In:

Dutilh, Bas E et al. (2013). “Explaining microbial phenotypes on a genomic scale:

GWAS for microbes”. In: Briefings in Functional Genomics 12. doi: 10.1093/bfgp/

elt008.

Eddy, Sean R (1998). “Profile hidden Markov models.” In: Bioinformatics 14.

Ekseth, Ole Kristian, Martin Kuiper, and Vladimir Mironov (2013). “OrthAgogue:

an agile tool for the rapid prediction of orthology relations”. In: Bioinformatics

30. doi: 10.1093/bioinformatics/btt582.

Finn, Robert D et al. (2006). “Pfam: clans, web tools and services”. In: Nucleic Acids

Research 34. doi: 10.1093/nar/gkj149.

https://doi.org/10.1016/j.jmb.2008.12.045
https://doi.org/10.1093/bioinformatics/btl213
https://doi.org/10.1371/journal.pcbi.1000262
https://doi.org/10.1186/1745-6150-7-12
https://doi.org/10.1093/bfgp/elt008
https://doi.org/10.1093/bfgp/elt008
https://doi.org/10.1093/bioinformatics/btt582
https://doi.org/10.1093/nar/gkj149


102

Finn, Robert D. et al. (2016). “The Pfam protein families database: Towards a more

sustainable future”. In: Nucleic Acids Research 44. doi: 10.1093/nar/gkv1344.

Fong, Jessica H, Lewis Y Geer, Anna R Panchenko, and Stephen H Bryant (2007).

“Modeling the Evolution of Protein Domain Architectures Using Maximum Par-

simony”. In: Journal of molecular biology 366. doi: 10.1016/j.jmb.2006.11.017.

Geer, Lewis Y, Michael Domrachev, David J Lipman, and Stephen H Bryant (2002).

“CDART: protein homology by domain architecture”. In: Genome Research 12.

doi: 10.1101/gr.278202.

Gogarten, J Peter, W Ford Doolittle, and Je↵rey G Lawrence (2002). “Prokaryotic

evolution in light of gene transfer”. In: Molecular Biology and Evolution 19.

Goodacre, Norman F, Dietlind L Gerlo↵, and Peter Uetz (2013). “Protein domains

of unknown function are essential in bacteria.” In: MBio 5. doi: 10.1128/mBio.

00744-13.

Goodwin, Sara, John D. McPherson, and W. Richard McCombie (2016). “Coming of

age: ten years of next-generation sequencing technologies”. In: Nature Reviews

Genetics 17. doi: 10.1038/nrg.2016.49.

Haft, Daniel H., Jeremy D. Selengut, and Owen White (2003). The TIGRFAMs

database of protein families. doi: 10.1093/nar/gkg128.

Hyatt, Doug et al. (2010). “Prodigal: prokaryotic gene recognition and translation

initiation site identification”. In: BMC Bioinformatics 11. doi: 10.1186/1471-

2105-11-119.

Jones, Philip et al. (2014). “InterProScan 5: Genome-scale protein function classifi-

cation”. In: Bioinformatics 30. doi: 10.1093/bioinformatics/btu031.

Joshi, Trupti and Dong Xu (2007). “Quantitative assessment of relationship between

sequence similarity and function similarity”. In: BMC genomics 8.

Koehorst, Jasper J. et al. (2017). “SAPP: functional genome annotation and analysis

through a semantic framework using FAIR principles”. In: Bioinformatics 1.

Koonin, Eugene V, Yuri IWolf, and Georgy P Karev (2002). “The structure of the pro-

tein universe and genome evolution”. In:Nature 420. doi: 10.1038/nature01256.

Kristensen, David M (2016). “Referee Report For: Protein domain architectures pro-

vide a fast, e�cient and scalable alternative to sequence-based methods for com-

parative functional genomics [version 1; referees: 1 approved, 2 approved with

https://doi.org/10.1093/nar/gkv1344
https://doi.org/10.1016/j.jmb.2006.11.017
https://doi.org/10.1101/gr.278202
https://doi.org/10.1128/mBio.00744-13
https://doi.org/10.1128/mBio.00744-13
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1093/nar/gkg128
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1093/bioinformatics/btu031
https://doi.org/10.1038/nature01256


Protein Domain Architectures

5

103

reservations]”. In: F1000Research 5:1987. doi: 10.5256/f1000research.10140.

r15678.

Kristensen, David M. et al. (2010). “A low-polynomial algorithm for assembling

clusters of orthologous groups from intergenomic symmetric best matches”. In:

Bioinformatics 26. doi: 10.1093/bioinformatics/btq229.

Kuipers, Remko K P et al. (2009). “Correlated mutation analyses on super-family

alignments reveal functionally important residues”. In: Proteins: Structure, Func-

tion, and Bioinformatics 76.

Kummerfeld, Sarah K and Sarah A Teichmann (2009). “Protein domain organisation:

adding order”. In: BMC Bioinformatics 10. doi: 10.1186/1471-2105-10-39.

Lee, Byungwook and Doheon Lee (2009). “Protein comparison at the domain archi-

tecture level”. In: BMC Bioinformatics 10. doi: 10.1186/1471-2105-10-S15-S5.

Letunic, Ivica, Tobias Doerks, and Peer Bork (2015). “SMART: recent updates, new

developments and status in 2015”. In: Nucleic acids research 43.

Messih, Mario Abdel, Meghana Chitale, Vladimir B Bajic, Daisuke Kihara, and Xin

Gao (2012). “Protein domain recurrence and order can enhance prediction of

protein functions”. In: Bioinformatics 28. doi: 10.1093/bioinformatics/bts398.

Mitchell, Alex et al. (2015). “The InterPro protein families database: The classifica-

tion resource after 15 years”. In: Nucleic Acids Research 43. doi: 10.1093/nar/

gku1243.

Pallen, Mark J and Brendan W Wren (2007). “Bacterial pathogenomics”. In: Nature

449. doi: 10.1038/nature06248.

Ponting, Chris P and Robert R Russell (2002). “The Natural History of Protein Do-

mains”. In: Annual Review of Biophysics and Biomolecular Structure 31. doi: 10.

1146/annurev.biophys.31.082901.134314.

Puigbò, Pere, Alexander E Lobkovsky, David M Kristensen, Yuri I Wolf, and Eugene

V Koonin (2014). “Genomes in turmoil: quantification of genome dynamics in

prokaryote supergenomes”. In: BMC biology 12.

Saccenti, Edoardo, David Nieuwenhuijse, Jasper J Koehorst, Vitor AP Martins dos

Santos, and Peter J Schaap (2015). “Assessing the metabolic diversity of strepto-

coccus from a protein domain point of view”. In: PloS one 10.

https://doi.org/10.5256/f1000research.10140.r15678
https://doi.org/10.5256/f1000research.10140.r15678
https://doi.org/10.1093/bioinformatics/btq229
https://doi.org/10.1186/1471-2105-10-39
https://doi.org/10.1186/1471-2105-10-S15-S5
https://doi.org/10.1093/bioinformatics/bts398
https://doi.org/10.1093/nar/gku1243
https://doi.org/10.1093/nar/gku1243
https://doi.org/10.1038/nature06248
https://doi.org/10.1146/annurev.biophys.31.082901.134314
https://doi.org/10.1146/annurev.biophys.31.082901.134314


104

Sigrist, Christian J A et al. (2012). “New and continuing developments at PROSITE”.

In: Nucleic acids research.

Snipen, Lars and Kristian Hovde Liland (2015). “micropan: an R-package for mi-

crobial pan-genomics”. In: BMC Bioinformatics 16. doi: 10.1186/s12859-015-

0517-0.

Snipen, Lars-Gustav and David W Ussery (2013). “A domain sequence approach

to pangenomics: applications to Escherichia coli”. In: F1000Research 1. doi: 10.

12688/f1000research.1-19.v2.

Song, N, R D Sedgewick, and D Durand (2007). “Domain architecture comparison

formultidomain homology identification”. In: Journal of Computational Biology: A

Journal of Computational Molecular Cell Biology 14. doi: 10.1089/cmb.2007.A009.

Soucy, Shannon M, Jinling Huang, and Johann Peter Gogarten (2015). “Horizontal

gene transfer: building the web of life”. In: Nature Reviews Genetics 16.

Tettelin, HervÃ© et al. (2005). “Genome analysis of multiple pathogenic isolates

of Streptococcus agalactiae: implications for the microbial "pan-genome"”. In:

Proceedings of the National Academy of Sciences of the United States of America 102.

doi: 10.1073/pnas.0506758102.

Thakur, Shalabh and David S Guttman (2016). “A De-Novo Genome Analysis

Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies”.

In: BMC bioinformatics 17.

The UniProt Consortium (2015). “UniProt: a hub for protein information.” In: Nu-

cleic acids research 43. doi: 10.1093/nar/gku989.

Van Domselaar, Gary H et al. (2005). “BASys: a web server for automated bacterial

genome annotation.” In: Nucleic acids research 33. doi: 10.1093/nar/gki593.

Yang, Song, Russell F Doolittle, and Philip E Bourne (2005). “Phylogeny determined

by protein domain content”. In: Proceedings of the National Academy of Sciences of

the United States of America 102. doi: 10.1073/pnas.0408810102.

https://doi.org/10.1186/s12859-015-0517-0
https://doi.org/10.1186/s12859-015-0517-0
https://doi.org/10.12688/f1000research.1-19.v2
https://doi.org/10.12688/f1000research.1-19.v2
https://doi.org/10.1089/cmb.2007.A009
https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1093/nar/gki593
https://doi.org/10.1073/pnas.0408810102






6Comparison of 432 Pseudomonas strains

through integration of genomic, functional,

metabolic and expression data

Jasper J. Koehorst, Jesse C. J. van Dam, Ruben G. A. van Heck,

Edoardo Saccenti, Vitor A. P. Martins Dos Santos,

Maria Suarez-Diez, Peter J. Schaap

Bioinformatics; doi: https://doi.org/10.1093/bioinformatics/btx767

https://doi.org/10.1093/bioinformatics/btx767


108

Abstract

Pseudomonas is a highly versatile genus containing species that can be harmful to

humans and plants while others are widely used for bioengineering and bioremedi-

ation.

We analysed 432 sequenced Pseudomonas strains by integrating results from

a large scale functional comparison using protein domains with data from six

metabolic models, nearly a thousand transcriptome measurements and four large

scale transposon mutagenesis experiments.

Through heterogeneous data integration we linked gene essentiality, persistence

and expression variability. The pan-genome of Pseudomonas is closed indicating a

limited role of horizontal gene transfer in the evolutionary history of this genus.

A large fraction of essential genes are highly persistent, still non essential genes

represent a considerable fraction of the core-genome.

Our results emphasize the power of integrating large scale comparative func-

tional genomics with heterogeneous data for exploring bacterial diversity and ver-

satility.
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Introduction

The Pseudomonas genus exhibits a broad spectrum of traits and Pseudomonas species

show a remarkable adaptability to the biochemical nature of the large variety of

environments, often extreme, they thrive in (Wu et al., 2011; Timmis, 2002). The

genus currently includes almost 200 recognised species, which have been clustered

into seven groups and into lineages on the basis of a limited set of loci (Loper et al.,

2012). Some species are well-studied because they are human or plant pathogens,

like P. aeruginosa or P. syringae, or because they are considered harmless and pos-

sess interesting biodegradation properties while others can produce a variety of ex-

traordinary secondary metabolites with anti-microbial properties (Gross and Loper,

2009). P. putida KT2440 is even Generally Recognized as Safe (GRAS-certified) for

expression of heterologous genes and has been transformed into a genetically acces-

sible laboratory and industrial workhorse (Nelson et al., 2002).

A number of comparative genomics studies have been performed in the past (Wu

et al., 2011; Loper et al., 2012; Baltrus et al., 2011) but the number of available

Pseudomonas genomes quadrupled in the last five years due to the widespread use

and the advancement of high-throughput sequencing technologies. As of December

2015, the complete and draft genomes of 432 strains distributed over 33 species are

publicly available (see Supplementary Figure S1). This plethora of data entitles an

in-depth comparative re-analysis of Pseudomonas genomes to explore their metabolic

and ecological diversity.

Large scale functional comparison based on sequence similarity is challenged

by methodological problems, such as the need of of defining arbitrarily generalized

minimal alignment length and similarity cut-o↵ for all sequence to be analyzed, and

it is hampered by the high computational cost, since time andmemory requirements

scale quadratically with the number of genome sequences to be compared (Koehorst

et al., 2016). Many bacterial proteins consist of two or more domains and fusion/-

fission events are the major drivers of modular evolution of multi-domain bacterial

proteins (Pasek, Risler, and Brezellec, 2006). Interspecies domain variation can thus

give rise to an annotation transfer problem: sequence based functional annotation

methods use a consecutive alignment to identify common ancestry and therefore
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may miss domain insertion/deletion, exchange or repetition events, which may lead

to functional shifts and promiscuity. Comparisons at protein sequence level should

therefore be complemented with comparisons at the protein domain level (Koehorst

et al., 2016). In addition, in order to avoid technical biasses a biologically meaning-

ful functional comparison requires consistent and up-to-date annotations. Instead,

the biological information available in public databases varies in quality due to the

use of di↵erent databases and annotation pipelines that include di↵erent methods

and may assign di↵erent names, acronyms and aliases to the same protein. Re-

interpretation of these predictions in most cases requires reverse engineering as data

provenance is usually not available.

In this paper 432 Pseudomonas genome sequences were de novo re-annotated

and the generated annotation information was integrated through a semantic plat-

form with data from six metabolic models, nearly a thousand transcriptome mea-

surements and four large scale transposon mutagenesis experiments. We identified

phylogenetic relationships among di↵erent species using protein domains and per-

formed extensive analysis of the core- and pan-genomes of the Pseudomonas genus

and considered the habitat factor while analyzing the pan/core-genome. Finally, we

linked domain content and domain variability of persistent and essential genes and

their transcriptional regulation.

Results

De novo annotation of P. putida KT2440 as a minimal working example

P. putida KT2440 (Nelson et al., 2002) is one of the best-characterized Pseudomonas

strains. A de novo annotation obtained using an in-house annotation pipeline, the

annotation deposited in GenBank (NC_002947) and an alternative annotation ob-

tained using RAST (Aziz et al., 2008) were compared, see Table 6.1.

The total number of genes identified using three gene calling methods, Prodigal

2.6 (in our pipeline), Glimmer3 (RAST), and Glimmer (GenBank) are very similar,

di↵ering less than 4%. However, as each of these algorithms have an intrinsic false

discovery rate in start-site prediction, significant di↵erences in the start position of

the identified genes were found. The number of exact matches in gene start-sites is
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Table 6.1: Annotation results for P. putida KT2440. GenBank refers to the original deposited
annotation (available at NCBI), whereas RAST and SAPP refer respectively to their annotation.

#Genes #Unique start/end #Unique Unique Unique
positions GO domains EC

GenBank 5350 170 0 3574 443
RAST 5531 62 726 3631 447
SAPP 5555 252 1403 3636 447

only 73% (4073 genes) confirming previous observations (Tripp et al., 2015). These

5’ variations in gene identification can result in a putative gain or loss of biologi-

cal functions; however, since di↵erent naming conventions are used in the di↵erent

annotation protocols applied, a direct functional comparison to spot possible di↵er-

ences is not possible (Figure 6.1).

The use of controlled vocabularies overcomes this issue, so that functional com-

parison can be performed using gene ontology (GO) terms, Enzyme Commission

(EC) numbers and InterPro identifiers. For the GenBank deposited annotation no

GO information was available but the di↵erence observed between the RAST and

the de novo annotation is striking. This minimal working example shows that even

for a single genome a comparative analysis of functional annotations derived from

three work-flows is almost impossible by computational means due to lack of stan-

dardization and data provenance. This example further emphasizes that compara-

tive genomic analysis requires homogeneous annotation.

Comparison of the genomic potential of Pseudomonas species

Since for a comparative genomics study a consistent and standardized genome an-

notation is a prerequisite, we evaluated the impact by comparing the functional

annotations of 432 Pseudomonas genomes with a de novo annotation. We used both

complete and draft genomes. According to the quality metric defined by Cook and

Ussery, almost 30% of the available draft genomes were of low quality (Cook and

Ussery, 2013). This was mostly due to a high number of contigs and not to the

quality of the assemblies in itself, so they were included in the analysis.

GenBank files were converted into RDF, extracting genome sequences and gene-

calls. Genomes were structurally and functionally re-annotated. The originally de-
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Figure 6.1: Alternatives for functional genome comparison: A) Direct comparison of genome
potential using existing annotation is often hampered by lack of standardization of gene calling
and annotation tools, mixed and unknown data provenance and inconsistent naming of function.
B) Sequence similarity clustering bypasses inconsistent functional annotations. Computational
time scales quadratically with the number of genome sequences and gene fusion/fission events might
be overlooked. C) Usage of standardised annotation tools ensures uniform genome annotation
prior to comparison; annotation provenance is stored for all steps.

posited gene-calls were functionally re-annotated as well and a pairwise comparison

of GO terms, and EC identifiers assigned to the originally deposited and the de novo

gene-calls was performed at gene and protein domain level. Figure 6.2 summarizes

the results for the available 58 complete genomes. Di↵erences in annotations were

observed at all functional levels. Per genome on average 38 new genes were pre-

dicted while a functional re-annotation of the set of complete genomes yielded 838

additional GO-terms and 146 additional domains (For a more detailed overview see

Supplementary Data S2). Considering the full set of 432 genomes, on average a
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Figure 6.2: De novo annotation of Pseudomonas genomes. Comparison between the original
and de novo annotations of 58 completely sequenced Pseudomonas genome sequences. Barplots
indicate di↵erences in the number of retrieved genome features terms between the de novo annota-
tions and the original deposited annotations. A) gene abundance; B) protein domains; C: GO terms,
and D: EC identifiers. The genomes are ordered from left to right by deposition date in the NCBI
database (from oldest to newest).

di↵erence of 153 genes per genome was detected. The results advocate for routine

implementation of consistent gene-calling methods combined with an up-to-date

functional annotation before performing comparative genomic analyses, as many of

these di↵erences will results in gain or loss of biological functions.
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Sequence and function based comparative genomics of Pseudomonas

Genome-wide comparative analysis usually relies on sequence similarity clustering

based on a blast-based all-against-all bidirectional best hit (BBH) heuristic approach.

There are several limitations to this approach. Firstly, the runtime increases quadrat-

ically with the number and complexity of the species involved. Secondly, clustering

is strongly context-dependent as it dramatically depends on chosen cut-o↵ values

to define statistical significance of sequence similarity. Problems may arise with

in-paralogous sequences that evolve at very similar rates resulting from recent du-

plication events (Notebaart et al., 2005). Thirdly, protein fusion and fission events

are di�cult to detect using alignments and thus critical information might be lost.

An alternative approach, already employed in a comparative genomics study of

Escherichia coli (L.-G. Snipen and Ussery, 2012), consists of grouping of proteins

on the base of domain architectures with a fixed N-C terminal order (B. Lee and

D. Lee, 2009). Clustering based on domain order is highly scalable and moreover,

most protein domains represent structural folds that can be directly linked to func-

tion. Here, both approaches were compared. Protein sequence similarity clusters

were identified in a BBH approach using orthAgogue (Ekseth, Kuiper, and Mironov,

2013). Due to runtime constraints, protein clustering was limited to the analysis

of the 58 complete genomes leading to the identification of 14757 protein clusters.

For each protein found within a cluster the domain content and N-C terminal do-

main order ranked by the position of the first detected amino acid of the domain

(domain start) in the protein sequence (domain architectures) was analysed and is

summarized in Figure 6.3A. 5515 sequence based protein clusters (37%) present a

one-to-one correspondence to domain architectures, whereas 3134 (21%) can be as-

sociated to two distinct domain architectures. Overall, 93% of the identified clusters

can be associated to 4 or less distinct domain architectures. Figure 6.3A also shows

the number of proteins in each orthologous cluster. 3162 clusters (21%) contain

proteins lacking established domains and almost 75% of them contain less than 10

sequences. These clusters correspond, in their vast majority, to hypothetical pro-

teins. Regarding the core genome, 1618 clusters (11%) were found to be present in

all 58 genomes. From these 1618 protein clusters, 242 contained duplication events
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Figure 6.3: Domain architectures in sequence based clusters of orthologous proteinsA) Num-
ber of distinct domain architectures per cluster B) Variability in domain architectures per gene
cluster in core-genome. Complete agreement indicates a unique domain architecture shared by all
members of the cluster; For the cases where multiple domain architectures were found in a sequence
cluster, the number of cases corresponding to domain duplications, additions and shu✏es are in-
dicated. (For A and B only 58 complete genome sequences considered). C) Persistence analysis
within the Pseudomonas genus. The curves indicate the persistence of each of the cluster. Clusters
have been arranged by decreasing persistence values and the x-axis has been scaled to 0-1 range,
in this way the cluster with the highest persistence have an x value of 0 and the cluster with the
lowest persistence has an x value of 1. The y-axis indicates the persistence of a given cluster (see
Equation 1): for instance a persistence of 0.8 indicates that 80% of the analyzed genomes contain
sequences in that given cluster. SB-58 refers to the use of sequence based cluster considering the 58
complete genomes; DA-58 and DA-432 refers to the use of protein domains, for 58 and 432 genomes
respectively; Single-432 reproduces the analysis for single domain proteins found in the full set 432
genome sequences.

leaving 1376 distinct single copy gene protein clusters common to all 58 genomes.

543 of those clusters showed a single domain architecture whereas the rest contained

domain architecture variations as summarized in Figure 6.3B. We noted that such

variability was mainly due to swapping or inversion in domains order. In a sequence

based approach domain order variation can potentially lead to false negatives, bro-

ken clusters and even reduction of the core genome when more genomes are added

to the analysis.

The analysis of 58 complete genome sequences showed that domain architectures

retain enough information for functional characterization and that they can be used
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as a fingerprint for a functional cluster. Since the computational cost for obtaining

protein domain identification scales linearly with number of genomes and can be

easily distributed over multiple machines, we used these functional fingerprints to

extend the analysis to all 432 Pseudomonas genomes. Over two million (2,704,339)

genes were identified coding for over one million (1,196,884) unique protein se-

quences of which 85.6% (1,024,877) contain known protein domains. Figure 6.3C

shows the results of persistence analysis, reporting the fraction of the total number

of analysed genomes in which the corresponding cluster/protein domain/domain

architecture was found; 40% the protein domains are persistent in the genus, show-

ing that the functional information at domain level is preserved.

Classification of Pseudomonas strains based on genome potential

Patterns of protein domain presence/absence can provide an alternative and com-

plementary way for assessing strain diversity (S. Yang, Doolittle, and Bourne, 2005;

Alako et al., 2006). There are still many unclassified Pseudomonas strains and there

is a continuous development on assessing the phylogeny using various approaches

(Bertels et al., 2014). Figure 6.4 shows a distance tree of genome potential based

on presence/absence of protein domains for the 58 complete Pseudomonas genomes.

We found excellent agreement between this distance tree and the taxonomic classi-

fication based on 16S sequences indicating that binary patterns of protein domains

retain enough information to reconstruct evolutionary history. The positioning of

Pseudomonas sp. UW4 within the clade of P. fluorescence, confirms a previous ob-

servation based on 16S and three housekeeping genes (gyrB, rpoB and rpoD) (Duan

et al., 2013). P. aeruginosa and P. stutzeri clades are conserved while P. putida and P.

fluorescence clades shows the addition of di↵erent species.

We further extended the domain based distance analysis to include all 432 Pseu-

domonas strains (see Supplementary Figure S3). The majority of the strains cluster

in accord with their taxonomic classification. Many of the unclassified strains could

be classified either in P.aeruginosa (4) or P. putida (13).
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Figure 6.4: Domain based distance tree of 58 Pseudomonas strains The tree was build con-
sidering the pattern of presence/absence of protein domains using an average clustering approach.
Only completely sequenced genomes are considered. The phylogenetic clusters corresponding to the
most abundant species (P. stutzeri, P. mendocina, P. aeruginosa and P.putida) are colour-shadowed.

Exploring the pan- and core-genome of Pseudomonas at protein domain

level

The core-genome of a taxon level is defined as the genes persistently present in the

population, while the pan-genome is essentially the amount of di↵erent genes found

within a population at the specified taxonomic level (L. Snipen, Almøy, and Ussery,

2009). The currently available genomes allow to measure the pan- and core-genome

sizes, however these sizes change upon the addition of new sequences. The core-

genome is usually reduced and the pan-genome increases mostly due to the dis-

covery of novel accessory genes that accumulate by lateral transfer, forming new

trait combinations until saturation has been reached. Saturated pan-genomes with a

stable core-genome are called closed. From the currently available genomes an esti-
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mation can be made, using mathematical modelling (L. Snipen, Almøy, and Ussery,

2009), of the size of the pan- and core- genomes that are expected if the sequences

of every existing strain were to be included in the analysis. We refer to these estima-

tions as estimated pan- and core- genome sizes.

Genome potential of the genus Pseudomonas is reflected in its metabolic diversity

which allows individual species to inhabit a wide variety of environments. With

the current set of 432 (draft) genomes we studied whether the observed diversity

in genome potential reflects a closed pan-genome. We initially considered the 58

complete genomes. Observed core-genome of 2687 protein domains was to be con-

fronted with an estimated size of 2681. For the pan-genome we found 6472 protein

domains (observed) versus 6541 (estimated). Since these measures depend on the

number of genomes considered, we explored how these measures vary by using a

di↵erent number of genomes (from 5 to 58). This was achieved by applying a 10-

fold random re-sampling from the 58 genomes to obtain an indication of the pos-

sible variability (Figure 6.5). As expected the size of the core-genome of the genus

decreases with the number of genomes considered while that of the pan-genome

increases. The observed and estimated sizes of both the pan- and core-genome are

rather stable with respect to the number of genomes used in the calculation, except

for small sample size (< 15).

Including draft genomes in the calculations resulted in a dramatic reduction,

up to the 73%, of the size of the core-genome both observed and estimated, which

dropped to 726 and 720 protein domains architectures, respectively. Interestingly,

this reduction does not lead to a loss of functional information since single domains

are highly persistent as previously stated (40%).

We observed a large variability for both measures. The reduction of the core size

and its variability can be partly explained due to the inclusion of draft genomes with

a high number of gaps containing non-sequenced genes. The di↵erence between

observed and estimated sizes reduced to only one protein domain for both the pan-

and core-genome, indicating saturation. Addition of new genome sequences to the

analysis will most likely not lead to the identification of a significant set of new

domains within this genus. This saturation e↵ect does not depend on the particular

estimation model used. Saturation of the pan-genome was also seen through a heap
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Figure 6.5: Pseudomonas pan- and core-genome defined on the base of protein domains A)
Complete overview of the distribution of the size of the pan- and core- distribution of protein do-
mains. Error bars correspond to standard deviations based on 10 measured random realizations of
the indicated number of genomes whereas the shadowed area is the estimated standard deviation
using the same approach. B) Pan-genome of the 58 fully circular genomes. C) Core-genome of the
58 fully circular genomes.

model (↵ = 1.30 ± 0.05). In this analysis values > 1 indicate a closed pan-genome

(Tettelin et al., 2008).

Essentiality analysis of domains in the core-genome

From a functional point of view, the core-genome of a genus is most likely enriched

in essential genes necessary for (long term) viability and adaptation to ever changing

environmental conditions. Since persistence can be used to identify genes required

for survival (Medini et al., 2005; Acevedo-Rocha et al., 2013), a positive correlation

between persistence (the number of genomes sharing a given gene) and essential-

ity can be hypothesized. To verify this hypothesis we combined gene essentiality

measures with gene persistence in the genus. Gene essentiality was defined from

experimental results available for two P. aeruginosa strains (PAO1 and PA14) (S. A.

Lee et al., 2015; Liberati et al., 2006) and from in silico predictions. For the latter, we
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Figure 6.6: Persistence of (non) essential genes. A) Persistence of essential and non-essential
genes as derived by experimental investigations. B) Persistence of essential and non-essential genes
as derived by in silico modelling using genome based constrained metabolic modelling. Results
shown pertain the use of the iMO1086 model for P. aeruginosa PAO1. In both cases persistence is
calculated using the 58 completely sequenced Pseudomonas genomes and the complete set of 432
genomes sequences. Magenta (circle) dots indicate outliers.

considered 6 genome-scale constraint-based metabolic models which rely on func-

tional annotation to uncover the metabolic potential of biological systems and are

able to accurately predict gene essentiality in a large variety of growth conditions

(Orth, Thiele, and Palsson, 2010).

We observed that essential genes show higher persistence values than non essen-

tial ones: this relationship is conserved when persistence is computed either using

a sequence similarity based approach on 58 completely sequenced genomes or for

432 genomes by using a domain architecture approach as shown in Figure 6.6A.

A comparison of gene persistence and essentiality for the two strains showed

that 65% of genes found to be essential for PA14 growth on LB are also essential

for growth of PAO1 on either LB, minimal with pyruvate or sputum agar, but only

39% of genes reported to be essential for PAO1 growth were found to be essential for

PA14 (See Supplementary Figure S4). This di↵erence could be due to the smaller set

of tested conditions. We used a less stringent cut-o↵ for persistence: 0.95 instead of

1 to allow for non-sequenced genes due to incomplete draft genomes. Therefore, we

observed that a small fraction of persistent genes is present in only one of the two

strains (0.016% and 0.025% for PA14 and PAO1, corresponding to 75 and 47 genes

respectively) which are likely to have been lost through evolution.
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Table 6.2: Conditional gene essentiality predictions using six metabolic models from three Pseu-
domonas species.

Organism P. aeruginosa P. putida P. fluorescens
Model iMO1056 iMO1086 iJN746 iJP815 iJP962 iSB1139

Medium sources
#Carbon 49 51 60 40 43 44
#Nitrogen 32 33 22 25 27 19
#Sulfur 4 1 10 1 1 6

#Phosphor 2 2 1 1 1 2
Genes

#Essential/persistent* 115/106 149/132 118/104 112/100 162/148 117/95
#Conditional/persistent* 591/278 601/278 389/170 113/64 495/252 615/290

#Non-essential 348 336 253 593 305 407
#Overlapping genes 95 68
*Persistence was computed for each essential and conditional essential genes over the 58 Pseudomonas genomes

Analysis of the complete pan-genome revealed that 1252 single copy genes are

persistent. Of these, almost one third (404) were found to be essential in vivo under

three growth conditions (LB, minimal-pyruvate or sputum agar) for P. aeruginosa

PAO1 strain (S. A. Lee et al., 2015). Similar ratios were observed for strain PA14.

1112 unique domains were identified in the 404 essential persistent genes and

1340 unique domains in the non-essential but persistent genes. 203 domains were

shared between essential and non-essential persistent genes. Essential genes contain

a larger repertoire of unique, single copy domains: 404 essential persistent genes

contained, on average, 1.53 single copy domains whereas for non essential persistent

genes, the average was 0.82.

In vivo essentiallity analysis were limited to four conditions. Using metabolic

models a wider range of conditions can be explored albeit the analysis is restricted

to metabolic genes. We considered six genome scale constraint based metabolic

models describing the metabolism of P. aeruginosa PAO1 (models iMO1056 (M. a.

Oberhardt et al., 2008) and iMO1086 (M. A. Oberhardt et al., 2011)), P. fluorescens

SBW25 (iSB1139 (Borgos et al., 2013)) and P. putida KT2440 (iJN746 (Nogales et al.,

2008), iJP815 (Puchalka et al., 2008), and iJP962 (M. A. Oberhardt et al., 2011)).

We explored a wide range of growth conditions with varying carbon, nitrogen,

phosphorus and sulphur sources and for each medium composition, gene essential-

ity predictions were performed using Flux Balance Analysis and are summarized in

Table 6.2.

Figure 6.6B shows results for P. aeruginosa model iMO1086, confirming what



122

was observed for experimental data. Of the 750 essential metabolic genes that were

identified under 3366 media compositions for iMO1086, 169 genes were identified

to be essential under experimental conditions whereas 42 genes were essential but

not in silico (25%). Average persistence over the 58 complete genomes was 0.96±0.14
for predicted essential genes and 0.85±0.24 for non-essential, which we found to be

significant (p-value < 0.01 for a Wilcoxon test). When considering the 432 genomes,

we still observed di↵erence in the persistence of predicted essential and non essen-

tial genes 0.95±0.12 versus 0.89±0.21, p-value < 0.01). Similar results were also

obtained when using essentiality predictions for the other metabolic models.

Usingmetabolic models to simulate media compositions we identified additional

genes that were essential in a number of conditions, retrieving on average 1.47 sin-

gle copy domains per gene, consistently with what observed for essentiality exper-

iments. We further combined the models’ predictions and we inspected genes pre-

dicted to be essential in all the tested conditions. For P. putida, the three models

showed an overlap of 68 essential genes. Interestingly, these genes contained 2.53

single copy domains on average, underpinning previous results. Non-essential genes

contain domains that are shared with other genes. This can result in the presence

of isozymes or of potentially moonlighting enzymes which can step in for essential

functions in the case of deletions or mutations.

Variability of gene expression and its association to persistence and

essentiality in Pseudomonas

Associations between gene essentiality and low variation in protein abundance have

been observed in E. coli (Taniguchi et al., 2010). We hypothesized the existence of an

association between gene persistence and expression level variation. We analysed

gene expression variability in P.aeruginosa using a gene expression compendium

containing over 900 samples and 100 datasets regarding P.aeruginosa PAO1 genes

(Tan et al., 2016). Each gene was assigned a score, Variability, for transcriptional

variation. Persistent genes tend to show significantly lower degree of variation in

expression level than non persistent ones (p-value < 0.01); this holds true also for

essential genes (Figure 6.7). Similar results are obtained when analysing a more lim-
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Figure 6.7: Variability of gene expression levels and its association with persistence and es-
sentiality A) Distribution of Variability score for (non) persistent genes (genes with persistence
lower or higher than 0.95, respectively). Box plots show Variability values for both groups. Dif-
ference between mean values is significant (p-val < 0.01). B) Distribution of Variability score for
essential and non-essential genes with gene essentiality derived experimentally (S. A. Lee et al.,
2015). Box plots show Variability values for both groups. Di↵erence between mean values is signif-
icant (p-val < 0.01).

ited dataset containing RNAseq measurements of P.aeruginosa PA14 in 14 growth

conditions (Dötsch et al., 2015) (see Supplementary Methods S5) This association

between low expression variability and persistence/essentiality could indicate that

expression of genes in the core-genome is likely to be bu↵ered and independent from

environmental growth conditions. To the best of our knowledge such associations

have never been established on such large scale due to the limitations associated to

comparing hundreds of genome sequences.

Discussion

For our analysis we did not rely on previously existing annotations, but we per-

formed a consistent re-annotation of all the sequences using a standardised ap-

proach that ensured coherence and uniformity. A sequenced based approach was

used for a prior comparative analysis to define clusters of orthologous proteins in

the smaller dataset of 58 complete genomes. Due to polynomial growth of compu-

tational time, this approach is not feasible for large data sets. Mining a gene se-
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quence for domain occurrences is less computationally demanding, which provides

an e↵ective scalable approach.

Sequence based approaches are used to identify clusters of orthologous proteins,

however the analysis of domain architectures is targeted towards the identification

of groups of functionally equivalent proteins. Protein domains provide a standard-

ised way to assess sequence variation and its impact in function, since every amino

acid has a characteristic weight in the domain model. Protein domains are more

strongly associated to protein structure than protein sequences, thereby providing

a closer link to function that can bridge over larger evolutionary distances, which is

essential to comparative functional analysis. Still there is a need for improving how

protein domain are defined to accommodate similar models arising from, possibly

di↵erent, databases and to take into account positional variations that might lead to

spurious domain inversions.

When applied to the inferred proteomes of the 58 complete genomes, both clus-

tering methods yield similar results. The same clusters were obtained in 40% of the

cases meaning that each of these clusters contained an equal number of proteins,

captured the same strains and shared the same domain architectures. In 20% of

the cases, very similar but numerically distinct clusters were obtained, as a given

sequence similarity cluster had captured two distinct domain architectures. In most

of these cases variability in domain architecture were caused by changes in domain

order due to small variations in the start position of overlapping domains. Ap-

proximately, 20% of identified proteins have no recognizable functional domains.

As most of these proteins are hypothetical they were not considered for functional

analysis. When only proteins containing domains are considered, over 90% of the

clusters identified using sequence comparisons contain 4 or less distinct architec-

tures.

The di↵erences in the persistence curves shown in Figure 6.3C show that the

way the clusters are defined, either using sequence similarity or protein domains,

impacts the calculation of gene persistence: this has repercussions on the definition

of the core genome and its size. We found these di↵erences to be larger when more

genomes are considered. This is more likely linked to the broader range of phy-

logenetic distances among considered genomes: this is explored in more detail in
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Koehorst et al.(Koehorst et al., 2016)

Our analysis resulted in the identification of the pan- and core-domainome of

432 Pseudomonas which is closed according to the heap model as also recently noted

for the P. aeruginosa species (Mosquera-Rendón et al., 2016). This suggests that se-

quencing additional strains will fail to add new genes to the pan-genome: how-

ever, this is likely an oversimplification. Here, we understand closeness of the pan-

genome as measure of the genus ability to acquire exogenous genes and as a proxy

for the ratio between vertical and horizontal gene transfer indicating that horizon-

tal gene transfer has not played a major role in shaping the genome content of the

genus.

Key characteristics of Pseudomonas must be located in the genus core-genome,

however comparison with metabolic models shows that identified core is not au-

tonomously functional. Not all the genes in the core-genome seem to be essential

(under given tested conditions), however essential genes represent ⇡ 40% of the

core-genome, in agreement with previously reported ratios for other species/genus

(X. Yang et al., 2016). The remaining 60% contain unique features defining the

genus.

We found a strong association between gene essentiality and protein domain

properties. We observe an inverse correlation between the number of proteins in

the genome containing the considered domain and essentiality, with average num-

ber of domains uniquely present in the considered protein going from 1.5 to 0.8

when non essential/essential genes in the core-genome are considered. The aver-

age number of single copy domains per gene further increases when stricter criteria

for gene essentiality are applied, namely that genes should be essential in all the

simulated media.

Accurate algorithms to predict gene essentiality from genomic features have been

also developed and domain enrichment score has been shown to have a high predic-

tive power (Deng, 2015) which is computed based on the ratio of occurring frequen-

cies of a particular domain between essential genes and the total genes in the whole

genome of already characterized species. Here we have established a link between

the number of copies of a domain in a genome and gene essentiality that can be used

to complement essentiality predictions.
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The extensive use of metabolic reconstructions allowed us to identify condition-

ally essential genes, and a large number of single copy domains is also observed

in these genes. This supports the idea that protein domains are the driving force

behind gene essentiality which is preserved through protein domains rather than

through the conservation of entire genes (Deng et al., 2011).

We have shown that lower fluctuations in gene expression are associated to es-

sential and/or persistent genes. Further work is required to clarify the overlap and

intertwining between both gene categories (essential/persistent) and to clarify the

(possibly di↵erent) regulatory mechanisms stabilizing their expression levels.

Methods

Genome retrieval

Genbank files containing genome sequences and existing annotations for 58 circular

genomes and 374 draft genomes of the Pseudomonas genus were downloaded from

the GenBank database in June 2015. Annotation of Pseudomonas KT2440 was also

downloaded from RAST (Aziz et al., 2008). A detailed list of the included strains is

available (see Supplementary Figure S1 and Supplementary Data S2).

Genome de novo annotation

To perform the re-analysis of the 432 gemomes sequences we used a in-house

pipeline for annotation and data storage (Koehorst et al., 2016). Likewise exist-

ing annotation pipelines such Prokka (Seemann, 2014), it relies on external feature

prediction tools to identify the coordinates of genomic features within genomics

sequences. The pipeline consists of a number of python modules that execute anno-

tation applications and convert results and provenance directly into the RDF data

model with a self defined ontology (the complete description of the implemented

ontology can be obtained using RDF2Graph (Dam et al., 2015)) using the RDFLib

library. For genetic elements determination a variety of tools is implemented such as

Prodigal (Hyatt et al., 2010) for gene prediction. The main di↵erence is that results

are stored as Turtle files (Beckett and Berners-Lee, 2008) containing an RDF model

which allows simultaneous exploration of annotation data of multiple genome se-
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quences, greatly facilitation multiple comparison and the integration of heteroge-

neous source of information. Since it deploys semantic features allowing the storage

of data provenance, we refer to it as SAPP (semantic annotation pipeline with prove-

nance). Annotation can be exported to other formats for downstream processing

with other tools such as Roary (Page et al., 2015)

Each genome sequence was converted to the RDF data model using the EM-

BL/GBK to RDF module. The FASTA2RDF, GeneCaller (a semantic wrapper for

Prodigal 2.6 (Hyatt et al., 2010)) and InterPro (a wrapper for InterProScan (Jones

et al., 2014)) modules were used to handle and annotate the genome sequences. Re-

sults were retrieved with SPARQL queries.

Protein domain presence and phylogenetic analysis

A SPARQL query was used to extract the presence of protein domains for all 432

genomes. Data were stored in a 432 (genomes) by 7608 (protein domains) binary

matrix (0/1 for absence/presence). Protein domains were identified by their INTER-

PRO identifiers. Phylogenetic trees based on protein domains were created taking

as input the domain presence/absence matrix. The R package pvclust was imple-

mented in R (version 3.3.1) (Team, 2013) with a binary distance and average cluster-

ing approach with a bootstrap value of 10 (Suzuki and Shimodaira, 2006).

Protein domain architecture based clustering

The positions (start and end on the protein sequence) of domains having InterPro

(Jones et al., 2014) identifiers were used to extract domain architectures (i.e. combi-

nations of protein domains). Protein domains were retrieved for each protein indi-

vidually. The domain starting positions were used to assess relative position in the

case of overlapping domains; alphabetic ordering was used in the case of domains

with the same starting position. Labels indicating N-C terminal order of identified

domains were assigned to each protein so that the same labels were assigned to pro-

teins sharing the same domain architecture. Here we have followed a strict approach

and two domain architectures were considered di↵erent whenever they had di↵er-

ent domains or they appeared in di↵erent order. For more details see Koehorst et al.,
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2016.

Estimation of pan- and core-genome size

The estimated number of domains in the pan- and core-genomes expected if the

sequences of every existing strain were to be included in the analysis were com-

puted using binomial mixture models as implemented in the micropan R package

(L. Snipen and Liland, 2015) using the domain presence/absence matrix previously

defined and default values for the parameters. Pan- and core- analysis was initially

performed on the 87 genomes with a maximum of 3 contigs to avoid bias due to

incomplete genome sequences. Analysis was extended to the remaining 374 draft

genome sequences available. To obtain an indication of the variability of these mea-

sures as function of the number of sequences used, these were calculated by a 10 fold

random sampling from the full set. Heap analysis as implemented in the micropan

R package was used to estimate openness or closeness of the pan-genome (Tettelin

et al., 2008) using 500 genome permutations and repeating the calculation 10 times.

Final measure is given as the mean ± standard error.

Orthologous gene detection

Orthologous genes were calculated initially for the set of 58 completely sequenced

genomes. Protein sequences predicted using Prodigal 2.6 were extracted using a

SPARQL query and used in a Best Bidirectional Hit approach (Tatusov, Koonin, and

Lipman, 1997): using an all-versus-all BLASTP comparison and an E-value thresh-

old of 10�5 and a maximum target sequence of 105. OrthAgogue (Ekseth, Kuiper,

and Mironov, 2013) was used to convert BLAST results into a weighted graph. The

MCL (Dongen, 2000) clustering algorithm was applied, using an inflation value of

1.5, on the graph to define protein clusters. The results were then extrapolated to

the full set of 432 genomes using cluster specific domain fingerprints. Specifically,

the sequence clusters obtained throughMCL clustering on the 58 complete genomes

were used to define sets of protein domains (each sequence cluster was mapped to a

set of domains). The remaining genomes were then looked for any given domain set

defined on the 58 genomes to define their presence/absence in the draft genomes.
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Persistence and essentiality analysis

The persistence of a gene can be defined as

Persistence =
N (orth)

N

where N (orth) is the number of genomes carrying a given orthologue and N is the

number of genomes searched (Fang, Rocha, and Danchin, 2005). For the 58 com-

pletely sequenced genomes, orthologous genes were inferred using a BBH approach.

For the full set of 432 sequenced genomes orthologous genes were inferred by mak-

ing use of protein domain arrangements.

Locus tags for predicted proteins were inferred from the original annotation

through SPARQL. Locus tags were linked to gene essentiality as defined in exper-

imental studies available for P. aeruginosa PAO1 (S. A. Lee et al., 2015) and PA14

(Liberati et al., 2006). For each of the predicted proteins with inferred locus tag

the corresponding protein cluster was initially calculated for the 58 genomes. The

domain architecture corresponding to each cluster was extracted and subsequently

scanned against all 432 available sequences. We used theMCL clusters as a reference

set for the identification of domain architecture variations which were then extrap-

olated over the 432 genomes. The persistence for each locus tag was calculated and

compared against the essentiality score obtained from two experimental studies.

Metabolic model essentiality analysis

We considered six genome scale constraint based metabolic models describing the

metabolism of P. putida KT2440 (models iJN746 (Nogales et al., 2008), iJP815

(Puchalka et al., 2008), and iJP962 (M. A. Oberhardt et al., 2011)), P. aeruginosa

PAO1 (models iMO1056 (M. a. Oberhardt et al., 2008) and iMO1086 (M. A. Ober-

hardt et al., 2011)) and P. fluorescens SBW25 (model iSB1139 (Borgos et al., 2013)).

For each genome-scale metabolic model we performed a single gene essentiality

analysis in a large number of growth media varying in carbon (C), nitrogen (N),

phosphorus (P) and sulphur (S) source. To define the growth media we first identi-

fied candidate C, N, P, and S sources in each model independently. Because chemical

sum formulas were not always available, we considered each compound for which

an exchange reaction was present as a candidate C, N, P and S sources. We changed
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the in silico medium composition to a minimal salts medium containing glucose as

C source, ammonia as N source, phosphate as P source, sulphate as S source, in

addition to oxygen, water, H+, and a variety of salts depending on the particular

model considered. The potential of each candidate C, N, P, and S source was then

evaluated by adding it to the in silico medium while omitting the default C, N, P, or

S sources. Growth predictions were performed using Flux Balance Analysis (Orth,

Thiele, and Palsson, 2010) as implemented in the Matlab COBRA Toolbox (Schellen-

berger et al., 2011). This provided 4 lists of compounds that were suitable as C, N, P

or S sources which were then combined into a single list of growth media by taking

all combinations of compounds from the 4 lists. For each medium, we then used the

singleGeneDeletion function from the COBRA toolbox to determine the growth rate

of the mutant strains. If a gene knock-out reduced the in silico growth rate below

10-6 we considered the gene as essential. Models and Matlab scripts used in this

analysis are available in Supplementary Data S6.

Comparison of gene expression profiles

A publicly available gene expression compendium for P. aeruginosa was retrieved

(Tan et al., 2016). Briefly, this dataset contains a collection of gene expression

datasets (950 individual samples pertaining 109 distinct datasets) measured using

A↵ymetrix platformGPL84 and processed using a common normalization and back-

ground correction protocol. The final dataset contains expression measurements (in

a log2 scale) for 5549 genes from P. aeruginosa PAO1. For every gene we considered

its expression profile in this compendium and a Variability value was calculated as

the ratio between the standard deviation and the mean.

Availability of Data and Materials

The annotation pipeline framework is distributed under the MIT license. The

pipeline all genomic data, data provenance and computational results associated

with this study are freely available at http://semantics.systemsbiology.nl. Ad-

ditionally, the data associated to this study are provided in turtle format as an RDF

serialized dump. This dataset is made available under the Open Database License:
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http://opendatacommons.org/licenses/odbl/1.0/.
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Abstract

The omnipresent 16S ribosomal RNA gene (16S-rRNA) is used to identify and clas-

sify bacteria though it does not take into account the distinctive functional charac-

teristics of taxa. We explored functional domain landscapes of over 5700 complete

bacterial genomes, representing a wide coverage of the bacterial tree of life, and

investigated to what extent the observed protein domain diversity correlates with

the expected evolutionary diversity, using 16S-rRNA as metric for evolutionary dis-

tance.

Domain analysis showed that 83% of the bacterial genes code for at least one

of the 9722 domain classes identified. By comparing clade specific and global per-

sistence scores, candidate horizontal gene transfer and signifying domains could be

identified. 16S-rRNA and functional domain content distances were used to eval-

uate and compare species divergence and overall a sigmoid curve is observed. Al-

ready at close 16S-rRNA evolutionary distances, high levels of functional diversity

can be observed. At a larger 16S-rRNA distance, functional di↵erences accumulate

at a relatively lower pace.

Analysis of 16S-rRNA sequences in the same taxa suggests that, in many cases,

additional means of classification are required to obtain reliable phylogenetic rela-

tionships. Whole genome protein domain class phylogenies correlates with, and

complements 16S-rRNA sequence-based phylogenies. Moreover, domain-based

phylogenies can be constructed over large evolutionary distances and provide an

in-depth insight of the functional diversity within and among species and enables

large scale functional comparisons. The increased granularity obtained, pave way

for new applications to better predict the relationships between genotype, physiol-

ogy and ecology.
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Introduction

The most commonly used method to classify bacteria and to identify new isolates

is the analysis of the omnipresent 16S ribosomal RNA (16S-rRNA) gene (Weisburg

et al., 1991; Yarza et al., 2014) by a direct comparison of the gene sequence with

highly curated 16S-rRNA gene sequence databases (Yilmaz et al., 2014; Quast et al.,

2013; Yoon et al., 2017; McDonald et al., 2012; Q. Wang et al., 2007; Hinchli↵ et al.,

2015).

Using only the 16S-RNA gene for taxonomic characterisations presents limita-

tions and disadvantages. First, arbitrary minimal sequence similarity thresholds are

used as working boundaries for di↵erentiating between taxonomic ranks. Although

these thresholds prove to be very useful for classification purposes, they are subject

to progressive insights and are limited as there is no biological meaning attached to

it (Gupta, 2016). For instance, the minimal sequence similarity threshold for species

delineation, proposed for the 16S-rRNA gene, has changed over time from 97% to

98.7% (Stackebrandt and Goebel, 1994; Kim et al., 2014) and even at this updated

stringency level, for some phylogenetic groups, the resolution is too limited for a

definite species classification (Janda and Abbott, 2007). Second, a restriction to the

analysis of sequence variations in a single gene does not take into account the dis-

tinctive functional characteristics of the di↵erent prokaryotic taxa nor can it explain

the genotypic, and the consequently phenotypic, di↵erentiation observed between

closely related species due to events such as gene loss or acquisition.

Alternative, inter-genomic BlastN-based sequence similarity methods exist that

take into account full genome sequences. Examples are Average Nucleotide Identity

(ANI) (Konstantinidis and Tiedje, 2005), Genome Blast Distance Phylogeny (GBDP)

(Meier-Koltho↵ et al., 2013) or a combination of 16S-rRNA sequence similarity and

ANI values (Chun et al., 2018). These methods help to increase taxonomic coherence

at the smaller evolutionary distances, but are less suitable to monitor the impact of

mutation, gene loss and horizontal gene transfer (HGT).

To better understand the impact of gene loss andHGT and to improve the charac-

terisation of functional diversity, the analysis needs to be performed beyond genome

sequence similarity comparison by considering protein function. Protein encoding
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genes reveal a modular design, with domains forming distinct globular structural

and functional units. Bacterial innovation is in part driven by gain, loss, duplication

and rearrangement of these functional units, resulting in the emergence of proteins

with new domain combinations (Basu, Poliakov, and Rogozin, 2009; Zmasek and

Godzik, 2012). Thus, a direct comparison of protein domain content should be able

to reconstruct bacterial phylogeny independent of gene sequence similarity (Yang,

Doolittle, and Bourne, 2005) and as such may serve as a better indicator of shared

physiology and ecology (Jasper J Koehorst, Saccenti, et al., 2016; LG Snipen and D.

Ussery, 2013).

In this study we present an exhaustive exploration of the functional landscape of

over 5700 complete bacterial genomes representing a wide coverage of the bacterial

tree of life and investigated to what extent protein domain diversity correlates with

taxonomic diversity using the 16S-rRNA gene sequence as metrics for evolutionary

distances.

Results

We analysed 5713 fully sequenced publicly available bacterial genomes correspond-

ing to a wide range of di↵erent bacterial lineages (57 classes, 243 families, 818 gen-

era and multiple strains of 1330 species), providing a good representation of the

bacterial diversity observed in nature (See supplementary file S1 for more informa-

tion). Genome sizes varied from 0.1 Mbp up to 13 Mbp. To avoid technical bias due

to the use of di↵erent annotation strategies, all genomes were de-novo re-annotated

with SAPP (Jasper J. Koehorst et al., 2017) (seeMethods section for details). The total

number of genes varied from 167 (Candidatus Tremblaya princeps) to 9968 (Strepto-

myces bingchenggensis BCW-1). We analysed 5713 fully sequenced publicly available

bacterial genomes corresponding to a wide range of di↵erent bacterial lineages (57

classes, 243 families, 818 genera and multiple strains of 1330 species), providing a

good representation of the bacterial diversity observed in nature (See supplemen-

tary file S1 for more information). Genome sizes varied from 0.1 Mbp up to 13 Mbp.

To avoid technical bias due to the use of di↵erent annotation strategies, all genomes

were de-novo re-annotated with SAPP (Jasper J. Koehorst et al., 2017) (see Methods
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section for details). The total number of genes varied from 167 (Candidatus Trem-

blaya princeps) to 9968 (Streptomyces bingchenggensis BCW-1).

16S-rRNA variability within and between species

From the 5713 completely sequenced genomes, 25098 complete 16S-rRNA genes

could be retrieved. On average the predicted length of the 16S-rRNA gene was

1531±94 nt (See supplementary Figure Supplementary file S1) and 84% of the com-

pleted genomes (4772) contained between two and fifteen copies of the 16S-rRNA

gene (Figure 7.1). The 16S-rRNA genes from phylogenetic groups of at least 50

strains were further analysed at family level. As can be seen in Figure 7.1B, among

di↵erent families there is a diverse variation in copy number. While in some families

the 16S-rRNA copy number is largely restricted to a single copy gene, in Bacillaceae

the copy number ranged from 1 to 15 copies. Furthermore, 52% of the analysed

genomes contained two or more non-identical copies of the 16S-rRNA gene. In-

tragenomic sequence variation reflected an overall sequence identity of 99.6 (+0.4 /

-2)%, which is higher than the currently accepted 98.7% threshold for species delin-

eation.
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Figure 7.1: 16S-rRNA copy number variation. A) 16S-rRNA gene copy number variation in the
complete set B) Copy number variation at family level; families represented by more than 50 strains
were analysed.

For the complete set of genomes, a species network based on pair-wise 16S-rRNA

sequence similarity scores was built. In this network, nodes represent genomes

and edges were drawn between nodes when the 16S-rRNA similarity was at least

98.7%. Network connectivity analysis identified 2025 connected components (sub-

networks). For further study, 294 subnetworks were selected linking ten or more

nodes. In thirty-two of these subnetworks, taxonomic inconsistencies were observed

as they linked genomes of two or more species. The majority (30) of these inconsis-

tent subnetworks linked species belonging to the same genus. However, two sub-

networks were identified that linked species from di↵erent genera. The first subnet-

work contained species of the Escherichia and Shigella genera. The second subnet-

work was even more diverse and contained members of the Citrobacter, Enterobac-

ter, Klebsiella, Kosakonia, Raoultella and Salmonella genera (Figure 7.2), both subnet-

works eventually belong to the Enterbacteriaceae family. Overall, network analysis

suggested that in many cases additional means of classification are required to ob-

tain reliable phylogenetic relationships.
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Figure 7.2: Topology of the similarity subnetwork of Enterbacteriaceae. Nodes represent
genomes and edges are drawn if the 16S-rRNA similarity >98.7%. A) Network topologies with
colours indicating di↵erent species groups. Left panel, unambiguous species assignment; strains
A,B and C are directly connected to type strain T. Right panel: Observed topology. Leave node
strain D is in the cluster but has no direct link with type strain T. 16S-rRNA sequences of strain
E and strain F are below the set similarity threshold and form an unlinked subnetwork. Strain
G of the blue species functions as an articulation point linking the pink and red species subnet-
works. B) Subnetwork linking six di↵erent genera based on the 16S-rRNA gene sequences using
a sequence similarity threshold >98.7%. Size of each node is dependent on the betweenness cen-
trality. Enterobacter is the main component that connects the di↵erent genera as no direct linkage
between Salmonella and Klebsiella is observed. Three strains of Citrobacter have a direct connection
to Salmonella and are disconnected from other Citrobacter strains. One Enterobacter (Enterobacter
sp. R4-368) is isolated from the rest and is only connected to Kosakonia. The Raoultella genera
have a close similarity to some of the Klebsiella strains. C) Topology of domain-class content sub-
networks of the same strains using as threshold a binary distance 0.1. Distinct subnetworks are
observed. Salmonella is now completely separated from the other genera; Enterobacter, Klebsiella
and Citrobacter also form distinct clusters with a few members forming separate subnetworks.

Protein domain architectures

By breaking proteins into domains and using precomputed profile hidden Markov

models (pHMM) to classify these domains, a semantically consistent classification of

encoded protein functions can be obtained (Jasper J Koehorst, Saccenti, et al., 2016).

As a pHMM gives greater weight to matches at conserved sites they are also better
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Figure 7.3: Frequency distribution of 1,2, ...,13 domain classes A) In the full dataset. B) In each
genome

for remote homology detection than standard sequence similarity-based methods

(Sonnhammer et al., 1998). To obtain such protein classification the 18949996 in-

ferred protein sequences were scanned for the presence of Pfam domains (Robert

D. Finn, Coggill, et al., 2016). A total of 15747648 protein sequences were found

to contain at least one domain instance (83.1%) and in total 9722 distinct protein

domain classes were detected (See supplementary file S1 for more details). Two

Pfam domains were discovered in 17.7% (3345544) and three or more domains in

6.4% (1205997) of these proteins (Table 7.1). Thus, the majority of the bacterial

proteins appear to be single domain proteins (Figure 7.3A). Moreover, we observed

that most multiple domain proteins appear to contain domain repetitions. Similar

domain distributions were obtained when individual genomes were analysed, indi-

cating that this is a general property of the architecture of bacterial genomes (Figure

7.3B).
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Table 7.1: Overview of the number of proteins and corresponding protein domain content.
The majority of the proteins (83.1%) contained at least a single domain and only a few (1.74%)
contained more than 3 domains.

Number of proteins Fraction
All proteins 18949996 100%
>0 domains 15747648 83.1%
1 domain 11196108 59.1%
2 domains 3345544 17.7%
3 domains 875863 4.6%
>3 domains 330133 1.74%
>10 domains 15457 0.08%
>50 domains 208 0.0011%

Genome distribution of protein domains

The distribution of the domain classes across the studied genomes is shown in Figure

7.4. Panel A shows that there is a direct correlation between the genome size and the

total number of domains detected. A sublinear relationship is observed between the

total number of protein domains and the total number of protein domain classes in-

dicating that domain copy numbers, but not so much the number of domain classes,

increase in the larger genomes (Figure 7.4 panel B). On average, we counted 2.02

domain copies per genome. This copy number, however, showed a large variability,

ranging from 1.07 copies for Carsonella ruddii (strain PV) (Nakabachi et al., 2006) to

4.58 copies for Streptomyces bingchenggensis (strain BCW-1) (X. J. Wang et al., 2010).

Domain persistence and analysis of the pan- and core-domainomes

In total, 9722 domain classes were detected. The overall persistence (the fraction

of the genomes sharing a given domain class) is shown in Figure 7.5. Only 324

domain classes were ubiquitous in over 95% of the analysed genomes. Three do-

mains, PF00009, (GTP-binding elongation factor family), PF01479, (S4 domain) and

PF03144 (Elongation factor Tu domain 2) were shown to persist in all genomes. Ad-

ditionally, a small number of domains were found to be present in over 99.9% of

the studied genomes, PF00012 (Hsp70 protein), PF00318 (Ribosomal protein S2),

PF00380 (Ribosomal protein S9/S16), PF00679 (Elongation factor G C-terminus),

PF01926 (50S ribosome-binding GTPase), PF02811 (PHP domain), PF07733 (Bacte-
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Figure 7.4: Distribution of the domain classes across the studied genomes A) Correlation
between genome size and number of protein domains. B) Correlation between the total number of
domains and total number of domain classes. A sublinear relation is observed, suggesting that in the
larger genomes an increase in domain copy number is favoured over an increase in domain classes.

rial DNA polymerase III alpha subunit) and PF14492 (Elongation Factor G, domain

II). Among the studied genomes there are domain classes with a high copy num-

ber. The domain with the highest copy number is PF00005, representing the ATP-

binding domain of ABC transporters, with on average 62.9 copies per genome, yet

the domain is absent in twelve small-sized genomes.

Accurate measurements of the pan- and core- domainome sizes would entail

knowledge of the functional content of every single organism in the corresponding

group. We have estimated their respective sizes for the 18 families that contained

more than 50 members each (Figure 7.6A). The largest observed pan-domainome

was of Bacillaceae with 4783 protein domain classes. The largest core was observed

for Yersiniaceae (1844 domain classes) (Figure 7.6B).

When analysing the genomes of the Chlamydiaceae family, 78% of the protein

domain classes are conserved. In contrast, the core of Enterobacteriaceae only cov-

ers 7% of the in total 4444 domains (Figure 7.6C). This is mostly due to the size

of the genomes from the Moranella, Riesia, Blochmannia and Ishikawaella (Nikoh et

al., 2011), genera as they are smaller than 1 Mbp, encoding as low as 444 genes,

whereas the average genome size of Enterobacteriaceae is 4.8 Mbp, encoding on aver-

age 4510 genes. When excluding the small sized genomes, the core increases to 938

protein domains with a slightly smaller pan-domainome of 4441 yielding a 21% ra-



Expected and observed genotype complexity in prokaryotes

7

149

Figure 7.5: Distribution of domain classes over 5713 genomes

.

tio between the core and pan-domainome. This shows the impact of including or

excluding specific genomes in the analysis, as a single or few genomes can reduce

the core significantly, thereby possibly eluting important information.

Openness of the pan-domainome provides another indication of the relative im-

pact of horizontal acquisition and vertical transmission in shaping the domain-

ome. Fitting a Heap’s law, we estimated whether the pan-domainome for each of

the largest families was either open or closed by fitting the decay parameter of

a Heap’s law function, ↵. The pan-domainome is closed when ↵ >1.0 and open

when ↵ <1.0. The majority of the bacterial families here considered showed a closed

pan-domainome (Figure 7.6D). For Enterobacteriaceae the Heap’s parameter dropped

from ↵=1.21 to ↵=1.17 upon removal of the previously indicated smaller genomes.

Signifying domains and horizontal domain transfer

Log persistence scores (log-P) were calculated for each of the domain classes present

in the pan-domainomes from the five most abundant monophyletic species groups,
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Figure 7.6: Persistence analysis of families with more than 50 members. The estimated pan-
domainome (Panel A) and estimated core (Panel B) shows a large degree of variability ranging
from 78% for Chlamydiaceae and 7% for Enterobacteriaceae. The conservation ratio of the pan/-
core (Panel C) shows that in only Chlamydiaceae more than half of the protein domain content is
conserved. The family pan-genome is closed (Panel D) when ↵>1.

namely Chlamydia trachomatis (74), Escherichia coli (105), Helicobacter pylori (65),

Salmonella choleraesuis (350) and Staphylococcus aureus (74). As null-model we con-

sider the persistence in the full set of 5713 genome sequences.

For a small set of domain classes high (log-P) scores were obtained and are likely

signifying domain classes (Figure 7.7 and Supplementary Table S3 logP). On the

other end of the scale we find a large amount of domain classes with negative log-P

scores. These incidental domains have a low to very low intra-species persistence

which suggests that they may have been acquired by horizontal gene transfer. Un-

like the high scoring domains most of them have been assigned a molecular, often

metabolic, function.
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Table 7.2: Salmonella choleraesuis top 25 signifying and incidental domains

.

PFAM log-P Global persistence Description
PF09460 4.025 0.056 Saf-pilin pilus formation protein
PF06767 4.017 0.062 Sif protein
PF05364 4.013 0.062 Salmonella type III secretion SopE e↵ector N-terminus
PF07108 4.013 0.062 PipA protein
PF16583 4.012 0.061 Zinc-regulated secreted antivirulence protein C-terminal domain
PF16728 3.991 0.061 Domain of unknown function (DUF5066)
PF15942 3.976 0.064 Domain of unknown function (DUF4751)
PF07824 3.969 0.064 Type III secretion chaperone domain
PF09052 3.965 0.064 Salmonella invasion protein A
PF05775 3.950 0.059 Enterobacteria AfaD invasin protein
PF11047 3.941 0.065 Salmonella outer protein D
PF05925 3.914 0.066 Enterobacterial virulence protein IpgD
PF08052 3.906 0.066 PyrBI operon leader peptide
PF13998 3.873 0.068 MgrB protein
PF02510 3.858 0.069 Surface presentation of antigens protein
PF13979 3.852 0.068 SopA-like catalytic domain
PF02090 3.840 0.070 Salmonella surface presentation of antigen gene type M protein
PF04741 3.815 0.071 InvH outer membrane lipoprotein
PF07487 3.811 0.071 SopE GEF domain
PF09119 3.801 0.072 SicP binding
PF05688 3.794 0.071 Salmonella repeat of unknown function (DUF824)
PF03433 3.759 0.074 EspA-like secreted protein
PF09599 3.759 0.074 Salmonella-Shigella invasin protein C (IpaC_SipC)
PF10940 3.737 0.074 Protein of unknown function (DUF2618)
PF05689 3.727 0.074 Salmonella repeat of unknown function (DUF823)
...
PF13442 -7.502 0.518 Cytochrome C oxidase, cbb3-type, subunit III
PF09424 -7.522 0.525 Yqey-like protein
PF01769 -7.533 0.529 Divalent cation transporter
PF06750 -7.546 0.534 Bacterial Peptidase A24 N-terminal domain
PF09084 -7.555 0.537 NMT1/THI5 like
PF03309 -7.557 0.538 Type III pantothenate kinase
PF06271 -7.573 0.544 RDD family
PF12802 -7.610 0.558 MarR family
PF01628 -7.642 0.571 HrcA protein C terminal domain
PF01593 -7.680 0.586 Flavin containing amine oxidoreductase
PF10397 -7.689 0.589 Adenylosuccinate lyase C-terminus
PF00355 -7.732 0.607 [2Fe-2S] domain
PF01220 -7.743 0.612 Dehydroquinase class II
PF14693 -7.769 0.623 Ribosomal protein TL5, C-terminal domain
PF01809 -7.769 0.623 Haemolytic domain
PF02616 -7.771 0.624 Segregation and condensation protein ScpA
PF04079 -7.781 0.629 Segregation and condensation complex subunit ScpB
PF03448 -7.815 0.644 MgtE intracellular N domain
PF07521 -7.823 0.647 Zn-dependent metallo-hydrolase RNA specificity domain
PF01883 -7.868 0.668 Iron-sulfur cluster assembly protein
PF02686 -7.969 0.716 Glu-tRNAGln amidotransferase C subunit
PF02637 -8.019 0.741 GatB domain
PF02934 -8.026 0.744 GatB/GatE catalytic domain
PF01425 -8.173 0.824 Amidase
PF00825 -8.196 0.838 Ribonuclease P

Number of strains analysed 350; ↵=0.89
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Figure 7.7: Persistence scores of Salmonella choleraesuis protein domain classes. For each
domain class present in the S. choleraesuis pan-domainome, persistence scores are compared with
the pan-domainome persistence scores obtained from the complete set of 5713 genomes.

Co-evolution of bacterial 16S-rRNA and whole genome domain

content

Protein domains provide a formal description of genome encoded functionalities

each contributing to bacterial genotypic complexity. The functional relatedness

of an arbitrary pair of genomes can thus be determined by finding the fraction of

encoding domain classes in common relative to the the number of domain classes

present in each of these genomes. Through inclusion of the 16S-rRNA data the co-

evolution of bacterial 16S-rRNA gene sequences with genotypic complexity can be

studied (Figure 7.8). In panel A the distribution of domain based distances is plotted

using a binary dissimilarity score. Likewise in panel D the distribution of 16S-rRNA

sequence distances is plotted. Panel C shows a pairwise comparison between 16S-

rRNA distances and functional distances for the analysed genomes. Finally, panel B,

presents a schematic representation of the relationship between the two methods.

Overall, a good agreement is found between both approaches to evaluate species



Expected and observed genotype complexity in prokaryotes

7

153

Figure 7.8: Distance comparison of the 16S-rRNA gene with the functional diversity. A)
Distribution of domain based distances. B) Schematic representation of the three stages of diversi-
fication. 1) a fast-short-term evolution, as evolutionary distances measured by 16S-rRNA remain
small, while functional diversification has already taken place. 2) long-term evolution, in which
functional diversification occurs at a scale compatible with diversification by 16S-rRNA sequence
evolution. 3) The distance of the 16S-rRNA remains behind the functional diversity as the 16S-
rRNA distance can only diverse so far without loss of function. C) Comparison between pairwise
16S-rRNA distances and pairwise functional distances. D) Distribution of 16S-rRNA based dis-
tances.
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divergence. Analysis of the 16S-rRNA distances shows a marked di↵erentiation in

the [0.3, 0.35] interval, which appears as a steep increase in the abundance of in-

stances of these distance values (Figure 7.8D). These di↵erentiations correspond to

lineage boundaries (specifically class and phylum di↵erences). This increased den-

sity corresponds to the higher density in the center of the plot (Figure 7.8C), that

reflects that most of the performed comparisons involve members distantly related

in the evolutionary scale. This is also apparent on the higher number of instances

of functional di↵erences in the [0.6, 0.7] interval (Figure 7.8A), however functional

di↵erences accumulate more gradually, and no steep increase is observed.

The relationship between the two methods to evaluate species di↵erences can

be approximated through a sigmoid curve and three regimes can be distinguished

(Figure 7.8B). Species at close evolutionary distances show a broad range of func-

tional similarity (Figure 7.8B region 1). A high diversity is observed, so that genomes

with high similarity regarding their 16S-rRNA can show high functional diversity.

The second region shown in Figure 7.8B, region 2, corresponds to regions of rela-

tively large genetic di↵erentiation (class di↵erences) that accumulate functional dif-

ferences at a relatively lower pace. Finally, the third region (region 3) corresponds

to very distant species that as expected, have a large degree of functional di↵erenti-

ation.

In addition to functional similarities between evolutionary close strains, Figure

7.8C also indicates the presence of functionally very similar but evolutionary dis-

tant genomes. These are to be found in the region with low domain content varia-

tion (<0.05) and a large 16S-rRNA distance (>0.4). Gluconacetobacter diazotrophicus

PAl 5, Moraxella catarrhalis BBH18 and Pseudomonas aeruginosa 39016 are some ex-

amples. Similar results are obtained when the analysis is repeated considering all

available genomes. The presence of more than one copy of the 16S-rRNA gene may

introduce a larger variability, however the overall agreement of 16S-rRNA classifi-

cation remains the same.
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Discussion

For several decades 16S-rRNA sequence similarity scores provided a good working

metric for prokaryotic taxonomic classifications, but the ever-expanding sequence

databases and taxonomic complexity now pinpoint at the limitations. Here, we have

used a set of 5713 complete genomes to evaluate the predictive power of pair-wise

16S-rRNA sequence similarity scores on the diversity and taxonomic classification

of these genomes.

We observed intragenomic variation of 16S-rRNA gene sequences, but further

analysis showed that within the selection, this variation is limited and well above

the currently advised species threshold of 98.7%, meaning that regardless of the

selected copy, the same taxonomic classification should be obtained.

A network approach was subsequently used to study pair-wise 16S-rRNA se-

quence similarities between the 5713 sequenced strains (Figure 7.2). By using the

currently accepted 98.7% minimal sequence similarity threshold, optimally this ap-

proach should lead to 1330 separate species networks, each containing all sequenced

strains of a defined single species and each individual node within such subnetwork

should at least have a direct link to the node that represents the reference or type

strain (Figure 7.2 panel A). However, many more subnetworks were obtained and

what was observed is that strains of the same species are in separate subnetworks.

Additionally, strains with intermediate 16S-rRNA sequences were present function-

ing as articulation points merging what should have been independent species sub-

networks. (Figure 7.2 panel B and C). With the continuous addition of new 16S-

rRNA sequences it is likely that species amalgamation will become more frequent.

In the light of this, a more appropriate approach would be to consider the similarity

threshold as a confidence level. In this way, there is a high probability that two se-

quences with a 16S-rRNA sequence identity below the selected threshold belong to

di↵erent species. This provides a probabilistic interpretation to the threshold.

We used Pfam protein domain-class content to study strain diversity. Protein

domains are considered to be distinct functional units and as such responsible for

a particular function or interaction. The Pfam 30 protein family database consists

of 16306 domain families or classes (Robert D Finn et al., 2006) of which 9721 were



156

present in the studied dataset. Furthermore, we found that approximately 83% of

the protein-encoding genes harbour at least one Pfam domain suggesting that the

encoded domain-class content may provide a good metric to study strain diversity.

The core-genome of a taxonomic group contains genes that are present in all

members of that group whereas the pan-genome contains all the di↵erent genes that

can be found in any member of the population (Lars Snipen, Almøy, and David W

Ussery, 2009). Here we extended the idea to protein domain classes, as has been

previously reported (LG Snipen and D. Ussery, 2013; Jasper J Koehorst, Van Dam,

et al., 2016). We observed that most domain classes have a low persistence overall

(Figure 7.5), but as shown in Figure 7.6, by adding taxonomic information, distinct

sets of domain classes accumulate in the core domainomes of the various clades sug-

gesting that these core sets are somehow contributing to the physiology and ecology

of these clades.

At family level, the pan/core domainome ratio is observed to be on average below

0.4 (Figure 7.6), but at lower taxonomic ranks this ratio increases. For C. trachoma-

tis this ratio was determined to be 0.96, for Escherichia coli 0.58, for Helicobacter

pylori 0.83 and for Staphylococcus aureus 0.76. We assumed that species core do-

mainomes would consist of signifying or even species-specific domain classes and

domain-classes representing essential metabolic functions. We expected that sig-

nifying domain-classes are only highly persistent within a clade but that domain-

classes representing metabolic functions would be widely spread. For each domain

class present in the pan-domainome of five selected species we calculated the ratio

between clade specific persistence and global persistence (log-P scores) using a null-

model that assumes that domain-classes are evenly distributed over the strains. The

analysed species contributed to 6.2% or less of the total number of strains.

Top log-P scoring domains mostly corresponded to domains of unknown func-

tion (DUF) or domains involved in signal transduction whereas, being omnipresent,

metabolic functions were underrepresented. Of the 25 top scoring domains, 6 in

Salmonella choleraesuis, 15 in Chlamydia trachomatis, 8 in Escherichia coli, 3 in Heli-

cobacter pylori and 11 in Staphylococcus aureus corresponded to a DUF class. For the

Mycoplasma species it has been established that many DUFs are essential for growth

(Kamminga et al., 2017; Hutchison et al., 2016) and at least four of the DUFs in the
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present study, two specific for Escherichia coli (PF07041 and PF10897) and two for

Helicobacter pylori (PF12033 and PF10398) indeed have been characterised as being

essential (Goodacre, Gerlo↵, and Uetz, 2014). Between these five species, top scoring

domains also show no significant overlap suggesting that they are evolutionary con-

served andmay have a prominent role in shaping the species. Protein domain classes

with the lowest persistence ratio’s are likely HGT candidates. Functionally, most

of them represent a metabolic function suggesting as has been reported (Ochman,

Lawrence, and Groisman, 2000; Dutta and Pan, 2002) that horizontal gene transfer

is an important source of metabolic diversity.

The impact of the presence of signifying domains in the core domainome is

demonstrated in Figure 7.2C. Nodes from the Enterobacteriaceae subnetwork (Panel

B) were re-analysed using pair-wise domain-class content distance analysis. A sim-

ilarity threshold of 90% resulted in clade specifc domain-class subnetworks for

Salmonella, Enterobacter and to a lesser extent for Klebsiella. Note that by adopting

a whole-genome domainome approach, the history of every domain-class present

in the pan-domainome, is taken into account. However, signifying domain classes

are the main contributors and similar to what has been observed in Ochman et al.

(Ochman, Lerat, and Daubin, 2005), we observed that the many incidental HGT

candidate domain classes appear to have little impact on whole-genome domain-

ome based phylogenetic reconstructions.

The ratio between the core- and pan-domainome size of groups of organisms

at di↵erent phylogenetic levels provided a good estimate for beta-diversity. A rel-

atively low ratio between the core and pan-domainome reduces the functional as-

signments that can be inferred from the 16S-rRNA classification. Conversely, a high

ratio gives more certainty that functionalities are present. Overall the majority of

the analysed families showed a low ratio indicating that only a reduced functional

landscape can be extrapolated using 16S-rRNA analysis and the ratio can di↵er sig-

nificantly among families. For example, Chlamydiaceae shows a large ratio whereas

Enterobacteriaceae has the lowest observed ratio, indicating that the Chlamydia genus

which consists mostly of pathogenic bacteria that are obligate intracellular parasites

have evolved through simplification instead of complexification and are therefore

less diverse (Wolf and Koonin, 2013). Whereas Enterobacteriaceae is a diverse family
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consisting of members that are part of the gut flora and also contains a wide range

of pathogenic species, showing a more diverse functional landscape.

Combining the information from the functional landscape with 16S-rRNA se-

quences, allowed us to relate the functional diversity with evolutionary distances

(Figure 7.8). This analysis revealed that three stages of diversification can be de-

fined (Plata, Henry, and Vitkup, 2015). The first stage represents a fast-short-term

evolution, as 16S-rRNA evolutionary distances remain small, though functional di-

versification has already taken place. This happens in closely, near identical, related

strains where gene acquisition could play a significant role in functional diversity.

The second stage represents a long-term evolution, in which functional diversifica-

tion occurs at a scale compatible with evolutionary time, as reflected by 16S-rRNA

evolution. In the third stage diversification of the functional landscape continues

but, due to 16S-rRNA genetic constraints, does not align well with 16S-rRNA se-

quence distances.

Conclusions

16S-rRNA similarity scores can still be used as a metric for taxonomic classification

but we propose a more probalistic interpretation as its performances will be better

at higher taxonomic levels.

Whole genome protein domain phylogenies correlate with, and complement 16S-

rRNA sequence-based phylogenies. Moreover, domain-based phylogenies reveal

rapid functional diversification, allowing for large scale functional comparisons be-

tween clades and can be constructed over large evolutionary distances.

Protein domain persistence ratio’s highlight both signifying domain classes and

HGT candidates. The increased granularity obtained will pave the way for new

applications to better predict the relationships between genotype, physiology and

ecology.
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Methods

Genome annotation

A total of 5713 publicly available complete bacterial genomes were downloaded

from the NCBI repository (November 2016) (Agarwala et al., 2016). To prevent

technical bias due to the use of di↵erent annotation tools and pipelines and dif-

ferent thresholds for assessing the significance of the inferred genetic elements,

genomes were consistently structurally and functionally de-novo annotated using

SAPP (Jasper J. Koehorst et al., 2017), an annotation platform implementing a

strictly defined ontology (Dam et al., 2017).

16S-rRNA prediction was performed using RNAmmer 1.2 (Lagesen et al., 2007).

Genes were predicted using Prodigal (2.6.3) (Hyatt et al., 2010) and the identified

proteins were functionally annotated using the Pfam library (version 30.0) within

InterProScan (version 5.21-60.0) (Robert D. Finn, Attwood, et al., 2017; Robert D.

Finn, Coggill, et al., 2016). Annotations were automatically converted into RDF

according to the GBOL ontology (Dam et al., 2017) and loaded into a semantic

database for high-throughput annotation and analysis. For the retrieval of infor-

mation, SPARQL was used (See supplementary file S5 for all queries used).

Quality analysis

Scaling laws have been identified in the genomic distribution of protein domains

(De Lazzari et al., 2017). These laws result in linear relationships in the number of

domain classes with n copies and the total number of domain classes in a genome

(See supplementary Figure S5). We have verified the linear relationships in the anal-

ysed genomes. These indicators have been used here to further verify the integrity

of the assembled genomes (Cosentino Lagomarsino et al., 2009). Overall, the pre-

viously reported scaling laws also hold true when a higher number of genomes is

studied.



160

Estimation of pan- and core-domainome size

The estimated number of domain classes in the pan- and core-genomes expected,

if the sequences of every existing strain were to be included in the analysis, were

computed using binomial mixture models as implemented in the micropan R pack-

age (Lars Snipen and Liland, 2018) using default values for the parameters. Heap’s

analysis as implemented in the micropan R package was used to estimate openness

or closeness of the pan-genome using 500 genome permutations and repeating the

calculation 10 times.

Domain persistence

The following formulas were used to calculate persistence ratios

Persistence =
number of genomes encoding the domain

total number of considered genomes

log-P = log2
clade specif ic persistence

overall persistence

16S-rRNA distance calculations

From the de-novo annotation, 16S-rRNA sequences were obtained from the semantic

database through a SPARQL query (See supplementary file S6 for all queries used).

In total 25098 16S-rRNAs were retrieved. rRNA’s that were of low quality (con-

taining N’s) or di↵ered in size greater than the standard deviation were removed

from the analysis. Duplicated 16S-rRNAs were merged into a single copy for the

multiple alignment. For each 16S-rRNA the orientation was validated using Orien-

tationChecker (Ashelford et al., 2006). The complete gene was used for calculation

of pairwise alignment distances using the clustal omega suite for all possible 16S-

rRNA pairs (Dataset 1 aligned). The resulting matrix was binarized using 98.7%

sequence similarity as a cuto↵. The binary matrix was then represented as networks

using igraph (Csardi and Nepusz, 2006) in R (Team, 2013).

Domain based distance calculations

Genome distances based on protein domain class content were computed using the

asymmetric binary method in which vectors are regarded as binary bits. Non-zero
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elements are on and zero elements are o↵. The distance is the proportion of bits in

which only one is on amongst those in which at least one is on (dist function in R).

A similarity cuto↵ of  0.1 was used.

Statistical software

Statistical analysis and visualisations were performed using R and the following

packages, data.table (Dowle and Srinivasan, 2018), reshape2 (Wickham, 2007),

plotly (Sievert, 2018), Biostrings (Pagès et al., 2017), devtools (Wickham, Hester,

and Chang, 2018), micropan (Lars Snipen and Liland, 2018), gridExtra (Auguie,

2017), hexbin (Carr et al., 2018) and RColorBrewer (Neuwirth, 2014).
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Abstract

Due to the success of next-generation sequencing, there has been a vast build-up

of sequenced microbial genomes in the public repositories. For bioprospecting of

this huge genomic potential for biotechnological benefiting, new e�cient and flex-

ible methods need to be developed. In this study Semantic Web techniques are ap-

plied to develop a function-based genome mining approach following a knowledge

and discovery in database protocol. Focusing on the industrial important trait of

1,3-propanediol production 178 new candidate species were identified. Further-

more, the genetic architecture of the trait was resolved, and essential domains iden-

tified. Three newly identified non-pathogenic strains were successfully tested for

1,3-propanediol production.
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Introduction

Next generation sequencing technologies (NGS) have turned the publicly available

genome repositories into data-rich scientific resources that currently contain struc-

tural and functional genome information of thousands of bacterial genomes (Sil-

vester et al., 2018). For biotechnological benefits, these repositories are excellent

resources to mine for new and alternative cell factories, industriophilic traits and

enzymes.

While the biotechnology field has embraced Omics technologies impacting

biotech innovation in multiple ways (Gates, 2000), setting up large scale functional

screenings in these genomics resources for industriophilic traits is still challeng-

ing. NGS data generation has caused biocuration to be outpaced rapidly and cur-

rently more than 99% of the functional predictions in UniProt are based on auto-

mated computational predictions (UniProt Consortium, 2018). The quality of com-

putationally inferred functional genome annotations varies due to lack of data and

element-wise provenance, the use of di↵erent annotation pipelines, the continuous

updates of the reference databases used, generic, non-standardized, annotation ac-

ceptance thresholds and an inconsistent naming of protein functions, all adding to

a lower degree of interoperability (Jasper J Koehorst, Van Dam, et al., 2016). Since

structural annotations, predicted gene and protein sequences are presented in a

highly standardized format resulting in a much higher degree of interoperability.

The ‘bottom-up’ approaches starting with a gene or protein sequence in an e↵ort to

find a corresponding function in genome(s) of interest are normally used. However,

over larger phylogenetic distances, gene and protein sequence-based clustering algo-

rithms are hampered by lateral gene transfer, gene fusion/fission events and domain

expansions. Furthermore, at larger scales, they su↵er from high computational cost

as time and memory requirements scale quadratically with the number of genome

sequences to be compared (Wall et al., 2010). A systematic robust function-based

genome screening procedure requires a high degree of semantic Interoperability.

This means that functional information can be directly compared on the basis of a

pre-established syntactic interoperable genome annotation and computational pre-

dictions are linked to their provenance. To accomplish this, we recently have devel-
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oped SAPP, a semantic annotation infrastructure supporting FAIR computational

genomics (Jasper J. Koehorst et al., 2017). SAPP uses the GBOL ontology as syntax

(Dam et al., 2017) and automatically predicts, tracks and stores structural and func-

tional genome predictions and associated dataset- and element-wise provenance in

a Linked Data format. For a systematic presentation of protein functions, protein

domain architectures are used as proxy (Jasper J Koehorst, Saccenti, et al., 2016).

Demonstrating a high level of scalability, this set up has been successfully used in an

integrated analysis of the functional landscape of 432 Pseudomonas strains (Jasper J

Koehorst, Van Dam, et al., 2016).

In this study Interoperable genome annotations are used in a systematic

function-based in silico screening for bacterial species that can convert the

bio-refinery by-product glycerol into the industrial high-value monomer 1,3-

propanediol (1,3-PD) (Saxena et al., 2009; Jiang et al., 2016) 1,3-PD is an important

precursor of biomaterials. It is currently used as a monomer for novel polyester and

biodegradable plastics, such as polytrimethylene terephthalate (Saxena et al., 2009).

1,3-PD is a typical product of glycerol fermentation and currently very few species,

mostly enterobacteria, are known to form it (Barbirato et al., 1996). The underlying

metabolic trait, a two-step reductive conversion of glycerol to 1,3-PD regenerates

NAD+, required for the oxidative conversion of glycerol to dihydroxyacetone (Fig-

ure 8.1).

The first step, dehydration of glycerol to 3-hydroxypropionaldehyde (3-HPA) is

mediated by a vitamin B12-dependent glycerol dehydratase although an oxygen

sensitive B12-independent alternative enzyme has been reported (Raynaud et al.,

2003). The second step reduces 3-HPA to 1,3-PD using the (NADH)+H+ dependent

1,3-propanediol-oxydoreductase (PDOR) regenerating NAD+ (Jiang et al., 2016).

For genome prospecting a collection of 84,300 publicly available bacterial

genomes were loaded in the SAPP semantic framework, structurally and function-

ally annotated, and mined for candidates to produce 1,3-PD using a knowledge

discovery in databases approach (KDD) (Ristoski and Paulheim, 2016). Overall

the systematic analysis increased our knowledge on the genetic architecture of this

metabolic trait, in terms of the overall domain composition, distribution and es-

sentiality. The approach suggested that, compared to some 30 producers in litera-
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Figure 8.1: Search strategy for 1, 3-propanediol candidate species (A) Key domains in the main
pathway for B12 dependent bioconversion of glycerol to 1,3-propanediol are indicated in red. Key
domains for the alternative B12-independent reductive pathway are indicated in orange. Note the
generic iron alcohol domain is used in both the oxidative and reductive branch but not included in
the search strategy for the oxidative branch (indicated in green). (B) Generalized functional based
search strategy for traits using SAPP. Genome sequence in standard format are converted to an RDF
database and complemented with structural and functional annotation. SPARQL, search strategies
are deployed to identify domains of interest (dark blue) and complemented with proximity searches
(light blue) to find key domain enriched regions.

ture (Table 8.1), at least 187 genome sequenced species potentially have the trait for

1,3-PD production. Three newly identified non-pathogenic species, Acetobacterium

wieringae, Clostridium magnum and Carnobacterium Funditum were experimentally

validated for 1,3-PD production. When grown in glycerol, Clostridium magnum and

Carnobacterium Funditum produced 1,3-PD as the main product.
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Results

Development of the genome mining workflow

To cope with the huge amount of biological input data, we followed a Knowledge

Discovery in Databases (KDD) process. In this systematic multistep process, the

actual ‘pattern searching’ step is preceded by the equally important steps of ‘data

preparation’ and ‘incorporation of prior knowledge’ (Dawyndt et al., 2006). For

metabolic trait discovery, the KDD process was adjusted to the specific needs in bio-

prospecting. Data silo and transformation enabling a high level of interoperability,

pattern searching, pattern validation and modification using a training data set and

data-mining.

Incorporation of prior knowledge:

In 1,3 PD production two parallel pathways are used for dissimilation of glyc-

erol. In the oxidative pathway glycerol is dehydrogenated to dihydroxyacetone by

a NAD+-linked glycerol dehydrogenase, then to dihydroxyacetone phosphate by an

ATP-dependent dihydroxyacetone kinase (Forage and Lin, 1982). Additionally, two

alternative reductive pathways, either dependent on vitamin B12 or not exist for

regenerating NAD+ for 1.3-PD production. For validation of the search strategy

and to gain further genetic insights the domains involved in 1,3-PD formation a

list of known 1,3 PD producing strains was obtained. From the literature some 30

strains have been reported to produce 1,3-PD (Table 8.1). Genome sequences from

14 di↵erent strains were obtained from the EBI-ENA data warehouse (Silvester et

al., 2018) as not for all of them genome sequences are available. For Citrobacter

freundii ATCC8090 two draft genome sequences of comparable quality could be ob-

tained and initially both were kept increasing the number of genomes to 15. For

four strains in this set the 1,3 PD operon has previously been molecularly charac-

terised (Figure 8.2A). In total, 12 strains were selected for the training dataset and

Trichococcus pasteurii was used for cross-validation (Table 8.1).
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Data transformation:

To obtain a high degree of interoperability and for inclusion of data provenance

the 13 genome sequences were de novo structurally and functionally annotated

through the SAPP framework using the modules, Prodigal (Hyatt et al., 2010) for

gene prediction and InterProScan (Finn, Attwood, et al., 2017) for protein annota-

tion. Genome annotations were exported as Linked Data in graph database using

the Resource Description Framework (RDF) as a data-metadata model (Klyne and

Carroll, 2004; Jasper J. Koehorst et al., 2017). Protein domain architectures were

used as proxy for protein function (Jasper J Koehorst, Saccenti, et al., 2016). As

no di↵erences was observed between the functional annotations of two Citrobacter

freundii ATCC8090 draft genome sequences they were treated as one.

Development of a function-based search strategy for the oxidative branch:

The first two enzymes essential for the oxidative pathway involved 1,3 PD produc-

tion are glycerol dehydrogenase which is dependent on NADH and produces dihy-

droxyacetone (DHA), and DHA kinase which phosphorylates DHA. The four Pfam

domains describing these key reactions are Fe-ADH (PF00465) for glycerol dehydro-

genase and DAK1, (PF02733) or DAK1_2, PF13684) both capturing the kinase do-

main of the dihydroxyacetone kinase family in combination with DAK2, (PF02734),

capturing phosphatase domain of the dihydroxyacetone kinase family (Figure 8.1).

A SPARQL query (see methods section for details) for DAK2 domain neighbors in

the training set database followed by a Boolean DAK1/DAK2 or DAK1_2/DAK2

proximity search in the search results, showed that the genomes of all 1,3 PD pro-

ducing species in the training data set encoded at least one dihydroxyacetone ki-

nase family protein with a DAK1/DAK2 or DAK1_2/DAK2 protein architecture; five

strains coded for DAK1/DAK2 and four strains DAK1_2/DAK2. Three Clostridia

strains, C. perfringens str. 13, C. pasteurianum DSM 525 and C. diolis DSM 15410

encode both configurations. Another observation is the high persistency and copy

number of the Pfam domain family of Iron-containing alcohol dehydrogenase/alde-

hyde reductases (PF00465) with on average 16.6 copies per genome. Due to the

inherent low discriminative power of this domain, it was decided to only use a
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DAK1/DAK2 OR DAK1_2/DAK2 proximity and not to include PF00465 in the large

scale functional screening as preselection for the oxidative branch.

Development of a function-based search strategy for the reductive

branch:

For 1,3-PD production two alternative pathway are known, a well-studied B12-

dependent pathway and a lesser studied oxygen sensitive B12-independent pathway

(Figure 8.1). A series of SPARQL queries (see methods section for details) were used

to obtain the persistency and copy number of key domains in the two alternative

pathways among the 12 genomes of the training set. The iron containing aldehyde

reductase/alcohol dehydrogenase domain (PF00465), is present in both the oxida-

tive and reductive branch and functions in the reductive branch as aldehyde reduc-

tase. The three dehydratase Pfam domains signifying the B12-dependent pathway,

PF02287 (small subunit), PF02288 (medium subunit), and PF02286 (large subunit)

have a persistency of 0,6 with on average per genome 1,7 (large and small subunit) or

3,7 copies (medium subunit). The isofunctional dioldehydratase reactivase ATPase-

like domain PF08841 has a persistency of 0,6 and a copy number of one. Note that

only four strains in the training data set are molecularly characterized. The low

level of persistency of key domains of the B12-dependent pathway in the training

set therefore immediately suggests that multiple strains actually may not use the

B12-dependent pathway. The B12-independent glycerol dehydratase is reported to

be involved in 1,3-PD production and consists of a Glycine radical (PF01228) and

a pyruvate formate lyase-like domain (PF02901) (Raynaud et al., 2003). Both do-

mains are present in all twelve genomes of the training data set with a relative high

copy number of six. The persistency of the Radical SAM superfamily domain, a

key part of the B12-independent glycerol dehydratase reactivase enzyme (Demick

and Lanzilotta, 2011), was also one with an average copy number of 32 indicating

that these three domains are promiscuous and normally also used to support other

functionalities (Table 8.2).

As key domains of both the B12-dependent and independent pathway were ei-

ther too generic indicated by a high copy number or were associated with a low level
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Table 8.2: Properties of key domains involved in glycerol dissimilation in 1,3 PD producers

Domain Mean Copy Number* Proximity Search query
(compounds and distance)

Oxidative pathway
PF02733 (DAK1) 2.2 DAK1 AND DAK2 OR DAK1_2 AND DAK2
PF13684 (DAK1_2) 1.6 (immediately adjacent)
PF02734 (DAK2) 2.7

B12-dependent reductive Pathway
PF00465 16.6 All, within 20.000 up or
PF02286 1.7 downstream of the B12 dependent
PF02287 1.7 dehydratase domains
PF02288 3.7
PF08841 1.7

B12-independent reductive Pathway
PF01228 13.8 All, within 20.000 up or
PF02901 14.4 downstream of the B12
PF04055 32.4 independent dehydratase domains

of persistency, a Boolean multi-compound proximity search was developed for the

reductive branch. In this approach the physical co-localization of key domains in

the respective genomes is included in the search. From the list of natural produc-

ers with a molecularly characterized 1,3 PD operon, the size of 1,3-PD operon was

estimated to encompass approximately 18,000 nucleotides. Furthermore, signifying

domains can be found on both strands due to the use of internal promoters (Figure

8.2A). Including this, the search criteria were set such that the region of interest for

B12-dependent pathway should contain at least five signature domains (PF00465,

PF02286, PF02287, PF02288, PF08841) in a window of 40,000 base pairs extending

20.000 up and downstream of the dehydratase domains. Based on the single char-

acterized B12-independent strain four domains were specified (PF00465, PF01228,

PF02901, PF04055) extending 20.000 up and downstream of the dehydratase do-

mains. Furthermore, taking internal promoters into account, domains were allowed

to be present on both strands.
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Figure 8.2: Representation of operonic structures for the metabolic trait of 1,3-propanediol
production. (A) Genetic architecture of the 1,3 PD operon of previously molecularly characterized
species. (B) Genetic architecture of the 1,3 PD operon of selected species. The colored blocks rep-
resent genes Arrows indicate direction of transcription. Species names are indicted with genome
sequences in brackets. Note that A. wieringae operonic structure does not include a 1,3-PD dehy-
drogenase

Applying these criteria to the training data set resulted in the identifica-

tion of three strains containing B12-dependent operon signatures; Citrobacter fre-

undii ATCC8090, Klebsiella pneumoniae DSM2026, and Clostridum perfringens; four

strains containing the B12-dependent as well as B12-independent operon signa-

tures; Clostridum pasteurianum DSM525, Halanaerobium saccharolyticum DSM6643,

Klebsiella michiganensis, and Klebsiella pneumoniae ATCC25955) (Figure 8.3); and

five strains solely containing the independent operon signatures; Clostridium bei-

jerinckii NRRL B-593, the canonical B12 independent strain Clostridum butyricum

DSM10702, Clostridum butyricum E4, Clostridum diolis DSM15410 and Raoultella
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Figure 8.3: Overall domain composition of the B12-dependent 1,3 PD operon derived from
the training data set. Input strains are in Table 8.1

planticola DR3 (Figure 8.4). Figure 8.3 displays the overall domain composition

of the B12-dependent 1,3 PD operon in the training set. Including the five sig-

nifying domains used in the query, the core of the B12-dependent 1,3-PD operon

consists of nine domains Other highly persistent domains enriched within the

syntenic region are ‘Cobalamin adenosyltransferase’, (PF01923), ‘Haem-degrading’

(PF03928),’Helix-turn-helix domain’ (PF12833) and ‘sensory domain found in PocR’

(PF10114).

Figure 8.4 displays the overall domain composition of the B12-independent 1,3

PD operon derived from the training set. Beside the four specified domains the

core was expanded by the ‘4Fe-4S single cluster domain’ (PF13353). Other domains

highly persistent in B12-dependent operon such as the ‘Sensory domain found in

PocR’ and the ‘Helix-turn-helix domain’ are also enriched in some of the putative

B12-independent operonic structures except in Clostridium butyricum DSM 10702

and Raoultella planticola DR3.
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Figure 8.4: Overall domain composition of the B12-independent 1,3 PD operon derived from
the training data set. Input strains are in Table 8.1

Data silo

To mine publicly available genomes for the presence of the vitamin B12 1,3-PD

operon 84,329 bacterial genomes containing, 51 phyla, 64 classes, 145 orders, 335

families, 1,126 genera and 2,661 species were obtained from the EBI-ENA data ware-

house. The SAPP semantic annotation framework was subsequently used for a de

novo structural and functional annotation of these genomes resulting in a semantic

database of 365,920,933 predicted protein encoding genes linked to the correspond-

ing protein sequences, predicted protein domain architectures and structural and

functional prediction provenance. Further analysis was performed on predicted

protein encoding genes with a Prodigal confidence score of at least 95%. At this

threshold 95.1% of the proteins remain pertaining 98.3% of the assigned protein

domains.

Data Mining for candidate 1,3 PD producers using the B12-dependent

pathway

Oxidative branch: Following the function-based search strategy outlined above and

summarised in Figure 8.2, a proximity search with the two DAK configurations in

parallel resulted in a 55% reduction of the search space. The reduced search space

consisted of 37.791 genomes with in total 834 di↵erent species from 158 genera. The

most abundantly present species were Streptococcus pneumoniae, Listeria monocy-
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togenes, Klebsiella pneumoniae, each with more than a thousand strains. The re-

duced search space was used as input for a proximity search of the reductive branch.

Reductive branch: Identification of B12-dependent strains according to the cri-

teria used for known strain validation, resulted in 187 species (4,142 strains) includ-

ing the two Trychococcus species not included in the training set. Strains of Liste-

ria monocytogenes (1,777) and Klebsiella pneumoniae (1,605), both pathogenic species

were overrepresented. An overview of identified strains and species is Table 8.4.

At species level, domain persistency of the B12-dependent 1,3-PD trait showed a

high degree of similarity with the training set. The most frequently observed addi-

tional domains showing a local persistency of 0,80 and above are PF03928 (0,97),

PF01923 (0,90), PF00936 (0,87), PF00171 (0,84), PF03319 (0,82) (and PF06130

(0,80) (Figure 8.5). PF03928, a haem degrading domain often flanked by PF03319

and PF06130 (in the order of PF03319-PF03928-PF06130), can be of importance for

aldehyde reductase which can have di↵erent cofactor specificities including haem

(Machielsen et al., 2006). PF01923 represents an enzyme catalyzing the conver-

sion of cobalamin (vitamin B12) into one of its coenzyme forms, adenosylcobal-

amin (coenzyme B12, AdoCbl), which is vital for the functioning of B12-dependent

glycerol dehydratase (Knietsch et al., 2003). The compartmentalization domain,

PF00936, could be used to encapsulate enzymatic steps important for 1,3-PD pro-

duction (Zarzycki, Erbilgin, and Kerfeld, 2015). PF00171, has been shown to en-

hance 1,3-PD production (Lee et al., 2014). The Ethanolamine utilisation pro-

tein EutN/carboxysome (PF03319) is involved in the cobalamin-dependent degra-

dation of ethanolamine. PF06130 a signature for phosphate propanoyltransferase

is involved in phosphorylation of 3-hydroxypropionyl-CoA to 3-hydroxypropionyl

phosphate (Matsakas et al., 2018).

Confirming the in silico predictions a number of strains present in Table 8.4

were already reported to be 1,3-PD producers. Using key domains from the B12-

dependent reductive pathway ten of these strains were assigned to use the B12-

dependent route. Interestingly, for five other strains the in silico results suggests

that these strains may use the B12-independent route (Table 8.1).
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Figure 8.5: DependentPersistencyAll

Experimental validation

Focussing on the B12-dependent pathway, Acetobacterium wieringae, Carnobacterium

funditum DSM 5970 and Clostridium magnum DSM 2767 were selected for experi-

mental validation based on their biosafety level. Ca. funditum and Cl. magnum

were chosen because they have the complete reductive branch for B12-dependent

1,3-PD production. A. wieringae lacks the key domain PF04055 and therefore the

operon presents an incomplete reductive branch as it lacks the aldehyde reductase

function. Trichococcus pasteurii was selected as a positive control. All strains were

grown on glycerol. Ca. funditum, Cl. magnum and the T. pasteurii control strain pro-

duced 1,3-PD as the main product with acetate as a byproduct. A. wieringae showed

a significant reduced growth and produced acetate as a main product (See Table 8.3).
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Table 8.3: 1,3-propanediol and acetate yields from glycerol fermentations of selected strains.

Organism Genome assembly ID 1,3-PD (mol/mol) Acetate (mol/mol) OD
Acetobacterium wieringae DSM 1911 GCA_001766835.1 0.18 0.94 0.179
Carnobacterium funditum DSM 5970 GCA_000744185.1 0.33 0.07 0.266
Clostridium magnum DSM 2767 GCA_001623875 0.56 0.03 0.180
Trichococcus pasteurii DSM 2381 GCA_900079135.1 0.66 0.12 0.325

Discussion

Bioprospecting entails the systematic search for economically valuable genetic and

biochemical resources from nature (Artuso, 2002). Genome prospecting, the in-

silico mining of sequenced genomes and metagenomes for new biotechnologically

relevant proteins and enzymes is a relatively new field. In genome prospecting

two approaches can be applied, a “top-down” approach that begin by searching

for a function and is followed by identification of the corresponding gene(s) and

a “bottom-up” approach that start with a gene of interest in an e↵ort to find a cor-

responding function in genome(s) of interest. For bottom-up approaches many se-

quence similarity tools such as Blast (Altschul et al., 1997) exist. Bottom-up stud-

ies usually start with a selection of (meta)-genome sequences followed by sequence

similarity-based clustering and selection of candidate sequences and re-annotation

of interesting candidates thereby avoiding ambiguity related problems in current

functional annotations. For bacterial species however, a priori, gene fusion-fission

events can be expected (Pasek, Risler, and Brezellec, 2006) hampering sequence

similarity-based detection and clustering of multi-domain proteins encoding genes,

while the same domains may also be present in multiple proteins meaning that

first-matches genomic sequences in a sequence similarity search may not encode the

wanted function. When searching for polygenic traits these problems are aggravated

and a function-based approach searching for key functions may be more e↵ective es-

pecially when there is insu�cient understanding of the genetic architecture of trait

in terms of the minimal number of genes required for the trait and function of the

domains encoded by the di↵erent genes. Protein domains have been shown to pro-

vide an accurate representation of the functional capabilities of a protein (Jasper J

Koehorst, Saccenti, et al., 2016; Haft et al., 2017). To overcome ambiguity related

problems in functional annotations SAPP identifies and annotates protein function
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based on domain architecture. As profile hidden Markov Models (HMM), which

favour in their scoring functionally important sites, are used for the identification of

protein domains, statistically robust annotation profiles can be obtained over large

phylogenetic distances. KDD is a multi-step process involving data preparation and

transformation, pattern searching, evaluation and iteration after modification. By

using protein domain architectures as proxy for protein functions a high level of

standardization is obtained. As protein domain architectures can be directly trans-

formed in highly interoperable strings of Pfam domain identifiers “top-down” func-

tional screenings can be done e�ciently. Applying the KDD approach on Linked

Data allows for validation of initial results in multiple ways and to iterate after mod-

ification. By using molecular knowledge obtained from molecular characterizations

of the 1,3 PD operon of four species and validating and iterating the search pattern

on a training data set of genome sequences of twelve known 1,3-PD producers, a

large collection of 84,300 publicly available bacterial could be e�ciently mined in a

top-down approach yielding 178 new candidate species and successful experimental

verification of three of these species. The additional finding of Clostridium pasteuri-

anum, Halanaerobium saccharolyticum and Lactobacillus diolivorans / panis / reuteri

was reconfirmed through literature (Luers et al., 1997; Kivistö, Santala, and Karp,

2012b; Pflügl et al., 2012; Khan et al., 2013; Amin et al., 2013). Of known producers,

such as Clostridium butyricum, the 5 strains that were analyzed all were identified

as B12-independent. Driven by a strong need to be able to integrate and analyze

biodata across databases, there has been a considerable increase in the adoption of

Semantic Web technologies in the life-sciences (Cheung et al., 2009). However, a

SPARQL endpoint for phenotypic data is only available via WikiData (Mitraka et

al., 2015). Other resources for phenotypic data such as BacDive, here used to obtain

biosafety levels of candidate species, do provide API’s to mine their data but cur-

rently cannot be directly queried using SPARQL. With the growing importance of

Semantic Web technologies for the life sciences interoperability levels on all aspect

will increase, enhancing mining possibilities, aiding the discovery of new traits in

an unprecedented pace.
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Conclusions

Through transformation of genomic data into a FAIR linked-data format, iterative

function-based approaches can be developed to mine the large genome repositories.

By presenting functional annotation as unambiguous protein domain architectures

a high level of interoperability is obtained allowing for the development of e�cient

function-based top-down searches not limited to supervised trait identification.

Materials and methods

Data annotation and mining

Bacterial genomes were downloaded from the ENA database using the enaBrowser-

Tools (Silvester et al., 2018). All downloaded microorganisms were converted into

a semantic repository using the annotation platform based on functional analysis

(SAPP) (Jasper J. Koehorst et al., 2017). All genomes were de-novo structurally

re-annotated using Prodigal (Hyatt et al., 2010) and functionally annotated using

Pfam from InterProScan (Finn, Bateman, et al., 2014; Finn, Attwood, et al., 2017).

Each genome was stored as an individual database and were queried using the SAPP

HDTQuery module which is a combination of Apache SPARK, HDT and SPARQL

(Fernández et al., 2013; Prud’hommeaux and Seaborne, 2008).

Oxidative branch identification

To identify strains containing the oxidative branch as shown in Figure 8.1, DAK

filtering was applied. Genes containing DAK1 (PF02733) or DAK1_2 (PF13684)

in combination with DAK2, (PF02734), 95% gene confidence according to prodigal

and neighbor linking was applied to identify strains capable for growth on glycerol

(Figure 8.1 with 95% cuto↵).

Reductive branch identification

Strains that contained the oxidative branch were further investigated for the reduc-

tive branch using domains according to the B12 dependent or independent pathway

(Figure 8.1 and 8.1). Region identification was performed using PF02287 and 20.000
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bp up and downstream. Regions containing all domains of interest were further in-

vestigated for domain occurrence and syntheny.

B12 synthesis identification

Phylogenetic information was complemented with phenotypic information through

BacDive (Söhngen et al., 2016). The BacDive resource was parsed and each entry

record was transformed into RDF allowing integration of genotypic and phenotypic

information. SPARQL queries were used to retrieve information with regards to

pathogenicity and temperature (Figure 8.2 and 8.3).

Physiological analysis

Clostridium magnum DSMZ 2767 (Uhlig et al., 2016) and Acetobacterium wieringae

DSMZ 1911 (Poehlein et al., 2016) were obtained from the German Collection for

Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). Trichococcus

strain ES5, was previously obtained from a methanogenic bioreactor sludge by (An-

tonie H. van Gelder et al., n.d.). The anaerobic growth media for C. magnum and

A. wierignae was prepared as previously described (A. J.M. Stams et al., 1993) and

complemented with 1g/L yeast extract. Additionally, C. magnum required 0,5g/L

of cysteine as a reducing agent. The inoculation of all strains was 5% of total serum

bottle. C. magnum, A. wieringae and Trichococcus strain ES5 were grown on 20mM

glycerol. Yield was measured as 1,3-PD concentration divided by utilized glycerol.

Growthmeasurements were based on optical density (OD) using a spectrometer (Hi-

tachi U-1500, Labstu↵, The Netherlands). All soluble substrates and intermediates

were measured with an Agilent HPLC system equipped with Agilent Metacarb 67H

column (3006.5 mm) (Thermo Fisher Scientific, MA) and a refractive index detector.

The OD and HPLC measurements were conducted in time points of 0, 24 and 48

hours.
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Table 8.4: Species identified having a B12 dependent reductive branch

Eubacterium hallii Enterococcus malodoratus Lachnospiraceae bacterium 7_1_58FAA
Anaeromusa acidaminophila Enterococcus mundtii Lachnospiraceae bacterium A2
Anaerosalibacter massiliensis Enterococcus pseudoavium Lactobacillus brevis
Bacillaceae bacterium MTCC 10057 Enterococcus ra�nosus Lactobacillus collinoides
Bacillus azotoformans Enterococcus sp. 3H8_DIV0648 Lactobacillus coryniformis
Bacillus massiliosenegalensis Enterococcus sp. HMSC066C04 Lactobacillus curvatus
Bacillus sp. 7504-2 Enterococcus sp. HMSC072H05 Lactobacillus diolivorans
Bacteroides fragilis Enterococcus sp. HMSC29A04 Lactobacillus fuchuensis
Blautia obeum Escherichia coli Lactobacillus ginsenosidimutans
Blautia schinkii Escherichia fergusonii Lactobacillus graminis
Blautia sp. UBA2945 Eubacteriaceae bacterium CHKCI004 Lactobacillus kimchicus
Carnobacteriaceae bacterium UBA7837 Eubacterium sp. 14-2 Lactobacillus kisonensis
Carnobacterium alterfunditum Eubacterium sp. An11 Lactobacillus mellifer
Carnobacterium funditum Eubacterium sp. An3 Lactobacillus namurensis
Citrobacter amalonaticus Eubacterium sp. UBA3279 Lactobacillus panis
Citrobacter braakii Eubacterium sp. UBA3326 Lactobacillus paracollinoides
Citrobacter freundii Eubacterium sp. UBA7134 Lactobacillus pobuzihii
Citrobacter freundii Firmicutes bacterium UBA3567 Lactobacillus rapi
Citrobacter koseri Firmicutes bacterium UBA3570 Lactobacillus rennini
Citrobacter portucalensis Firmicutes bacterium UBA3573 Lactobacillus reuteri
Citrobacter rodentium Flavonifractor plautii Lactobacillus rossiae
Citrobacter sp. A1 Flavonifractor sp. An306 Lactobacillus silagei
Citrobacter sp. CFSAN044567 Flavonifractor sp. An82 Lactobacillus siliginis
Citrobacter sp. KTE151 Fusobacteriaceae bacterium UBA2433 Lactobacillus similis
Citrobacter sp. KTE30 Fusobacterium hwasookii Lactobacillus spicheri
Citrobacter sp. KTE32 Fusobacterium nucleatum Lactobacillus versmoldensis
Citrobacter sp. L17 Fusobacterium sp. CM1 Listeria innocua
Citrobacter werkmanii Fusobacterium sp. CM22 Listeria ivanovii
Clostridia bacterium UC5.1-2H11 Fusobacterium sp. HMSC064B11 Listeria monocytogenes
Clostridiaceae bacterium BRH_c20a Fusobacterium sp. HMSC073F01 Listeria seeligeri
Clostridiales bacterium DRI-13 Fusobacterium sp. OBRC1 Listeria welshimeri
Clostridiales bacterium mt11 Fusobacterium ulcerans Metakosakonia massiliensis
Clostridiales bacterium PH28_bin88 Fusobacterium varium Mycobacterium vaccae
Clostridiales bacterium VE202-03 Geobacillus sp. (strain Y4.1MC1) Paraclostridium benzoelyticum
Clostridium baratii Geobacillus thermoglucosidasius Paraclostridium bifermentans
Clostridium botulinum Geosporobacter ferrireducens Pediococcus acidilactici
Clostridium drakei Halanaerobium hydrogeniformans Pediococcus claussenii
Clostridium estertheticum Halanaerobium saccharolyticum Pediococcus pentosaceus
Clostridium lundense Intestinimonas butyriciproducens Phytobacter ursingii
Clostridium magnum Klebsiella aerogenes Pluralibacter gergoviae
Clostridium pasteurianum Klebsiella michiganensis Propionibacterium freudenreichii
Clostridium perfringens Klebsiella oxytoca Quasibacillus thermotolerans
Enterobacter asburiae Klebsiella pneumoniae Salmonella choleraesuis
Enterobacter cloacae Klebsiella pneumoniae Sebaldella termitidis
Enterobacter cloacae complex ’Ho↵mann cluster IV’ Klebsiella quasipneumoniae Serratia marcescens
Enterobacter cloacae complex sp. ECNIH6 Klebsiella sp. 10982 Shigella boydii
Enterobacter cloacae complex sp. ECNIH7 Klebsiella sp. AA405 Shigella flexneri
Enterobacter cloacae complex sp. GN02468 Klebsiella sp. AS10 Shigella sonnei
Enterobacter hormaechei Klebsiella sp. HMSC09D12 Streptococcus australis
Enterobacter kobei Klebsiella sp. HMSC16A12 Streptococcus sanguinis
Enterobacter sp. 10-1 Klebsiella sp. HMSC22F09 Streptococcus sp. AS14
Enterobacter sp. Bisph2 Klebsiella sp. KGM-IMP216 Streptococcus sp. F0442
Enterobacter sp. GN02600 Klebsiella sp. KTE92 Streptococcus suis
Enterobacter sp. MGH 33 Klebsiella sp. LTGPAF-6F Thermincola ferriacetica
Enterobacter sp. WCHECl-C4 Klebsiella sp. M5al Thermincola potens
Enterobacteriaceae bacterium UBA2606 Klebsiella sp. OBRC7 Thermoanaerobacter sp. (strain X513)
Enterobacteriaceae bacterium UBA3163 Klebsiella sp. PO552 Thermoanaerobacter sp. (strain X514)
Enterobacteriaceae bacterium UBA3516 Klebsiella sp. S1 Thermoanaerobacter sp. A7A
Enterobacteriaceae bacterium UBA4747 Klebsiella variicola Thermoanaerobacterium thermosaccharolyticum
Enterobacteriaceae bacterium UBA5935 Klebsiella variicola CAG:634 Tissierellia bacterium S5-A11
Enterobacteriaceae bacterium UBA869 Kluyvera intermedia Trichococcus pasteurii
Enterobacteriaceae bacterium UBA898 Lachnospiraceae bacterium 3-1 Trichococcus sp. ES5
Enterococcus avium
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1 PREFIX gbol :< http : / / gbol . l i f e /0.1/>

2 SELECT DISTINCT ? access ion ? access ion2 ? gene ? gene2 ? estrand ? endpos ?

end2pos ? score ? evalue ? score2 ? evalue2

3 WHERE {

4 VALUES ? access ion { ’ PF02287 ’ ’ PF01228 ’ }

5 ? dnaobject gbol : sample ? sample .

6 ? dnaobject gbol : f ea ture ? gene .

7 ? gene a gbol : Gene .

8 ? gene gbol : l o ca t i on ? geneloc .

9 ? geneloc gbol : end ?end .

10 ?end gbol : pos i t i on ? endpos .

11 ? gene gbol : t r an s c r i p t ? t r an s c r i p t .

12 ? gene gbol : provenance ? geneprov .

13 ? gene gbol : exon ? exon .

14 ? exon gbol : l o ca t i on ? e loca t i on .

15 ? e l oca t i on gbol : strand ? estrand .

16 ? geneprov gbol : annotat ion ? geneannot .

17 ? geneannot a <http : / / semantics . systemsbiology . nl /sapp /0.1/ Prodigal > .

18 ? geneannot gbol : conf ? geneconf .

19 ? t r an s c r i p t gbol : f ea ture ? cds .

20 ? cds gbol : prote in ? prote in .

21 ? prote in gbol : f ea ture ?domain .

22 ?domain a gbol : ProteinDomain .

23 ?domain gbol : s ignature ? s ignature .

24 ?domain gbol : provenance ?pprov .

25 ? pprov gbol : annotat ion ? pannot .

26 ? pannot gbol : score ? score .

27 ? pannot gbol : evalue ? evalue .

28 ? s ignature gbol : access ion ? access ion .
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1 ? dnaobject gbol : f ea ture ? gene2 .

2 ? gene2 a gbol : Gene .

3 ? gene2 gbol : provenance ? gene2prov .

4 ? gene2prov gbol : annotat ion ? gene2annot .

5 ? gene2annot a <http : / / semantics . systemsbiology . nl /sapp /0.1/ Prodigal > .

6 ? gene2annot gbol : conf ? gene2conf .

7 FILTER ( ? gene2conf >= 95)

8 ? gene2 gbol : l o ca t i on ? gene2loc .

9 ? gene2loc gbol : end ?end2 .

10 ? end2 gbol : pos i t i on ? end2pos .

11 FILTER ( ? end2pos > ? endpos � 20000)

12 FILTER ( ? end2pos < ? endpos + 20000)

13 ? gene2 gbol : exon ? exon2 .

14 ? exon2 gbol : l o ca t i on ? e loca t ion2 .

15 ? e loca t ion2 gbol : strand ? estrand .

16 ? gene2 gbol : t r an s c r i p t ? t r an s c r ip t2 .

17 ? t r an s c r ip t2 gbol : f ea ture ? cds2 .

18 ? cds2 gbol : prote in ? protein2 .

19 ? protein2 gbol : f ea ture ?domain2 .

20 ?domain2 a gbol : ProteinDomain .

21 ?domain2 gbol : s ignature ? s ignature2 .

22 ?domain2 gbol : provenance ?pprov2 .

23 ? pprov2 gbol : annotat ion ? pannot2 .

24 ? pannot2 gbol : score ? score2 .

25 ? pannot2 gbol : evalue ? evalue2 .

26 ? s ignature2 gbol : access ion ? access ion2 .

27 }

Figure 8.1: Retrieval of regions (40.000 bp) around PF02287 or PF01228
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1 PREFIX csb :<http : / / csb . wur . nl /genome/>

2 SELECT DISTINCT ? spec i e s ? l e v e l (COUNT( ? l e v e l ) AS ? count )

3 WHERE {

4 ? entry csb : taxonomy_name ? taxon .

5 ? taxon csb : s t r a i n s ? s t r a i n s .

6 ? s t r a i n s csb : spec i e s ? spec i e s .

7 ? entry csb : app l i c a t i on_ in t e r a c t i on ? i n t e r a c t i on .

8 ? i n t e r a c t i on csb : r i sk_assessment ? r i sk .

9 ? r i sk csb : b i o s a f e t y l e v e l ? l e v e l .

10 } GROUP BY ? spec i e s ? l e v e l

11 ORDER BY DESC( ? count )

Figure 8.2: Biosafety level retrieval of DSMZ to RDF conversion

1 PREFIX csb :<http : / / csb . wur . nl /genome/>

2 SELECT DISTINCT ? spec i e s ?temp ?tempType (COUNT( ? temp ) AS ? count )

3 WHERE {

4 ? entry csb : taxonomy_name ? taxon .

5 ? taxon csb : s t r a i n s ? s t r a i n s .

6 ? s t r a i n s csb : spec i e s ? spec i e s .

7 ? entry csb : culture_growth_condit ion ? condit ion .

8 ? condit ion csb : culture_temp ? cultureTemp .

9 ? cultureTemp csb : temperaturerange ?temp .

10 ? cultureTemp csb : t e s t_ type ? tempType .

11 } GROUP BY ? spec i e s ?temp ?tempType

12 ORDER BY DESC( ? count )

Figure 8.3: Temperature group retrieval of DSMZ to RDF conversion
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Abstract

The advent of high-throughput techniques and the increased accuracy and repro-

ducibility of measuring techniques is transforming biology into a fully quantitative

science. Computational analyses have become essential to interpret experimental

outcomes and to identify numerical anomalies. Even when working in a wet-lab

bench oriented research setting, computational programs are used at some stage

in research. The ability to select and deploy analysis tools and algorithms thus has

become an indispensable research skill and challenges us to train our students to be-

come statistically and computationally fluent. The aim of iBioSystems is to demon-

strate to undergraduate students how computational and wet-lab bench studies on

bio-systems can be integrated to solve complex biological questions.
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Introduction

In this era of genomics, computational analysis has become an integral part of nor-

mal ’wet-lab’ routines. However, we have seen that for practical oriented under-

graduate students, computational methods and predictions are often felt complex,

abstract and di�cult. To bridge this gap, a course was developed introducing the

’Moist-lab’, a modern style of research where computational predictions are com-

bined with and foster hands-on wet-lab experiments. In iBioSystems, an integra-

tive wet-dry cycle of experimenting is followed, to study genotype-phenotype re-

lationships in prokaryotes and simple eukaryotes. As such, the Moist-lab focuses

on deriving a deeper understanding of biological systems by uncovering biological

meaning from genome scale data through integration with outcomes of wet lab ex-

periments. Specifically, the course teaches i) how genome information is translated

in function, ii) how regulation of microbial metabolic processes can take place and

iii) how genome data can be used to predict responses of microbial organisms and

ecosystems to (a)biotic environmental cues.

A second objective of this course is to make students aware of the importance

of the ‘FAIR Guiding Principles for scientific data management and stewardship’ as

an essential component of computational but also wet lab experiments (Wilkinson

et al., 2016). During this course, a structured digital lab journal will be used to keep

track of the entire process. Additional e↵orts are made by pointing at the FAIRness

of an experiment. As such, the course demonstrates to the students how increasing

the FAIRness can improve the quality for both experimental as well as computa-

tional experiments by using mandatory minimal information models such as MIxS

(Yilmaz et al., 2011) and the use of information frameworks to (automatically) col-

lect and communicate metadata (i.e. sample characteristics, technologies used, type

of measurements made), employing a combination of workflows and schemas such

as ISA-TAB.

iBioSystems

The main rationale behind the set-up of this course was that biological phenomena

should be simultaneously taught from both an experimental and computational per-
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spective. Since both fields complement each other in di↵erent ways this will improve

the understanding of the more abstract parts of both fields. In practice, this can be

ambitious as it puts high demands on teachers as they must be experienced in ex-

perimental and or computational biology or at least are used to apply key elements

of the ‘Moist lab’ approach in their own research.

Course content

We have adopted an integrated approach to learning, starting with bacterial sys-

tems to introduce basic experimental and theoretical concepts. Lectures are inte-

grated with practical courses demonstrating the application of a Moist Systems Bi-

ology approach. It expands the basic understanding of biological systems in which

Brock is the current de-facto standard (Madigan et al., 2017). To demonstrate the

Moist-lab approach we introduced ‘discovery practicals’, i.e., challenging exercises

deliberately stipulated in a free format, where students work with recently sampled

and sequenced species of “unknown” origin. A series of SOPs are available allowing

students to design, perform and interpret wet-lab and computational experiments

thereby fostering creativity, communication and collaborative skills. Besides the op-

portunity to practice the necessary technical skills in both fields, exercises are meant

to bridge the gap between computational predictions and experimental observations

/ results. Exercises are aimed at all cognitive levels with specific attention to ’the

ability to apply knowledge and understanding’ through synthesis and evaluation of

experimental and computational results (Berg, 2005). The assessment of a student’s

understanding should ideally entail both fields. Assessment is performed through

i) the documentation in the electronic lab-notebook and ii) a scientifically written

report which through a peer-reviewed process is cross-evaluated by fellow students

enabling students to critically review each other’s article and a final exam. In this

cross-evaluation process students are trained on how to critically evaluate the qual-

ity of a report and use a digital platform to assess and provide and use this feedback

to improve their work (Lesterhuis et al., 2017).
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Learning outcomes

Upon successful completion of the course it is expected that students are able to

• formulate research problems such that they can be solved by an integrated

experimental/computational biology approach.

• explain the iterative cycle: prediction and experimental verification.

• communicate scientific questions across experimental and theoretical disci-

plines and to collaborate across disciplinary borders.

• select and apply the type of data generation and bioinformatics approaches

that are suitable for a given research problem.

• handle data and experimental designs in a FAIR manner.

• critically assess evidence and scientific argumentation in integrative studies

of biological systems based on an understanding of both experimental and

computational biology methodologies.

The course has been given twice in 2017-2018 atWageningen University & Research.

A pilot was performed with 6 master students also to test and assess the quality of

the developed SOPs and to identify additional wet lab and computational experi-

ments. The improved course was taken by 36 undergraduate students in the aca-

demic year 2017-2018. All had a basic understanding in biological systems and

experimental procedures. The students were evaluated with an emphasis on FAIR

management through the use of an electronic lab notebook which is evaluated on

reusability of computational as well as wetlab experiments. Datasets obtained and

generated, should be well documented according to the de facto standard. To assess

their cognitive level, a scientific report was written by each student and evaluated

based on their experimental findings and the cross-linking with computational pre-

dictions. Learning outcomes were assessed through a final exam.

An example of a learning activity: nitrate reduction

In the following, an example of teaching and learning activities in the iBioSystems

course are shown. This activity is performed in-silico in week three and tested on

the wet-lab in week four (see Figure 9.2, 9.3 and 9.4). The final goal is that the stu-
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dents perform genotype -phenotype associations using computational tools, which

are then validated through dedicated wet-lab experiments. Initially, the students

are given a general lecture on metabolic pathways and their association to metabolic

phenotypes such as auxotrophys or nitrate reduction capabilities followed by an in-

troductory practical in which they learn to use tools such as KAAS, KEGG mapper

and how to interpret the results (See Figure 9.2). The students are then o↵ered a

description of the nitrate reduction test and its possible outcomes (See Figure 9.3

and 9.4). In the following week, the students go to the wet-lab and perform the

test on the strain they have been studying. They are then encouraged to discuss

on the agreement (or disagreement) between the computational prediction and the

experimental verification.

Course materials

Background material related to biological systems and computational methods is

obtained from ’Brock Biology of Microorganisms’ (Madigan et al., 2017) and ’Practi-

cal Bioinformatics’ (Agostino, 2012). Students can store all experimental procedures

and results into an Electronic Lab Notebook (such as Labfolder or eLABJournal).

Most of the computational work is performed through Galaxy, a data analysis plat-

form were students can use common bioinformatic tools such as SPAdes, Prodigal

and BLAST (Goecks et al., 2010; Bankevich et al., 2012; Hyatt et al., 2010; Cama-

cho et al., 2009). Other analysis, such as pathway analysis is performed through

web tools such as KEGG mapper (Ogata et al., 1999). Experimental and computa-

tional protocols are provided through a digital environment which is continuously

complemented with new or updated protocols and maintained by the lecturers.

Future perspective

The Systems Biology portfolio contains two types of courses: those devoted to gen-

eral tools and techniques and those devoted to concepts and tools specific to Systems

and/or Synthetic Biology.

Advanced courses are essential to educate new students of systems and synthetic

biologists with a portfolio similar to the one in (Cvijovic et al., 2016). Still, possibly
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the greatest challenge lies in increasing the mathematical and computational liter-

acy of biologist from any field and this should be addressed through general courses

embedded in interdisciplinary approaches preferably starting already at undergrad-

uate level.

The tackling of multifaceted problems and interdisciplinary approaches in ed-

ucation have been proved e↵ective to increase computational literacy (Rubinstein

and Chor, 2014), therefore iBioSystems has been developed in collaboration with

the Systems and Synthetic Biology (SSB) and the Microbiology Laboratory in Wa-

geningen University. In this way, we ensure good integration with other courses the

biotechnology students follow in their BSc.

Currently, iBioSystems is primarily o↵ered to students in the Biotechnology BSc,

although students from other disciplines in the life sciences are encouraged to take

it as part of the BSc minor "Systems Biology". In the future, we expect to enlarge the

suggested modules with new experiments and computational analysis that would be

better aligned with the specific needs of students in other disciplines such as Animal

Sciences, Biology, Molecular Life Sciences and Plant Sciences.
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Nitrate reduction test
Anaerobic respiration involves the reduction of inorganic molecules (other than oxy-
gen), by using them as terminal electron acceptors. Some of the most common molecules
are inorganic nitrogen compounds, including ammonia (NH3), nitrogen gas (N2), ni-
trous oxide (N2O), nitric oxide (NO), nitrite (NO2-), nitrogen dioxide (NO2), and
nitrate (NO3-). Some Gram-negative bacteria (most Enterobacteriaceae) possess the
enzyme nitrate reductase, a molybdenum- containing membrane-integrated enzyme that
catalyzes the one-step reduction of nitrate to nitrite. Other microorganisms have
the ability to further reduce nitrite to nitrogenous gasses, such as NO, N2O, and N2.
This process is known as denitrification and is widely used in the sewage treatment
to stimulate algal growth. Denitrification is also of global significance, as it
converts fixed nitrogen (nitrate) to environmentally significant gaseous nitrogen
compounds. Alternatively, some bacteria may convert nitrite to ammonia through a
dissimilative process.
Next week (Week 4, Monday) you will perform a nitrate reduction test in the lab. This
test is used to test whether the bacteria is able to reduce nitrate to nitrite. Here,
we will predict the output of the test based on genomic information. The final goal
is that you will link the computational prediction with the wet lab experiment.

• Read the introduction to the wet-lab experiment (see Figure 9.3 and 9.4)
• Read the introduction to the computational experiment (see 9.2).
• Go to KEGG pathways, bear in mind that we are interested in nitrogen reduction,

so you will have to go to the map associated to Nitrogen metabolism (which is
part of the Energy metabolism).

• Question: Is Escherichia coli K-12 MG1655 able to reduce nitrate? What would
be the output of the nitrate reduction test in E.coli?

• Question: What would be the output of the nitrate reduction test in Pseu-
domonas aeruginosa PAO1?

• Predict the output of the nitrate reduction test in your genome. The answer
will become available next week (when your run the wet lab experiment)! If
your prediction is correct, great! If the prediction is not correct, then
something very interesting might be going on!

Figure 9.1: Hand out for the students: Description of the application of the moist-lab cycle applied
to the analysis of nitrate reduction in bacteria. In this particular example E. coli and P. aeruginosa
have been chosen because they give di↵erent outputs in the test (colourless/red and colourless/colour-
less respectively).



iBioSystems

9

209

In the "Gene Prediction" exercise we have predicted and generated a file contain-
ing protein sequences in FASTA format. Some of these proteins might have enzymatic
functions and there are many ways to unravel the possible biological function of
a protein. The most commonly used aproach is through BLAST against a well curated
database such as SwissProt. Another such database is called KEGG (Kyoto Encyclopedia
of Genes and Genomes) KEGG is a database resource for understanding high-level func-
tions and utilities of the biological system, such as the cell, the organism and the
ecosystem, from molecular-level information, especially large-scale molecular datasets
generated by genome sequencing and other high-throughput experimental technologies.
To analyse protein sequences more easily they have developed KAAS. KAAS (KEGG Auto-
matic Annotation Server) provides functional annotation of genes by BLAST or GHOST
comparisons against the manually curated KEGG GENES database. The result contains KO
(KEGG Orthology) assignments and automatically generated KEGG pathways.
In this exercise we have reduced the number of proteins (a few thousand in your
genome) to only six. The sequences are shown here in FASTA format. Please copy them
and go to KAAS.

• Use the KAAS job request (SBH method) under partial genome. When analysing
your own genome you can use the BBH method under Complete or Draft Genome.

• Past the sequences in the Query sequences box.
• For good practices give the dataset a name under Query name
• Fill in your / WUR email address
• Select under GENES data set (for prokaryotes)
• Click compute
• You will receive an email with a link to start the job!
• After the exercise you can analyse your own genome with KAAS

Figure 9.2: Computational protocol for mapping genome content into KEGG maps
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Experimental Protocol
Nitrate reduction can be detected by culturing bacteria in a nitrate broth under
anaerobic conditions. After overnight incubation, the ability of the microorganisms
to reduce the provided nitrate to nitrite is defined by the addition of sulfanilic
acid (Reagent A) and alpha-naphtylamine (Reagent B). More specifically, if nitrate
reductase activity is present (nitrate -> nitrite), sulfanilic acid (Reagent A) forms
a colourless complex (nitrate-sulfanilic acid), which subsequently reacts with ↵-
naphtylamine (Reagent B) giving a cherry-red precipitate (prontosil) (Figure A). If
no colour is observed, the organism does not have the ability to reduce nitrate to
nitrite (absence of nitrate reductase activity) or nitrate is completely reduced to
ammonia or even molecular nitrogen. Hence, to clarify which of the two possibilities
holds true, zinc powder is added, to the colorless cultures that already contain the
reagents. In this case, red colour indicates inability of the microorganism to reduce
nitrate to nitrite, whilst no change of colour depicts reduction of nitrate to ammonia
or molecular nitrogen through nitrite formation.

Figure A: Reduction of nitrogenous compounds. The right side of the figure shows the nitrate
production test

Figure 9.3: Introduction for the experimental analysis of nitrate reduction
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Day 1
• Resuspend a colony in 50 µL of sterile water in a sterile eppendorf tube.
• Inoculate 5 mL Nitrate Broth in a plastic tube with the cell suspension. Do

this slowly and carefully to prevent adding oxygen to the medium.
• Add 1 cm of paraffin oil on the surface of the liquid culture (to create

anaerobic conditions).
• Incubate at optimal temperature for your organism for 24 to 48 h.

Day 2
Perform a negative control by doing the test also with a tube that only contains
Nitrate Broth and no bacteria.

• Add 3 drops of Reagent A and 3 drops of Reagent B. Invert tube several times
and observe the colour change after a few minutes. KEEP THUMB ON LID TO
PREVENT LEAKAGE

• If the suspension turns pink-red: the reaction is positive (nitrate reduction)
and the test is completed. If the suspension remains colourless after the
addition of reagents A and B: add a small amount (“sharp knife point") of zinc
powder to the medium. Shake the tube vigorously and allow it to stand at room
temperature for 10-15 min.

Results
If the medium remains colourless after the addition of Zn powder: the test result is
positive.
If the medium turns pink after the addition of Zn powder: the result is negative.
Important notes

• The negative control should also be tested. There should be no pink colour
formation after adding reagent A and B and if zinc powder is added the colour
should change to pink.

• Addition of too much zinc powder can results in a false-negative reaction.

Figure 9.4: Wetlab protocol for the analysis of nitrate reduction
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ABSTRACT

The aim of this thesis was to increase our understanding on how genome informa-

tion leads to function and phenotype. One of the biggest hurdles in understand-

ing (microbial) genome information and developing biological systems is to convert

the deluge of information available from various heterogeneous data sources into

actionable knowledge. Integrated analysis of new and existing biological data, in-

formation and knowledge, requires an information retrieval and management sys-

tem that is not only e�cient and extendable but also facilitates reproducibility of

data-driven scientific findings. Maintaining a high degree of transparency in sci-

entific reporting is essential and to facilitate knowledge discovery, a set of guiding

principles have been defined to make data Findable, Accessible, Interoperable, and

Reusable (FAIR). Adopting a Semantic Systems Biology approach for analysis and

modelling of microbial ecosystems provides a strong support for FAIR by design

experimentation. However, this requires development and implementation of com-

munity standards, minimal information models and ontologies for analytical and

computational data types, essential for the inference of interactions and emergent

properties. In this last chapter I gathered a number of use-cases that provided direct

input into the Gap Analysis process that ultimately led to the currently developed

platform (Chapter 4) which has since been used in a wide range of applications.
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GENERAL DISCUSSION

The central dogma of molecular biology concerns “the detailed residue-by-residue

transfer of sequential information” and states that: “such information cannot be

transferred back from protein to either protein or nucleic acid” (Crick, 1970). Since

the introduction of the central dogma, the relationship between DNA, RNA and

proteins are apparent.

To study biological systems, we have to take into account three levels of infor-

mation in which DNA contains the information regarding structural organisation

of genetic elements and RNA and proteins provide the dynamic interactions and

functional responses to the environment. Furthermore, these three levels are tightly

interlinked and regulated. The central dogma also describes a strict semantic rela-

tionship between these di↵erent “instances”thereby connecting these data types. It

is strict and directional in the sense that RNA translates into protein and proteins

cannot be transcribed into DNA. This results in a multipartite knowledge graph that

is not only descriptive but also predictive in character.

In a top-down approach, having protein at hand, it makes sense to search for

the encoding gene. In a bottom-up approach, having found a new protein-encoding

gene, the function thereof can be inferred using sequence similarity with genes en-

coding known functions. These levels of information were managed and manage-

able in parallel and often unlinked information resources until the development

of the high-throughput sequencer, which not only revolutionised the field but also

transformed the field in a data-intensive science (Figure 10.1).

To prevent ‘drowning in data’, various community e↵orts have been initiated and

resulted in the development of platforms and data integration tools such as Seek,

RightField, Wikipedia, Wikidata, WikiPathways and BioModels. Seek (Katherine

Wolstencroft et al., 2015) enables the exchange of scientific datasets including mod-

els, simulations and research outcomes in public/private groups according to the

ISA format (Investigation, Study, Association) (ISA Model & Serialization Specifica-

tions 1.0 (October 2016). RightField (Katy Wolstencroft et al., 2011), also part of

the FAIRDOM consortium (Stanford et al., n.d.), allows to semantically annotate ex-

cel sheets using predefined ontologies, making di↵erent data sets interoperable and
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Figure 10.1: Number of publications related to the characterisation of individual genes and
proteins in contrast to the number of proteins sequenced. With the advancement of 2nd and 3rd

generation sequencers, publications describing the characterisation of individual genes and proteins
started to decline since 2000 according to EuropePMC (blue), while the number of electronically
inferred gene to protein translations available in UniProt increased significantly and are now pri-
marily characterised through in-silico analyses.

adhere to a standardised layout (Katy Wolstencroft et al., 2011). Wikipedia, a well-

known resource for a collaborative encyclopedia which is directly linked toWikidata

(Mitraka et al., 2015), a central storage for structured information, which can be read

by both humans and machines and WikiPathways, a resource for and by scientists,

for the development of high quality pathway maps (Slenter et al., 2018). The storage

and exchange of finalised models is achieved through BioModels containing a range

of models describing processes like signalling, protein-drug interactions, metabolic

pathways or epidemic models.

All these initiatives have been developed for the exchange of already fine-grained

information. To enable biological data to become comprehensible and manageable,

it is required that this information is both human and machine readable. One of

the earliest initiatives to standardise biological knowledge for a wide variety of or-

ganisms was in the form of a relational database scheme named Chado (Mungall,

Emmert, Consortium, et al., 2007). Chado is driven by standardised ontologies and

its main drawback is the inflexibility of the technology used with respect to new
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heterogenous data-sources.

The Semantic Web was still under development and became an o�cial W3C

recommendation on the 15th of January in 2008. With the release of SPARQL

1.1 (2013), introducing support of federated queries allowing users or machines to

query multiple resources as if it were a single database, the power of Semantic Web

technologies became more apparent. Since Semantic Web became an o�cial stan-

dard, UniProt has released its resource in an RDF model (http://www.uniprot.

org/news/2008/06/10/release) and ontologies specific for the field of life science

started to be developed (Bolleman et al., 2014; The Gene Ontology Consortium,

2015; Eilbeck et al., 2005). However, such systematic data integration was often

performed by the larger public repositories such as UniProt, Rhea and neXtProt

(UniProt Consortium, 2017; Alcántara et al., 2012; Gaudet et al., 2015). Functional

applications that could actually help users to directly convert and semantically link

their own research data, remained absent.

Chapters 5, 6, 7 and 8 demonstrate the power of semantic system biology ap-

proaches. In the following paragraphs, I provide a number of additional examples

from my own work further exemplifying some of the major benefits of using con-

sistent annotation and ontologies to link and describe heterogeneous data sources

in the RDF data model, and the subsequent analysis of linked data using top-down

approaches and SPARQL.

In another study (Worm et al., 2014), the main interest was to understand ge-

nomic di↵erences between bacteria with a syntrophic lifestyle and a non-syntrophic

lifestyle. The analysis was performed on 19 di↵erent strains of which five were syn-

trophic sort chain fatty acid (SCFA) degraders, two non-synthrophic SCFA degraders

and twelve sulfate reducers that were never tested for syntrophic growth.

The understanding of genomic di↵erences among the di↵erent strains could have

been achieved in a classic bottom-up approach through identification of sequence

clusters and afterwards unravel the functional capacity of each cluster of interest.

However, this would have required an extensive sequence-based comparison and,

in addition, in-depth manual biocuration to characterise the sequence clusters ob-

tained, which also requires expert knowledge. To make the biocuration process

FAIR, it would require documentation of the reasoning substantiating the associ-

http://www.uniprot.org/news/2008/06/10/release
http://www.uniprot.org/news/2008/06/10/release
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ations made.

Instead an alternative top-down route was undertaken, using already present

functional descriptions, which in principle could automate the classification pro-

cess. However, protein descriptions are currently not very well standardised and

due to this low level of interoperability cannot be used for direct comparisons.

A more defined and standardised functional description of proteins can be

achieved through the identification of conserved motifs or domains in proteins. One

of the most well-known patterns is the Zinc finger motif (Miller, McLachlan, and

Klug, 1985). Since then dedicated databases have been initiated with a main focus

on the detection of motifs with specific functional capabilities.

To understand the specific functional properties with regards to syntrophy, Inter-

ProScan searches were incorporated in the data framework. InterProScan is a bun-

dled resource of various databases such as PFAM, Superfamily, Gene3D and others.

Initiating a high degree of interoperability at functional level this, new top-down,

approach immediately revealed specific properties for syntrophs and also detected

additional strains that revealed close similarity to syntrophic organisms as can be

seen in Figure 10.2 (originated from (Worm et al., 2014).

The e�ciency of the top-down approach immediately led to new interest in the

analysis of various organisms. In (Visser et al., 2014) a more in-depth analysis of

the carboxydotrophic sulfate-reducers was performed using a combination of ex-

isting resources complemented with protein domain annotation. This approach was

later also applied to Archaea in order to find additional di↵erences between archaeal

methanotrophs and related methanogens (Timmers et al., 2017). Due to the inte-

gration of functional annotation on already existing genomes as was performed in

(Worm et al., 2014; Visser et al., 2014; Timmers et al., 2017) we realised that for a

number of problems standardised top-down approaches can be very e�cient.

With more genomes being sequenced, the number of genomes used in compara-

tive genomics were expected to grow continuously, thereby increasing scaling prob-

lems encountered in sequence based bottom-up approaches. The idea of a platform

capable of handling and standardising genome annotation was therefore initiated.

In 2015, a preliminary version of the semantic annotation platform that was later

to be called SAPP (Semantic Annotation Platform with Provenance), was developed,
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Figure 10.2: Domain based genome comparison of syntrophic and non-syntrophic butyrate
and/or propionate degraders. Domains present in genomes of all butyrate and/or propionate-
degrading syntrophs and absent in those of non-syntrophs are listed and domain abundance is indi-
cated. Syntrophs are shaded orange, non-syntrophs are shaded blue and sulfate reducers that were
never tested for syntrophic growth are shaded green. The pale colour green corresponds to draft
genomes and the darker colours (orange, blue, green) correspond to complete genomes.

tested and in-house used for the analysis of Bacillus smithii and immediately yielded

new insights in this industrial organism (Bosma et al., 2016). Initially, B. smithii

was annotated with RAST, which is a widely accepted approach for genome annota-

tion (Aziz et al., 2008). This was then further complemented with an analysis based

on protein domains as applied in previous studies. This showed to be a powerful

approach for the identification of previously unknown protein functions. In an in-

depth comparison of domain-based annotations with a manually curated RAST an-

notation, 142 genes could be additionally functionally annotated, all of which except

4 were previously marked as hypothetical proteins. Using RAST, the methylglyoxal

pathway was identified only towards D-lactate but additional analysis using protein

domains revealed the presence of all genes necessary for L-lactate production via

methylglyoxal (Figure 10.3).

The first real comparative genomics study using SAPP was in (Saccenti et al.,
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Figure 10.3: Reconstruction of central carbon metabolism of Bacillus smithii DSM 4216T.
Blue lines indicate pathways based on EC-number identified only via domainome analysis; grey
lines indicate pathways found not to be present both by RAST annotation and domainome analysis

2015). In this paper, an in-depth top-down investigation was performed on the

metabolic diversity of Streptococcus. Here we also observed that for Streptococcus the
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Figure 10.4: A) 3D score plot for the INDSCAL model on the (dis)similarity matrices of the 27 core
metabolic pathways of the 121 Streptococcus strains. B) Loadings of the INDSCAL model.

impact of de novo structural and functional re-annotation was significant and could

yield up to nearly 800 additional domains when current, state-of-the-art, gene pre-

diction methods were applied. Through these domains, enzymatic functions could

be inferred and metabolic pathways could be reconstructed resulting in a detailed

overview of pathways shared among di↵erent numbers of Streptococcus strains. For

example, generic pathways related to the biosynthesis of ATP, GTP, UTP or amino-

acid conversion were found among all analysed strains. More interestingly is the

absence of pathways such as the Glutamate degradation I, Glutamate degradation

X, Glutamate biosynthesis II in specific species groups, and Glutamate biosynthesis

pathway III, which were absent in the clinically important Streptococcus pyogenes but

were present in all other Streptococcus species. Pathway similarity analysis showed

that metabolically, Streptococcus suis strains, an important pathogen of pigs, can be

separated in two main clusters. In depth investigation showed that based on path-

way dissimilarity we were able to distinguish serotype 2 from serotype 1/2, 1, 3, 7,

9 and 14 showing a greater distinction than was previously reported (Zhang et al.,

2011).

In (Kamminga et al., 2017), we expanded the functional analysis towards My-

coplasma species, which are among the smallest parasites known to date. In this

study, we investigated the functional diversity among 80 Mycoplasma species se-

quenced strains of this genus. We identified and separatedMycoplasma species with
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Figure 10.5: Niche-driven functional evolution. Accelerated functional evolution causes separa-
tion of haemoplasma species and several other Mycoplasma species when phylogenetic clusters are
compared to functional clusters. Dashed lines indicate distinct branches. Left: Standard phyloge-
netic tree using 16S-rRNA (maximum likelihood, 500x bootstrapped). Right: Functional clustering
based on Manhattan distance calculated from the presence/absence matrix of domains. Groups in-
dicated are: S, Spiroplasma; H, Hominis; P, Pneumoniae; Ha, Haemoplasma; and O, Other.

the capability of infecting the blood or tissue (Figure 10.5). For some groups it was

even possible to predict whether the strains were capable of infecting the ruminant,

pig or human. The capability of such predictions enables the possibility to zoom in

into the functional landscape and identify the genotypic characteristics responsible

for these particular phenotypes. Comparative functional genomics was also applied

using the “minimal synthetic bacterium JCVI-Syn3.0”as a reference point to iden-

tify proteins and corresponding protein domains for minimal life, leading to the

interesting observation that not all protein domains essential for JCVI-Syn3.0 “min-

imal life”were persistent in all of the 80 Mycoplasmas species. This suggests that the

di↵erent Mycoplasma species have alternative domain configurations replacing the

currently known JCVI-Syn3.0 minimum requirements that solve the issue of life,

This suggests that there are many alternative versions of minimal life which are cur-

rently not understood.

Having established a protocol for functional comparative genomics, SAPP was
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applied to study a set of Pseudovibrio species to obtain insights into the symbiotic

capacities and metabolic flexibilities of this genus. Through comparative genomics,

in which SAPP played a major role in the re-annotation and standardisation of the

data, 56 samples (31 Pseudovibrio strains and 25 sponge isolates) were functionally

analysed (Versluis et al., 2018).

In chapter 6, the semantic comparison could be scaled up to hundreds of

genomes in which 432 Pseudomonas strains were analysed in-depth, which al-

lowed us to identify essential genes and corresponding protein domains based on

metabolic models and transposon libraries. These essential domains showed a

higher persistence in contrast to non-essential domains. Persistence was further in-

vestigated in chapter 7where we identified protein domain classes that were specific

for a given species. These domains are mostly domains of unknown function, mak-

ing them interesting targets for further studies to understand their role in a species.

We also show that enzymatic functions are most likely to be propagated to di↵erent

species groups through horizontal gene transfer. This information, which domains

are most likely to be found within a given species and only in that species, could

be applied for the identification of species in meta-genomic samples. To identify

more precisely to which species a novel strain belongs to, the creation of phyloge-

netic trees based on protein domains allows to be a rapid and scalable approach to

determine this. Previous research has shown that this metric corresponds well to

the current standard in which 16S-rRNA sequence similarity is used and even with

a higher resolution. This could lead the way to more precisely determine species

characteristics as well as their position in a phylogenetic tree.

The infrastructure (SAPP) can also be used to scan genomes for proteins or traits

of interest. This methodology was applied in (Peng et al., 2017) where in a top-down

approach bacterial genomes of high quality (complete chromosomal assembly) from

the ENA repository were functionally screened for specific protein domains. These

domains, encoding for haloacid dehalogenases, are key enzymes for bacterial strains

making them capable of using haloalkanoates as the sole source of carbon and en-

ergy. The approach resulted in the identification of Pseudomonas, Xanthobacter and

Methylobacterium strains.

As this approach has proven to be successful it was then applied for the identi-
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fication of strains capable of producing 1,3-propanediol (Chapter 8). Through the

use of a repertoire of 80.000 functionally annotated genomes, 187 species were pre-

dicted to be capable for the production of this compound of interest. Through the

use of federated queries, resources containing information related to pathogenicity

could be accessed to identify non-pathogenic species. This resulted in the validation

of several species which prove to be capable of producing 1,3-propanediol.
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FUTURE PERSPECTIVE

Semantic Systems Biology and model-based Systems Biology are data integration

and analysis approaches that strive to achieve complementary goals. Model-based

Systems Biology uses mathematical modelling to analyse biological data. Based on

prior knowledge, model-based Systems Biology aims to provide either biologically

acceptable explanations for this new data, or to develop new hypotheses based on

the integration of new and modelled data. Integration and sharing of data, infor-

mation and knowledge is in the realm of Semantic Systems Biology. The deliberate

exploitation of Semantic Web technologies for integration and sharing of hetero-

geneous bio-data sources with computational predictions and associated meta-data

will not only lead to the development of new, testable hypotheses but the ability to

directly link data and data provenance, also opened new ways for computational

support in quality checking of computationally inferred annotations.

It is essential to accept that data growth in life sciences is not only exponen-

tially but is also becoming more heterogeneous by nature. This trend is reducing

the amount of time that can be spent on research and data mining, since most of the

e↵orts now lie in data formatting. Translating it into a format that can communicate

with other computational and experimental data is essential as without it, new dis-

coveries will remain to be discovered. In this thesis, we have shown an approach on

making genetic data FAIR with the development of SAPP and GBOL, and how it can

be used for biotechnological implementations. The GBOL-stack is the fundamental

basis on which we can expand and incorporate other experimental resources and

ontologies (Chapter 3).

The incorporation of biological data into GBOL is continuously explored. For

plant studies, the incorporation of QTL and GWAS data from various crops would

allow a direct semantic linkage between these data sets with functional and struc-

tural annotation. This direct link enables the possibility to study correlations be-

tween variants and its impact on the structural and functional landscape.

Similar to QTL and GWAS data, semantic integration of expression data obtained

through RNA sequencing techniques (RNAseq) would allow to quickly identify vari-

ation in expression between sets of genes, regions within a genome or pathway
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fluxes, based on RNA expression levels. RNAseq and other biological data, such

as gene knock-out studies for the identification of essentiality or the linkage to phe-

notypic properties, can be used in both semantic and model-based systems biology

data integration and analysis approaches. Tight integration of this data in a se-

mantic framework can be beneficial for the continuous development of biological

models, thereby gaining further insights into the inner workings and capabilities of

an organism.

The first step towards a higher level of data quality is to make it FAIR. It should

be common sense to have your data in a Findable, Accessible, Interoperable manner,

which should result in Reusable data, even if it is only to be used internally or for a

selected group of people.

For each of the biological data-types, consistency checks and evaluations are re-

quired to ensure that a data set is updated to the highest possible quality according

to the proposed FAIR metrics (Wilkinson et al., 2016). In this thesis, we have shown

the pivotal role of Empusa in the development of GBOL and corresponding GBOL-

Stack allowing SAPP to incorporate biological data in a consistent and high qual-

ity way. When expanding GBOL to incorporate experimental data, expression or

GWAS and QTL information these quality checks are essential to ensure that those

resources obtain the same level of quality. For other resources, such as genome scale

metabolic models, support for quality checks have been recently developed in the

form of a quality reporting system, allowing models to be re-evaluated or evaluated

during its development process (Lieven et al., 2018).

It is fair to state that Semantic Systems Biology has great potential but is still

underexposed and in development. Currently, we have only scratched the surface

of what is possible with integration and (re-)usage of biological data. A large pro-

portion of biological resources remain yet to be unlocked and is not used to its full

potential.
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Summary

The aim of this thesis was to increase our understanding on how genome informa-

tion leads to function and phenotype. To address these questions, I developed a

semantic systems biology framework capable of extracting knowledge, biological

concepts and emergent system properties, from a vast array of publicly available

genome information. In chapter 2, Empusa is described as an infrastructure that

bridges the gap between the intended and actual content of a database. This infras-

tructure was used in chapters 3 and 4 to develop the framework. Chapter 3 de-

scribes the development of the Genome Biology Ontology Language and the GBOL

stack of supporting tools enforcing consistency within and between the GBOL defi-

nitions in the ontology (OWL) and the Shape Expressions (ShEx) language describ-

ing the graph structure. A practical implementation of a semantic systems biology

framework for FAIR (de novo) genome annotation is provided in chapter 4. The se-

mantic framework and genome annotation tool described in this chapter has been

used throughout this thesis to consistently, structurally and functionally annotate

and mine microbial genomes used in chapter 5-10. In chapter 5, we introduced

how the concept of protein domains and corresponding architectures can be used in

comparative functional genomics to provide for a fast, e�cient and scalable alterna-

tive to sequence-based methods. This allowed us to e↵ectively compare and iden-

tify functional variations between hundreds to thousands of genomes. In chapter

6, we used 432 available complete Pseudomonas genomes to study the relationship

between domain essentiality and persistence. In this chapter the focus was mainly

on domains involved in metabolic functions. The metabolic domain space was ex-

plored for domain essentiality and persistence through the integration of heteroge-

neous data sources including six publishedmetabolic models, a vast gene expression

repository and transposon data. In chapter 7, the correlation between the expected

and observed genotypes was explored using 16S-rRNA phylogeny and protein do-

main class content as input. In this chapter it was shown that domain class content

yields a higher resolution in comparison to 16S-rRNA when analysing evolutionary

distances. Using protein domain classes, we also were able to identify signifying

domains, which may have important roles in shaping a species.
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To demonstrate the use of semantic systems biology workflows in a biotechno-

logical setting we expanded the resource with more than 80.000 bacterial genomes.

The genomic information of this resource was mined using a top down approach

to identify strains having the trait for 1,3-propanediol production. This resulted in

the molecular identification of 49 new species. In addition, we also experimentally

verified that 4 species were capable of producing 1,3-propanediol.

As discussed in chapter 10, the here developed semantic systems biology work-

flows were successfully applied in the discovery of key elements in symbiotic rela-

tionships, to improve functional genome annotation and in comparative genomics

studies. Wet/dry-lab collaboration was often at the basis of the obtained results.

The success of the collaboration between the wet and dry field, prompted me to

develop an undergraduate course in which the concept of the “Moist” workflow was

introduced (Chapter 9)
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