427 research outputs found

    Monotone one-port circuits

    Full text link
    Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. An algorithmic method is presented for solving the periodic output of a periodically driven circuit using a maximal monotone splitting algorithm, which allows computation to be separated for each circuit component. A new splitting algorithm is presented, which applies to any monotone circuit defined as a port interconnection of monotone elements

    A stability-theory perspective to synchronisation of heterogeneous networks

    Get PDF
    Dans ce mémoire, nous faisons une présentation de nos recherches dans le domaine de la synchronisation des systèmes dynamiques interconnectés en réseau. Une des originalités de nos travaux est qu'ils portent sur les réseaux hétérogènes, c'est à dire, des systèmes à dynamiques diverses. Au centre du cadre d'analyse que nous proposons, nous introduisons le concept de dynamique émergente. Il s'agit d'une dynamique "moyennée'' propre au réseau lui-même. Sous l'hypothèse qu'il existe un attracteur pour cette dynamique, nous montrons que le problème de synchronisation se divise en deux problèmes duaux : la stabilité de l'attracteur et la convergence des trajectoires de chaque système vers celles générées par la dynamique émergente. Nous étudions aussi le cas particulier des oscillateurs de Stuart-Landau

    Utilizing Converter-Interfaced Sources for Frequency Control with Guaranteed Performance in Power Systems

    Get PDF
    To integrate renewable energy, converter-interfaced sources (CISs) keep penetrating into power systems and degrade the grid frequency response. Control synthesis towards guaranteed performance is a challenging task. Meanwhile, the potentials of highly controllable converters are far from fully developed. With properly designed controllers the CISs can not only eliminate the negative impacts on the grid, but also provide performance guarantees.First, the wind turbine generator (WTG) is chosen to represent the CISs. An augmented system frequency response (ASFR) model is derived, including the system frequency response model and a reduced-order model of the WTG representing the supportive active power due to the supplementary inputs.Second, the framework for safety verification is introduced. A new concept, region of safety (ROS), is proposed, and the safe switching principle is provided. Two different approaches are proposed to estimate the largest ROS, which can be solved using the sum of squares programming.Third, the critical switching instants for adequate frequency response are obtained through the study of the ASFR model. A safe switching window is discovered, and a safe speed recovery strategy is proposed to ensure the safety of the second frequency dip due to the WTG speed recovery.Fourth, an adaptive safety supervisory control (SSC) is proposed with a two-loop configuration, where the supervisor is scheduled with respect to the varying renewable penetration level. For small-scale system, a decentralized fashion of the SSC is proposed under rational approximations and verified on the IEEE 39-bus system.Fifth, a two-level control diagram is proposed so that the frequency of a microgrid satisfies the temporal logic specifications (TLSs). The controller is configured into a scheduling level and a triggering level. The satisfaction of TLSs will be guaranteed by the scheduling level, and triggering level will determine the activation instant.Finally, a novel model reference control based synthetic inertia emulation strategy is proposed. This novel control strategy ensures precise emulated inertia by the WTGs as opposed to the trial and error procedure of conventional methods. Safety bounds can be easily derived based on the reference model under the worst-case scenario

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Modeling and Control of Complex Physical Systems:The port-hamiltonian approach

    Get PDF
    Well structured reference book presenting the new paradigm of Port Hamiltionian Systems which has a large potential to be successful in tackling some of the big challenges in modern control theory and engineeringThe potential reference for many new developments taking place in modeling and controlExtend the readers knowledge and understanding of advanced modeling, analysis and control methods using the Port-Hamiltonian Systems paradigmProvides systematic methods for analysis and control, closely linked to the physics of the system. The power of these methods is demonstrated in various physical domain

    Finite Gain L p Stability for Hybrid Dynamical Systems ⋆

    Get PDF
    Abstract We characterize finite gain Lp stability properties for hybrid dynamical systems. By defining a suitable concept of hybrid Lp norm, we introduce hybrid storage functions and provide sufficient Lyapunov conditions for Lp stability of hybrid systems, which cover the well-known continuous-time and discrete-time Lp stability notions as special cases. We then focus on homogeneous hybrid systems and prove a result stating the equivalence among local asymptotic stability of the origin, global exponential stability, existence of a homogeneous Lyapunov function with suitable properties for the hybrid system with no inputs, and input-to-state stability, and we show how these properties all imply Lp stability. Finally we characterize systems with direct and reverse average dwell time properties and establish parallel results for this class of systems. We also make several connections to the existing results on dissipativity properties of hybrid dynamical systems

    Hybrid Integrator-Gain Systems:Analysis, Design, and Applications

    Get PDF
    • …
    corecore