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Foreword

The story behind this book begins during the International Conference on Robotics

and Automation 2001 which took place in Seoul, Korea in May of 2001. During the

farewell reception I had a nice talk with Henrik Christensen, founder and scientific

director of EURON, the European Robotic Network. Henrik mentioned that during

some discussion with the European commission it came out that there was interest

for good fundamental projects for the last call of FP5 related to the KA 4, Action

Line IV2.1 on Advance Control Systems. At the end of August, after discussions

with Arjan van der Schaft also at the University of Twente, it was decided to work

on a proposal related to the great potentials of port-Hamiltonian systems initially in-

troduced by Arjan van der Schaft and Bernhard Maschke. The deadline for the Sub-

mission was October 17th 2001 and it was at that stage not even clear who would be

involved in the consortium. Around the end of September the real writing began and

the consortium was formed by the University of Twente (NL) as a coordinator under

my responsibility, Control Lab Products (NL) who with the 20-sim modeling and

simulation program should have provided the tools implementing the new ideas in

the project, Université Claude Bernard Lyon 1 (F) under the leadership of Bernhard

Maschke, Universitat Politècnica de Catalunya (SP) under the leadership of Enric

Fossas Colet, Supelec (F) under the leadership of Romeo Ortega, Johannes Kepler

Universitat Linz (A) under the leadership of Kurt Schlacher, Katholieke Universiteit

Leuven (B) under the leadership of Ir. Herman Bruyninckx, l’Università degli Studi

di Bologna (I) under the leadership of Claudio Melchiorri and finally the CNRS (F)

with Francoise Couenne: a great consortium was born.

During an incredible active period and difficult moments in which I did not be-

lieve we were going to make it, many sleepless nights and hard work brought us

to a successful submission before the deadline. The project name was “Geomet-

ric Network Modeling and Control of Complex Physical Systems” with Acronyms

GEOPLEX proposed by Herman Bruyninckx on an email dated 7th September 2001.

During the project preparation we decided to have as a deliverable a book which

would collect some of the major results of the project. This volume is the final result

of this effort. Many people have contributed to this volume and tough decisions have
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viii Foreword

been made in what to include and what to leave out in order to have a volume with

didactic value and with a reasonably homogeneous notation.

The official “book deliverable” was a draft and a lot of work still needed to be

done in order to get it to a useful publishable volume. The initial editorial efforts

where done by Vincent Duindam, Herman Bruyninckx and myself during many

meetings and discussions about the structure, the homogeneity and the various pos-

sibilities. After the end of the project, due to many obligations, the book has been

in stand-by for a while until I kindly asked the help and support of Alessandro

Macchelli (Alex) from the University of Bologna who has been also extremely sci-

entifically (and not only) active during the project. Thanks to Alex this major group

effort has finally become a real book and I can speak for the all consortium that we

are really proud of this result.

The four years of the project beside having been scientifically productive and

brought us to many new results, have created a wonderful interpersonal synergy

which is still bringing fruits to this beautiful field. The GEOPLEX journey has been

a great one and even if not all of you have enjoyed the great atmosphere and sci-

entific discussions, I hope you will enjoy the result of this successful project and

wonderful theory on port-Hamiltonian systems.

Enschede (NL), March 2009 Stefano Stramigioli



Preface

This preface gives a “bird’s eye” view on the paradigm of port-Hamiltonian sys-

tems [137] for modelling and control of complex dynamical systems, which will

be explained in detail in the rest of this book. The mentioned complexity comes,

in the first place, from the scale of the systems, which is too large to be captured

and controlled reliably by the traditional “block-diagram” approaches. This pref-

ace explains why this paradigm has a large potential to be successful in tackling

some of the big challenges in modern control theory and engineering. Three of the

paradigm’s major features are:

i) its scalability to very large interconnected multi-physics systems;

ii) its ability for incorporating non-linearities while retaining underlying conser-

vation laws;

iii) its integration of the treatment of both finite-dimensional and infinite-dimen-

sional components.

But also for more traditional control problems, the port-Hamiltonian systems pa-

radigm provides a solid foundation, which suggests new ways to look at control

problems and offers powerful tools for analysis and control.

The port-Hamiltonian systems paradigm has, over the last decade, succeeded in

matching the “old” framework of port-based network modeling of multi-domain

physical systems with the “new” framework of geometric dynamical systems and

control theory. It provides a very systematic approach to modelling, analysis and

control, via

i) the separation of the network interconnection structure of the system from the

constitutive relations of its components;

ii) the emphasis on power flow and the ensuing distinction between different kind

of variables;

iii) the analysis of the system through the properties of its interconnection structure

and the component constitutive relations;

iv) the achievement of control by interconnection, by means of stabilization by

Casimir generation and energy shaping , energy routing control (transferring

energy between components in the system), and port and impedance control.
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Some familiarity with ‘geometry’, in particular ‘coordinate-free’ thinking and the

identification of physically different types of variables with different mathematical

objects, is the price to pay for a complete understanding of the paradigm: while port-

Hamiltonian systems may at first sight make things “unnecessarily complicated” for

the most simple systems, it can reach much further than traditional paradigms, with

not much more than the same set of concepts that are used for these simple systems.

This book’s major ambition is to convince its readers that

i) the extra mathematical complexity introduced in port-Hamiltonian systems is

the necessary minimum to represent the essential inherent properties of large-

scale interconnected physical systems;

ii) understanding these mathematical concepts drastically reduces the human effort

to master the intellectual “curse of dimensionality” created by tackling complex

dynamical systems by only the traditional “block-diagram” control approaches.

Complex dynamical systems

Modern control engineering is continuously challenged to provide modelling, anal-

ysis and control for ever more complex systems:

• Complexity in the sense that the modern consumer expects to see more ‘intelli-

gent’, better performing, and yet more miniaturized and/or lighter products. Most

of the current sensing and actuation components do not scale well towards these

meso- and milli-scales; at least, much less than the computational components.

Inevitably, this evolution requires the development of sensor/actuator compo-

nents that are integrated into the mechanical structure of the products. This will

most certainly lead to components that cannot be modelled (and produced !) any-

more as traditional finite-dimensional, i.e. “lumped parameter”, systems.

• Complexity in the sense that production, logistics and service facilities evolve

towards more distributed systems, with more decentrally controlled degrees of

freedom, more interactions between various controlled subsystems, less possi-

bilities to define, let alone measure, all relevant variables in the system, etc.

Continental-scale power grids are a nice example: electricity is often produced

further and further away from the final consumer; new energy sources (e.g., wind,

biomass, energy recuperation) require more flexibility and bring higher load and

source irregularities in the grid control system. Experience has shown that the

traditional “optimized” control of the power grids has quite some problems with

robustness against sudden transient effects, such as line breakage.

The traditional control approaches have, up to now, to a very large extent been

focusing on “human-scale” systems, where one single control engineer can compre-

hend the whole system, one centralized controller can do the whole job, and one

“Simulink” block diagram suffices to model the whole system dynamics to the re-

quired level of detail and to optimize its control to the required level of performance.
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This approach, however, seldom scales well in the above-mentioned evolution to-

wards more complex systems. Some of the major scaling problems are:

• Block diagram modeling of physical systems lacks compositionality: whenever

interconnecting a physical system to additional components the block diagram

modeling usually needs to be redone completely.

• The presence of fundamental physical properties such as conservation laws and

energy balance is not reflected in the block diagram structure, and easily gets out

of sight when the scale of the system grows.

• Block diagram causality: the large majority of control engineers is only familiar

with the “Simulink”-like block diagram approach. Most of them don’t even real-

ize that, for modelling and computational simplicity, this approach imposes one

specific physical and computational causality (i.e., a fixed choice of what is input

and what is output) onto the system model and onto its controller, while the real

physical system does not have these causal constraints.

• Non-linearities: the more nonlinear components appear in the system, the more

difficult it gets to provide stable, efficient and optimized controllers with the tra-

ditional linear state space control theory that most engineers are trained in.

• Integration of finite-dimensional and infinite-dimensional components: no mod-

elling and control paradigm has yet achieved the breakthrough in this domain.

• Network size: when the number of components in the system under control

grows, the number of state variables also grows, as well as the communication

delays between actuators, plant and sensors, the transmission line effects, etc.

This means that a traditional centralized controller will not work anymore.

• Robustness: the traditional state space control paradigm has a big focus on opti-

mized control, and the algorithms for designing robust controllers are still (im-

plicitly) targeted at centralized systems. However, all the above-mentioned com-

plexities drastically reduce the robustness of any optimal controller, if it has to

work on a real-world complex system.

The port-Hamiltonian systems paradigm

Port-Hamiltonian systems represent a control paradigm, in the sense that they pro-

vide a set of models, thought patterns, techniques, practices, beliefs, systematic pro-

cedures, terminology, notations, symbols, implicit assumptions and contexts, values,

performance criteria, . . . , shared by a community of scientists, engineers and users

in their modelling, analysis, design and control of complex dynamical systems. Be-

ing a coherent paradigm by itself does not mean that port-Hamiltonian systems have

nothing in common with other control paradigms. The name “port-Hamiltonian”

systems, for example, refers to the two major components of the paradigm, which

exist for quite some time already:
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• Port: the modelling approach is port-based, more in particular it builds upon the

successful multi-domain Bond Graph way of composing complex systems by

means of power-preserving interconnections.

• Hamiltonian: the mathematical framework extends the geometric Hamiltonian

formulation of mechanics, by emphasizing the geometry of the state space and

the Hamiltonian function (total stored energy) as basic concepts for modelling

multi-physics systems.

Because of its roots in port-based modeling he port-Hamiltonian systems paradigm

extends the geometric Hamiltonian formulation of physics by generalizing the ge-

ometry of the classical phase space to the geometry of the state space of energy

variables which is determined by the (power-conserving) interconnection structure.

Furthermore, it allows for the incorporation of energy-dissipating1 components, and

the presence of open ports modelling interaction with an (unknown) environment

or accessible for controller interaction. Port-Hamiltonian systems theory relies on a

rather limited amount of concepts from geometry. Geometry, in particular geometric

linear algebra in the linear case and differential geometry in the nonlinear case, has

proven to be a very appropriate mathematical formalism whenever one wants to sep-

arate generic, coordinate-free and (hence) intrinsic descriptions of systems from the

details and particularities of specific representations, and if one wants to capture the

physical characteristics of the variables involved in the mathematical description.

Port-Hamiltonian systems shares this sympathy for geometry with, among others,

the geometric nonlinear control theory paradigm [93, 156], and geometric mechan-

ics [24, 40].

The systematic procedure for the modelling and control of complex dynamical

systems, as it is beginning to materialize in the port-Hamiltonian systems theory, is

as follows:

i) Model the system as energy storing and energy dissipating components, con-

nected via ports to power conserving transmissions and conversions.

ii) Separate the network structure from the constitutive relations of the compo-

nents.

iii) (Optionally) reduce the order of the system model while respecting the invariant

structure of the system dynamics.

iv) Identify the Casimir functions (conservation laws) in the system, in order to use

them in the design of the controller.

v) Control the system by interconnecting it to energy shaping and/or damping

injection components, and by adding energy routing controllers.

The first focus of a port-Hamiltonian controller is to achieve a feasible, stable and

robust control, instead of being driven by performance optimization from the start.

As motivated above, this focus is already difficult enough when controlling increas-

ingly complex dynamical systems.

1 Of course, from a thermodynamical perspective energy is not dissipated but converted from,

say, the mechanical or electrical domain to, e.g., the thermal domain. It would therefore be more

appropriate to speak of ‘free energy’ that is dissipated.
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Fig. P.1 The logo of the

GEOPLEX project.

The GEOPLEX project

The last few years, significant progress has been made in the port-Hamiltonian sys-

tems paradigm, to a large extent thanks to the concerted efforts of the GEOPLEX

project [1], whose logo is displayed in Fig. P.1. Some of the major evolutions are:

the port-Hamiltonian approach has excellent results in the systematic separation

(conceptually, as well as in the mathematical representation) of the interconnection

structure and the dynamical properties of interconnected system; finite-dimensional

systems and infinite-dimensional systems can be described with unified concepts

and mathematical representations, and one is nearing the above-mentioned break-

through towards unified control of both domains; the energy shaping and damping

injection, as well as the energy routing, control approaches begin to mature and

show their advantages for the construction of safe and predictable controllers for

complex systems.

GEOPLEX does not only have theoretical developments, but also real-world ex-

perimental verifications of the port-Hamiltonian systems approach: walking robots,

teleoperated and haptic devices, piezo-controlled beams and plates, chemical engi-

neering of reaction processes, electrical grids with sources and flywheels, etc..

Port-based modelling

Port-based modelling as in the Bond Graph formalism [165] models a physical sys-

tem as the interconnection of (possibly a large amount) of components from a rather

small set of dynamic elements: energy storage, energy dissipation, energy trans-

portation or energy conversion. Each element interacts with the system via a port,

that consists of a couple of “dual” effort and flow quantities, whose product gives the

power flow in and out of the component. For example, force and velocity for a me-

chanical system, or current and voltage for an electric network. The network allows

(loss-less) power exchange between all components and describes the power flows

within the system and between the system and the environment. Some advantages

of the Bond Graph approach are:

• It focuses on energy (in all its instantiations) as the fundamental physical concept

to appropriately model the real world.
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• It is multi-domain: the same concepts and mathematical representations are used

for mechanical, electrical, hydraulic, pneumatic, thermo-dynamical, . . . , compo-

nents.

• It is multi-scale: components can be decomposed hierarchically in smaller inter-

connected components.

• Its models are acausal: each component contains only “constitutive relation-

ships” which describe the dynamic relations between the port variables, without

imposing which ones are inputs and which ones are output.

The Bond Graph approach has proven to be very successful in the modelling of

complex systems, at least in the lumped parameter domain.

Differential geometry for systematic structuring

The above-mentioned system model networks, derived from port-based network

modelling, can be mathematically described and analysed by means of the con-

cept of a Dirac structure [54, 59, 183], at least for “lumped parameter” (finite-

dimensional) systems. A Dirac structure can be regarded as a generalization of the

well-known Kirchhoff laws of electrical circuit theory. It separates the (power con-

serving) network topology (“interconnection”) from the (power storing or dissipat-

ing) dynamics of the components; both together provide a complete model of the dy-

namical system under study. The Dirac structure allows to bring all possible system

models, however complex, into the same mathematical form, strongly facilitating a

highly systematic treatment.

This systematic treatment has been extended to infinite-dimensional systems, for

which the Dirac structure is generalized into the Stokes-Dirac structure, by incorpo-

rating Stokes theorem applied to the underlying conservation laws. Again, the same

concepts are being reused.

Control by interconnection

The port-Hamiltonian systems paradigm uses the system’s interconnection structure

and its Hamiltonian (i.e., its total energy) as the primary vehicles for modelling and

control. If one wants to steer the system to one of its stable equilibrium states, it

is easy to do so: the Hamiltonian of the system assumes its minimum at this state,

so, by introducing dissipation in the controller (“damping injection”), the energy

in the system decreases until the minimum of energy, or, equivalently, the desired

equilibrium configuration is reached.

However, the natural equilibrium states of the system seldom correspond to the

desired system state. So, “energy shaping” is necessary, i.e., one has to add a con-

trol component to the system network, in such a way that the desired state in one

way or another corresponds to a stable equilibrium of the new system. In summary,
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the port-Hamiltonian approach to set-point control is “control by interconnection”:

the controller components that one adds to the plant network are the same kind of

components as the ones that make up the model of the plant itself. In doing so, the

first emphasis is on getting the controlled system robustly stable, possibly giving up

on “optimal performance” of some of the subsystems.

How is this energy-shaping achieved? Clearly, the Hamiltonian of the control

components may be chosen arbitrarily, but do not directly influence the shape of

the Hamiltonian with respect to the state variables of the original system. One way

to achieve energy-shaping is to add controller components in such a way that con-

served quantities (Casimirs) are enforced involving the state variables of the original

system and the controller states. Interestingly enough, these conserved quantities are

determined by the Dirac structure of the interconnected system (original system plus

controller system), thus leading to the problem of how to ‘shape’ or manipulate this

Dirac structure by the interconnection with a controller Dirac structure. The total

closed-loop energy function is then shaped by combining the Hamiltonian of the

original system with the Casimirs and suitably chosen Hamiltonians for the con-

troller systems. This procedure is systematic, but not explicit (that is, it still requires

insight from the control designer), and it is not guaranteed to be applicable in all sit-

uations. Another (but very much related !) approach to stabilization, which in princi-

ple offers more options, is the Interconnection-Damping-Assignment methodology,

where the energy function, the interconnection structure, as well as the damping

structure, are directly modified by state feedback

Software support

The GEOPLEX project consists of some academic research institutions, plus one

company: Controllab Products, which develops and markets the 20-sim [51] sim-

ulation and control software. 20-sim has Bond Graph modelling tools under the

hood, but can also provide more user-friendly (because domain-specific) iconic dia-

grams; it has extensive algorithmic support for causality determination, for solving

the differential equations governing a particular model (including controller), and

for transforming the control design into code for embedded control computers. In

addition, the software is being extended with some of the differential-geometric

concepts and tools that are developed by the academic GEOPLEX partners.

Who should read this book?

The target public of this book consists of “traditional” control engineers, confronted

with complex, multi-domain control problems, and graduate students in Systems and

Control. This book can extend their knowledge and understanding of advanced mod-

elling, analysis and control methods using the port-Hamiltonian systems paradigm,
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because port-Hamiltonian systems bring the systems’ inherent structure to the sur-

face explicitly. This is an advantage because every additional structure that the en-

gineer knows about its systems helps to improve their analysis and control.

• Better insight into complex systems, via the explicit distinction between the in-

herent, coordinate-free physical properties of the systems, and the artificial, non-

physical “properties” that often show up in the specific coordinate-based algo-

rithms that are used to implement analysis and control;

• The acausal description of components is very appropriate for the modelling,

analysis and control of open systems, i.e., systems that can be interconnected to

other open systems;

• The port-Hamiltonian approach can interconnect finite-dimensional and infinite-

dimensional systems;

• Scalability: port-Hamiltonian structure is preserved by interconnection of mul-

tiple components modeled as port-Hamiltonian systems, also when components

come from different domains;

• “Re-use” of the same theory for finite- and infinite-dimensional systems;

• More modular, structured, and re-usable software framework, leading to more

user-friendly and more reliable modelling, simulation and design software tools;

• More structure means more “constraints” that make the “solution search space”

smaller, hence leading to potentially more efficient and more precise algorithms.

Outline of the book

This book aims at presenting a unified framework for modelling, analysis, simula-

tion and control of complex dynamical systems based on the port-Hamiltonian for-

malism. Background and concepts of a port-based approach to integrated modelling

and simulation of physical systems and their controllers are illustrated in Chap-

ter 1. These important notions are the conceptual motivation from a physical point

of view of what is elaborated mathematically and applied to particular cases in the

remaining chapters. In fact, in Chapter 2, it is shown how the representation of

a lumped-parameter physical system as a bond graph naturally leads to a dynam-

ical system endowed with a geometric structure, called port-Hamiltonian system.

The notion of Dirac structure is here introduced as the key mathematical concept

to unify the description of complex interactions in physical systems. Moreover, it is

shown how the port-Hamiltonian structure is related, among others, to the classical

Hamiltonian structure of physical systems. Furthermore, different representations

of port-Hamiltonian systems are discussed, as well as the ways to navigate between

them, and tools for analysis are introduced.

Port and port-Hamiltonian concepts are the basis of the detailed examples of

modelling in several domains illustrated in Chapter 3. Here, it is shown how port-

Hamiltonian systems can be fruitfully used for the structured modelling of elec-

tromechanical systems, robotic mechanisms and chemical systems. As far as the

chemical domain is concerned, expressions of the models representing momentum,
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heat and mass transfer as well as chemical reactions within homogeneous fluids

are reported in the port-based formalism. Furthermore, some insights are also given

concerning the constitutive equations and models allowing to calculate transport and

thermodynamic properties.

These last concepts serve as a starting point for the generalization of the port-

Hamiltonian description of lumped parameter systems towards the distributed pa-

rameter ones. This is accomplished in Chapter 4 by extending the definition of

Dirac structure. In fact, it is shown how the Dirac structure and the port-Hamiltonian

formulation arise from the description of distributed parameter systems as systems

of conservation laws. In case of systems of two conservation laws, which describe

two physical domains in reversible interaction, they may be formulated as port-

Hamiltonian systems defined on a canonical interconnection structure, called canon-

ical Stokes-Dirac structure. Several examples of physical systems are provided in

order to illustrate the power of the proposed approach.

In the remaining chapters, it is shown how the port-Hamiltonian formulation

offers powerful methods for control of complex multi-physics systems. In Chap-

ter 5, a number of approaches to exploit the model structure of port-Hamiltonian

systems for control purposes is illustrated. Formulating physical systems as port-

Hamiltonian systems naturally leads to the consideration of impedance control prob-

lems, where the behavior of the system at the interaction port is sought to be shaped

by the addition of a controller system. As an application of this strategy of control

by interconnection within the port-Hamiltonian setting, the problem of stabilization

of a desired equilibrium by shaping the Hamiltonian into a Lyapunov function for

this equilibrium is considered. The mathematical formalism of port-Hamiltonian

systems provides various useful techniques, ranging from Casimir functions, Lya-

punov function generation, shaping of the Dirac structure by composition, and the

possibility to combine finite-dimensional and infinite-dimensional systems.

In this respect, the control problem of distributed parameter port-Hamiltonian

systems is discussed in Chapter 6. This chapter aims at extending some of the well-

established control techniques developed for finite dimensional port-Hamiltonian

systems illustrated in Chapter 5 to the infinite dimensional case. First result concerns

the control by damping injection, which is applied to the boundary and distributed

control of the Timoshenko beam. Then, the control by interconnection and energy

shaping via Casimir generation is also discussed, giving particular emphasis to the

stabilization of mixed finite and infinite dimensional port Hamiltonian system and

to the dynamical control of a Timoshenko beam.

March 2009 Herman Bruyninckx, Arjan J. van der Schaft
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Chapter 1

Port-Based Modeling of Dynamic Systems

P. C. Breedveld

Abstract Many engineering activities, in particular mechatronic design, require that

a multi-domain or ‘multi-physics’ system and its control system be designed as an

integrated system. This chapter discusses the background and concepts of a port-

based approach to integrated modeling and simulation of physical systems and their

controllers, with parameters that are directly related to the real-world system, thus

improving insight and direct feedback on modeling decisions. It serves as the con-

ceptual motivation from a physical point of view that is elaborated mathematically

and applied to particular cases in the remaining chapters.

1.1 Introduction

1.1.1 Modeling of dynamic systems

If modeling, design and simulation of (controlled) systems are to be discussed, some

initial remarks at the meta-level are required. It should be clear and it probably will

be, due to the way it is phrased next, that no global methodology exists that deals

with each problem that might emerge. In other words, no theory or model can be

constructed independently of some problem context. Nevertheless, in practice, not

only well-established theories are treated as some form of absolute ‘truth’, but also

(sub-)models of physical components are often considered as constructs that can

be independently manipulated, for instance in a so-called model library. Without

some reference to a problem context, such a library would be useless, unless there is

an implicit agreement about some generic problem context, such that some generic

sub-models can be stored for re-use. However, such a foundation is rather weak, as

implicit agreements tend to diverge, especially in case of real world problems.

Herein, we will focus on the generic problem context of the dynamic behavior

of systems that primarily belong to the domain of the (control) engineer, but also

of the physicist, the biologist, the physiologist, etc. These systems can be roughly

1



2 1 Port-Based Modeling of Dynamic Systems

characterized as systems that can be considered to consist for a large part of sub-

systems for which it is relevant to their dynamic behavior that they obey the basic

principles of macroscopic physics, like the conservation principles for fundamen-

tal physical quantities like ‘charge’, ‘momentum’, ‘matter’, ‘energy’ etc. as well as

the positive-entropy-production principle, in other words: the ‘laws’ of thermody-

namics. The other part is considered to consist of sub-models for which the energy

bookkeeping is generally not considered relevant for the dynamic behavior. Such

parts are generally addressed as the signal processing part (‘controller’) that is com-

monly for a large part realized in digital form for the common reasons of flexibility,

reproducibility, robustness (error correction), maintainability, etc., even though ana-

logue solutions are in some cases much less costly in terms of material and energy

consumption.

This chapter focuses on the description of the part for which energy bookkeep-

ing is relevant for the dynamic behavior, while keeping a more than open eye for

the connection to the signal part, either in digital or in analogue form. It is argued

that so-called ‘port-based modeling’ is ideally suited for the description of the en-

ergetic part of a multi-domain system, sometimes also called multi-physics system.

This means that the approach by definition deals with multidisciplinary systems like

those encountered in mechatronics for example.

Port-based physical system modeling aims at providing insight, not only in the

behavior of systems that an engineer working on multidisciplinary problems wishes

to design, build, troubleshoot or modify, but also in the behavior of the environment

of that system. A key aspect of the physical world around us is that ‘nature knows

no domains’. In other words, all boundaries between disciplines are man-made, but

highly influence the way humans interact with their environment. A key point each

modeler should be aware of is that any property of a model that is a result of one of

his own choices, should not affect the results of the model. Examples of modeler’s

choices are: relevance of time and space scales, references, system boundaries, do-

main boundaries, coordinates and metric. If a variation in one of these choices leads

to completely different conclusions about the problem for which the model is con-

structed, the model obviously does not serve its purpose as it tells us more about the

modeler than about the problem to be solved. Again, when the issue is phrased in

this manner, it is hard to disagree, but practice shows that this modeling principle is

often violated.

1.1.2 History of physical systems modeling of engineering systems

Several attempts to unified or systematic approaches of modeling have been launched

in the past. In the upcoming era of the large-scale application of the steam en-

gine over 150 years ago, the optimization of this multi-domain device (thermal,

pneumatic, mechanical translation, mechanical rotation, mechanical controls, etc.)

created the need for the first attempt to a systems approach. This need for such a

‘mecha-thermics’ approach was then named thermodynamics. Although many will
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not recognize a modern treatment of thermodynamics as the first systems theory,

it certainly was aimed originally in trying to describe the behavior of such a sys-

tem independently of the involved domains. However, it required a paradigm shift

or ‘scientific revolution’ in the sense of Kuhn (see [106]), due to the fact that the

concept of entropy had to be introduced for reasons of consistency, i.e. to be able

to properly ‘glue’ these domains together by means of the concept of a conserved

quantity called energy. The rather abstract nature of the concept of entropy, and to

some extent of the concept of conserved energy too, as energy was up till than con-

sidered a quantity that could be dissipated, has caused that students have considered

thermodynamics a ‘difficult’ subject ever since, resulting in only a relatively limited

number of engineers and scientists actively using the thermodynamic approach in

modeling of system behavior and system design.

Despite the fact that the first evidence of the use of feedback dates back to 200-

100 BC when water clocks required the water level in a reservoir to be kept constant,

followed by Cornelis Drebbel’s thermostat and James Watt’s fly-ball governor, it

was not before the late nineteen twenties that feedback was realized by means of

electric signals (Harold Stephen Black’s 1927 famous patent that he wrote on a

copy of the New York Times). At first, electronic feedback was used internally, to

reduce distortion in electric amplifiers, but later, especially during World War II,

this concept was used in radar control and missile guidance. One might say that the

multi-domain approach to feedback was transferred to a signal approach in which

the external power supply did not need to be part of the behavioral analysis. How-

ever, a more important paradigm shift was still to come, viz. the idea that the use

of feedback allowed the construction of components, viz. operational amplifiers,

with which basic mathematical operations could be mimicked, leading to analogue

computers. This gave a new meaning to the terminology ‘analogue simulation’ that

until then was conceived as mimicking behavior by means of analogue circuits or

mechanisms.

Just after World War II, due to the rapidly increasing demand for electric power,

the USA was in great need for power plants, in particular hydro-power plants, which

should be able to deal with large and sometimes rapid fluctuations in the power

grid. Obviously, the success of control theory (cybernetics) during World War II in-

spired many to apply control theory to the dynamic problems involved in electric

power production. One such a civil engineer by the name of Henry M. Paynter1

(1923-2002, professor at MIT & UT Austin, Fig. 1.1) tried to use the early ana-

logue computers that he had invented together with James Philbrick, to simulate

the dynamics of the power plants to be built. He used the at that time common

description of block diagrams that display the computational structure of the differ-

ential and algebraic equations being used, as these mathematical operations were to

be mapped directly on the basic components of the analogue computer. However,

for reasons that will become clear in the course of this treatise (viz. related to the

concept of so-called ‘computational causality’) he ran into model formulation prob-

lems. At the beginning of the fifties he realized himself that the concept of a ‘port’

1 See also http://www.me.utexas.edu/˜lotario/paynter/hmp/index.html.
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Fig. 1.1 Prof. Henry M.

Paynter (Enschede, 1984).

introduced in electrical circuit theory a few years earlier by Wheeler & Dettinger

(see [219]), should be extended to arbitrary power ports that can be applied domain-

independently. Power ports include mechanical ports, hydraulic ports, thermal ports,

electric ports, etc., i.e. everything Paynter needed for the description of the dynamic

behavior of hydro-power plants.

In the following decade, after moving to the MIT mechanical engineering de-

partment, he designed a notation based on the efficient representation of the relation

between two ports by just one line that he called a ‘bond’. This so-called ‘bond

graph’ notation was completed when he finally introduced the concept of the junc-

tion in a lecture in 1959 [165]. Junctions not only make a bond graph a powerful

tool, but they are rather abstract concepts that require a similar paradigm shift as

the one mentioned for thermodynamics. Once this shift is made, it often induces

over-enthusiasm and over-expectations that not only lead to disappointment, but

also unnecessarily scare off experienced engineers and scientists who have learned

to accept the limitations of modeling.

As a result, just like thermodynamics, bond graphs never became widely popular,

although they spread over the whole world and are still alive and continue to grow

after almost fifty years. By contrast, signal processing as well as analogue and later

digital computing are less constrained by physical reality. This allows mimicking

virtually everything, from physically correct or incorrect models to arbitrary mathe-

matical relations that describe imaginary systems. In the previous decade, this even

led to concepts like a ‘cyber world’, etc., even though the level of physical modeling

in most virtual environments is rather low, as demonstrated by the unnatural features

of much virtual behavior, even though there has been quite some progress recently

due to more awareness for the importance of the underlying physics.

Nevertheless, the introduction of rapid and flexible machinery for production,

assembly, manipulation (incl. surgery), etc., that has truly taken off in the nineties,

raised the need for a systems approach again. In these application areas physi-

cal constraints continue to limit imagination. The deliberate dynamic behavior as

well as the suppression of undesired dynamics of such devices heavily leans on

the application of digital electronics (microcomputers) and software, but a domain-

independent description of the parts in which power plays a role is crucial to make

a designer aware of the fact that a considerable part of these systems is constrained

by the limits of the physical world. This mix of mechanics, or rather physical sys-
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tem engineering in general, at the one hand and digital electronics, software and

control at the other hand has been named ‘mechatronics’, even though ‘digiphysics’

would have been a more appropriate label, as this probably would have prevented the

common misinterpretation that mechatronics is basically a modern form of motion

synchronization where the control by means of mechanisms (e.g. by cam wheels) is

replaced by electronic motion synchronization (e.g. by digitally controlled electric

motors). Nevertheless, we will continue to use the label ‘mechatronics’, even though

‘behavior’ has a wider meaning than ‘motion’.

1.1.2.1 History of bond graphs

When Henry Paynter introduced the junctions in April 1959, he concluded a pe-

riod of about a decade in which most of the underlying concepts were formed and

put together into a conceptual framework and corresponding notation. In the sixties

the bond graph notation, e.g. the half arrow to represent positive orientation and in-

sightful node labeling, was further elaborated by his students, in particular Dean C.

Karnopp, later professor at UC Davis (California, US), and Ronald C. Rosenberg,

later professor at Michigan State University (Michigan, US) who also designed the

first computer tool (ENPORT) that supported simulation of bond graph models.

In the early seventies Jan J. van Dixhoorn, professor at the University of Twente,

Netherlands, and Jean U. Thoma, professor at the University of Waterloo (Ontario,

Canada). and independent consultant in Zug, Switzerland, were the first to introduce

bond graphs in Europe.

These pioneers in the field and their students have been spreading these ideas

worldwide. Jan van Dixhoorn realized that an early prototype of the block-diagram-

based software TUTSIM could be used to input simple causal bond graphs, which,

about a decade later, resulted in a PC-based tool. This work laid the basis for the

development of a port-based computer tool at the University of Twente (‘20-sim’

or ‘Twente-sim’). He also initiated research in modeling more complex physical

systems, in particular thermo-fluid systems and spatial mechanisms.

In the last two decades, bond graphs either have been a topic of research or are

being used in research at many universities worldwide and are part of (engineering)

curricula at a steadily growing number of universities. In the last decade, industrial

use has become increasingly important.

1.1.3 Tools needed for the integrated design of controlled physical

systems

Obviously, a smooth connection is needed between the information-theoretical de-

scriptions of the behavior of digital systems and physical systems theory. Since their

introduction bond graphs have allowed the combined use of power ports and sig-

nal ports, both in- and output, and a corresponding mix with block diagrams. As
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block diagrams can successfully represent all digital operations that are similar to

mathematical operations, the common bond graph/block diagram representation is

applicable. This graphical view supports a hierarchical organization of a model,

supporting reuse of its parts.

However, many systems that are studied by engineers, in particular control and

mechatronic engineers, differ from the engineering systems that were previously

studied in the sense that the spatial description of complex geometrical configu-

rations often plays an important role in the dynamic behavior, thus including the

control aspects of these systems. While dynamic influences of such mechanisms

could be suppressed by simply limiting the operating speed previously, the increas-

ing need for higher speeds and lighter mechanisms has made this solution obsolete.

This shows the need for a consistent aggregation of – at the one hand – the descrip-

tion of the configuration of a mechanism and – at the other hand – the displacements

in a system that in some way are related to the storage of potential or elastic energy.

Later this will be addressed as ‘the dual role of the displacement variable’. The ge-

ometric interpretation of physical structure that will be one of the main topics of

this book and can be seen as a generalization by abstraction of the description of

configuration space into the resulting approach in terms of manifolds, therefore also

carries a danger: a too high level of abstraction, despite its power in analysis, may

blur the above insight as the distinction between the two roles of the displacement

variable seems lost.

Another aspect of these systems is that only few realistic models can be solved

analytically, emphasizing the important role of a numerical approximation of the

solution (simulation). The aggregation of numerical properties in the representation

of dynamic systems allows that a proper trade-off is made between numerical and

conceptual complexity of a model, however, without confusing the two, a common

pitfall. The approach discussed herein offers a basis for making such a trade-off,

resulting in both a higher modeling efficiency and a higher numerical simulation

efficiency.

In a mechatronics approach, where a controlled system is designed as a whole, it

is advantageous that model structure and parameters are directly related to physical

structure in order to have a direct connection between design or modeling deci-

sions and physical parameters [49]. In addition, it is desired that (sub-)models be

reusable, despite the danger of non-matching problem contexts addressed earlier.

Common simulation software based on block-diagram or equation input does not

sufficiently support these features. The port-based approach towards modeling of

physical systems allows the construction of easily extendible models. As a result it

optimally supports reuse of intermediate results within the context of one modeling

or design project. Potential reuse in other projects depends on the quality of the doc-

umentation, particularly of the modeling assumptions. In addition, full integration

of user in- and output of configuration information in a modeling and simulation

tool, i.e. CAD-like input and 3D visualization of simulation results as one of the

views on model results, is required to support the insight in the influence of the

kinematic structure on the dynamic behavior. Currently, research is even focused

on extending this approach from multi-body systems to systems that contain parts
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that are until now analyzed separately by means of Finite Element Models (FEM),

which is limited to a vibration analysis in terms of eigen modes.

1.1.4 Object-oriented modeling

The port-based approach may be considered a kind of object-oriented approach to

modeling: each object is determined by constitutive relations at the one hand and

its interface, being the power and signal ports to and from the outside world, at the

other hand. Other realizations of an object may contain different or more detailed

descriptions, but as long as the interface (number and type of ports) is identical,

they can be exchanged in a straightforward manner. This allows top-down modeling

as well as bottom-up modeling. Straightforward interconnection of (empty) sub-

models supports the actual decision process of modeling, not just model input and

manipulation. Empty sub-model types may be filled with specific descriptions with

various degrees of complexity – these sub-models are said to be polymorphic [214]

– to support evolutionary and iterative modeling and design approaches [218]. Ad-

ditionally, sub-models may be constructed from other sub-models resulting in hier-

archical structures. Without trying to become part of the everlasting argument be-

tween object-oriented and process-oriented approaches, it should be noted that the

‘objects’ in this particular case represent behaviors or ‘processes’ (storage, transfor-

mation, etc.) with respect to energy, such that the label ‘process-oriented approach’

is applicable too. In this context it is interesting to note that when Paynter introduced

the elements of the bond graph notation, he was heavily inspired by the American

philosopher Charles Sanders Peirce, who proposed to ‘dualize’ graphical represen-

tation: where commonly the nodes of a graph represent ‘objects’ and its edges ‘oper-

ations’, Peirce proposed to represent ‘objects’ by edges and ‘operations’ by nodes:

we will see that the nodes of a bond graph indeed represent basic behaviors with

respect to energy, while its edges, the bonds, represent the relevant conjugate power

variables.

1.1.5 Design phases of engineering systems

Modeling, simulation and identification is often done for already existing systems.

The design of a controller has to be done for an already realized and given ‘process’

(incremental design). By contrast, in case of a full design the system does not yet

exist, which not only means that there is a large initial uncertainty, but also that there

is much more freedom to modify the design, not just the controller, but the complete

‘process’, including the mechanical construction. However, the next discussion will

show that a port-based approach is also crucial in modern design.

In a design process the following, iterative phases can be distinguished:
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Phase 1: A conceptual design is made of the system that has to be constructed, tak-

ing into account the tasks that have to be performed and identifying and modeling

the major components and their dominant dynamic behaviors, as well as the al-

ready existing parts of the system or its environment that cannot be modified.

The part of the model that refers to the latter parts can be validated already.

Phase 2: Controller concepts can be evaluated on the basis of this simple model.

This requires that the model is available in an appropriate form, e.g. as a transfer

function or a state space description. If this phase provides the insight that modi-

fication of some dominant behavior would be quite beneficial, revisiting Phase 1

can lead to the desired improvement. Another reason to return to Phase 1 may

be an alternative choice of system boundary or the boundary between physical

process (‘plant’) and controller.

Phase 3: When the controller evaluation is successful, the different components in

the system can be selected and a more detailed model can be made. The controller

designed in Phase 2 can be evaluated with the more detailed model and controller

and component selection can be changed. If the effects of the detailed model

prove to distort the originally foreseen performance, revisiting either Phase 2 or

even Phase 1 with the newly obtained insights can lead to improved performance.

Phase 4: When Phase 3 has been successfully completed the controller can be re-

alized electronically or downloaded into a dedicated microprocessor (embedded

system). This hardware controller can be tested with a hardware-in-the-loop sim-

ulation that mimics the physical system (‘plant’) still to be built. It is to be pre-

ferred that the translation from the controller tested in simulations is automat-

ically transferred to e.g. C-code, without manual coding; not only because of

efficiency reasons, but also to prevent coding errors. If this phase results in new

insights given the non-modeled effects of the implementation of the controller,

the previous phases may be revisited, depending on the nature of the encountered

problem.

Phase 5: Finally the physical system itself or a prototype can be built. As this is

usually the most cost intensive part of the process, this should be done in such a

way that those physical parameters that proved to be most critical in the previous

phases are open for easy modification as much as possible, such that final tuning

can lead to an optimal result. During the construction, new awareness of not

yet modeled, but relevant physical behavior, may result in changes to the model

of the physical systems, such that the impact on the final performance can be

immediately estimated and, if necessary, compensated by physical means or by

signal processing means.

Given the key role of structured, multi domain system modeling in the above pro-

cess, special attention is given to domain-independent modeling of physical systems

and the role of multiple views.
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1.1.6 Multiple views in the design and modeling process

Engineering deals with the integrated design of a tangible (‘mechanical’) system

and its embedded control system. In practice, this ‘mechanical system’ has a rather

wide scope. It may also contain hydraulic, pneumatic and even thermal parts that

influence its dynamic characteristics. This definition implies that it is important that

the system be designed as a whole as much as possible. This requires a systems

approach to the design problem. Because in mechatronics the scope is limited to

controlled mechanical systems, it will be possible to come up with more or less

standard solutions. An important aspect of mechatronic systems is that the synergy

realized by a clever combination of a physical system and its embedded control

system leads to superior solutions and performances that could not be obtained by

solutions in one domain. Because the embedded control system is often realized in

software, the final system will be flexible with respect to the ability to be adjusted

for varying tasks.

The interdisciplinary field of design thus requires tools that enable the simulta-

neous design of the different parts of the system. The most important disciplines

playing a role are mechanical engineering, electrical engineering and software en-

gineering, all based on a solid knowledge of physics and mathematics. One of the

ideas behind mechatronic design is that functionality can be achieved either by solu-

tions in the (physical) mechanical domain, or by information processing in electron-

ics or software. This implies that models should be closely related to the physical

components in the system. It also requires software tools that support such an ap-

proach. In an early stage of the design process simple models are required to make

some major conceptual design decisions. In a later stage (parts of the) models can

be more detailed to investigate certain phenomena in depth. The relation to physi-

cal parameters like inertia, compliance and friction is important in all stages of the

design. Because specialists from various disciplines are involved in mechatronic de-

sign, it is advantageous if each specialist is able to see the performance of the system

in a representation that is common in his or her own domain. Accordingly, it should

be possible to see the performance of the mechatronic system in multiple views.

Typical views that are important in this respect are: ideal physical models (IPMs)

represented by ‘iconic diagrams’, bond graphs, block diagrams, Bode plots, Nyquist

plots, state space description, time domain, animation, C-code of the controller.

This has been formalized as the so-called multiple view approach that is par-

ticularly well supported by window-based computer tools: a number of graphical

representations like iconic diagrams, which are domain-dependent, linear graphs,

which are more or less domain-independent, but limited to the existence of ana-

logue electric circuits [192] block diagrams, which represent the computational

structure, bond graphs, which are domain-independent, etc. as well as equations,

which represent the mathematical form in different shapes (transfer functions, state

space equations in matrix form, etc.) can serve as model representations in differ-

ent windows. The tool in which all examples of this chapter are treated, 20-sim,

has been designed on the basis of such a multiple view approach. Possible views in

20-sim are: equations, including matrix-vector form, block diagrams, (multi-)bond
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graphs, transfer functions, state-space representations (system, in- and output ma-

trices), time responses, phase planes, functional relationships, step responses, bode

plots, pole-zero plots, Nyquist diagrams, Nichols charts and 3D-animation. Where

possible, automatic transformation is provided and results are linked.

The port-based approach has been taken as the underlying structure of 20-sim,

formulated in the internal language SIDOPS [38], which makes it an ideal tool for

demonstration of the port-based and multiple view approaches. A more detailed in-

troduction to ports, bonds and the bond graph representation is given later. This

will give the reader sufficient insight in order to exercise it with the aid of a port-

based modeling and simulation software like 20-sim. This tool allows high level

input of models in the form of iconic diagrams, equations, block diagrams or bond

graphs and supports efficient symbolic and numerical analysis as well as simula-

tion and visualization. Elements and sub-models of various physical domains (e.g.

mechanical or electrical) or domain-independent ones can be easily selected from

a library and combined into a model of a physical system that can be controlled

by block-diagram-based (digital) controllers2. For more advanced issues, the inter-

ested reader is referred to the references. However, first we return to the meta-level

of modeling in order to address some important issues that should be clear upfront.

1.2 Modeling philosophy

1.2.1 ‘Every model is wrong’

This paradoxical statement seeks to emphasize that any ‘model’ that perfectly repre-

sents all aspects of an original system, assuming it can exist, would not be a model,

but an exact copy of that system (identity). When modeling, by contrast, one looks

for simple but relevant analogies, not for complex identities. As a consequence, a

model is much simpler than reality. This is its power and its weakness at the same

time. The weakness is that its validity is constrained to the problem context it was

constructed for, whereas its strength is the gain of insight that may be obtained in

the key behaviors that play a role in this particular context. In other words: ‘no

model has absolute validity’. The resulting advice is that one should always keep

the limitations of a model in mind and always try to make them explicit first. Espe-

cially in an early phase of a modeling or design process, such a focus may result in

interesting insights.

2 A demonstration copy of 20-sim that allows the reader to get familiar with the ideas presented in

this contribution can be downloaded from the Internet, http://www.20sim.com.
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1.2.2 ‘A model depends on its problem context’

Models should be competent to support the solution of a specific problem. This also

means that any type of archiving of a model or sub-model should always include in-

formation about the corresponding problem context. Without this context, the model

has no meaning in principle. Training of specialists and experts is often related to

what is sometimes called a ‘culture’ and that they are said to speak a ‘jargon’. This

culture and jargon reflect the existence of a particular (global) problem context, even

though this context is not explicitly described when models are made. For electrical

circuit designers, this problem context consists of the behavior of electric charges

and in particular of the voltages and currents related to this behavior, in a specific

part of the space-time scales. This behavior is such that electromagnetic radiation

plays no dominant role. Mechanical systems mostly belong to another part of the

space-time scale, although there may be considerable overlap, in particular in preci-

sion engineering.

These cultures and jargons easily lead to implicit assumptions too. The assump-

tions, in turn, may lead to model extrapolations that have no validity in the specific

problem context at hand due to the danger of ignoring these earlier assumptions.

These extrapolations often start from well-known classroom problems with analyt-

ical solutions like the model of a pendulum [35]. In other words: ‘implicit assump-

tions and model extrapolations should be avoided’. The resulting advice is that one

should focus at the model’s competence to represent the behavior of interest, not at

its ‘truth content’ and that it is better to start from scratch as much as possible instead

of trying to extrapolate standard (textbook) models without complete understanding

of the underlying assumptions.

1.2.3 Physical components versus conceptual elements

At all times it should be clear that (physical) components, i.e. identifiable, tangi-

ble system parts that can be physically disconnected and form a so-called physical,

often visible, structure, are to be clearly distinguished from (conceptual) elements,

i.e. abstract entities that represent some basic behavior, even though these concep-

tual elements are sometimes given the same name as the physical component. For

example, a resistor may be an electrical component with two connection wires and

some color code (cf. Fig. 1.2a), while the same name is used for the conceptual

element (commonly represented by Fig. 1.2b) that represents the dominant behav-

ior of the component with the same name, but also that of a piece of copper wire

through which a relatively large current flows or even the leakage in the compo-

nent ‘electrical capacitor’. Note that this model of the dominant behavior requires

that the problem context is such that the component ‘resistor’ is part of a current

loop in a network in which the behavior of the voltages and currents plays a role.

By contrast, other realistic problem contexts exist in which the dominant behavior

of the component ‘resistor’ is not represented by the element ‘resistor’, but by the
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Fig. 1.2 Component elec-

trical resistor (a) with two

different conceptual models

(b & c).

element ‘mass’ or a combination of mechanical conceptual elements like ‘mass’,

‘spring’ and ‘damper’. For example, when this component is to be rapidly manipu-

lated in assembly processes, i.e. before it becomes part of an active electric circuit,

the element ‘mass’ could be a competent model.

Often, not only the dominant behavior of a component has to be described, but

also some other properties that are often called ‘parasitic’, because they generate a

conceptual structure and destroy the one-to-one mapping between components and

elements that seems to simplify modeling and design in a quite misleading way (cf.

Fig. 1.2c). Those areas of engineering in which materials can be manipulated to an

extent that all other behaviors than the dominant one are sufficiently suppressed to

achieve the desired functionality (like electrical engineering), have been the first to

apply network style dynamic models successfully. In our daily life we have learned

to make quick intuitive decisions about dominant behaviors (‘survival of the fittest’).

This type of learning stimulates implicit and intuitive decisions that may fail in more

complex engineering situations (counter-intuitive solutions).

Implicit assumptions are commonly not only made about the problem context,

but also about the reference, the orientation, the coordinates, and the metric and

about ‘negligible’ phenomena. Famous classroom examples may have an impact on

the understanding of real behavior for generations, especially due to the textbook

copying culture that is the result of what may be called a ‘quest for truth’ motiva-

tion, ignoring model competence. A notorious example is the false explanation that

the lift of an aircraft wing is solely due to the air speed differences and resulting

dynamic pressure differences in the boundary layer generated by the wing profile.

This explanation has survived many textbooks, even though the simple observation

that airplanes with such wing profiles can fly upside down falsifies this explanation

in an extremely simple and evident way.

Another example is a model of which the behavior changes after a change of

coordinates: as coordinates are a modeler’s choice, they cannot have any impact on

the behavior of the described system. Not keeping an open eye for these aspects of

modeling may lead to exercises that are documented in the scientific literature in

which controllers are designed to deal with model behaviors that are due to imper-

fections of the model and that are not observed at all in the real system or rather the

actual problem context.

Summarizing the crucial issues in the process of modeling of dynamic behavior:
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• Determination of the purpose of the model in a specific problem context in order

to be able to judge whether a model is competent for a particular problem context.

In other words: no generic, ‘true’ (sub)model exists by definition in the sense that

(sub)models are not exact copies of the (sub)systems to be modeled, but they may

be competent to support the solution of a particular problem related to the actual

system. This problem may be related to the past (trouble shooting), to the future

(conceptual design) and to the present (model-based, real-time control, including

the control of user interfaces in simulators).

• Identification of dominant and relevant behaviors and decomposition into ele-

mentary behaviors.

• Generation of a conceptual structure that combines these elementary behaviors

into a computable dynamic model of the relevant system behavior(s).

The discussion of these meta-level issues in modeling has paved the way for the

introduction of the concept of a ‘port’ in the next section.

1.3 Ports in dynamical systems models

1.3.1 Bilateral bonds versus unilateral signals

The concept of a port is generated by the fact that sub-models in a model have to

interact with each other by definition and accordingly need some form of concep-

tual interface. In physical systems, such an interaction is always (assumed to be)

coupled to an exchange of energy, i.e. a power. In domain-independent terminol-

ogy, such a relation is called a (power) bond accordingly. This bond represents a

bilateral relation and connects two (power) ports of the elements or sub-models that

are interacting (Fig. 1.3). Note that the energy conservation principle does not re-

quire the energy to traverse the intermediate space in a flow-like manner: if energy

is generated at one place at the same rate that energy is annihilated in other place,

the energy conservation principle would still hold. However, in addition we will at

all times apply Heaviside’s (macroscopic) principle, which states that this cannot be

the case and energy has to traverse the intermediate space, even when this space is

a conceptual space, thus giving meaning to the concept of a bond.

In the signal domain, the power of a signal relation is assumed to be negligible

compared to the powers that do play a role, such that a signal relation may be con-

sidered a ‘unilateral’ relation. Note that ideal operational amplifiers have an infinite

input impedance and a zero output impedance in order to suppress the back-effect

and to be purely unilateral, but can only be approximated by adding external power.

The bilateral nature of the power relations (as opposed to unilateral signal relations)

suggests the presence of two variables that have some relation to the power rep-

resented by the bond. These so-called power-conjugate variables can be defined in

different ways, but they are commonly related to the power P by means of a product

operation and in the domain-independent case named effort e and flow f :
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Fig. 1.3 Bond connecting two

ports: bilateral signal flows.

P = e× f .

Domain-dependent examples are force and velocity in the mechanical domain, volt-

age and current in the electrical domain, pressure and volume flow in the hydraulic

domain, etc. In principle, the flow variable can be seen as the rate of change of

some state, or ‘equilibrium-establishing variable’, whereas the effort variable can

be seen as the equilibrium-determining variable. In thermodynamics the latter are

called intensive states that do not depend on the extent of the system as opposed

to the extensive states that are proportional to the extent and not necessarily equal

in equilibrium. The common approach to port-based modeling distinguishes, simi-

lar to modeling electrical networks and simple mechanical systems, two dual types

of storage: capacitive or C-type storage and inertial or I-type storage (examples of

C’s: electrical capacitor, spring, etc.; examples of I’s: coil, mass, etc.). This dis-

ables the use of the distinction between flow and effort as rate of change of state

and equilibrium-determining variable, respectively, for variable identification dur-

ing modeling. In other words: the common approach unnecessarily symmetrizes the

roles of effort and flow in the models. The so-called Generalized Bond Graph or

GBG approach introduced in 1979 [29] and further developed between 1979 and

1984 [32] circumvents this problem by using one type of storage and splitting the

corresponding domains into two that are explicitly connected by a so-called sym-

plectic gyrator (SGY, to be elaborated later), thus leaving the discussion about the

force-voltage versus force-current analogy a non-issue [30, 32]. Nevertheless, there

is a clear didactic preference to introduce the common approach using the force-

voltage analogy [91]. As this part of the book is to lay the physical foundations for

a rigorous mathematical treatment of system models that have been named ‘port-

Hamiltonian systems’ (cf. Chapter 2), where the Dirac structure is the abstraction of

a conceptual structure, it is relevant to note at this point that the GBG approach not

only leaves the symplectic gyrator explicit such that the distinction between flows

as elements of a linear space and the efforts as the elements of a dual linear space

(see Sect. B.1.1 in Appendix B) is also maintained in the mathematical picture, but

also, even more importantly, because the coupling between the domains that can
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be represented by a symplectic gyrator, is a special case from the point of view

of physics. To be more specific: in the mechanical case the coupling between the

kinetic and the potential domain only simplifies into a unit gyrator (or symplectic

gyrator) when working in an inertial frame, i.e. a non-accelerating frame, where the

coupling can be described by Newton’s second law; in the electromagnetic case the

coupling between the electric and the magnetic domain is described by Maxwell’s

equations, which only simplify into a symplectic gyrator under the quasi-stationary

assumption, which reflects the assumption that an electric circuit is not radiating,

or rather that its radiation may be neglected [30]. As a result, the GBG approach

provides more insight during modeling than the conventional approach. However,

in case of the simple examples that are inevitable during an introduction, the differ-

ence between the two approaches lies merely in the fact that the GBG represents the

SGY using only the C-type of storage port, while the conventional approach can be

considered to have eliminated this SGY by partial dualization, thus introducing the

dual type (I-type) of storage port. This is why the conventional approach will often

be used, while referring to the GBG approach as much as possible.

However, before we can discuss this in more detail, some more general issues

need to be addressed first.

1.3.2 Dynamic conjugation versus power conjugation

The two signals of the bilateral signal flow representing a physical interaction are

dynamically conjugated in the sense that one variable represents the rate of change

of the characteristic physical property, like electric charge, amount of moles, mo-

mentum, while the other variable represents the equilibrium-determining variable.

This is called dynamic conjugation. As long as no other domains are of interest, the

concept of energy is not particularly relevant, such that these variables do not need

to be related to a power, like the effort and flow discussed earlier, as the domain is

based on the conserved quantity that characterizes it. Examples are: temperature and

heat flow (product is not a power, heat is not a proper state if other domains are in-

volved), molar flow and concentration or mole fraction (product is not a power), etc.

The power-conjugated variables effort and flow are a subset of these dynamically

conjugated variables, due to the additional constraint that their product represents a

power.

This illustrates that the concept of a domain-independent conserved quantity,

the energy, is crucial for the consistent interconnection of physical phenomena in

different domains. The discussion of basic behaviors in Sect. 1.6 is based on this

and thus requires either the consistent use of power-conjugated variables or carefully

defined domain transitions that are power continuous and energy conserving.
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1.3.3 Bond graph notation

Bond graphs are labeled di-graphs: its edges are the bonds and represent the bilateral

signal flow of the power-conjugate variables effort and flow. The common conven-

tion for the position of the symbols for the effort and flow variables in a bond graph

with respect to their bond is that efforts are written above or to the left of a bond

and flows below or to the right. As this is ambiguous when the bond has a ‘north-

west inclination’ (considering the top of the paper to be ‘north’) the symbol for the

bond orientation is also used to indicate the position of the flow and is supposed

to be in line with the common convention. This edge orientation of the di-graph is

represented by a little stroke that forms a half-arrow with the line representing the

edge. This is the typical appearance of a bond (cf. the bond graph in Fig. 1.14). The

meaning of the half arrow will be discussed in more detail later in Sect. 1.6.1. The

labeled nodes of the bond graph are (multiport) elements that can be distinguished

on the basis of their behavior with respect to energy, power, and the conserved quan-

tities typical for a domain. An important property is the power continuity of a node:

a power continuous node satisfies an instantaneous power balance at all times, i.e.

the net power into the node is zero at all times. Obviously, non-degenerate one-ports

cannot be power continuous. The node labels are represented by mnemonic codes

that refer to the basic behavior.

1.3.3.1 Node types in a bond graph

There are nine (eight in the GBG!) basic node types that can be categorized in five

groups of basic physical behaviors:

1. Storage (‘first law’, energy conservation), node labels: C, I (I not in GBG)

2. Supply and demand (boundary conditions), labels: Se, Sf

3. Reversible transformation (configuration constraints, inter-domain connections),

labels: TF, GY

4. Distribution (topological constraints, intra-domain connections), labels: 0, 1

5. Irreversible transformation (‘second law’, positive entropy production, dissipa-

tion of free energy), label: R(S)

The storage elements can store energy reversibly and are consequently not power

continuous. The sources supply power to the system (from the environment) or drain

power from the system (to the environment) and are also not power continuous with

respect to the system accordingly. In fact, sources can be considered storage ele-

ments that are infinitely large with respect to the storage processes of interest, such

that, if the energy would be tracked, it would still satisfy the energy conservation

principle. The energy conservation principle prohibits other forms of power discon-

tinuity, i.e. all other elements should be power continuous in principle. The elemen-

tary transducers are power continuous two-ports, while the junctions are power con-

tinuous multi-ports, i.e. with two or more ports. The junctions are not parametrized.

In standard bond graphs, energy is replaced by its Legendre transform with respect
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Fig. 1.4a conventional MIMO. Fig. 1.4b MIMO system with bilateral

power ports and modulating signal ports.

to entropy, the free energy, which is not conserved and allows the thermal port of

the irreversible transducer to be omitted, thus changing the RS in a one-port resistor

R, which is a power discontinuous one-port. Common introductions to bond graphs

generally do not mention this and introduce the R as just another one-port, without

pointing out that its use implies the implicit assumption that the temperature of the

system can be considered constant with respect to the dynamics of interest. It would

be too disturbing to always point this out, but during the modeling process it is good

to be aware of this underlying assumption. Each of the above behaviors is discussed

in more detail in Sect. 1.6.

1.4 Computational causality

In pure mathematical terms, one can state that a subsystem with a number of (power)

ports, called multiport, is a multiple-input-multiple-output or MIMO system model,

of which the set of inputs and the set of outputs is not chosen a priori. The relation

between the input and output variables, the so-called constitutive relation, deter-

mines the nature of this multiport.

If the number of input variables is not equal to the number of output variables,

this means that there has to be at least one unilateral signal port as opposed to a

bilateral power port, as the latter is by definition characterized by one input and

one output. If this signal port is an input signal, the multiport is called ‘modulated’.

Modulation does not affect the power balance, in other words: no energy can be

exchanged via a signal port as its conjugate variable and thus the associated power

are zero by definition. Situations can exists too in which the model is modulated

although the number of inputs equals the number of outputs, because for each mod-

ulating signal there is also some output signal.

Although ports and bonds illustrate that two bilateral signals are involved in a

relation, no a priori choice about the direction of the corresponding signals needs to

be made. This is an important distinction with a conventional MIMO system (Fig-

ures 1.4a and 1.4b). A particular choice of this computational direction or causal-

ity is needed before a set of computable relations can be found or some particular

analysis can be performed. Often, such a ‘causality assignment’ leads to compu-

tational forms that are not obvious and would have led to modeling problems in



18 1 Port-Based Modeling of Dynamic Systems

Fig. 1.5 Causal stroke show-

ing computational direction

of effort signal.

conventional approaches, in particular when domain boundaries are crossed (cf. the

remarks about Paynter’s motivation in the introduction, Sect. 1.1.2). As a result,

bond causality, in particular its algorithmic assignment, does not only support the

solution of computational and analytical issues, it also gives the modeler immediate

feedback about the physical meaning of his modeling decisions and the trade-off

he has to make between conceptual and computational complexity (cf. Sect. 1.7).

This means that computational causality is not merely computational, but in fact ex-

presses the fact that time differentiation cannot be realized by physical means, while

time integration is naturally related to the process of storage (Riemann sum). The

adjective ‘computational’ is used merely to make a distinction with what is com-

monly called the ‘causality’ of signals, meaning that the effect of some input signal

in some output cannot precede the input signal, in other words a system model is

causal if it obeys the principle of the ‘arrow of time’ (time-reflection asymmetry).

If information about its (computational) causality is represented on a bond in a

bond graph by means of a so-called ‘causal stroke’ (cf. Fig. 1.5), the bond graph

simultaneously represents physical and computational structure [33, 98]. From the

latter point of view, a bond graph can be seen as a condensed block diagram. How-

ever, although any causal bond graph can be converted into a block diagram, the

reverse does not hold, as physical structure is lost in the first transformation.

The causal stroke is attached to that end of the bond where the effort signal comes

out, i.e. where it enters the connected port. This automatically means that the so-

called open end of the bond represents the computational direction of the flow signal

(cf. Fig. 1.5). The actual use and impact of the representation of computational

causality in the bond graph will become clear after the introduction of the basic

elements that each have particular causal port properties.

1.5 System versus environment: system boundary

The distinction between system and environment is determined by the role of these

parts: the environment can influence the system, but not dynamically interact with it.

In signal terminology: the environment may ‘influence’ the system via the system’s

inputs and ‘observe’ the system via its outputs, but the inputs cannot depend on

these outputs at the time scale of interest. In case of normal use, a car battery for

example, may be considered the environment of a dashboard signal light, as the

discharge caused by this small bulb will not affect the voltage of the battery in a
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considerable way. In other words, the car battery in this problem context (regular

car use) can be modeled by a voltage source. However, in a context of a car being

idle for three months (other time scale!) the car battery has to be made part of the

system and dominantly interacts with the resistance of the bulb like a discharging

capacitor. The resulting RC-model is competent in this problem context to predict

the time-constant of the discharge process. In severe winter conditions the thermal

port of this capacitor will have to be made part of this system model too, etc.

Note that, after a particular choice of the separation between unbounded envi-

ronment and bounded system, the influence of the environment on the system may

be conceptually concentrated in this finite system boundary by means of so-called

sources and sinks, also called boundary conditions or constraints, depending on the

domain background. They are part of the ideal conceptual elements to be discussed

in the next section.

From an energy point of view, the following viewpoint emerges. Since the uni-

verse is assumed to obey the first and second law of thermodynamics, viz. energy

conservation and positive entropy production, only being interested in a relatively

small part of the universe (system) that may still interact with the rest (its envi-

ronment) not only means that exchange with the environment of energy and all

conserved quantities can take place, but also that the entropy of the system may de-

crease. However, it is additionally assumed that this decrease can only be due to a

net flow out of the system, not by local annihilation. In other words: it is assumed

that the positive entropy production principle also holds locally. This justifies the

use of the concept of an irreversible transducer (RS).

1.6 Elementary behaviors and basic concepts

This section discusses in some more detail the conceptual elementary behaviors that

can be distinguished in the common description of the behavior of physical systems,

in particular from a port-based point of view. Before the individual elements can be

discussed, first the notation for the positive orientation in the form of the so-called

half-arrow needs to be elaborated.

1.6.1 Positive orientation and the half-arrow

Each bond represents a connection between two ports. However, with one loose end

it can be used to visualize the port it is connected to. The three variables involved,

viz. effort, flow and power, may have different signs with respect to this port. In

order to be able to indicate this, a half arrow, as opposed to the full arrow that is

commonly used to graphically represent the direction of a signal, is attached to the

bond, expressing the positive orientation of these variables, similar to the plus and

minus signs and the arrow that are used for an electric two-pole to represent the
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Fig. 1.6 Positive orientation

represented by a half arrow

(a), direction depends on sign

(b,c).

Fig. 1.7 Half-arrow does not

influence causality.

positive orientation of the voltage and the current respectively (Fig. 1.6). The half-

arrow does not indicate the direction of the flow or of the power: the direction is

opposite in case the corresponding variable has a negative value.

Just like the causal stroke, the half-arrow is an additional label to the bond, but

they do not affect each other (Fig. 1.7): the causal stroke merely fixates the direction

of the individual signal flows in the bilateral signal flow pair, whereas the half-arrow

merely represents positive orientation with respect to the connected ports.

1.6.2 Constitutive relations of elements

Each port of a bond graph node requires one constitutive relation, while the node

type determines the shape of this relation in the sense that it constrains the possible

forms of these constitutive relations.

Often, relatively small variations around the origin or some operating point can

be linearly approximated, resulting in just one parameter per port, e.g. capacitance,

resistance, etc. These constitutive parameters always consist of a combination of ge-

ometric parameters and material parameters. If a configuration is made time-variant,

a consequence can be that a geometric parameter becomes an energy state and re-

quires an additional power port of a storage element (e.g. condenser microphone,

coil with moving core, etc.) or a signal port of the other elements, resulting in state-

modulation.

However, as most physical variables have some upper limit, saturation, and thus

non-linearity, will occur in all constitutive relations of parametrized ports. Examples

are: the speed of light that shows that the parameter ‘mass’ cannot remain constant at

all times, breakdown voltage of a capacitor, force at which a spring breaks, magnetic

saturation, etc. It depends on the problem context whether or not such a nonlinear

range should be included in the model.

Each constitutive relation of a port may contain quantities of a different nature:

• conjugate power variables or port variables effort and flow (e, f );

• energy states (q, p);
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• dynamic parameters that characterize the constitutive relation (capacitance, resis-

tance, mass, spring constant, etc.); these parameters commonly depend on both

material and geometric parameters;

• material parameters (parameters that are characteristic for a specific material like

specific densities of all kinds);

• geometric or configuration parameters (constant spatial quantities like length,

surface, content, distance, etc.).

Making this distinction is of great help during modeling of dynamic behavior.

Take for example a simple ohmic resistor. Its constitutive relation relates the port-

variables u (voltage) and i (current) by means of a constant dynamic parameter, the

resistance R, resulting in the constitutive relation commonly addressed as Ohm’s

law: u = Ri. In turn the resistance depends on the specific resistance ρ of the mate-

rial (e.g. carbon) and its configuration, e.g. its length l and the cross-section area A:

R = ρl

A
. The variables in a dynamic model (port variables as well as state variables)

play a quite different role than the parameters, even though problem contexts may

exist in which a resistance is to be computed from a given voltage and a given cur-

rent. However, such a problem context cannot be considered to require a dynamic

model. This is different when the configuration is not constant, such that configura-

tion parameters become (configuration state) variables. An example is a potentiome-

ter, where the length of the carbon path in the circuit can be changed. However, this

does not give the resistance R the same nature as the port variables u and i: the re-

sistor keeps the same port variables and just becomes position-modulated due to the

position dependence of R.

Another example is a spring that may be described by Hooke’s law: F = Kx.

Many are inclined to categorize the variables and parameters in a similar manner

as those of the resistor: force F and displacement x as dynamic variables and the

spring constant K as the dynamic parameter that is a function of a material parameter

(Young modulus) and the configuration parameters (depending on the shape of the

spring). However, the product of the force F and the displacement x does not equal

the power of a spring, which is the product of the force F and the velocity v, i.e. the

rate of change of the displacement x. This confirms that the ideal spring is a quite

different element than the ideal resistor with respect to its energetic properties: it

stores elastic energy and is characterized by an energy state that is the time integral

of the flow. The detailed discussion of the basic elements will start with this key

element (concept) of dynamic system models: storage.

1.6.3 Storage

The most elementary behavior that needs to be present in a system in order to be

dynamic is ‘storage’. In mathematical terms, one can describe this behavior by the

integration of the rate of change of some conserved quantity, viz. the stored quantity

or state, and by the relation of this state with the equilibrium determining variable,

the so-called constitutive relation, also called port characteristic.
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The storage ports are somewhat exceptional as the relation between the conju-

gate variables effort and flow contains two stages: the first stage is always integra-

tion with respect to time into an energy state. This operation can, if necessary, be

inverted into a differentiation with respect to time although this means that physi-

cally relevant information about the initial condition, i.e. the initial content of the

storage element, cannot be given a place in the model (cf. the later discussion of

causal port properties in Sect. 1.7). The second part is an unambiguous functional

relation between the (extensive) energy state (q- or p-type) and the conjugate power

variable (intensive state). The latter relation is not a priori constrained, except for

the constraint that if a node contains more than one storage port, i.e. if it is a multi-

port storage element, it should satisfy the Maxwell reciprocity conditions in order to

satisfy the energy conservation principle. However, qualitative properties of a stor-

age (multi)port, like intrinsic stability, may lead to additional constraints such as

positive-definiteness and positive diagonal elements of the Jacobian of the relation

(cf. Sect. 1.9.3).

The storage ports can also be classified as ‘history ports’, a terminology that re-

flects the required presence of an integration with respect to time, while all other

ports belong to the class of ‘non-history ports’, which means that their constitutive

relations only relate the variables at the current time instant, in other words the con-

stitutive relations are algebraic, although it can still be the case that states modulate

these elements. This state modulation particularly occurs in mechanism models in

which the geometric constraints can be represented by position-modulated trans-

formers and their multiport generalizations. The importance of choosing variables

that lead to insightful representations of complex mechanisms that can be easily

manipulated should not be underestimated.

At the signal level, other forms of history operations can exist, like flip-flops,

sample and hold, pure integration, etc. This distinction is helpful when preparing

a numerical simulation as it indicates that variables of previous numerical steps

need to be stored for future use. The presence of history ports is required to obtain

dynamic behavior.

If measurement of the relation between intensive and extensive states results in a

loop in the port characteristic (hysteresis), the port that is observed cannot be simply

represented by just one storage port, but contains at least one other storage port

through which power is exchanged. If this port is connected to a dissipative port, the

cycle will have to be clockwise due to the positive entropy production principle (cf.

Sect. 1.9.3 on multi-ports).

In the common classification of domains, many domains are characterized by two

types of states, viz. the generalized displacement and the generalized momentum,

following the common approach in the mechanical domain (Table 1.1). It has been

noted before that a different classification of domains, which for instance separates

the mechanical domain into a kinetic domain and a potential or elastic domain, can

easily resolve the paradoxical situation that results from the common choice [32].

Application of the common classification leads to two types of storage elements:

• the C-type storage element in which the flow is integrated into a generalized

displacement and related to the conjugate effort;
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Table 1.1 Domains with corresponding flow, effort, generalized displacement, and generalized

momentum.

f flow e effort q =
∫

f dt generalized

displacement

p =
∫

edt generalized

momentum

electro-

magnetic

i current u voltage q =
∫

idt charge λ =
∫

udt magnetic

flux linkage

mechanical

translation

v velocity F force x =
∫

vdt displacement p =
∫

F dt momentum

mechanical

rotation

ω angular

velocity

T torque θ =
∫

ω dt angular dis-

placement

b =
∫

T dt angular mo-

mentum

hydraulic

pneumatic

φ volume

flow

p pressure V =
∫

φ dt volume Γ =
∫

pdt momentum

of a flow tube

thermal T tempera-

ture

fS entropy

flow

S =
∫

fS dt entropy

chemical µ chemical

potential

fN molar

flow

N =
∫

fN dt number of

moles

Fig. 1.8 Bond graph repre-

sentation (a) of an electrical

capacitor (b).

• the I-type storage element in which the effort is integrated into a generalized

momentum and related to the conjugate flow.

Both are dual in the sense that they can be transformed into each other by inter-

changing the roles of the conjugate variables effort and flow. Simple examples of

C-type storage elements are:

• ideal spring (mechanical domain, GBG: elastic or potential domain);

• ideal capacitor (electric domain, Fig. 1.8);

• ideal reservoir (hydraulic/pneumatic domain, GBG: potential domain);

• ideal heat capacitor (thermal domain).

The explicit use of the adjective ‘ideal’ tries to emphasize the difference between

elements and components although the naming is usually based on the component

that dominantly displays a particular elementary behavior.

Simple examples of I-type storage elements are:

• ideal mass (mechanical domain, GBG: C of the kinetic domain);
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Table 1.2 Thermodynamic framework of domains and variables.

f flow, equilibrium

establishing

e effort, equilibrium deter-

mining, intensive state

q =
∫

f dt generalized

state, extensive state

electric i current u voltage q =
∫

idt charge

magnetic u voltage i current λ =
∫

udt magnetic

flux linkage

elastic / po-

tential trans-

lation

v velocity F force x =
∫

vdt displacement

kinetic

translation

F force v velocity p =
∫

F dt momentum

elastic / po-

tential rota-

tion

ω angular velocity T torque θ =
∫

ω dt angular dis-

placement

kinetic rota-

tion

ω angular velocity T torque b =
∫

T dt angular mo-

mentum

elastic

hydraulic

φ volume flow p pressure V =
∫

φ dt volume

kinetic

hydraulic

p pressure φ volume flow Γ =
∫

pdt momentum

of a flow tube

thermal T temperature fS entropy flow S =
∫

fS dt entropy

chemical µ chemical potential fN molar flow N =
∫

fN dt number of

moles

• ideal inductor (electric domain, GBG: C of the magnetic domain);

• ideal fluid inertia (hydraulic/pneumatic domain, GBG: C of the kinetic domain).

This common choice of domains leads to two disadvantages:

1. the asymmetry between effort and flow is destroyed as both can be considered a

rate of change;

2. no insight can be obtained from the fact that the concept of storage can take two

different forms.

This is why the GBG framework (Table 1.2) should get ample attention too.

Storage elements can be used in a domain-independent way due to the built-in

representation of the energy-conservation principle. Not only the stored quantity,

e.g. charge, matter, momentum, flux linkage, etc. is stored, but also the energy re-

lated to this storage. In case that more than one quantity is stored (multi-port storage)

the principle of energy conservation supports the description of the potential power

transfer from one domain into the other by means of cycle processes. Almost all

engineering transduction processes can be related to this concept and usefully ana-

lyzed with the tools that thermodynamics provides, even when the model contains

no thermal port. For instance, the insight that a set of two coupled coils, i.e. the

component ‘transformer’, does not transform direct current is easily explained this

way [36].
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1.6.4 Irreversible transformation

Next to the first law of thermodynamics, i.e. energy conservation, the second law

of thermodynamics, i.e. positive entropy production, has to be satisfied. However,

the entropy production is assumed to take place only in the two-port irreversible

transformers that are usually addressed as one-port ‘dissipators’ or ‘resistors’ due

to the fact that the thermal port can be omitted if the temperature is assumed to be

homogeneous and constant at the time scale of interest. This implicit assumption

is often not explicitly mentioned, which may lead to modeling inconsistencies, as

these one-ports are clearly power discontinuous: the energy of the system is in fact

be replaced in this case by its Legendre transform (see Sect. B.2 in Appendix B)

with respect to the entropy, i.e. the so-called free energy, which can be dissipated.

This reduces the irreversible, power continuous two-port transducer into a virtually

power discontinuous, i.e. ‘free energy dissipating’ one-port that is commonly called

dissipator, resistor or damper.

As the rest of the system has to satisfy the second principle too, all entropy pro-

duction is assumed zero there, which results in entropy continuity for all elements

except for the storage elements where reversible storage of entropy is allowed. ‘Re-

versible storage’ is a tautology, as irreversibilities would violate the basic concept

of storage, but is used here to make the distinction with the irreversible produc-

tion. The common acronym for an irreversible transducer is RS, derived from the

common acronym in the isothermal case, R, to which an S for source is added to

represent the entropy production.

Simple examples of irreversible transforming (resistive) elements are:

• ideal electric resistor;

• ideal friction;

• ideal fluid resistor;

• ideal heat resistance.

Due to the second principle of thermodynamics (positive entropy production), the

relation between the conjugate variables at the R-port can be linear or nonlinear as

long as the relation remains in the 1st and 3rd quadrant. However, the relation at the

S-port (always in the thermal domain) is intrinsically nonlinear, due to the absolute

zero-point of temperature (linear two-ports can be proven to be reversible).

In other words: the constraint on an R-port is that the functional relation should

satisfy the positive entropy production principle. For the common orientation defini-

tions (i.e. one-ports except sources positive towards the port; two-ports one inward,

other port outward) this means that this function cannot be in the second or fourth

quadrant and thus has to intersect with the origin.

There is no demand of linearity of the R-port characteristic, such that a diode

belongs to the class of electrical R-ports, even though it does not have an ohmic

(i.e. linear) resistance. Similarly, a check valve belongs to the class of hydraulic R-

ports. Nonlinear friction in a mechanical contact with Coulomb and static friction

and the Stribeck effect can still be described by a nonlinear R-port, although its

implementation requires special attention from a port-based perspective.
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The irreversible transducer does not change type when dualized. In principle, it

is a power-continuous, port-asymmetric two-port just like transformers and gyrators,

which will appear an uncommon conclusion at first sight. The notion of a port-

asymmetric multiport will be clarified further when port-symmetric multi-ports are

discussed.

1.6.5 Reversible transformation

Irreversible transformation more or less suggests the ‘possibility’ of, or rather, the

need for, the ideal concept of a reversible transducer. Reversible transducers cannot

store or produce entropy, as these properties are already concentrated in the storage

and RS elements, and hence, they have to be power continuous. Their most ele-

mentary form is the two-port. It can be formally proven that, independent of the do-

main, only two types of port-asymmetric, i.e. with non-exchangeable ports, power-

continuous two-ports can exist, at the one hand the so-called transformer (acronym:

TF) that relates the efforts of both ports and also the flows of both ports (‘non-

mixing’), and at the other hand the so-called gyrator (acronym: GY) that relates

the flow of one port with the effort of the other vice versa (‘mixing’). The consti-

tutive relations of two-ports are all multiplicative in form: the multiplication factor

(transformation or gyration ratio) can be constant (regular TF and GY) or depend

on an arbitrary time-dependent variable, the so-called modulating signal (acronyms:

MTF and MGY) and, in some cases, on the port variables, in which case modula-

tion changes into non-linearity. An example of the latter situation is the dominant

behavior of a centrifugal pump or turbine: a nonlinear GY (often incorrectly written

as a ‘port-modulated’ MGY) with a hydraulic port (p,φ ) and a rotation port (T ,ω)

with ratio (aω +bφ ), i.e.

p = (aω +bφ)ω = aω2 +bφω

T = (aω +bφ)φ = aωφ +bφ 2

where a and b depend on the geometry and the fluid properties.

In fact, it is possible to ‘see’ the power-continuous, port-asymmetric RS as a

port-modulated gyrator (MGY) or transformer (MTF), depending the causality of

the R-port (the S-port has a fixed effort-in causality), modulated by the input of the

S-port (the absolute temperature) and the output of the R-port. However, not only

does this representation hide the property of irreversibility, it also results in a set of

incomputable relations if directly applied for simulation, so it is better to continue

to use it as a separate concept with its own acronym.

Simple examples of reversible transforming elements are:

• ideal (or perfect) electric transformer;

• ideal lever;

• ideal gear box;

• ideal piston-cylinder combination;
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• ideal positive displacement pump.

Simple examples of reversible gyrating elements are:

• ideal centrifugal pump;

• ideal turbine;

• ideal electric motor.

An ideal, continuously variable transmission is a simple example of a reversible,

modulated transforming element, while an ideal turbine with adjustable blades is a

simple example of a reversible, position-modulated gyrating element, albeit nonlin-

ear (cf. earlier remark).

In port-based models of planar and spatial mechanisms, specific types of (config-

uration) state-modulated (multiport) transformers play a crucial role, which exposes

the dual role of the displacement variable.

The reversible transformations appear in dual form just like most of the other

node types: the non-mixing, reciprocal transformer or TF-type transducer, and the

mixing, anti-reciprocal gyrator or GY-type transducer.

1.6.6 Supply & demand (sources & sinks / boundary conditions)

As already announced, the supply and demand from and to the environment can

be concentrated in the (conceptual!) system boundary and represented by sources

or sinks. As sinks can be considered negative sources, only ideal sources are used

as ideal elements. Given that a port has two kinds of variables, effort and flow, two

kinds of sources may exist, Sources of effort and Sources of flow (acronyms: Se and

Sf). These two, dual sources correspond to the two, dual types of boundary condi-

tions (called Dirichlet and Neumann conditions in the context of partial differential

equations).

Generally speaking, all storage elements that are large compared to the dynamics

of interest (note that this cannot be considered independently of the resistance of

its connection to the rest of the system) may be approximated by infinitely large

storage elements that are identical to sources. An infinitely large C-type storage

element becomes an Se, an infinitely large I-type storage element becomes an Sf.

However, feedback control may turn a port into a source too, cf. a stabilized voltage

source. As the voltage may be adapted or modulated, these kinds of sources are

called modulated sources (MSe, MSf).

Simple examples are of (modulated) effort sources are:

• ideal (controlled) voltage source;

• ideal (controlled) pressure source, etc.

Simple examples are of (modulated) flow sources are:

• ideal (controlled) current source;

• ideal (controlled) velocity source, etc.
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A source is degenerate in the sense that its constitutive ‘relation’ merely states that

there should be no relation between its conjugate variables: the only constraint is

that the imposed variable is independent of the conjugate variable. So-called ‘non-

ideal sources’ violate this constraint, but can always be considered a combination of

an ideal source with one of the other node types (usually a resistor that represents

the so-called internal resistance). However, non-ideal sources influence the dynamic

characteristics of a system model while ideal sources do not.

1.6.7 Distribution

The topological constraints also appear in dual form: the so-called 0-junction and

1-junction. The fact that these topological constraints are represented by nodes of

the graph are the most powerful feature of the bond graph representation, but at the

same time the most uncommon and potentially confusing aspect. The constitutive

relations (one per port) of the first type of junction require all efforts to be identical

and the flows to sum up zero with the choice of sign related to their positive orienta-

tion, similar to a Kirchhoff current law. The 0-junction not only represents a gener-

alized, i.e. domain independent, Kirchhoff Current Law (KCL), but also the identity

of the conjugate efforts, such that it can be considered to represent a common ef-

fort. Paynter called this junction a zero-junction, due to the similarity between the

symbol for zero and the shape of a node in an electric circuit that satisfies the KCL.

The constitutive relations of the second type of junction, simply called 1-

junction, are dual: all flows should be identical and the efforts sum to zero with

the choice of sign related to their positive orientation (effort balance), similar to a

Kirchhoff voltage law. Similar to its dual node, the 0-junction, a 1-junction not only

represents a generalized, i.e. domain independent, Kirchhoff Voltage Law (KVL),

but also the identity of the conjugate flows, such that it can be considered to repre-

sent a common flow.

The common approach to model mechanical constraints at the position level is

related to the dual nature of the position variable, both energy state and configura-

tion state. Merely from an energy point of view the mechanical constraints lie at

the velocity (mechanical flow) level and should be treated as such. However, the

description of the variable configuration requires a formulation at the position level,

commonly resulting in position modulation of the mechanical junction structure.

However, the (topological) structure may not be constant. In that case, the junc-

tion may depend on a logical state that, if it were, switches it ‘on’ and ‘off’. This

‘switched junction’ is represented by adding the letter X to the junction symbol, i.e.

X0 and X1, and is modulated by a Boolean signal. In the ‘off’-state, all connected

ports have zero power.

Another way to justify the need for the concept of a junction is that, in order

to be able to distribute power between subsystems in an arbitrary way, distribut-

ing elements with three or more ports are required. By assigning all energy stor-

age to the storage elements, all entropy production to the irreversible transducers



1.6 Elementary behaviors and basic concepts 29

(‘dissipators’) and all exchange with the environment to the sources, only the prop-

erty of power continuity remains. Furthermore, the requirement that ports should

be connectable at will, requires that an interchange of ports of these distributing

or interconnecting elements has no influence. This is the so-called property of port

symmetry. It is important to note that it can be formally proven that only the require-

ments of power continuity and port symmetry result in two solutions, i.e. two types

of multi-ports (i.e. interconnection elements with two or more ports) with constitu-

tive relations that turn out to be linear and non-parametrized, the so-called junctions.

No assumption about domain or form of the constitutive relations is required. This

supports the above conclusion about the mechanical constraints. Port-symmetric,

power continuous two-ports are junctions too, which explains why the assumption

of port-asymmetry was required when discussing the TF and GY.

As mentioned before, really manipulating the concept of the junction in a way

that supports the modeling process, i.e. without using other modeling techniques

and translation first, requires some skill as the true understanding of the junctions

requires the paradigm shift mentioned earlier. Nevertheless, the results are powerful,

as will be demonstrated after the discussion of the causal port properties.

1.6.8 Summary of elements

Summarizing, we repeat that the following nine (GBG: eight) basic node-types are

distinguished:

• 4 (GBG: 3) one-ports: C, I (not in GBG), (M)Se, (M)Sf;

• 2 two-ports: (M)TF, (M)GY;

• 2 n-ports with n > 1: 0, 1;

• 1 one- or two-port: (M)R(S).

The basic one-ports are power discontinuous, the basic two-ports are power-continuous

and port-asymmetric and the basic multi-ports are power continuous and port-

symmetric.

The power-continuous elements, with the exception of the RS, form together the

so-called Generalized Junction Structure. If the anti-reciprocal part of the GJS (the

gyrators) are split from this JS, a reciprocal, so-called Weighted Junction Structure

(WJS) remains, in which the transformation ratios are the weighting factors. If these

are taken from the JS too, a so-called Simple Junction Structure (SJS) remains,

which consists of junctions and bonds.

1.6.9 Modulation and bond activation

It was already shortly mentioned that the letter M in the node symbol of some of the

parametrized nodes stands for ‘modulated’, expressing that the constitutive equation
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can depend on an external signal (modulation) without changing the nature of the

node or affecting the power balance. Storage elements are parametrized, but not

modulated in principle, as this would violate the basic concept of storage. However,

when it is obvious that either the power or the dynamic interaction related to one of

the ports of a multiport version of the storage element can be neglected at all times

with respect to the other port(s), modulation can be used (e.g. a variable capacitor

in a receiver circuit).

Modulation usually requires ‘bond activation’, i.e. the bond, a bi-lateral relation,

reduces to a uni-lateral relation, the signal, due to the fact that the other conjugate

variable can be neglected in the particular context. The terminology refers to the fact

that an active element, e.g. an operational amplifier, is required to obtain this situa-

tion. However, decomposition of nonlinear elements can also lead to junction struc-

tures containing internally modulated elements that are modulated by ‘true signals’,

in the sense there is no conjugate variable by definition. This means that internal

modulation that is related to decomposition cannot be considered bond activation.

Internal modulation can be useful in principle, but should be used as a model-

ing instrument with great care, as it can be used, in particular in case of internal

modulation by one of the port variables of the modulated node, to construct one

‘elementary’ behavior out of another one. For example, a voltage source directly

or indirectly modulated by its own conjugate flow behaves like a resistor, etc. In

other words: internally modulated sources not only violate the basic definition of a

source, they can also be used to construct virtually ‘anything’. Nevertheless, if used

with sufficient care, they can enhance insight in specific cases, such that a ‘veto’ on

their use would be inappropriate.

1.7 Causal port properties

Each of the nine (GBG: 8) basic port-types (C, I, R(S), TF, GY, Se, Sf, 0, 1)

introduced above has its own causal port properties, that can be categorized as fol-

lows: fixed causality, preferred causality, arbitrary causality and causal constraints.

The graphical representation of causality by means of the causal stroke has been

introduced already (cf. Fig. 1.5).

1.7.1 Fixed causality

It needs no explanation that a source of effort (Se) always has an effort as output

signal, in other words, the causal stroke is attached to the end of the bond that is

connected to the rest of the system (Figures 1.9 and 1.10a). Mutatis mutandis the

causal stroke of a flow source (Sf) is connected at the end of the bond connected to

the source (Fig. 1.10b). These causalities are called ‘fixed causalities’ accordingly.

Apart from these fundamentally fixed causalities, all ports of elements that may
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Fig. 1.9 Fixed effort-out

causality of an effort (voltage)

source.

Fig. 1.10 Fixed causality of

sources.

Fig. 1.11 Preferred integral

causality of a capacitor.

become nonlinear and non-invertible, i.e. all but the junctions, may become fixed

due to the fact that the constitutive relation may only take one form.

1.7.2 Preferred causality

A less strict causal port property is that one of the two possibilities is, for some rea-

son, preferred over the other. Commonly, this kind of property is assigned to storage

ports, as the two forms of the constitutive relation of a storage port require either

differentiation with respect to time or integration with respect to time (Fig. 1.11).

On the basis of numerical arguments, the integral form is preferred, due to the fact

that numerical differentiation amplifies numerical noise, but there are more funda-

mental arguments too. A first indication is found in the fact that the integral form

allows the use of an initial condition, while the differential form does not. An ini-

tial state or content of some storage element is a physically relevant property that

clearly illustrates the statement that integration ‘exists’ in nature, whereas differen-

tiation does not. Although one should be careful with the concept ‘existence’ when

discussing modeling, this statement seeks to emphasize that differentiation with re-

spect to time requires information about future states in principle, whereas integra-

tion with respect to time does not. The discussion of causal analysis will make clear

that violation of a preferred causality gives important feedback to the modeler about

his modeling decisions. Some forms of analysis require that the differential form

is preferred, but this requirement is never used in order to prepare the constitutive

relations for numerical simulation.
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1.7.3 Arbitrary causality

The expected next possibility in the sequence is that the causality of a port is neither

fixed nor preferred, thus arbitrary. Examples of arbitrary port causality are linear,

thus invertible, resistive ports. For example, the a-causal form of the constitutive

relation of an ohmic resistor is u−Ri = 0, the effort-out causal form is u = Ri, while

the flow-out causal form is i = u/R (cf. Fig. 1.16).

1.7.4 Causal constraints

Causal constraints only exist for basic multi-ports, i.e. elements with two or more

ports, like the transducers (TF, GY) and the junctions (0, 1). If the constitutive

relation of the two-port transducers is linear (the junctions are intrinsically linear),

the first port to which causality is assigned is arbitrary, but the causality of the second

port is immediately fixed. For instance, the two-port transformer always has one port

with effort-out causality and one with flow-out causality. By contrast, the causalities

of the ports of a two-port gyrator always have the same type of causality. In graphical

terms: a TF has only one causal stroke directed to it, while a GY has either both

causal strokes directed to it or none.

The fundamental feature of the junctions that either all efforts are common (0-

junction) or all flows are common (1-junction) shows that only one port of a 0-

junction can have ‘effort-in causality’ i.e. flow-out causality, viz. the result of the

flow-balance. By contrast, only one port of a 1-junction can have ‘flow-in causality’

i.e. effort-out causality, viz. the result of the effort-balance. In graphical terms: only

one causal stroke can be directed towards a 0-junction, while only one open end can

be directed towards a 1-junction.

1.7.5 Causal paths

A bond path between two ports of the type C, I, R, Se, or Sf via the (G)JS containing

0, 1, TF, and GY is called a causal path if the sequence of the causal strokes is such

that they have one direction, with the exception of a path through a GY where this

causal stroke direction is always altered. A causal path is equivalent with a signal

loop in a block diagram or signal flow graph, except for the case that a source port

(Se or Sf) is part of the path (cf. Fig. 1.12).
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Fig. 1.12 Causal paths and block diagram expansion to signal loops.

Fig. 1.13 Propagation of

a fixed causality via a 1-

junction.

Fig. 1.14 Dependent inertia

via the causal constraints of

1-junctions and transformer.

Fig. 1.15 Independent iner-

tia’s by adding the elasticity

of the transmission (e.g. belt

drive).

1.8 Causal analysis: feedback on modeling decisions

1.8.1 Sequential Causality Assignment Procedure (SCAP)

Causal analysis, also called causality assignment or causal augmentation, is the al-

gorithmic process of putting the causal strokes at the bonds on the basis of the causal

port properties induced by the nature of the constitutive relations. Not only the final

result, but also the assignment process provides immediate feedback on modeling

decisions.

All sorts of causality assignment algorithms can be applied for different pur-

poses. The common purpose is to write the model equations in a form suitable for

simulation, i.e. maximizing the number of storage ports with integral causality. The

most common algorithm is the so-called Sequential Causality Assignment Proce-

dure (SCAP) [99]. It is not perfect, in the sense that it fails in some rare cases, but it
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not only generates a set of computable equations, but also gives feedback on mod-

eling decisions. This is the reason for not discussing a more robust, but also more

complex method that can be used for computer implementation [64,65,86]. Herein,

this distinction will not be made for the sake of clarity, as it is not relevant for most

simple models. A short description of the steps of the SCAP is:

Step 1a: If present, assign a fixed causal source port and propagate this causality

along the nodes with causal constraints until propagation terminates due to mul-

tiple possibilities. For instance, if a flow source is connected to a 1-junction, the

source-port immediately gets flow-out causality, which in turn means that the

corresponding port at the 1-junction gets flow-in causality, which means that all

other ports of the 1-junction get flow-out causality, etc. (Fig. 1.13). Repeat this

step until all source ports are augmented with a fixed causality. If propagation

leads to conflicts with other fixed causalities, the model is ill-posed, e.g. two

voltage sources in parallel or two force sources trying to impose the same force

(mechanically ‘in series’). If propagation leads to conflicts with preferred causal-

ities, the model contains differentiations of the inputs (input-dependent ‘states’).

However, also those storage ports that obtain integral causality as a result of

propagation of the fixed causality of one or more source-ports do not result in

independent states: only their initial conditions can be freely chosen, the rest of

their behavior is fully dictated by the source port(s), such that they do not con-

tribute to the characteristic dynamic behavior of the model. If all bond ports are

causal at this point, the model does not have its own dynamics, but is completely

determined by its inputs.

Step 1b: If present, assign a fixed causal port that is not a source port and propagate

this causality along the nodes with causal constraints until propagation termi-

nates due to multiple possibilities. Repeat this step until all ports of this type

are augmented with a fixed causality. If propagation leads to conflicts with other

fixed causalities or with preferred causalities, the causal path (signal loop) that

causes the conflict should be analyzed symbolically as to obtain a solution. This

propagation should not lead to non-preferred causalities as this would lead to

misleading conclusions about the order of the model, unless the fixed causal port

is a storage port itself. In that case, the non-preferred causality is similar to the

dependency that can occur during the next step.

Step 2: If present, assign a preferred causal port and propagate this causality along

the nodes with causal constraints until propagation terminates due to multiple

possibilities. Repeat this step until all ports with preferred causality are assigned.

If propagation leads to conflicts with other preferred causalities the model con-

tains dependent states (no independent initial condition). Fig. 1.14 shows the

bond graph of two rigidly linked inertia’s, e.g. the motor inertia and the load

inertia in a servo system model, including a transmission (TF), but without any

compliance. This shows the modeler that he has chosen a model in which two

storage ports depend on each other and form a signal loop (causal path) with an

integration that is compensated by a differentiation, i.e. a net algebraic loop. The

computational problem may be solved either by the application of implicit nu-

merical integration, by changing the model (the sequence of putting the causal
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Fig. 1.16 Arbitrary causality of two resistors causing an algebraic loop.

strokes hints the modeler where a model change should be made, e.g. adding the

compliance of the transmission between the two rigid bodies, cf. Fig. 1.15), or by

symbolic manipulation (either manually or automatically) of the model. A tech-

nique to deal with this problem by adding some advanced control schemes to the

model is under investigation. This also changes the model, but not in a way that

can be physically interpreted [103].

Step 3: If not all ports are causal after the above steps, there are at least two ports

with arbitrary causality, resulting in a number of possibilities that all will lead to

causal paths between ports of elements that are described by algebraic constitu-

tive relations thus causing algebraic signal loops (Fig. 1.16). Choose the causality

of these ports not only in such a way that the number of algebraic loops is min-

imized, but also in such a way that the loop gains of these algebraic loops are

smaller than one as much as possible. This step is to be repeated until all bond

have their causality assigned. In a similar manner as in case of differential causal-

ity, the assignment procedure itself hints the modeler how to change the model

in order to prevent this kind of loop.

The causality assignment procedure is completely algorithmic. More advanced

variations on this algorithm exists and are implemented that can handle all possible

situations [86]. As a result, it can be used without using the notation itself, e.g. by

replacing the bond graph by the more common iconic diagram representation or the

linear graph notation. However, this largely reduces the amount of feedback that

can be given to the modeler about his modeling decisions, and the effect of model

modifications becomes less obvious. Nevertheless, if one is merely interested in
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converting a simple iconic diagram into code ready for simulation, this is a powerful

option.

A causal bond graph can always be straightforwardly expanded into a block di-

agram or signal flow graph. The experienced user will be able to obtain the same

information from a causal bond graph as from a block diagram, viz. the computa-

tional structure, while the bond graph already represents the physical structure in

a domain-independent way. This demonstrates one of the main advantages of the

bond graph representation: it can be seen immediately how changes in the physi-

cal structure affect the computational structure and thus the dynamic characteristics

vice versa. This is particularly helpful during conceptual design, troubleshooting

and solving problems related to numerical simulation.

At the other hand, not any block diagram or signal flow graph can be converted

into a causal bond graph as they generally do not contain conjugate port variables.

However, an attempt to convert a block diagram that represents the computational

structure of a model of a physical system into a bond graph can be a quite insightful

experience, as it may explicate earlier choices about the nature of the physical ports

as well as eliminations of physically relevant variables.

The earlier mentioned trade-off between conceptual and computational complex-

ity is illustrated by the simple example of a rigid constraint between two rigid bodies

(Fig. 1.14). Conceptual simplicity leads to a causal problem (a so-called dependent

inertia with differential causality) – the example already showed that a loop emerges

containing an integration and a differentiation, i.e. a ‘net’ algebraic loop – and con-

sequently to numerical complexity (DAE). A DAE is a mixed set of differential

and algebraic equations that cannot be solved straightforwardly by means of ex-

plicit numerical integration (e.g. with the common Runge-Kutta 4th-order method).

However, the way in which the causal problem emerges in the model during causal

analysis clearly suggests how the model can be modified in order to prevent the

causal problem. In this example, the rigid constraint can be replaced by an elastic

element, i.e. a finite rigidity. Although this gives the model some more conceptual

complexity, the numerical (structural) complexity is reduced, due to the fact that the

resulting equations are a set of ordinary differential equations (ODE) that can be

solved by explicit numerical integration schemes [10] 3.

The model still needs a rather stiff constraint and thus introduces dynamics at a

time scale that is not of interest. This means not only that both options to formulate

the model can be a solution depending on the problem context, the available tools,

etc., but also that a third solution can be obtained, viz. a symbolic transformation

of the model as to eliminate the dependent inertia. In other words: two rigidly con-

nected rigid bodies may be considered as one rigid body. This possibility is directly

induced by the causal analysis of the bond graph model.

3 See also the course slides at http://www.npac.syr.edu/users/gcf/CPS615NI95/.



1.8 Causal analysis: feedback on modeling decisions 37

Fig. 1.17 Iconic representation of a servo system with belt drive (graphical 20-sim input).

Fig. 1.18 Simple, linear bond graph model of the servo system in Fig. 1.17.

1.8.2 Example of causal analysis

Fig. 1.17 shows an iconic diagram representation of the servo-system containing

a belt drive. The bond graph in Fig. 1.18 represents this simple linear model. It is

graphical input to 20-sim. This software puts the causal strokes automatically, and

immediately while drawing the graph. The order in which the strokes are put can be

indicated by sequence numbers, where i. j represents the jth propagation of putting

stroke i.

The fixed causalities are (M)Sf (1) and Se (2), where only Sf propagates via the

1-junction and imposes causality to the electrical I and R and the electrical port of

the GY, thus eliminating the electrical time constant that would have been present

in the model if the electrical source would have been a voltage source. The propa-

gation stops at the next 1-junction, after the mechanical port gets its causality via

the constraint of the GY (1.2). The preferred causalities are the remaining storage

elements, i.e. the inertia of the rotor (I 3), the compliance of the belt (C 4) and the

inertia of the mechanical load (I 5). The motor inductance (I 1.3) plays no dynamic

role as its current is imposed and its voltage (that is computed by differentiation)

does not affect the current amplifier (Sf 1), like the motor voltage (GY 1.1) and

the ohmic voltage drop in the circuit (R 1.4). Propagation of the motor inertia (I 3)

reaches as far as the 0-junction representing the force in the belt, and propagation of

the inertia of the load completes the causality of this graph. Following causal strokes

through the graph (causal path) identifies the existence of signal loops.
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1.9 Hierarchical modeling

1.9.1 Word bond graphs

Organizing and representing larger system models in a hierarchy can increase ef-

ficiency and overview of the modeling process. An example is the so-called word

bond graph, in which the nodes represent physical components. They can also rep-

resent phenomena that may require sub-models that contain more than one basic

element. Word bond graphs are represented by words or text enclosed by ellipses

or circles. These words describe the basic behavior or purpose of a sub-model (as

for example in Fig. A.16 in Appendix A). This notation can also be used to support

the first modeling phase, in which the relevant physical components in a system

are identified, without further specification than their dominant behavior. It can be

decided later whether other elementary behaviors are also required to obtain a com-

petent model of this physical component.

1.9.2 Multi-bonds

In many cases, multiple bonds connect the nodes of a (word) bond graph. Simi-

lar to the notation of multiple signals as ‘double-lined arrows’, it can be useful to

represent multiple bonds by ‘double-lined half-arrows’ that are called multi-bonds.

The dimension of a multi-bond, i.e. the number of constituent bonds, can optionally

be written between the two lines of a multi-bond. Multi-bonds have initially been

introduced as vector bonds. As multi-bonds are frequently used to represent the co-

ordinates of vectors in planar and spatial mechanisms, while it merely represents

a column matrix and not a vector in space, this terminology appeared to be highly

confusing for a graphical representation and has been abandoned in the early eight-

ies. Apart from the advantages of efficiency and overview, one major disadvantage

of a multi-bond is that it is not suited to properly represent the causality, except for

the situation that the causalities of all constituent bonds are identical. In order to

cope with this problem and in order to be able to combine multi-bond representa-

tions with single bond representations, the concept of the direct sum was introduced,

represented by a vertical line perpendicular to the connected bonds. Formally speak-

ing, it can be considered a special multiport transformer that is characterized by a

unit matrix of which the order of the rows can be changed as to represent a change

of order of the participating bonds. In that case, this matrix has to be provided in

order to characterize the direct sum, otherwise a unit matrix (no change of order) is

assumed.
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1.9.3 Multiport generalizations

A word bond graph adds only one level to the model hierarchy in principle, although

multiple layers are possible if physical sub-components can be identified. However,

complex models also require different layers at the conceptual level. This requires

multiport generalizations of the nodes.

1.9.3.1 Sources

By definition, a multiport requires that its ports are interrelated. This means that the

sources cannot be combined into a multiport due to the nature of a source, i.e. no

dependency on the conjugate variables, but source arrays can be used (cf. the last

part of this section).

1.9.3.2 Multiport storage elements

The storage elements can be generalized into a multiport in which the number of

ports is equal to the number of energy states. The energy functions of these states

can be used to generate the constitutive relations of this multiport, similar to the

Gibbs relation in thermodynamics or to the Hamiltonian description of mechanical

systems. It is obvious that this makes this notation and approach an ideal instrument

to establish a link between these two huge scientific areas. The constitutive relation

has to satisfy the Maxwell reciprocity condition4 in order to satisfy the energy con-

servation principle. This condition is also called Maxwell symmetry as it requires

the symmetry of the Jacobian of the constitutive relations.

However, a multiport storage element adds the potential of a new behavior that is

not represented by one of the basic elements, viz. reversible transformation by cycle

processes as opposed to the instantaneous reversible transformation represented by

a transformer or a gyrator. From a conceptual design point of view, it is worthwhile

to note that, in principle, instantaneous power transduction between domains does

not ‘exist’ (e.g. passive DC transformers cannot be realized, often rotating parts or

cycling ‘working fluids’ are required to construct continuous power transducers),

but can only be approximated by relatively fast cycles or cycles in which the storage

can be neglected (e.g. intermittent elastic storage in the touching gears of a gear

box).

Another important observation with respect to multiport storage elements is that

the integral causality of the ports corresponds to a generating function that is equal

to the energy. If an integral causality of a port is changed into a differential one,

this corresponds to replacing the (extensive) energy state by its (intensive) conjugate

variable (partial derivative of the energy with respect to the conjugate state). This, in

turn, corresponds mathematically to a Legendre transform of a function of multiple

4 In Hamiltonian mechanics this is expressed as the energy being a so-called closed two-form.
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variables (cf. Sect. B.2 in Appendix B). Legendre transforms are not only often used

in thermodynamics, when the conjugate variable of a state (intensive state, effort)

can be assumed constant (e.g. free energy in case of constant temperature, enthalpy

in case of constant pressure, Gibbs free energy in case of constant temperature and

pressure), but also in mechanics, where the dual nature of the position variable,

i.e. energy state and configuration state, has led to a preference for the position

and its derivative, the velocity, instead of the true extensive energy states: position

and momentum. As a consequence, the Hamiltonian (kinetic energy T + potential

energy V ) is often Legendre transformed into the Lagrangian (kinetic co-energy T ∗

- potential energy V ), although this generally does not lead to equations that are

optimally suited for numerical simulation. This wide field of research is still under

study, but many important results have been obtained that appear not yet generally

known.

A final observation to be mentioned is that, in the linear case, a multiport

storage element can always be decomposed into some one-port storage elements

and a power continuous junction structure called Generalized Junction Structure

(GJS) or Dirac structure in mathematical terminology (cf. Sect. 2.1). If the num-

ber of independent parameters required to characterize the multiport or n-port, viz.

n + (n2 − n)/2 = n(n + 1)/2, is equal to the number of parameters in the decom-

position, the decomposition is called a canonical decomposition. Decompositions

depend on the causality of the ports. Reversibly, a bond graph that only contains

storage elements and a non-modulated (except state modulation by the states of the

participating storage elements) junction structure with open ports can be composed

into one multiport storage element. There are only two types of canonical decompo-

sitions of a linear two-port storage element: three linear storage elements connected

by a Simple Junction Structure (SJS) (direct or immediate canonical decomposition)

or two linear storage elements connected by a GJS with only one linear transducer

(congruence canonical decomposition, see [31]).

Example 1.1 (Solenoid with configuration dependent inductance). Many different

configurations exist in which a solenoid has an inductance that is configuration de-

pendent, like a relay, a magnetic bearing or suspension system, a solenoid with

moving core like a linear motor, or an LVDT (linear variable displacement trans-

mitter), etc. They all have in common that the linear constitutive relation of the

electric (magnetic) port of a coil, viz. λ = Li, where λ is the flux linkage5, L the

self-inductance, and i the current, can be written: λ = L(x)i, where x is some dis-

placement that represents a change of configuration (position of the core, changing

air gap in the magnetic circuit, etc.).

Since a storage element cannot be simply modulated by such a configuration

variable, it means that a second port emerges, which, due to the mechanical nature

of the configuration variable, is a mechanical port and this displacement also starts

playing a role in the stored magnetic energy

5 Its rate of change is the voltage of the electrical port: u = dλ
dt

= L di
dt
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E =
λ 2

2L(x)
= E(λ ,x).

Obviously, the constitutive relations of the ports can be found by taking the partial

derivatives of this energy with respect to the energy states:

i(λ ,x) =
∂E

∂λ
=

∂

∂λ

λ 2

2L(x)
=

λ

L(x)

the already known relation for the magnetic port and

F =
∂E

∂x
=

∂

∂L

(
λ 2

2L(x)

)
dL(x)

dx
= F(λ ,x)

or

F(i,x) = − i2

2

dL(x)

dx

The latter, more common relation can also be found by taking the co-energy E∗

(negative Legendre transform of the magnetic energy) with respect to λ :

E∗(i,x) = iλ −E(λ ,x) = iλ − λ 2

2L(x)
= L(x)i2 − L(x)i2

2
=

L(x)i2

2

λ (i,x) =
∂E∗

∂ i
=

∂

∂ i

L(x)i2

2
= L(x)i

F(i,x) = −∂E∗

∂x
= − ∂

∂x

L(x)i2

2
= − i2

2

dL(x)

dx

Note that in this case of a linear magnetic port, confusing energy and co-energy

would lead to a change of sign of the force. In case of a nonlinear magnetic port,

confusion between energy and co-energy may lead to even more serious differences,

thus showing that the distinction between energy and co-energy should not be ne-

glected, as, unfortunately, is often the case.

Without further specifying L(x) it is still possible to perform some generic anal-

ysis, e.g. by finding the Jacobian of the constitutive relations:

∂ (i,F)

∂ (λ ,x)
=




1
L(x) − λ

L2(x)
dL(x)

dx

− λ
L2(x)

dL(x)
dx

(
λ 2

L3(x)

(
dL(x)

dx

)2

− λ 2

2L2(x)
d2L(x)

dx2

)



Requiring that:
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L(x) > 0
(

dL(x)

dx

)2

− L(x)

2

d2L(x)

dt2
> 0

det
∂ (i,F)

∂ (λ ,x)
=

(
λ 2

L4(x)

(
dL(x)

dx

)2

− λ 2

2L3(x)

d2L(x)

dx2

)

− λ 2

L4(x)

(
dL(x)

dx

)2

= − λ 2

2L3(x)

d2L(x)

dx2
> 0

means that
d2L(x)

dx2 < 0, such that
(

dL(x)
dx

)2

− L(x)
2

d2L(x)
dx2 > 0 is also satisfied. On the

other hand,

∂ (λ ,F)

∂ (i,x)
=

[
L(x) i

dL(x)
dx

−i
dL(x)

dx
− i2

2

d2L(x)
dx2

]

and

L(x) > 0

d2L(x)

dx2
< 0

det
∂ (λ ,F)

∂ (i,x)
= − i2

2

d2L(x)

dx2
L(x)+ i2

(
dL(x)

dx

)2

> 0

with the latter equation is always true if the two earlier conditions are satisfied.

As intrinsic stability conditions require the diagonal elements of the Jacobian as

well as its determinant to be positive, this translates in both cases in the condition

that the self-inductance should always be positive and that the second derivative of

L(x) should be negative, independent of the way in which the magnetic port is driven

(i.e. by imposing a current or a flux linkage). The examples mentioned before can be

split into two groups: those in which L(x) is a bell-shaped function and those where

L(x) is hyperbolic. In the first case the middle part of the bell, between the flex

points, describes an intrinsically stable area. For instance, if a coil with moving core

is given a constant current, the core will react as if it is attached to a regular spring

as long as it is brought not to far from its equilibrium point, otherwise it will fly out.

By contrast, a magnetic circuit with a variable air gap always has a second derivative

of L(x) that is positive, which means that the air gap will always tend to collapse

when the magnetic circuit is activated, unless a mechanical spring is added, like in a

relay, or a virtual spring is created by means of a proportional feedback between air

gap (position of the moving part) and current with sufficient gain to make the spring

constant-like element in the Jacobian positive (magnetic levitation in bearings and

suspension systems).
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The shape of L(x) in magnetic levitation is often incorrectly chosen as C1 + C2
x

,

where it should be

L(x) = C1 +
C2

C3 + x
= Lmin +

C3(Lmax −Lmix)

C3 + x

with Ci > 0, thus showing that the self-inductance remains finite when the air gap

closes (x = 0). As

d2L

dx2
= +

2C2

(C3 + x)3
> 0,

this two-port storage element is intrinsically unstable for all values of x ≥ 0 and if

i 6= 0.

The common derivation of the self-inductance of a solenoid while neglecting

fringing (‘infinitely long solenoid’) and while assuming that the field lines run

through a cross-section area A over a distance l through iron with permeability

µr ≫ 1 and over a distance x through air with µr = 1, leads to

L(x) =

(
x

n2µ0A
+

l

n2µoµrA

)−1

=

(
xµr + l

n2µ0µrA

)−1

=
n2µ0µrA

xµr + l

where n is the number of windings. In other words:

C1 = Lmin C2 =
l

µr

(Lmax −Lmin) C3 =
l

µr

where Lmax = L(0) = n2µ0µrA
l

. For larger values of x, the non-fringing assumption

does not hold, which leads to the addition of C1(Lmin) to the above expression.

However, given that µr ≫ 1, there are values of x for which l can be neglected, but

if the air gap x approaches 0, L(0) will definitely have a finite value as l cannot

be neglected in that situation. In problem contexts where x is assumed to vary only

around some operating point for which xµr ≫ l, the approximation where C3 = 0

can be valid, but this constraint seems to be easily overlooked. In Example 2.2 in

Chapter 2, even a linear relation is chosen, inspired by the required control setting.

1.9.3.3 Multiport resistors

The resistive port of an irreversible transducer can also be generalized in multiport

form. The Jacobian of its relations has to be symmetric, as only this symmetric

part contributes to the entropy production. A potential non-symmetric Jacobian can

always be separated into a symmetric part that can be represented by a resistive

port and an antisymmetric part that can be represented by the multiport general-

ization of a gyrator, which is a power continuous junction structure element. This

issue has been a source of conflict in thermodynamics: in the thirties Onsager in-

troduced firstly his Onsager symmetry for the relation between generalized forces

(efforts) and generalized fluxes (flows), i.e. for what is now called a multiport re-
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Fig. 1.19 Symmetrizing a

dissipative multiport (Rs +
Ra) into Rs by changing the

‘port of view’ (B→A).

sistor; next Casimir, inspired by a discussion with Tellegen, who introduced the

gyrator in electrical engineering in the late forties, extended this by showing that in

some cases there is an antisymmetric contribution. Finally, Truesdell showed that

a transformation of the conjugate variables can always symmetrize these relations,

which corresponds to changing the ‘port of view’ in a bond graph (Fig. 1.19). There

exist (canonical) decompositions of multiport R(S) elements similar to those of the

storage elements but the constraint on linearity is much less severe.

1.9.3.4 Multiport transducers

The elementary two-port elements, TF and GY, can be generalized in a straight-

forward manner by changing the scalar conjugate variables in their relations into

column matrices. The scalar transduction ratio then becomes a transduction matrix.

In case of a multiport transformer, the matrix itself describes the flow-relation and

its transpose the effort relation, as can be derived from power continuity.

In case of the gyrator there is simply one relation between efforts and flows that

is characterized by the gyration matrix. This makes clear that the format of the

constitutive relation of a gyrator is similar to that of a resistive port, even though

the gyrator belongs to the (generalized) junction structure. It can thus be seen as the

antisymmetric counterpart of a symmetric R-port too (cf. Fig. 1.19).

The causality constraints of the multiport transformer are related to the (partial)

invertibility of the transformation matrix. If the dimension of the inward multi-bond

is not equal to the dimension of the outward multi-bond, the matrix is not square

and singular as a result. This means that the causality of the multi-bonds cannot be

inverted. However, it may still be possible to invert the constitutive matrix partially.

This requires a mixed causality of the multi-bonds and accordingly the use of the

direct sum.

1.9.3.5 Multiport components

The port relations of arbitrary multi-ports can be used as a starting point for decom-

posing them into basic elements. The nature of the variables plays an important role:

constitutive relations of true power ports should be formulated in terms of efforts and

flows or their time integrals (energy states). If the latter case occurs, this indicates
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that the port should at least contain one storage element. Depending on the shape of

this relation, other elements may be needed to represent the corresponding behav-

ior. For instance, the presence of a cycle demonstrates the presence of either another

coupled storage port, or a form of hysteresis caused by a resistive phenomenon.

1.9.3.6 Arrays

In the multi-bond notation it is sometimes helpful to be able to collect a number of

the same symbols, even if they are not directly related. For instance, a collection

of 1-port I-type elements representing the storage of momentum of a body in three

independent coordinate directions has no power relation (at least, not in the inertial

frame), but should conceptually be connected. The concept of an array of bonds or

elements, represented by underlining the corresponding symbol is used. Nesting (ar-

rays of arrays, etc.) is possible, but only advised as long as it enhances insight. For

instance, three n-dimensional multi-bonds connected to an (n-dimensional) junction

array (each bond connects only to the junction in the array matching its index) has a

different meaning than three n-dimensional multi-bonds connected to a single junc-

tion (all bonds connected to one and the same junction), even though the difference

in notation is just the underlining of the junction symbol. The first is often encoun-

tered in models of planar and spatial mechanisms, while the second is encountered

in models of chemical reactions for example.

1.10 Example of the use of the port concept

Only the actual use of the port-concept can fully clarify its importance. Therefore,

a simple, but meaningful case study is discussed to illustrate it. A component that

may be used in engineering systems, viz. a control valve, but in which the control

is not realized by (digital) electronic signal processing, but physically, i.e. as an

energetic process, is taken as an example. This choice is made in order to focus on

the multidisciplinary modeling part on the basis of power ports.

1.10.1 Problem context

Under some operating conditions of a low-vacuum control valve (cf. Fig. 1.20a)

spontaneous, self-sustained oscillations occur [34]. Given the purpose of the valve,

viz. to maintain a constant ‘low’ vacuum in particular in medical applications, this

behavior is clearly undesired. In order to solve this problem, insight is to be ob-

tained in the source(s) of this behavior and the design parameters of the system that

should be modified in order to prevent it. Some simple oscilloscope measurements

of these oscillations, mainly showing shape and frequency, are available to the mod-
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eler as well as a construction drawing of the valve with data on geometry and used

materials.

1.10.2 Functional description of the valve

The intended basic operation of this control valve is that an orifice can be opened

and closed by a valve body that is connected to a diaphragm loaded by a coil spring.

Changing the position of the other end of this spring with a screw knob can set its

pretension. The diaphragm is part of the wall of the valve chamber that is at one

end pneumatically connected to the ‘supply’ pressure (a relatively high-level under-

pressure or ‘vacuum’) via the valve opening, and at the other end via an orifice and

a hose to the ‘mouth piece’ to suck superfluous body fluids away in a device as used

by dentists and surgeons. Given some desired low-level under-pressure or ‘low-

vacuum’, the pressure difference over the diaphragm will cause the valve opening

to get smaller if the actual pressure gets too low compared to the desired pressure.

Due to the increasing flow resistance of the variable orifice, the pressure difference

with the supply pressure (‘high’ vacuum) will increase again vice versa.

1.10.3 Analysis

If this common functional explanation is translated into a block diagram, it becomes

clear that the resulting model is not dynamic at all (Fig. 1.20b) as all relations are

algebraic. If oscillations occur, it is tempting to identify a damped second-order

system consisting of the valve body, the spring and the mechanical damping that is

always present. As such a model is not competent to explain sustained oscillations, it

seems natural to argue that the airflow is likely to drive these oscillations. The next

step that seems obvious is to conclude that the common chaotic behavior of flow

phenomena (turbulence) that is hard to model deterministically is likely to form the

onset of the oscillations, such that no attempt is made to create a competent dynamic

model and the problem is approached in an ad hoc way by changing the geometry

of the valve by trial and error. However, if one approaches this problem from a port-

based point of view, the analysis will make a distinction between power relations

and modulation and leads to another result, not only of the analysis, but also of the

identification of the actual physics that play a role in such a valve.

In a regular valve, a screw modulates the position of the body of the valve. The

fluid acts with a force on this body, trying to move it out of the valve seat. The reason

that the fluid cannot displace the valve body, while the human hand can do this, is the

presence of the transforming action of the screw/spindle. This amplifies the static

friction of the screw seen from the translating port of the screw/spindle. As this

static friction is only overcome during a hand turning the valve and the dynamics

of this process are at a completely different time scale than the flow phenomena
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Fig. 1.20a Sketch of the low-vacuum control

valve.

Fig. 1.20b Stationary, qualitative model re-

sulting from functional description.

Fig. 1.21a Definition of ports in 20-sim. Fig. 1.21b Port definition and model con-

struction in 20-sim.

in the valve, a change in position of the valve body is commonly modeled as a

modulation of the flow resistance of the valve. Hence, a position-modulated resistor

can describe the dominant behavior of an arbitrary valve. Fig. 1.21a shows how the

ports and port properties of such a valve can be defined in 20-sim, without having

to define the exact constitutive relations yet.

Feedback can be introduced by a diaphragm (membrane) that transforms the dif-

ference in pressure at its sides into a force that can cause a displacement. By con-

necting the body of the valve to the membrane, such that an increasing pressure

difference will close the valve and a decreasing pressure difference will open it, it

will thus have a counteraction in both cases, i.e. a negative feedback. The relation

between force and displacement is characterized by the stiffness of the diaphragm.

It needs to be increased in order to attenuate the position changes of the valve body.

This is achieved by connecting a spring. By connecting the other end of the spring to
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Fig. 1.22 Addition of bound-

ary conditions, flow resistor

and structural details (pres-

sures).

Fig. 1.23 Simplification by

choosing ambient pressure as

reference pressure.

the screw, the screw can be used to change the set-point for the pressure difference

by changing its pretension. The screw serves as a combination of a (Coulomb) fric-

tion and a transformer that amplifies its effect similar to the regular valve described

above. The model of the complete valve has to be at least extended by an ideal trans-

former (TF) to represent the dominant behavior of the diaphragm, an ideal spring to

represent the elasticity of the spring and the diaphragm and a modulated force source

to introduce the pretension of the set-point. Fig. 1.21b shows this with a mixed use

of bond graph (TF, valve), block diagram (modulation and signal generator) and

iconic diagram elements (spring, force source and fixed world).

The source of the pressure difference described earlier has not been accurately

defined. One might conclude that the pressure difference between some supply pres-

sure and the ambient pressure is meant, as these are the two evidently present pres-

sures. However, this would cause the output pressure to fluctuate with the supply

pressure, which is commonly not desired. Furthermore, the output pressure is re-

quired to cause some fluid exchange with the environment, i.e. some flow connection

to the environment. As a consequence one is usually interested in setting the pres-

sure difference between the output pressure and the supply pressure. This means

that the valve needs to contain a more or less closed volume, the so-called valve

chamber, in which the output pressure is allowed to be different from both the sup-

ply pressure and the ambient pressure. Some opening needs to connect this chamber

to the environment in order to allow the desired flow. The dominant behavior of this

restriction is that of an ideal (fluid) resistor, whether a hose is attached to the ori-

fice or not. Parasitic behavior as fluid inertia (in case of a long hose) may be added

later when fine-tuning the model. Summarizing, the following ideal elements are

required in the model: a position-modulated resistor, a transformer, a spring and a

resistor (Fig. 1.22). As the spring is the only dynamic element (containing an inte-

gration with respect to time) in this model, oscillatory solutions are not likely.

The labeled nodes in the bond graph merely represent the elementary behaviors,

while their exact constitutive relations have not been determined yet. Some of them

will be nonlinear though. If the ambient pressure is chosen as the reference pressure

(zero-point), all pressures will obtain negative values in a low-vacuum control valve,

but the bond graph is simplified into the one in Fig. 1.23.
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Fig. 1.24 Addition of the

valve body mass.

Fig. 1.25 Addition of the

compressibility of the air in

the valve chamber (C).

Fig. 1.26 Third-order loop

(three integrations) via a

causal path and the modula-

tion signal.

The flows through the resistors are mainly dictated by the pressures imposed by

sources, except for the contribution to the valve chamber pressure by the spring.

It can be concluded that a linearization around an operating point leads to a first-

order model characterized by a time constant. At this point, one might be inclined

to bring the possibility of oscillatory behavior into the model by adding an ideal

mass to represent the dominant behavior of the valve body. Together with the ideal

spring, it forms a (damped) second-order system that has the potential of oscillatory

solutions. However, such oscillations are not self-exciting and not self-sustained,

unless the system would contain negative damping which would violate the laws of

physics. Note the change of position of some of the causal strokes and the causal

path from the R to the valve that indicates an algebraic loop (Fig. 1.24).

The causality assignment process hints the modeler to put a C-type storage el-

ement at the 0-junction representing the pressure in the valve chamber in order to

prevent this algebraic loop. This element represents the compressibility of the air in

the valve chamber (Fig. 1.25) and will appear crucial in obtaining a model that is

competent to represent self-sustained oscillations.

Fig. 1.26 shows that this model contains a third-order loop via the position mod-

ulation of the valve and a causal path. It can be interpreted as follows: the position

that modulates the valve is (inversely) proportional to the flow through the valve.

The capacitance of the valve chamber relates the displaced volume (first integra-

tion!) of this flow to the pressure in the chamber. Via the diaphragm, this pressure

acts with a force on the valve body. The resulting change of its momentum (sec-

ond integration!) results in a change of its velocity. Finally this velocity causes its

displacement (third integration!) and thus results in the position that modulates the

valve resistor (closure of the loop). Under certain conditions, this third-order loop
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may have unstable solutions that are bounded by the non-linearities of the model,

like the valve body hitting the valve seat (end stops that can be added to the model

easily, but discussion is beyond the scope of this contribution). The causality of the

ports is derived automatically by 20-sim while drawing this graph and automatically

results in a computable set of equations for simulation. The same procedure is used

in case of iconic diagrams and other representations that contain the concept of a

port, although in those cases the feedback to the modeler that a third-order loop is

present cannot be obtained immediately.

At this point, this example should have illustrated that modeling should be fo-

cused on the relevant elementary behaviors present in a system, not merely on a

(one-to-one) translation of the functional relations as the designer of the valve in-

tended them, because this would never lead to taking into account the compressibil-

ity of the air in the valve chamber. The key elements in this model to represent the

observed behavior are: the nonlinear, position-modulated resistor, the valve body,

the diaphragm, and the capacitance of the valve chamber to create the third-order

loop, but also the spring with its adjustable pretension, the fluid resistor at the in-

let, the supply pressure and the valve body hitting the valve seat. The number of

elementary one- and multi-ports is relatively small.

After identification of the proper parameter values from the provided measure-

ment data, first simulation runs showed indeed self-starting and self-sustained os-

cillations with a shape that coincided with the shapes observed on the oscilloscope.

The frequency of these first results was only 10% off the observed frequency. Fine-

tuning of the model allowed these frequencies to be matched. However, the actual

problem was already solved before the parameter identification phase, because the

process of setting up the model structure already indicated the crucial role of the

valve chamber that was confirmed by an experienced senior craftsman at the work

floor where these valves were produced and assembled. He then remembered that

long ago the role of this valve chamber had been identified by trial and error. A re-

sult that had been forgotten over the years and didn’t play a role in the design of the

new valve that was causing the oscillation problems.

After this example, it should be clear that a bond graph without modulating sig-

nals can never result in three integrations in a loop. A causal path can only exist

between at most two storage elements, such that the number of integrations in the

corresponding signal loop is at most two. Hence, the modulating signal of the valve

that contains a third integration is also one of the crucial elements to create a model

that is competent to represent the instabilities.

The possibility of the oscillations that can result from the third-order loop is in-

herent to this particular type of design. None of the parts can be omitted or changed

as to break the third-order loop. For this reason, every designer of such valves should

have the insights discussed above in order to be able to choose the dimensions of

the valve such that it never displays undesired behavior in or near the range of op-

eration. This insight is more related to model structure than to particular simulation

results, although simulation results can help to identify the influence of the valve

chamber size on the modes of operation. This example demonstrates that a port-
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based approach provides this insight quite easily, although the use of this approach

should be supported by sufficient knowledge of engineering physics.

It is worth mentioning that similar types of valves are not only used as low-

vacuum control valves, but also as fuel-injection valves, pressure reduction valves,

etc.

1.11 Conclusion

This chapter has shown how port-based modeling of physical systems can help to

make proper decisions during the design of engineering systems and to create more

insight in the physics of the object to be modeled, in particular in a control setting.

This approach enables to easily move between finding solutions in the controller

domain and in the physical structure itself, which is the key aspect of a mechatronics

approach. Software tools that cover the different domains support this process.

Emphasis was on the background of physical modeling in general. In particular,

the paradigm shift to the port-based approach via the introduction of the concepts of

a port and a junction were discussed. An example demonstrated that one of the major

achievements is that a notation allowing a multiple-view approach provides insight

into the nature and background of the observed behavior. A bond graph representa-

tion gives the user who has gained some expertise in this graphical language, feed-

back about his modeling decisions via the representation of computational causality

by the causal stroke. As the approach focuses on insight, it is also particularly suited

for education [36]. All sorts of generalizations exist, but are beyond the scope of

this contribution. The interested reader is referred to the extensive literature on bond

graphs and port-based modeling.

1.12 Future Trends

The following general future trends in bond graphs and port-based modeling can be

distinguished:

• continuous improvement and extension of computer support for bond graph rep-

resentation, analysis and generation of numerical simulation models;

• mathematical formalization (port-Hamiltonian systems) of all aspects of the ap-

proach thus establishing a relation with other model views and analysis tech-

niques (see also Chapter 2);

• extension of port-interfaces to other sub-model descriptions like wave-scattering

variables (cf. Sect. 2.8) and finite elements;

• true integration of model parts that need modal analysis with a ‘lumped ap-

proach’;

• heuristic tools that support the port-based modeling decision process as well as

the settings of the numerical analysis;
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• support of knowledge management in order to store and use relevant information

about the problem context, model performance, etc.;

• use of the port-based approach for co-simulation.



Chapter 2

Port-Hamiltonian Systems

A. J. van der Schaft

Abstract In this chapter, we will show how the representation of a lumped-parameter

physical system as a bond graph naturally leads to a dynamical system endowed

with a geometric structure, called a port-Hamiltonian system. The dynamics are

determined by the storage elements in the bond graph (cf. Sect. 1.6.3), as well as

the resistive elements (cf. Sect. 1.6.4), while the geometric structure arises from

the generalized junction structure of the bond graph. The formalization of this geo-

metric structure as a Dirac structure is introduced as the key mathematical concept

to unify the description of complex interactions in physical systems. It will also

allow to extend the definition of a finite-dimensional port-Hamiltonian systems as

given in this chapter to the infinite-dimensional case in Chapter 4, thus dealing with

distributed-parameter physical systems. We will show how this port-Hamiltonian

formulation offers powerful methods for the analysis of complex multi-physics sys-

tems, also paving the way for the results on control of port-Hamiltonian systems

in Chapter 5 and in Chapter 6. Furthermore, we describe how the port-Hamiltonian

structure relates to the classical Hamiltonian structure of physical systems as being

prominent in e.g. classical mechanics, as well as to the Brayton-Moser description

of RLC-circuits.

2.1 From junction structures to Dirac structures

In the preceding chapter, we have seen how port-based network modeling of

lumped-parameter physical systems leads to a representation of the physical sys-

tem by generalized bond graphs. Generalized bond graphs consist of energy-storing

elements, resistive elements and power-continuous elements like transformers, gyra-

tors, 0- and 1-junctions. These elements are linked by bonds, each carrying a pair of

flow and effort variables, whose product equals the power through the bond. In order

to fix the direction of power flow, a half arrow is attached to each bond, indicating

the positive direction of power flow. Thus, a generalized bond graph is an oriented

graph with its nodes being decorated by one of the elements indicated above, and ev-

53
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ery edge (called ‘bond’) labeled by two scalar conjugate variables f ∈ R (flow) and

e ∈R (effort). Furthermore, the elements at every node only involve the flow and ef-

fort variables associated with the bonds that are incident on that node. An important

extension of this definition of a bond graph is obtained by allowing for multi-bonds

(cf. Sect. 1.9.2) which are labeled by flow vectors f ∈ R
k and dual effort vectors

e ∈ (Rk)∗ (cf. Sect. B.1.1 in Appendix B). Still a further extension (see Sect. 3.2),

which comes in naturally for 3-D mechanical systems, is to consider flows f which

take value in the Lie algebra se(3) (‘twists’) and efforts e which take value in the

dual Lie algebra se∗(3) (‘wrenches’).

The key concept in the formulation of port-based network models of physical

systems as port-Hamiltonian systems is the geometric notion of a Dirac structure.

Loosely speaking, a Dirac structure is a subspace of the space of flows f and efforts

e such that for every pair ( f ,e) in the Dirac structure the power e× f is equal to zero,

and, furthermore, the subspace has maximal dimension with respect to this property.

This means that it is not possible to extend the subspace to a larger subspace that

still has this power-conserving property.

2.1.1 From 0- and 1-junctions to Dirac structures

Before mathematically formalizing the notion of a Dirac structure, we will start

with showing how the basic bond graph elements of 0-junctions and 1-junctions as

encountered in the previous chapter share these properties of power-conservation

and maximal dimension.

Let us start with the simple 0-junction relating two pairs of flows and efforts

( f1,e1) and ( f2,e2) by

e1 = e2 f1 + f2 = 0 (2.1)

Clearly, the 0-junction is power-conserving, that is,

e1 f1 + e2 f2 = 0 (2.2)

But there is more: the 0-junction is described by two independent equations involv-

ing 4 variables, and thus represents a 2-dimensional subspace of the 4-dimensional

space of total vectors ( f1, f2,e1,e2) of flow and effort variables. Furthermore, it can

be seen (this will be shown later on in full generality) that we cannot leave out one

of the equations in (2.1) while still retaining the power-conservation property (2.2),

that is, the dimension 2 is the maximal achievable dimension with respect to the

power-conservation property.

The same situation occurs for the simple 1-junction described by the relations

f1 = f2 e1 + e2 = 0 (2.3)
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Fig. 2.1 Equivalence of

bonds. =

As for the 0-junction, the 1-junction describes a two-dimensional subspace of the

four-dimensional space of total vectors ( f1, f2,e1,e2) of flow and effort variables,

which is satisfying the power-conservation property (2.2).

Higher-dimensional 0- and 1-junctions share the same properties. Recall that the

0-junction linking k bonds with pairs of flow and effort variables ( f1,e1), · · · ,( fk,ek)
is given by the equations

e1 = e2 = · · · = ek f1 + f2 + · · ·+ fk = 0 (2.4)

In this case we have k independent equations involving 2k flow and effort variables,

and thus the 0-junction specifies a k-dimensional subspace of the space R
2k of to-

tal vectors ( f1, f2, · · · , fk,e1,e2, · · · ,ek). Furthermore, all vectors in this subspace

satisfy the power-conservation property

e1 f1 + e2 f2 + · · ·+ ek fk = 0, (2.5)

while k is the maximal dimension of a subspace with this property.

Similarly, the 1-junction linking k pairs of flow and effort variables ( f1,e1), · · · ,
( fk,ek) is given by the k independent equations

f1 = f2 = · · · = fk e1 + e2 + · · ·+ ek = 0 (2.6)

specifying a k-dimensional subspace of the space R
2k of vectors in the form

( f1, f2, · · · , fk,e1,e2, · · · ,ek), satisfying the power-conservation property (2.5).

Remark 2.1. The case of 0- or 1-junctions where the incident k bonds do not all

have the same orientation can be handled similarly. For example, in the case of a

0-junction the last equation of (2.4) changes into

ε1 f1 + ε2 f2 + · · ·+ εk fk = 0

where εi is 1 or −1 depending on the fact that the half-arrow of the i-th bond incident

on the 0-junction is incoming or outgoing. Consequently, the power-conservation

property (2.5) changes into

ε1e1 f1 + ε2e2 f2 + · · ·+ εkek fk = 0.

For conceptual and notational simplicity we will throughout only consider bonds

with incoming half-arrows on every incident node. In this respect we note that any

bond between two nodes with arbitrary half-arrow direction can be always repre-

sented by two bonds linked by a zero-junction in such a way that the half-arrows are

incoming for both nodes, see Fig. 2.1. (Although this may change the signs of the

flow and effort variables.)
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2.1.2 Dirac structures

0- and 1-junctions are prime examples of the general concept of a (constant) Dirac

structure, which is defined as follows. We start with an abstract finite-dimensional

linear space of flows F (for simplicity one can think of F = R
k). The elements of

F will be denoted by f ∈ F , and are called flow vectors. The space of efforts is

given by the dual linear space E := F ∗, and its elements are denoted by e ∈ E . In

the case of F = R
k the space of efforts is E = (Rk)∗, and as the elements f ∈R

k are

commonly written as column vectors the elements e ∈ (Rk)∗ are appropriately rep-

resented as row vectors. Then the total space of flow and effort variables is F ×F ∗,

and will be called the space of port variables. On the total space of port variables,

the power is defined by

P = 〈e | f 〉 ( f ,e) ∈ F ×F ∗, (2.7)

where 〈e | f 〉 denotes the dual product, that is, the linear functional e ∈ F ∗ acting

on f ∈F . If f is written as a column vector and e as a row vector, then the power is

simply the product 〈e | f 〉 = e f . However, for simplicity, we will throughout write

the effort e also as a column vector, in which case

〈e | f 〉 = eT f

Definition 2.1. A Dirac structure on F ×F ∗ is a subspace D ⊂F ×F ∗ such that

i) 〈e | f 〉 = 0, for all ( f ,e) ∈ D ,

ii) dimD = dimF .

Property i) corresponds to power-conservation, and expresses the fact that the

total power entering (or leaving) a Dirac structure is zero. It can be shown that the

maximal dimension of any subspace D ⊂ F ×F ∗ satisfying property i) is equal

to dimF . Instead of proving this directly, we will give an equivalent definition

of a Dirac structure from which this claim immediately follows. Furthermore, this

equivalent definition of a Dirac structure has the advantage that it generalizes to

the case of an infinite-dimensional linear space F , leading to the definition of an

infinite-dimensional Dirac structure. This will be instrumental in the definition of a

distributed-parameter port-Hamiltonian system later on in Chapter 4.

In order to give this equivalent characterization of a Dirac structure, we look

more closely at the geometric structure of the total space of flow and effort variables

F ×F ∗. In fact, related to the definition of power, there exists a canonically defined

bi-linear form ≪ ·, · ≫ on the space F ×F ∗, defined as

≪ ( f a,ea),( f b,eb) ≫:=
〈

ea | f b
〉

+
〈

eb | f a
〉

(2.8)

with ( f a,ea),( f b,eb) ∈ F ×F ∗. Note that this bi-linear form is indefinite, that

is, ≪ ( f ,e),( f ,e) ≫ may be positive or negative, but it is non-degenerate, that is,
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≪ ( f a,ea),( f b,eb)≫= 0 for all ( f b,eb) implies that ( f a,ea) = 0. We can then give

the following fundamental definition, [54, 67].

Proposition 2.1. A (constant) Dirac structure on F ×F ∗ is a subspace D ⊂ F ×
F ∗ such that

D = D⊥, (2.9)

where ⊥ denotes the orthogonal complement with respect to the bi-linear form

≪ ·, · ≫.

Proof. Let D satisfy (2.9). Then for every ( f ,e) ∈ D

0 =≪ ( f ,e),( f ,e) ≫= 〈e | f 〉+ 〈e | f 〉 = 2〈e | f 〉

By non-degeneracy of ≪ ·, · ≫

dimD⊥ = dim(F ×F ∗)−dimD = 2dimF −dimD

and hence property (2.9) implies dimD = dimF . Conversely, let D be a Dirac

structure and thus satisfying properties i) and ii) of Definition 2.1. Let ( f a,ea),( f b,eb)
be any vectors contained in D . Then by linearity also ( f a + f b,ea +eb) ∈D . Hence

by property i)

0 =
〈

ea + eb | f a + f b
〉

=
〈

ea | f b
〉

+
〈

eb | f a
〉

+ 〈ea | f a〉+
〈

eb | f b
〉

=
〈

ea | f b
〉

+
〈

eb | f a
〉

=≪ ( f a,ea),( f b,eb) ≫

(2.10)

since by another application of property i), 〈ea | f a〉 =
〈
eb | f b

〉
= 0. This implies

that D ⊂ D⊥. Furthermore, by property ii) and dimD⊥ = 2dimF − dimD it fol-

lows that

dimD = dimD⊥

yielding D = D⊥.

Remark 2.2. Note that we have actually shown that property i) implies D ⊂D⊥. To-

gether with the fact that dimD⊥ = 2dimF −dimD this implies that any subspace

D satisfying property i) has the property that dimD ≤ dimF . Thus, as claimed be-

fore, a Dirac structure is a linear subspace of maximal dimension satisfying property

i).

Remark 2.3. The property D = D⊥ can be regarded as a generalization of Telle-

gen’s theorem in circuit theory, since it describes a constraint between two different

realizations of the port variables, in contrast to property i).

Remark 2.4. In the infinite-dimensional case (cf. Chapter 4), the property D = D⊥

will be taken as the definition of an infinite-dimensional Dirac structure.
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From a mathematical point of view, there are a number of direct examples of

Dirac structures D ⊂ F ×F ∗. We leave the proofs as an exercise to the reader.

1. Let J : F ∗ → F be a skew-symmetric linear mapping, that is, J = −J∗, where

J∗ : F ∗ → (F )∗∗ = F is the adjoint mapping. Then

graph J :=
{
( f ,e) ∈ F ×F ∗ | f = Je

}

is a Dirac structure.

2. Let ω : F → F ∗ be a skew-symmetric linear mapping, then

graph ω :=
{
( f ,e) ∈ F ×F ∗ | e = ω f

}

is a Dirac structure.

3. Let G ⊂ F be any subspace. Define

G orth =
{

e ∈ F ∗ | 〈e | f 〉 = 0 for all f ∈ G
}

Then G ×G orth ⊂ F ×F ∗ is a Dirac structure.

2.1.3 Examples of Dirac structures

In this subsection we will discuss a number of physical examples of Dirac structures.

2.1.3.1 Transformers, gyrators, and ideal constraints

We have seen above that the bond graph elements of 0- and 1-junctions are key

examples of Dirac structures. Also transformers, gyrators and ideal constraints are

seen to be examples of Dirac structures. Indeed, recall the definition of a trans-

former. A transformer is a 2-port linking two bonds with flow and effort variables

( f1,e1) and ( f2,e2) by

f2 = α f1 e1 = −αe2 (2.11)

with α being a constant, called the transformer ratio. The subspace defined by (2.11)

is easily checked to be a Dirac structure. Also the multi-dimensional version of

(2.11)

f b = T f a ea = −ebT (2.12)

with ( f a,ea) and ( f b,eb) being pairs of column vectors of flow variables and row

vectors of effort variables of the same dimension, and T being a matrix of appropri-

ate dimensions, is immediately seen to define a Dirac structure.
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Similarly, recall that a gyrator is given by the relations

f1 = βe2 βe1 = − f2, (2.13)

which again is defining a Dirac structure. The resulting unit gyrator for β = 1 is

called the symplectic gyrator. The multi-dimensional version is given as the Dirac

structure defined by

f a = Geb f b = −GTea, (2.14)

where now, again for simplicity of notation, ea and eb denote column vectors, and

G is a matrix of appropriate dimensions.

Finally, ideal effort and flow constraints are trivial examples of Dirac structures.

Let ( f ,e) denote a (multi-dimensional) pair of flows and efforts. Then the effort

constraint

D :=
{
( f ,e) | e = 0

}

is defining a Dirac structure D , and the same holds for the ideal flow constraint

D :=
{
( f ,e) | f = 0

}

2.1.3.2 Kirchhoff’s laws as Dirac structures

Consider an electrical circuit with n edges where the current through the i-th edge

is denoted by Ii and the voltage over the i-th edge is Vi. Collect the currents in

a single column vector I (of dimension n) and the voltages in an n-dimensional

column vector V . The following consequence of Kirchhoff’s current and voltage

laws is well-known. Let Kirchhoff’s current laws be written in matrix form as

A I = 0 (2.15)

for some matrix A (with n columns). Then Kirchhoff’s voltage laws can be written

in the following form. All allowed vectors of voltages V in the circuit are given as

V = A Tλ (2.16)

for any vector λ of appropriate dimension. It is immediately seen that the total space

of currents and voltages allowed by Kirchhoff’s current and voltage laws

D :=
{
(I,V ) | A I = 0, V = A Tλ

}
(2.17)

defines a Dirac structure. Consequently

(V a)T
Ib +(V b)

T
Ia = 0
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for all pairs (Ia,V a),(Ib,V b) ∈ D . In particular, by taking V a, Ib equal to zero, we

obtain

(V b)
T

Ia = 0

for all Ia satisfying (2.15) and all V b satisfying (2.16). This nothing else than Telle-

gen’s theorem.

2.1.3.3 Kinematic pairs

The equations describing a kinematic pair (e.g. a revolute or prismatic joint) in a

three-dimensional mechanical system are, from the Dirac structure point of view, of

the same type as Kirchhoff’s current and voltage laws.

Indeed, the constraint forces F generated in a (frictionless and infinitely stiff)

kinematic pair produce no power on the velocities V allowed by the pair:

A V = 0 F = A Tλ (2.18)

where the columns of A T form a basis for the space of allowed reaction forces, and

λ is a vector of scalar reaction force coordinates.

2.1.3.4 The principle of virtual work

The principle of virtual work can be formulated as

n

∑
i=1

Fiδqi = 0 (2.19)

where F = (F1, · · · ,Fn) is the vector of impressed forces, and δq = (δq1, · · · ,δqn)
denotes the vector of virtual displacements that are compatible with the kinematic

constraints of the system. The expression ∑n
i=1 Fiδqi equals the infinitesimal work

(or power) due to the impressed forces and the infinitesimal displacement. If the

kinematic constraints of the system are given as A δq = 0 then it follows that the

impressed forces should be given as F = A Tλ , as in the previous subsection.

Originally, the principle of virtual work is formulated as an equilibrium condi-

tion: it expresses that a system with configuration coordinates q = (q1,q2, · · · ,qn),
which is subject to forces F(q), is at equilibrium q̄ if the virtual work ∑n

i=1 Fi(q̄)δqi

corresponding to any admissible virtual displacement δq from q̄ is equal to zero.

In D’Alembert’s principle this was extended by adding the inertial forces ṗ to the

impressed forces.
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Fig. 2.2 Port-Hamiltonian

system.

S (storage)

R (resistive)

C (control)

I (interaction)

D

2.2 Port-Hamiltonian systems

Crucial property of the concept of Dirac structure is that the standard intercon-

nection of Dirac structures is again a Dirac structure. This fact, formally to be

proved in Sect. 2.5, has the following important consequence. Recall from Chap-

ter 1 that any bond graph representation of a physical system can be summarized

as follows. The bond graph consists of energy-storing elements, resistive elements,

power-conserving elements such as transformers, gyrators, and ideal constraints,

and 0- and 1-junctions linked by bonds. Furthermore, we may take together all

the power-conserving elements with the 0- and 1-junctions in order to obtain the

generalized junction structure (cf. Sect. 1.6.8). Since all the components of the gen-

eralized junction structure are Dirac structures, the generalized junction structure,

being the interconnection of Dirac structures, is also a Dirac structure. Hence the

bond graph can be compactly represented as an energy-storing multi-port contain-

ing all the energy-storing elements and a resistive multi-port containing all resistive

elements, linked by a Dirac structure. This is the starting point for the formulation

of a bond graph as a port-Hamiltonian system.

2.2.1 Geometric definition of a port-Hamiltonian system

In general, a port-Hamiltonian system can be represented as in Fig. 2.2. Central

in the definition of a port-Hamiltonian system is the notion of a Dirac structure,

depicted in Fig. 2.2 by D . Basic property of a Dirac structure is power conservation:

the Dirac structure links the various port variables in such a way that the total power

associated with the port-variables is zero.

The port variables entering the Dirac structure have been split in Fig. 2.2 in dif-

ferent parts. First, there are two internal ports. One, denoted by S , corresponds to

energy-storage and the other one, denoted by R, corresponds to internal energy-

dissipation (resistive elements). Second, two external ports are distinguished. The

external port denoted by C is the port that is accessible for controller action. Also

the presence of sources may be included in this port. Finally, the external port de-
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noted by I is the interaction port, defining the interaction of the system with (the

rest of) its environment.

2.2.1.1 Energy storage port

The port variables associated with the internal storage port will be denoted by

( fS,eS). They are interconnected to the energy storage of the system which is de-

fined by a finite-dimensional state space manifold X with coordinates x, together

with a Hamiltonian function H : X → R denoting the energy. The flow variables

of the energy storage are given by the rate ẋ of the energy variables x. Furthermore,

the effort variables of the energy storage are given by the co-energy variables ∂H
∂x

(x),

resulting in the energy balance1

d

dt
H =

〈
∂H

∂x
(x) | ẋ

〉
=

∂ TH

∂x
(x)ẋ (2.20)

The interconnection of the energy storing elements to the storage port of the

Dirac structure is accomplished by setting

fS = −ẋ eS =
∂H

∂x
(x)

Note that this corresponds to an ordinary 0-junction. Hence the energy balance

(2.20) can be also written as

d

dt
H =

∂ TH

∂x
(x)ẋ = −eT

S fS (2.21)

2.2.1.2 Resistive port

The second internal port corresponds to internal energy dissipation (due to friction,

resistance, etc.), and its port variables are denoted by ( fR,eR). These port variables

are terminated on a static resistive relation R. In general, a static resistive relation

will be of the form

R( fR,eR) = 0, (2.22)

with the property that for all ( fR,eR) satisfying (2.22)

〈eR | fR〉 ≤ 0 (2.23)

A typical example of such a nonlinear resistive relation will be given in Example

2.15. In many cases we may restrict ourselves to linear resistive relations. (Note

that some types of non-linearity already can be captured in the description of the

1 Throughout we adopt the convention that ∂H
∂x

(x) denotes the column vector of partial derivatives

of H.
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resistive port of the Dirac structure.) This means that the resistive port variables

( fR,eR) satisfy linear relations of the form

R f fR +ReeR = 0 (2.24)

The inequality (2.23) corresponds to the square matrices R f and Re satisfying the

following properties of symmetry and semi-positive definiteness

R f RT
e = ReRT

f ≥ 0, (2.25)

together with the dimensionality condition

rank
[
R f |Re

]
= dim fR (2.26)

Indeed, by the dimensionality condition (2.26) and the symmetry (2.25) we can

equivalently rewrite the kernel representation (2.24) of R into an image representa-

tion

fR = RT
e λ eR = −RT

f λ (2.27)

That is, any pair ( fR,eR) satisfying (2.24) can be written into the form (2.27) for a

certain λ , and conversely any ( fR,eR) for which there exists λ such that (2.27) holds

is satisfying (2.24). Hence by (2.25) for all fR,eR satisfying the resistive relation

eT
R fR = −

(
RT

f λ
)T

RT
e λ = −λ TR f RT

e λ ≤ 0 (2.28)

Without the presence of additional external ports, the Dirac structure of the port-

Hamiltonian system satisfies the power-balance

eT
S fS + eT

R fR = 0 (2.29)

which leads by substitution of the equations (2.21) and (2.28) to

d

dt
H = −eT

S fS = eT
R fR ≤ 0 (2.30)

An important special case of resistive relations between fR and eR occurs when the

resistive relations can be expressed as an input-output mapping

fR = −F(eR) (2.31)

where the resistive characteristic F : R
mr → R

mr satisfies

eT
RF(eR) ≥ 0, eR ∈ R

mr (2.32)

In many cases, F will be derivable from a so-called Rayleigh dissipation function

R : R
mr → R, in the sense that
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F(eR) =
∂R

∂eR

(eR).

For linear resistive elements, (2.31) specializes to

fR = −R̃eR (2.33)

for some positive semi-definite symmetric matrix R̃ = R̃T ≥ 0.

2.2.1.3 External ports

Now, let us consider in more detail the external ports to the system. We shall dis-

tinguish between two types of external ports. One is the control port C , with port

variables ( fC,eC), which are the port variables which are accessible for controller

action. The other type of external port is the interaction port I , which denotes the

interaction of the port-Hamiltonian system with its environment. The port variables

corresponding to the interaction port are denoted by ( fI ,eI). Taking both the external

ports into account the power-balance (2.29) extends to

eT
S fS + eT

R fR + eT
C fC + eT

I fI = 0, (2.34)

whereby (2.30) extends to

d

dt
H = eT

R fR + eT
C fC + eT

I fI (2.35)

2.2.1.4 Port-Hamiltonian dynamics

The port-Hamiltonian system with state space X , Hamiltonian H corresponding to

the energy storage port S , resistive port R, control port C , interconnection port I ,

and total Dirac structure D will be succinctly denoted by Σ = (X ,H,R,C ,I ,D).
The dynamics of the port-Hamiltonian system is specified by considering the con-

straints on the various port variables imposed by the Dirac structure, that is,

( fS,eS, fR,eR, fC,eC, fI ,eI) ∈ D ,

and to substitute in these relations the equalities fS =−ẋ and eS = ∂H
∂x

(x). This leads

to the implicitly defined dynamics

(
−ẋ(t),

∂H

∂x
(x(t)), fR(t),eR(t), fC,(t),eC(t), fI(t),eI(t)

)
∈ D (2.36)

with fR(t),eR(t) satisfying for all t the resistive relation

R( fR(t),eR(t)) = 0 (2.37)
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In many cases of practical interest, the equations (2.36) will constrain the allowed

states x, depending on the values of the external control and interaction port vari-

ables ( fC,eC) and ( fI ,eI). Thus in a coordinate representation (as will be treated

in detail in the next section), port-Hamiltonian systems generally will consist of a

mixed set of differential and algebraic equations (DAEs).

Example 2.1 (General LC-circuits). Consider an LC-circuit with arbitrary network

topology. Kirchhoff’s current and voltage laws take the general form

AT
LIL +AT

CIC +AT
PIP = 0

VL = ALλ
VC = ACλ
VP = APλ

(2.38)

for certain matrices AL, AC and AS. Here IL, IC and IP denote the currents, respec-

tively through the inductors, capacitors and external ports. Likewise, VL, VC and VP

denote the voltages over the inductors, capacitors and external ports. (The matrices

AL, AC and AS are in fact of a special nature, consisting of 0’s, 1’s, and −1’s, corre-

sponding to the circuit graph.) Kirchhoff’s current and voltage laws define a Dirac

structure D between the flows and efforts

f = (IC,VL, IP) = (−Q̇,−φ̇ , IP)

e = (VC, IL,VP) =

(
∂H

∂Q
,

∂H

∂φ
,VP

)

with Hamiltonian H(Q,φ) the total energy. Indeed, it easily follows that for all

IC,VL, IP,VC, IL,VP satisfying (2.38) IT
C VC +IT

L VL +IT
P VP = 0, while dimD = dim IC +

dimVL +dim IP. This leads to the port-Hamiltonian system in implicit form

−φ̇ = ALλ

∂H

∂Q
= ACλ

VP = APλ

0 = AT
L

∂H

∂φ
−AT

CQ̇+AT
PIP

with state vector x = (Q,φ). Clearly, in general these implicit equations are not

easily amenable to analysis. However, more convenient coordinate representations

can be obtained using the theory exposed in Sect. 2.4.

Example 2.2 (Electro-mechanical system). Consider the dynamics of an iron ball in

the magnetic field of a controlled inductor, shown in Fig. 2.3. The port-Hamiltonian

description of this system (with q the height of the ball, p the vertical momentum,

and ϕ the magnetic flux of the inductor) is given as
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Fig. 2.3 Magnetically levi-

tated ball.




q̇

ṗ

ϕ̇


 =




0 1 0

−1 0 0

0 0 − 1
R







∂H
∂q

∂H
∂ p

∂H
∂ϕ


+




0

0

1


V,

I =
∂H

∂ϕ

(2.39)

This is a typical example of a system where the coupling between two different

physical domains (mechanical and magnetic) takes place via the Hamiltonian

H(q, p,ϕ) = mgq+
p2

2m
+

ϕ2

2k1(1− q
k2

)

where the last term depends both on a magnetic variable (in this case ϕ) and a

mechanical variable (in this case the height q).

2.2.2 Modulated Dirac structures and port-Hamiltonian systems

on manifolds

For many systems, especially those with 3-D mechanical components, the Dirac

structure is actually modulated by the energy or by configuration variables, as de-

scribed in Sect. 1.6.9. Furthermore, the state space X is a manifold (Sect. B.1.2)

and the flows fS = −ẋ corresponding to energy-storage are elements of the tangent

space TxX at the state x ∈ X , while the efforts eS are elements of the co-tangent

space T ∗
x X . The modulation of the Dirac structure is usually intimately related to

the underlying geometry of the system.

Example 2.3 (Spinning rigid body). Consider a rigid body spinning around its center

of mass in the absence of gravity. The energy variables are the three components of

the body angular momentum p along the three principal axes: p = (px, py, pz), and
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the energy is the kinetic energy

H(p) =
1

2

(
p2

x

Ix

+
p2

y

Iy

+
p2

z

Iz

)
,

where Ix, Iy, Iz are the principal moments of inertia. Euler’s equations describing the

dynamics are



ṗx

ṗy

ṗz


=




0 −pz py

pz 0 −px

−py px 0




︸ ︷︷ ︸
J(p)




∂H
∂ px

∂H
∂ py

∂H
∂ pz


 (2.40)

The Dirac structure is given as the graph of the skew-symmetric matrix J(p), i.e.,

modulated by the non-constant energy variables p.

Modulated Dirac structures often arise as a result of ideal constraints imposed on

the generalized velocities of the mechanical system by its environment, called kine-

matic constraints. In many cases, these constraints will be configuration dependent,

causing a Dirac structure modulated by the configuration variables.

Consider a mechanical system with n degrees of freedom, locally described

by n configuration variables q = (q1, . . . ,qn). Expressing the kinetic energy as
1
2
q̇TM(q)q̇, with M(q) > 0 being the generalized mass matrix, we define in the usual

way the Lagrangian function L(q, q̇) as the difference of kinetic energy and potential

energy P(q), i.e.

L(q, q̇) =
1

2
q̇TM(q)q̇−P(q) (2.41)

Suppose now that there are constraints on the generalized velocities q̇, described as

AT(q)q̇ = 0 (2.42)

with A(q) an n× k matrix of rank k everywhere (that is, there are k independent

kinematic constraints). Classically, the constraints (2.42) are called holonomic if

it is possible to find new configuration coordinates q = (q1, . . . ,qn) such that the

constraints are equivalently expressed as

q̇n−k+1 = q̇n−k+2 = · · · = q̇n = 0 (2.43)

in which case one may eliminate the configuration variables qn−k+1, . . . ,qn, since

the kinematic constraints (2.43) are equivalent to the geometric constraints

qn−k+1 = cn−k+1, . . . ,qn = cn (2.44)

for certain constants cn−k+1, . . . ,cn determined by the initial conditions. Then the

system reduces to an unconstrained system in the (n− k) remaining configuration

coordinates (q1, . . . ,qn−k). If it is not possible to find coordinates q such that (2.43)
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holds (that is, if we are not able to integrate the kinematic constraints as above),

then the constraints are called non-holonomic.

The equations of motion for the mechanical system with Lagrangian L(q, q̇) and

constraints (2.42) are given by the Euler-Lagrange equations [154]

d

dt

(
∂L

∂ q̇

)
− ∂L

∂q
= A(q)λ +B(q)u λ ∈ R

k, u ∈ R
m

AT(q)q̇ = 0 (2.45)

where B(q)u are the external forces (controls) applied to the system, for some n×m

matrix B(q), while A(q)λ are the constraint forces. The Lagrange multipliers λ (t)
are uniquely determined by the requirement that the constraints AT(q(t))q̇(t) = 0

have to be satisfied for all t.

Defining the generalized momenta

p =
∂L

∂ q̇
= M(q)q̇, (2.46)

the constrained Euler-Lagrange equations (2.45) transform into constrained Hamil-

tonian equations

q̇ =
∂H

∂ p
(q, p)

ṗ = −∂H

∂q
(q, p)+A(q)λ +B(q)u

y = BT(q)
∂H

∂ p
(q, p)

0 = AT(q)
∂H

∂ p
(q, p) (2.47)

with H(q, p) = 1
2

pTM−1(q)p+P(q) the total energy. The constrained Hamiltonian

equations (2.47) define a port-Hamiltonian system, with respect to the modulated

Dirac structure

D =

{
( fS,eS, fC,eC) | 0 = AT(q)eS, eC = BT(q)eS,

− fS =

[
0 In

−In 0

]
eS +

[
0

A(q)

]
λ +

[
0

B(q)

]
fc, λ ∈ R

k

}
(2.48)

Example 2.4 (Rolling euro). Let x,y be the Cartesian coordinates of the point of

contact of the coin with the plane. Furthermore, ϕ denotes the heading angle, and θ
the angle of Queen Beatrix’ head2. With all constants set to unity, the constrained

Lagrangian equations of motion are

2 On the Dutch version of the Euro.
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ẍ = λ1

ÿ = λ2

θ̈ = −λ1 cosϕ −λ2 sinϕ +u1

ϕ̈ = u2 (2.49)

with u1 the control torque about the rolling axis, and u2 the control torque about

the vertical axis. The total energy is H = 1
2

p2
x + 1

2
p2

y + 1
2

p2
θ + 1

2
p2

ϕ . The rolling con-

straints are ẋ = θ̇ cosϕ and ẏ = θ̇ sinϕ , i.e. rolling without slipping, which can be

written in the form (2.42) by defining

AT(x,y,θ ,φ) =

[
1 0 −cosφ 0

0 1− sinφ 0

]

This motivates to extend the definition of a constant Dirac structure D ⊂F ×F ∗

(with F a linear space) as given before in Proposition 2.1 to Dirac structures on

manifolds. Simply put, a Dirac structure on a manifold X is point-wise (that is, for

every x ∈ X ) a constant Dirac structure D(x) ⊂ TxX ×T ∗
x X .

Definition 2.2. Let X be a manifold. A Dirac structure D on X is a vector sub-

bundle of the Whitney sum3 TX ⊕T ∗X such that

D(x) ⊂ TxX ×T ∗
x X

is for every x ∈ X a constant Dirac structure as before.

If, next to the energy storage port, there are additional ports (such as resistive, con-

trol or interaction ports) with port variables f ∈ F and e ∈ F ∗, then a modulated

Dirac structure is point-wise specified by a constant Dirac structure

D(x) ⊂ TxX ×T ∗
x X ×F ×F ∗ (2.50)

2.2.3 Input-state-output port-Hamiltonian systems

An important special case of port-Hamiltonian systems as defined above is the class

of input-state-output port-Hamiltonian systems, where there are no algebraic con-

straints on the state space variables, and the flow and effort variables of the resistive,

control and interaction port are split into conjugated input-output pairs

Input-state-output port-Hamiltonian systems are defined as dynamical systems

of the following form

3 The Whitney sum of two vector bundles with the same base space is defined as the vector bundle

whose fiber above each element of this common base space is the product of the fibers of each

individual vector bundle.
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Fig. 2.4 Controlled LC-

circuit.
L1 L2

C

Q

V

ϕ1 ϕ2

Σ :





ẋ =
[
J(x)−R(x)

]∂H

∂x
(x)+g(x)u+ k(x)d

y = gT(x)
∂H

∂x
(x)

z = kT(x)
∂H

∂x
(x)

x ∈ X (2.51)

where (u,y) are the input-output pairs corresponding to the control port C , while

(d,z) denote the input-output pairs of the interaction port I . Note that yTu and zTd

equal the power corresponding to the control, respectively, interaction port. Here the

matrix J(x) is skew-symmetric, that is J(x) =−JT(x). The matrix R(x) = RT(x)≥ 0

specifies the resistive structure. From a resistive port point of view, it is given as

R(x) = gT
R(x)R̃gR(x) for some linear resistive relation fR = −R̃eR with R̃ = R̃T ≥ 0

and gR representing the input matrix corresponding to the resistive port.

The underlying Dirac structure of the system is then given by the graph of the

skew-symmetric linear map




−J(x) −gR(x) −g(x) −k(x)
gT

R(x) 0 0 0

gT(x) 0 0 0

kT(x) 0 0 0


 (2.52)

In general, the Dirac structure defined as the graph of the mapping (2.52) is a modu-

lated Dirac structure since the matrices J, gR, g and k may all depend on the energy

variables x.

Example 2.5 (LC-circuit with independent storage elements). Consider a controlled

LC-circuit (see Fig. 2.4) consisting of two inductors with magnetic energies H1(ϕ1)
and H2(ϕ2) (ϕ1 and ϕ2 being the magnetic flux linkages), and a capacitor with

electric energy H3(Q) (Q being the charge). If the elements are linear, then

H1(ϕ1) =
1

2L1
ϕ2

1 H2(ϕ2) =
1

2L2
ϕ2

2 H3(Q) =
1

2C
Q2

Furthermore, let V = u denote a voltage source. Using Kirchhoff’s laws, one imme-

diately arrives at the input-state-output port-Hamiltonian system
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


Q̇

ϕ̇1

ϕ̇2


=




0 1 −1

−1 0 0

1 0 0




︸ ︷︷ ︸
J




∂H
∂Q

∂H
∂ϕ1

∂H
∂ϕ2


+




0

1

0


u

y =
∂H

∂ϕ1
(= current through first inductor)

with H(Q,ϕ1,ϕ2) := H1(ϕ1)+H2(ϕ2)+H3(Q) the total energy. Clearly the matrix

J is skew-symmetric. In [145] it has been shown that, in this way, every LC-circuit

with independent storage elements can be modelled as an input-state-output port-

Hamiltonian system (with respect to a constant Dirac structure).

2.2.4 Input-state-output port-Hamiltonian systems with direct

feed-through

Input-state-output port-Hamiltonian systems with feed-through terms, i.e., direct

input-to-output coupling, are given as (for simplicity we do not take the interaction

port into account) [74, 180]





ẋ = [J(x)−R(x)]
∂H

∂x
(x)+ [g(x)−P(x)]u

y = [g(x)+P(x)]T
∂H

∂x
(x)+ [M(x)+S(x)]u

(2.53)

with the matrices P, R and S satisfying

Z =

[
R(x) P(x)

PT(x) S(x)

]
≥ 0 (2.54)

Compared with the skew-symmetric map (2.52) we see that in this case we have

[
fx

y

]
=

[
−J(x) −g(x)
gT(x) M

][
ex

u

]
+

[
R(x) P(x)

PT(x) S(x)

][
ex

u

]
(2.55)

It follows that

eT
x fx +uTy =

[
eT

x uT
][ R(x) P(x)

PT(x) S(x)

][
ex

u

]
≥ 0

and thus

d

dt
H(x) = −eT

x fx = uTy−
[
eT

x uT
][ R(x) P(x)

PT(x) S(x)

][
ex

u

]
≤ uTy

thus recovering the basic energy balance for port-Hamiltonian systems.
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Fig. 2.5 Boost circuit with

clamping diode

−E
+

−L+ D

S
+
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+
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−

Port-Hamiltonian input-state-output systems with feed-through terms readily

show up in the modeling of power converters [74], as well as in friction models

(see e.g. [104] for a port-Hamiltonian description of the dynamic LuGre friction

model).

2.2.5 Port-Hamiltonian systems with variable topology

In a number of cases, it is useful to model fast transitions in physical systems as

instantaneous switches. Examples include the description of switching elements,

like diodes and thyristors in electrical circuits, and impacts in mechanical systems.

Within the port-Hamiltonian description, one obtains in all these cases an (idealized)

model where the Dirac structure depends on the position of the switches, but, on the

other hand, the Hamiltonian H and the resistive elements are independent of the

position of the switches.

In both examples below, we obtain a switching port-Hamiltonian system, spec-

ified by a Dirac structure Ds depending on the switch position s ∈ {0,1}n (here n

denotes the number of independent switches), a Hamiltonian H : X → R, and a

resistive structure R. Furthermore, every switching may be internally induced (like

in the case of a diode in an electrical circuit or an impact in a mechanical system)

or externally triggered (like an active switch in a circuit or mechanical system).

Example 2.6 (Boost converter). Consider the power converter in Fig. 2.5. The circuit

consists of an inductor L with magnetic flux linkage φL, a capacitor C with electric

charge qC and a resistance load R, together with a diode D and an ideal switch S,

with switch positions s = 1 (switch closed) and s = 0 (switch open). The diode is

modeled as an ideal diode with voltage-current characteristic vDiD = 0, with vD ≤ 0

and iD ≥ 0. The circuit is used to obtain a voltage at the resistance load (the output

voltage) that is higher than the voltage E of the input source (a step-up converter).

Taking as continuous state (energy) variables the electric charge qC and the mag-

netic flux linkage φL, and as stored energy the quadratic function 1
2C

q2
C + 1

2L
φ 2

L , we

obtain the following port-Hamiltonian model of the circuit:

[
q̇C

φ̇L

]
=

[
− 1

R
1− s

s−1 0

][ qC
C
φL

L

]
+

[
0

1

]
E +

[
s · iD

(s−1) · vD

]

I =
φL

L
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Fig. 2.6 Model of a bouncing

pogo-stick: definition of the

variables (left), situation with-

out ground contact (middle),

and situation with ground

contact (right).

m

kd

g

x

y sum of forces

zero on foot

spring/damper

in series

foot fixed

to ground

spring/damper

parallel

Here s ∈ {0,1} denotes the switch, E and I are the voltage, respectively current, of

the input source, and iD and vD are respectively the current through and the voltage

across the ideal diode.

Example 2.7 (Bouncing pogo-stick). Consider the example of the vertically bounc-

ing pogo-stick in Fig. 2.6: it consists of a mass m and a mass-less foot, intercon-

nected by a linear spring (stiffness k and rest-length x0) and a linear damper d. The

mass can move vertically under the influence of gravity g until the foot touches the

ground. The states of the system are taken as x (length of the spring), y (height of

the bottom of the mass), and p (momentum of the mass, defined as p = mẏ). Fur-

thermore, the contact situation is described by a variable s with values s = 0 (no

contact) and s = 1 (contact). The total energy (Hamiltonian) of the system equals

H(x,y, p) =
1

2
k(x− x0)

2 +mg(y+ y0)+
1

2m
p2 (2.56)

where y0 is the distance from the bottom of the mass to its center of mass.

When the foot is not in contact with the ground (middle figure), the total force

on the foot is zero (since it is mass-less), which implies that the spring and damper

forces must be equal but opposite. When the foot is in contact with the ground

(right figure), the variables x and y remain equal, and hence also ẋ = ẏ. For s = 0 (no

contact) the system can be described by the port-Hamiltonian system

d

dt




x

y

p


=



− 1

d
0 0

0 0 1

0 −1 0






k(x− x0)
mg

p
m


 (2.57)

i.e. two independent systems (spring plus damper, and mass plus gravity), while for

s = 1, the port-Hamiltonian description of the system is given as

d

dt




x

y

p


=




0 0 1

0 0 1

−1 −1 −d






k(x− x0)
mg

p
m


 (2.58)

In this last case the resistive force −dẋ is added to the spring force and the gravita-

tional force exerted on the mass, while for s = 0 the resistive force is equal to the

spring force.
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The two situations can be taken together into one port-Hamiltonian system with

variable Dirac structure as follows

d

dt




x

y

p


=




s−1
d

0 s

0 0 1

−s −1 −s ·d






k(x− x0)
mg

p
m


 (2.59)

In addition, the conditions for switching of the contact are functions of the states,

namely as follows: contact is switched from off to on when y−x crosses zero in the

negative direction, and contact is switched from on to off when the velocity ẏ− ẋ of

the foot is positive in the no-contact situation, i.e. when
p
m

+ k
d
(x− x0) > 0.

2.3 Relationships with classical Hamiltonian and

Euler-Lagrange equations

Historically, the Hamiltonian approach has its roots in analytical mechanics and

starts from the principle of least action, via the Euler-Lagrange equations and the

Legendre transformation, towards the Hamiltonian equations of motion. On the

other hand, the network approach stems from electrical engineering, and consti-

tutes a cornerstone of systems theory. While much of the analysis of physical sys-

tems has been performed within the Lagrangian and Hamiltonian framework, the

network modelling point of view is prevailing in modelling and simulation of (com-

plex) physical systems. The framework of port-Hamiltonian systems combines both

points of view, by associating with the interconnection structure (generalized junc-

tion structure in bond graph terminology) of the network model a geometric struc-

ture given by a Dirac structure. This is in contrast with the classical Hamiltonian

equations of motion where the geometric structure is basically determined by the

geometry of the phase space given as the cotangent bundle of the configuration

manifold.

In the first subsection we briefly describe the classical framework of Lagrangian

and Hamiltonian differential equations as originating from analytical mechanics,

and indicate how it naturally extends to port-Hamiltonian systems. Conversely, in

the second subsection we discuss how, starting from the port-Hamiltonian descrip-

tion, Legendre transformations may be useful in the description and analysis of the

system.

2.3.1 From Euler-Lagrange equations to port-Hamiltonian systems

The standard Euler-Lagrange equations are given as

d

dt

(
∂L

∂ q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = τ, (2.60)
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where q = (q1, . . . ,qk)
T

are generalized configuration coordinates for the system

with k degrees of freedom, the Lagrangian L equals the difference K −P between

kinetic co-energy K(q, q̇) and potential energy P(q), and τ = (τ1, . . . ,τk)
T

is the

vector of generalized forces acting on the system. Furthermore, ∂L
∂ q̇

denotes the

column-vector of partial derivatives of L(q, q̇) with respect to the generalized ve-

locities q̇1, . . . , q̇k, and similarly for ∂L
∂q

. In standard mechanical systems the kinetic

co-energy K is of the form

K(q, q̇) =
1

2
q̇TM(q)q̇ (2.61)

where the k× k inertia (generalized mass) matrix M(q) is symmetric and positive

definite for all q. In this case the vector of generalized momenta p = (p1, . . . , pk)
T

,

defined for any Lagrangian L as p = ∂L
∂ q̇

, is simply given by

p = M(q)q̇, (2.62)

and by defining the state vector (q1, . . . ,qk, p1, . . . , pk)
T

the k second-order equations

(2.60) transform into 2k first-order equations

q̇ =
∂H

∂ p
(q, p)

(
= M−1(q)p

)

ṗ =− ∂H

∂q
(q, p)+ τ

(2.63)

where

H(q, p) =
1

2
pTM−1(q)p+P(q)

(
=

1

2
q̇TM(q)q̇+P(q)

)
(2.64)

is the total energy of the system4. The equations (2.63) are called the Hamiltonian

equations of motion, and H is called the Hamiltonian. The state space of (2.64) with

local coordinates (q, p) is usually called the phase space.

The following energy balance immediately follows from (2.63):

d

dt
H =

∂ TH

∂q
(q, p)q̇+

∂ TH

∂ p
(q, p)ṗ =

∂ TH

∂ p
(q, p)τ

(
= q̇Tτ

)
, (2.65)

expressing that the increase in energy of the system is equal to the supplied work

(conservation of energy).

If the Hamiltonian H(q, p) is assumed to be the sum of a positive kinetic energy

and a potential energy which is bounded from below, that is

H(q, p) =
1

2
pTM−1(q)p+P(q)

4 Note that, because of the fact that the kinetic energy is a quadratic function of the momenta p, it

equals the kinetic co-energy K(q, q̇), cf. Sect. B.2.
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and

M(q) = MT(q) > 0, ∃C > −∞ such that P(q) ≥C

then it follows that the system (2.63) with inputs u := τ and outputs y := q̇ is a

passive (in fact, loss-less) state space system with storage function H(q, p)−C ≥ 05.

Since energy is defined up to a constant, we may as well take as potential energy the

function P(q)−C ≥ 0, in which case the total energy H(q, p) becomes non-negative

and thus itself is a storage function.

System (2.63) is an example of a Hamiltonian system with collocated inputs and

outputs, which more generally is given in the following form

q̇ =
∂H

∂ p
(q, p)

ṗ =− ∂H

∂q
(q, p)+B(q)u

y =BT(q)
∂H

∂ p
(q, p)

(2.66)

with u, y ∈ R
m. Here B(q) is the input force matrix, with B(q)u denoting the gen-

eralized forces resulting from the control inputs u. In case m < k we speak of an

under-actuated system. If m = k and the matrix B(q) is invertible for all q, then the

system is fully actuated.

By definition of the output y = BT(q)q̇, we again obtain the energy balance

dH

dt
(q(t), p(t)) = uT(t)y(t) (2.67)

For a system-theoretic treatment of the Hamiltonian systems (2.66), especially if the

output y can be written as the time-derivative of a vector of generalized configuration

coordinates, we refer to e.g. [39, 55, 156, 177, 178].

A major generalization of the class of Hamiltonian systems (2.66) consists in

considering systems which are described in local coordinates as





ẋ =J(x)
∂H

∂x
(x)+g(x)u

y =gT(x)
∂H

∂x
(x)

(2.68)

with x ∈ X and u, y ∈ R
m. Here J(x) is an n× n matrix with entries depending

smoothly on x, which is assumed to be skew-symmetric

J(x) = −JT(x), (2.69)

5 ‘Loss-less’ is a strong form of ‘passive’; in the latter case, (2.65) need only be satisfied with the

equality sign ‘=’ replaced by the inequality sign ‘≤’.
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and x = (x1, . . . ,xn) are local coordinates for an n-dimensional state space manifold

X . Because of (2.69), we easily recover the energy-balance dH
dt

(x(t)) = uT(t)y(t),
showing that (2.68) is loss-less if H ≥ 0.

The system (2.68) with J satisfying (2.69) is an input-state-output port-Hamilto-

nian system with Dirac structure determined by J(x) and g(x) and Hamiltonian H.

Note that (2.66) (and hence (2.63)) is a particular case of (2.68) with x = (q, p), and

J(x) =

[
0 Ik

−Ik 0

]
g(q, p) =

[
0

B(q)

]
.

If the matrix J satisfies the integrability conditions, see (2.219)

n

∑
l=1

[
Jl j(x)

∂Jik

∂xl

(x)+ Jli(x)
∂Jk j

∂xl

(x)+ Jlk(x)
∂J ji

∂xl

(x)

]
= 0, (2.70)

i, j,k = 1, . . . ,n, then we may find canonical coordinates in which the equations

(2.68) take the form

q̇ =
∂H

∂ p
(q, p,s)+gq(q, p,s)u

ṗ = −∂H

∂q
(q, p,s)+gp(q, p,s)u

ṡ = gs(q, p,s)u

y = gT
q (q, p,s)

∂H

∂q
(q, p,s)+gT

p(q, p,s)
∂H

∂ p
(q, p,s)+

+gT
s (q, p,s)

∂H

∂ s
(q, p,s)

(2.71)

Apart from the appearance of the variables s, these equations are very close to the

standard Hamiltonian form (2.66). In particular, if gs = 0, then the variables s are

merely an additional set of constant parameters.

2.3.2 Port-Hamiltonian systems and Legendre transformations

First we will go into more detail about the Legendre transformation as already en-

countered before, and discussed in more detail in Sect. B.2. A slightly different

interpretation is given below. Consider a real-valued function F(u1,u2, · · · ,un) of

n variables u1,u2, · · · ,un. Consider a second set of variables v1,v2, · · · ,vn, and link

both sets of variables to each other by setting

vi =
∂F

∂ui

, i = 1,2, · · · ,n (2.72)

Now define the function F̄ as
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F̄(u1, · · · ,un,v1, · · · ,vn) := v1u1 + · · ·vnun −F(u1, · · · ,un) (2.73)

In order to simplify notation we will henceforth write u = (u1,u2, · · · ,un),v =
(v1,v2, · · · ,vn) and F̄(u,v) = vTu−F(u). It is immediately checked that the par-

tial derivatives of F̄(u,v) with respect to the variables u1, · · · ,un

∂ F̄

∂ui

(u,v), i = 1, · · · ,n

are all zero whenever these partial derivatives are evaluated at points
(

u,v = ∂F
∂u

)
.

Indeed
∂ F̄

∂ui

= vi −
∂F

∂ui

(2.74)

Furthermore, if the mapping from u to v = ∂F
∂u

is invertible then we can express u as

a function u(v) of v, and we may define the function

F∗(v) := F̄(u(v),v) = vTu(v)−F(u(v)) (2.75)

The function F∗(v) is called the Legendre transform of F(u).

Remark 2.5. A sufficient condition for local invertibility of the mapping from u to

v = ∂F
∂u

is that the Hessian matrix ∂ 2F
∂u2 is invertible.

Differentiating F∗(v) with respect to v yields

∂F∗

∂vi

=
n

∑
j=1

∂ F̄

∂u j

∂u j(v)

∂vi

+
∂ F̄

∂vi

(2.76)

where all expressions at the right-hand side are evaluated at
(

u,v = ∂F
∂u

)
. Since by

(2.74), the first term at the right-hand side is zero, it follows that

∂F∗

∂vi

(v) =
∂ F̄

∂vi

(u(v),v)) = ui (2.77)

Thus we have obtained a completely symmetric relation between the variables u and

v: if v is linked to u via (2.72) in an invertible manner, then conversely u is obtained

from v via (2.77).

This construction is immediately extended to functions F(u,w) depending on

additional variables w = (w1, · · · ,wm). Linking in the same way the variables v =
(v1, · · · ,vn) to u = (u1, · · · ,un) via

vi =
∂F

∂ui

(u,w), i = 1,2, · · · ,n, (2.78)

and defining the function F̄(u,v,w) = vTu−F(u,w) one obtains the Legendre trans-

form of F(u,w) with respect to u as the function F∗(v,w) defined as
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F∗(v,w) := vTu(v,w)−F(u(v,w),w) (2.79)

under the assumption that the map u 7→ v defined by (2.78) is invertible and can be

solved as u = u(v,w). It follows as before that this inverse mapping is determined

by
∂F∗

∂vi

(v,w) =
∂ F̄

∂vi

(u(v,w),v,w) = ui (2.80)

Furthermore, with regard to the partial derivatives with respect to the additional

variables w, we obtain the following relationship between F(u,w) and F∗(v,w):

∂F

∂wi

(u,w) = −∂F∗

∂wi

(v(u),w), i = 1, · · · ,n (2.81)

A classical application of the Legendre transformation is the following. Consider a

classical Hamiltonian system





q̇i =
∂H

∂ pi

ṗi =− ∂H

∂qi

i = 1, · · · ,n (2.82)

and suppose that the mapping

vi =
∂H

∂ pi

, i = 1, · · · ,n

from p = (p1, · · · , pn) to v = (v1, · · · ,vn) is invertible, leading to the Legendre trans-

form of H(q, p) with respect to p denoted as H∗(q,v). It follows that

pi =
∂H∗

∂vi

∂H

∂qi

= − ∂H∗

∂qi

i = 1, · · · ,n (2.83)

and thus the Hamiltonian system (2.82) transforms into





q̇i =vi

d

dt

∂H∗

∂vi

=
∂H∗

∂qi

i = 1, · · · ,n (2.84)

Denoting L(q,v) := H∗(q,v) (the Lagrangian function) the equations (2.84) can be

taken together into the classical Euler-Lagrange equations

(
d

dt

∂L

∂vi

(q,v)− ∂L

∂qi

(q,v)

)∣∣∣∣
v=q̇

= 0, i = 1, · · · ,n
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2.3.2.1 From port-Hamiltonian systems to the Brayton-Moser equations

Consider a port-Hamiltonian system without dissipation and external ports, which

can be represented by the set of differential equations

ẋ = J(x)
∂H

∂x
(x) (2.85)

with J(x) being skew-symmetric. Suppose that the mapping from the energy vari-

ables x to the co-energy variables e := ∂H
∂x

(x) is invertible, so that the inverse trans-

formation from the co-energy variables to the energy variables is given by

x =
∂H∗

∂e
(e) (2.86)

with H∗ the Legendre transformation of H given as

H∗(e) = eTx−H(x) (2.87)

Then the dynamics of the port-Hamiltonian system (2.85) can be equally well ex-

pressed in the co-energy variables e. Indeed, the time-evolution of e may be obtained

from (2.85) by substituting x(t) = ∂H∗
∂e

(e(t)) into the differential equation (2.85),

leading to

∂ 2H∗

∂e2
(e)ė = J(x)e, (2.88)

where one may finally substitute x = ∂H∗
∂e

in order to obtain a differential equation

solely in the co-energy variables e.

What can we say about the particular structure of the port-Hamiltonian system

expressed in the co-energy variables e? Assume that we may find coordinates x =
(xq,xp), with dimxq = k and dimxp = n−k, such that in these coordinates the matrix

J(x) takes the form

J(x) =

[
0 −B(x)

BT(x) 0

]
(2.89)

with B(x) a k×(n−k) matrix, and moreover the Hamiltonian H splits into a function

of xq and xp, that is, H can be written as

H(xq,xp) = Hq(xq)+Hp(xp) (2.90)

for certain functions Hq and Hp. Write, accordingly to the splitting x = (xq,xp) of

the energy variables, the co-energy variables as e = (eq,ep) with

eq =
∂Hq

∂xq

ep =
∂Hp

∂xp

It follows that the Legendre transform H∗(e) of H(x) splits as H∗(e) = H∗
q (eq)+

H∗
p(ep). In such coordinates (2.88) takes the form
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


∂ 2H∗
q

∂e2
q

0

0
∂ 2H∗

p

∂e2
p



[

deq

dt
dep

dt

]
=

[
0 −B(x)

BT(x) 0

][
eq

ep

]
(2.91)

Defining the function

P(eq,ep,x) := eT
q B(x)ep (2.92)

it follows (after multiplication of the last n− k equations in (2.91) by a factor −1)

that (2.91) can be alternatively written as




∂ 2H∗
q

∂e2
q

0

0 − ∂ 2H∗
p

∂e2
p



[

deq

dt
dep

dt

]
= −

[
∂P
∂eq

∂P
∂ep

]
(2.93)

This is the type of equations that were obtained for RLC-circuits in [27, 28], and

which are commonly called the Brayton-Moser equations (cf. Example 2.8 below).

These equations can be interpreted as gradient equations with respect to the mixed

potential function P and the indefinite inner product or pseudo-Riemannian metric

defined by the symmetric matrix




∂ 2H∗
q

∂e2
q

0

0 − ∂ 2H∗
p

∂e2
p


 (2.94)

Note however that if the matrix B and therefore the function P non-trivially de-

pends on x then (2.93) is not valid if we substitute x = ∂H∗
∂e

(e) in the definition of

P(eq,ep,x) before taking the partial derivatives of P with respect to eq and ep.

Remark 2.6. If the Hamiltonian H does not split as H(xp,xq) = Hp(xp) + Hq(xq)
then we obtain instead of (2.93) the more general type of equations




∂ 2H∗
∂e2

q

∂ 2H∗
∂eq∂ep

− ∂ 2H∗
∂ep∂eq

− ∂ 2H∗
∂e2

p



[

deq

dt
dep

dt

]
= −

[
∂P
∂eq

∂P
∂ep

]
(2.95)

Hence in this case the left-most matrix appearing in (2.95) is not symmetric any-

more, and hence does not define a (pseudo-) Riemannian metric.

By (2.85) and (2.89), the mixed potential function P can be rewritten as

P(eq,ep,x) = eT
q B(x)ep = −eT

q ẋq = ẋT
pep (2.96)

Thus the function P denotes minus the power associated to the q-part of the system,

which is (since the total power is zero) also equal to the power of the p-part of the

system. Hence the mixed potential function P captures the interconnection structure

(or Dirac structure) of the port-Hamiltonian system, while the pseudo-Riemannian

metric (2.94) is determined by its Hamiltonian.
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Example 2.8. Consider an LC-circuit with independent capacitors C and indepen-

dent inductors L. Denoting the voltages and currents of the capacitors by vC and iC
and the voltages and currents of the inductors by vL and iL, Kirchhoff’s current and

voltage laws can be written as

[
iC
vL

]
=

[
0 −B

BT 0

][
vC

iL

]
(2.97)

for some constant matrix B (consisting of elements 0,1, and −1). Furthermore, the

Hamiltonian (total energy) splits as the sum of an electrical and magnetic energy

H(QC,ϕL) = HC(QC)+HL(ϕL)

Thus, the above assumptions for deriving the Brayton-Moser equations are automat-

ically satisfied, leading to the standard Brayton-Moser equations (in the case of no

energy dissipation) 


∂ 2H∗
C

∂v2
C

0

0 − ∂ 2H∗
L

∂ i2L



[

dvC
dt
diL
dt

]
= −

[
∂P
∂vC

∂P
∂ iL

]
(2.98)

with P(vC, iL) = vT
CBiL = −vT

CiC = vT
L iL.

Example 2.9 (Example 2.14, continued). Consider the example of the rolling euro.

In (2.148), the explicit dynamical equations of the system on the constrained state

space has been obtained. Denoting xq = (x,y,θ ,ϕ) and xp = (p1, p2) it is clear that

the above assumptions for the derivation of the Brayton-Moser equations are satis-

fied, with

B =




0 cosϕ
0 sinϕ
0 1

1 0


 (2.99)

and

Hq(xq) = 0 Hp(xp) =
1

2
p2

1 +
1

4
p2

2 (2.100)

However, in this case the mapping e = ∂H
∂x

is not invertible since the potential energy

Hq = 0, and thus we cannot derive Brayton-Moser equations for the rolling euro. On

the other hand, let us modify the example by adding a potential energy Hq in such a

way that the mapping

ex =
∂Hq

∂x
ey =

∂Hq

∂y
eθ =

∂Hq

∂θ
eϕ =

∂Hq

∂ϕ
(2.101)
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is an invertible mapping from (x,y,θ ,ϕ) to (ex,ey,eθ ,eϕ), allowing for the defini-

tion of the Legendre transform H∗
q (ex,ey,eθ ,eϕ)6. Then the Brayton-Moser equa-

tions are given by (2.93) with B(ϕ) as above, and H∗
p(ep1

,ep2
) = 1

2
e2

p1
+ e2

p2
.

The Brayton-Moser equations can be extended to the case of energy-dissipation

(and perhaps is most useful in this context). The idea is to modify the mixed poten-

tial function P (covering until now the power-conserving interconnection structure)

with Rayleigh functions corresponding to the resistive elements. Let us consider a

port-Hamiltonian system with dissipation (but still without external ports):





ẋ =J(x)
∂H

∂x
(x)+gR(x) fR

eR =gT
R(x)

∂H

∂x
(x)

(2.102)

where the resistive relation is specified by an (effort-controlled) Rayleigh dissipation

function R(eR), that is,

fR = − ∂R

∂eR

(eR) (2.103)

Suppose as before that we may find coordinates x = (xq,xp), dimxq = k, dimxp =
n− k such that, in these coordinates, the matrix J(x) takes the form

J(x) =

[
0 −B(x)

BT(x) 0

]
(2.104)

with B(x) a k × (n − k) matrix, and moreover, that the Hamiltonian H splits as

H(xq,xp) = Hq(xq)+Hp(xp). Furthermore, assume for simplicity that, in these co-

ordinates, gR(x) has the form

gR(xq,xp) =

[
0

−I

]
(2.105)

This implies that eR = ep. Then (2.91) extends to




∂ 2H∗
q

∂e2
q

0

0
∂ 2H∗

p

∂e2
p



[

deq

dt
dep

dt

]
=

[
0 −B(x)

BT(x) 0

][
eq

ep

]
−
[

0

−I

]
∂R

∂ep

(ep) (2.106)

Defining now the modified mixed potential function

P(eq,ep,x) = eT
q B(x)ep +R(ep) (2.107)

then the system (2.106) still takes the Brayton-Moser form (2.88) with respect to

this modified mixed potential function. Note that this new mixed potential function

6 For example, one may think of a rolling disc on a curved surface with spring-like elements

corresponding to the motion in the θ and ϕ directions.
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captures the interconnection structure as well as the specification of the resistive

port relation (by means of a Rayleigh dissipation function).

2.4 Representations of Dirac structures and port-Hamiltonian

systems

In the preceding section, we have provided the geometric definition of a port-

Hamiltonian system containing three main ingredients. First, the energy storage

which is represented by a state space manifold X specifying the space of energy

variables together with a Hamiltonian H : X → R defining the energy. Secondly,

there are the static resistive elements, and thirdly there is the Dirac structure link-

ing all the flows and efforts associated to the energy storage, resistive elements, and

the external ports (e.g. control and interaction ports) in a power-conserving manner.

This, together with the general formulation (Definition 2.2) of a Dirac structure,

leads to a completely coordinate-free definition of a port-Hamiltonian system, be-

cause of three reasons: (a) we do not start with coordinates for the state space mani-

fold X , (b) we define the Dirac structure as a subspace instead of a set of equations,

(c) the resistive relations are defined as a subspace constraining the port variables

( fR,eR).
This geometric, coordinate-free, point of view has a number of advantages. It

allows one to reason about port-Hamiltonian systems without the need to choose

specific representations. For example, in Sect. 2.6 we will see that a number of

properties of the port-Hamiltonian system, such as passivity, existence of conserved

quantities and algebraic constraints, can be analyzed without the need for choosing

coordinates and equations. On the other hand, for many purposes, e.g. simulation,

the need for a representation in coordinates of the port-Hamiltonian system is in-

dispensable. Then the emphasis shifts to finding the most convenient coordinate

representation for the purpose at hand. The examples of the previous section have

already been presented in this way. In this section, we will briefly discuss a number

of possible representations of port-Hamiltonian systems. It will turn out that the key

issue is the representation of the Dirac structure.

2.4.1 Representations of Dirac structures

Dirac structures admit different representations. Here we list the most important

ones, with proofs provided only for the first two cases. Further information can be

found in [25, 54, 59, 87, 179].
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Kernel and Image representation

Every Dirac structure D ⊂ F ×F ∗ can be represented in kernel representation as

D =
{
( f ,e) ∈ F × F ∗ | F f +Ee = 0

}
(2.108)

for linear maps F : F → V and E : F ∗ → V satisfying

(i) EF∗ +FE∗ = 0,

(ii) rank(F +E) = dimF ,
(2.109)

where V is a linear space with the same dimension as F , and where F∗ : V ∗ →F ∗

and E∗ : V ∗ → F ∗∗ = F are the adjoint maps of F and E, respectively.

It follows from (2.109) that D can be also written in image representation as

D =
{
( f ,e) ∈ F × F ∗ | f = E∗λ , e = F∗λ , λ ∈ V ∗

}
(2.110)

Sometimes it will be useful to relax this choice of the linear mappings F and E by

allowing V to be a linear space of dimension greater than the dimension of F . In

this case we shall speak of relaxed kernel and image representations.

Matrix kernel and image representations are obtained by choosing linear coordi-

nates for F , F ∗ and V . Indeed, take any basis f1, · · · , fn for F and the dual basis

e1 = f ∗1 , · · · ,en = f ∗n for F ∗, where dim F = n. Furthermore, take any set of linear

coordinates for V . Then the linear maps F and E are represented by n×n matrices

F and E satisfying

(i) EFT +FET = 0,

(ii) rank
[
F | E

]
= dimF .

(2.111)

In the case of a relaxed kernel and image representation F and E will be n′ × n

matrices with n′ > n.

A (constructive) proof for the existence of matrix kernel and image representa-

tions can be given as follows. Consider a Dirac structure D ⊂ F ×F ∗ where we

have chosen linear coordinates for F , F ∗ and V . In particular, choose any basis

f1, · · · , fn for F and the dual basis e1 = f ∗1 , · · · ,en = f ∗n for F ∗, where dim F = n.

Since D is a subspace of F ×F ∗ it follows that there exist square n×n matrices F

and E such that

D = Im

[
ET

FT

]

where rank
[
F | E

]
= dimF . Thus any element ( f ,e) ∈ D can be written as

f = ETλ e = FTλ

for some λ ∈ R
n. Since eT f = 0 for every ( f ,e) ∈ D this implies that
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λ TFETλ = 0

for every λ , or equivalently, EFT +FET = 0. Conversely, any subspace D given by

(2.111) is a Dirac structure, since it satisfies eT f = 0 for every ( f ,e) ∈ D and its

dimension is equal to n.

Constrained input-output representation

Every Dirac structure D ⊂ F ×F ∗ can be represented as

D =
{
( f ,e) ∈ F ×F ∗ | f = Je+Gλ , GTe = 0

}
, (2.112)

for a skew-symmetric mapping J : F → F ∗ and a linear mapping G such that

ImG =
{

f | ( f ,0) ∈ D
}

. Furthermore, kerJ =
{

e | (0,e) ∈ D
}

.

The proof that (2.112) defines a Dirac structure is straightforward. Indeed, for

any ( f ,e) given as in (2.112) we have

eT f = eT(Je+Gλ ) = eTJe+ eTGλ = 0

by skew-symmetry of J and GTe = 0. Furthermore, let rank G = r ≤ n. If r = 0 (or

equivalently G = 0) then the dimension of D is clearly n since in that case it is the

graph of the mapping J. For r 6= 0 the freedom in e will be reduced by dimension r,

while at the other hand the freedom in f will be increased by dimension r (because

of the term Gλ ).

Conversely, let D ⊂ F ×F ∗ be a Dirac structure. Define the subspace

F ∗
D =

{
e ∈ F ∗ | ∃ f s.t. ( f ,e) ∈ D

}

Define a matrix G such that F ∗
D = kerGT. Now choose any subspace F̄ ∗

D which is

complementary to F ∗
D , that is,

F ∗ = F ∗
D ⊕ F̄ ∗

D

Define the following subspaces of F :

F̄D := (F ∗
D )⊥ FD := (F̄ ∗

D )⊥

Then, F = FD ⊕ F̄D . Define now J : F ∗ → F as follows:

1. Define J to be zero on F̄ ∗
D .

2. For every e ∈ F ∗
D there exists f ∈ FD with ( f ,e) ∈ D . Define Je = f . Do this

for a basis of F ∗
D and extend J to a linear map from F ∗

D to FD .

Since ( f ,e) ∈ D satisfies eT f = 0 it follows that eTJe = 0 for all e ∈ F ∗, and thus

J is skew-symmetric.
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Hybrid input-output representation

Let D be given in matrix kernel representation by square matrices E and F as in 1.

Suppose rank F = m(≤ n). Select m independent columns of F , and group them into

a matrix F1. Write (possibly after permutations) F =
[
F1 | F2

]
and correspondingly

E =
[
E1 | E2

]

f =

[
f1

f2

]
e =

[
e1

e2

]

Then it can be shown [25] that the matrix
[
F1 | E2

]
is invertible, and

D =

{([
f1

f2

]
,

[
e1

e2

]) ∣∣∣∣
[

f1

e2

]
= J

[
e1

f2

]}
(2.113)

with J := −
[
F1 | E2

]−1[
F2 | E1

]
skew-symmetric.

It follows that any Dirac structure can be written as the graph of a skew-

symmetric map. The vectors e1, f2 can be regarded as input vectors, while the com-

plementary vectors f1,e2 can be seen as output vectors. (This is very much like the

multi-port description of a passive linear circuit, where it is known that although

it is not always possible to describe the port as an admittance or as an impedance,

it is possible to describe it as a hybrid admittance/impedance transfer matrix, for a

suitable selection of input voltages and currents and complementary output currents

and voltages [19].)

Canonical coordinate representation

There exists a basis for F and dual basis for F ∗, such that, in these bases, the vector

( f ,e), when partitioned as ( fq, fp, fr, fs,eq,ep,er,es), is in D if and only if

fq = −ep

fp = eq

fr = 0

es = 0

(2.114)

For a proof we refer to [54]. The representation of a Dirac structure by canoni-

cal coordinates is very close to the classical Hamiltonian equations of motion, see

Sect. 2.4.4.

Remark 2.7. A special type of kernel representation occurs if not only EF∗+FE∗ =
0 but in fact FE∗ = 0 (while still rank(F + E) = dimF ). In this case it follows

that ImE∗ ⊂ kerF . However, it follows from the kernel/image representation of

any Dirac structure that kerF ⊂ ImE∗, and thus ImE∗ = kerF Hence in this case

the Dirac structure is the product of the subspace kerF ⊂ F and the subspace
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kerForth = kerE ⊂ F ∗, with ·orth denoting the orthogonal complement with re-

spect to the duality product between F and F ∗. We have already encountered this

special type of Dirac structure in the case of Kirchhoff’s current and voltage laws

(Sect. 2.1.3.2) and in the case of kinematic pairs (Sect. 2.1.3.3), while mathemati-

cally it has been exemplified at the end of Sect. 2.1.1.

In [25, 59, 59, 185] it is shown how one may convert any of the above represen-

tations into any other. An easy transformation that will be used frequently in the

sequel is the transformation of the constrained input-output representation into the

kernel representation. Consider the Dirac structure D given in constrained input-

output representation by (2.112). Construct a linear mapping G⊥ of maximal rank

satisfying

G⊥G = 0

Then, pre-multiplying the first equation of (2.112) by G⊥, one eliminates the La-

grange multipliers λ and obtains

D =
{
( f ,e) ∈ F ×F ∗ | G⊥ f = G⊥Je, GTe = 0

}
, (2.115)

which is easily seen to lead to a kernel representation. Indeed,

F =

[
−G⊥

0

]
E =

[
G⊥J

GT

]

defines a kernel representation.

2.4.2 Representations of port-Hamiltonian systems

Coordinate representations of the port-Hamiltonian system (2.36) are obtained by

choosing a specific coordinate representation of the Dirac structure D . For example,

if D is given in matrix kernel representation

D =
{
( fS,eS, fR,eR, f ,e) ∈ X ×X ∗×FR ×F ∗

R ×F ×F ∗ |

FS fS +ESeS +FR fR +EReR +F f +Ee = 0
}

(2.116)

with

(i) ESFT
S +FSET

S +ERFT
R +FRET

R +EFT +FET = 0

(ii) rank
[
FS | ES | FR | ER | F | E

]
= dim(X ×FR ×F )

(2.117)

then the port-Hamiltonian system is given by the set of equations

FSẋ(t) = ES

∂H

∂x
(x(t))+FR fR(t)+EReR(t)+F f (t)+Ee(t) (2.118)
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with fR(t),eR(t) satisfying for all t the resistive relation

R( fR(t),eR(t)) = 0 (2.119)

Note that, in general, (2.118) consists of differential equations and algebraic equa-

tions in the state variables x (DAEs), together with equations relating the state vari-

ables and their time-derivatives to the external port variables ( f ,e).

Example 2.10 (1-D mechanical systems). Consider a spring with elongation q and

energy function Hs(q), which for a linear spring is given as Hs(q) = 1
2
kq2. Let

(vs,Fs) represent the external port through which energy can be exchanged with

the spring, where vs is equal to the rate of elongation (velocity) and Fs is equal to

the elastic force. This port-Hamiltonian system (without dissipation) can be written

in kernel representation as

[
1 1

0 0

][
−q̇

vs

]
+

[
0 0

1 −1

][
kq

Fs

]
= 0 (2.120)

Similarly we can model a moving mass m with scalar momentum p and kinetic

energy Hm(p) = 1
2m

p2 as the port-Hamiltonian system

[
1 1

0 0

][
−ṗ

Fm

]
+

[
0 0

1 −1

][
p
m

vm

]
= 0 (2.121)

where (Fm,vm) are respectively the external force exerted on the mass and the ve-

locity of the mass.

The mass and the spring can be interconnected to each other using the symplectic

gyrator [
vs

Fm

]
=

[
0 1

−1 0

][
Fs

vm

]
(2.122)

Collecting all equations we have obtained a port-Hamiltonian system with energy

variables x = (q, p), total energy H(q, p) = Hs(q)+Hm(p) and with interconnected

port variables (vs,Fs,Fm,vm). After elimination of the interconnection variables

(vs,Fs,Fm,vm) one obtains the port-Hamiltonian system

[
1 0

0 1

][
−q̇

−ṗ

]
+

[
0 1

−1 0

][
kq
p
m

]
= 0 (2.123)

which is the ubiquitous mass-spring system. Note that the Dirac structure of this

mass-spring system is derived from the Dirac structures of the spring system and

the mass system together with their interconnection by means of the symplectic

gyrator (which itself defines a Dirac structure). How to systematically derive the

resulting interconnected Dirac structure is studied in Sect. 2.5.

In case of a Dirac structure modulated by the energy variables x and the state

space X being a manifold, the flows fx =−ẋ are elements of the tangent space TxX
at the state x ∈ X , and the efforts ex are elements of the co-tangent space T ∗

x X .
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Still, locally on X , we obtain the kernel representation (2.118) for the resulting

port-Hamiltonian system, but now the matrices FS, ES, F and E will depend on x.

The important special case of input-state-output port-Hamiltonian systems as

treated before 



ẋ = J(x)
∂H

∂x
(x)+g(x)u

y = gT(x)
∂H

∂x
(x)

x ∈ X

can be interpreted as arising from a hybrid input-output representation of the Dirac

structure (from eS,u to fS,y). If the matrices J,g depend on the energy variables x,

then this is again a modulated Dirac structure.

In general, by a combination of the hybrid representation and the constrained

input-output representation, it can be shown that, locally, any port-Hamiltonian sys-

tems can be represented in the following way





ẋ = J(x)
∂H

∂x
(x)+g(x)u+b(x)λ

y = gT(x)
∂H

∂x
(x)

0 = bT(x)
∂H

∂x
(x)

x ∈ X (2.124)

where yTu denotes the power at the external port.

Example 2.11 (Coupled masses – Internal constraints). Consider two point masses

m1 and m2 that are rigidly linked to each other, moving in one dimension. When

decoupled, the masses are described by the port-Hamiltonian systems





ṗi = Fi

vi =
pi

mi

i = 1, 2 (2.125)

with Fi denoting the force exerted on mass mi. Rigid coupling of the two masses is

achieved by setting

F1 = −F2 v1 = v2 (2.126)

This leads to the port-Hamiltonian system

[
ṗ1

ṗ2

]
=

[
1

−1

]
λ

0 =
[
1 −1

]
[

p1
m1
p2
m2

] (2.127)

where λ = F1 = −F2 now denotes the internal constraint force. The resulting inter-

connected system no longer has external ports. On the other hand, external ports for



2.4 Representations of Dirac structures and port-Hamiltonian systems 91

the interconnected system can be included by either extending (2.125) to





ṗi = Fi +Fext
i

vi = pi

mi

vext
i = pi

mi

i = 1, 2 (2.128)

with Fext
i and vext

i denoting the external forces and velocities, or by modifying the

interconnection constraints (2.126) to e.g. F1 +F2 +Fext = 0 and v1 = v2 = vext, with

Fext and vext denoting the external force exerted on the coupled masses, respectively

the velocity of the coupled masses.

2.4.3 Elimination of Lagrangian multipliers and constraints

As shown above, it is relatively easy to eliminate the Lagrange multipliers in any

constrained input-output representation of the Dirac structure. As a result, it is also

relatively easy to eliminate the Lagrange multipliers in any port-Hamiltonian sys-

tem. Indeed, consider the port-Hamiltonian system (2.124). The Lagrange multi-

pliers λ can be eliminated by constructing a matrix b⊥(x) of maximal rank such

that

b⊥(x)b(x) = 0

Then, by pre-multiplication with this matrix b⊥(x), one obtains the equations





b⊥(x)ẋ = b⊥(x)J(x)
∂H

∂x
(x)+b⊥(x)g(x)u

y = gT(x)
∂H

∂x
(x)

0 = bT(x)
∂H

∂x
(x)

x ∈ X (2.129)

without Lagrange multipliers. This is readily seen to be a kernel representation of

the port-Hamiltonian system.

Example 2.12 (Example 2.11, continued). Consider the system of two coupled

masses in Example 2.11. Pre-multiplication of the dynamic equations by the row

vector
[
1 1
]

yields the equations

ṗ1 + ṗ2 = 0
p1

m1
− p2

m2
= 0 (2.130)

which constitutes a kernel representation of the port-Hamiltonian system, with ma-

trices

F =

[
1 1

0 0

]
E =

[
0 0

1 −1

]
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A more difficult question concerns the possibility to solve for the algebraic con-

straints of a port-Hamiltonian system. This is a problem which is independent of the

specific representation of the port-Hamiltonian system. In case of the representation

(2.129), the algebraic constraints are given by

0 = bT(x)
∂H

∂x
(x) (2.131)

In general, these equations will constrain the state variables x. However, the precise

way this takes place very much depends on the properties of the Hamiltonian H as

well as of the matrix b(x). For example, if the Hamiltonian H is such that its gradient
∂H
∂x

(x) happens to be contained in the kernel of the matrix bT(x) for all x, then the

algebraic constraints (2.131) actually do not constrain the state variables.

In general, under constant rank assumptions, the set

Xc :=

{
x ∈ X | bT(x)

∂H

∂x
(x) = 0

}

will define a sub-manifold of the total state space X , called the constrained state

space. In order that this constrained state space qualifies as the state space for a port-

Hamiltonian system without further algebraic constraints, one needs to be able to

restrict the dynamics of the port-Hamiltonian system to the constrained state space.

This is always possible under the condition that the matrix

bT(x)
∂ 2H

∂x2
(x)b(x) (2.132)

has full rank. Indeed, under this condition, the differentiated constraint equation

0 =
d

dt

(
bT(x)

∂H

∂x
(x)

)
= ∗+bT(x)

∂ 2H

∂x2
(x)b(x)λ (2.133)

(with ∗ denoting unspecified terms) can always be uniquely solved for λ , leading to

a uniquely defined dynamics on the constrained state space Xc. Using terminology

from the theory of DAEs, the condition that the matrix in (2.132) has full rank

ensures that the index of the DAEs specified by the port-Hamiltonian system is

equal to 1, [37]. If the matrix in (2.132) does not have full rank, it may be necessary

to further constrain the space Xc by considering apart from the algebraic constraints

(2.131), also their time-derivatives (sometimes called secondary constraints).

Example 2.13 (Example 2.11, continued – DAE index). Differentiating the con-

straint equation
p1
m1

− p2
m2

= 0 and using the dynamical equations ṗ1 = λ and

ṗ2 = −λ , one obtains (
1

m1
+

1

m2

)
λ = 0 (2.134)
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which obviously determines the constraint force λ to be equal to 0. Thus, the index

of this system equals one. Defining the total momentum p = p1 + p2, one trivially

obtains the reduced system ṗ = ṗ1 + ṗ2 = 0.

On the other hand, suppose that the mass m1 is connected to a linear spring with

spring constant k1 and elongation q1, and that the mass m2 is connected to a lin-

ear spring with spring constant k2 and elongation q2. Then the dynamical equations

change into ṗ1 = −k1q1 + λ and ṗ2 = −k2q2 − λ , and differentiation of the con-

straint
p1
m1

− p2
m2

= 0 leads to

− k1

m1
q1 +

k2

m2
q2 +

(
1

m1
+

1

m2

)
λ = 0 (2.135)

This still determines the constraint force λ as

λ =
m1m2

m1 +m2

(
k1

m1
q1 −

k2

m2
q2

)

and results in the (obvious) dynamical equation for the total momentum p given by

ṗ = −k1q1 − k2q2 (2.136)

Generalizing Example 2.13, let us consider the equations of a mechanical system

subject to kinematic constraints as discussed in Sect. 2.2.2. The constrained Hamil-

tonian equations (2.47) define a port-Hamiltonian system with respect to the Dirac

structure D (in constrained input-output representation):

D =

{
( fS,eS, fC,eC) | 0 =

[
0 AT(q)

]
eS, eC =

[
0 BT(q)

]
eS,

− fS =

[
0 In

−In 0

]
eS +

[
0

A(q)

]
λ +

[
0

B(q)

]
fc, λ ∈ R

k

}
(2.137)

The algebraic constraints on the state variables (q, p) are thus given as

0 = AT(q)
∂H

∂ p
(q, p) (2.138)

The constrained state space is therefore given as the following subset of the phase

space (q, p):

Xc =

{
(q, p) | AT(q)

∂H

∂ p
(q, p) = 0

}
(2.139)

We may solve for the algebraic constraints and eliminate the resulting constraint

forces A(q)λ in the following way. Since rank A(q) = k, there exists locally an

n× (n− k) matrix S(q) of rank n− k such that

AT(q)S(q) = 0 (2.140)
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Now define p̃ = (p̃1, p̃2) = (p̃1, . . . , p̃n−k, p̃n−k+1, . . . , p̃n) as

p̃1 := ST(q)p

p̃2 := AT(q)p
p̃1 ∈ R

n−k, p̃2 ∈ R
k (2.141)

It is readily checked that (q, p) 7→ (q, p̃1, p̃2) is a coordinate transformation. In-

deed, by (2.140), the rows of ST(q) are orthogonal to the rows of AT(q). In the new

coordinates, the constrained Hamiltonian system (2.47) takes the form (see [182]

for details), ∗ denoting unspecified elements,




q̇
˙̃p1

˙̃p2


=




0n S(q) ∗
−ST(q)

(
−pT[Si,S j](q)

)
i, j

∗
∗ ∗ ∗







∂ H̃
∂q

∂ H̃
∂ p̃1

∂ H̃
∂ p̃2


+

+




0

0

AT(q)A(q)


λ +




0

Bc(q)
B(q)


u

AT(q)
∂H

∂ p
=AT(q)A(q)

∂ H̃

∂ p̃2
= 0

(2.142)

with H̃(q, p̃) the Hamiltonian H expressed in the new coordinates q, p̃. Here, Si

denotes the i-th column of S(q), i = 1, . . . ,n− k, and [Si,S j] is the Lie bracket of Si

and S j, in local coordinates q given as (see e.g. [2, 156])

[Si,S j](q) =
∂S j

∂q
(q)Si(q)− ∂Si

∂q
S j(q) (2.143)

with
∂S j

∂q
and ∂Si

∂q
denoting the n×n Jacobian matrices.

Since λ only influences the p̃2-dynamics, and the constraints AT(q) ∂H
∂ p

(q, p) = 0

are equivalently given by ∂ H̃
∂ p̃2 (q, p̃) = 0, the constrained dynamics is determined by

the dynamics of q and p̃1, which serve as coordinates for the constrained state space

Xc: [
q̇
˙̃p1

]
= Jc(q, p̃1)

[
∂Hc

∂q
(q, p̃1)

∂Hc

∂ p̃1 (q, p̃1)

]
+

[
0

Bc(q)

]
u, (2.144)

where Hc(q, p̃1) equals H̃(q, p̃) with p̃2 satisfying ∂ H̃
∂ p̃2 = 0, and where the skew-

symmetric matrix Jc(q, p̃1) is given as the left-upper part of the structure matrix in

(2.142), that is

Jc(q, p̃1) =

[
On S(q)

−ST(q)
(
−pT[Si,S j](q)

)
i, j

]
, (2.145)

where p is expressed as function of q, p̃, with p̃2 eliminated from ∂ H̃
∂ p̃2 = 0. Further-

more, in the coordinates q, p̃, the output map is given in the form
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y =
[
BT

c (q) B
T
(q)
][ ∂ H̃

∂ p̃1

∂ H̃
∂ p̃2

]
(2.146)

which reduces on the constrained state space Xc to

y = BT
c (q)

∂ H̃

∂ p̃1
(q, p̃1) (2.147)

Summarizing, (2.144) and (2.147) define a port-Hamiltonian system on Xc, with

Hamiltonian Hc given by the constrained total energy, and with structure matrix Jc

given by (2.145).

Example 2.14 (Example 2.4, continued). Define according to (2.141) new p-coordinates

p1 = pϕ

p2 = pθ + px cosϕ + py sinϕ

p3 = px − pθ cosϕ

p4 = py − pθ sinϕ

The constrained state space Xc is given by p3 = p4 = 0, and the dynamics on Xc is

computed as




ẋ

ẏ

θ̇
ϕ̇
ṗ1

ṗ2




=




0 cosϕ
0 sinϕ

O4 0 1

1 0

0 0 0 −1 0 0

−cosϕ −sinϕ −1 0 0 0







∂Hc

∂x

∂Hc

∂y

∂Hc

∂θ
∂Hc

∂ϕ
∂Hc

∂ p1

∂Hc

∂ p2




+




0 0

0 0

0 0

0 0

0 1

1 0




[
u1

u2

]

[
y1

y2

]
=

[
1
2

p2

p1

]

(2.148)

where Hc(x,y,θ ,ϕ, p1, p2) = 1
2

p2
1 + 1

4
p2

2.

2.4.4 Port-Hamiltonian systems in canonical coordinates –

Casimirs and algebraic constraints

Consider a port-Hamiltonian system without resistive ports and external ports (so

only containing energy-storage ports). Then, the flows f ∈F are given as the flows

fS of the energy storage, and the efforts e ∈ F ∗ as the efforts eS. By the canonical

coordinate representation, we may consider a basis for F and a dual basis for F ∗
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such that the Dirac structure is described by (2.114). In general, however, F is mod-

ulated by the energy variables. In fact, if the state space X is a manifold, then F
at any point x ∈ X will be given as the tangent space TxX . Furthermore, also the

Dirac structure, being given at any point x as a subspace D(x) ⊂ TxX ×T ∗
x X , will

be a modulated Dirac structure. If the Dirac structure D satisfies an additional inte-

grability condition then we can choose local coordinates x = (q, p,r,s) for X (with

dimq = dim p), such that, in the corresponding bases for ( fq, fp, fr, fs) for TxX and

(eq,ep,er,es) for T ∗
x X , the Dirac structure on this coordinate neighborhood is still

given by the relations (2.114). For more details regarding the precise form of the

integrability conditions see Sect. 2.7.

Substituting the flow and effort relations of the energy storage

fq = −q̇ eq =
∂H

∂q
fp = −ṗ ep =

∂H

∂ p

fr = −ṙ er =
∂H

∂ r
fs = −ṡ es =

∂H

∂ s

into the canonical coordinate representation (2.114) of the Dirac structure yields the

following dynamics:

q̇ =
∂H

∂ p

ṗ = −∂H

∂q

ṙ = 0

0 =
∂H

∂ s

(2.149)

The variables q, p are the canonical coordinates known from classical Hamiltonian

dynamics. Furthermore, the variables r have the interpretation of conserved quan-

tities or Casimirs, see Section Sect. 2.6.2. Indeed, every function K(r) will satisfy

the property d
dt

K = 0. Finally, the last equations ∂H
∂ s

= 0 specify the algebraic con-

straints present in the system.

If the Hamiltonian H satisfies additional regularity properties such as the par-

tial Hessian matrix ∂ 2H
∂ s2 being invertible, then by the Implicit Function theorem we

may in principle eliminate the algebraic constraints by solving for s as a function

s(q, p,r). Then the DAEs (2.149) reduce to the ODEs

q̇ =
∂ H̄

∂ p

ṗ = −∂ H̄

∂q

ṙ = 0

(2.150)

where H̄(q, p,r) := H(q, p,r,s(q, p,r)).
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2.4.5 Well-posedness of port-Hamiltonian systems

As we have seen above, coordinate representations of port-Hamiltonian systems of-

ten lead to mixed sets of differential and algebraic equations (DAEs). This implies

that the existence of unique solutions for feasible initial conditions is not guaran-

teed. In particular, problems may arise for port-Hamiltonian systems where the flow

variables of the resistive ports are input variables for the dynamics, while the re-

sistive relation is not effort-controlled. This is illustrated by the following example

taken from [174].

Example 2.15 (Degenerate Van der Pol oscillator). Consider a degenerate form of

the V an der Pol oscillator consisting of a 1-F capacitor

Q̇ = I V = Q (2.151)

in parallel with a nonlinear resistor with the characteristic:

{
( fR,eR) = (I,V ) | V = −1

3
I3 + I

}
(2.152)

This resistive characteristic is clearly not voltage-controlled, but instead is current-

controlled. Hence the resistive relation cannot be expressed as an input-output map-

ping as in (2.31).

As a consequence, the equations (2.151) and (2.152) define an implicitly defined

dynamics on the one-dimensional constraint sub-manifold R in (I,V ) space given

by

R =

{
(I,V ) |V +

1

3
I3 − I = 0

}
.

Difficulties in the dynamical interpretation arise at the points
(
−1,− 2

3

)
and

(
1, 2

3

)
.

At these points V̇ is negative, respectively positive (while the corresponding time-

derivative of I at these points tends to plus or minus infinity, depending on the di-

rection along which these points are approached). Hence, because of the form of

the constraint manifold R it is not possible to “integrate” the dynamics from these

points in a continuous manner along R. These points are sometimes called impasse

points.

For a careful analysis of the dynamics of this system we refer to [174]. In par-

ticular, it has been suggested in [174] that a suitable interpretation of the dynamics

from these impasse points is given by the following jump rules:

(
−1,−2

3

)
→
(

2,−2

3

) (
1,

2

3

)
→
(
−2,

2

3

)
(2.153)

The resultant trajectory (switching from the region I ≤−1 to the region I ≥ 1) is a

‘limit cycle’ that is known as a relaxation oscillation.

Existence and uniqueness of solutions is guaranteed if the resistive relation is

well-behaved and the DAEs are of index 1 as discussed in the previous Sect. 2.4.3.
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Indeed, consider again the case of a port-Hamiltonian system given in the format





ẋ =
[
J(x)−R(x)

]∂H

∂x
(x)+g(x)u+b(x)λ

y = gT(x)
∂H

∂x
(x)

0 = bT(x)
∂H

∂x
(x)

x ∈ X (2.154)

Imposing the same condition as before in Sect. 2.4.3, namely that the matrix

bT(x)
∂ 2H

∂x2
(x)b(x) (2.155)

has full rank, it can be seen that there is a unique solution starting from every feasible

initial condition x0 ∈ Xc. Furthermore, this solution will remain in the constrained

state space Xc for all time.

Example 2.16. A somewhat trivial example of a case where multiple solutions arise

from feasible initial conditions can be deduced from the example of a linear LC-

circuit with standard Hamiltonian H(Q,φ) = 1
2C

Q2 + 1
2L

φ 2, where the voltage over

the capacitor is constrained to be zero:

Q̇ =
1

L
φ +λ

φ̇ =
1

C
Q

0 =
1

C
Q

(2.156)

Here λ denotes the current through the external port whose voltage is set equal to

zero. Since bT(x) ∂ 2H
∂x2 (x)b(x) in this case reduces to 1

C
it follows that there is a unique

solution starting from every feasible initial condition. Indeed, the constrained state

space Xc of the above port-Hamiltonian system is simply given by {(Q,φ) |Q = 0},

while the Lagrange multiplier λ for any feasible initial condition (0,φ0) is uniquely

determined as λ = − 1
L

φ . Now ever, consider the singular case where C = ∞, in

which case the Hamiltonian reduces to H(Q,φ) = 1
2L

φ 2 and the constraint equation

0 = 1
C

Q becomes vacuous, i.e., there are no constraints anymore. In this case the

Lagrange multiplier λ (the current through the external port) is not determined any-

more, leading to multiple solutions (Q(t),φ(t)) where φ(t) is constant (equal to the

initial value φ0) while Q(t) is an arbitrary function of time.
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Fig. 2.7 The composition of

DA and DB. f1

e1

f3

e3

fA

eA

fB

eB

DA DB

2.5 Interconnection of port-Hamiltonian systems

Crucial feature of network modeling, analysis and control is ‘interconnectivity’ or

‘compositionality’, meaning that complex systems can be built up from simpler

parts, and that certain properties of the complex system can be studied in terms of its

constituent parts and the way they are interconnected. The class of port-Hamiltonian

systems completely fits within this paradigm, in the sense that the power-conserving

interconnection of port-Hamiltonian systems again defines a port-Hamiltonian sys-

tem. Furthermore, it will turn out that the Hamiltonian of the interconnected system

is simply the sum of the Hamiltonians of its parts, while the Dirac structure of the

interconnected system is solely determined by the Dirac structures of its compo-

nents.

2.5.1 Composition of Dirac structures

In this subsection, we investigate the composition or interconnection properties of

Dirac structures. Physically it is clear that the composition of a number of power-

conserving interconnections with partially shared variables should yield again a

power-conserving interconnection. We show how this can be formalized within the

framework of Dirac structures.

First, we consider the composition of two Dirac structures with partially shared

variables. Once we have shown that the composition of two Dirac structures is again

a Dirac structure, it is immediate that the power-conserving interconnection of any

number of Dirac structures is again a Dirac structure. Thus consider a Dirac structure

DA on a product space F1×F2 of two linear spaces F1 and F2, and another Dirac

structure DB on a product space F2 ×F3, with also F3 being a linear space. The

linear space F2 is the space of shared flow variables, and F ∗
2 the space of shared

effort variables; see Fig. 2.7.

In order to compose DA and DB, a problem arises of sign convention for the

power flow corresponding to the power variables ( f2,e2) ∈ F2 ×F ∗
2 . Indeed, if

〈e | f 〉 denotes incoming power (see the previous section), then for

( f1,e1, fA,eA) ∈ DA ⊂ F1 ×F ∗
1 ×F2 ×F ∗

2

the term 〈eA | fA〉 denotes the incoming power in DA due to the power variables

( fA,eA) ∈ F2 ×F ∗
2 , while for
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( fB,eB, f3,e3) ∈ DB ⊂ F2 ×F ∗
2 ×F3 ×F ∗

3

the term 〈eB | fB〉 denotes the incoming power in DB. Clearly, the incoming power

in DA due to the power variables in F2×F ∗
2 should equal the outgoing power from

DB. Thus we cannot simply equate the flows fA and fB and the efforts eA and eB,

but instead we define the interconnection constraints as

fA = − fB ∈ F2 eA = eB ∈ F ∗
2 (2.157)

In bond graph terminology we link the two bonds corresponding to ( fA,eA) and

( fB,eB) by a 0-junction. Therefore, the composition of the Dirac structures DA and

DB, denoted DA ‖ DB, is defined as

DA ‖ DB :=
{

( f1,e1, f3,e3) ∈ F1 ×F ∗
1 ×F3 ×F ∗

3 | ∃( f2,e2) ∈ F2 ×F ∗
2

s.t. ( f1,e1, f2,e2) ∈ DA and (− f2,e2, f3,e3) ∈ DB

}

The fact that the composition of two Dirac structures is again a Dirac structure has

been proved in [59, 179]. Here we follow the simpler alternative proof provided

in [45] (inspired by a result in [153]), which also allows one to study the regularity

of the composition, and to obtain explicit representations of the composed Dirac

structure.

Theorem 2.1. Let DA and DB be Dirac structures (defined with respect to F1 ×
F ∗

1 ×F2×F ∗
2 , respectively F2×F ∗

2 ×F3×F ∗
3 , and their bi-linear forms). Then

DA ‖DB is a Dirac structure with respect to the bi-linear form on F1×F ∗
1 ×F3×

F ∗
3 .

Proof. Consider DA and DB defined in matrix kernel representation by

DA =
{

( f1,e1, fA,eA) ∈ F1 ×F ∗
1 ×F2 ×F ∗

2 | F1 f1 +E1e1 +F2A fA +E2AeA = 0
}

DB =
{

( fB,eB, f3,e3) ∈ F2 ×F ∗
2 ×F3 ×F ∗

3 | F2B fB +E2BeB +F3 f3 +E3e3 = 0
}

In the following we shall make use of the following basic fact from linear algebra.

[
(∃λ s.t. Aλ = b)

]
⇔
[
∀α s.t. αTA = 0 ⇒ αTb = 0

]

Note that DA and DB are alternatively given in matrix image representation as

DA = Im




ET
1

FT
1

ET
2A

FT
2A

0

0




DB = Im




0

0

ET
2B

FT
2B

ET
3

FT
3



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Hence, ( f1,e1, f3,e3) ∈ DA ‖ DB if and only if it exists λA and λB such that




f1

e1

0

0

f3

e3




=




ET
1 0

FT
1 0

ET
2A ET

2B

FT
2A −FT

2B

0 FT
3

0 ET
3




[
λA

λB

]

which means that for all [β1,α1,β2,α2,β3,α3] such that

[
β T

1 αT
1 β T

2 αT
2 β T

3 αT
3

]




ET
1 0

FT
1 0

ET
2A ET

2B

FT
2A −FT

2B

0 FT
3

0 ET
3




= 0

we have that

β T
1 f1 +αT

1 e1 +β T
3 f3 +αT

3 e3 = 0.

Equivalently, for all [α1,β1,α2,β2,α3,β3] such that

[
F1 E1 F2A E2A 0 0

0 0 −F2B E2B F3 E3

]




α1

β1

α2

β2

α3

β3




= 0

we have that

β T
1 f1 +αT

1 e1 +β T
3 f3 +αT

3 e3 = 0 (2.158)

which means that for all (α1,β1,α3,β3) ∈DA ‖DB, relation (2.158) is equivalent to

require that ( f1,e1, f3,e3) ∈ (DA ‖ DB)⊥. Thus, DA ‖ DB = (DA ‖ DB)⊥, and so it

is a Dirac structure.

In the following theorem, an explicit expression is given for the composition of

two Dirac structures in terms of a matrix kernel/image representation.

Theorem 2.2. Let Fi, i = 1,2,3 be finite-dimensional linear spaces with dimFi =
ni. Consider Dirac structures DA ⊂ F1 ×F ∗

1 ×F2 ×F ∗
2 , nA = dimF1 ×F2 =

n1 +n2, DB ⊂F2×F ∗
2 ×F3×F ∗

3 , nB = dimF2×F3 = n2 +n3, given by relaxed

matrix kernel/image representations (FA,EA) = ([F1 | F2A], [E1 | E2A]), with FA and

EA n′A ×nA matrices, n′A ≥ nA, respectively (FB,EB) = ([F2B | F3], [E2B | E3]), with

FB and EB n′B ×nB matrices, n′B ≥ nB. Define the (n′A +n′B)×2n2 matrix
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M =

[
F2A E2A

−F2B E2B

]
(2.159)

and let LA and LB be m×n′A, respectively m×n′B, matrices (m := dimkerMT), with

L =
[
LA | LB

]
kerL = ImM (2.160)

Then

F =
[
LAF1 | LBF3

]
E =

[
LAE1 | LBE3

]
(2.161)

is a relaxed matrix kernel/image representation of DA ‖ DB.

Proof. Consider the notation corresponding to Fig. 2.7 and for any λA ∈ R
n′A , λB ∈

R
n′B their associated elements in DA, respectively DB, given by




f1

e1

fA

eA


=




ET
1

FT
1

ET
2A

FT
2A


λA




f3

e3

fB

eB


=




ET
3

FT
3

ET
2B

FT
2B


λB (2.162)

Since

[
ET

2A

FT
2A

]
λA =

[
fA

eA

]
=

[
− fB

eB

]
=

[
−ET

2B

FT
2B

]
λB ⇔

[
λA

λB

]
∈ kerMT (2.163)

it follows that ( f1, f3,e1,e3)∈DA ‖DB if and only if exists [λ T
A ,λ T

B ]
T ∈ kerMT such

that (2.162) holds for some ( fA,eA) and ( fB,eB), necessarily satisfying fA = − fB

and eA = eB. For any matrix L defined as in (2.160) we can write [λ T
A ,λ T

B ]
T ∈ kerMT

as [
λA

λB

]
=

[
LT

A

LT
B

]
λ λ ∈ R

m (2.164)

Substituting (2.164) in (2.162) we obtain the following characterization of DA ‖ DB

DA ‖ DB =





( f1,e1, f3,e3) |




f1

e1

f3

e3


=




[
ET

1

FT
1

]
LT

A

[
ET

3

FT
3

]
LT

B


λ , λ ∈ R

m





(2.165)

which corresponds to the relaxed matrix image representation given in (2.161).

Remark 2.8. The relaxed kernel/image representation (2.161) can be readily under-

stood by pre-multiplying the equations characterizing the composition of DA with

DB
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[
F1 E1 F2A E2A 0 0

0 0 −F2B E2B F3 E3

]




f1

e1

f2

e2

f3

e3




= 0, (2.166)

by the matrix L := [LA |LB]. Since LM = 0 this results in the relaxed kernel repre-

sentation

LAF1 f1 +LAE1e1 +LBF3 f3 +LBE3e3 = 0 (2.167)

corresponding to (2.161).

Instead of the canonical interconnection constraints fA = − fB, eA = eB (cf.

(2.157)), another standard power-conserving interconnection is the ‘gyrative’ in-

terconnection

fA = eB fB = −eA (2.168)

Composition of two Dirac structures DA and DB by this gyrative interconnection

also results in a Dirac structure. In fact, the gyrative interconnection of DA and DB

equals the interconnection DA ‖ I ‖ DB, where I is the gyrative (or symplectic)

Dirac structure

fIA = −eIB fIB = eIA (2.169)

interconnected to DA and DB via the canonical interconnections fIA =− fA,eIA = eA

and fIB = − fB,eIB = eB.

Example 2.17 (Port-Hamiltonian systems with effort or flow constraints). Consider

a general port-Hamiltonian system given in kernel representation as

FSẋ(t) = ES

∂H

∂x
(x(t))+FR fR(t)+EReR(t)+F f (t)+Ee(t) = 0 (2.170)

with fR(t),eR(t) satisfying for all t the resistive relation

R( fR(t),eR(t)) = 0 (2.171)

Suppose the system is constrained by imposing the effort constraints e = 0. This cor-

responds to the composition of the Dirac structure of the port-Hamiltonian system

with the ‘effort-constraint’ Dirac structure Dec defined as

Dec =
{
( f ,e) ∈ F ×F ∗ | e = 0

}
(2.172)

It follows that the matrix M in this case is given as

M =

[
F E

0 I

]
(2.173)
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where the dimensions of the square zero matrix 0 and the identity matrix I are equal

to the dimension of F . Hence the matrix L =
[
Lec L′] should satisfy

[
Lec L′]

[
F E

0 I

]
= 0 (2.174)

It follows that the composed Dirac structure Dec
red corresponding to the effort-

constraint e = 0 is given by the explicit equations

LecFS fS +LecESeS +LecFR fR +LecEReR = 0 (2.175)

where Lec is a matrix of maximal rank satisfying

LecF = 0 (2.176)

It follows that the constrained port-Hamiltonian system resulting from imposing the

effort constraints e = 0 is given as the port-Hamiltonian system

LecFSẋ = LecES

∂Hec
red

∂x
(x)+LecFR fR +LecEReR, (2.177)

with fR,eR satisfying the resistive relation R( fR(t),eR(t)) = 0. Similarly, the reduced

Dirac structure D fc
red corresponding to the flow-constraints f = 0 is given by the

equations

LfcFS fS +LfcESeS +LfcFR fR +LfcEReR = 0 (2.178)

where Lfc is any matrix of maximal rank satisfying

LfcE = 0 (2.179)

A similar analysis can be made for any hybrid set of effort and flow constraints of

complementarity type

ei = 0 (i ∈ K) f j = 0 ( j /∈ K) (2.180)

for any subset K ⊂ {1, · · · , p}, where p = dimF .

Example 2.18 (Feedback interconnection). The standard feedback interconnection

of two input-state-output systems can be regarded as an example of a gyrative in-

terconnection as above. Indeed, let us consider two input-state-output systems as in

(2.51), for simplicity without external inputs d and external outputs z,

Σi :





ẋi =
[
Ji(xi)−Ri(xi)

]∂Hi

∂xi

(xi)+gi(xi)ui

yi = gT
i (xi)

∂Hi

∂xi

(xi)
xi ∈ Xi (2.181)

for i = 1,2. The standard feedback interconnection
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u1 = −y2 u2 = y1 (2.182)

is equal to the negative gyrative interconnection between the flows u1, u2 and the

efforts y1, y2. The closed-loop system is the port-Hamiltonian system

[
ẋ1

ẋ2

]
=

[
J1(x)−R1(x1) −g1(x1)g

T
2 (x2)

g2(x2)g
T
1 (x1) J2(x2)−R2(x2)

][
∂H1
∂x1

(x1)
∂H2
∂x2

(x2)

]

with state space X1 ×X2 and Hamiltonian H1(x1)+H(x2).

2.5.2 Regularity of interconnections

In this subsection we study a particular property in the composition of Dirac struc-

tures, namely the property that the variables corresponding to the ports through

which the connection takes place (the internal port variables) are uniquely deter-

mined by the values of the external port variables7. The concept of regularity can

thus be regarded as a kind of observability property (inferring the values of the in-

ternal variables from the values of the external port variables).

Definition 2.3. Given two Dirac structures DA ⊂ F1 ×F ∗
1 ×F2 ×F ∗

2 and DB ⊂
F2×F ∗

2 ×F3×F ∗
3 . Their composition is said to be regular if the values of the port

variables in F2 ×F ∗
2 are uniquely determined by the values of the port variables in

F1 ×F ∗
1 × F3 ×F ∗

3 ; that is, the following implication holds:

( f1,e1, f2,e2) ∈ DA, (− f2,e2, f3,e3) ∈ DB

( f1,e1, f̃2, ẽ2) ∈ DA, (− f̃2, ẽ2, f3,e3) ∈ DB

}
=⇒ f2 = f̃2, e2 = ẽ2 (2.183)

The following proposition yields an explicit characterization for regularity in

terms of the matrix M defined in the previous theorem.

Proposition 2.2. The composition of two Dirac structures DA and DB given in ma-

trix kernel representation by ([F1 |F2A], [E1 |E2A]) and ([F3 |F2B], [E3 |E2B]), respec-

tively, is a regular interconnection if and only if the (n1 +2n2 +n3)×2n2 matrix M

defined in (2.159) is of full rank (= 2n2).

Proof. Let ( f1,e1, f3,e3) ∈ DA ‖ DB, and let ( f2,e2) be such that ( f1,e1, f2,e2) ∈
DA, ( f3,e3,− f2,e2)∈DB. Then, by linearity, it is easy to prove that ( f ′2,e

′
2) satisfies

( f1,e1, f ′2,e
′
2)∈DA and ( f3,e3,− f ′2,e

′
2)∈DB if and only if ( f̃2, ẽ2) := ( f2− f ′2,e2−

e′2) satisfies {
(0,0, f̃2, ẽ2) ∈ DA

(0,0,− f̃2, ẽ2) ∈ DB

7 The concept of regularity of compositions of Dirac structures is related to the concept of regular

interconnection of linear dynamical systems in the behavioral framework [220]; see [45] for details.
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In matrix kernel representation, this means that





[
F1 |E1 |F2A |E2A

][
0 0 f̃ T

2 ẽT
2

]T

= 0

[
F3 |E3 | −F2B |E2B]

[
0 0 f̃ T

2 ẽT
2

]T

= 0
⇔





[
F2A |E2A

][
f̃ T
2 ẽT

2

]T

= 0

[
F2B | −E2B

][
f̃ T
2 ẽT

2

]T

= 0

which is equivalent to [
f̃ T
2 ẽT

2

]T ∈ kerM

Hence f̃2 = 0 and ẽ2 = 0 if and only if kerM = 0.

Example 2.19 (Example 2.17, continued). Consider again a port-Hamiltonian sys-

tem in kernel representation. For effort constraints e = 0 the matrix M is given as

M =

[
F E

0 I

]

which has full rank if and only if rankF = dimF . Similarly, the interconnection

corresponding to flow constraints f = 0 is regular if and only if rankE = dimF .

Example 2.20. A typical case of the preceding example is an input-state-output port-

Hamiltonian system with output constraints. Indeed, consider an input-state-output

port-Hamiltonian system with Dirac structure DA the graph of the skew-symmetric

map [
−J −g

gT 0

]
(2.184)

Consider the composition of DA with the Dirac structure DB corresponding to the

zero-output constraint y = gT ∂H
∂x

= 0. In kernel representation DA is given as

DA =

{
( fS,eS,u,y) |

[
I

0

]
fS +

[
J

gT

]
eS +

[
g

0

]
u+

[
0

−I

]
y = 0

}
(2.185)

while DB is given by

DB =
{
(u,y) | 0 ·u+ I · y = 0

}
(2.186)

Hence the matrix M in this case is given by

M =




g 0

0 I

0 I




which has full rank if and only if rankg = dimy. Hence, the composition is not reg-

ular if rankg < dimy, in which case the input variable u is not uniquely determined.

This type of irregularity is common in mechanical systems where dependent kine-

matic constraints lead to non-uniqueness of the constraint forces. A typical case is a

table with four legs standing on the ground.
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Fig. 2.8 Interconnection of

port-Hamiltonian systems

f1

e1

f2

e2

fk ek

f

e
DI

X1,F1,D1,H1

X2,F2,D2,H2

Xk,Fk,Dk,Hk

The standard feedback interconnection is an obvious example of a regular inter-

connection, since the interconnection variables ( f2,e2) are uniquely determined as

being the outputs of one of the two interconnected systems.

2.5.3 Interconnection of port-Hamiltonian systems

The result derived in Section 2.5.1 concerning the compositionality of Dirac struc-

tures immediately leads to the result that any power-conserving interconnection of

port-Hamiltonian systems again defines a port-Hamiltonian system. This can be re-

garded as a fundamental building block in the theory of port-Hamiltonian systems.

The result not only means that the theory of port-Hamiltonian systems is a com-

pletely modular theory for modelling, but it also serves as a starting point for design

and control.

Consider k port-Hamiltonian systems (Xi,Fi,Di,Hi), i = 1, · · · ,k, intercon-

nected by a Dirac structure DI on F1 × ·· · ×Fk ×F , with F a linear space of

flow port variables, cf. Fig. 2.8. This can be seen to define a port-Hamiltonian sys-

tem (X ,F ,D ,H), where X := X1×·· ·×Xk, H := H1 + · · ·+Hk, and where the

Dirac structure D on X ×F is determined by D1, · · · ,Dk and DI . Indeed, consider

the product of the Dirac structures D1, · · · ,Dk on (X1 ×F1)× (X2 ×F2)×·· ·×
(Xk ×Fk), and compose this with the Dirac structure DI on (F1 ×·· ·×Fk)×F .

This yields a total Dirac structure D modulated by x = (x1, · · · ,xk) ∈ X = X1 ×
·· ·×Xk which is point-wise given as

D(x1, · · · ,xk) ⊂ Tx1
X1 ×T ∗

x1
X1 ×·· ·×Txk

Xk ×T ∗
xk

Xk ×F ×F ∗



108 2 Port-Hamiltonian Systems

Finally we mention that the theory of composition of Dirac structures and the inter-

connection of port-Hamiltonian systems can be also extended to infinite-dimensional

Dirac structures and port-Hamiltonian systems [107, 164].

2.6 Analysis of port-Hamiltonian systems

In this section, we will briefly discuss some of the structural properties of port-

Hamiltonian systems. More details, and their application for control, can be found

in Chapter 5. First, we will discuss the implications of the energy-balance that is un-

derlying the port-Hamiltonian structure. Next, we will discuss the existence of con-

served quantities, independent of the Hamiltonian, which may be analyzed on the

basis of the Dirac structure. Dually, we will briefly discuss the determination of alge-

braic constraints based on the Dirac structure. Finally, for linear port-Hamiltonian

systems without energy dissipation, some issues of realization theory will be ad-

dressed.

2.6.1 Passivity

A basic property of any port-Hamiltonian system is its energy balance, cf. (2.35)

d

dt
H = eT

R fR + eT
C fC + eT

I fI ≤ eT
C fC + eT

I fI (2.187)

where the inequality holds because the term eT
R fR is always less than or equal to

zero (by definition of the resistive elements). This implies that any port-Hamiltonian

system is passive with respect to the supply rate eT
C fC + eT

I fI and storage function

H if H qualifies as a storage function, that is, if H is semi-positive definite, i.e.

H(x) ≥ 0 for all x. In general, the converse is not true, that is, not every passive

system is a port-Hamiltonian system. This is illustrated by the following example.

Example 2.21. Consider the system

[
ẋ1

ẋ2

]
=

[
x1

−x2

]
+

[
0

1

]
u

y = x2
1x2

which is passive (in fact, loss-less) with respect to the storage function H(x1,x2) =
1
2
x2

1x2
2. However, it is easy to see that there does not exist a 2× 2 matrix J(x) =

−JT(x), with entries depending smoothly on x, such that

[
x1

−x2

]
= J(x)

[
x1x2

2

x2
1x2

]
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However, for a linear input-state-output system

ẋ = Ax+Bu

y = Cx+Du
(2.188)

we will show that, under a natural extra condition, every passive system can be

written as a port-Hamiltonian system.

We consider linear port-Hamiltonian input-state-output systems with feed-through

term (see Sect. 2.2.4)

ẋ(t) =
(
J−R

)
Qx(t)+

(
G−P

)
u(t)

y(t) =
(
G+P

)T
Qx(t)+

(
M +S

)
u(t)

(2.189)

where J is a skew-symmetric n×n matrix and M is a skew-symmetric k× k matrix.

The Hamiltonian H(x) (the energy of the system) is given by the quadratic function

H(x) = 1
2
xTQx, where Q is a symmetric n× n matrix. Furthermore, R is an n× n

symmetric matrix, S is a symmetric k× k matrix, and G and P are n× k matrices,

satisfying the following condition:

[
R P

PT S

]
≥ 0 (2.190)

In particular, if P = 0, then this condition reduces to the condition that R ≥ 0 and

S ≥ 0.

Theorem 2.3. The following properties hold:

1. If the system (2.188) is passive with quadratic storage function 1
2
xTQx satisfying

Q ≥ 0, and Qx = 0 implies Ax = 0 and Cx = 0, then (2.188) can be rewritten into

the port-Hamiltonian form (2.189).

2. If Q ≥ 0, then the port-Hamiltonian linear system (2.189) is passive.

Remark 2.9. Note that the condition (Qx = 0 ⇒ Ax = 0, Cx = 0) is automatically

satisfied if Q > 0.

Proof. Because of the condition (Qx = 0 ⇒ Ax = 0, Cx = 0), it follows from linear

algebra that there exists a matrix Σ such that

[
A B

−C −D

]
= Σ

[
Q 0

0 I

]
(2.191)

In fact, if Q > 0 then such a Σ is uniquely defined as

Σ :=

[
AQ−1 B

−CQ−1 −D

]
(2.192)

Now, passivity of the system (2.188) with quadratic storage function 1
2
xTQx amounts

to the differential dissipation inequality



110 2 Port-Hamiltonian Systems

xTQẋ−uTy ≤ 0 (2.193)

for all x,u. Substituting ẋ = Ax + Bu and y = Cx + Du, and making use of (2.191),

this can be rewritten as

[
xT uT

][Q 0

0 I

]
Σ

[
Q 0

0 I

][
x

u

]
≤ 0 (2.194)

for all x,u, or equivalently

[
Q 0

0 I

](
Σ +Σ T

)[Q 0

0 I

]
≤ 0 (2.195)

It follows from basic linear algebra that we can choose Σ satisfying (2.191) in such

a way that

Σ +Σ T ≤ 0 (2.196)

Hence, if we write Σ = J̄− R̄, with J̄ = −J̄T and R̄ = R̄T, then R̄ ≥ 0. Now, denote

J̄ =

[
J G

−GT −M

]
R̄ =

[
R P

PT S

]
(2.197)

with J = −JT, M = −MT, R = RT and S = ST. Then, (2.188) can be written as

[
ẋ

−y

]
=

{[
J G

−GT −M

]
−
[

R P

PT S

]}[
Qx

u

]
(2.198)

or equivalently {
ẋ =

(
J−R

)
Qx+

(
G−P

)
u

y =
(
G+P

)T
Qx+(M +S)u,

(2.199)

which is a system with Hamiltonian dynamics (2.189).

Secondly, we show that port-Hamiltonian linear systems (2.189) are passive with

the Hamiltonian H(x) = 1
2
xTQx being a storage function. Along trajectories of the

port-Hamiltonian linear system we have (time arguments left out for brevity):

d

dt
H(x) = xTQẋ

= yTu−
[
(Qx)T

uT
][ R P

PT S

][
Qx

u

]

≤ yTu

(2.200)
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2.6.2 Casimirs of port-Hamiltonian systems

Passivity is a key property for stability analysis since the Hamiltonian function H

may serve as a Lyapunov function. However, in some cases, the Hamiltonian H does

not have a minimum at the equilibrium x∗ under study, in which case H alone is not

itself a Lyapunov function. A well-known method in Hamiltonian systems, some-

times called the Energy-Casimir method, is to use in the Lyapunov analysis, next

to the Hamiltonian function, additional conserved quantities (dynamical invariants)

which may be present in the system. Indeed, if we may find conserved quantities,

then candidate Lyapunov functions can be sought within the class of combinations

of the Hamiltonian H and those conserved quantities.

Consider a port-Hamiltonian system without control and interaction ports, in

which case the energy balance (2.187) reduces to

d

dt
H = eT

R fR ≤ 0 (2.201)

Consider functions C : X → R such that d
dt

C = 0 along the trajectories of the sys-

tem. Such a function C is called a conserved quantity. Suppose that we can find a

conserved quantity C : X → R such that V := H +C has a minimum at the equilib-

rium x∗. Then we can still infer stability or asymptotic stability by replacing (2.187)

by
d

dt
V = eT

R fR ≤ 0 (2.202)

and thus using V as a Lyapunov function.

Functions that are conserved quantities of the system for every Hamiltonian are

called Casimir functions. It turns out that Casimirs are completely characterized by

the Dirac structure of the port-Hamiltonian system. Indeed, a function C : X →R is

a Casimir function of the autonomous port-Hamiltonian system (without resistive,

control and interaction port) Σ = (X ,H,D), if and only if the gradient vector e =
∂ TC
∂x

satisfies

eT fS = 0, for all fS for which ∃eS s.t. ( fS,eS) ∈ D (2.203)

Indeed, (2.203) is equivalent to

d

dt
C =

∂ TC

∂x
(x(t))ẋ(t) =

∂ TC

∂x
(x(t)) fS = eT fS = 0 (2.204)

for every port-Hamiltonian system (X ,H,D) with the same Dirac structure D . By

the power-conservation property of the Dirac structure, (2.203) is readily seen to be

equivalent to the requirement that e = ∂ TC
∂x

satisfies

(0,e) ∈ D

Indeed, let e satisfy (2.203). Then
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eT fS + eT
S ·0 = 0 (2.205)

for all ( fS,eS) ∈ D , implying that (0,e) ∈ D⊥ = D . Conversely, if (0,e) ∈ D then

(2.205) holds for all ( fS,eS) ∈ D implying (2.203).

Example 2.22. The well-known Casimir in the case of a spinning rigid body (Ex-

ample 2.3) is the total angular momentum p2
x + p2

y + p2
z (whose vector of partial

derivatives is in the kernel of the matrix J(p) in (2.40). Similarly, in the LC-circuit

of Example 2.5 the total flux φ1 +φ2 for u = 0 is a Casimir.

Example 2.23. Consider a mechanical system with kinematic constraints (2.47) with

u = 0. Then (0,e) ∈ D if and only if

0 =

[
0 I

−I 0

]
e+

[
0

A(q)

]
λ

[
0 AT(q)

]
e = 0

Partioning e =
[
eT

q eT
p

]T
this means that eq = A(q)λ , or equivalently, eq ∈ ImA(q).

Since in general A(q) is depending on q finding Casimirs now involves an addi-

tional integrability condition, see also Sect. 2.7. In fact, Casimirs correspond to

vectors eq ∈ ImA(q) which additionally can be written as a vector of partial deriva-

tives ∂C
∂q

(q) for some function C(q) (the Casimir). In the case of Example 2.14 it can

be verified that this additional integrability condition is not satisfied, correspond-

ing to the fact that the kinematic constraints in this example are completely non-

holonomic. On the other hand, in Example 2.13, where the kinematic constraints

are holonomic, a Casimir is given by C(q1,q2) = q1 − q2. In general it can be

shown [182] that there exist as many independent Casimirs as the rank of the ma-

trix A(q) if and only if the kinematic constraints are holonomic, in which case the

Casimirs are equal to the integrated kinematic constraints.

2.6.2.1 Casimirs in the presence of resistive elements

Similarly, we define a Casimir function for a port-Hamiltonian system with dissipa-

tion Σ = (X ,H,R,D) to be any function C : X → R satisfying

(
0,e =

∂ TC

∂x
,0,0

)
∈ D (2.206)

Indeed, this will imply that

d

dt
C =

∂ TC

∂x
(x(t))ẋ(t) =

∂ TC

∂x
(x(t)) fS = eT fS = 0 (2.207)

for every port-Hamiltonian system (X ,H,R,D) with the same Dirac structure D .

In fact, every element (0,e,0,0) ∈ D satisfies

0 =≪ (0,e,0,0),( fS,eS, fR,eR) ≫= eT fS



2.6 Analysis of port-Hamiltonian systems 113

for all ( fS,eS, fR,eR) ∈ D , thus implying for e = ∂C
∂x

the previous equality (2.207).

At this point, one might suspect that the definition of Casimir function may be

relaxed by requiring that (2.206) only holds for a specific resistive relation

R f fR +ReeR = 0 (2.208)

As before, here the square matrices R f and Re satisfy the symmetry and semi-

positive definiteness condition (see (2.25))

R f RT
e = ReRT

f ≥ 0 (2.209)

together with the rank condition

rank
[
R f |Re

]
= dim fR (2.210)

We show that actually this is not a relaxation, if the required semi-definite positive-

ness of the resistive relation is strengthened to positive-definiteness

R f RT
e = ReRT

f > 0 (2.211)

In this case the condition for a function to be a Casimir for one resistive relation will

imply that it is a Casimir for all resistive relations.

Indeed, let C : X → R be a function satisfying (2.206) for a specific resistive

port R defined by matrices R f and Re as above. This means that e = ∂C
∂x

(x) satisfies

eT fS = 0

for all fS for which there exist eS, fR and eR such that

( fS,eS, fR,eR) ∈ D R f fR +ReeR = 0

This implies that (0,e) ∈ (D ‖ R)⊥.

At this point we note that the proof of the composition of two Dirac structures

(see Theorem 2.1) resulting in a new Dirac structure, immediately extends to the

composition of a Dirac structure and a resistive structure:

Proposition 2.3. Let D be a Dirac structure defined with respect to FS ×F ∗
S ×

FR ×F ∗
R . Furthermore, let R be a resistive structure defined with respect to FR ×

F ∗
R given by

R f fR +ReeR = 0 (2.212)

where the square matrices R f and Re satisfy the symmetry and semi-positive defi-

niteness condition

R f RT
e = ReRT

f ≥ 0 (2.213)

Define the composition D ‖ R of the Dirac structure and the resistive structure in

the same way as the composition of two Dirac structures. Then

(D ‖ R)⊥ = D ‖ (−R) (2.214)
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where −R denotes the pseudo-resistive structure8 given by

R f fR −ReeR = 0 (2.215)

Proof. We follow the same steps as in the above proof that the composition of two

Dirac structures is again a Dirac structure, where we take F1 = FS, F2 = FR, and

F3 void. Because of the sign difference in the definition of a resistive structure as

compared with the definition of a Dirac structure, we immediately obtain the stated

proposition.

Hence (0,e) ∈ (D ‖ R)⊥ = D ‖ (−R), and thus there exist f̃R, ẽR such that

R f f̃R −ReẽR = 0 and satisfying (0,e, f̃R, ẽR) ∈ D . Therefore

0 = eT ·0+ ẽT
R f̃R = ẽT

R f̃R

By writing the pseudo-resistive structure −R in image representation f̃R = RT
e λ and

ẽR = RT
f λ , it follows that

λ TR f RT
e λ = 0

and, by the positive-definiteness condition R f RT
e = ReRT

f > 0, this implies that λ = 0,

whence f̃R = ẽR = 0. Hence not only (0,e, f̃R, ẽR) ∈ D , but actually (0,e,0,0) ∈ D ,

implying that e is the gradient of a Casimir function as defined before.

Of course, the above argument does not fully carry through if the resistive re-

lations are only semi-positive definite. In particular, this is the case if R f RT
e = 0

(implying zero energy dissipation), corresponding to the presence of ideal power-

conserving constraints. In fact, if R f RT
e = 0, then the resistive structure reduces to a

particular type of Dirac structure.

The fact that a Casimir for one resistive relation is actually a Casimir for all resis-

tive relations is closely related to the so-called dissipation obstacle for the existence

of Casimir functions in the case of input-state-output port-Hamiltonian systems,

cf. [160, 161, 180]. In fact, let us consider a Casimir C : X → R for an input-state-

output port-Hamiltonian system without external (control and interaction) ports for

a specific resistive structure, that is

∂ TC

∂x
(x)(J(x)−R(x)) = 0

Post-multiplication by ∂C
∂x

(x) immediately implies

∂ TC

∂x
(x)(J(x)−R(x))

∂C

∂x
(x) = 0

Then, by transposition, we obtain a second equation

8 −R is called a pseudo-resistive structure since it corresponds to a negative instead of a positive

resistance.
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∂ TC

∂x
(x)(−J(x)−R(x))

∂C

∂x
(x) = 0

Adding these two equations one derives

∂ TC

∂x
(x)R(x)

∂C

∂x
(x) = 0

which by positive semi-definiteness of R(x) implies

∂ TC

∂x
(x)R(x) = 0

(and then also ∂ TC
∂x

(x)J(x) = 0). This so-called dissipation obstacle implies that

Casimirs are necessarily independent of those state space coordinates that are di-

rectly affected by physical damping. We conclude that the dissipation obstacle for

finding Casimirs directly generalizes to port-Hamiltonian systems defined with re-

spect to a general Dirac structure, and that it is equivalent to the observation that a

function that is a conserved quantity with respect to one positive definite resistive

relation is necessarily conserved for all resistive relations.

2.6.3 Algebraic constraints of port-Hamiltonian systems

Algebraic constraints on the state variables are primarily determined by the Dirac

structure, as well as by the Hamiltonian. Indeed, let us first consider a port-

Hamiltonian system without external and resistive ports, described by a Dirac struc-

ture D and a Hamiltonian H. Define for every x ∈ X the subspace

PD (x) :=
{

α ∈ T ∗
x X | ∃X ∈ TxX such that (α,X) ∈ D(x)

}
(2.216)

This defines a co-distribution on the manifold X . Then the definition of the port-

Hamiltonian system implies that

∂H

∂x
(x) ∈ PD (x) (2.217)

In general, this imposes algebraic constraints on the state variables x ∈ X . In par-

ticular, if the Dirac structure is given in image representation as

D(x) =
{
(X ,α) ∈ TxX ×T ∗

x X | X = ET(x)λ , α = FT(x)λ
}

(2.218)

then it follows that
∂H

∂x
(x) ∈ ImFT(x)
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In the case of external ports, these algebraic constraints on the state variables x may

also depend on the external port variables. A special case arises for resistive ports.

Consider a Dirac structure
{
(X ,α, fR,eR) ∈ D(x) ⊂ TxX ×T ∗

x X ×FR ×F ∗
R

}

with the resistive flow and effort variables satisfying a relation

R( fR,eR) = 0

Then the gradient of the Hamiltonian has to satisfy the condition

∂H

∂x
(x) ∈

{
α ∈ T ∗

x X | ∃X , fR,eR ∈ TxX ×FR ×F ∗
R

s.t. (X ,α, fR,eR) ∈ D(x),R( fR,eR) = 0
}

Depending on the resistive relation R( fR,eR) = 0 this may again induce algebraic

constraints on the state variables x.

2.7 Integrability of modulated Dirac structures

A key issue in the case of modulated Dirac structures is that of integrability. Loosely

speaking, a Dirac structure is integrable if it is possible to find local coordinates for

the state space manifold such that, in these coordinates, the Dirac structure becomes

a constant Dirac structure, that is, it is not modulated anymore by the state variables.

First let us consider modulated Dirac structures which are given for every x ∈X
as the graph of a skew-symmetric mapping J(x) from the co-tangent space T ∗

x X to

the tangent space TxX (see also the discussion at the end of Sect. 2.1.1). Integrabil-

ity in this case means that the structure matrix J satisfies the conditions

n

∑
l=1

[
Jl j(x)

∂Jik

∂xl

(x)+ Jli(x)
∂Jk j

∂xl

(x)+ Jlk(x)
∂J ji

∂xl

(x)

]
= 0 (2.219)

with i, j,k = 1, . . . ,n. In this case we may find, by Darboux’s theorem (see e.g. [217])

around any point x0 where the rank of the matrix J(x) is constant, local coordinates

x = (q, p,r) in which the matrix J(x) becomes the constant skew-symmetric matrix




0 −Ik 0

Ik 0 0

0 0 0


 (2.220)

Such coordinates are called canonical. A skew-symmetric matrix J(x) satisfying

(2.219) defines a Poisson bracket on X , given for every F,G : X → R as
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{F,G} =
∂ TF

∂x
J(x)

∂G

∂x
(2.221)

Indeed, by (2.219) the Poisson bracket satisfies the Jacobi-identity

{F,{G,K}}+{G,{K,F}}+{K,{F,G}} = 0 (2.222)

for all functions F,G,K.

The choice of coordinates x = (q, p,r) for the state space manifold also induces

a basis for TxX and a dual basis for T ∗
x X . Denoting the corresponding splitting for

the flows by f = ( fq, fp, fr) and for the efforts by e = (eq,ep,er), the Dirac structure

defined by J in canonical coordinates is seen to be given by

D =
{
( fq, fp, fr,eq,ep,er) | fq = −ep, fp = eq, fr = 0

}
(2.223)

A similar story can be told for the case of a Dirac structure given as the graph

of a skew-symmetric mapping ω(x) from the tangent space TxX to the co-tangent

space T ∗
x X . In this case the integrability conditions take the (slightly simpler) form

∂ωi j

∂xk

(x)+
∂ωki

∂x j

(x)+
∂ω jk

∂xi

(x) = 0 i, j,k = 1, . . . ,n (2.224)

The skew-symmetric matrix ω(x) can be regarded as the coordinate representation

of a differential two-form ω on the manifold X , that is ω = ∑n
i=1, j=1 dxi ∧dx j, and

the integrability condition (2.224) corresponds to the closedness of this two-form

(dω = 0). The differential two-form ω is called a pre-symplectic structure, and a

symplectic structure if the rank of ω(x) is equal to the dimension of X . If (2.224)

holds, then again by a version of Darboux’s theorem we may find, around any point

x0 where the rank of the matrix ω(x) is constant, local coordinates x = (q, p,s) in

which the matrix ω(x) becomes the constant skew-symmetric matrix




0 Ik 0

−Ik 0 0

0 0 0


 (2.225)

Such coordinates are again called canonical. The choice of coordinates x = (q, p,s)
as before induces a basis for TxX and a dual basis for T ∗

x X . Denoting the cor-

responding splitting for the flows by f = ( fq, fp, fs) and for the efforts by e =
(eq,ep,es), the Dirac structure corresponding to ω in canonical coordinates is seen

to be given by

D =
{
( fq, fp, fs,eq,ep,es) | fq = −ep, fp = eq, es = 0

}
(2.226)

In case of a symplectic structure the variables s are absent and the Dirac structure

reduces to

D =
{
( fq, fp,eq,ep) | fq = −ep, fp = eq

}
(2.227)
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which is the standard symplectic gyrator.

For general Dirac structures, integrability is defined in the following way, [67]

Definition 2.4. A Dirac structure D on X is integrable if for arbitrary pairs of

smooth vector fields and differential one-forms (X1,α1),(X2,α2),(X3,α3)∈D there

holds

〈LX1
α2 | X3〉+ 〈LX2

α3 | X1〉+
〈
LX3

α1 | X2

〉
= 0 (2.228)

with LXi
denoting the Lie-derivative.

Remark 2.10 (Pseudo-Dirac structures). In the usual definition of Dirac structures

on manifolds (see [54, 67]), this integrability condition is included in the definition.

Dirac structures that do not satisfy this integrability condition are therefore some-

times called pseudo-Dirac structures.

The above integrability condition for Dirac structures generalizes properly the

closedness of symplectic forms and the Jacobi identity for Poisson brackets as dis-

cussed before. In particular, for Dirac structures given as the graph of a symplectic

or Poisson structure, the notion of integrability is equivalent to the Jacobi-identity

or closedness condition as discussed above (see e.g. [54, 59, 67] for details).

Note that a constant Dirac structure trivially satisfies the integrability condition.

Conversely, a Dirac structure satisfying the integrability condition together with an

additional constant rank condition can be represented locally as a constant Dirac

structure. The precise form of the constant rank condition can be stated as follows.

For any Dirac structure D , we may define the distribution

GD (x) =
{

X ∈ TxX | ∃α ∈ T ∗
x X s.t. (X ,α) ∈ D(x)

}

Dually we may define the co-distribution

PD (x) =
{

α ∈ T ∗
x X | ∃X ∈ TxX s.t. (X ,α) ∈ D(x)

}

We call x0 a regular point for the Dirac structure if both the distribution GD and the

co-distribution PD have constant dimension around x0.

If the Dirac structure is integrable and x0 is a regular point, then, again by a

version of Darboux’s theorem, we can choose local coordinates x = (q, p,r,s) for

X (with dimq = dim p), such that, in the resulting bases for ( fq, fp, fr, fs) for TxX
and (eq,ep,er,es) for T ∗

x X , the Dirac structure on this coordinate neighborhood is

given as (see (2.114)) 



fq = −ep

fp = eq

fr = 0

es = 0

(2.229)

Coordinates x = (q, p,r,s) as above are again called canonical. Note that the choice

of canonical coordinates for a Dirac structure satisfying the integrability condition

encompasses the choice of canonical coordinates for a Poisson structure and for a

(pre-)symplectic structure as above.
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Explicit conditions for integrability of a Dirac structure can be readily stated in

terms of a kernel/image representation. Indeed, let

D =
{
( f ,e) | F(x) f +E(x)e = 0

}

=
{
( f ,e) | f = ET(x)λ , e = FT(x)λ , λ ∈ R

n
}

Denote the transpose of i-th row of E(x) by Yi(x) and the transpose of the i-th row

of F(x) by βi(x). The vectors Yi(x) are naturally seen as coordinate representations

of vector fields while the vectors βi(x) are coordinate representations of differential

forms. Then integrability of the Dirac structure is equivalent to the condition

〈
LYi

β j | Yk

〉
+
〈
LY j

βk | Yi

〉
+
〈
LYk

βi | Yj

〉
= 0 (2.230)

for all indices i, j,k = 1, · · · ,n.

Another form of the integrability conditions can be obtained as follows. In

[54, 59, 67] it has been shown that a Dirac structure on a manifold X is inte-

grable if and only if, for all pairs of smooth vector fields and differential one-forms

(X1,α1),(X2,α2) ∈ D , it holds that

(
[X1,X2], iX1

dα2 − iX2
dα1 +d〈α2 | X1〉

)
∈ D (2.231)

Using the definition of the vector fields Yi and differential forms βi, i = 1, · · · ,n, as

above, it follows that the Dirac structure is integrable if and only if

(
[Yi,Yj], iYi

dβ j − iY j
dβi + d

〈
β j | Yi

〉)
∈ D (2.232)

for all i, j = 1, · · · ,n. This can be more explicitly stated by requiring that

F(x)[Yi,Yj](x)+E(x)
(

iYi
dβ j(x)− iY j

dβi(x)+d
〈
β j | Yi

〉
(x)
)

= 0 (2.233)

for all i, j = 1, · · · ,n and for all x ∈ X . See for more details [59].

Example 2.24 (Kinematic constraints). Recall from the discussion in Sect. 2.2.2 that

the modulated Dirac structure corresponding to an actuated mechanical system sub-

ject to kinematic constraints AT(q)q̇ = 0 is given by

D =

{
( fS,eS, fC,eC) | 0 =

[
0 AT(q)

]
eS, eC =

[
0 BT(q)

]
eS,

− fS =

[
0 In

−In 0

]
eS +

[
0

A(q)

]
λ +

[
0

B(q)

]
fc, λ ∈ R

k

}

Complete necessary and sufficient conditions for integrability of this Dirac structure

have been derived in [59]. Here we only state a slightly simplified version of this

result, also detailed in [59]. We assume that the actuation matrix B(q) has the special



120 2 Port-Hamiltonian Systems

form (often encountered in examples) where every j-th column ( j = 1, . . . ,m) is

given as [
0

∂C j

∂q
(q)

]

for some function C j(q) only depending on the configuration variables q. In this

case, the Dirac structure D is integrable if and only if the kinematic constraints are

holonomic.

It has been shown in Sect. 2.4.3 that, after elimination of the Lagrange multipli-

ers and the algebraic constraints, the constrained mechanical system reduces to a

port-Hamiltonian system on the constrained sub-manifold defined with respect to a

Poisson structure matrix Jc. As has been shown in [182], Jc satisfies the integrability

condition (2.219) again if and only if the constraints (2.42) are holonomic. In fact,

if the constraints are holonomic, then the coordinates s as in (2.220) can be taken

to be equal to the ‘integrated constraint functions’ qn−k+1, . . . ,qn of (2.44), and the

matrix gs as in (2.71) is zero.

It can be verified that the structure matrix Jc obtained in Example 2.4, see (2.148),

does not satisfy the integrability conditions, in accordance with the fact that the

rolling constraints in this example are non-holonomic.

2.8 Scattering representation of Dirac structures and

port-Hamiltonian systems

In this section, we show how, by using in the total space of port variables F ×
F ∗, a different splitting than the ‘canonical’ duality splitting (in flows f ∈ F and

efforts e ∈ F ∗), we obtain other useful representations of Dirac structures and port-

Hamiltonian systems.

2.8.1 What is “scattering”?

Scattering is a well known phenomena in physics and in network and communi-

cation theory: when a wave propagating in a material medium encounters discon-

tinuities, its properties (direction, frequency or polarization) are changed, in strict

relation with the intrinsic characteristics of the material through which the wave is

propagating, [110]. Consequently, it seems to be natural that scattering theory is

concerned with the effect obstacles or inhomogeneities have on an incident waves.

There are two types of problems in this area:

• The direct problem: this problem is concerned with determining the scattered

field from the knowledge of the incident field and the scattering obstacle;
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• The inverse problem: this problem is, basically, the determination of the shape

and/or physical properties of the scatterer from the measurement of the scattered

field for a number of incident fields.

As it will be clear later, the results presented in this section can be interpreted as if

developed within the direct problem framework.

Roughly speaking, the word scattering is related to the propagation of waves

and to the change of their properties when obstacles are met. Consider a transmis-

sion line given by the interconnection of two parts, each of them characterized by

different properties (i.e. different impedance): a traveling wave encounters an obsta-

cle when it reaches the interconnection point. The consequence is well-known: the

wave splits into reflected and transmitted components. Try to generalize to generic

power propagation phenomena: at the interconnection point of physical systems, an

amount of traveling power is transmitted, while the remaining part is reflected. Con-

sequently, the total traveling power becomes the sum of two distinct terms, each of

them moving in opposite “directions”.

Consider, for example, a transmission line for which C(z) = C is the distributed

capacitance and by L(z) = L the distributed inductance, with z ∈ [0, L] being L the

length of the line. If V (z, t) and I(z, t) are voltages and currents, it is well known that





C
∂V

∂ t
= −∂ I

∂ z

L
∂ I

∂ t
= −∂V

∂ z

and, clearly, that

∂ 2I

∂ t2
= LC

∂ 2I

∂ z2

∂ 2V

∂ t2
= LC

∂ 2V

∂ z2

which are both 1-dimensional wave equation. If v = 1√
LC

denotes the wave speed,

we have that

I(z, t) = F1(z+ vt)+F2(z− vt)

is a generic solution of the first PDE, where F1 and F2 are two waveforms traveling

in opposite directions. In particular, F1 in the negative z direction and F2 in the

positive one. As regard the time evolution of the voltage along the transmission line,

it is easy to compute that

V (z, t) =

√
L

C
[F1(z+ vt)+F2(z− vt)]

where Z :=
√

L/C is the impedance of the line. Note that Z can be interpreted as a

map from the space of flows (currents) to the space of efforts (voltages). If N :=
√

Z,

consider the following functions:



122 2 Port-Hamiltonian Systems

S+(z, t) =
N−1

√
2

[V (z, t)+Z I(z, t)] S−(z, t) =
N−1

√
2

[V (z, t)−Z I(z, t)] (2.234)

It is easy to compute that S+(z, t) =
√

2Z F1(z, t) and S−(z, t) =
√

2Z F2(z, t), show-

ing that each S+,−(z, t) is only function of a specific wavefront. Moreover, denote

by P(z, t) := V (z, t)I(z, t) the traveling power. Then, P(z, t) = Z[F2
1 (z, t)−F2

2 (z, t)]
or, in terms of S+ and S−

P(z, t) =
1

2

∥∥S+(z, t)
∥∥2 − 1

2

∥∥S−(z, t)
∥∥2

(2.235)

Relation (2.235) shows that the change of variable (2.234) is able to reveal two

distinct power flows propagating inside the transmission line. Moreover, each new

variable is related to the power traveling in a specific direction: S+ and S− are called

scattering variables while (2.234) is the scattering map. Moreover, the result ex-

pressed by (2.235) is known as scattering power decomposition.

At this point, we can imagine if it is possible to extend these classical results on

wave propagation to generic power propagation phenomena. In order to understand

that this connection is possible, let us recall that the interaction between physical

systems is an exchange of power, the amount of which can be calculated by means

of intrinsic operations on the so-called power variables, defined on the ports of the

systems themselves. Clearly, it is on these ports that the interaction takes place.

As in wave propagation it is possible to operate on the state variables in order to

obtain a couple of new state variables related to the transmitted and reflected power,

it is possible to show that, once an orientation is fixed for each power port of the

system, it is possible to split the total power flow into two distinct ones by means

of a generalization of (2.234). In this respect, the interconnection of systems can be

described in terms of these new port variables.

2.8.2 Scattering representation of ports and Dirac structures

Consider the space of port variables given in general form as F ×F ∗, for some

finite-dimensional linear space F . The duality product 〈e | f 〉 defines the instanta-

neous power of the signal ( f ,e) ∈ F ×F ∗. It has been shown that the basic idea

of a scattering representation is to rewrite the power as the difference between two

non-negative terms, that is, the difference between an incoming power and an out-

going power. This is accomplished by the introduction of new coordinates for the

total space F ×F ∗, based on the bi-linear form introduced before

≪ ( f1,e1),( f2,e2) ≫= 〈e1 | f2〉+ 〈e2 | f1〉 (2.236)

on F ×F ∗ (see Sect. 2.1), with ( fi,ei) ∈ F ×F ∗, i = 1,2. From a matrix repre-

sentation of ≪ ·, · ≫, it immediately follows that ≪ ·, · ≫ is an indefinite symmet-



2.8 Scattering representation of Dirac structures and port-Hamiltonian systems 123

ric bi-linear form, which has n singular values +1 and n singular values −1, with

n = dimF .

A9 pair of subspaces Σ+,Σ− ⊂ F ×F ∗ is called a pair of scattering subspaces

if

(i) Σ+ ⊕Σ− = F ×F ∗;

(ii) ≪ σ+
1 ,σ+

2 ≫> 0 for all σ+
1 ,σ+

2 ∈ Σ+ unequal to 0, and ≪ σ−
1 ,σ−

2 ≫< 0

for all σ−
1 ,σ−

2 ∈ Σ− unequal to 0;

(iii) ≪ σ+,σ− ≫= 0 for all σ+ ∈ Σ+,σ− ∈ Σ−.

It is readily seen that any pair of scattering subspaces (Σ+,Σ−) satisfies

dimΣ+ = dimΣ− = dimF

The collection of pairs of scattering subspaces can be characterized as follows.

Lemma 2.1. Let (Σ+,Σ−) be a pair of scattering subspaces. Then there exists an

invertible linear map R : F → F ∗ with

〈(R+R∗) f | f 〉 > 0 (2.237)

for all 0 6= f ∈ F , such that

Σ+ :=
{

(R−1e,e) ∈ F ×F ∗ | e ∈ F ∗
}

Σ− :=
{

(− f ,R∗ f ) ∈ F ×F ∗ | f ∈ F
} (2.238)

Conversely, for any invertible linear map R : F → F ∗ satisfying (2.237) the pair

(Σ+,Σ−) defined in (2.238) is a pair of scattering subspaces.

Proof. Let (Σ+,Σ−) be a pair of scattering subspaces. Since ≪ ·, · ≫ is positive

definite on Σ+, while it is zero on F ×0 and 0×F , we can write Σ+ as in (2.238)

for some invertible linear map R. Checking positive-definiteness of ≪ ·, · ≫ on Σ+

then yields (2.237). Similarly, Σ−∩ (F ×0) = 0,Σ−∩ (0×F ∗) = 0. Orthogonal-

ity of Σ− with respect to Σ+ (condition (iii)) implies that Σ− is given as in (2.238).

Conversely, a direct computation shows that (Σ+,Σ−) defined in (2.238) for R sat-

isfying (2.237) defines a pair of scattering subspaces.

The fundamental relation between the representation in terms of power vectors

( f ,e) ∈ F ×F ∗ and the scattering representation is given by the following. Let

(Σ+,Σ−) be a pair of scattering subspaces. Then every pair of power vectors ( f ,e)∈
F ×F ∗ can be also represented as

( f ,e) = σ+ +σ− (2.239)

for a uniquely defined σ+ ∈ Σ+,σ− ∈ Σ−, called the wave vectors. Using orthogo-

nality of Σ+ w.r.t. Σ− it immediately follows that for all ( fi,ei) = σ+
i +σ−

i , i = 1,2:

9 In general, there exist many pairs of scattering subspaces.
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≪ ( f1,e1),( f2,e2) ≫=
〈
σ+

1 ,σ+
2

〉
Σ+ −

〈
σ−

1 ,σ−
2

〉
Σ− (2.240)

where 〈·, ·〉Σ+ denotes the inner product on Σ+ defined as the restriction of ≪ ·, · ≫
to Σ+, and 〈·, ·〉Σ− denotes the inner product on Σ− defined as minus the restriction

of ≪ ·, · ≫ to Σ−. Taking f1 = f2 = f , e1 = e2 = e and thus σ+
1 = σ+

2 = σ+,

σ−
1 = σ−

2 = σ−, leads to

〈e | f 〉 =
1

2
≪ ( f ,e),( f ,e) ≫=

1

2

〈
σ+,σ+

〉
Σ+ − 1

2

〈
σ−,σ−〉

Σ− (2.241)

Equation (2.241) yields the following interpretation of the wave vectors. The vector

σ+ can be regarded as the incoming wave vector, with half times its norm being the

incoming power, and the vector σ− is the outgoing wave vector, with half times its

norm being the outgoing power. Note the similarities with respect to (2.235).

Applied to a port-Hamiltonian system, this leads to the following. Let F ×F ∗

be the space of external port variables f ,e, not including the internal port variables

fS,eS, and consider a scattering representation as above. Then the power-balance
d
dt

H = 〈e | f 〉 changes into

dH

dt
=

1

2

〈
σ+,σ+

〉
Σ+ − 1

2

〈
σ−,σ−〉

Σ− (2.242)

expressing that the increase in internal energy is equal to the energy of the incoming

wave minus the energy of the outgoing wave.

Let D ⊂ F ×F ∗ be a Dirac structure, that is, D = D⊥ with respect to ≪ ·, · ≫.

What is its representation in wave vectors? Since ≪ ·, · ≫ is zero restricted to D , it

follows that for every pair of scattering subspaces (Σ+,Σ−)

D ∩Σ+ = 0 D ∩Σ− = 0 (2.243)

and hence (see [180] for more information) D can be represented as the graph of an

invertible linear map O : Σ+ → Σ−, that is:

D =
{
(σ+,σ−) | σ− = Oσ+, σ+ ∈ Σ+

}
(2.244)

Furthermore, by (2.240),
〈
σ+

1 ,σ+
2

〉
Σ+ =

〈
Oσ+

1 ,Oσ+
2

〉
for every σ+

1 ,σ+
2 ∈ Σ+, and

thus

O : (Σ+,〈·, ·〉Σ+) → (Σ−,〈·, ·〉Σ−) (2.245)

is a unitary map (isometry). Conversely, every unitary map O as in (2.245) defines a

Dirac structure by (2.244). Thus, for every pair of scattering subspaces (Σ+,Σ−), we

have a one-to-one correspondence between unitary maps (2.245) and Dirac struc-

tures D ⊂ F ×F ∗.

This is an appealing result since maps are often easier to deal with than relations.

This is illustrated by Sect. 2.8.4 where it will be shown how the composition of two

Dirac structures can be obtained by a special product (called the Redheffer product)

of the two associated unitary maps.
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2.8.3 Inner product scattering representations

A particular useful class of scattering subspaces (Σ+,Σ−) are those defined by an

invertible map R : F →F ∗ satisfying (2.237) such that R = R∗. Indeed, in this case

R is determined by the inner product on F defined as

〈 f1, f2〉R := 〈R f1 | f2〉 = 〈R f2 | f1〉 (2.246)

or equivalently by the inner product on F ∗ defined as

〈e1,e2〉R−1 :=
〈
e2 | R−1 f1

〉
=
〈
e1 | R−1 f2

〉
(2.247)

In this case, we may define an explicit representation of the pair of scattering sub-

spaces (Σ+,Σ−) as follows. Define for every ( f ,e) ∈ F ×F ∗ the pair (s+,s−)
as

s+ :=
1√
2
(e+R f ) ∈ F ∗ s− :=

1√
2
(e−R f ) ∈ F ∗ (2.248)

See the similarities with respect to (2.234). Let (s+
i ,s−i ) correspond to ( fi,ei), i =

1,2. Then, by direct computation,

2
〈
s+

1 ,s+
2

〉
R−1 = 〈e1,e2〉R−1 + 〈 f1, f2〉R + ≪ ( f1,e1),( f2,e2) ≫

2
〈
s−1 ,s−2

〉
R−1 = 〈e1,e2〉R−1 + 〈 f1, f2〉R−≪ ( f1,e1),( f2,e2) ≫

(2.249)

Hence, if ( fi,ei) ∈ Σ+, or equivalently s−i = ei −R fi = 0, then

〈
s+

1 ,s+
2

〉
R−1 =≪ ( f1,e1),( f2,e2) ≫

while if ( fi,ei) ∈ Σ−, or equivalently s+
i = ei +R fi = 0, then

〈
s−1 ,s−2

〉
R−1 = −≪ ( f1,e1),( f2,e2) ≫

Thus the mappings

σ+ = ( f ,e) ∈ Σ+ 7−→ s+ =
1√
2
(e+R f ) ∈ F ∗

σ− = ( f ,e) ∈ Σ− 7−→ s− =
1√
2
(e−R f ) ∈ F ∗

(2.250)

are isometries with respect to the inner products on Σ+ and Σ−, and the inner prod-

uct on F ∗ defined by (2.247). Hence we may identify the wave vectors (σ+,σ−)
with (s+,s−).

Remark 2.11. Note that by (2.249) the pair of scattering subspaces (Σ+,Σ−) corre-

sponding to R may be elegantly characterized as
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Σ+ =
{
( f ,e) ∈ F ×F ∗ | ≪ ( f ,e),( f ,e) ≫= 〈e,e〉R−1 + 〈 f , f 〉R

}

Σ− =
{
( f ,e) ∈ F ×F ∗ | ≪ ( f ,e),( f ,e) ≫= −〈e,e〉R−1 −〈 f , f 〉R

}

This is the starting point taken in [197, 198].

Let us now consider the representation of a Dirac structure D in terms of the

wave vectors (s+,s−) (see also the treatment in [180, Sect. 4.3.3]). For every Dirac

structure D ⊂ F ×F ∗ there exist linear mappings F : F → V and E : F ∗ → V
satisfying (see 2.109)

(i) EF∗ +FE∗ = 0,

(ii) rank(F +E) = dimF ,
(2.251)

where V is a linear space with the same dimension as F . Thus, for any ( f ,e) ∈ D ,

the wave vectors (s+,s−) defined by (2.250) are given as

s+ =
1√
2
(F∗λ +RE∗λ ) =

1√
2
(F∗ +RE∗)λ

s− =
1√
2
(F∗λ −RE∗λ ) =

1√
2
(F∗−RE∗)λ

with λ ∈ V ∗. The mapping F∗ + RE∗ is invertible. Indeed, suppose that (F∗ +
RE∗)(λ ) = 0. By (2.251-(i)) also EF∗λ + FE∗λ = 0. It follows that ERE∗λ +
FR−1F∗λ = 0, and hence by positive-definiteness of R and (2.251-(ii)) λ = 0.

Therefore

s− = (F∗−RE∗)(F∗ +RE∗)−1s+ (2.252)

Hence the unitary map O : F ∗ →F ∗ associated with the Dirac structure (recall that

we identify Σ+ and Σ− with F ∗ by (2.250)) is given as

O = (F∗−RE∗)(F∗ +RE∗)−1 (2.253)

By adding EF∗ +FE∗ = 0 it follows that

(FR−1 +E)(F∗ +RE∗) = (FR−1 −E)(F∗−RE∗)

and hence also

O = (FR−1 −E)−1(FR−1 +E) (2.254)

since, similarly as above, it can be shown that FR−1 −E is invertible. Therefore

O∗R−1O = (F +ER)−1(F −ER)R−1(FR−1 −E)−1(FR−1 +E)

= (F +ER)−1(F −ER)(F −ER)−1(FR−1 +E)

= (F +ER)−1(FR−1 +E) = R−1

showing indeed (as proved before by general considerations) that O : F ∗ → F ∗ is

a unitary mapping.
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Given a kernel/image representation (F,E) for a Dirac structure D , that is,

D = ker(F + E), it is obvious that for any invertible map C : V → V ′ also

D = kerC(F +E) = ker(CF +CE) = ker(F ′+E ′). Hence, there are infinitely many

(F,E) pairs representing D in kernel/image representation, corresponding to only

one O map in the chosen scattering representation. The following theorem estab-

lishes the characterization of the set of (F,E) pairs representing D based on this

unique scattering representation of D .

Theorem 2.4. Consider any inner product R on F and the resulting scattering

representation. The set of (F,E) pairs representing a given Dirac structure D on

F ×F ∗ in kernel/image representation is given by

{
(F,E) | F = X(O + I)R, E = X(O − I),X : F ∗ → V invertible

}
(2.255)

where O is the scattering representation of D .

Proof. Obviously, any (F,E) pair corresponding to D can be expressed as

{
F = (A+B)R

E = A−B
(2.256)

in terms of the pair of the mappings A,B given by

{
A = 1

2
(FR−1 +E)

B = 1
2
(FR−1 −E)

(2.257)

By (2.254) the mappings A and B are invertible, while O = B−1A. Hence, substitut-

ing A = BO in (2.256), F and E can be expressed as

{
F = B(O + I)R

E = B(O − I)
(2.258)

Taking C = B−1 in (2.258), the following ‘canonical’ kernel representation for D is

found {
F ′ = (O + I)R

E ′ = O − I
(2.259)

immediately yielding the parametrization of D given in (2.255).

Remark 2.12. Using the property O∗R−1O = R−1 one may also rewrite (2.259) as

{
F ′ = R((O∗)−1 + I)

E ′ = R((O∗)−1 − I)R−1
(2.260)

and then obtain the alternative parametrization
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{
(F,E) : F = X((O∗)−1 + I), E = X((O∗)−1 − I)R−1

}
(2.261)

Remark 2.13. Equation (2.253) together with (2.255) allow bi-directional conver-

sion between scattering and kernel/image representations.

2.8.4 Interconnection in scattering representation

Recall that interconnection in power vector representation is simply given by the

interconnection constraints (0-junction)

fA = − fB ∈ F eA = eB ∈ F ∗ (2.262)

Now consider the scattering representation of the power vectors ( fA,eA) with respect

to an inner product RA as given by the wave vectors

s+
A

:=
1√
2
(eA +RA fA) ∈ F ∗ s−A :=

1√
2
(eA −RA fA) ∈ F ∗ (2.263)

and analogously the scattering representation of the power vectors ( fB,eB) with

respect to another inner product RB, given by

s+
B :=

1√
2
(eB +RB fB) ∈ F ∗

s−B :=
1√
2
(eB −RB fB) ∈ F ∗

(2.264)

Then, the interconnection constraints (2.262) on the power vectors yield the follow-

ing interconnection constraints on the wave vectors

s+
A − s−B =

1√
2
(RA −RB) f s+

B − s−A =
1√
2
(RA −RB) f (2.265)

together with

s+
A − s−A =

√
2RA f s−B − s+

B =
√

2RB f (2.266)

leading to

s+
A − s−B = s+

B − s−A R−1
A (s+

A − s−A )+R−1
B (s+

B − s−B ) = 0 (2.267)

As described in Fig. 2.9, the first equation of (2.267) can be interpreted as a power

balance of the wave vectors. Indeed, in our convention for power flow, s+ are in-

coming wave vectors for the system and thus outgoing wave vectors for the point

of interconnection, while s− are outgoing wave vectors for the system and thus in-

coming wave vectors for the point of interconnection. Hence the first equation of
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Fig. 2.9 Ingoing / outgoing

wave vectors. Af

Ae

Bf

Be

+

As

-

As

-

Bs

+

Bs

Fig. 2.10 Interconnection

of DA and DB using wave

vectors.

v1

z1

v3

z3

vA

zA

vB

zB

DA DB

(2.267) states that the loss (= difference) between the outgoing wave vector s+
A and

the incoming wave vector s−B is equal to the loss between the outgoing wave vec-

tor s+
B and the incoming wave vector s−A . The second equation expresses a balance

between the loss as seen from A and the loss as seen from B.

The scattering at A is said to be matching with the scattering at B if RA = RB. In

this case (2.262) is equivalent to the following interconnection constraints between

the wave vectors:

s+
A = s−B s+

B = s−A , (2.268)

simply expressing that the outgoing wave vector for A equals the incoming wave

vector for B, and conversely.

In the rest of this section, we restrict ourselves to the matching case RA = RB = R.

Also, in order to simplify computations, we consider a coordinate representation

such that R is given by the identity matrix (= Euclidean inner product). Further-

more, for ease of notation we denote s+
A , s+

B by vA, vB and s−B , s−A by zA, zB. Thus

we consider the composition as in Fig. 2.10 of two Dirac structures DA,DB by the

interconnection equations (in scattering representation)

vA = zB zA = vB (2.269)

By redrawing Fig. 2.10 in standard feedback interconnection form as in Fig. 2.11, it

is readily seen that this corresponds to the well-known Redheffer star product (see

e.g. [169]) of OA and OB .

Proposition 2.4. The scattering representation of DA ‖DB is given by OA ⋆OB, with

the unitary mappings OA and OB being the scattering representation of DA and DB

respectively, and ⋆ denoting the Redheffer star product.

Note that this immediately yields that the Redheffer star product of two unitary

mappings is again a unitary mapping, since DA ‖ DB is again a Dirac structure.

Explicit formulas for OA ⋆OB tend to become rather involved. One way is to employ
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Fig. 2.11 Fig. 2.10 redrawn

as the Redheffer star product

of OA and OB .

vA = zB zA = vB

z1

v3z3

v1

OA

OB

the (relaxed) kernel/image representation of DA ‖ DB obtained in Sect. 2.5.1 and

then to use the conversion (from power vectors to wave vectors, and conversely)

formulas obtained in Sect. 2.8.3.

In case the interconnection is regular, a direct formula for OA ⋆OB is straightfor-

ward. Indeed, denote the decomposition of OA and OB by

[
z1

zA

]
= OA

[
v1

vA

]
=

[
OA

11 OA
12

OA
21 OA

22

][
v1

vA

]

[
z3

zB

]
= OB

[
v3

vB

]
=

[
OB

33 OB
32

OB
23 OB

22

][
v3

vB

] (2.270)

Using (2.269) and (2.270), the following expressions are obtained

(I −OA
22O

B
22)zA = OA

21v1 +OA
22O

B
23v3

(I −OB
22O

A
22)zB = OB

23v3 +OB
22O

A
21v1

Regularity of the interconnection is equivalent to the property that zA and zB are

uniquely determined by the above two equations, and hence is equivalent to the in-

vertibility of the matrices (I−OA
22O

B
22) and (I−OB

22O
A
22). If this is the case, then one

can directly express zA and zB in terms of v1 and v3, and substitute these expressions

in (2.270), thus leading to an explicit formula for OA ⋆OB. Explicit formulas may

be found in [44].



Chapter 3

Port-Based Modeling in Different Domains

C. Batlle, F. Couenne, A. Dòria-Cerezo, V. Duindam, E. Fossas, C. Jallut,

L. Lefèvre, Y. Le Gorrec, B. M. Maschke, R. Ortega, K. Schlacher,

S. Stramigioli, M. Tayakout

Abstract In this Chapter we present some detailed examples of modelling in several

domains using port and port-Hamiltonian concepts, as have been presented in the

previous chapters. We start with the electromechanical domain in Sect. 3.1, while

in Sect. 3.2 it is shown how port-Hamiltonian systems can be fruitfully used for the

structured modelling of robotics mechanisms. In Sect. 3.3, it is show how to model

simple elastic systems either in the Lagrangian and Hamiltonian framework, while,

in Sect. 3.4, an expressions of the models representing momentum, heat and mass

transfer as well as chemical reactions within homogeneous fluids in the port-based

formalism is proposed. To this end, the entropy balance and the associated source

terms are systematically written in accordance with the principle of irreversible ther-

modynamics. Some insights are also given concerning the constitutive equations and

models allowing to calculate transport and thermodynamic properties. As it will be

shown, for each physical domain, these port-based models can be translated into

bond-graph models, in the case of distributed as well as lumped parameters models.

3.1 Modeling of electrical systems

Electromechanical energy conversion has already been discussed in Sect. 1.9.3, and,

in particular, the constraints imposed by energy conservation on the constitutive

laws of the ports, Maxwell’s relations, have been derived. As the name indicates,

electromechanical systems (EMS) bridge the gap between the electrical and me-

chanical domains. In practice, on the electrical side one has an electric circuit of a

very special class, what is called an electronic power converter, which, if the sys-

tem is working as an electrical motor, takes the electrical energy from some source

and provides a suitable voltage to the EMS so that the desired mechanical speed is

reached; likewise, if the system acts as a generator, the power converter transforms

the raw electrical energy into a form adapted for immediate use, storage or trans-

portation. The main characteristic of electronic power converters is that they are

variable structure systems (VSS). They contain a number of switches and diodes, of

131
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Fig. 3.1 A functional descrip-

tion of the boost converter.
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which the former can be opened or closed in a periodic manner by a suitable control

algorithm, in order to effect the necessary electrical energy conversion.

Since electronic power converters are so important for EMS, and also for many

other applications, such as portable equipment, energy supply systems in the aero-

space industry, or uninterruptible power supply systems, we present first an explicit

example of modelling of a power converter in the port-Hamiltonian framework.

Next we discuss in detail the port-Hamiltonian description of a general EMS, and

use it to describe an elementary electromagnet. Finally we couple both systems and

display the complete port-Hamiltonian structure.

Although modelling of VSS in the port-Hamiltonian framework is straightfor-

ward, numerical simulation can be quite complex and time-intensive, due to the

abrupt structure changes. Approximate, smooth models can be obtained from a VSS,

using suitable averages of the state variables and the control signals. For complete-

ness, we also present the simplest form of this averaging theory, which yields models

which can be easily implemented in bond graph theory.

3.1.1 Electronic power converter circuits

Fig. 3.1 shows a functional model1 of the boost (or elevator) converter (the detailed

electronics of how the switches are implemented is not shown). The switches s1 and

s2 are complementary: when s1 is closed (s1 = 1), s2 is open (s2 = 0), and vice-

versa. Thus, the different circuit topologies can be described with a single boolean

variable S = s2.

The port Hamiltonian modeling of electric circuits can be done in a systematic

way using tools from graph theory [145], but since we are dealing here with a circuit

of very small size we will adopt a more pedestrian approach and concentrate on

the problems presented by the switches, using the ideas of [74]. A more in-deep

conceptual analysis of the switches can be found in [63, 73, 82]. The Hamiltonian

dynamical variables of the boost converter are the magnetic flux at the coil, φL, and

the charge of the capacitor, qC. Hence we have two one-dimensional Hamiltonian

1 In a real setup, one of the switches (s1) is replaced by a diode. This may cause, under the ap-

propriate conditions, the apparition of the so-called discontinuous conduction modes, which this

simplified model cannot support.
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subsystems, with a global Hamiltonian HB = HC +HL,

dqC

dt
= iC vC =

∂HB

∂qC

, (3.1)

and

dφL

dt
= vL iL =

∂HB

∂φL

(3.2)

connected by Kirchhoff’s laws

iL = i1 + i2

i1 = iC − iR

v2 + vL = E0

vC + v1 = v2

vC = vR

i0 − iL = 0

(3.3)

These 6 independent relations define a Dirac structure in R
12, the space of the ef-

forts and flows of the 6 interconnected electrical elements (the two switches, the

capacitor, the inductor, the load and the voltage source).

Here we treat the switches as ports, with their correspondent effort and flow

variables. For the time being we do not terminate the resistive port, i.e. we do not

use vR = −RiR (the minus sign is necessary since we are adopting an input power

convention for the rest of the system, hence an output power one for the resistor;

we could get rid of this nuisance by introducing auxiliary variables at the resistive

port). Using (3.1) and (3.2), the first four equations of (3.3) can be written as

∂HB

∂φL

= i1 + i2

i1 =
dqC

dt
− iR

v2 +
dφL

dt
= E0

∂HB

∂qC

+ v1 = v2

(3.4)

The second and third equations in (3.4) yield a Hamiltonian system with four inputs

and J = R = 0:

d

dt

[
qC

φL

]
=

[
1 0 1 0

0 −1 0 1

]



i1
v2

iR
E0


 (3.5)
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Next we will use the constraints imposed by the switches to absorb the ports s1 and

s2 into the Hamiltonian structure:

• S = 0 ⇒ s1 = 1, s2 = 0 ⇒ v1 = 0, i2 = 0;

• S = 1 ⇒ s1 = 0, s2 = 1 ⇒ i1 = 0, v2 = 0.

Hence, when S = 1 we already have the values of the port variables i1, v2 in (3.5),

while if S = 0, using the first and fourth equations in (3.4),

i1 =
∂HB

∂φL

v2 =
∂HB

∂qC

We can put together both results as

i1 = (1−S)
∂HB

∂φL

v2 = (1−S)
∂HB

∂qC

. (3.6)

Now

d

dt

[
qC

φL

]
=

[
1 0 1 0

0 −1 0 1

]



(1−S) ∂HB

∂φL

(1−S) ∂HB

∂qC

iR
E0




=

[
0 1−S

−(1−S) 0

][ ∂HB

∂qC
∂HB

∂φL

][
1 0

0 1

][
iR
E0

]
(3.7)

which is a port Hamiltonian system with outputs

y =

[
1 0

0 1

]T
[

∂HB

∂qC
∂HB

∂φL

]
=

[
vC

iL

]
=

[
vR

i0

]
(3.8)

Finally, we may terminate the resistive port using

iR = −vR

R
= −vC

R
= − 1

R

∂HB

∂qC

and get our final port Hamiltonian representation of the boost converter with resis-

tive load

d

dt

[
qC

φL

]
=

{[
0 1−S

−(1−S) 0

]
−
[

1/R 0

0 0

]}[ ∂HB

∂qC
∂HB

∂φL

]
+

[
0

1

]
E0 (3.9)

with natural output

y =

[
0

1

]T
[

∂HB

∂qC
∂HB

∂φL

]
= iL = i0. (3.10)
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Fig. 3.2 A generalized elec-

tromechanical system. eM

fM

eE

fE

(λ ,x)

Notice that the interconnection structure J is modulated by the boolean variable S.

Designing a control for this system means choosing S as a function of the state

variables.

3.1.2 Electromechanical energy conversion in the

port-Hamiltonian framework

As explained Sect. 1.9.3, and in particular in Example 1.1, electrical domain systems

with constitutive relations depending on geometric parameters develop additional

mechanical ports through which power can flow and be exchanged with the elec-

trical ports. Here we will cast the expressions for the constitutive laws of the ports

into a Hamiltonian form. Consider the system displayed in Fig. 3.2. There are nE

generalized electrical ports (eE , fE) and nM generalized mechanical ones (eM, fM),
and the state variables are denoted by λ ∈ R

nE , x ∈ R
nM . Note that here we use

a magnetic and translation mechanics notation, although the ports can be of any

nature.

The equations of motion and the constitutive relations of the ports of this system,

namely λ̇ = eE , ẋ = fM , fE = ∂HE

∂λ , eM = ∂HE

∂x
, where HE = HE(λ ,x) is the energy

function, can be expressed in explicit port-Hamiltonian form as:

[
λ̇
ẋ

]
=

[
eE

fM

]
(3.11)

[
fE

eM

]
=

[
∂HE

∂λ
∂HE

∂x

]
(3.12)

This is just the purely electromagnetic part of an electromechanical system. In fact,

the electromechanical system always contains some mechanical inertia, indepen-

dently of whether the port is connected to other systems or not. To model this,

consider a generalized mechanical element with nI ports (eI , fI) and state variables

p ∈ R
nI . The dynamical equations of the element, ṗ = eI , fI = I−1 p, are written in

port-Hamiltonian form as

ṗ = eI (3.13)

fI =
∂HI

∂ p
(3.14)

with HI(p) = pTI−1 p.
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Fig. 3.3 Bond graph of a

generalized electromechani-

cal system with mechanical

inertia included.
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This purely mechanic part can be coupled to the electromagnetic part and to the

rest of the system (if any), by means of

eI = −BIMeM +FI (3.15)

fM = BT
IM fI (3.16)

fI = vI (3.17)

where the mechanical ports of the inertia element have been split into one contri-

bution from the electromagnetic part, (eM, fM), and the connection to other subsys-

tems, (FI ,vI), with FI ,vI ∈ R
nI . The matrix BIM takes into account the fact that the

mechanical ports may be connected to the electromagnetic part in a nontrivial way

(or the fact that nI 6= nM), and the minus sign in (3.15) reflects Newton’s third law

(eM is the force on the electromagnetic part, so a minus sign must be introduced

to get the force on the mechanical element). Notice that the above relations define

a Dirac structure in R
nM+2nI ×R

nM+2nI with coordinates (eM,− fM,−eI , fI ,FI ,vI),
since the nM +2nI equations are clearly independent and can be written as




I 0 0

0 I 0

0 0 I




︸ ︷︷ ︸
F



− fM

−eI

vI


+




0 BT
IM 0

−BIM 0 I

0 −I 0




︸ ︷︷ ︸
E




eM

fI

FI


= 0

with EFT + FET = E + ET = 0. Notice that the two minus signs in − fM and −eI

correspond to power flowing into the mechanical port of the electromagnetic sub-

system and power flowing into the mechanical inertia, respectively, so that

FT
I vI = eT

I fI + eT
M fM

The bond graph corresponding to the whole system is displayed in Fig. 3.3, where

the power flow conventions can be clearly appreciated.

From (3.11), (3.12), (3.13), (3.14), (3.15), (3.16) and (3.17), one can express the

equations of motion for the state variables in terms of the external inputs (eE ,FI),
and obtain also the corresponding outputs ( fE ,vI). Indeed, eliminating the internal

port variables (eM, fM) and (eI , fI), one gets
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λ̇ = eE

ẋ = BT
IM

∂HI

∂ p

ṗ = −BIM

∂HE

∂x
+FI

fE =
∂HE

∂λ

vI =
∂HI

∂ p

This can be given a port-Hamiltonian form, with total Hamiltonian

HEM(λ ,x, p) = HE(λ ,x)+HI(p), (3.18)

and




λ̇
ẋ

ṗ


 =




0 0 0

0 0 BT
IM

0 −BIM 0







∂HEM

∂λ
∂HEM

∂x
∂HEM

∂ p


+




I 0

0 0

0 I



[

eE

FI

]
(3.19)

[
fE

vI

]
=

[
I 0 0

0 0 I

]



∂HEM

∂λ
∂HEM

∂x
∂HEM

∂ p


 (3.20)

Many electromechanical systems of interest admit this explicit port-Hamiltonian

form, including dc motors, levitating systems, elementary electromagnets (which

will be presented in detail next) or microelectromechanical devices (MEMS). Al-

ternating current machines can also be written in port-Hamiltonian form. However,

several coordinate transformations are used in the electrical engineering literature to

simplify the complex, geometry dependent constitutive relations involved in most of

the cases. It turns out that, after carrying out those transformations, the system is still

in port-Hamiltonian form, although with nontrivial, state dependent interconnection

matrices. We will not pursue this here, but the interested reader is referred, for in-

stance, to [16].

3.1.3 Elementary electromagnet

Fig. 3.4 shows an elementary electromagnet, a magnetic system with a moving part

so that the flux linkage λ through the coil depends on a geometry variable, the

“air gap” x. This can be written in the general form of electromechanical systems

described above, with nE = 1 and nM = nI = 1, BIM = 1, vI = v, FI = F , eE = E,

fE = i, and HI(p) = p2/(2m). We just have to specify HE(λ ,x), which we will

deduce next from first principles, under suitable simplifications.
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Fig. 3.4 An elementary elec-

tromagnet: a magnetic system

with a moving part.
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The flux linkage λ can be computed from the number of turns, N, and the mag-

netic induction flux, Φ , as

λ = NΦ .

In turn, Φ has a leakage, Φl , and a magnetizing, Φm, parts, Φ = Φl + Φm, which

can be computed in terms of the reluctance of the respective paths:

Φl =
Ni

Rl

Φm =
Ni

Rm

.

The reluctance of the magnetizing path has a fixed contribution, the part of the iron

path, and a variable one, the part of the air gap:

Rm =
li

µriµ0Ai

+
2x

µ0Ag

,

where µri, the relative magnetic permeability of the iron core, is of the order of 103.

Assuming that the sections of the iron and air gap paths are the same, Ai = Ag = A,

one gets

Rm =
1

µ0A

(
li

µri

+2x

)
.

The relation between the current and the flux linkage can finally be written as

λ =

(
N2

Rl

+
N2

Rm

)
i = (Ll +Lm)i

with

Lm =
N2

Rm

=
N2µ0A
li

µri
+2x

≡ b

c+2x
.

Assembling these results, we can obtain the constitutive relation at the electrical

port

i(λ ,x) =

(
a+

b

c+2x

)−1

λ , (3.21)
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where a = Ll = N2/Rl . As explained elsewhere in this book, the constitutive laws

of a multi-port must obey Maxwell’s reciprocity relations, which in this case read

∂F

∂λ
=

∂ i

∂x
. (3.22)

One gets then from (3.21)

∂F

∂λ
=

2b

(2ax+ac+b)2
λ ,

from which

F(λ ,x) =
bλ 2

(2ax+ac+b)2
. (3.23)

Finally, HE(λ ,x) can be computed from

HE(λ ,x) =
∫ (λ ,x)

(0,0)

(
i(λ̃ , x̃)dλ̃ +F(λ̃ , x̃)dx̃

)
,

or just using the result for linear magnetic materials. Either way, one gets

HE(λ ,x) =
1

2

c+2x

2ax+ac+b
λ 2. (3.24)

The port-Hamiltonian structure is thus




λ̇
ẋ

ṗ


=




0 0 0

0 0 1

0 −1 0







∂HEM

∂λ
∂HEM

∂x
∂HEM

∂ p


+




1 0

0 0

0 1



[

E

F

]

[
i

v

]
=

[
1 0 0

0 0 1

]



∂HEM

∂λ
∂HEM

∂x
∂HEM

∂ p




(3.25)

where

HEM(λ ,x, p) =
1

2

c+2x

2ax+ac+b
λ 2 +

1

2m
p2.

Notice that, just replacing F with a constant gravitational force and expressing it as

a gradient of the gravitational energy, which can then be added to HEM , one obtains

the model of the magnetically levitating ball of Example 2.2, albeit without the

dissipation term.
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Fig. 3.5 Coupling of the

boost and the electromagnet.
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3.1.4 Coupling of the boost converter and the electromagnet

As a final example, we connect the boost converter, without the resistive termination,

to the electromagnet, inserting a resistor r in series connection between them, as

shown in Fig. 3.5, where we have renamed the boost variables to (q,φ). The series

resistor obeys (we adopt an input power convention for this one)

vr = rir (3.26)

and where the interconnecting Dirac structure is provided by Kirchhoff’s laws

iR = ir ir = −i E = vR + vr

From the first output relation of the boost subsystem, vR = ∂HB

∂q
, and the first one

of the electromagnet, i = ∂HEM

∂λ , together with (3.26) and Kirchhoff’s laws, one can

express the internal port variables as

E = vR + vr =
∂HB

∂q
+ rir =

∂HB

∂q
− ri =

∂HB

∂q
− r

∂HEM

∂λ

iR = −i = −∂HEM

∂λ

Substituting these into (3.7) and (3.25), if H(q,φ ,λ ,x, p) = HB(q,φ)+HEM(λ ,x, p)
one gets:




q̇

φ̇

λ̇
ẋ

ṗ




=




0 1−S 0 0 0

−1+S 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 −1 0







∂H
∂q
∂H
∂φ
∂H
∂λ
∂H
∂x
∂H
∂ p




+




− ∂H
∂λ

E0
∂H
∂q

− r ∂H
∂λ

0

F




This can be rewritten in explicit port-Hamiltonian form, with inputs E0 and F and

outputs i0 and v, as
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


q̇

φ̇

λ̇
ẋ

ṗ




=




0 1−S −1 0 0

−1+S 0 0 0 0

1 0 −r 0 0

0 0 0 0 1

0 0 0 −1 0







∂H
∂q
∂H
∂φ
∂H
∂λ
∂H
∂x
∂H
∂ p




+




0 0

1 0

0 0

0 0

0 1




[
E0

F

]
(3.27)

y =

[
0 1 0 0 0

0 0 0 0 1

]




∂H
∂q
∂H
∂φ
∂H
∂λ
∂H
∂x
∂H
∂ p




(3.28)

3.1.5 Variable structure systems

Assume a VSS system such that the change in the state variables is small over the

time length of an structure change, or such that one is not interested about the fine

details of the variation. Then one may try to formulate a dynamical system for the

time average of the state variables (state space averaging, or SSA)

〈x〉(t) =
1

T

∫ t

t−T
x(τ) dτ, (3.29)

where T is the period, assumed constant, of a cycle of structure variations. Let our

VSS system be described in explicit port Hamiltonian form

ẋ = [J(S,x)−R(S,x)]
∂H

∂x
(x)+g(S,x)u, (3.30)

where S is a (multi)-index, with values on a finite, discrete set, enumerating the

different structure topologies. For notational simplicity, we will assume from now

on that we have a single index (corresponding to a single switch, or a set of switches

with a single degree of freedom) and that S ∈ {0,1}. Hence, we have two possible

dynamics, which we denote as

S = 0 ⇒ ẋ =
[
J0(x)−R0(x)

]∂H

∂x
(x)+g0(x)u,

S = 1 ⇒ ẋ =
[
J1(x)−R1(x)

]∂H

∂x
(x)+g1(x)u.

(3.31)

Note that controlling the system means choosing the value of S as a function of the

state variables, and that u is, in most cases, just a constant external input. Moreover,

from (3.29) we have
d

dt
〈x〉(t) =

x(t)− x(t −T )

T
. (3.32)
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Now the central assumption of the SSA approximation method is that for a given

structure we can substitute x(t) by 〈x〉(t) in the right-hand side of the dynamical

equations, so that (3.31) become

S = 0 ⇒ ẋ ≈
[
J0(〈x〉)−R0(〈x〉)

]∂H

∂x
(〈x〉)+g0(〈x〉)u,

S = 1 ⇒ ẋ ≈
[
J1(〈x〉)−R1(〈x〉))

]∂H

∂x
(〈x〉)+g1(〈x〉)u.

(3.33)

The rationale behind this approximation is that 〈x〉 does not have time to change too

much during a cycle of structure changes. We assume also that the length of time

in a given cycle when the system is in a given topology is determined by a function

of the state variables or, in our approximation, a function of the averages, t0(〈x〉),
t1(〈x〉), with t0 + t1 = T . Since we are considering the right-hand sides in (3.33)

constant over the time scale of T , we can integrate the equations to get2:

x(t) = x(t −T ) + t0(〈x〉)
[[

J0(〈x〉)−R0(〈x〉)
]∂H

∂x
(〈x〉)+g0(〈x〉)u

]

+ t1(〈x〉)
[[

J1(〈x〉)−R1(〈x〉)
]∂H

∂x
(〈x〉)+g1(〈x〉)u

]
.

Using (3.32) we get the SSA equations for the variable 〈x〉 (which we rewrite again

as x to simplify the notation):

ẋ = d0(x)

[[
J0(〈x〉)−R0(〈x〉)

]∂H

∂x
(〈x〉)+g0(〈x〉)u

]
+

+d1(x)

[[
J1(〈x〉)−R1(〈x〉)

]∂H

∂x
(〈x〉)+g1(〈x〉)u

]

=
{[

d0(x)J0(x)+d1(x)J1(x)
]
−
[
d0(x)R0(x)+d1(x)R1(x)

]}∂H

∂x
(x)+

+
[
d0(x)g0(x)+d1(x)g1(x)

]
u,

(3.34)

where

d0,1(〈x〉) =
t0,1(〈x〉)

T
, (3.35)

with d0 + d1 = 1. In the power converter literature d1 (or d0, depending on the

switch configuration) is referred to as the duty cycle. Equation (3.34) is again a

port-Hamiltonian system, with interconnection, dissipation and port matrices given

by combinations of the individual topology matrices. Notice that this is a smooth

system, whose numerical implementation is much easier than the original VSS. Dis-

cussion of these kind of averaged systems in the bond graph formalism can be found

in [63]. In fact, this analysis can be extended to the case when higher order harmon-

ics, and not just the zeroth order one considered here, are introduced; the result, as

shown in [17], is again a system in port-Hamiltonian form.

2 We also assume that u does not vary over this time scale; in fact u is constant in many applications.
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Fig. 3.6 The bond graph of

the boost converter.

C : CI : L

E0

i0

vR

iR
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switching structure

00 11

a b
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0 1
a b

S1S2

0 1

Fig. 3.7a Causality assignments of the

switching structure of the boost converter: S2

closed and S1 open.

Fig. 3.7b Causality assignments of the

switching structure of the boost converter: S2

open and S1 closed.

As an example, we can retake the boost converter discussed previously. In the

above notation, for the case of an open load port, one has

J0 =

[
0 1

−1 0

]
J1 =

[
0 0

0 0

]
g0 = g1 =

[
1 0

0 1

]

and no dissipation, i.e. R0 = R1 = 0. Putting this into (3.34) and denoting µ =
t0(x)/T , one gets

d

dt

[
qC

φL

]
=

[
0 µ
−µ 0

][ ∂HB
qC

∂HB
φL

]
+

[
1 0

0 1

][
ciR
E0

]
(3.36)

This has exactly the same form that the exact, non-smooth model (3.7), with µ =
1− S, except for the fact that all the state variables are averages, and µ can take

values in the continuum [0,1]. It is instructive to derive these results from a bond

graph approach. Indeed, the bond graph of the boost converter, Fig. 3.1, considering

the two switches as open ports, is displayed in Fig. 3.6. The interior bonds of the

switching structure have no causality assignment, because it depends on the state of

the switches. In fact, there are two possibilities, as shown in Figures 3.7a and 3.7b.

Notice that the two possible interior assignments have the same output causality.

In the first case represented in Fig. 3.7a, one has v2 = 0 and i1 = 0, since S2 acts

a zero voltage source while S1 is a zero current source; the situation is reversed in

the second case, illustrated in Fig. 3.7b. Writing down the bond graph equations for

both cases, one arrives at the input/output relations

ea = µeb fb = µ fa

with µ = 0 in the first case, and µ = 1 in the second one. This corresponds to

the relations of an ideal transformer, and the associated bond graph is displayed in
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Fig. 3.8 The bond graph of

the boost converter with a

transformer instead of the two

switches.
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Fig. 3.9 Variable structure

and averaged 20-sim models
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Fig. 3.10 Load voltage wave-

form for the VSS and aver-

aged models.
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Fig. 3.8. If one writes the equations associated to this bond graph, the same form

as in (3.36) is obtained. From the point of view of the bond graph, µ could be a

boolean variable µ ∈ {0,1} or a continuous one µ ∈ [0,1]. However, if the later op-

tion is taken the averaged model is recovered. Fig. 3.9 shows the 20-sim schemes for

both models, with the same system parameters, and Fig. 3.10 shows the load volt-

age for the corresponding simulations, for system parameters C = 0.002, L = 0.002,

E0 = 20, and R = 10 (in SI units). For the variable structure model, a square pe-

riodic signal with T = 0.0004 s and duty-cycle µ = 0.6 is injected into the MTF,

while for the averaged model the parameter transformer is µ = 0.6. The averaged

model yields, indeed, the averages of the state variables of the VSS model; on closer

inspection it can be seen that the later has, however, a small ripple due to the commu-

tation, not present in the averaged model simulation. Notice that, in both cases, the

asymptotic output voltage is E0/(1−µ) = 50 V, as expected for a boost converter.
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3.2 Modeling of mechanical systems

3.2.1 Short introduction and motivations

In Chapter 1, we have introduced the basic notions of port-Hamiltonian systems.

In this part we will show how it possible to use these techniques for the structured

modeling of robotics mechanisms. If we would just start modeling the motion of a

point mass, due to the geometry of the space it moves in, this could be done by just

considering usual coordinates. The port variables would then be the usual vector

forces and velocities and no extra structure would be necessary. To be more spe-

cific, a particle mass is easy to describe because its configuration can be associated

to a point of the three-dimensional Euclidean space. After having chosen coordi-

nates, each point can be associated to a triple of real numbers in R
3; but the most

important thing is that the algebraic and topological properties of R
3 correspond to

real physical properties of the motion of the particle: forces can be added; velocity

vectors too; magnitudes of vectors correspond to magnitudes of forces and veloci-

ties; “orthogonality” of a force and velocity vectors gives zero power; the velocity

and acceleration vectors are the time derivatives of the points position vector; New-

ton’s Laws link a three-dimensional force vector to a three-dimensional acceleration

vector, through the apparently scalar quantity “mass”, for point masses, as well as

spherically-symmetric rigid bodies such as planets and canon balls.

In contrast to the simplicity of the point mass motion properties, the motion and

the dynamics of a rigid body are much more complex. A rigid body is composed of

an infinite number of point masses, which are constrained not to move with respect

to each other. It turns out that the dimension of the space necessary to describe the

configuration of a rigid body is six: three dimensions for orientation, and three for

translation. The force-acceleration relation is now a full six-by-six matrix, and not a

scalar anymore. Moreover, the acceleration involved in this dynamic relation is not

just the second-order time derivative of the position/orientation vector of the rigid

body.

Even the short overview above should make clear that it is wrong to treat the

six position/orientation coordinates of a rigid body in the same way as one treats

the three position coordinates of a point: the geometrical properties of rigid bod-

ies are fundamentally different from the geometrical properties of point masses.

For example, if one continuously increases one of these six numbers (i.e., one that

corresponds to orientation representation), the rigid body arrives at the same con-

figuration after every rotation over 360 degrees. This “curvature” property does not

occur when one indefinitely increases any of the three coordinates of a point config-

uration. Locally (i.e., in the neighborhood of a specific configuration) it is possible

to describe a configuration using six real numbers, but this description is not an in-

trinsic property of the motion. (An intuitive definition of an “intrinsic property” is:

any property that does not change if one changes the coordinate representation.)

A lot of powerful tools are available which allow to describe the motion of rigid

bodies in a geometrical and global way. These methods are related to the geometry
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of lines and screws and to the differential geometric concept of a Lie group (see

Sect. B.1.4). Furthermore, the concept of a Lie group is the key structure which will

allow to describe interconnection of rigid bodies by expressing common variables

on which the interconnection is based. In a nutshell: it’s not because one can use n

numbers as coordinates on a given space, that the objects in that space have exactly

the same properties as the n-tuples in R
n!

3.2.2 Configuration and twist of a rigid body

We will now start introducing the concepts which are needed to handle multi-body

systems.

3.2.2.1 Describing configurations

In case of a point mass moving in the Euclidean space E, once an orthonormal

reference frame Ψ has been chosen, we can associate with a bijective relation three

numbers to it: (x,y,z) ∈ R
3. Velocities with respect to an observer not moving with

respect to Ψ and expressed in the same reference frame will be simply equal to

(ẋ, ẏ, ż) ∈ R
3.

For rigid bodies this will be more complicated. In principle, a rigid body config-

uration is a six dimensional space (three translation and three rotations), but due to

the topology of the space of rotations, there does not exist six global coordinates. In

what follows, we will associate the configuration of a rigid body to a matrix which

is called a homogeneous matrix once a reference has been chosen. First, for reasons

based on projective geometry which can be further read in [196], it is convenient

to describe the coordinate of a point using a four dimensional vector in which the

first three components are the usual ones and the last is the scalar 1. For a point p

expressed in an orthonormal frame Ψi, its coordinates will then be a vector of the

following form:

Pi =
[
xi yi zi 1

]T
(3.37)

If we consider a second orthonormal reference frame Ψj, the same point will have a

similar representation with different numbers if Ψi and Ψj do not coincide. It would

be possible to see that the change of coordinates would be given by

P j = H
j

i Pi (3.38)

with

H
j

i =

[
R

j
i p

j
i

03 1

]
(3.39)

where R
j
i ∈ SO(3) is an orthonormal matrix, i.e. with determinant equal to 1 and

such that RT = R−1, and p
j
i ∈ R

3.
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If we now consider Ψi fixed to a body I and Ψj fixed to a body J, it is possible to

describe their relative configuration by the relative configuration of the two frames

which is represented by H
j

i using their change of coordinates. It could also easily

be seen that H
j

i beside representing the change of coordinates of the same physical

point from frame Ψi to frame Ψj, it also coincides with the physical motion which

brings Ψj to Ψi for points expressed in either of the two frames; note that the inverse

direction of the indices is not a typo. To be more precise, if we consider that a rigid

body motion would bring frame Ψj to Ψi and this motion would also bring a point p

to a point q, we would have that qi = H
j

i pi and q j = H
j

i q j. For what it will follow

later, it is important to notice that (H j
i )−1 = H i

j.

3.2.2.2 Relative instantaneous motions and twists

If a representation of a velocity of a point mass would be just the time derivative

of its coordinate, we could consider as velocity of a rigid body the time derivative

of the matrix H representing the relative configuration of the body with respect to

another frame, the observer. This is in principle correct, but there are a number of

problems related to this approach:

1. Ḣ has many more elements than necessary to express the six dimensional in-

finitesimal motion;

2. From the information of Ḣ would not be possible to have an idea of the relative

motion without knowing H;

3. If we wanted to interconnect two bodies A and B using port variables, the velocity

Ḣ could not be used since each of the bodies would have a different configuration

H and a different Ḣ. This would correspond to two vectors belonging to two dif-

ferent tangent spaces in a differential geometric context and therefore no natural

operation can be performed among these vectors.

The solution to all the previous problems can be achieved by using the intrinsic

structure of what is called a Lie group for the group of motions represented by the

matrices H ∈ SE(3). Properly speaking, the Lie Group SE(3) is more general than

a Lie group of matrices, but for what it will presented it is didactically sensible to

describe what follows using matrix Lie groups. A Lie group is both a manifold,

smooth nonlinear structure locally bijective to R
n, and a group, it has a special point

called the identity and an operation which allows to compose elements of the mani-

fold, satisfying associativity and having for each element an inverse. This structure

allows to associate to each element (H, Ḣ) ∈ T SE(3) belonging to the vector space

THSE(3) tangent to the manifold SE(3) at the point H ∈ SE(3) two unique vectors

in the tangent space se(3) := TISE(3) at the identity of the group, which in our case

corresponds to the 4 identity matrix I ∈ SE(3). These two vectors have a clear geo-

metrical interpretation and they are called the left and right translation of (H, Ḣ) to

the Lie algebra se(3).
Such a structure allows to naturally find unique representatives of velocities in

a common space called a Lie algebra, allowing circumventing all previously de-
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scribed problems. This is a generalization of what is done for rotations in which

the angular velocity vector can be easily and effectively used to describe rotational

motions in a coordinate free, body independent way; the role of angular velocity

for general rigid motions will be a twist. It could be shown that, following the no-

tation previously introduced we can indicate with H
j

i (t) ∈ SE(3) the smoothly time

varying homogeneous matrix which can be used to change the homogeneous coor-

dinates of a point P from its representation in the two relatively moving frames Ψi

to Ψj. After we introduce a third frame Ψk, we could also consider the changes of

coordinate between any of these frames and it could be proven that kT̃
j

i := Hk
j Ḣ

j
i H i

k

has always the following form:

kT̃
j

i :=

[
ω̃ v

03 0

]
(3.40)

where for any three dimensional vector ω , ω̃ is the unique skew-symmetric matrix

such that for each x, ω × x = ω̃x. In case k = j, the corresponding matrix is called

the right translation to the Lie algebra and in case k = i the left translation to the

Lie algebra for reasons which can be found in any reference on Lie groups3. It can

be seen that in (3.40), only the six scalars of ω and v are independent, and therefore

we can also define the equivalent six dimensional vector representation

kT
j

i =
[
ωT vT

]T

This vector, which is called a twist, is a real geometrical object which describes the

relative instantaneous motion of the body rigidly connected to frame Ψi with respect

to the body rigidly connected to frame Ψj expressed numerically as a vector in the

frame Ψk.

It is possible to see that we can change coordinates of a twist using what is called

the Adjoint representation of the group which is represented by a 6×6 matrix:

kT
j

i = AdHk
l

lT
j

i (3.41)

where

AdHk
l

=

[
Rk

l 0

p̃k
l Rk

l Rk
l

]
(3.42)

Rk
l is the rotation sub-matrix of Hk

l and p̃k
l is the skew-symmetric representation of

the position sub-vector of Hk
l .

For rotations, we can associate a vector called the angular velocity, which geo-

metrically completely expresses the instantaneous rotation of a body independently

of its pose at a certain instant of time. the direction of the angular rotation vector,

represents the instantaneous axis of rotation and direction (clockwise or anticlock-

3 In Lie group theory, kT̃
j

i is introduced as the Adjoint transformation of the left or right translation,

for example kT̃
j

i = Ad
Hk

j

(
RH i

j
(H j

i , Ḣ j
i )
)

where RH−1 indicated the right translation of the vector

(H, Ḣ) to the Lie algebra se(3).
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wise around the axis) and its magnitude the angular velocity. In the same way, as

shown by the Mozzi theorem [150], a twist is represented by a geometrical object

which is called a screw since it is represented by an axis, a pitch, a direction and a

magnitude. Mozzi’s theorem says that we can always write a twist as:

[
ω
v

]
= ||ω||

[
ω̂

r∧ ω̂

]

︸ ︷︷ ︸
rotation

+α

[
0

ω̂

]

︸︷︷︸
translation

(3.43)

where ω and v are three dimensional vectors numerically expressed in k. The vector

[
ω̂

r∧ ω̂

]

represents a geometrical line passing through the point r and directed along ω . This

line representation called Plücker coordinates has many advantages with respect

to others like the fact that its representation has numerically a one to one relation

to lines in the projective 3-space. The scalar coefficient α is called the pitch. The

theorem basically says that each motion instantaneously can be seen as a screw

motion: an instantaneous rotation around an axis, represented as just described, and

an infinitesimal translation along this axis. The ratio of these two motions is given

by the pitch coefficient α .

An essential feature of twists is that they are independent of the pose of a body

and can therefore be used to describe relative motions of any body and are the key to

define power ports in rigid multi-body mechanical systems. Twists play the role of

flows and once we introduced the dual efforts, we will have the essential components

to define a power port for rigid multi-body systems.

3.2.2.3 The dual of twists: wrenches

Since the space se(3) of twists is a vector space, we can directly define the dual

space se∗(3) which will be a dual Lie algebra whose elements are called wrenches.

Clearly, dimensionally, these elements are of the same size of twists (six dimen-

sional) and the dual product of wrenches and twists will be a scalar representing

the power exchanged by the wrench (generalization of the force) with the relative

motion represented by the twist. A wrench in vector form can be indicated with

kW
j

i =
[
τT f T

]T

and represents the wrench applied by i on j as a vector expressed in frame Ψk. Some-

times the presence of the index i may not be necessary. As a direct consequence of

(3.41) and the dual nature of a wrench with respect to a twist, the change of coordi-

nates of a wrench is expressed by:
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(
kW

j
i

)t

= Adt

H l
k

(
lT

j
i

)t

(3.44)

To understand why such a quantity can be seen as the generalization of a force,

the theorem of Pointsot can be used. This theorem states that any system of forces

applied to a rigid body, can be simplified as the resultant of one force along a specific

line in space and a torque oriented in the same direction. Similarly to (3.43), this dual

theorem can be expressed as:

[
τ
f

]
= || f ||

[
r∧ f

f

]

︸ ︷︷ ︸
force

+α

[
f

0

]

︸︷︷︸
torque

(3.45)

where the first vector indicates the linear force along the line oriented along f and

passing through the point r and the second vector indicate the torque oriented in

the same direction of f , but such that its application point does not matter being a

torque. The ratio of these two magnitudes is expressed by the scalar pitch α .

3.2.2.4 Screw power ports

It is now possible to introduce the coordinate-free concept of a screw power-port. A

screw power port is the pair of a twist and a wrench

(
kT

j
i , kW i

�

)
∈ se(3)× se∗(3)

and can be used as a mean to interconnect multi-body systems as we will see in

more details later.

3.2.3 Rigid body dynamics

Using the concept of screws and Lie groups, we can introduce the inertia tensor

which represents the complete inertial properties of a rigid body. The inertia tensor

is a metric, positive definite quadratic form, which associates the kinetic co-energy

to a certain twist of a rigid body:

H∗( kT 0
i ) =

1

2

(
kT 0

i

)t
kIi kT 0

i (3.46)

where kIi represents the inertia tensor of body i expressed in frame k and it is a 6×6

matrix corresponding to a quadratic form in se(3). Using the inertia tensor we can

also define what is called the screw-momenta which is a co-vector (belonging to

se∗(3)) representing the 6-dimensional momenta of a rigid body:
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(
kMi
)t

:=kIi kT 0
i (3.47)

where kMi indicates the screw-momenta of body i expressed in frame k. Using the

expression of momenta we can now also write an expression for the kinetic energy

as a quadratic form on se∗(3):

H(kMi) =
1

2
kMi

(
kIi
)−1(

kMi
)t

(3.48)

Newton’s law for a point mass says that in an inertial frame the time change of

momenta of a point mass is equal to the total force applied to it, i.e. ṗ0 = F0. It could

be shown that integrating this equation for a complete rigid body, it generalizes to:

0Ṁi = 0W i
� (3.49)

where 0Mi is the momenta of body i expressed numerically in the inertial frame Ψ0

and 0W i
� the total wrench applied to body i expressed in frame Ψ0.

Since the time derivative of the momenta is equal to a wrench, both terms of

the equation transform identically with changes of coordinates and this is why the

wrench is a co-vector. If we write the previous equation as an equality of column

vectors, we have (
0Ṁi
)t

=
(

0W i
�

)t
,

It can be seen that by changing the coordinates to a frame Ψk rigid with the body,

the previous expression becomes:

(kṀi)t = adT
kT 0

i
(kMi)t +( kW i

� )
t . (3.50)

where

adT
kT 0

i
=

[
−ω̃ −ṽ

0 −ω̃

]

and ω and v are the vectors composing kT 0
i and introduced in (3.40). After some

calculations, it could be seen that

adT
iT 0

i
(iMi)t = (iMi∧) iT 0

i (3.51)

where

(iMi∧):=

[
˜iMi

ω
˜iMi

v

˜iMi
v 0

]
(3.52)

and ˜iMi
ω and ˜iMi

v are the skew-symmetric form of three-vectors corresponding to

respectively the first and last three components of iMi.

By looking closer at (3.50) it can be seen that the configuration of the rigid body

does not appear in the equation at all. The equation is useful because in body fix

coordinates the expression of the inertia tensor which we will need in order to cal-

culate kMi is a constant matrix which can be easily calculated. The equation (3.50)
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is only dependent on the momenta and the effect of an applied wrench on it. This

equation is all we need if we want to study a single rigid body independently. On the

other hand, if we want to calculate dynamics of interconnected mechanisms, each

of the quantities, like applied wrenches between bodies, will have to be described

in the same coordinate systems. We need therefore a common reference frame in

which we can take operations among tensors. Furthermore, if we want to consider

gravity, its direction and effect will change in body coordinates and therefore it is

necessary to keep track of the pose of a rigid body. We can tackle all these prob-

lems by considering in the open model of a rigid body a potential energy function

of the configuration of the rigid body with respect to a common, inertial coordinate

system.

3.2.3.1 Potential energy

The configuration of a rigid body is homeomorphic to SE(3) and can be associ-

ated to a homogeneous matrix H0
i ∈ SE(3) as seen previously. This means that any

potential energy function of a rigid body will be expressed by a function of the form:

V : SE(3) → R (3.53)

Normally, we would calculate the corresponding force field of a potential energy by

taking the differential of the function, but in the case of a rigid body this is not direct

since the argument of the function is a matrix of a specific form: the arguments are

a set of variables on which constraints hold. A way to tackle this would be to find a

minimal parametrization of SE(3) which would then allow to take the differential in

the usual way. This approach would be strictly local and not general. A much more

elegant and effective approach is instead the usage of exponential coordinates of the

group SE(3) which, for matrix Lie groups, corresponds to the matrix exponential:

φ 0
i 7→ H0

i = eφ̃0
i (3.54)

where the tilde operation in the argument of the exponential corresponds to the same

tilde operation as for twists. The entity φ 0
i is geometrically also belonging to se(3)

and it corresponds to what is called the finite twist (rather than infinitesimal). By

means of the exponential map, we can express a potential function using a minimal

set of coordinates. In this way we could write a corresponding potential function to

(3.53) as Vφ : se(3) → R, with

φ 0
i 7→V (log(φ 0

i )) (3.55)

where log is a periodic function which can be calculated easily with the techniques

presented in [213].

For what follows, it is necessary to know the map which relates the time deriva-

tives of the exponential coordinates φ 0
i to the instantaneous twist iT 0

i in the follow-

ing way:
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iT 0
i = K(φ 0

i )φ̇ 0
i (3.56)

where could be proven that

K(φ 0
i ) =

∞

∑
k=0

(−1)k

(k +1)!
adk

φ0
i

(3.57)

and can be calculated easily using the techniques introduced in [213]. From (3.56),

the adjoint relation follows directly:

γ = Kt(φ 0
i ) iW i

� (3.58)

where γ is a dual of the time derivative of the exponential coordinates like is the

case for
∂Vφ

∂φ 0
i

∈ se∗(3)

We can therefore calculate the wrench which the potential energy Vφ generates as:

W = K−t(φ 0
1 )

∂Vφ

∂φ 0
i

∈ se∗(3) (3.59)

We can now finally give a port-Hamiltonian expression of the dynamics of a rigid

body. The Hamiltonian will be a sum of the kinetic and potential energy and will be:

H(kMi,φ 0
i ) =

1

2
kMi

(
kIi
)−1(

kMi
)t

+Vφ (φ 0
i ) (3.60)

and the port Hamiltonian equation become:

[
φ̇ 0

i(
kṀi
)t

]
=

[
0 K−1(φ 0

i )
−K−t(φ 0

i ) (iMi∧)

][ ∂H

∂φ0
i

∂H

∂ kMi

]
+

[
0

I

]
iW i

� (3.61)

iT 0
i =

[
0 I
]
[

∂H

∂φ0
i

∂H

∂ kMi

]
(3.62)

or expliciting all ports, a single matrix representing the interconnection structure

and changing the coordinates of the interconnection port we obtain:




φ̇ 0
i(

kṀi
)t

− 0T 0
i


=




0 K−1(φ 0
i ) 0

−K−t(φ 0
i ) iMi∧ Adt

e
φ0

i

0 −Ad
e

φ0
i

0







∂H

∂φ0
i

∂H

∂ kMi

0W i
�


 (3.63)

In the previous equation, the matrix represents the Dirac structure composed of three

ports: (
φ̇ 0

i ,
∂H

∂φ 0
i

)
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corresponding to the flow of potential energy,

(
kṀi,

∂H

∂ kMi

)

corresponding to the flow of kinetic energy and

(
0T 0

i , 0W i
�

)

to the power port which can be used to interconnect and interact with the rigid body.

3.2.4 Rigid mechanisms: interconnections of rigid bodies

We will now discuss the topology of a mechanism and describe how to represent that

in an elegant and effective way using the network structure represented by a Dirac

structure. We will start looking at the constraints between pairs of rigid bodies.

3.2.4.1 Kinematic pairs

Consider now two rigid bodies whose relative motion is constraint. If we call these

bodies i and j, we can describe the allowed motions by a subspace of se(3) to which

the twist 0T
j

i should belong. Let’s call this subspace TA. This subspace will in gen-

eral be function of the relative configuration H
j

i and possibly of time even if we will

not specifically show that in the following equations for the sake of clarity. Suppose

that this subspace is of dimension n < 6. In this case there will be n linear inde-

pendent vectors whose span will coincide with TA. We will indicate these twists as

T 1
A , T 2

A , . . . , T n
A . Due to these degrees of freedom, there will also be n linear inde-

pendent wrenches which can be applied between the two bodies which can transfer

energy to the relative motion. We will indicate these wrenches W 1
A , W 2

A , . . . , W n
A and

the subspace they span with WA. It is very important to realize that we cannot in

general define WA uniquely once TA is known or the other way around due to the

absence of a unique metric in se(3). Nevertheless, we could use bi-invariant forms

for this purpose like the hyperbolic form.

What we can do in a unique way is to define the dual 6− n dimensional spaces

WC:=T ⊥
A corresponding to the constraint wrenches (any of these wrenches will

not transfer power W i
CT

j
A = 0 ∀i, j) and TF :=W ⊥

A corresponding to the forbidden

motions (any applied wrench will not transfer energy to these directions W i
AT

j
F =

0 ∀i, j ). We can then define the non-singular 6×6 matrix

W T:=
[
W 1

A . . . W n
A W 1

C . . . W 6−n
C

]
(3.64)

It is now possible to consider for a kinematic pair k
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Wk = W

[
τ
λ

]
(3.65)

and dually [
q̇

v

]
= W tTk (3.66)

where τ indicates the free torques which can be applied by external motors or ac-

tuators on the kinematic pair in order to generate or control motion in q̇ and λ are

indicating the Lagrangian multipliers which should be such to keep v = 0.

We can finally write (3.65) and (3.66) together to show the Dirac structure

causally: 


Wk

q̇

v



[

0 W

−W t 0

]


Tk

τ
λ


 (3.67)

where the port (Tk,Wk) can be used to interconnect with the mechanism as it will

be seen later, the port (q̇,τ) can be used to drive and control the kinematic pair and

therefore to supply or subtract energy to and from the mechanism and finally (v,λ )
will be a port through which no power should be transferred since λ should be such

that v would always be equal to 0.

3.2.4.2 Mechanism topology

Given a mechanism composed of rigid bodies, it is possible to find a network de-

scription of the mechanism similarly with what happens with electrical circuits, but

now with complex six dimensional motions and time varying constraints. Suppose

to have a mechanism composed of m rigid bodies indexed from 0 to m−1 and such

that the body 0 corresponds to a inertial base. Suppose that among those bodies we

have n nodic elements that constraint relative motions of pair of bodies. We can

describe this topology with a graph GP = (VP,EP) called primary graph in which

VP is the set of m rigid bodies and EP the set of n edges corresponding to the pair

constraints. We can define an incidence matrix B ∈R
m×n in which each column cor-

responding to an edge has a 1 in the row corresponding to the body to which the edge

points and a −1 in the row corresponding to the body from which the edge stems

from and zero everywhere else. We can then define a second graph GL = (VL,EL)
called the Lagrangian tree which is composed of m−1 edges stemming from each

of the bodies which are not the inertial frames and all going toward the vertex 0.

The graph which is obtained combining the primary and Lagrangian graph is called

the port connection graph.

We can then define the fundamental n× (m+n) loop matrix

C:=
[
BT In×n

]
(3.68)

Each of the rows of this matrix represents a loop of the port connection graph which

can be obtained considering an edge of EP and two edges of EL which close the
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edge of EP via the body 0. To understand what this actually means we can see that

the following equation holds:

C




0T 0
1

...
0T 0

m

T1

...

Tn




= 0 (3.69)

where Ti indicates the relative twist corresponding to the i-th kinematic pair. This is

therefore a kind of Kirchhoff law which sums the relative twist around a loop to zero

as it is done in electrical circuits for the sum of relative potentials around a mesh.

Dually we can introduce the fundamental m× (n+m) cut-set matrix

Q:=
[
Im×m −B

]
(3.70)

Each row i of this matrix represents a cut-set corresponding to the sum of wrenches

on a body i. Such a cut-set has always one edge corresponding to the Lagrangian

tree which will represent the total wrench which will change the momenta of body

i and a number of other edges belonging to GP corresponding to all wrenches the

kinematic pairs can apply to body i. This is similar to the Kirchhoff current law at

a node in an electrical circuit with the difference that in mechanics the non-nodicity

of inertial elements requires explicitly the presence of the Lagrangian tree. With the

usage of the fundamental cut-set tree, we obtain:

Q




0W 1
T

...
0W m

T

W1

...

Wn




= 0 (3.71)

where 0W i
T indicates the total wrench applied at body i and expressed in frame 0.

It can be easily seen that CQt = 0 and this actually corresponds to the Teleggen

theorem well known in electrical networks. In order to see that, a vector of twists

satisfying CT̄ = 0 can be also expressed using a image representation instead than a

kernel representation:

T̄ = CTα ∀α

along a similar line of reasoning, any wrench set satisfying the network constrains

can be expressed using an image representation with

W̄ = QTγ ∀γ
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If we now want to calculate the net power going into the network, we can just get

the dual product of W̄ and T̄ :

P = T̄ tW = α t CQt

︸︷︷︸
=0

γ = 0 (3.72)

which indeed proves zero net power flow for any independent choices of T̄ and W̄

as known in Tellegen’s theorem. We can also rearrange equations (3.71) and (3.69)

to get to a general causal expression of the Dirac structure:




0W 1
T

...
0W m

T

−T1

...

−Tn




=

[
0 B

−BT 0

]




0T 0
1

...
0T 0

m

W1

...

Wn




(3.73)

It would then finally be possible to couple all ports ( 0T 0
1 , 0W i

T ) to the interconnec-

tion port of the rigid body model (3.63) and to connect the ports corresponding to

each (Tk,Wk) to the corresponding port of a kinematic pair using the expression in

(3.67).

In this way we obtain a model of the dynamics of the complete mechanism as the

interconnection of various Dirac structures and port-Hamiltonian subsystem. This

way of modeling is structured and very suitable for computer support. Furthermore,

the usage of coordinate-free concepts ensures that the analysis is global and singu-

larity free.

3.2.5 Flexible mechanisms

The modeling techniques presented in the previous sections can be generalized in

order to define a systematic procedure, based on port concepts, for modeling and

simulating mechanical systems with rigid and flexible links. The mathematical de-

scription of the whole mechanical system results from the interconnection of simpler

components (e.g. rigid bodies, flexible links and kinematic pairs). Using the nonlin-

ear model of a flexible link in distributed port-Hamiltonian form presented in [128]

and, briefly, in Sect. 4.3.2, it is not necessary, in the definition of the dynamic model,

to simplify the elastic and nonlinear effects present in the flexible parts, and there-

fore also mechanism with large deflections can be easily handled. This approach

differs from what is illustrated in the next section, in which a more rigorous way for

describing elastic systems is discussed. Moreover, the modularity of the approach

can also be exploited for simplifying the simulation of such dynamical systems, even

for control applications. In fact, if an object-oriented software package for model-



158 3 Port-Based Modeling in Different Domains

ing physical system is adopted, beside the mathematical derivation of the model

also the numerical simulation of complex mechanisms can be carried out simply by

port interconnection, thus leaving the solution of the causality of each sub-system

to the simulation package. Among these software packages, one can mention the

implementations of the Modelica language [78,146] as Dymola [70] or Open Mod-

elica [204], or the 20-sim package.

This is something completely different from what can be found in literature,

where several methodological approaches for the definition of dynamic models of

multi-body mechanical systems, taking possibly into account both rigid and flexible

links, [9, 18, 26, 61, 62, 152, 190, 191, 199, 205] can be found. Moreover, a num-

ber of software packages, e.g. [4, 20, 50, 108, 194, 203] are also currently avail-

able for their numerical simulation. In case of flexible systems, these modeling

approaches usually relay on finite dimensional approximations of the flexible link

dynamics (e.g. modal expansion, finite elements or floating frame of reference) or

on a simplification of the (nonlinear) elastic behavior of flexible links (Timoshenko

or Euler-Bernoulli theory), and therefore they do not easily allow the description

of mechanisms characterized by large deformations. Moreover, even if the simu-

lation package is able to deal with large deformations and nonlinear effects (e.g.

ABAQUS [194], ANSYS Multiphysics [4], or COMSOL Multiphysics [50]), in gen-

eral it is not a trivial task to include the presence of state-feedback controllers. In

fact, this requires the development of proper spatial discretization techniques for the

elastic dynamics that are able to deal with time-varying boundary conditions, such

as the torques applied at the extremities of each flexible link. These limitation are

not present within the port Hamiltonian framework. Refer to [124, 128] for further

information.

3.3 Modeling of simple elastic systems

3.3.1 Introduction

Simple elastic structures like strings, beams or membranes and plates are basic el-

ements for many engineering fields. Roughly spoken, their mathematical models

are approximations of certain equations of linearized elasticity. The mathematical

models of elasticity, like other model in physics consist of two types of equations.

The balance and/or conservation equations express that certain physical quantities

or their sum are preserved. Typical representatives are the conservation of mass,

charge, linear momentum, etc. The constitutive relations describe the behavior of

the materials, typical representatives are Hook’s law or friction relations. Within

this setting one assumes that balance equations are never violated, whereas consti-

tutive relations are often approximately known only.

Mathematical models of elastic structures are based on the conservation of

mass and the balance of linear momentum and momentum of momentum, see
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[133, 210, 221]. To simplify this complicated set of partial differential equations,

one makes the strong constitutive assumption of the symmetry of the stress. This

relation guarantees that balance of momentum of momentum is fulfilled, and we

have to take conservation of mass and balance of linear momentum into account

only. Additionally in simple elasticity, one assumes the existence of the stored en-

ergy function to express certain constitutive relations. If this function exists and the

symmetry of stress is met, then the derived mathematical models have the structure

of a Lagrangian or Hamiltonian system for a certain choice of the coordinates. The

Lagrangian or Hamiltonian structure of these models is preserved by their lineariza-

tion.

The models of structures, like beams or plates etc., with a small extension in one

direction compared to the others, can be approximated by reduced models with less

spatial variables. This way, the models of beams, plates, etc. are derived by the re-

duction of the linearized equations of simple elasticity. Of course, if the reduction

process preserves the Hamiltonian or Lagrangian structure, then the resulting mod-

els will have this structure, too. Proceeding this way we show in an exemplary fash-

ion how the Lagrangian or Hamiltonian formulation of the Euler Bernoulli beam can

be derived in a straightforward manner. Furthermore, we use the simple example of

the motion of a planar rigid body to illustrate the presented methods and ideas. But

it is worth to mention that the presented methods can be applied to other mechanical

structures like the Timoshenko beam (see [206] and Sect. 4.3.1), the Kirchhoff or

Midline plate [123, 147], shell or membranes in an analogous manner.

3.3.2 Simple elasticity

The geometry of the general equations of elasticity are far beyond this contribution.

Therefore, we confine ourselves to the case of simple elasticity, where the existence

of the so called stored energy function is assumed. Furthermore, we describe the mo-

tion in an inertial frame with Euclidean coordinates and trivial metric. This choice is

essential, since the following considerations are valid only in these coordinates. The

Lagrangian and the Eulerian description are the most popular ones in continuum

mechanics. Since we consider elastic bodies, we choose the Lagrangian description,

which allows us to take into account the constitutive relations, which describe the

behavior of material. Furthermore, we confine ourselves to the time invariant case,

but we permit inputs like force or stress fields.

From now on, we use the standard tensor notation to keep formulas as short as

possible and apply Einstein’s convention for sums. Whenever the range of an index

i = 1, . . . ,n is clear, we us the abbreviation

aibi =
n

∑
i=1

aibi
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Furhtermore, to avoid mathematical subleties we assume that all functions are suf-

ficiently often continously differentiable, and that all regions for the integration are

sufficiently nice.

We will consider functions, which depend on the time t and on the spatial coor-

dinates X I , I = 1, . . . , p. Let xi, i = 1, . . . ,q denote the dependent coordinates, then

xi = xi(t,X) assigns the functions xi(t,X) to the coordinate xi. Where no confusion

occurs, we use the same symbol for the coordinate xi and for the assigned func-

tion xi = xi(t,X). Since we will deal with several higher order derivatives of these

functions, we use the abbreviations

∂I =
∂

∂X I
∂t =

∂

∂ t
∂IJ = ∂I∂J ∂tI = ∂t∂I

etc. We need also the derivative coordinates of first order xi
t ,x

i
I and higher order

xi
M··· with the unordered multi index M = m1, . . . ,mk, . . . ,mr, mk ∈ {t}∪{1, . . . , p},

where #M = r is the order of the derivative. This notation is motivated by the assign-

ment xi
M = ∂Mxi(t,X), ∂M = ∂m1

· · ·∂mr . We will also use the conventions xi
M = xi,

∂Mxi(t,X) = xi(t,X) for #M = 0.

Let us consider a function f (t,X ,xM), 0 ≤ #M ≤ m. We say that the total deriva-

tive (dI f )(t,X ,xN), 0 ≤ #N ≤ m+1 of f in the direction of I is the unique function

(dI f ), which meets

∂I f (t,X ,∂Mx(t,X)) = (dI f )(t,X ,∂Nx(t,X)) (3.74)

Obviously, the differential operator dI or the total derivative into the direction of I

is given by

dI = ∂I + xi
M,I∂

M
i = ∂I + ∑

#M≥0

xi
M,I∂

M
i ∂ M

i =
∂

∂xi
M

with I ∈ {t}∪{1, . . . , p}.

3.3.2.1 Motion and coordinates

In general we need three coordinate systems for the modeling of an elastic body,

the configuration space C , where physics takes place, the reference space R, where

we do bookkeeping, and the more abstract space G , which is used to parameterize

maps from R to C by its generalized coordinates. Here, we choose C = R
n, R = R

n

and assume that C , R are equipped with the Euclidean coordinates (xi), (X I), wit

i, I = 1, . . . ,n4. In addition C is an inertial space. The position of a mass point is

given by X ∈ B ⊂ R, where B denotes the set of all mass points of the elastic

body. A motion is a map

4 Of course, values of n ∈ {1,2,3} are of physical interest only. Since the following considerations

are indpendent of choice of p, the value of p is unspecified.
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Fig. 3.11 Motion of a planar

rigid body.

xi = φ i (t,X) i = 1, . . . ,n (3.75)

which assigns the position x of a mass point X at time t. We assume that we can

invert φ such that X = φ−1(t,x) is met. Fig. 3.11 illustrates the configuration and

reference space C = R
2, R = R

2 together with map (3.75) for the example of a

planar rigid body.

Throughout this contribution we equip the Euclidean space C with the trivial

metric. Let (vi), (wi) be two elements of the tangent space TC of C , then their

product is given by

(v,w) = vigi jw
j (3.76)

with

gi j = δi j

being δi j with the Kronecker symbol. The choice of the trivial metric is essential to

simplify the following. Before we can proceed with the balance laws, we introduce

the spatial velocity V and the velocity vector field v,

V i = ∂tφ
i (t,X) vi = V i ◦φ−1 (t,x) (3.77)

In addition we derive from (3.75) the so called deformation gradient

[
Ji

I

]
=
[
∂Iφ

i
]

(3.78)

The inverse of [Ji
I ] is denoted by [J̄I

i ].

To parameterize the map (3.75) we choose further coordinates X̃ Ĩ and x̄ī, with

Ĩ = 1, . . . ,n and ī = 1, . . . ,m, and assume that the functions x̄ī(t, X̄) depend on t and

X̄ Ī = X̃ Ī only, with Ī = 1, . . . , n̄, or equivalently they are independent of X̂ Î = X̃ Î ,

with Î = n̄ + 1, . . . ,n. A parameterization of (3.75) is given by the 2n functions ψ i

and ϕ I , i.e.:

xi = ψ i (X , x̄M) #M̄ ≥ 0

X I = ϕ I
(
X̃
)

(3.79)

such that the map ϕ is invertible and

φ i (t,X) = ψ i (X ,∂M̄ x̄(t, X̄))
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is met for x̄ī = x̄ī(t, X̄). Therefore, we choose the coordinates (X̄ Ī , x̄i) for G and add

the required derivative coordinates x̄i
M̄

.

Let us take a look at the parametrization of the motion of the planar rigid body

of Fig. 3.11. With X Î = X̂ Î , with Î = 1,2, x̄î = rî, with î = 1,2, and x̄3 = α one

possibility is given by the well known relations

xi = Ri
Î
(α) X̂ Î +δ i

ī
rī R =

[
cos(α) −sin(α)
sin(α) cos(α)

]
(3.80)

for i = 1,2 with the rotary matrix R and the Kronecker symbol δ . Obviously, the

coordinates (r,α) describe locally R
2 ×SO2 with the one dimensional rotary group

SO2.

3.3.2.2 Conservation of mass and balance of momentum

Let ρ(t,x) denote the mass density in C and let D be an arbitrary subset D ⊂ B
such that we can integrate over D . With the total time derivative dt , and the volume

forms dx = dx1 · · ·dxn, dX = dX1 · · ·dXn on C and R we derive the identity

dt

∫

φ(t,D)
ρ (t,x)dx = dt

∫

D
ρ (t,φ (t,X)) |J (t,X)|dX =

∫

D
∂tρR (t,X)dX

with

ρR (t,X) = ρ (t,φ (t,X)) |J (t,X)|
where |J(t,X)| denotes the determinant of J. Obviously, conservation of mass im-

plies ∫

D
∂tρR (t,X)dX = 0 (3.81)

To proceed with the balance of linear momentum, we make the strong constitutive

assumption of the symmetry of the Cauchy stress tensor σ(t,x), see [133]. This

assumption implies that the balance of momentum of momentum is met. Let ∂D
denote the boundary of D and

∂i⌋dx = (−1)(i−1)
dx1 · · · d̂xi · · ·dxn

where the term d̂xi is omitted, be the ith surface element, then balance of linear

momentum is given by

dt

∫

φ(t,D)
vi (t,x)ρ (t,x)dx =

∫

φ(t,D)
f i (t,x)dx+

∫

φ(t,∂D)
σ i j (t,x)∂ j⌋dx

=
∫

φ(t,D)

(
f i (t,x)+∂ jσ

i j (t,x)
)

dx

with the body forces f . Using (3.81) we get
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dt

∫

φ(t,D)
vi (t,x)ρ (t,x)dx =

∫

D
ρR (X)∂tV

i (t,X)dX

and derive in a similar manner the force field F in Lagrangian description and the

first Piola Kirchoff stress tensor P, see [133]:

F i (t,X) = f i (t,φ (t,X)) |J (t,X)|
PiJ (t,X) = σ i j (t,φ (t,X)) J̄J

j (t,X) |J (t,X)|

such that the relations
∫

φ(t,D)
f i (t,x)dx =

∫

D
F i (t,X)dX

∫

φ(t,∂D)
σ i j (t,x)∂ j⌋dx =

∫

∂D
PiJ (t,X)∂J⌋dX (3.82)

are met. Summarizing, we may write the balance of linear momentum in Lagrangian

description in the form

∫

D
ρR (X)∂tV

i (t,X)dX =

∫

D

(
F i (t,X)+∂IP

iI (t,X)
)

dX (3.83)

3.3.2.3 Equations of motion

The equations (3.81), (3.83) are incomplete, since the constitutive relations are miss-

ing. To overcome this problem, we have to parameterize the map (3.75) by general-

ized coordinates. The simplest choice is X̄ I = X I , with I = 1, . . . ,n for the indepen-

dent, and x̄i = xi, with i = 1, . . . ,n for the dependent spatial coordinates. Since the

generalized coordinates X̄ and x̄ conincide with the coordinates X and x of C and

R we suppress the accent here. If (3.83) holds for every “nice” subset D ⊂B, then

we may conclude that

ρRxi
tt =

(
F i +dIP

iI
)

(3.84)

is met. For the present we allow that PiI and F i may depend on t, X and xM , with

#M ≥ 0. Therefore, we have to use the total derivative dI , see (3.74), instead of

the partial derivative ∂I , like in (3.83). Multiplication of (3.84) with (x j
t gi j) and

integration over D leads to

∫

D
ρRx

j
t gi jx

i
ttdX =

∫

D

(
x

j
t gi jF

i + x
j
t gi jdIP

iI
)

dX

∫

D

(
ρRx

j
t gi jx

i
tt +dI

(
x

j
t gi j

)
PiI
)

dX =
∫

D

(
x

j
t gi jF

i +dI

(
x

j
t gi jP

iI
))

dX

or
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∫

D

(
dt

(ρR

2
xi

tgi jx
j
t

)
+

1

2
dt

(
xi

Igi jx
j
J

)
SIJ

)
dX =

=

∫

D

(
dt

(ρR

2
xi

tgi jx
j
t

)
+

1

2
dt (CIJ)SIJ

)
dX =

=

∫

D
xi

tgi jF
jdX +

∫

∂D
xi

tgi jP
jI∂I⌋dX

with

CIJ = xi
Igi jx

j
J PiJ = xi

IS
IJ (3.85)

The Cauchy Green deformation tensor C, see [133], is symmetric by construction,

whereas the symmetry of the second Piola Kirchhoff tensor S, see [133], is a con-

sequence of the symmetry of the Cauchy stress tensor σ . In simple elasticity one

assumes SIJ = SIJ(X ,C) and the existence of the stored energy function eE(X ,C)
such that

2
∂

∂CIJ

eE (X ,C) = SIJ (X ,C) (3.86)

is met. This is possible only, if S is symmetric. In this case the balance of energy is

given by ∫

D
dt (eK + eE)dX =

∫

D
xi

tgi jF
jdX +

∫

∂D
xi

tgi jP
jI∂I⌋dX (3.87)

with the kinetic energy density

eK (X ,xt) =
ρR

2
xi

tgi jx
j
t (3.88)

Obviously, the coordinates (t,X I ,xi
M), with M = m1, . . . ,mr, mk ∈ {t}∪ {1, . . . ,n}

and 0 ≤ #M ≤ 2, are necessary to model a simple elastic system, and the equations

of motion (3.84) are partial differential equations of second order. In addition, a

simple elastic body allows two types of ports defined by the pairs ((xt ,F),(xt ,P))
distributed over B and ∂B. It is worth mentioning that ((xi

t),(gi jF
j)) are ele-

ments of two linear spaces dual to each other. The analogous property is met by

((xi
t),(gi jP

jI)). One can use these ports to connect the body to other systems in

a power preserving manner. If sliding of the ports is permitted then the relations

xi
t = x̃i

t , F i =−F̃ i and xi
t = x̃i

t , PiI =−P̃iI must be met, where ·̃ refers to the second

system.

3.3.3 The Hamiltonian and Lagrangian picture

To show that the equations (3.84) are of the Lagrangian type, it is sufficient to find

a Lagrangian density l(X ,xi
M), with 0 ≤ #M ≤ 1 such that the equations

δil +gi jF
j = 0 (3.89)
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with the variational derivative

δi = ∑
#M≥0

(−1)#M
dM∂ M

i (3.90)

coincide with the equations (3.84), where dM = dm1
· · ·dmr . Obviously, the choice

l = eK − eE

with the kinetic energy of (3.88) and the stored energy function of (3.86) solves this

problem because of

δil = −dt∂
t
i eK +dI

(
1

2
SJK∂ I

i CJK

)
= −ρRxi

tt +dI

(
2xi

K

1

2
SIK

)

Furthermore, if the force field F meets the condition δi jF
j = −∂ieF(X ,x), then it

can be included in the Lagrangian by l = eK − eE − eF .

The Lagrangian equations (3.89) are implicit equations in general. Furthermore

time and spatial variables are handled on the same footing, their different nature is

expressed in the boundary conditions only. In the Hamiltonian picture the equations

are explicit equations solved with respect to the time derivatives of the dependent

variables. To derive them, we introduce the generalized momenta pi by the Legendre

transformation

pi = ∂ t
i l = ρRgi jx

j
t (3.91)

and proceed with the coordinates (t,X I ,xi, pi,x
i
t , pi,t ,x

i
M̄

), where we have that M =
m1, . . . ,mk, . . . ,mr, mk ∈ {1, . . . ,n} and 1 ≤ #M ≤ 2. The Hamiltonian density h is

given by

h
(
X ,xi, pi,x

i
M

)
=
(

pi∂ t
i l − l

)
= eK

(
X ,gi j p j/ρR

)
+ eE (3.92)

with gikgk j = δ i
j, and the Hamiltonian equations take the form

xi
t = δ̄ ih pi,t = −δ̄ih+gi jF

j (3.93)

with the variational derivatives

δ̄ i = ∂ i =
∂

∂ pi

δ̄i = ∑
#M≥0

(−1)#M
dM∂ M

i

in the new coordinates. Again, the Hamiltonian equations are partial differential

equations of second order with respect to the spatial derivatives, but of first order

only with respect to the time derivatives. The boundary conditions for both, the La-

grangian or Hamiltonian equations, follow from the same consideration like above.
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3.3.4 The linearized scenario

To find the linearized equations of simple elasticity, we have to consider the relations

(3.84), (3.86). Let us consider the equation (3.84) first. Now it is appropriate to

introduce the Lagrangian strain tensor E:

2EIJ = CIJ +δIJ

and displacement coordinates, see [133, 210, 221], by

xi = δ i
I X I +ui

In the case of small strain one replaces E by the linearized small strain tensor ε:

2εIJ = ui
Igi jδ

j
J +δ i

I gi ju
j
J (3.94)

Furthermore, we set PiJ ≈ δ i
I SIJ(X ,ε). In this case the equations (3.84) simplify to

ρRui
tt =

(
F i +dIδ

i
JSJI

)
(3.95)

It is worth mentioning that nonlinear constitutive equations are still possible pro-

vided the strain remains small. Often one assumes that the stored energy function

eE takes the quadratic form

eE (X ,ε) =
1

2
εIJEIJKL (X)εKL (3.96)

with E = EJIKL = EIJLK = EKLIJ then (3.86) simplifies to

SIJ = ∂εIJ
eE = EIJKL (X)εKL (3.97)

which is nothing else than Hook’s law. Following these considerations and the previ-

ous section, it is straightforward to derive the Lagrangian or Hamiltonian equations

for the linearized scenario.

3.3.5 Reduction

Often the equations (3.84) can be approximated by simpler ones. Examples are

beams or plates, where the extension of the structure in a certain direction differs

significantly from the ones in the others. The reduction under consideration here

is based on the Lagrangian (3.89) or the Hamiltonian (3.91) description of (3.84).

The main idea is quite simple. With the parameterization (3.79) one determines the

Lagrangian l̄ or Hamiltonian density h̄ in the generalized coordinates and gets the

equations of motion from this functions.



3.3 Modeling of simple elastic systems 167

Let us discuss the reduction based on the Lagrangian equations first. Given (3.79)

we extend these relations to the derivative coordinates by

xi
t = dt̄ψ

i xi
I = dĨψ

iDĨ
I (3.98)

where D̄ = [D̄Ĩ
I ] denotes the inverse of the Jacobian D = [∂Ĩϕ

I ]. The total derivatives

dĨ in the new coordinates (t,X
Ī
, x̄i

M̄
) are given by

dt̄ = ∂t + x̄ī
M̄,t∂

M̄
ī

dĪ = dĨ = ∂Ī + x̄ī
M̄,Ī∂

M̄
ī

Ī = 1, . . . , n̄

dĨ = ∂Î Î = n̄+1, . . .n

Proceeding with (3.98) in an analogous manner we derive the relations for higher

order relatives. Now the simplified Lagrangian density l̄ follows as

l̄ (t, X̄ , x̄M̄) =
∫

X̂ (X̄)
l (t,X ,xM) |D|dX̂ n̂+1 · · ·dX̂n (3.99)

where we have to plug in the functions for X and xM according to (3.79) and (3.98),

and the relations for the higher order derivatives. The domain X̂ (X̄) of integration

meets B = X̂ (X ) as well as X̄a 6= X̄b implies X̂ (X̄a)∩X̂ (X̄b) = /0. To derive the

force field F̄
ī

from (3.89) we need the tangent map of (3.79) given by

ẋi = ∂ M̄
ī

ψ i ˙̄xī
M̄

= ∂ M̄
ī

ψ idM̄
˙̄xī (3.100)

The functions F̄
ī
, also called generalized forces, follow from the relation

∫

X

(∫

X̂ (X̄)
∂ M̄

ī
ψ i
(

dM̄
˙̄xī
)

gi jF
j |D|dX̂ − ˙̄xīF̄

ī

)
dX = 0 (3.101)

which is supposed to hold for arbitrary ˙̄xī = ˙̄xī(t, X̄), which vanishes on the boundary

∂X̄ . It is worth mentioning that (3.100) contains the differential operators dM̄ . This

is just the point, where the boundary conditions come into the play. Because of the

complexity of this problem, we will consider special cases in the examples only.

Finally, the Lagrangian equations follow as

δī l̄ +Fī = 0 (3.102)

To derive the reduced equations in the Hamiltonian picture, one can apply the

Legendre transformation to (3.99). Provided this transformation exists and is a point

transformation. Then one derives the Hamiltonian equations in a straightforward

manner. Annother way is to look for relations for the generalized momenta p̄ī. We

require that ∫

X

(∫

X̂ (X̄)
piẋ

i |Dϕ|dX̂ − p̄ī
˙̄xī

)
dX = 0 (3.103)
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is met for pi from (3.91), ẋi from (3.100) and arbitrary functions for ˙̄xī, which vanish

on the boundary ∂X . If it is possible to determine the generalized momenta, then

one can apply reduction procedure to the Hamiltonian density (3.92) analogously

to the one for the Lagrangian density described above. To complete this section,

we have to show, how the boundary conditions for the reduced model are derived.

Because of the complexity of this problem we will discuss this in the example of

Sect. 3.3.6 only.

3.3.5.1 The rigid body

Let us consider again the planar rigid body of Fig. 3.11, which is influenced by a

force field F now. From (3.80), (3.98) we derive the relations

xi
t = Ri

Î
Ω Î

Ĵ
αt X̂

Ĵ +δ i
ī
rī

t Ω =

[
0 −1

1 0

]

Now it is well known, that the Lagrangian L takes the simple form

L(r,α,rt ,αt) =
1

2

∫

B

(
Ri

Î
Ω Î

Ĵ
αt X̂

Ĵ +δ i
ī
rī

t

)
gi j

(
R

j

K̂
Ω K̂

L̂
αt X̂

L̂ +δ j

j̄
r

j̄
t

)
ρRdX̂

=
1

2

(
θ (αt)

2 +Mrī
tδī j̄r

j̄
t

)

with the rotational inertia θ , and mass M,

θ =
∫

B
X IδIJXJρRdX̂ M =

∫

B
ρRdX̂ (3.104)

provided the point X̂ I = 0 is the center of gravity such that

∫

B
X̂ ÎρRdX̂ = 0

is met. With the tangent map, see (3.100)

ẋi = Ri
Î
Ω Î

Ĵ
α̇X̂ Ĵ +δ i

ī
ṙī

and from, see (3.101):

∫

B

((
Ri

Î
Ω Î

Ĵ
α̇X̂ Ĵ +δ i

ī
ṙī
)

gi jF
j − α̇T̄ − F̄īṙ

ī
)

dX̂ = 0

we derive the generalized forces F̄ī, T̄ as

F̄ī =
∫

B
δ i

ī
gi jF

jdX̂ T̄ =
∫

B
Ri

Î
Ω Î

Ĵ
X̂ Ĵgi jF

jdX̂

and finally the equations of motion
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Fig. 3.12 Euler Bernoulli

beam.

θαtt = T̄ Mδī j̄r
j̄
tt = F̄ī

Since the derivation of the Hamiltonian counterpart to these equations is straightfor-

ward, it will be omitted here.

3.3.6 The Euler-Bernoulli beam

Beams are examples of two dimensional structures with different extensions in X1

and X2 directions. We choose a simple elastic material with the stored energy func-

tion, see (3.94) and (3.96):

eE =
1

2

(
a
(
(ε11)

2 +(ε22)
2
)

+2bε11ε22 + c(ε12)
2
)

with a,c ∈ R
+, b ∈ R, a > b. Now, we apply the reduction, see (3.79) and [221]:

X1 = X̄ X2 = X̂ u1 = ū1 − X̂ ū2
1̄

u2 = ū2 (3.105)

according to the assumptions for the Euler-Bernoulli beam, see also Fig. 3.12.

Following the consideration from above we derive the additional relations

u1
t = ū1

t − X̂ ū2
t1̄

u2
t = ū2

t

ε11 = u1
1 = ū1

1̄
− X̂ ū2

1̄1̄
2ε12 = u1

2 +u2
1 = 0 ε22 = u2

2 = 0

The Lagragian density l̄ = l̄(X̄ , ū1
t , ū

2
t , ū

1
1̄
, ū2

1̄1̄
, ū2

t1̄
) follows according to (3.99) as

l̄ =
1

2

∫ h/2

h/2

(
ρR

((
ū1

t − ū2
t1̄

X̂
)2

+
(
ū2

t

)2
)
−a
(
ū1

1̄
− X̂ ū2

1̄1̄

)2
)

dX̂

=
h

2


ρR



(
ū1

t

)2
+

h2

12

(
ū2

t1̄

)2

︸ ︷︷ ︸
≈0

+
(
ū2

t

)2


−a

((
ū1

1̄

)1
+

h2

12

(
ū2

1̄1̄

)2
)

 (3.106)
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Now we use (3.101) to derive the reduced field F̄ . From the relations

∫ L

0

(∫ h/2

−h/2

(
F1
(

˙̄u1 − X̂ ˙̄u2
1̄

)
+F2 ˙̄u2

)
dX̂ − F̄ī

˙̄uī

)
dX̄ = 0

∫ L

0

(
˙̄u1
∫ h/2

−h/2
F1dX̂ + ˙̄u2

∫ h/2

−h/2

(
d1̄F1X̂ +F2

)
dX̂ − F̄ī

˙̄uī

)
dX̄ = ˙̄u2

∫ h/2

−h/2
F1X̂dX̂

∣∣∣∣
L

0︸ ︷︷ ︸
=0

and the Lagrangian (3.106) one gets the inhomogenous wave equation

h
(
ρR ū1

tt −aū1
1̄1̄

)
= F̄1 =

∫ h/2

−h/2
F1dX̂ (3.107)

for ū1 and the well known beam equation

h


ρR


ū2

tt −
h2

12
ū2

tt1̄1̄
︸ ︷︷ ︸

≈0


+a

h2

12
ū2

1̄1̄1̄1̄


= F̄2 =

∫ h/2

−h/2

(
d1̄F1X̂ +F2

)
dX̂ (3.108)

for ū2, provided the underbraced term is neglected in (3.106) and (3.108).

Finally, the evaluation of the boundary term of the energy relation (3.87) for

X̄ ∈ {0,L} with the lenght L of the beam to

∫ h/2

−h/2

(
ū1

t S11 + ū2
t S21

)
dX̂ = ū1

t ū1
1̄

∫ h/2

−h/2
adX̂ − ū2

t ū2
1̄1̄

∫ h/2

−h/2
aX̂dX̂

=

(
ū1

t

(
ahū1

1̄

)
− ū2

t

(
ū2

1̄1̄

ah2

2

))

Therefore, we may introduce two ports at eauch boundary build up by the pairs

(ū1
t ,ahū1

1̄
) and (ū2

t , ū
2
1̄1̄

ah2/2), wich can be used to connect the Euler Bernoulli beam

to other structures.

Let us now take the Hamiltonian point of view. We determine the generalized

momenta p̄1 and p̄2. According to (3.103), from

∫ L

0

(∫ h/2

−h/2

((
ū1

t − X̂ ū2
t1̄

)(
˙̄u1 − X̂ ˙̄u2

1̄

)
+ ū2

t
˙̄u2
)

ρRdX̂ − p̄ī
˙̄uī

)
dX̄ = 0

∫ L

0

((
ū1

t
˙̄u1 +

h2

12
ū2

t1̄
˙̄u2
1̄
+ ū2

t
˙̄u2

)
ρRdX̂ − p̄ī

˙̄uī

)
dX̄ = 0

∫ L

0

((
ū1

t
˙̄u1 +

(
ū2

t −
h2

12
ū2

t1̄1̄

)
˙̄u2

)
ρRdX̂ − p̄ī

˙̄uī

)
dX̄ = − h2

12
ū2

t1̄
˙̄u2

∣∣∣∣
L

0︸ ︷︷ ︸
=0

the relations
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p̄1 = ρRhū1
t p̄2 = ρRh

(
ū2

t −
h2

12
ū2

t1̄1̄

)

Obviously, it is straightforward to derive p̄2 as a function of ū2
t and its derivatives.

But the determination of the inverse map requires the solution of a differential equa-

tion. Therefore the Legendre trasformation fails to be a point transformation. There-

fore, we stop here and consider the simplified Lagrangian (3.106). Now, the deter-

mination of the generalized momenta p̄1, p̄2 is straightforward and the Hamiltonian

density is given by

h̄ = p̄1ū1
t + p̄2ū2

t − l̄ =
1

2hρR

(
(p̄1)

2 +(p̄2)
2
)

+
h

2
a

((
ū1

1̄

)2
+

h2

12

(
ū2

1̄1̄

)2
)

With the variational derivatives, see also (3.93), one derives the Hamiltonian equa-

tions as

ū1
t = δ 1̄h̄ =

1

hρR
p̄1 p̄1,t = −δ1̄h̄ = ahū1̄

1̄

ū2
t = δ 2̄h̄ =

1

hρR
p̄2 p̄2,t = −δ2̄h̄ = −ahū2

1̄1̄1̄1̄

Of course, one can start with the Hamiltonian (3.92) and apply the reduction proce-

dure. If one neglects the terms ≈ h2 in kinetic energy, then one derives the same set

of equations.

3.3.7 Summary

The mathematical modeling of elastic structures can be significantly simplified by

the use of differential geometric methods. Starting with the fundamental conserva-

tion and balance principles, one has to parameterize certain maps to bring the con-

stitutive equations into the play. If one assumes the existence of the stored energy

function in the presented manner, then one deals with simple elasticity. A further

consequence of this assumption is, that one can rewrite the equations of motion in a

Hamiltonian or Lagrangian manner. This fact is often used to derive simpler models,

where the simplification is archived by adding holonomic constraints. Of course, one

can also linearize the equations of motion. Exemplarily, these approaches has been

presented for the rigid body and for the Euler Bernoulli beam such that the sim-

plified equations of motion are derived by a systematic reduction procedure from

the general ones. Since one can apply the presented methods to other mechanical

structures like the Timoshenko beam (see [206] and Sect. 4.3.1), the Kirchhoff or

Mindlin plate [123,147], shell or membranes in an analogous manner, it is obvious,

how their Lagrangian or Hamiltonian description can be achieved.
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3.4 Port-based modelling and irreversible thermodynamics

Aim of this section is to express models of physico-chemical systems involving

momentum, heat and mass transfer as well as chemical reactions in the port-based

formalism. To this end, the entropy balance and the associated source terms will

be systematically written in accordance with the principle of irreversible thermo-

dynamics. Some insights will been given concerning the constitutive equations and

models allowing to calculate transport and thermodynamic properties. These port-

based models can be translated into bond-graph models, in the case of distributed as

well as lumped parameter systems. Examples of this are reported in the concluding

part of the section. The meaning of all the symbols appearing in this section has

been reported in Appendix C.

3.4.1 Basic concepts

A thermodynamic system is a piece of matter containing a sufficiently high number

of elementary particles (atoms, molecules, ions etc) so that macroscopic variables

like pressure P, temperature T , mass density ρ , mass concentrations ρi can make

sense. The energy of such a thermodynamic system is defined as the internal energy

U . The other thermodynamic functions like enthalpy H, Gibbs free energy G are

defined with respect to U as Legendre transforms (see Appendix B, Sect. B.2.6).

Some of the thermodynamic variables correspond to quantities subject to balance

equations. These variables are extensive variables in the sense that they are depen-

dent on the size of the system under consideration. For such variables, one defines

specific mass or molar variables as well as fluxes, these concepts being necessary to

derive balance equations. Some of them will lead to the definition of flow variables

as they are defined in the port-based approach. As far as specific mass or molar vari-

ables are concerned, they can be considered as intensive variables in the sense that

they are independent of the size of the system under consideration. Other intensive

variables are not defined as specific variables. They will prove to be effort variables

allowing the description of equilibrium situations (see Appendix B, Sect. B.2.2).

As far as only chemical reactions are considered, the total mass is conservative.

This means that mass is neither destroyed nor created during the processes under

consideration. In the case of distributed parameter systems, the total mass balance

is as follows:
∂ρ

∂ t
= −∇ ·ρv (3.109)

where ρ is the mass density and v the fluid velocity.

When balances are established for distributed parameter systems, the conserva-

tion equations can be written under two forms [21]. If Y is a scalar quantity and y

the corresponding quantity per unit mass, the partial derivative
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∂y

∂ t

is the time variation of y at a given point. In a frame moving according to the fluid

velocity v,
Dy

Dt

is the time derivative of y “following the motion” [21]. The relation between the two

is obtained by applying the chain rule of derivation:

Dy

Dt
=

∂y

∂ t
+v ·∇y (3.110)

From that point, two forms of balance equations can be derived.

In a fixed frame, the balance of Y takes the general form:

∂ρy

∂ t
= −∇ · fy +σy (3.111)

where fy is the flux of Y per unit of surface area and σy a possible volumetric source

term. This source term can be either the result of a true destruction or creation of Y

or the expression of a transfer with the surrounding that is expressed as a quantity

by time and volume unit. In a frame moving according to v, the total mass balance

(3.109) being given, the Y balance becomes:

ρ
Dy

Dt
= −∇ · (fy −ρvy)+σy = −∇ · fR

y +σy (3.112)

The source term is supposed to remain unchanged but the flux of Y is now a relative

flux with respect to the convected one fR
y = fy−ρvy. The total mass balance can also

be given in a frame following the fluid motion:

Dρ

Dt
= −ρ∇ ·v (3.113)

or by using the specific volume v = 1
ρ :

ρ
Dv

Dt
= ∇ ·v (3.114)

If y is one of the components of a vector, equations (3.111) and (3.112) have their

counterparts for the vector y. In a fixed frame, the balance equation is:

∂ρy

∂ t
= −∇ ·Φy +σ y (3.115)

while in a frame moving according to v:

ρ
Dy

Dt
= −∇ · (Φy −ρvy)+σ y = −∇ ·ΦR

y +σ y (3.116)
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where Φy and ΦR
y are tensors of order 2 representing respectively the absolute and

relative flux of the y quantity and σ y a vectorial source term per unit of volume.

3.4.2 Distributed parameter systems

In order to calculate output variables that can be measured like pressure, tempera-

ture and composition, the classical approach consists in deriving a balance equation

for the internal energy. The internal energy balance equation has to be coupled to

other balance equations (material and momentum). As far the port-based approach

is concerned, the internal energy balance is replaced by the entropy balance.

3.4.2.1 Balance equations

The following material can be found in many textbooks (see for example, [21]). We

restrict ourselves to an homogeneous fluid (in the sense that it is under the form of

only one phase) subject to simultaneous mass, momentum and heat transfer. Chem-

ical reactions are also supposed to occur in the system. The derivation of the equa-

tions is performed on a mass basis.

Two forms of energy have to be considered. The energy of the matter as a

whole and the energy of the matter as a collection of elementary particles (atoms,

molecules, ions ...). The total energy per mass unit is then given by:

h̄ =
v2

2
+u (3.117)

that one can differentiate:

dh̄ = v ·dp+du (3.118)

where p is the momentum per mass unit. If one assumes that h̄ is a conserved quan-

tity, in the sense that it is never destroyed nor produced but only transformed from

one form to another, it is possible to derive a balance equation for the internal en-

ergy. To this end, equation (3.118) is assumed to be valid for the substantial time

derivatives:
Dh̄

Dt
= v · Dp

Dt
+

Du

Dt
(3.119)

so that

ρ
Dh̄

Dt
= ρv · Dp

Dt
+ρ

Du

Dt
= ρ

D

Dt

(
v2

2

)
+ρ

Du

Dt
(3.120)

is also valid.

Let us denote ρi as the mass concentration of component i in a mixture containing

N species and ωi = ρi

ρ its mass fraction. If one or more chemical reactions occur in

the system, they will produce or consume component i: σi is the corresponding

net source term expressed in mass of component i per unit of volume and time.
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According to equation (3.111), the mass balance of component i is as follows:

∂ρωi

∂ t
= −∇ · fi +σi i = 1, . . . ,N (3.121)

where fi = ρivi is the mass flux of component i per unit of surface area defined with

respect to a fixed frame. If R chemical reactions occur in the system, σi is given by:

σi =
R

∑
k=1

M̄iν
k
i rk (3.122)

where νk
i is the stoechiometric coefficient of component i when it is involved in the

kth reaction. It is more convenient to express rk, the rate of the kth reaction per unit

of volume, on a molar basis so that M̄i, the molar mass of component i, has been

included in equation (3.122) to express σi. As far as the total mass is conservative, by

summing equation (3.121) over all components, one recovers the total mass balance

(3.109). v, which turns to be the mass average velocity in the fixed frame, is defined

by: (
N

∑
i=1

ρi

)
v = ρv =

N

∑
i=1

ρivi (3.123)

In a moving frame defined with respect to v, according to (3.112), the component i

mass balance becomes:

ρ
Dωi

Dt
= −∇ · (fi −ρvωi)+σi = −∇ · fR

i +σi (3.124)

The relative flux fR
i per unit of surface area is the mass diffusion flux defined with

respect to the mass average velocity v.

Since p is the momentum per mass unit, it is clear that p ≡ v but, contrary to the

classical presentation, we distinguish here the velocity as an effort variable from the

momentum as a flow variable. In a fixed frame, the momentum balance equation is

as follows:
∂ρp

∂ t
= −∇ ·Φ p +σ p (3.125)

The source term σ p = ∑N
i=1 ρigi is due to the action of the external body force gi

exerted per mass unit on component i. σp is then an exchange of momentum with

the surrounding. Φ p is a second order tensor allowing to represent the momentum

flux per unit of surface area. The same momentum balance can be considered in the

moving frame according to (3.116):

ρ
Dp

Dt
= −∇ · (Φ p −ρvp)+σ p = −∇ ·ΦR

p +σ p (3.126)

where ρvp is the convected momentum, while ΦR
p = Φ p −ρvp is the momentum

flux defined with respect to the moving frame. This tensor can be split into two

terms:
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ΦR
p = PI+ τ (3.127)

where P is the pressure and τ the viscous part of the momentum flux (or shear

stress tensor). In (3.127), we have assumed that the fluid under consideration is a

non-elastic one [60].

3.4.2.2 The classical approach based on the internal energy balance

According to the first principle of thermodynamic, the total energy of the system

being considered as a conserved quantity, the source term that will appear in its

balance will necessary be only due to the action of external body forces – i.e. an

exchange of energy with the surrounding:

∂ρ h̄

∂ t
= −∇ · fh̄ +σh̄ = −∇ · fh̄ +

N

∑
i=1

fi ·gi (3.128)

and in the moving frame according to v:

ρ
Dh̄

Dt
= −∇ · (fh̄ −ρvh̄)+σh̄ = −∇ · fR

h̄ +
N

∑
i=1

fi ·gi (3.129)

By combining (3.119), (3.126) and (3.129), one obtain:

−∇ · fR
h̄ +

N

∑
i=1

fi ·gi = −v ·
[
∇ ·ΦR

p

]
+

N

∑
i=1

v ·ρigi +ρ
Du

Dt
(3.130)

According to the following relations:

N

∑
i=1

(fi −v ·ρi) ·gi =
N

∑
i=1

(fi −ρv ·ωi) ·gi =
N

∑
i=1

fR
i ·gi (3.131)

v ·
[
∇ ·ΦR

p

]
= ∇ ·

[
ΦR

p ·v
]
−ΦR

p : ∇v (3.132)

(3.130) can be regarded as follows:

ρ
Du

Dt
= −∇ ·

(
fR
h̄ −
[
ΦR

p ·v
])

−ΦR
p : ∇v+

N

∑
i=1

fR
i ·gi (3.133)

according to the general form (3.112):

ρ
Du

Dt
= −∇ · fR

u +σu (3.134)

with
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



fR
h̄ = fR

u +
[
ΦR

p ·v
]

σu = −ΦR
p : ∇v+

N

∑
i=1

fR
i ·gi = −P∇ ·v− τ : ∇v+

N

∑
i=1

fR
i ·gi

(3.135)

The internal energy is not a conserved quantity since the source term σu contains

the positive term −τ : ∇v due to viscous dissipation. It is the expression of the

transformation of mechanical energy into internal energy.

3.4.2.3 The port-based approach for modelling

The port-based approach formulates the entropy balance instead of the energy bal-

ance: it is based on the thermodynamic of irreversible processes concepts [60]. The

main goal of this derivation is to obtain the expression of a source term since, ac-

cording to the second principle of thermodynamic, the entropy is non-conservative.

The initial form of the Gibbs equation is concerned with macroscopic systems

assumed to be at equilibrium [173]. As far as the internal energy of a macroscopic

system U is considered as a function of its entropy S, its volume V and of the mass

of each component Mi, the Gibbs equation gives the differential of U :





dU = T dS−PdV +
N

∑
i=1

µidMi

µi =

(
∂U

∂Mi

)

S,V,Mk 6=i

=

(
∂G

∂Mi

)

P,T,Mk 6=i

=

(
∂H

∂Mi

)

P,T,Mk 6=i

−T

(
∂S

∂Mi

)

P,T,Mk 6=i

= hi −T si

(3.136)

where µi is the chemical potential of component i and G = U +PV −T S = H −T S

the Gibbs free energy (cf. Appendix B, Sect. B.2.6); si and hi are respectively the

partial entropy and enthalpy per mass unit. It can be seen that a fundamental as-

sumption has been made in (3.136). Energy-conjugated variables associated to heat,

space and mass transfer have been postulated for systems at equilibrium, respec-

tively (T,S), (−P,V ) and (µi,Mi). As far as distributed parameter systems are con-

cerned, a local version of (3.136) has to be derived.

According to the definitions of the quantities per mass unit u = U
M

, v = V
M

, s = S
M

and the mass fraction ωi =
Mi
M

, with M = ∑N
i=1 Mi, (3.136) can be written as follows:

d(Mu) = T d(Ms)−Pd(Mv)+
N

∑
i=1

µid(Mωi) (3.137)

After differentiation of each term, (3.137) becomes:

Mdu = M

(
T ds−Pdv+

N

∑
i=1

µidωi

)
+dM

(
N

∑
i=1

µiωi − (u+Pv−Ts)

)
(3.138)
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According to the definition of G and to (3.136), one can easily derive the differential

of G:

dG = V dP−SdT +
N

∑
i=1

µidMi (3.139)

where G is a function P, T and it is a first order homogenous function with respect

to Mi (cf. Appendix B, Sect. B.2.1) so that Euler theorem can be applied [173]:

G =
N

∑
i=1

Mi

(
∂G

∂Mi

)

P,T,Mk 6=i

=
N

∑
i=1

Miµi = U +PV −T S (3.140)

A similar equation can be written with the specific quantities by dividing (3.140) by

M:

g =
G

M
=

N

∑
i=1

ωiµi = u+Pv−T s (3.141)

By combining (3.138) and (3.141), the local form of the Gibbs equation is as fol-

lows:

du = T ds−Pdv+
N

∑
i=1

µidωi (3.142)

If now one considers (3.118) and (3.142), a set of specific energy-conjugated

variables (v,p), (T,s), (−P,v) and (µi,ωi) can be defined for a thermodynamic

system at equilibrium and subject to heat, mass, momentum transfer and chemical

reactions:

dh̄ = v ·dp+T ds−Pdv+
N

∑
i=1

µidωi (3.143)

This set of energy-conjugated variables is associated to the total energy of the sys-

tem. As far as one is now interested in deriving a balance equation for the entropy,

the balance equation for the internal energy as it has been derived above can be used.

When a system in not at equilibrium, its state variables vary with space and time.

Irreversible phenomena and entropy production are partly due to these spatial vari-

ations. However, one can consider that at a sufficiently small scale, equilibrium is

reached at each time. Balances are then considered in the frame following the fluid

motion and the substantial times derivatives Du
Dt

, Dv
Dt

, Dωi
Dt

and Ds
Dt

are assumed to

satisfy the local form of the Gibbs equation (3.142):

ρ
Ds

Dt
= ρ

(
Du

Dt
+P

Dv

Dt
−

N

∑
i=1

µi

Dωi

Dt

)
1

T
(3.144)

Once the expression of ρ Ds
Dt

is derived by using (3.144), the volumetric entropy

production as well as the relative entropy flux fR
s = fs −ρvs are obtained by identi-

fication to the general form of a balance equation (3.112).

Let us recall the internal energy balance, the mass balance of component i as well

as the total mass balance as they have been already derived in the moving frame:
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



ρ
Du

Dt
= −∇ · (fu −ρvu)+σu = −∇ · fR

u +σu

ρ
Dωi

Dt
= −∇ · (fi −ρvωi)+σi = −∇ · fR

i +σi

ρ
Dv

Dt
= −∇ ·v

(3.145)

By combining (3.144) and (3.145), the entropy balance expression with respect to

the moving frame is as follows:

ρ
Ds

Dt
= − 1

T
∇ · fR

u +
1

T
σu +

P

T
∇ ·v+

N

∑
i=1

µi

T
∇ · fR

i −
N

∑
i=1

µiσi

T
(3.146)

To transform (3.146) into an equation having the general form of a balance equation,

we use the following relations:





∇ ·
(

fR
u

T

)
=

1

T
∇ · fR

u + fR
u ·∇

(
1

T

)

∇ ·
(

µif
R
i

T

)
=

µi

T
∇ · fR

i + fR
i ·∇

(µi

T

) (3.147)

According to the expression of σu (see (3.135):

σu = −P∇ ·v− τ : ∇v+
N

∑
i=1

fR
i ·gi (3.148)

the entropy balance becomes:

ρ
Ds

Dt
= −∇ ·




fR
u −

N

∑
i=1

µif
R
i

T


−

N

∑
i=1

fR
i ·∇

(µi

T

)
−

N

∑
i=1

µiσi

T

+ fR
u ·∇

(
1

T

)
− τ : ∇v

T
+

N

∑
i=1

fR
i ·gi

T

(3.149)

The relative entropy flux per unit of surface area and the volumetric entropy pro-

duction are then as follows:
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



fR
s =

fR
u −

N

∑
i=1

µif
R
i

T

σs = fR
u ·∇

(
1

T

)
− 1

T

N

∑
i=1

fR
i ·
[
T ∇
(µi

T

)
−gi

]
−

−
N

∑
i=1

µiσi

T
− τ : ∇v

T
≥ 0

(3.150)

The relative flux of entropy is given by

fR
s =

fq

T
+

N

∑
i=1

fR
i si

where fq is the heat flux per unit of surface area by conduction. Then, according

to the definition of the chemical potential (see (3.136)), the relative internal energy

flux per unit of surface area can be expressed as follows:

fR
u = fq +

N

∑
i=1

fR
i hi (3.151)

According to the relation ∂
∂T

( µi

T

)
= − hi

T 2 [173],

∇
(µi

T

)
=

(∇µi)T

T
− hi

T 2
∇T

so that the volumetric entropy production can also be expressed as follows:

σs = − fq

T 2
·∇T − 1

T

N

∑
i=1

fR
i · [(∇µi)T −gi]−

N

∑
i=1

µiσi

T
− τ : ∇v

T
≥ 0 (3.152)

According to the second principle of thermodynamic, the source term σs correspond

to a true creation of entropy. The first term is the entropy production due to heat

conduction, the second one the entropy production due to diffusion and external

body forces, the third one the entropy production due to chemical reactions and the

fourth one the entropy production due to viscous effects.

The absolute temperature T is the power conjugated variable associated to σs

since T σs is a volumetric power. It represents the power that is locally dissipated

due to irreversible processes. Another expression of this quantity can be derived

from (3.150) by using the equality ∇
( µi

T

)
= 1

T
∇µi +µi∇

(
1
T

)
. The dissipated power

is then as follows:

T σs = −fR
s ·∇T −

N

∑
i=1

fR
i · (∇µi −gi)−

N

∑
i=1

µiσi − τ : ∇v ≥ 0 (3.153)
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Fig. 3.13 Micro Carnot en-

gine.

The significance of this dissipated power is more general then the ordinary dissi-

pation due to friction or viscous effects. To understand this significance, we only

consider the first term of the dissipated power fR
s ·∇T , and we assume that the en-

tropy flux is only due to heat transfer by conduction, i.e. fR
s =

fq

T
.

Let us consider a piece of matter of volume dV at temperature T surrounded by a

piece of matter at T +dT (see Fig. 3.13) and denote with dA the area of the contact

surface between the two pieces. Let us imagine that a “micro Carnot engine” can

be placed between the two pieces of matter. The power δW Rev that this engine can

produce reversibly is given by

δW Rev = dfR
s (T +dT −T ) = dfR

s dT = fR
s dAdT

and by unit of volume

δwRev = fR
s dT

dA

dV
∝ fR

s

dT

dl

If now the “micro Carnot engine” is removed, δwRev ∝ fR
s

dT
dl

is lost and one can see

that δwRev ∝ fR
s

dT
dl

and T σs =−fR
s ·∇T are similar. The minus sign of the expression

of T σs is due to the fact that fR
s and ∇T are in the opposite direction. Finally, the

dissipated power is a power that should have been produced reversibly by using

appropriate systems.

Once the entropy production has been derived, one can reformulate the general

equations according to the port-based approach. The flow variables balances are as

follows in a fixed frame:





∂ρp

∂ t
= −∇ ·Φ p +σ p

∂ρωi

∂ t
= −∇ · fi +σi

∂ρs

∂ t
= −∇ ·

(
fq

T
+

N

∑
i=1

fisi

)
+σs

(3.154)

According to the fact that ∑N
i=1 σi = 0, the total mass balance is implicitly satisfied:

∂ρ

∂ t
= −∇ ·ρv (3.155)

Similarly, according to the expressions of σi, σs and σ p, the total energy balance is

also satisfied by using (3.143):
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∂ρ h̄

∂ t
= −∇ · fh̄ +

N

∑
i=1

fi ·gi (3.156)

The flux of h̄ per unit of surface area is then as follows:

fh̄ = ρv

(
v2

2
+u

)
+ fq +Pv+ τ ·v+

N

∑
i=1

fR
i hi (3.157)

This expression can be rearranged in order to exhibit the enthalpy per mass unit

h = u+Pv = u+ P
ρ :

fh̄ = ρv

(
v2

2
+h

)
+ fq + τ ·v+

N

∑
i=1

fR
i hi = ρv

v2

2
+

N

∑
i=1

fihi + fq + τ ·v (3.158)

The two first terms of (3.158)) represent the energy transported by the matter while

the two last ones the energy flux due to heat conduction and to the work exerted by

the shear stress tensor.

If the forces per mass unit gi can be derived from a time independent potential Ψi

so that: 



gi = −∇Ψi

∂Ψi

∂ t
= 0

(3.159)

the total energy h̄′ of the system (see (3.143)) is modified according to the following

equation:





h̄′ =
v2

2
+u+

N

∑
i=1

ωiΨi =
v2

2
+u+Ψ

dh̄ = v ·dp+T ds−Pdv+
N

∑
i=1

µidωi +
N

∑
i=1

Ψidωi +
N

∑
i=1

ωidΨi

(3.160)

A new set of energy-conjugated variables (v,p), (T,s), (−P,v), (µi,ωi), (Ψi,ωi) and

(ωi,Ψi) is defined while the total energy balance is given by:

ρ
Dh̄′

Dt
= −∇ · fR

h̄′ (3.161)

The source term has disappeared since the exchange energy is now expressed as the

variation of a potential energy. As far as a balance equation for the quantity

ρ
D

Dt

(
v2

2
+Ψ

)
= ρ

(
v · Dp

Dt
+

N

∑
i=1

Ψi

Dωi

Dt
+

N

∑
i=1

ωi

DΨi

Dt

)

can be derived by using the component i balance (see (3.124)), an internal energy

balance equation similar to (3.134) and (3.135) can be obtained:
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ρ
Du

Dt
= −∇ · fR

u +σu (3.162)

with





fR
h̄′ = fR

u +
[
ΦR

p ·v
]
+

N

∑
i=1

fR
i Ψi

σu = −ΦR
p : ∇v+

N

∑
i=1

fR
i ·gi = −P∇ ·v− τ : ∇v+

N

∑
i=1

fR
i ·gi

(3.163)

In this derivation, it has been assumed that:

• according to (3.159), the substantial time derivative of Ψi is reduced to

DΨi

Dt
= v ·∇Ψi = −v ·gi

• the chemical reactions do not modify the potential energy, i.e. ∑N
i=1Ψiσi = 0.

Neither σu nor the entropy balance are modified and the system represented by

(3.160) can be seen as a port-based one in the same manner then previously.

3.4.3 Lumped parameter systems

In many circumstances, the derivation of models is based on the definition of a

network of lumped parameter sub-systems (cf. Chapter 1). The state variables are

supposed to be spatially uniform in each element of the network. In chemical en-

gineering, a very famous element of such a network is the so-called CSTR (Con-

tinuous Stirred Tank Reactor) that is highly used for the modelling of chemical

reactors [115]. Once the network is spatially defined, the balance equations are es-

tablished for each element of the network. The total energy that is generally consid-

ered is reduced to the internal energy as far as the effects due to viscous dissipation

are generally negligible with respect to those due to heat transfer or chemical reac-

tions. A noticeable exception is the case of highly viscous fluids like polymers for

example where the viscous dissipation has to be taken into account (see for exam-

ple [48]). As in the case of distributed parameter systems, the objective of a model

is to calculate the output variables P, T and the composition and the two approaches

can be used to define state variables. The classical one consists in manipulating ma-

terial and energy balances while the port-based one is based on material and entropy

balances.
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3.4.3.1 The classical approach

We will establish the balances on a molar basis so that h̄i is the molar partial enthalpy

of component i while h̄ is the molar enthalpy of the mixture. Let us consider one

lumped parameter system as an element of a network of compartments. This element

may exchange matter and energy with its neighbours through links designated by the

l index. It contains Ni mole of component i and its internal energy is U . The energy

and component i balances are written as follows:

dU

dt
= Fq +Fw +∑

l

Fl h̄l = Fq +Fw +∑
i, l

Fil h̄il (3.164)

dNi

dt
= ∑

l

Fl χil +σiV = ∑
l

Fil +σiV (3.165)

where Fq and Fw are respectively the total heat flux and the total power that are

exchanged by the system through its boundary, while Fil and χil are respectively the

molar flow rate and the molar fraction of component i through the link l, while Fl is

the corresponding total molar flow rate.

3.4.3.2 The port-based approach

The Gibbs equation (3.136) is supposed to be valid for the system at uniform pres-

sure, temperature and composition so that one can derive the entropy balance from

(3.136), (3.164) and (3.165):

dS

dt
=

1

T

[
Fq +Fw +∑

i, l

Fil h̄il −∑
i

µ̄i

(

∑
l

Fil +σiV

)]
+

P

T

dV

dt
(3.166)

According to the definition of the chemical potential per mole unit µ̄i = h̄i − T s̄i,

(3.166) can be rearranged in order to exhibit a source term and exchanged terms:

dS

dt
= ∑

i, l

Fil s̄il +
Fq +Fw

T
+

P

T

dV

dt
+∑

i, l

Fil

(
h̄il −T s̄il

T
− µ̄i

T

)
−

N

∑
i=1

µ̄iσiV (3.167)

Let us consider for example that the heat flux is exchanged with a heat source at

Text and that the volume V varies in contact with a pressure source at Pext with

Fw = −Pext
dV
dt

. Equation (3.167) can be given under the following form:
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



dS

dt
= ∑

i, l

Fil s̄il +
Fq

Text
+σsV

σs =
1

V

[(
Fq

T
− Fq

Text

)
+

P−Pext

T

dV

dt
+

+∑
i, l

Fil

(
h̄il −T s̄il

T
− µ̄i

T

)
−

N

∑
i=1

µ̄iσiV

]
(3.168)

The first term in the entropy production is due irreversible heat transfer, the second

one is due to mechanical friction, the third one to the irreversible mixing of the inlet

fluxes of matter with the matter contained in the system and finally the fourth one is

due to chemical reactions.

3.4.4 Constitutive equations

A model only based on balance equations cannot be used if constitutive equations

are not available (cf. Appendix B, Sect. B.2.8). These relations constitute a model

for the matter properties – i.e. transport, thermodynamic properties (see for exam-

ple [167]) and chemical reaction rates. In order to calculate these properties of

the matter, a great number of models are available, more or less complicated ac-

cording to the situation. Classical textbooks or references are devoted to this ques-

tion, which is probably the most important and difficult one in chemical engineer-

ing [167, 173, 209].

3.4.4.1 Thermodynamic properties

One has to relate the specific internal energy, entropy, enthalpy of the system to P,

T and the composition. As far as the total mass balance is involved, one has also

to relate the specific volume or the mass or molar density to the same variables. A

thermodynamic model is a set of relations allowing to calculate all these proper-

ties (see for example [173, 209]. These relations have been derived by considering

equilibrium situations. According to the principle of local equilibrium, they are also

assumed to apply at a point, even if the system under consideration is not at equilib-

rium as a whole. According to the classical way to proceed, we present very briefly

this question by separating the case of pure components from the case of mixtures.

Equations of state are generally used to model the specific volume v of a fluid.

They are given under the general form ϕ(P,v,T,θ1,θ2, . . .) = 0, where θ1, θ2, . . .
are parameters. Some of these equations of state can be applied for both liquid and

gaseous phases while others are devoted to only one phase. All the properties are

calculated by using equation of states. As far as u is concerned, the following ex-

pression is derived where u is primarily considered as a function of v and T :
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du = cv(v,T )dT +

(
T

∂P

∂T
−P

)
dv (3.169)

where cv(v,T ) is the heat capacity at constant volume. In many applications, it is

better to consider P and T as the output variables so that the enthalpy h = u+Pv is

more convenient. The following relation is then derived:

dh = cP(P,T )dT +

(
v−T

∂v

∂T

)
dP (3.170)

where cP(P,T ) is the heat capacity at constant pressure. If the port-based approach

is used, the specific entropy s can be expressed by using the following relations:





ds =
cv(v,T )

T
dT +

∂P

∂T
dv

ds =
cp(P,T )

T
dT − ∂v

∂T
dP

(3.171)

Equations (3.169), (3.170) and (3.171) have to be integrated along calculations

paths. To do so, an arbitrary origin has to be defined for u or h and s.

Equations of state can also be used for mixtures. They are given under the general

form ϕ(P,v,T,θ1m,θ2m, . . .) = 0, where the parameters θ1m, θ2m, ... depend on the

composition. As far as the other properties are concerned, in order to be able to

define an arbitrary origin for them, one has to consider each component separately

and define its contribution to a given property. Let us for example consider the case

of the enthalpy H. H is primarily considered as a function of P, T and Ni, the number

of mole of component i. As it is a first order homogenous function with respect to

Ni, Euler theorem can be applied [173] (cf. Appendix B, Sect. B.2.1):





H(P,T,Ni) = ∑
i

Nih̄i(P,T,χi)

χi =
Ni

∑N
i=1 Ni

(3.172)

By definition, h̄i =
(

∂H
∂Ni

)
P,T,Nk 6=i

is the partial molar enthalpy. Within the framework

of the port-based approach, it is also better to consider S as a function of P, T and

Ni so that Euler theorem can also be applied:

S(P,T,Ni) =
N

∑
i=1

Nis̄i(P,T,χi) (3.173)

with s̄i =
(

∂S
∂Ni

)
P,T,Nk 6=i

the partial molar entropy.

Another way to model a mixture is to model the excess Gibbs molar free energy

∆ge(P,T,χi). This quantity is the difference between g, the Gibbs molar free energy
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of a mixture and gid, the Gibbs molar free energy of the same mixture considered as

an ideal solution [173, 209].

As far as reactive systems are concerned, the origin for the calculation of h̄i is

the so-called standard enthalpy of formation. This quantity has been chosen to be 0

for atoms or simple components under their more stable state at ambient conditions

(H2, O2 for example).

3.4.4.2 Transport properties and chemical reaction rates

These properties allow expressing the fluxes as functions of the effort variables ac-

cording to the expression of the total entropy production (see (3.152)). The main

properties that are required are viscosity, thermal conductivity and diffusion coeffi-

cients. These coefficients allow to relate respectively the shear stress tensor to the

velocity gradient, the heat flux by conduction to the temperature gradient and the

fluxes of component i to the chemical potential gradient. Furthermore, source terms

in the material balances are given by the rates of chemical reactions. Finally, one

has also to consider coupled phenomena if necessary. Let us first consider the way

such coupling may occur.

According to the Curie symmetry principle applied to isotropic systems, all the

fluxes are not functions of all the effort variables but only of those having the same

tensorial order [60]. The total entropy production can be split into three terms, each

of them being positive. In order to express the entropy production according to these

three terms, one has to consider the entropy production associated to viscous effects.

The quantity τ : ∇v can be expressed as follows provided that τ is symmetric [60]:

τ : ∇v = τ̃ :
(
∇̃v
)s

+
1

3
Tr(τ)∇ ·v (3.174)

To derive (3.174), τ has been decomposed as follows:

τ = τ̃ +
1

3
Tr(τ)I, with Tr(τ̃) = 0 (3.175)

Similarly, ∇v has been decomposed according to:

∇v =
(
∇̃v
)
+

1

3
Tr(∇v)I =

(
∇̃v
)s

+
(
∇̃v
)a

+
1

3
(∇ ·v)I, with Tr(∇̃v) = 0 (3.176)

where
(
∇̃v
)s

and
(
∇̃v
)a

are respectively the symmetric and anti-symmetric parts of

∇̃v. By combining (3.152) and (3.174), the entropy production can be expressed as

follows:
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σs =−
N

∑
i=1

µiσi

T
−

1
3
Tr(τ)∇ ·v

T
︸ ︷︷ ︸

σSc
s

− fq

T 2
∇T − 1

T

N

∑
i=1

fR
i ((∇µi)T −gi)

︸ ︷︷ ︸
σVect

s

− τ̃ :
(
∇̃v
)s

T︸ ︷︷ ︸
σTens

s

≥ 0

(3.177)

where σSc
s , σVect

s and σTens
s are respectively the scalar, vectorial and tensorial contri-

butions to the entropy production. Coupling between phenomena occurs only within

these three sets of phenomena.

Within the so-called “Linear thermodynamics of irreversible processes”, the re-

lations between the flow and effort variables are expressed linearly. This does not

mean that the resulting models are linear. They are generally non-linear firstly be-

cause thermodynamic and transport properties are functions of the state variables as

well as the chemical rates [60] and secondly because of the coupling between the

phenomena.

As far as we know, coupling between chemical reactions and scalar viscous ef-

fects are generally not considered [21] so that we express separately Tr(τ) as a

function of ∇ ·v on the one hand and σi as functions of µi on the other hand.

The flow variable 1
3
Tr(τ) is assumed to be a function of the effort variable ∇ ·v

only. If the system is not to far from equilibrium, a linear relation can be postulated:

1

3
Tr(τ) = −κ (∇ ·v) (3.178)

where κ is the dilatational or volume viscosity, which is independent of ∇ ·v within

the framework of linear irreversible thermodynamic. This situation corresponds to

the so-called Newtonian fluid but κ depends on P, T and the composition of the

fluid.

Beyond the linear thermodynamics of irreversible processes, the case of non-

linear chemical kinetics has to be carefully considered. As a matter of fact, the

definition of effort and flow variables as well as the relation between them is not

evident. For the sake of simplicity, we restrict ourselves to the case of thermally

activated chemical reactions. When a mixture is subject to chemical reactions, some

species are consumed, some others are produced. Global or apparent chemical reac-

tion rates can be fitted to experimental results but such an approach is empirical. A

deep understanding of a global chemical transformation is based on a decomposi-

tion of such a global chemical process into independent elementary processes [176].

It is assumed that for an elementary process, the species are really brought into con-

tact one with the others in order the atoms initially present in the reactants can be

redistributed in the products. Such elementary processes are assumed to involve a

low number of reactants, mainly, one, two or three (mono-, bi- or tri-molecular pro-

cesses) and their orders are assumed to be equal to the stoechiometric coefficients.
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Let us consider the entropy production due to chemical reactions, i.e. σReac
s =

−∑N
i=1

µiσi

T
. We assume that the overall chemical process has been decomposed ac-

cording to a set of R independent elementary processes so that σi is expressed by

(3.122). Then, σReac
s can be expressed as follows:

σReac
s = − 1

T

N

∑
i=1

R

∑
k=1

(
νk

i µiM̄i

)
rk =

1

T

R

∑
k=1

Akrk (3.179)

where

Ak = −
N

∑
i=1

νk
i µ̄i = −∆rGk (3.180)

where Ak is the affinity or the opposite of the Gibbs free energy ∆rGk of the k-th

chemical reaction and µ̄i = µiM̄i the chemical potential per mole unit. In (3.179)

and (3.180), the stoechiometric coefficients νk
i are considered to be positive for a

product and negative for a reactant. As pointed out in [11, 163] the rate of a chem-

ical reaction, and particularly the rate of an elementary process, is a function of

the concentrations. Consequently, it can be given as a function of the affinity, as

it is suggested by (3.179), only for an equilibrated reaction and near the equilib-

rium position [60]. In this case, the overall chemical process is described within the

framework of the linear thermodynamic of irreversible processes. Otherwise, one

has to consider separately the forward and reverse directions (see also [114]). In or-

der to illustrate this point, let us consider the case of an elementary chemical process

described by the following stoechiometric equation:

N

∑
i=1

ν f
i Rei ↔

B

∑
i=1

νr
i Pri (3.181)

This process is supposed to lead to a possible equilibrium. In order to split more

easily a chemical process into forward and the reverse directions, we have defined

positive stoechiometric coefficients ν f
i and νr

i respectively for those directions. As

far as the process (3.181) is assumed to be an elementary one, its rate can be ex-

pressed as follows:

r = r f − ri = k f

N

∏
i=1

C
ν

f
i

i − kr

N

∏
i=1

C
νr

i
i (3.182)

where k f and kr are the rate constants that are commonly considered as functions of

the temperature according to the Arrhenius relation:

k f = k0
f e−

E f
RT kr = k0

r e−
Er
RT (3.183)

In order to express the rate of the process as a function of the chemical potentials,

one has to invert the relation between µ̄i and Ci. A thermodynamic model is then

necessary. The rather simple but frequently case considered in chemical kinetics has

been treated in [11, 163] by assuming the case of an ideal solution. These authors

have considered a less usual reference for the expression of µ̄i (the component i at
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unit concentration) then the one ordinary used in thermodynamic. However, their

approach can be used and generalized to non-ideal solutions. As a matter of fact, a

more usual but not unique way to derive a calculation path for the chemical potential

is to consider µ̄∗
i (P,T ), the chemical potential of the pure component i in the same

physical conditions as the reference [173]. The chemical potential is then expressed

as follows:





µ̄i(P,T,χ1, . . . ,χN−1) = µ̄∗
i (P,T )+RT ln(ai)

= µ̄∗
i (P,T )+RT ln(γi (P,T,χ1, . . . ,χN−1)χi)

χi =
Ci

C

(3.184)

where C is the total molar concentration, ai the activity of i with respect to the

state of pure component and γi the activity coefficient. γi has to be calculated from

a thermodynamic excess model. The simplest model is the ideal solution where

γ id
i = 1. By combining (3.182) and (3.184), one can find that:

r = r f − rr =
k fC

∑N
i=1 ν

f
i e−

A∗
f

RT e
A f
RT

N

∏
i=1

(γi)
ν

f
i

− krC
∑N

i=1 νr
i e−

A∗r
RT e

Ar
RT

N

∏
i=1

(γi)
νr

i

(3.185)

where

A f =
N

∑
i=1

ν f
i µ̄i A∗

f =
N

∑
i=1

ν f
i µ̄∗

i Ar =
N

∑
i=1

νr
i µ̄i A∗

r =
N

∑
i=1

νr
i µ̄∗

i (3.186)

A f and Ar are respectively the forward and reverse affinities while A∗
f and A∗

r are the

corresponding quantities calculated at the reference state. The same flow variable r

is associated to the two effort variables A f and Ar so that the entropy production due

the elementary process (3.181) is given by:

σReac
s =

A f r−Arr

T
=

Ar

T
(3.187)

Let us notice that, as far as the process (3.181) can lead to an equilibrium, the latter

can be predicted directly from thermodynamic by using the condition:

Aeq = −
N

∑
i=1

νk
i µ̄i = A

eq
f −Aeq

r = 0 (3.188)

This equilibrium condition also corresponds to the fact that:

req = r
eq
f − req

r = 0 (3.189)

Consequently, k f and kr must satisfy a condition that can be derived by combining

(3.184), (3.185), (3.188) and (3.189):
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k f

(Ceq)∑N
i=1 ν

f
i e−

A∗
f

RT

N

∏
i=1

(
γ

eq
i

)ν
f

i

= kr

(Ceq)∑N
i=1 νr

i e−
A∗r
RT

N

∏
i=1

(
γ

eq
i

)νr
i

= κeq (3.190)

Finally, if the process is considered to be close to the equilibrium conditions, one

can linearise (3.185) by evaluating

k f

C∑N
i=1 ν

f
i e−

A∗
f

RT

N

∏
i=1

(γi)
ν

f
i

and kr

C∑N
i=1 νr

i e−
A∗r
RT

N

∏
i=1

(γi)
νr

i

at the equilibrium conditions according to (3.190) and by linearizing the results with

respect to A f and Ar. The linearized rate expression of the process (3.181) is then

given by:

r = req + r̃ = r̃ = κeq e
A

eq
f

RT

RT
A (3.191)

according to the linear thermodynamic of irreversible processes.

As far as elementary processes are concerned, a model has been derived by

[11, 84] to explain the dependence of chemical reaction rate constants with tem-

perature as given by the Arrhenius relation: this model is based on the concept of

activated complex. We give a very simplified presentation of this model since it

involves highly detailed calculations based on molecular theories. To this end, we

consider the case of an elementary bi-molecular process in the forward direction:

A+B → Pr (3.192)

If such a process is elementary, it is assumed that the atoms composing A and B are

really brought into contact: this elementary amount of matter is called the activated

complex and is noted (AB)∓. This activated complex is considered to be an ordinary

molecule possessing usual thermodynamic properties. However, at the molecular

level, one direction of vibration leads to the decomposition of the activated complex

proportionally to its concentration so that the activated complex is “treated as a

molecule with one degree of vibrational freedom less than normal” (cf. [84], p. 402).

In order to derive the rate of the elementary process (3.192), the activated complex

(AB)∓ is considered as if it were in equilibrium with the reactants, according to the

following equivalent process:

(a) A+B ↔ (AB)∓ (b) (AB)∓ → Pr (3.193)

The rate r f of the process [84, 109] is given by the decomposition rate of (AB)∓

since the quasi-stationary state principle is applied to this entity. From statistical

thermodynamic arguments, it is shown that r f is given by:
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r f =
k̄T

h̄
C(AB)∓ (3.194)

where k̄ and h̄ are respectively the Boltzmann and Planck constants. The derivation

of (3.194) is based on the assumption that the rate of decomposition of the activated

complex is related the frequency of one vibrational degree of freedom inside this

complex. If now the activated complex and the reactants A and B are assumed as

if they were at equilibrium, one can expresse C(AB)∓ as a function of CA and CB. If

µ̄A, µ̄B and µ̄(AB)∓ are respectively the chemical potential per mole unit of A, B and

(AB)∓, the chemical equilibrium condition:

µ̄(AB)∓ = µ̄A + µ̄B (3.195)

can be used to derive the equilibrium constant of the process (3.193)(a) K∓, which

is defined by:

RT ln

(
a(AB)∓

aAaB

)
= RT lnK∓ = −

(
µ̄0

(AB)∓ −
(
µ̄0

A + µ̄0
B

))
= −∆G0

∓ (3.196)

As far as K∓ is a function of the mixture composition, the rate equation (3.194) can

be formally expressed as a function of K∓ through its dependence on C(AB)∓ . The

way this dependency will be expressed depends on the thermodynamic model that

is used to represent the mixture. As far as the chemical rates are functions of the

molar concentrations:

r f = k fCACB (3.197)

by combining (3.194), (3.196) and (3.197), the rate constant can be expressed as

follows:

k f =
k̄T

h̄
K∓

C(AB)∓

a(AB)∓

CA

aA

CB

aB

=
k̄T

h̄

C(AB)∓

CACB

aAaB

a(AB)∓
e
−∆G0

∓
RT (3.198)

After some tedious calculations [57], it can be shown that the entropy production

due to vectorial phenomena can be expressed as follows:

σVect
s = − fq

T
·∇ ln(T )− 1

T

N

∑
i=1

fR
i · ei (3.199)

The effort variables ei per unit of mass are given by the following relation:

ei =
CRT

ρi

di = T ∇
(µi

T

)
+hi∇ ln(T )− ∇P

ρ
−gi +

N

∑
j=1

ρ jg j

ρ
(3.200)

According to their definitions, ei and fR
i are not independent since:
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N

∑
i=1

fR
i = 0

N

∑
i=1

di = 0 (3.201)

Within the framework of linear irreversible thermodynamic, the flow variables fR
i

and fq are linearly expressed as functions of the effort variables ei and ∇ ln(T ).
The relation between fq and ∇ ln(T ) is analogous to the Fourier relation while the

relations between fR
i and ei is related to classical isothermal diffusion. However,

coupling phenomena can exist. The thermal effort ∇ ln(T ) can generate mass fluxes:

this is the Soret effect. The Dufour effect is the generation of a heat flux fq due

to the diffusive effort variables. As far as the flow variables fR
i are concerned, the

Maxwell-Stefan approach consisting in expressing the effort variables as function of

the fluxes [201] is more and more used in chemical engineering. The advantage of

this approach is that the physical interpretation of the diffusion coefficients is easiest

since they are analogous to drag or friction coefficients. Since coupling between

∇ ln(T ) and fR
i is considered, the so-called generalized Maxwell-Stefan equations

are derived as follows.

For the sake of simplicity, let us first consider the case of isothermal systems and

let us consider the forces acting on component i. A driving force ei is assumed to

compensate exactly a drag force that is due to the presence of the other components

j. This drag force is proportional to the relative velocity of component i with respect

to component j. It is usual to express this momentum balance by using di instead of

ei as follows:





di = ∑
j 6=i

χiχ j

Di j

(v j −vi) = ∑
j 6=i

χiχ j

Di j

((v j −v)− (vi −v))

= ∑ j 6=i
χiχ j

Di j

(
fR

j

ρ j
− fR

i
ρi

)

Di j = D ji

(3.202)

If now the Soret effect is included, one define DT
j as the thermal diffusion coeffi-

cient for component j, a modified relative velocity is introduced so that the force

equilibrium becomes:





di = ∑
j 6=i

χiχ j

Di j

[(
fR

j

ρ j

+
DT

j

ρ j

∇ ln(T )

)
−
(

fR
i

ρi

+
DT

i

ρi

∇ ln(T )

)]

N

∑
j=1

DT
j = 0

(3.203)

Equation (3.203) is an implicit relation between the effort and the flow variables that

has to be inverted in order to express the flow variables as functions of the effort

variables [201]. As far the heat flux is concerned, its expression is as follows [57]:
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fq = −
[

λ0 +
N

∑
i=1

N

∑
j=1

CRT

ρi

DT
i

χiχ j

Di j

(
DT

j

ρ j

− DT
i

ρi

)]
∇ ln(T )

−
N

∑
i=1

N

∑
j=1

CRT

ρi

DT
i

χiχ j

Di j

(
fR

j

ρ j

− fR
i

ρi

)
(3.204)

The quantity

λ0 +
N

∑
i=1

N

∑
j=1

CRT

ρi

DT
i

χiχ j

Di j

(
DT

j

ρ j

− DT
i

ρi

)

is commonly related to the thermal conductivity λ as it has been introduced by

Fourier [21]:

λ =

λ0 +
N

∑
i=1

N

∑
j=1

CRT

ρi

DT
i

χiχ j

Di j

(
DT

j

ρ j

− DT
i

ρi

)

T
(3.205)

As far as tensorial irreversible processes are concerned, there is only one process

described here so that no coupling has to be considered. The flow variable τ̃ is only

function of the effort variable
(
∇̃v
)s

. A linear relation can approximate this function

if the system is not to far from equilibrium:

τ̃ = −2η
(
∇̃v
)s

(3.206)

where τ̃ is assumed to be a symmetric tensor. η is the viscosity of the fluid only

depending on P, T and the composition for a Newtonian fluid. One can find for

example in [167] the way to calculate η for fluids in many situations.

3.4.5 Port-based modelling examples

Many approaches of computer aided modelling in process engineering are based on

the formulation of balance equations (including energy balance), constitutive equa-

tions and constraint equations due to the environment. Such approaches have been

used to develop structured modelling methodologies for distributed parameter sys-

tems such as [83,132]. Even if these structured modelling approaches can be viewed

as classical ones in process (and chemical) engineering, we will rather apply here on

two examples the port-based methodology previously developed in Chapter 1. The

two chosen examples, a batch gas phase chemical reactor and an adsorption column,

will highlight the advantages of the approach. In both cases, the port-based approach

is applied, starting from Gibbs equation, using internal energy, material and entropy

balance equations, deriving constitutive equations in terms of port variables from

classical thermodynamic assumptions, in order to obtain a port-based model of the

processes in the form of a generalized Bond Graph.
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Fig. 3.14 A closed constant

volume chemical reactor.
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i

In the reactor example, physical variables are considered as spatially uniformly

distributed. As a consequence, a lumped port-based model is derived. It is shown

that in this model, two irreversible processes are sources of entropy production: the

heat transfer and the chemical reaction.

In the adsorption column case, an isothermal model is considered. The model

focuses on mass transfer phenomena (adsorption and diffusion). It follows that a

distributed parameters model is derived which points up these transport phenomena

are the sources of entropy production. These phenomena (adsorption, diffusion and

dispersion) occur at three different scales. Therefore, the model of the adsorption

column also provides a nice example of an application of the port-based methodol-

ogy to multi-scale modelling.

In both examples, the port-based models and their bond graph formulations ap-

pear to be easy to re-use and to connect to other process sub-models. This prop-

erty comes from the use of port variables and is obvious for the lumped parame-

ter model. However, in the adsorption column example, the model is stated inde-

pendently of the chosen boundary conditions for describing the environment. This

“free-boundary” formulation allows to connect the model of the adsorption col-

umn to other plant sub-models, if any. This property is a critical advantage of the

port-based model on classical partial differential balance equations models. Further

readings about modelling and about method of spatial discretization associated to

this port based approach can be found in [12–15, 52, 71].

3.4.5.1 Modelling of a batch gas phase chemical reactor

The topic of chemical reactors modelling is very important in chemical engineering

(see for example the classical textbook [115]). The situations are very numerous

and complex and we give here a rather simple example to illustrate the question of

classical - versus port-based approach of their modelling. More complex situations

have been described elsewhere ( [53]). Let us consider a closed constant volume gas

phase chemical reactor as represented on Fig. 3.14. Such a system is a batch reactor

because the production is not continuous.



196 3 Port-Based Modeling in Different Domains

We assume that the system is perfectly mixed: this means that the state variables

are uniform. The reactor is initially fed with the reactants and only one reaction is

supposed to occur. This reaction is defined by the stoichiometric equation:

N

∑
i=1

νiBi = 0 (3.207)

where Bi are considered chemical species, N their number and νi the stoichiometric

coefficients with νi > 0 for a product and νi < 0 for a reactant. During the reaction

progress, the reactor is in thermal contact with the surrounding at Text .

The model is based on components i and internal energy balances (see for exam-

ple [131]):

• Component i balance:

dNi

dt
= νirV ∀i ∈ {1, . . . ,N} (3.208)

where Ni are the numbers of moles of component i in the mixture, V is the total

reactor volume and r the reaction rate. Let us notice that, due to the fact that

there is only one reaction, the state of the system is completely defined by only

one variable. One can choose the number of moles of one reactant or product. It

is also common to define the extent χ(t) such that

Ni(t) = Ni(0)+νiχ(t) (3.209)

so that the equations (3.208) become:

dχ

dt
= rV (3.210)

• Internal energy balance:
dU

dt
= Fq (3.211)

where U is the total internal energy and Fq the total heat flux.

One is interested in calculating the evolution of the number of moles Ni as well

as the temperature and the pressure. The question of properties then arises. At first,

one has to choose a thermodynamic model for the mixture in order to express U and

P as functions of P, T and Ni. To calculate the reaction progress, an expression of

the chemical rate has to be known as well as an expression of the heat flux Fq. The

model will then take the following form:
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d

dt

(
N

∑
i=1

Niūi(P,T,χi)

)
= Fq = αA(Text −T )

dχ

dt
= rV

Ni(t) = Ni(0)+νiχ(t)

ϕ (P,V,T,Ni) = 0

(3.212)

where ūi denotes the component i specific internal energy, α a heat transfer coeffi-

cient (per surface unit) and A the surface area for the conduction. The map ϕ is given

as a thermodynamic state equation for the mixture (see previously). For instance, if

the gas can be assumed to be an ideal gas mixture, the thermodynamic model is very

simple:

ūi(P,T,xi) = ū
ig
i (T )

dū
ig
i = c̄

ig
v,i(T ) dT

PV =

(
N

∑
i=1

Ni

)
RT

(3.213)

where the superscript ig stands for ideal gas and where c̄
ig
v,i(T ) is the constant volume

specific heat capacity for component i. The model can then be expressed according

to the time variation of the temperature:

(
N

∑
i=1

Nic̄
ig
v,i(T )

)
dT

dt
= αA(Text −T )−

(
N

∑
i=1

νiū
ig
i (T )

)
rV

dχ

dt
= rV

Ni(t) = Ni(0)+νiχ(t)

PV =

(
N

∑
i=1

Ni

)
RT

(3.214)

where ∆rU := ∑N
i=1 νiū

ig
i (T ) is called the internal energy of reaction.

The Gibbs equation (cf. Sect. 3.4.2.3) applied to the mixture on a molar basis in

the case of a constant volume system gives:

dU = T dS +
N

∑
i=1

µ̄idNi (3.215)

where µ̄i is the chemical potential for the component i in the mixture. In order to

derive the entropy balance, one combines the internal energy balance (3.211), the

Gibbs equation (3.215), the material balances (3.208) and the entropy balance:
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dS

dt
=

Fq

Text︸︷︷︸
fheat

+Σs (3.216)

where Σs denotes the entropy production per volume unit. Doing so, one finds the

entropy production:

Σs = Fq

(
1

T
− 1

Text

)
− ∑N

i=1 νiµ̄i

T
rV (3.217)

Two irreversible processes are sources of entropy production:

• The entropy production due to heat transfer:

Σheat = Fq

(
1

T
− 1

Text

)

• The entropy production due to the chemical reaction:

Σreac = −

N

∑
i=1

νiµ̄i

T
rV

The port-based model is then in its final form:

dS

dt
=

αA(Text −T )

T
− ∑N

i=1 νiµ̄i

T
rV

dχ

dt
= rV

Ni(t) = Ni(0)+νiχ(t)

dU

dt
= T

dS

dt
+

N

∑
i=1

µ̄i

dNi

dt

(3.218)

In order to compute the pressure and the temperature, one has to relate these vari-

ables to the entropy and the number of moles which is unusual because according

to the Gibbs equation, one should use relations of the following form:

T = T (S,V,Ni)
P = P(S,V,Ni)
µ̄i = µ̄i(S,V,Ni)

(3.219)

If such relations were available, the model (3.218) could be expressed in an integral

causality form. In fact, the thermodynamic models are generally available in the

literature under the following form:
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Fig. 3.15 Bond graph repre-

sentation of the batch reactor.

)
~

,( A
),(N

),( Treact

),( Theat

):( exte TS
),( Tf heat

), extheat Tf(

Entropy  balance

Material balance 

TF: stoichiometry

10.. 0

0
..

C
( ),TS

),(r

RS : reac

RS : Heat transfer

S(P,T,Ni) =
N

∑
i=1

Nis̄i(P,T,χi)

µ̄i = µ̄i(P,T,χi)

ϕ(P,V,T,χi) = 0

(3.220)

where s̄i denotes the specific molar entropy of component i. For instance, in the case

of an ideal gas mixture, this model reduces to

Sig(P,T,Ni) =
N

∑
i=1

Nis̄
ig
i (P,T,χi)

µ̄i(P,T,χi) = µ̄ ig∗
i (P,T )+RT ln χi

PV =

(
N

∑
i=1

Ni

)
RT

(3.221)

with s̄
ig
i (P,T,xi) = s̄

ig∗
i (P,T )−R ln χi and where the exponent ∗ stands for properties

of the pure gas.

Finally when dealing with chemical reactions and nonequilibrium thermodynam-

ics, the vector of thermodynamic affinities Ã naturally shows up instead of chem-

ical potentials. For thermodynamic equilibrium affinity A is defined as follows:

−∑n
i=1 νiµ̄i. In the case of nonequilibrium thermodynamics, in order to obtain struc-

tured model we have to split affinity in two components: the first one corresponds

to reactants and the other one to products.

The power conjugate flux associated to Ã is

R =

[
rV

−rV

]

The bond graph model of the batch reactor is given Fig. 3.15.
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Fig. 3.16 Schematic repre-

sentation of an adsorption

column.
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3.4.5.2 Bond graph modelling of an adsorption column

The aim of this example is to present a port-based distributed parameter model of

the mass transfer phenomena in an adsorption column. This model is built using

Bond Graph language. The main phenomena occurring in the column (dispersion,

diffusion) are represented by a dissipative part and an instantaneous power conserv-

ing structure named Stokes-Dirac structure. This structure is the basis of the infinite

dimensional port Hamiltonian models formulation proposed in Chapter 4. These

models represent reversible systems such as the lossless transmission line, the vi-

brating string or the eulerian fluid problem. They are hamiltonian with respect to

this geometric power conserving structure which is based on Stokes’ theorem. This

structure then represents a canonical interdomain coupling between two physical

domains for reversible systems.

We shall show, in an analogous way, that the port-based model of an adsorption

process may be decomposed into a Dirac structure associated with the balance equa-

tions and some closure relations applied to some ports of the Dirac structure. These

closure equations are the constitutive equations representing storage with the ther-

modynamical properties or dissipation of energy with the phenomenological model

of diffusion. We suggest the reader refer to [12–15, 52, 71] for further details about

the port based model.

The adsorption is the phenomenon of deposit of molecules from fluid phase onto

solid surface. The adsorption process is based on the ability of a solid to preferen-

tially adsorb constituents present in a fluid phase in order to separate them. This

separation is essentially based on the difference of properties that rules the behavior

of each constituent in the fluid mixture. For instance, consider a binary gas mixture

where one constituent, say A, is adsorbed faster than the other one, say B. Then,

when this mixture is supplied at the inlet of the column, component A is adsorbed

and the outlet gas is enriched with component B during some transition time.

The central part of a plant associated with the separation process by adsorption

is constituted by columns packed with adsorbent pellets, themselves constituted by

crystals of solid (Fig. 3.16) (see [96, 172]). In our case, zeolite is used as adsorbent

medium, so the description of the mass transfer phenomena may be decomposed

considering three scales: namely the column scale, the pellet scale and the crystal

scale (respectively called extragranular, macroporous and microporous scale), as it
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is represented in Fig. 3.16. This is a classical approach in Chemical Engineering,

justified by the physical sizes of crystals, pellets and the column. For instance ac-

cording to [58], the radius of a crystal is of an order of magnitude of 1 µm and

the radius of a pellet approximately 0.8 mm for 13X CECA zeolite. This difference

in the size of crystals, pellets and the column gives rise to several levels of porosity

and so different resistance to the mass transfer in the adsorption column. This is why

the adsorption process is a multi scale process. The complexity of modeling such

process is that the mass transfer is modeled by partial differential equations in each

level.

As already mentioned in Sect. 3.4.1, the system variables are divided into exten-

sive and intensive variables, depending on whether their values depend on the “size”

of the system or not. In analogy with mechanical systems, the thermodynamic force

is always an intensive variable and the displacement is always an extensive vari-

able, yielding an extensive energy transfer. The internal energy of a system is then

expressed in terms of products of pairs of conjugate variables such as (pressure P,

volume V ), (temperature T , entropy S) and (chemical potential µi, mole number

ni (for species i)). In fact all thermodynamic potentials are expressed in terms of

pairings of conjugate variables [53]. In the framework of nonequilibrium thermo-

dynamics, let us consider the simple open one phase system with p species. The

internal energy U of this system is a function of the extensive variables V , S and

ni. The coupling of the energy with these extensive variables and the expression of

the intensive one can be given by the differential of the fundamental equation also

called Gibbs equation (3.136), here reported for clarity:

dU = T dS−PdV +
p

∑
i=1

µidni (3.222)

with T = ∂U
∂S

, P = − ∂U
∂V

and µi = ∂U
∂ni

. The internal energy corresponds to the total

energy of the physical system under consideration and is subject to a conservation

law.

When systems are considered at constant pressure and temperature, it is common

to deal with the Gibbs free energy G = U + PV − T S which is function of mole

numbers, T and P. Since the two variables T and P are constant, only the material

domain can be represented. So only the pair of power conjugate variables
(

µi,
∂ni

∂ t

)

are considered.

In the context of distributed parameter systems with three-dimensional spatial

domain, it leads to express the time variation of the Gibbs free energy G over a sub-

volume Ω of the spatial domain as: G =
∫

Ω ∑i µici where ci is the molar density

of the species i (mol/m3). The variables µi and ci are energy conjugated since their

product over the spatial domain yields the energy over the spatial domain.

According to the concepts presented in Chapter 4 (e.g., see Definition 4.3), we

have to distinguish between the differential forms of different degrees defined on the

spatial domain. The state variables are the molar densities (mol/m3). They are 3-forms

on the considered spatial domain, as well as the molar density time derivative. Their
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evaluation over any sub-volume gives a mole number or mol/s. The effort variables,

intensive ones, are the chemical potentials (J/mol) that are 0-forms. On the other

hand, the port variables at the spatial boundary of the domain are the molar flux

(mol/m2·s), which are 2-forms, and the chemical potential. We define the molar flux

as a 2-form that can be evaluated on any surface of the boundary of the considered

domain and the chemical potential as a function that can be evaluated on any point

of this boundary. These two latter variables are power conjugated.

Remark 3.1. In the sequel, for simplicity, we shall consider an isothermal isobaric

model of the adsorption column. We shall assume that the mixture injected at the

inlet of the column is composed of an inert gas and of one adsorbable gas (pen-

etrating the crystals). The mixture is supposed to behave like an ideal gas in the

extragranular and macroporous scales. The well known Langmuir model is used

for the adsorption equilibrium. Moreover we shall consider the port-based model

in spherical coordinates in the microporous and macroporous scales and we shall

use the assumption of spherical symmetry for reducing the spatial domains from R
3

to R. z and x will denote the radial coordinate in the microporous scale and in the

macroporous scale respectively. In the extra-granular scale, we shall use cylindrical

coordinates (r,θ , l). We shall suppose a symmetry about l and an homogeneity with

respect to r. This will reduce the spatial domain to R in this scale.

It is now necessary to give the constitutive equations representing the dissipative

phenomena in each scale of the adsorption column model. These closure equations

are presented in appropriate coordinates for each scale. These expressions link the

physical molar flux to the driving forces (the gradient of chemical potential). More-

over as we previously noticed, these variables are power conjugate through the inte-

gral over the considered volume. But since symmetry assumption are made and the

coordinate systems are reduced, they are linked through the integral over the con-

sidered interval. The integral over the two other variables are implicitly included in

the molar flux. It corresponds to taking as the natural pairing of conjugate variables

the 0-form representing the linear molar flux and the gradient of chemical potential

that are 1-forms. In a same way, it can be seen that the state variable is then a linear

density (mol/m) that is a 1-form. In what follows the index i can take two values: 1

will refer to the inert gas and 2 to the adsorbable gas.

In the crystal scale, the assumptions reduce the spatial domain to Z = [0,Rc] ⊂
R where Rc is the mean radius of crystals and z is the coordinate. The Maxwell-

Stefan’s model [201], which expresses the diffusion of p species by setting that the

driving force is the chemical potential gradient
∂ µads

i

∂ z
, is used to model the diffusion

in the crystal scale. We assume that each molecule which lies in the microporous

scale is adsorbed. This means that in the adsorbed phase, there is no possibility of

two different molecules undergoing counter-exchange at an adsorption site [201]. In

our case, the Maxwell-Stefan’s equation is given by:

N̂ads
2 = 4πz2Nads

2 = − q̂2
ads Ds

2

RT

∂ µads
i

∂ z
(3.223)
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for the adsorbable species. q̂2
ads = 4πz2qads

2 is the linear molar density (mol/m) and

qads
2 the molar density (mol/m3), respectively. Ds

2 is the Maxwell-Stefan diffusivity

between the adsorbable species 2 and the solid, R is the ideal gas constant and T the

temperature. The constitutive relation (3.223) characterizes the dissipation element

which relates the pairing of conjugate variables

(
N̂ads

2 ,
∂ µads

2

∂ z

)

as previously defined.

Considering spherical coordinates in the pellet scale and spherical symmetry lead

to consider the spatial domain as X = [0,Rp] ⊂ R where Rp is the mean radius of

pellets and x is the coordinate. We also use Maxwell-Stefan’s law for modelling

the diffusion in the macroporous scale. In the pellet, we consider only the friction

between the gas molecules, the Maxwell-Stefan constitutive relations of diffusion

are written as:

− ĉmac
1

RT

∂ µmac
1

∂x
=

y2N̂mac
1 − y1N̂mac

2

D1,2

− ĉmac
2

RT

∂ µmac
2

∂x
=

y1N̂mac
2 − y2N̂mac

1

D1,2
(3.224)

where yi =
ĉmac

i
ĉmac

T
is the molar fraction of species i in the macroporous scale, ĉmac

T is

the total linear density, N̂mac
i is the molar flux of species i. ĉmac

i is the linear molar

concentration of species i (mol/m) with ĉmac
i = 4πx2cmac

i . D1,2 is the Maxwell-Stefan

diffusivity between 1 and 2 (m2/s). This is the classical diffusion equation [21,201].

It is important to notice that, contrary to the case in the microporous medium, this

equation does not express explicitly the molar flux as a function of the chemical

potential gradient. We obtain an implicit relation to describe the dissipative element.

At the extragranular scale, the spatial domain is reduced to L = [0,L] ⊂ R with

L the length of the column. l is the coordinate at this scale. The mass transfer phe-

nomenon is slightly different from the two first scales. The mass transfer in this

scale is governed by convection and dispersion. The convective flux is given by:

N̂ext
i conv = πR2

clc
ext
i v = ĉext

i v for i = 1,2 (3.225)

with v is the mean fluid velocity, cext
i is the molar density of species i (mol/m3), ĉext

i

is the linear concentration of species i (mol/m) where ĉext
i = πR2

clc
ext
i and Rcl is the

radius of the column section.

The dispersion is due to flow inhomogeneity. It is represented by means of an

axial dispersion parameter Dax and its corresponding flux expression is analogous

to the Fick’s relation [21]. The constitutive relation that gives the dispersive flux

as function of the gradient of the chemical potential, at constant temperature and

pressure, is given by:
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N̂ext
i disp = − ĉext

T Dax

RT
e

µext
i

−µ0
i
(T,P)

RT
∂ µext

i

∂ l
(3.226)

where µ0
i (T,P0) is the reference chemical potential and ĉext

T the total linear molar

density.

To complete the model of adsorption in each scale we shall add the constitutive

equations defining the thermodynamic properties of the mixture in each scale. These

closure properties define the energy storing elements C. This leads to express inten-

sive variables (the chemical potential at each scale) as functions of the extensive

variables.

In the adsorbed phase at microporous scale, we assume that only the component

indexed by 2 is diffusing at the micropores. Moreover we use the Langmuir model to

describe the adsorption equilibria. We obtain the following closure equation defining

the thermodynamic properties of the mixture in the microporous medium.

µads
2 = µ0

2 (T,P)+RT ln

(
1

P k

q̂ads
2

q̂ads
s − q̂ads

2

)
(3.227)

This closure equation expresses the chemical potential µads
2 , in the adsorbed phase,

of the components 2 at some temperature T and pressure P. µ0
2 (T,P) denotes the

chemical potential of pure component 2 at standard state and k is a function of the

temperature T and the Langmuir coefficient b given by k = b
RT

. q̂ads
s represents the

linear saturation concentration.

In the macroporous and the extragranular media the mixture is a gaseous phase

assumed to be an ideal gas. The constitutive equations defining the thermodynamical

properties in the two scales is the classical expression of the chemical potential for

an ideal gas. So in the macroporous medium (respectively in the extragranular) we

have:

µmac
i = µ0

i (T,P)+RT ln

(
ĉmac

i

ĉmac
T

)
µext

i = µ0
i (T,P)+RT ln

(
ĉext

i

ĉext
T

)
(3.228)

In the remaining part of this section, we shall propose the port-based model de-

scribing the mass transfer in the three scales identified in the adsorption column

previously described. We shall show that the port-based model at each scale of the

adsorption process may be decomposed into a Dirac structure associated with the

conservation laws and some constitutive equations coupled to some ports of the

Dirac structure. Each one of these constitutive equations represents an energetic

phenomenon and the Stokes-Dirac structure represents the coupling between these

energetic phenomena and also with the external environment (the boundaries of

each scale). These port-based models shall also be represented in the bond graph

language [53, 98] admitting a slight extension as their port variables are now differ-

ential forms. Also the interconnections between the microporous-macroporous and

the macroporous-extragranular scales are formulated as power conserving intercon-

nection structures.



3.4 Port-based modelling and irreversible thermodynamics 205

Fig. 3.17 Bond Graph repre-

sentation of the mass balance

in the Extragranular scale.
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iĉ

ext

i

ext

i

ext

if̂

0

Fig. 3.18 Bond Graph rep-

resentation of the convective

and dispersive fluxes. 1 dispR
ext

dispiN̂
0

ext

dispiN̂

fS

l

ext

i

ext

conviN̂

ext

iN̂

l

ext

i

l

ext

i

l

ext

i

In the column scale, the model variables are defined on the spatial domain L ∈
R = [0,L]. The dynamic model in the column scale is then given by the mass balance

equation including a distributed source term [21]:

∂ ĉext
i

∂ t
= −div(N̂ext

i )+ f̂ ext
i (3.229)

where N̂ext
i = N̂ext

i conv + N̂ext
i disp and f̂ ext

i = πR2
cl f ext

i is the flow of species i per unit

of lenght. This is a distributed source accounting for the molar flow coming out

of a macroporous medium at a point l of the spatial domain L. In the bond graph,

this mass balance is represented by the 0-junction connected to the energy storing

element C as shown in Fig. 3.17.

The convection and the dispersion phenomena that generate the flux N̂ext
i in this

scale are represented in the Fig. 3.18. The Rdisp element represents the dispersion

phenomenon with the constitutive relation (3.226).

Let us briefly show how the Stoke-Dirac structure representing the interconnec-

tion structure between storage and dissipative part of our subsystems appears in this

model. The variation of the total Gibbs energy into the spatial domain is given by:

∫

L
dĝext =

∫

L

(
2

∑
i=1

d
(

N̂ext
i (t,z)µext

i (t,z)
))

ĝext , the Gibbs power flux on the boundary of the domain, is a 0-form and dĝext , the

linear power density, is a 1-form, on the spatial domain. Using integration by parts

this relation leads to the well known Stoke’s Theorem:
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Fig. 3.19 Bond Graph model in the Extragranular scale.

2

∑
i=1

(∫

L
µext

i (t,z)dN̂ext
i (t,z)+

∫

L
N̂ext

i (t,z)dµext
i (t,z)

)
=

=
2

∑
i=1

∫

∂L
N̂ext

i (t,z)µext
i (t,z) (3.230)

where ∑2
i=1

∫
∂L N̂ext

i (t,z)µext
i (t,z) is the total power flux at the boundary ∂L. Now

let us define two sets of power conjugate variables,

[
ei1

fi1

]
=

[
µext

i (t,z)

dN̂ext
i (t,z)

]
and

[
ei2

fi2

]
=

[
dµext

i (t,z)

N̂ext
i (t,z)

]

and the associated boundary conditions

[
µext

i |0
−N̂ext

i |0

]
and

[
µext

i |L
−N̂ext

i |L

]

Finally with the constitutive relation for the dispersion (3.226), the Dirac struc-

ture is finally obtained: [
ei2

fi1

]
=

[
0 d

d 0

][
ei1

fi2

]

and by the choice of the boundary conditions such that the variation of the internal

energy is only due to power flow at the boundary (cf. (3.230)).

The interconnection between the first part, representing the energy storage, and

the second part, representing the convection and the dispersion, and also the bound-

ary conditions is represented by the element DTF that symbolizes the Dirac struc-

ture. The complete bond graph model is then given in Fig. 3.19. We note that as

we consider a fluid moving with a constant velocity, so the Sf represents an energy

source coming from another energetic domain.

The mass transfer model in the pellet, macroporous scale, is similar to the model

of the adsorption process in the column scale. The variables are defined on the spa-

tial domain {l}×X = [0,Rp] ⊂ R. This means that the macroporous medium must

be indexed by the point of the spatial domain L = [0,L] ⊂ R. For the sake of clar-
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Fig. 3.20 Bond Graph model of the diffusion at the macroporous scale

ity, we will omit this index in the remaining of the section. The dynamic model of

diffusion process in the pellet is then given by the balance equation:

∂ ĉmac
i

∂ t
= −div(N̂mac

i )+ f̂ mac
i (3.231)

where N̂mac
i is the linear molar flux given by the constitutive equation for diffusion

(3.224) and f̂ mac
i is the flow of species i per unit of domain. This term is a distributed

source accounting for the molar flow coming out of a microporous medium at a point

x in the spatial domain X . The model is given in Fig. 3.20 where the dissipative

element Rdi f f is the diffusion model. Its constitutive equation is given in (3.224).

The C element represents the storage phenomenon, its constitutive equation is given

in the first part of (3.228). The DTF is the Stokes-Dirac structure associated with

this scale.

The model at the crystal microporous scale, is similar to the two previous scales.

The variables are defined on the spatial domain {l}× {x}× Z ⊂ L×X × Z. This

means that the microporous medium is indexed by the point of the macroporous

spatial domain X which it self indexed by a point in the spatial domain L. For

simplicity these indexes will be omitted. The dynamic model in the microporous

medium is then simply given by the mass balance equation:

∂ q̂ads
2

∂ t
= −div(N̂ads

2 ) (3.232)

and the bond graph model is represented in Fig. 3.21, where the Rads element is the

diffusion model that represents the dissipative phenomenon. Its constitutive equa-

tion is given in (3.223). The C element represents the storage phenomenon, its con-

stitutive equation is given in the second part of (3.228). The DTF is the Stokes-Dirac

structure related with this scale.

Before illustrating the interconnection structures between the three scales, we

start presenting the coupling between the macroporous and the extragranular scales.

The hypothesis of separation of the two scales amounts to the following assump-

tions: we assume that in a slice of fluid there is a sufficient number of pellets of
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Fig. 3.21 Bond Graph representation of the adsorption process at the microporous scale
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Fig. 3.22 The complete Bond Graph model of the adsorption column.

much smaller size so that a pellet is abstracted to a point. The concentration of

pellets in the extragranular fluid is denoted by cpellet(l) where l is in L the spatial

domain of the extragranular scale. At a point l0 ∈ L, is attached a spatial domain iso-

morphic to some domain X and indexed by l0. Thus the domain of the set of pellets

in the fluid is L×X .
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Furthermore we use two assumptions, to couple the macroporous and the extra-

granular scales by relating firstly the intensive variables consisting of the chemical

potential µmac
i (l,x)|x=Rp

of the macroporous scale restricted to the boundary x = Rp

of its domain, and the chemical potential µext
i (l) at the extragranular scale at the

point l ∈ L. Secondly a coupling relation is defined on the conjugated extensive

variables, the volumetric density flux variable at the extragranular scale f̂ ext
i (l) and

the flux variable of macroporous scale N̂mac
i (l,x)|x=Rp

restricted to the boundary of

its domain.

The coupling relation between the intensive variables is derived from the as-

sumption of local equilibrium at the interphase between the macroporous and the

extragranular fluid. This leads to the equation:

µmac
i (l,Rp) = µext

i (l) (3.233)

The coupling relation between the extensive variables expresses the continuity of

molar flux exchanged between between the two scales at the point l ∈ L:

f̂ ext
i (l)+ N̂mac

i (l,Rp) · cpellet(l) = 0 (3.234)

It can be shown that these relations define an interconnection power continuous

structure.

The coupling between the macroporous and microporous scales will be identical

as the coupling between the extragranular and the macroporous scales, so we have

the following equations that relates the intensive and extensive variables:

µads
i (x,Rc) = µmac

i (x) (3.235)

f̂ mac
i (x)+ N̂ads

i (x,Rc) · ccrystal(x) = 0 (3.236)

where ccrystal(x) is the concentration of crystals in the pellet.

The complete Bond graph model is represented in Fig. 3.22. In this model are rep-

resented the models of the three scales and the interconnection between the scales.





Chapter 4

Infinite-Dimensional Port-Hamiltonian Systems

A. Macchelli, B. M. Maschke

Abstract This chapter presents the formulation of distributed parameter systems

in terms of port-Hamiltonian system. In the first part it is shown, for different ex-

amples of physical systems defined on one-dimensional spatial domains, how the

Dirac structure and the port-Hamiltonian formulation arise from the description of

distributed parameter systems as systems of conservation laws. In the second part we

consider systems of two conservation laws, describing two physical domains in re-

versible interaction, and it is shown that they may be formulated as port-Hamiltonian

systems defined on a canonical Dirac structure called canonical Stokes-Dirac struc-

ture. In the third part, this canonical Stokes-Dirac structure is generalized for the

examples of the Timoshenko beam, a nonlinear flexible link, and the ideal com-

pressible fluid in order to encompass geometrically complex configurations and the

convection of momentum.

4.1 Modelling origins of boundary port-Hamiltonian systems

The aim of this section is to introduce the main concepts and the origin of bound-

ary port Hamiltonian systems that extend the port Hamiltonian formulation from

lumped parameter systems defined in Chapter 2 to distributed parameter systems.

Dynamic models of distributed parameter systems are defined by considering not

only the time but also the space as independent parameters on which the physi-

cal quantities are defined. They allow to model objects such as vibrating strings

or plates, transmission lines or electromagnetic fields and mass and heat transfer

phenomena in tubular reactors or in the heart of fuel cells. In this section we shall

use a formulation of distributed parameter systems in terms of systems of conser-

vation laws as they arise in their mathematical analysis [85, 189] or in terms of

systems of balance equations as they arise in models of heat and mass transfer phe-

nomena [21]. We shall show how the port Hamiltonian formulation arises from the

combination of systems of conservation laws with the axioms of irreversible ther-

modynamics [42, 97, 168]. The first subsection recalls briefly the concepts of con-

211
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servation law and the axioms of Thermodynamics on the example of a the heat

conduction in a cylindrical rod. The second subsection shows how one may define

a canonical Dirac structure for reversible physical systems such as the transmission

line, the vibrating string, consisting in two coupled conservation laws by applying

an unusual thermodynamic perspective to these systems. The third section shows

that Stokes-Dirac structures also arise in dissipative phenomena and how one may

define dissipative boundary port Hamiltonian systems on the examples of the heat

conduction in a cylindrical rod, the lossy transmission line and the vibrating string

with structural damping. Finally it should be mentioned that in this section we shall

consider for the sake of simplicity, only 1-dimensional spatial domain, i.e. systems

defined on some interval in R and postpone the general case to the next section.

4.1.1 Conservation law and irreversible thermodynamics

Let us recall briefly on the example of the heat conduction, the main concepts which

we shall use to define port Hamiltonian systems for distributed parameter systems.

For a detailed lecture on the foundations of irreversible thermodynamics the reader

is referred to [42, 60, 168], [77, chap. 6.3] and for application to modelling of heat

and mass transfer phenomena to [21].

In this section we shall consider the heat diffusion in some 1-dimensional

medium (for instance a rod with cylindrical symmetry) and denote its spatial do-

main by the interval Z = [a,b] ⊂ R. The time interval on which the variables of the

system are defined is denoted by I ∋ t. We assume the medium to be undeformable

(i.e. its deformations are neglected) and consider only one physical domain, the

thermal domain and its dynamics.

The first step consist in writing a conservation law of the conserved quantity,

here the conservation of the density of internal energy, denoted by u(t,z), a extensive

thermodynamic variable of the medium:

∂u

∂ t
= − ∂

∂ z
JQ (4.1)

where JQ(t,z) is the flux variable, here the heat flux across the section at z. The heat

flux itself arises from the thermodynamic non-equilibrium and is defined by some

phenomenological law, for instance defined according to Fourier’s law by:

JQ(t,z) = −λ (T,z)
∂

∂ z
T (t,z) (4.2)

where λ (T,z) denotes the heat conduction coefficient and T denotes the temperature

of the medium, the intensive thermodynamic variable of the thermal domain.

Actually the axioms of the Irreversible Thermodynamics near equilibrium, de-

compose the preceding relation by saying that the flux variable is a function of

the thermodynamic driving force F(t,z) = ∂
∂ z

T (t,z) which characterizes the non-
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equilibrium condition. However the conservation law (4.1) and the phenomenolog-

ical law (4.2) should be completed by a relation between the driving force F and

the conserved quantity u; this relation is given by the thermodynamical properties

of the medium which is characterized by some thermodynamical potential.

The thermodynamical properties are given by Gibbs relation [60, 168] which,

under the assumption that there is no exchange of matter and that the volume of the

medium is constant, reduces to:

du = T ds (4.3)

where s is the entropy of the medium which is also an extensive variable. Due to

the irreversibility of thermodynamic processes, the temperature is strictly positive

(T > 0) [43] in such a way that one may choose equivalently the internal energy or

the entropy as thermodynamical potential [6, 72, 76, 151].

The first choice is to choose the internal energy u = u(s) as thermodynamic po-

tential and in this case Gibbs relation defines the temperature as intensive variable

conjugated to the (extensive variable) entropy by: T = du
ds

(s). This leads to write a

the following entropy balance equation (also called conservation law with source

term) which is also called Jaumann’s entropy balance [21, 94]:

∂ s

∂ t
= − 1

T

∂

∂ z
JQ = − ∂

∂ z
JS +σ (4.4)

where JS denotes the flux of entropy through the section at the point z:

JS =
1

T
JQ = −λ (T,z)

1

T

∂

∂ z
T (t,z) (4.5)

and σ denotes the irreversible entropy creation and is given by:

σ = − 1

T

∂T

∂ z
JS =

λ (T )

T 2

(
∂T

∂ z

)2

≥ 0 (4.6)

Finally the flux of entropy may be written as a function characterizing the (ir-

reversible) phenomenon of heat conduction JS = λ (t,z)
T

F in terms of the generating

force F(t,z) = − ∂
∂ z

du
ds

(s), which itself depends on the differential of the internal

energy function characterizing the thermodynamic properties of the medium.

The second choice is to chose the entropy s = s(u) as thermodynamic potential

and in this case Gibbs relation defines the inverse of the temperature as the intensive

variable conjugated to the (extensive variable) internal energy by: 1
T

= ds
du

(u). And

the heat flux JQ of the energy balance equation (4.1) may be expressed as function

JQ = λ (T,z)T 2 F ′ (4.7)

of the driving force characterizing the heat conduction phenomenon

F ′
(

1

T

)
=

∂

∂ z

ds

du
(u) (4.8)
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which depends on the differential of the entropy function characterizing the thermo-

dynamic properties of the medium.

In conclusion the thermodynamic axioms (near equilibrium) define dynamical

systems as conservation laws – such as (4.1) or (4.4) containing a source term –

completed with the definition of the flux variable by an irreversible phenomenolog-

ical law, expressing the flux variable as a function of the generating force which is

the spatial derivative of the differential of some thermodynamical potential charac-

terizing the thermodynamic (or equilibrium) properties of the system.

Note 4.1. Let us recall in this note the far more usual expression of heat conduction

which however does not retain the structure of a conservation law. One uses then

the calorimetric property which, assuming a constant volume, i.e. neglecting the

deformation of the medium, reduces to:

du = cV (T )dT (4.9)

where cV (T ) is the heat capacitance of the medium. By substituting this relation in

the conservation law (4.1), one obtains the so-called heat equation which is then

written as:

cV (T )
∂T

∂ t
=

∂

∂ z

(
λ (T,z)

∂

∂ z
T

)
(4.10)

which does not retain the structure of a conservation law.

4.1.2 Reversible physical systems of two coupled conservation laws

In order to define a port-Hamiltonian formulation for infinite dimensional systems,

we shall apply the thermodynamic analysis to reversible physical systems. This per-

spective is inspired by the bond graph approach to unify the description of reversible

and irreversible physical systems as it has been developed under the name of ther-

modynamic or generalized bond graphs [30] and port Hamiltonian systems [144]. In

this perspective, electromagnetic or elasto-dynamic systems are considered as two

physical domain coupled by a reversible inter-domain coupling. In bond graph terms

this coupling is represented for lumped parameter systems by a gyrator (see Chap-

ter 1). For distributed parameter systems, one may define some analogous canonical

inter-domain coupling which however does not correspond to a symplectic gyrator

but an extension defined in [142]. In this section we shall use the thermodynamic

perspective for reversible physical systems, in such a way to make appear a canoni-

cal Dirac structure associated with some canonical inter-domain coupling.

4.1.2.1 The lossless transmission line

Consider an ideal lossless transmission line with Z = [a,b] ⊂ R and let us write the

model using a bond graph approach by using the energy variables, the charge and
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magnetic flux density, as state variables. Denote the charge density by Q(t,z) and

the magnetic flux by ϕ(t,z) on which one may write the following two conservation

laws:

∂Q

∂ t
= −∂ I

∂ z

∂ϕ

∂ t
= −∂V

∂ z

(4.11)

Hence the current is the flux variable for the electrical domain and the voltage

is the flux variable for the magnetic domain of the two conservation laws. In this

case the flux variables are obvious functions of the co-energy variables which are

the derivative of the electro-magnetic energy density:

H (Q,φ) =
1

2

[
Q2(t,z)

C(z)
+

ϕ2(t,z)

L(z)

]

leading to the matricial expression:

[
I

V

]
=

[
0 1

1 0

][
V

I

]
=

[
0 1

1 0

][ ∂H
∂Q

∂H
∂φ

]
=

[
0 1

1 0

][Q
C
ϕ
L

]
(4.12)

More precisely the flux variable of the electrical domain is identical with the co-

energy variable of the magnetic domain and vice versa. This is precisely the canon-

ical inter-domain coupling expressed by the symplectic gyrator and suggested in

[30]. This relation is the pendant of the phenomenological law for irreversible sys-

tems as in (4.2) or (4.5), for reversible systems. However there is a main difference

in the sense that it expresses a canonical coupling by a anti-diagonal matrix which

has no parameters and shall play a fundamental role in defining the port Hamiltonian

formulation. Finally the electro-magnetic energy plays the role of the thermodynam-

ical potential.

4.1.2.2 Hamiltonian formulation of the transmission line

In a first instance let us use the formulation of the dynamics of the transmission line

as a system of two conservation laws (4.11) combined with the definition of the flux

variables (4.12) in order to define a Hamiltonian formulation [157]. Therefore we

have firstly to recall the definition of the variational derivative of a functional [157,

chap. 4].

Definition 4.1. Consider a functional H defined by

H [x] =
∫ b

a
H
(

z, x, x(1), ..., x(n)
)

dz
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for any smooth real function x(z), z ∈ Z where the integrand H is a smooth func-

tion of x and its derivatives up to some order n. The variational derivative of

the functional H is denoted by δH
δx

and is the only function that satisfy for ev-

ery ε ∈ R and smooth real function δx(z), z ∈ Z, such that their derivatives satisfy

δx(i)(a) = δx(i)(b) = 0, i = 0, ...,n:

H [x+ εδx] = H [x]+ ε
∫ b

a

δH

δx
δx dz+O(ε2) (4.13)

In the case when H does depend only the function x and not its derivatives, then

the variational derivative is simply obtained by derivation of the integrand, i.e.:

δH

δx
=

dH

dx
.

This is precisely the case of the total electro-magnetic energy of the transmission

line:

H(Q,ϕ) =
∫ b

a

1

2

[
Q2(t,z)

C(z)
+

ϕ2(t,z)

L(z)

]
dz (4.14)

The co-energy variables are then interpreted as the variational derivatives of the total

electromagnetic energy.

In order to use matrix notations, let us denote the vector of energy variables by:

α =

[
α1

α2

]
=

[
Q

φ

]

Combining (4.11) with (4.12), one may write:

∂α

∂ t
=

[
0 − ∂

∂ z

− ∂
∂ z

0

][
δH
δα1
δH
δα2

]
(4.15)

This system is an infinite-dimensional Hamiltonian system defined with respect to

the matrix differential operator:

J =

[
0 − ∂

∂ z

− ∂
∂ z

0

]
(4.16)

and generated by the Hamiltonian function H, [157, chap. 6]. Therefore one has to

check that the matrix differential operator satisfies two properties: skew-symmetry

and the Jacobi identities (see Sect. 2.7 in Chapter 2, and [157, chap. 6]). Consider

to vectors of smooth functions

e =

[
e1

e2

]
e′ =

[
e′1
e′2

]

and assume that they satisfy: e(a) = e(b) = e′(a) = e′(b) = 0. By simple integration

by parts, one checks the skew symmetry:
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∫ b

a

(
et J e′ + e′t J e

)
dz =

∫ b

a
e1

[(
− ∂

∂ z
e′2

)
+ e2

(
− ∂

∂ z
e′1

)
+

+e1

(
− ∂

∂ z
e′2

)
+ e2

(
− ∂

∂ z
e′1

)]
dz

=−
[
e1 e′2 + e2 e′1

]b

a

=0

(4.17)

Furthermore J is a constant coefficient differential operator hence it satisfies the

Jacobi identities [157, chap. 6].

In the same way as in the finite-dimensional case, the Hamiltonian structure re-

sults in an additional conservation law, namely the conservation of energy. Indeed:

d

dt
H =

∫ b

a

[
δH

δα1
,

δH

δα2

]
∂α

∂ t
dz =

∫ b

a

[
δH

δα1
,

δH

δα2

]
J

[
δH
δα1

δH
δα2

]
dz = 0 (4.18)

by skew symmetry of the operator J .

Considering the transmission line, this might be easily recovered as the two co-

energy variables are the currents and the voltages at both ends of the line. And the

assumption of Hamiltonian formulation, more precisely for the skew-symmetry of

the differential operator J , is that there are identically zero; hence there might be

no energy exchange at the boundaries of the line with the rest of the circuit and the

energy of the line is conserved. However this is a very particular situation which is

not suitable neither from a modular point of view as for control. This is the major

motivation for introducing port variables and extend the Hamiltonian formulation to

a boundary port Hamiltonian system.

4.1.2.3 Definition of a Stokes Dirac structure extending the canonical

differential operator J

However, for functions (i.e. state variables) that are not zero at the boundary of

the spatial domain, the matrix differential operator is no more skew-symmetric and

some boundary terms appear according to the second line in (4.17). In terms of phys-

ical modelling this implies that the energy is not conserved, but obeys the following

energy balance equation:

d

dt
H =

δH

δα1
(t,a)

δH

δα2
(t,a)− δH

δα1
(t,b)

δH

δα2
(t,b)

= V (t,a) I(t,a)−V (t,b) I(t,b)

(4.19)

This equation (4.19) just says that the variation of energy is equal to the flow of

energy per time unit ingoing the system through the boundary of its spatial domain.

This suggests to introduce the restriction of the co-energy variables, the current

I(t,z) and the voltage V (t,z) to the boundary ∂Z = {a,b} of the spatial domain
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as external variables, that will be called port variables, and extend the Hamiltonian

system (4.15) in order to encompass the power flow through the boundary [143,184].

Therefore let us complete the Hamiltonian system (4.15) by the definition of two

port boundary variables as follows:

[
f∂

e∂

]
=

[
δH
δα2
δH
δα1

]∣∣∣∣∣
a,b

=

[
0 1

1 0

] [ δH
δα1
δH
δα2

]∣∣∣∣∣
a,b

(4.20)

where [
e1

e2

]∣∣∣∣
a,b

=
[
e1 (a) e1 (b) e2 (a) e2 (b)

]T

and 1 denotes the identity matrix of appropriate dimension. In the sequel we shall

show that (4.15) and (4.20) define a port Hamiltonian system defined with respect

to a Dirac structure called Stokes-Dirac structure which we shall define now.

Let us define firstly the space of flow variables composed of triples of two smooth

real function on Z = [a,b] and a boundary function defined on δZ = {a,b}:

F =



 f =




f1

f2

f∂


 ∈C∞ ([a,b])×C∞ ([a,b])×R

{a,b}



 (4.21)

and the space of effort variables, which is defined in an analogous way:

E =



e =




e1

e2

e∂


 ∈C∞ ([a,b])×C∞ ([a,b])×R

{a,b}



 (4.22)

endowed with the following non-degenerated bi-linear product or pairing:

〈


e1

e2

e∂


 |




f1

f2

f∂



〉

=
∫ b

a
(e1 f1 + e2 f2)dz+ e∂ (b) f∂ (b)− e∂ (a) f∂ (a) (4.23)

Now one may define a Dirac structure derived from the formulation of the trans-

mission line in the following way, accordingly to the definition of Sect. 2.1.2 in

Chapter 2.

Proposition 4.1. The linear subset D ⊂ F ×E defined by:

D =

{




f1

f2

f∂


 ,




e1

e2

e∂




 ∈ F ×E |

[
f1

f2

]
=

[
0 − ∂

∂ z

− ∂
∂ z

0

][
e1

e2

]

and

[
f∂

e∂

]
(a,b) =

[
0 1

1 0

][
e1

e2

]
(a,b)

}
(4.24)

is a Dirac structure with respect to the symmetric pairing:
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≪
[

f

e

]
,

[
f ′

e′

]
≫=

〈
e | f ′

〉
+
〈
e′ | f

〉
,

[
f

e

]
,

[
f ′

e′

]
∈ F ×E (4.25)

where 〈· | ·〉 pairing is defined in (4.23).

Proof. Let us firstly prove D ⊂ D⊥. And consider two pairs of flow and effort

variables belonging to the Stokes-Dirac structure D :

[
f

e

]
,

[
f ′

e′

]
∈ D .

Then:

≪
[

f

e

]
,

[
f ′

e′

]
≫=

∫ b

a

(
e1 f ′1 + e2 f ′2 + e′1 f1 + e′2 f2

)
dz+

+ e∂ (b) f ′∂ (b)− e∂ (a) f ′∂ (a)+ e′∂ (b) f∂ (b)− e′∂ (a) f∂ (a)

=−
∫ b

a

(
e1

∂e′2
∂ z

+ e2
∂e′1
∂ z

+ e′1
∂e2

∂ z
+ e′2

∂e1

∂ z

)
dz+

+ e1(b) e′2(b)− e1(a) e′2(a)+ e′1(b) e2(b)− e′1(a) e2(a)

=−
∫ b

a

(
∂

∂ z

(
e1 e′2

)
+

∂

∂ z

(
e2 e′1

))
dz+

+ e1(b) e′2(b)− e1(a) e′2(a)+ e′1(b) e2(b)− e′1(a) e2(a)

=0

Secondly let us prove the converse, i.e. D⊥ ⊂ D . Consider a pair of flow and effort

variables ( f ,e) ∈ F × E such that for any element of the Stokes-Dirac structure

( f ′,e′) ∈ D , the symmetric pairing is zero, i.e.:

≪
[

f

e

]
,

[
f ′

e′

]
≫= 0

Observe that in the definition of the Stokes-Dirac structure, the choice of the effort

variables in the domain, i.e. (e1,e2) ∈ C∞ ([a,b])×C∞ ([a,b]) is completely free.

Therefore choose for the elements of D , in a first instance for the effort e′2, the null

function e′2 (z) = 0, z ∈ Z and for the effort variable e′1 a non null function which

vanishes at the boundary of the spatial domain δZ = {a,b}: e′1 (a) = e′1 (b) = 0.

Then the co-isotropy condition becomes:
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0 = ≪
[

f

e

]
,

[
f ′

e′

]
≫

=
∫ b

a

(
e1 f ′1 + e2 f ′2 + e′1 f1 + e′2 f2

)
dz+

+ e∂ (b) e′2(b)− e∂ (a) e′2(a)+ e′1(b) f∂ (b)− e′1(a) f∂ (a)

=−
∫ b

a

(
e2

∂e′1
∂ z

+ e′1 f1

)
dz

=
∫ b

a
e′1

(
∂e2

∂ z
− f1

)
dz−

[
e′1 e2

]b

a

=
∫ b

a
e′1

(
∂e2

∂ z
− f1

)
dz

which is satisfied for any smooth function on Z and vanishing at δZ = {a,b}. Hence
∂e2
∂ z

− f1 = 0. By symmetry one obtains that:
∂e1
∂ z

− f2 = 0, hence the element ( f ,e)
satisfies the first relation in (4.24). Now relax the conditions on the boundary and

assume that e′1 (a) = 0 but e′1 (b) 6= 0, then the isotropy condition becomes:

0 = ≪
[

f

e

]
,

[
f ′

e′

]
≫

=
∫ b

a
e′1

(
∂e2

∂ z
− f1

)
dz−

[
e′1 e2

]b

a
+ e′1(b) f∂ (b)

= e′1(b) ( f∂ (b)− e2(b))

which is satisfied for any real number e′1(b), hence f∂ (b)−e2(b) = 0. By symmetry

one obtains that the element ( f ,e) satisfies the second relation in (4.24). Hence:

[
f

e

]
∈ D .

Remark 4.1. The construction of the port variables and the Dirac structure asso-

ciated with the differential operator ∂
∂ z

, has been extended to higher order linear

skew-symmetric operators in [113, 127].

4.1.2.4 Boundary port Hamiltonian system

Now we may define a port Hamiltonian system with respect to this Dirac structure

in the following way, completely analogous to the definition for finite dimensional

systems in Sect. 2.2.

Definition 4.2. A boundary port Hamiltonian system with state variables

α(t) =

[
α1(t)
α2(t)

]
∈C∞ ([a,b])×C∞ ([a,b])
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and port variables [
fδ (t)
eδ (t)

]
∈ R

{a,b}×R
{a,b}

generated by the Hamiltonian functional

H [α] =
∫ b

a
H (z, α)dz

with H a smooth function, with respect to the Stokes-Dirac structure (4.24) is de-

fined by: 





∂α1(t)
∂ t

∂α2(t)
∂ t

f∂


 ,




δH
δα1
δH
δα2

e∂





 ∈ D (4.26)

Coming back to the motivating example, the transmission line, identifying

α(t) =

[
α1(t)
α2(t)

]
=

[
Q

φ

]

then the two conservation laws (4.11) together with the definition of the co-energy

variables appearing in (4.12) and of the port variables (4.20), maybe formulated as

a boundary port Hamiltonian system generated by the total electro-magnetic energy

(4.14) with respect to the Stokes-Dirac structure (4.24). It may be also noticed that

the pairing (4.23) consists in two integral terms corresponding to the electric and

the magnetic power in the spatial domain Z plus two terms corresponding to the

electromagnetic power at both boundary points of the domain.

4.1.2.5 The vibrating string as a boundary port Hamiltonian systems

In this paragraph shall formulate the vibrating string as a port Hamiltonian sys-

tem by formulating it firstly as a system of two conservation laws, considering it in

some sense as the mechanical analogue of the transmission line. Consider a vibrat-

ing string defined on some real interval Z = [a,b]⊂R and denote its displacement by

u(t,z) and the velocity by v(t,z) = ∂
∂ t

u(t,z). In the same manner as for the transmis-

sion line, we shall use as state variables the strain α1 = ε = ∂u
∂ z

and the momentum

α2 = p = µv where µ denotes the mass density. Denote the state vector by:

α(z, t) =

[
p

ε

]
(4.27)

In these variable the total energy, i.e. the sum of the elastic and the kinetic energies,

is written:

H0 (α) =
∫ b

a

1

2

(
T α2

1 +
1

µ
α2

2

)
dz (4.28)
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Notice that the energy functional depends only on the state variables and not their

spatial derivatives. Furthermore, the co-energy variables are the velocity β1 = δH0
δα1

=

T ε and the stress β2 = δH0

δα2
= p

µ .

The model of the vibrating string may be expressed by the system of two conser-

vation laws:

∂α

∂ t
=

[
0 ∂

∂ z
∂
∂ z

0

]
δH0

δα
(4.29)

where the first one corresponds to a kinematic identity and the the second one cor-

responds to Newton’s law. In this case the fluxes are expressed as a function of the

generating forces
δH0

δα by:

β =

[
− ∂H0

∂ε

− ∂H0
∂ p

]
=

[
0 −1

−1 0

][ δH0

δα1
δH0

δα2

]
=

[
0 −1

−1 0

][
T ε

p
µ

]
(4.30)

It is interesting to notice that the Hamiltonian formulation (4.29), up to a sign, is

precisely the one of the transmission line (4.15). The port boundary variables are

now equal to the restriction of the flux variables (the co-energy variables) at the

boundary of the spatial domain:

[
f∂

e∂

]
=

[
β2

β1

]∣∣∣∣
a,b

(4.31)

that is the velocity and the stress at the boundary points. It may be shown in precisely

the same way as in the proof of Proposition 4.1 that the relations (4.29) and (4.31)

define a Dirac structure. In summary, by using as state variables the energy variables

of the physical system, that is the variables on which the elementary conservation

laws applies and such that the energy is a function of them and not their derivatives,

one may express the dynamics of the vibrating string as a port Hamiltonian system

defined on a Dirac structure which is canonical in the sense that it express simultane-

ously, the conservation laws, the inter-domain coupling and the interaction through

the boundary of the system, independently of its energy properties.

Note 4.2. It should be noted that usually the model of the vibrating string is ex-

pressed in terms of the geometric state variables the displacement u and the veloc-

ity v. The time variation of the state may be expressed as a function of the varia-

tional derivative of the total energy as previously. Indeed define the total energy as:

H(x) =U(u)+K(v) where U denotes the elastic potential energy and K denotes the

kinetic energy of the string. The elastic potential energy is a function of the strain

ε(t,z) = ∂u
∂ z

:

U(u) =
∫ b

a

1

2
T

(
∂u

∂ z

)2

dz (4.32)

where T denotes the elasticity modulus. The kinetic energy K is the following func-

tion of the velocity v(z, t) = ∂u
∂ t

:
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K(v) =

∫ b

a

1

2
µv(z, t)2 dz (4.33)

Then the system’s dynamics may be expressed as follows:

∂x

∂ t
=

[
0 1

µ

− 1
µ 0

] [
δH
δu

δH
δv

]
(4.34)

where according to the definition of the variational derivative given in Definition 4.1

one computes:
δH

δu
=

δU

δu
= − ∂

∂ z

(
T

∂u

∂ z

)
(4.35)

which is the elastic force and

δH

δv
=

δK

δv
= µ v (4.36)

which is the momentum. The equation (4.34) defines again a Hamiltonian system

with respect to a skew-symmetric operator which is now a skew-symmetric matrix

with constant coefficients. This matrix is anti-diagonal and skew-symmetric and re-

sembles to canonical symplectic matrix associated with the expression of a canoni-

cal inter-domain coupling between the elastic energy and the kinetic energy. How-

ever this matrix depends now on some parameter (the mass density) which actually

defines the kinetic energy of the string; this goes against the idea of compositional

modeling as the definition of energy and the inter-domain coupling are now coupled

with the definition of this matrix. Furthermore the Hamiltonian system (4.34) is not

expressed as a system of conservation laws contrary to (4.15). Instead of being a

simplification of the formulation, this reveals to be a drawback for the case when

there is some energy flow through the boundary of the spatial domain. Indeed if

there is some energy flow through the boundary, the variational derivative has to be

completed by a boundary term as the Hamiltonian functional depends on the spatial

derivative of the state. Indeed, the variation of the elastic-potential energy becomes

(using simply integration by parts):

U(u+ εη) = U(u)− ε
∫ b

a

∂

∂ z

(
T

∂u

∂ z

)
η dz+ ε

[
η

(
T

∂u

∂ z

)]b

a

+O(ε2) (4.37)

Using (4.34) and (4.37) the energy balance equation becomes:

dH

dt
=
∫ b

a

(
δH

δu

∂u

∂ t
+

δH

δv

∂v

∂ t

)
dz+

[
∂u

∂ t

(
T

∂u

∂ z

)]b

a

=

[
v

(
T

∂u

∂ z

)]b

a

(4.38)

Hence one may introduce the following two boundary variables which are conju-

gated with respect to the balance equation (4.38):
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[
f∂

e∂

]
=

[
v

T ∂u
∂ z

]∣∣∣∣
a,b

(4.39)

which have a non trivial relation with the variational derivatives (4.35) and (4.36)

(i.e. the co-energy variables) depending on the parameter of the energy functional

U in (4.32). The structure matrix of the Hamiltonian formulation (4.34) is constant

and symplectic; it cannot be augmented in order to account for the boundary en-

ergy flows. The power continuity properties (attached to a Dirac structure including

boundary variables) are not visible in this formulation, contrary to the port Hamil-

tonian formulation.

4.1.3 Dirac structures underlying dissipative physical systems

In this section we shall show that Dirac structures not only arise in the frame of

the Hamiltonian formulation of reversible systems but also in models of dissipative

systems of conservation laws. This leads to the definition of dissipative port bound-

ary Hamiltonian systems. As motivating examples, we shall first consider a single

conservation law expressing a purely irreversible process: the heat conduction. Then

we shall consider again a single conservation law which represents a fluid flow and

which may be formulated as a dissipative port boundary Hamiltonian system.

4.1.3.1 Heat conduction in a cylindrical rod

Consider again the heat diffusion in some 1-dimensional non-deformable medium

presented in Sect. 4.1.1 choose as state variable the internal energy u and as gener-

ating function, the entropy function s(u), hence the entropy conjugated variable is

T = du
ds

(s). In this case the dynamical model consists in the energy balance equa-

tion (4.1), the law of fluxes (4.7) expressing the flux JQ as a linear function of the

driving force defined in (4.8). Now group the energy balance equation (4.1) and the

definition of the driving force (4.8) in a single relation:

[
∂u
∂ t

−F ′

]
=

[
0 − ∂

∂ z

− ∂
∂ z

0

][
ds
du

JQ

]
(4.40)

One recognizes the canonical differential operator J defined in (4.16). Hence

one may consider the Stokes-Dirac structure extending this operator and defined in

Proposition 4.1 with port boundary variables:

[
fδ

eδ

]
(a,b) =

[
0 1

1 0

][
ds
du

JQ

]
(a,b) (4.41)
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which are the reciprocal of the temperature ds
du

(u) = 1
T

and the heat flow JQ at the

boundaries. The relations (4.40) and (4.41) defining the Stokes-Dirac structure may

be completed with the irreversible law of fluxes (4.7) (i.e. JQ = λ (T,z) T 2 F ′) and

one obtains the complete dynamical system describing the heat conduction in the

rod.

In summary, considering the energy balance equation and the definition of the

driving force as two adjoint relations, one reveals the Stokes-Dirac structure also

for the purely irreversible phenomenon of heat conduction. However the partial dif-

ferential equation obtained by eliminating the heat flux JQ and the generating force

F ′ dynamical system:

∂u

∂ t
= − ∂

∂ z

[
λ (T,z)T 2

(
− ∂

∂ z

ds

du

)]

which is from parabolic type rather then hyperbolic like in for the reversible sys-

tems. The system is of course irreversible (and dissipative) as may be seen from the

entropy balance equation deduced from the definition of the Stokes-Dirac structure:

ds

dt
=

∫ b

a
JQ F ′ dz−

[
JQ

1

T

]b

a

=

∫ b

a
λ (T,z)T 2 F ′2 dz

︸ ︷︷ ︸
σ≥0

−
[

JQ

1

T

]b

a

with positive entropy creation term σ due to the positivity of the heat conduction

coefficient λ . It is interesting to note that, in this formulation the dual product has

the physical dimension of a time variation of entropy [76].

4.1.3.2 The lossy transmission line

Consider a transmission line where Ohm’ law is now taking into account in the

dielectric. In this case the model presented in Sect. 4.1.2.1 becomes, denoting the

charge density by Q(t,z) and the magnetic flux by ϕ(t,z):

∂Q

∂ t
= −∂ I

∂ z

∂ϕ

∂ t
= −∂V

∂ z
−RI

(4.42)

where R is Ohm’ constant. By considering distributed port variables denoted by

( fR (t,z) , eR (t,z)) and extending the Stokes-Dirac structure of Proposition 4.1 to

the following vector space:
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Dext =











f1

f2

fδ

fR


 ,




e1

e2

eδ

eR





 ∈ F ×C∞ ([a,b])×E ×C∞ ([a,b]) |




f1

f2

fR


=




0 − ∂
∂ z

0

− ∂
∂ z

0 −1

0 1 0






e1

e2

eR




and

[
fδ

eδ

]
=

[
0 1 0

1 0 0

]


e1

e2

eR




∣∣∣∣∣∣
a,b



 (4.43)

which may be proven [112, 211] to be a Dirac structure with respect to the non-

degenerated bi-linear product:

〈



f1

f2

fδ

fR


 |




e1

e2

eδ

eR




〉

ext

=
∫ b

a
(e1 f1 + e2 f2 + fR eR)dz+

+ e∂ (b) f∂ (b)− e∂ (a) f∂ (a) (4.44)

the dynamical system is expressed by the implicit dynamical system with Hamilto-

nian functional (4.14): 





∂Q
∂ t
∂φ
∂ t

fδ

fR


 ,




δH
δQ
δH
δφ

eδ

R fR





 ∈ Dext

In [112, 211, 212] it is shown how the system may be reduced (by eliminating

the variable IR) to a dissipative boundary port Hamiltonian system expressed with

respect to a differential operator which is the sum of a (formally) skew-symmetric

and symmetric operator appearing in the balance equation (4.42):

[
0 − ∂

∂ z

− ∂
∂ z

−R

]

and how one may define port boundary variables associated with this operator.

4.1.3.3 Vibrating string with dissipation

Consider again the model of the vibrating string presented in Sect. 4.1.2.5 and con-

sider now that it is subject also to some structural dissipation [211, chap. 6] which

is expressed by the force



4.1 Modelling origins of boundary port-Hamiltonian systems 227

eR =
∂

∂ z

[
b

(
∂

∂ z
v

)]

with b > 0. The dynamical equations (4.29) becomes:

∂

∂ t

[
ε
p

]
=

[
0 ∂

∂ z
∂
∂ z

0

][
T ε

p
µ

]
+

[
0

∂
∂ z

[
b
(

∂
∂ z

p
µ

)]
]

(4.45)

And again by introducing the pair of port variables (vR, FR) and identifying

∂

∂ t

[
ε
p

]
=

[
f1

f2

] [
T ε

p
µ

]
=

[
δε H0

δpH0

]
=

[
e1

e2

]

the dynamical equations (4.45) imply the following relation on the power variables

( f1, f2), (e1, e2) and ( fR, eR) defined by a skew-symmetric operator extending the

canonical operator in (4.45):




f1

f2

fR


=




0 ∂
∂ z

1
∂
∂ z

0 ∂
∂ z

1 ∂
∂ z

0







e1

e2

eR


 (4.46)

completed with the dissipative relation: eR = b fR.

By considering the following extension of the Stokes-Dirac structure (4.24), as-

sociated with the differential operator in (4.46) defined according to [211, chap. 6]

with respect tot the pairing (4.44):

Dext =











f1

f2

fδ

fR


 ,




e1

e2

eδ

eR





 ∈ F ×C∞ ([a,b])×E ×C∞ ([a,b]) |




f1

f2

fR


=




0 ∂
∂ z

1
∂
∂ z

0 ∂
∂ z

1 ∂
∂ z

0







e1

e2

eR


 and

[
fδ

eδ

]
=

[
0 1 0

1 0 0

]


e1

e2

eR




∣∣∣∣∣∣
a,b





(4.47)

the dynamics of the lossy vibrating string is formulated in terms of a dissipative

Hamiltonian system defined with respect to the Dirac structure Dext and generated

by the Hamiltonian (4.28):







∂Q
∂ t
∂φ
∂ t

fδ

fR


 ,




δH0

δQ
δH0
δφ

eδ

b fR





 ∈ Dext

In [112, 211, 212] it is shown how the system may be reduced (by eliminating

the variable IR) to a dissipative boundary port Hamiltonian system expressed with
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respect to a differential operator which is the sum of a (formally) skew-symmetric

and symmetric operator: [
0 − ∂

∂ z

− ∂
∂ z

− ∂
∂ z

b ∂
∂ z

]

and how one may define port boundary variables associated with this operator.

4.2 Stokes-Dirac structures and distributed port Hamiltonian

systems

In the preceding section we have defined infinite-dimensional port Hamiltonian sys-

tems which we have also called boundary port Hamiltonian system associated with

systems of two conservation laws defined on one-dimensional spatial domains. In

this section we shall generalize the definition of Stokes-Dirac structures and bound-

ary port Hamiltonian systems to higher-dimensional spatial domains according to

[143, 184]. Therefore we shall consider systems of two conservation laws defined

on higher-order spatial domains and formulate them in an coordinate and dimension

independent form using so-called differential forms and not the more usual vector

calculus formulation. This will allow us to give a dimension-independent definition

of Stokes-Dirac structures and boundary port Hamiltonian systems.

4.2.1 Reminder on differential forms

In this paragraph we shall first introduce differential forms on the case of one-

dimensional spatial domains and then very briefly recall their definition for a spatial

domain of arbitrary dimension. Differential forms are tightly related to integration

in R
n as it appears clearly in their use to express systems of conservation laws [77].

In relation with integration in R
n the reader is referred to the textbooks [7, 47, 216]

or in the context of symplectic geometry to [2, 92, 116].

4.2.1.1 Integration in R
n and differential forms

Let us now introduce on the 1-dimensional case, the use of differential forms in the

formulation of the systems of conservation laws. Until now we have considered the

state variables α and the flux variables β as functions on the space-time domain

Z × I. However considering the balance equation on some interval [c, d] ⊂ Z:

d

dt

∫ d

c
αdz = −(β (d)−β (c))
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associated with a conservation law where αis the conserved quantity (such as the

internal energy or the momentum) and β is the flux variable (such as the heat flux

or the elastic strain). From the expression of the conservation law, it appears clearly

that they are of different nature: the state variables α correspond to a conserved

quantity obtained through integration on the spatial domain and the flux variables

β correspond to a function evaluated at some point (for instance on the boundary

points of the spatial domain). This may be expressed if one represents the differ-

ent variables as differential forms. Indeed note that for any interval [c, d] ⊂ Z, the

conserved quantity ∫ d

c
αdz

is a real number. In this sense the integration may be seen as a pairing between

1-dimensional spatial domains and the variable α and with some defining assump-

tions, the variable α is then called differential form of degree 1. The flux variables

β are real functions which are evaluated on points of the spatial domain. This may

also be seen as a pairing of points, sets of dimension 0, of the spatial domain Z, with

the variable β which is then called differential form of degree 0. Now, considering

infinitesimal variations of the integration intervals, it may be shown that differential

forms of degree 1 may also be defined as elements of the dual space to the vector

space of vector fields defined on the spatial domain Z.

In the general case treated in this chapter, the spatial domain is an n-dimensional

oriented connected open smooth sub-manifold denoted by Z ⊂ R
n of dimension k.

In this case one may give analogous definitions of differential forms of degree k

both as dual to any open domains of dimension k but also as alternated k-forms on

the space of vector fields on Z.

Definition 4.3. For any point z∈ Z, denote by TzZ the tangent space of Z at the point

z. Denote by Ak
z the vector space of k-alternated forms on TzZ, that is k-linear (i.e.

linear with respect to each of its arguments) forms ωk
z : (TzZ)k → R that satisfy for

any permutation π in {1, ..,k} and for any k-tuple (ξ1, . . . ,ξk) ∈ (TzZ)k
:

ωk
z

(
ξπ(1), . . . ,ξπ(k)

)
= σ (π) ωk

z (ξ1, . . . ,ξk)

where σ (π) denotes the signature of the permutation π .

Denote by Ak the union: Ak = ∪z∈ZAk
z . A smooth differential form of degree k,

denoted by ωk is a smooth section of Ak that is a smooth map: Z → Ak
z . By definition

the forms of degree 0 are identified with real functions. The space of forms of degree

1 is the dual T (∗M) to the space of vector fields T (M) on Z.

In the sequel we shall smooth differential form of degree k call simply k-forms

and denote the set of k-forms on Z by Ω k(Z). It may also be noted that any k-form

defined on a n-dimensional manifold Z is zero for k > n as a consequence that is is

an alternated form.
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4.2.1.2 Exterior product, exterior derivation and Stokes’ theorem

It follows directly from the definition that the set of k-forms Ω k(Z) is a real vector

space. But it endows far more structure which we briefly recall. Denote by Ω =⊕
k≥0 Ω k(Z) the algebra of differential forms over Z. It is endowed with an exterior

product ∧ which endows Ω with a structure of graded algebra and which we shall

use later to define a pairing between differential forms in order to extend Stokes-

Dirac structures to higher dimensional spatial domains.

Definition 4.4. Consider a k-form ωk ∈ Ω k (Z) and a l-form ω l ∈ Ω l (Z), their ex-

terior product (also called wedge product or Grassman product) is the (k + l)-form

ωk ∧ω l ∈ Ω k+l (Z) such that for any (k + l)-tuple (ξ1, . . . ,ξk+l) ∈ T (M)k+l
:

(
ωk ∧ω l

)
(ξ1, . . . ,ξk+l) = ∑

π∈S

σ (π)ωk
(
ξπ(1), . . . ,ξπ(k)

)
ω l
(
ξπ(k+1), . . . ,ξπ(k+l)

)

where S denotes the sets of shuffle permutation that is the permutation π satisfying

π (1) < .. . < π (k) and π (k +1) < .. . < π (k + l).

The exterior product is an associative and bi-linear product and satisfies Z2-com-

mutativity, i.e. ωk ∧ω l = (−1)k l ω l ∧ωk.

Note 4.3. Using the wedge product, any k-form of an n-dimensional manifold Z may

be written as follows using some coordinates. Consider some coordinate system of

Z denoted by
(
z1, . . . , zn

)
which may also be seen as coordinate functions. Then

the n 1-forms
(
dz1, . . . , dzn

)
form a basis of the cotangent bundle T Z, that is of

the 1-forms of Z. It may be shown that any k-form ωk ∈ Ω k (Z) may be written as

a linear combination of monomial (wedge product of k 1-forms), using Einstein’s

summation rule, as follows:

ωk =
1

k!
ωk

i1,... , ik
dzi1 ∧ . . .∧dzik = ωk

I1,... , Ik
dzI1 ∧ . . .∧dzIk

where i1, . . . , ik is an indexed set of integers in {1, . . . , n} and the functions ωk
i1,... , ik

satisfies the alternation property

ωk
i1,... , ik

(
z1, . . . , zn

)
= σ (π) ωk

iπ(1),..., iπ(k)

(
z1, . . . , zn

)

for any permutation in {1, . . . k} whereas I1, . . . , Ik is an ordered index set of integers

in {1, . . . , n}.

As an example consider Z = R
3 with coordinates

(
z1, z2, z3

)
: the 0-forms are real

functions f
(
z1, z2, z3

)
, the 1-forms may be written ω1 = ω1

1 dz1 +ω1
2 dz2 +ω1

3 dz3,

the 2-forms are written: ω2 = ω2
12 dz1 ∧ dz2 + ω2

13 dz1 ∧ dz3 + ω2
23 dz2 ∧ dz3 and the

3-forms: ω3 = ω3
123 dz1 ∧dz2 ∧dz3.

The algebra of differential forms Ω is also endowed with a derivation which is

called exterior derivation, denoted byd and defined as follows.



4.2 Stokes-Dirac structures and distributed port Hamiltonian systems 231

Definition 4.5. The exterior derivation (also called co-boundary map) denoted by d

is a derivation of degree 1 which maps Ω k (Z) into Ω k+1 (Z) and satisfies:

• linearity;

• anti-derivation, i.e. d
(
ωk ∧ω l

)
= (−1)k

(
dωk ∧ω l

)
+
(
ωk ∧dω l

)
, with ωk ∈

Ω k (Z) and ω l ∈ Ω l (Z);
• if ω0 is a smooth function, dω0 is the differential of the function;

• d◦d = 0;

• the derivation is local: for any open set U ⊂ Z, if the restrictions to U of two

k-forms coincide then also the restrictions of their exterior derivatives.

In some coordinate system
(
z1, . . . , zn

)
of n-dimensional manifold Z , the exterior

derivative of the k-form ωk = ωk
I1,... , Ik

dzI1 ∧ . . .∧dzIk is written:

dωk = dωk
I1,... , Ik

dzI1 ∧ . . .∧dzIk

Note 4.4. The exterior derivation has a classical interpretation in terms of vector

calculus. Consider that the spatial domain Z is 3-dimensional, then the exterior

derivative of a 0-form (or function) corresponds to the gradient operator, the exterior

derivative a 1-form to the curl and the exterior derivative of a 2-form corresponds

to the divergence operator. Let us recall the coordinate expression of the exterior

derivative in the case of the spatial domain Z = R
3 with coordinates

(
z1, z2, z3

)
.

Then the exterior derivative of any 0-form (or function) f
(
z1, z2, z3

)
is:

d f =
∂ f

∂ z1
dz1 +

∂ f

∂ z2
dz2 +

∂ f

∂ z3
dz3.

Then the exterior derivative of any 1-form ω1 = ω1
1 dz1 + ω1

2 dz2 + ω1
3 dz3 is the

2-form

dω1 =

(
∂ω1

2

∂ z1
− ∂ω1

1

∂ z2

)
dz1 ∧dz2 +

(
∂ω1

3

∂ z1
− ∂ω1

3

∂ z1

)
dz1 ∧dz3+

+

(
∂ω1

3

∂ z2
− ∂ω1

2

∂ z3

)
dz2 ∧dz3.

And the exterior derivative of a 2-form ω2 = ω2
12 dz1∧dz2 +ω2

13 dz1∧dz3 +ω2
23 dz2∧

dz3 is the 3-form:

dω2 =

(
∂ω2

12

∂ z3
+

∂ω2
13

∂ z2
+

∂ω2
23

∂ z1

)
dz1 ∧dz2 ∧dz3.

Finally we shall recall Stokes’ theorem which is fundamental for the definition

of the port variables defined on the boundary and which gave the name to the Dirac

structure underlying systems of conservation laws with energy flux at the boundary.

Theorem 4.1. Consider a spatial domain Z ∈ R
n being an k-dimensional smooth

manifold with smooth (k−1)-dimensional boundary ∂Z. Then for any (k−1)-form
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ωk−1 with compact support in R
n, one has:

∫

Z
dωk−1 =

∫

∂Z
ωk−1 (4.48)

4.2.1.3 Duality and variational derivative

Let us first define conjugated spaces on which one may define pairs of conju-

gated variables composing the bond space with the aim to define Dirac struc-

tures. Consider firstly the two (linear) spaces of differential forms defined on the

n-dimensional domain Z, Ω k(Z) and Ω n−k(Z). They are conjugated in the sense

that their degree is complementary with respect to the dimension n of the spatial

domain and that there is a natural pairing between Ω k(Z) and Ω n−k(Z) given by

〈
ωn−k | ωk

〉
:=

∫

Z
ωn−k ∧ωk (∈ R) (4.49)

with ωk ∈ Ω k(Z), ωn−k ∈ Ω n−k(Z). In fact, the pairing (4.49) is non-degenerate in

the sense that if
〈
ωn−k | ωk

〉
= 0 for all ωk ∈ Ω k (Z), respectively for all ωn−k ∈

Ω n−k (Z), then ωn−k = 0, respectively ωk = 0.

Similarly one may define a pairing for conjugated pairs of exterior form defined

on the boundary ∂Z of the domain Z as follows:

〈
ωn−k−1 | ωk

〉
:=
∫

∂Z
ωn−k ∧ωk (∈ R) (4.50)

with ωk ∈ Ω k(∂Z), ωn−k−1 ∈ Ω n−k(∂Z).
Secondly, let us adapt the definition of the variational derivative of a functional

H(α) with respect to the differential form α ∈ Ω p(Z).

Proposition 4.2. Consider a density H : Ω p(Z)×Z → Ω n(Z) where p ∈ {1, ..,n}
and denote by H :=

∫
Z H ∈ R the associated functional, then one shows that for

any α, ∆α ∈ Ω p(Z) with compact support strictly included in Z and ε ∈ R:

H(α + ε∆α) =
∫

Z
H (α + ε∆α) =

∫

Z
H (α)+ ε

∫

Z

[
δH

δα
∧∆α

]
+O

(
ε2
)

for a certain uniquely defined differential form δH
δα ∈ Ω n−p(Z) which is called the

variational derivative of H with respect to α ∈ Ω p(Z).

4.2.1.4 Hodge star operator

The Hodge star operator is associated with an inner product on exterior differential

forms and is essential in the definition of the Hamiltonian (or energy) functions of

many physical systems which admits “quadratic” energy.
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Definition 4.6. Assume that the vector space Ω k (Z) of k-forms on Z is endowed

with an inner product denoted by 〈·, ·〉, then the Hodge star of the k-form ωk, denoted

by ∗ωk is the defined by:

〈
α,ωk

〉
=
∫

Z
α ∧

(
∗ωk

)
∀α ∈ Ω k (Z)

It may be noted that very often the inner products for each space of k-forms are

founded on a common structure, a Riemannian structure on Z (i.e. the tangent spaces

and the space of vector fields are endowed with an inner product). Then the Hodge

star of a k-form is entirely defined by considering the following identity:

∗ωk
z (ξk+1, . . . ,ξn) = ωk

z (ξ1, . . . ,ξk)

for any oriented orthonormal basis (ξ1, . . . ,ξn) of TzZ.

4.2.2 Conservation laws and balance equations expressed using

k-forms

4.2.2.1 The example of heat conduction in a 3-dimensional medium

Let us present the most elementary conservation law on the example of the single

energy balance equation in a medium subject to heat conduction as in Sect. 4.1.1 but

now considering a 3-dimensional connected bounded spatial domain Z ⊂R
3 having

a 2-dimensional smooth boundary ∂Z.

One writes the conservation of internal energy, hence the state variable is the

internal energy density u ∈ Ω 3 (Z) and the conservation law is written:

∂u

∂ t
= −dJQ (4.51)

where the flux variable is simply the heat flux, a 2-form: JQ ∈ Ω 2 (Z).
Let us describe now the thermodynamic properties by Gibbs relation, choosing as

thermodynamical potential the entropy function which is also an extensive variable

hence is described by the 3-form: s = s(u) ∈ Ω 3 (Z) (and assuming that the system

is closed and its transformation are isochore). The conjugated extensive variable is

the 0-form (or function) denoted by β ∈ Ω 0 (Z) and defined by:

β =
δ s

δu
(u) (4.52)

which in terms of the temperature is simply: β = 1
T

.

The heat conduction phenomenon is described by a linear relation expressing the

heat flux in terms of the driving force F ′ ∈ Ω 1 (Z):
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F ′ = −dβ (4.53)

which is interpreted in vector calculus as the gradient of the reciprocal of the tem-

perature, and expressing the law of fluxes, here Fourier’s law:

JQ = − 1

β 2
λ ′ (β ) ∗F ′ (β )

with λ ′ (β ) being a smooth positive real valued function defining the heat conduc-

tion coefficient This decomposition of the energy balance equation for the heat con-

duction according to the axioms of irreversible thermodynamics again may appear

two conjugated relations, namely the conservation law (4.51) and the definition of

the driving force (4.53):

f = dJQ F ′ = −dβ

These relations are canonical in the sense that they do not depend on any parameter

and involve uniquely the exterior derivation.

Now let us write the global entropy balance equation:

d

dt

∫

Z
s =

∫

Z

δ s

δu
∧ ∂u

∂ t
=

∫

Z

δ s

δu
∧ (−dJQ)

=

∫

Z

(
d

δ s

δu

)
∧ JQ − [β ∧ JQ]∂Z

=
∫

Z

1

β 2
λ ′ (β )F ′ (β )∧∗F ′ (β )

︸ ︷︷ ︸
entropy creation term

− [β ∧ JQ]∂Z

The first term of the entropy balance equation correspond to a positive entropy cre-

ation term, in accordance with the second principle of Thermodynamics and the

second term corresponds to the entropy flux outgoing through the boundary of the

spatial domain. This leads to define in a natural way a pair of conjugated variables

at the boundary as follows:

f∂ = JQ |∂Z e∂ = β |∂Z

4.2.2.2 Systems of balance equations

Sect. 3.4 in Chapter 3 gives several examples of systems of conservations laws

which consists in balance equations coupled through the definition of the flux vari-

ables. For heat and mass transfer systems, the models consist in balance equations

on the mass or number of models of the species, the volume (or space balance) ,

the entropy or energy. For elasto-dynamic systems they consist in momentum bal-

ance and kinematic equations which may also be interpreted as balance equations

and for electro-magnetic systems the model consists in coupled electrical charge
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and magnetic flux balance equations. In general all or parts of these systems may be

coupled in order to describe cation or water transfer in electrolytes or reactive flows,

rheological fluids. This leads to the following very general definition.

Definition 4.7. A system of balance equations (or conservation laws with source

terms) with spatial domain Z ⊂ R
n, is defined firstly by a set of N conserved quan-

tities αi ∈ Ω ki(Z), i ∈ {1, . . . ,N} where N ∈ N,ki ∈ {0, . . . ,n} composing the state

space X =
⊗

i=1,..,N Ω ki(Z). Secondly it is defined by the associated set of conser-

vation laws:
∂αi

∂ t
+dβi = gi (4.54)

where βi ∈ Ω ki−1 (Z) denote the set of fluxes and gi ∈ Ω ki(Z) denote the set of

distributed source forms. And thirdly it is defined by the closure equations defining

the set of fluxes:

βi = J (α j,z) j=1,..,N (4.55)

Such a system satisfies the following balance equations (the integral form of the

conservation laws):
d

dt

∫

Z
αi +

∫

∂Z
βi =

∫

Z
gi (4.56)

Remark 4.2. A usual case is when the conserved quantities are 3-forms, that is the

balance equation is evaluated on volumes of the 3-dimensional space. Then, in vec-

tor calculus notations, the conserved quantities may be identified with vector fields

ui on Z as well as the fluxes, denoted by qi and the interaction vector fields gi. And

the system of conservation laws takes the more familiar form:

∂ui

∂ t
(z, t)+divzqi = gi i = 1, ..,n (4.57)

However, as said before, systems of conservation laws applies more generally to

differential forms of any dimension. Maxwell’s equations give a classical example

where the conserved quantities are not differential forms of degree 3 but actually

2 [92]: they are the induction fluxes through some surface.

4.2.3 Systems of two conservation laws

In the sequel, as in the case of 1-dimensional spatial domains, we shall consider

a particular class of systems of conservation laws where the fluxes, given by the

closure equations, describe the canonical interaction of two physical domains (for

instance involving kinetic energy and elastic energy in the case of the vibrating

string or electric and magnetic energies for electromagnetic fields).

Definition 4.8. Systems of two conservation laws with canonical inter-domain cou-

pling are systems of two conservation laws (N = 2) with no distributed interaction
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forms, index i ∈ {p,q} where p and q are integers satisfying p + q = n + 1 and

the conserved quantities are αp ∈ Ω p(Z) and αq ∈ Ω q(Z). The closure equations

are generated by Hamiltonian density function H : Ω p(Z)×Ω q(Z)×Z → Ω n(Z)
resulting in the total Hamiltonian

H :=
∫

Z
H ∈ R

and defined by: [
βp

βq

]
= ε

[
0 (−1)r

1 0

][ δH
δαp

δH
δαq

]
(4.58)

where r = p q + 1, ε ∈ {−1,+1} depending on sign convention on the physical

domain.

This system of two conservation laws may be interpreted in the following way.

Each conservation law correspond to a physical domain (e.g. electric and magnetic)

and is defined with respect to some conserved quantity (e.g. electrical charge and

magnetic flux) represented by the differential forms αp and αq. One may notice that

the degrees of these differential form are not independent and satisfy the comple-

mentarity condition: p+q = n+1. This is a consequence of the canonical intercon-

nection relation (4.58). It may also be noticed that this relation is the strict analogue

of the canonical coupling defined by the symplectic gyrator in the finite-dimensional

bond graph language.

Combining the equations (4.54) and (4.58), the system of two conservation laws

may be written as follows:

∂α

∂ t
= ε

[
0 (−1)r

d

d 0

][ δH
δαp

δH
δαq

]
(4.59)

This system is an infinite-dimensional Hamiltonian system defined with respect to

the matrix differential operator:

J = ε

[
0 (−1)r

d

d 0

]
(4.60)

and generated by the Hamiltonian function H [157]. But, in order that the system

(4.16) really defines a Hamiltonian system, one has to check that the operator J is

a Hamiltonian operator, that is it should be skew-symmetric and satisfy the Jacobi

identities. Let us first check the skew-symmetry of the operator. And therefore define

the vector of effort variables associated with some real-valued functions H(αi) of a

k-form αi ∈ Ω i(Z), i ∈ {p,q} as the variational derivative: ei = δαi
H ∈ Ω n−i(Z).

Let us check under which conditions the bracket:

{H1,H2}J :=

〈[
e1

p

e1
q

]
| J

[
e2

p

e2
q

]〉
= ε

∫

Z

[
e1

p ∧ (−1)r
de2

q + e1
q ∧de2

p

]
(4.61)
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is skew-symmetric. Therefore let us compute, using the properties of the exterior

derivation and Stokes’ theorem:

{e1,e2}J +{e2,e1}J = ε
∫

Z

[
e1

p ∧ (−1)r
de2

q + e2
q ∧de1

p

]
+

+ ε
∫

Z

[
e2

p ∧ (−1)r
de1

q + e1
q ∧de2

p

]

=− ε
∫

Z
d
(
e1

p ∧ e2
q + e1

q ∧ e2
p

)

=− ε
∫

∂Z

(
e1

p ∧ e2
q + e1

q ∧ e2
p

)

(4.62)

Hence the matrix differential operator J is a skew-symmetric operator for effort

variables with domain strictly included in the spatial domain Z.

However for effort variables that are not zero at the boundary of the spatial do-

main, the matrix differential operator is no more skew-symmetric and some bound-

ary terms appear. In terms of physical modelling this implies that there is some flow

of energy at the boundary of the domain. The Hamiltonian function is not conserved,

but obeys the following balance equation:

d

dt
H = ε

∫

∂Z

(
β 1

p ∧β 2
q +β 1

q ∧β 2
p

)
(4.63)

If the Hamiltonian represents the energy of the system, then the right hand side of

the equation (4.63) represents the flow of energy per time unit ingoing the system

through the boundary of its spatial domain.

This suggests, in the same way as for 1-dimensional domains, to introduce some

boundary port variables, defined on the boundary ∂Z of the spatial domain. Define

the flow variables to be the time variation of the state and denote it by:

[
fp

fq

]
=

[
∂αp

∂ t

∂αq

∂ t

]
∈ Ω p(Z)×Ω q(Z) (4.64)

and define the vector of effort variables to be the vector of the variational derivative

of the Hamiltonian function with respect to the two state variables (the generating

forces for a physical system) and denote it by:

[
ep

eq

]
=

[
δH
δαp

δH
δαq

]
∈ Ω n−p(Z)×Ω n−q(Z) (4.65)

The flow and effort variables are power conjugated as their product is the time

variation of the Hamiltonian function:

dH

dt
=

∫

Z

(
δH

δαp

∧ ∂αp

∂ t
+

δH

δαq

∧ ∂αq

∂ t

)
=

∫

Z
(ep ∧ fp + eq ∧ fq) (4.66)
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Using the closure relations (4.58) and the properties of the exterior derivation

and Stokes’ theorem in the same way as for the derivation of the skew-symmetry

property of the differential operator in (4.62), one may write the variation of the

Hamiltonian function:

dH

dt
=
∫

Z
[εβq ∧ (−dβp)+(−1)rβp ∧ ε(−dβq)]

=− ε
∫

∂Z
βq ∧βp

(4.67)

Now we may define flow and effort variables on the boundary of the system as the

restriction, denoted by |∂Z , of the flux variables to the boundary ∂Z of the domain

Z: [
f∂

e∂

]
=

[
βq|∂Z

βp|∂Z

]
(4.68)

They are also power conjugated variables as their product defined in (4.68) is the

time variation of the Hamiltonian functional, i.e. the total energy of the physical

system.

On the pairs of power conjugated variables, the differential forms ( fp,ep) and

( fq,eq) on the domain Z and the differential forms ( f∂ ,e∂ ) defined on the bound-

ary ∂Z, one may define an interconnection structure, underlying the system of two

conservation laws with canonical inter-domain coupling of Definition 4.8. This in-

terconnection structure is defined by the equation (4.68) and, combining the conser-

vation laws (4.57) with the closure equation (4.58), by:

[
fq

fp

]
= ε

[
0 (−1)r

d

d 0

][
eq

ep

]
(4.69)

This interconnection satisfies the power continuity in the sense that the the power

conjugated variables satisfying (4.68) and (4.69), also satisfy the power continuity

relation: ∫

Z
(ep ∧ fp + eq ∧ fq)+ ε

∫

∂Z
f∂ ∧ e∂ = 0 (4.70)

This expression is the straightforward consequence of the two expressions of the

variation of the Hamiltonian H in (4.66) (4.67).

In the next section 4.2.4 we shall show how this power continuous interconnec-

tion structure defines a Dirac structure.

4.2.4 Stokes-Dirac structures

In this section we shall relate the power continuous interconnection structure that

we have derived in Sect. 4.2.3 for systems of two conservation laws with canonical

inter-domain coupling with a geometric object called Dirac structure.
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4.2.4.1 Definition

In this subsection we shall show that the interconnection structure defined by (4.68)

and (4.69) for the system of two conservation laws with canonical coupling and non-

zero energy flow through the boundary, leads to the definition of a Dirac structure

called Stokes-Dirac structure [140, 141, 184].

Considering the definition, proposed in Sect. 4.2.3, of the variables defining the

interconnection structure equations (4.69) and (4.68), we shall consider the linear

space of flow variables

Fp,q := Ω p(Z)×Ω q(Z)×Ω n−p(∂Z) ∋ ( fp, fq, f∂ ) (4.71)

for any pair p,q of positive integers satisfying

p+q = n+1, (4.72)

and the space of effort variables

Ep,q := Ω n−p(Z)×Ω n−q(Z)×Ω n−q(∂Z) ∋ (ep,eq,e∂ ) (4.73)

Then the pairings (4.49) and (4.50) yields a (non-degenerate) pairing between the

space of flow variables Fp,q and the space of effort variables Ep,q. Note that by

(4.72), (n− p)+(n−q) = n−1. In order to define the Dirac structure, we shall use

the symmetrization of this pairing with values in R, on the product space Bp,q =
Fp,q ×Ep,q, also called bond space:

≪
(

f 1
p , f 1

q , f 1
b ,e1

p,e
1
q,e

1
b

)
,
(

f 2
p , f 2

q , f 2
b ,e2

p,e
2
q,e

2
b

)
≫:=

:=
∫

Z

[
e1

p ∧ f 2
p + e1

q ∧ f 2
q + e2

p ∧ f 1
p + e2

q ∧ f 1
q

]
+
∫

∂Z

[
e1

b ∧ f 2
b + e2

b ∧ f 1
b

]
(4.74)

where for i = 1,2

f i
p ∈ Ω p(Z) f i

q ∈ Ω q(Z)

ei
p ∈ Ω n−p(Z) ei

p ∈ Ω n−q(Z) (4.75)

f i
b ∈ Ω n−p(∂Z) ei

b ∈ Ω n−q(∂Z)

The next theorem says now that the interconnection relations (4.60) and (4.68) de-

fine a Dirac structure on the bond space Bp,q.

Proposition 4.3. Consider the space of flow variables Fp,q and the space of effort

variables Ep,q given in (4.71) and (4.73) with the integers p and q satisfying (4.72)

and the pairing defined in (4.74). Define the following linear subspace D of the

bond space Bp,q = Fp,q ×Ep,q:
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D =

{
( fp, fq, fb,ep,eq,eb) ∈ Fp,q ×Ep,q |

[
fp

fq

]
= ε

[
0 (−1)rd

d 0

][
ep

eq

]
,

[
fb

eb

]
=

[
ε 0

0 −(−1)n−q

][
ep|∂Z

eq|∂Z

]}
(4.76)

where r := pq+1. Then D = D⊥ that is D is a Dirac structure.

Proof. Let us first discuss the sign convention and reduce the proof to the case of

ε = 1 for the sake of simplifying the notations. Therefore, one may notice that the

transformation:

( fp, fq, fb,ep,eq,eb) 7→ (ε fp,ε fq,ε fb,ep,eq,eb) (4.77)

leaves invariant the equation:

≪
(

f 1
p , f 1

q , f 1
b ,e1

p,e
1
q,e

1
b

)
,
(

f 2
p , f 2

q , f 2
b ,e2

p,e
2
q,e

2
b

)
≫= 0

which characterizes the conditions of isotropy and co-isotropy of the Dirac struc-

tures. Hence the proof is then given in two parts, setting ε = 1. Firstly we show the

isotropy: D ⊂ D⊥, and secondly the co-isotropy: D⊥ ⊂ D .

• D ⊂D⊥: let ( f 1
p , f 1

q , f 1
b ,e1

p,e
1
q,e

1
b)∈D , and consider any ( f 2

p , f 2
q , f 2

b ,e2
p,e

2
q,e

2
b)∈

D . By substitution of (4.76) into (4.74) the right-hand side of (4.74) becomes

∫

Z

[
(−1)re1

p ∧de2
q + e1

q ∧de2
p +(−1)re2

p ∧de1
q + e2

q ∧de1
p

]
−

− (−1)n−q

∫

∂Z

[
e1

q ∧ e2
p + e2

q ∧ e1
p

]
(4.78)

By the properties of the exterior derivative (see Sect. 4.2.1.2):

d(e2
q ∧ e1

p) = de2
q ∧ e1

p +(−1)n−qe2
q ∧de1

p

d(e1
q ∧ e2

p) = de1
q ∧ e2

p +(−1)n−qe1
q ∧de2

p

(4.79)

and by the properties of the wedge product:

e1
p ∧de2

q = (−1)(n−p)(n−q+1)de2
q ∧ e1

p

e2
p ∧de1

q = (−1)(n−p)(n−q+1)de1
q ∧ e2

p

(4.80)

Hence the first and fourth term in the
∫

Z integral in (4.78) can be rewritten as

(−1)re1
p ∧de2

q + e2
q ∧de1

p = (−1)r+(n−p)(n−q+1)de2
q ∧ e1

p + e2
q ∧de1

p

= (−1)n−qde2
q ∧ e1

p + e2
q ∧de1

p

= (−1)n−qd(e2
q ∧ e1

p)

(4.81)
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since by p + q = n + 1 and r = pq + 1, r +(n− p)(n−q + 1) = r +(q−1)p =
2pq− p+1 and (−1)2pq−p+1 = (−1)1−p = (−1)n−q. Similarly, the second term

together with third term can be written as

e1
q ∧de2

p +(−1)re2
p ∧de1

q = (−1)n−qd(e1
q ∧ e2

p) (4.82)

Substitution of (4.81) (4.82) in the
∫

Z integral in (4.78) then yields by Stokes’

theorem that this integral is equal to

(−1)n−q

∫

Z
d(e2

q ∧ e1
p)+d(e1

q ∧ e2
p) = (−1)n−q

∫

∂Z

[
e1

q ∧ e2
p + e2

q ∧ e1
p

]
, (4.83)

showing that (4.78) is zero, and thus D ⊂ D⊥.

• D⊥ ⊂ D : let ( f 1
p , f 1

q , f 1
b ,e1

p,e
1
q,e

1
b) ∈ D⊥, which implies that for all the elements

( f 2
p , f 2

q , f 2
b ,e2

p,e
2
q,e

2
b) ∈ D the right-hand side of (4.74) is zero, and hence by

substitution of (4.76)

∫

Z

[
(−1)re1

p ∧de2
q + e1

q ∧de2
p + e2

p ∧ f 1
p + e2

q ∧ f 1
q

]
+

+
∫

∂Z

[
e1

b ∧ e2
p − (−1)n−qe2

q ∧ f 1
b

]
= 0 (4.84)

for all e2
p and e2

q. Now, consider first e2
p and e2

q which are zero on the boundary

∂Z, implying that

∫

Z

[
(−1)re1

p ∧de2
q + e1

q ∧de2
p + e2

p ∧ f 1
p + e2

q ∧ f 1
q

]
= 0 (4.85)

for all e2
p and e2

q with e2
p|∂Z = e2

q|∂Z = 0. By the first line of (4.79) and (4.80)

(−1)re1
p ∧de2

q = (−1)r+(n−p)(n−q+1)de2
q ∧ e1

p

= (−1)n−qde2
q ∧ e1

p

= (−1)n−qd(e2
q ∧ e1

p)− e2
q ∧de1

p

(4.86)

Similarly, by the second line of (4.79), (4.80)

e1
q ∧de2

p = (−1)n−qd(e1
q ∧ e2

p)− (−1)n−qde1
q ∧ e2

p

e2
p ∧ f 1

p = (−1)(n−p)p f 1
p ∧ e2

p

(4.87)

Since e2
p|∂Z = e2

q|∂Z = 0, substitution of (4.86), (4.87) into (4.85) then yields by

Stokes’ theorem
∫

Z

[
−e2

q ∧de1
p − (−1)n−qde1

q ∧ e2
p +(−1)(n−p)p f 1

p ∧ e2
p + e2

q ∧ f 1
q

]
= 0 (4.88)

for all e2
p and e2

q with e2
p|∂Z = e2

q|∂Z = 0. Clearly, this implies
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f 1
q = de1

p (−1)(n−p)p f 1
p = (−1)(n−q)de1

q (4.89)

where the last equality is easily seen to be equivalent to

f 1
p = (−1)rde1

q (4.90)

Finally, substitute (4.89), (4.90) into (4.84) to obtain

∫ Z [
(−1)re1

p ∧de2
q + e2

q ∧de1
p + e1

q ∧de2
p +(−1)re2

p ∧de1
q

]
+

+
∫

∂Z

[
e1

b ∧ e2
p − (−1)n−qe2

q ∧ f 1
b

]
= 0 (4.91)

for all e2
p,e

2
q. Substituting again (4.86) and the first line of (4.87), noting that

(−1)n−qde1
q ∧ e2

p = (−1)re2
p ∧de1

q, this yields

∫

Z

[
(−1)n−qd(e2

q ∧ e1
p)+(−1)n−qd(e1

q ∧ e2
p)
]
+

+
∫

∂Z

[
e1

b ∧ e2
p − (−1)n−qe2

q ∧ f 1
b

]
= 0 (4.92)

and hence by Stokes’ theorem

∫

∂Z

[
(−1)n−qe2

q ∧ e1
p − (−1)n−qe2

q ∧ f 1
b +(−1)n−qe1

q ∧ e2
p + e1

b ∧ e2
p

]
= 0 (4.93)

for all e2
p,e

2
q, implying that

f 1
b = e1

p|∂Z e1
b = −(−1)n−qe1

q|∂Z (4.94)

showing that indeed ( f 1
p , f 1

q , f 1
b ,e1

p,e
1
q,e

1
b) ∈ D .

By defining the Stokes-Dirac structure on the bond space Bp,q, we have extended

the Hamiltonian operator J in the following sense. The Hamiltonian operator J
defines a Poisson bracket (4.61) and hence a Dirac structure, on the space of efforts

with domain being compact and strictly included in the spatial domain of the system

Z. By introducing the port variables (4.68) and defining the Stokes-Dirac structure,

we have hence extended the definition of Dirac structure to efforts which domain

being the complete domain Z, i.e. which may not vanish at its boundary.

Remark 4.3. One may note that the Stokes-Dirac structures may be composed by

considering spatial domains with common boundary. Indeed, let Z1,Z2 be two n-

dimensional manifolds with boundaries ∂Z1,∂Z2, such that:

∂Z1 = Γ ∪Γ1, Γ ∩Γ1 = /0

∂Z2 = Γ ∪Γ2, Γ ∩Γ2 = /0
(4.95)
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for certain (n−1)-dimensional manifolds Γ , Γ1 and Γ2, that is Z1 and Z2 have the

boundary Γ in common. Then the Stokes-Dirac structures D1 and D2 defined with

respect to the spatial domains Z1 and Z2 according to (4.76) may be composed

to the Stokes-Dirac structure associated with the spatial domain Z1 ∪Z2 using the

constraint relations on the port boundary variables
(

f 1
b , e1

b

)
of D1 and

(
f 2
b , e2

b

)
of

D2: f1|Γ = − f 2
b

∣∣
Γ

and e1
b

∣∣
Γ

= e2
b

∣∣
Γ

. Note that these relations define themselves

also a Dirac structure.

4.2.4.2 Poisson bracket associated with the Stokes-Dirac structure

Although Dirac structures are a generalization of Poisson structure and are not de-

fined by a Poisson bracket, one may also associate a Poisson bracket to any Dirac

structure on some set of real valued functions [54, 67]. Therefore in this paragraph,

we shall define the Poisson bracket associated with the Stokes-Dirac structure and

show how this extends the Poisson bracket associated with the differential operator

(4.61).

First, define the space of the admissible effort variables:

Eadm =
{

e ∈ Ep,q|∃ f ∈ Fp,q such that ( f ,e) ∈ D
}

(4.96)

On the space of admissible efforts Eadm one may define the bi-linear form such that

for any pair (e1,e2) ∈ E 2
adm:

[e1,e2] := 〈e1 | f2〉 ∈ R (4.97)

for any f2 ∈ Fp,q such that ( f2,e2) ∈ D . This bi-linear form is well-defined, since

for any other f ′2 ∈ F such that ( f ′2,e2) ∈ D we obtain by linearity ( f2 − f ′2,0) ∈ D ,

and hence

0 =≪ ( f1,e1),( f2 − f ′2,0) ≫= 〈e1 | f2〉−
〈
e1 | f ′2

〉
(4.98)

Furthermore, the bi-linear product [ , ] is skew-symmetric since if ( f1,e1),( f2,e2) ∈
D , then

0 =≪ ( f1,e1),( f2,e2) ≫= 〈e1 | f2〉+ 〈e2 | f1〉 (4.99)

Now, let us define on the space of flow variables Fp,q the set of admissible mappings

Kadm =
{

K : Fp,q → R | δK ∈ Eadm

}
(4.100)

Considering the definition of the Stokes-Dirac structure D given in Proposi-

tion 4.3 and particularly the last line of (4.76), the set of admissible functions Kadm

may also be written as follows:

Kadm =
{

K : Fp,q → R | δ f∂
K = −(−1)n−qδ fqK|

∂Z

}
(4.101)
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Using the skew-symmetric bracket defined on the admissible effort variables in the

equation (4.97), one may define the following bracket on the space of admissible

functions Kadm:

{K1,K2}D := [δK1,δK2] K1,K2 ∈ Kadm (4.102)

By skew-symmetry of [ , ], it immediately follows that also { , }D is skew-symmetric.

Using the constitutive relations (4.76) of the Stokes-Dirac structure, the bracket on

Kadm may be calculate as follows (using only the variational derivatives with respect

to the two first flow variables fp and fq):

{k1,k2}D =
∫

Z

[
δ fpK1 ∧ (−1)rd(δ fqK2)+(δ fqK1)∧d(δ fpK2)

]

−
∫

∂Z
(−1)n−q(δ fqK1)∧ (δ fpK2)

(4.103)

Furthermore, it is straightforward to check that the bracket { , }D also satisfies the

Jacobi-identity

{{k1,k2}D ,k3}D +{{k2,k3}D ,k1}D +{k3,k1}D ,k2}D = 0 (4.104)

for all ki ∈ Kadm.

In summary, the Dirac structure extends the bracket defined in (4.61) and associ-

ated with the differential operator (4.60) to functions defined on the flow variables

including the boundary variables f∂ . However it depends only on the variational

derivatives with respect to the two first flow variables fp and fq and hence it extends

the bracket (4.61) by the term of the second line of the equation (4.104) which de-

pends only on the boundary terms. This bracket will come to play a role later in the

characterization of invariants of the port Hamiltonian system defined with respect

to this bracket.

4.2.5 Port Hamiltonian formulation of systems of two conservation

laws with boundary energy flow

4.2.5.1 Definition

In the preceding paragraph, we have shown that the interconnection relations asso-

ciated with a system of two conservation laws in canonical interaction (see equa-

tions (4.60) and (4.68)), define a Dirac structure that we have called Stokes-Dirac

structure. Considering the definition of the system of the two conservation laws in

canonical coupling of Definition 4.8 and the definition of the Stokes-Dirac structure

of Proposition 4.3, it is straightforward to formulate the system as a port Hamilto-

nian system with boundary port variables.
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Definition 4.9. The boundary port-Hamiltonian system of two conservation laws

with n-dimensional manifold of spatial variables Z, state space Ω p(Z)× Ω q(Z)
(with p + q = n + 1 and r = pq + 1), Stokes-Dirac structure D given by (4.76) and

Hamiltonian functional H, is defined as follows:

[
− ∂αp

∂ t

− ∂αq

∂ t

]
= ε

[
0 (−1)rd

d 0

][
δpH

δqH

]

[
fb

eb

]
=

[
ε 0

0 −(−1)n−q

][
δpH|∂Z

δqH|∂Z

] (4.105)

As a consequence of the power-continuity relation satisfied by any element

( fp, fq, fb,ep,eq,eb) of the Dirac structure D :

∫

Z
[ep ∧ fp + eq ∧ fq]+

∫

∂Z
eb ∧ fb = 0 (4.106)

one may deduce an additional balance equation (to the two conservation equations

on αp and αq), namely that the Hamiltonian function H is also a conserved quantity

and satisfies also a balance equation.

Proposition 4.4. Consider the distributed parameter port-Hamiltonian system (4.105).

Then the Hamiltonian function H satisfies the power balance equation:

dH

dt
=

∫

∂Z
eb ∧ fb (4.107)

expressing that the increase in energy on the domain Z is equal to the power supplied

to the system through its boundary ∂Z.

This port Hamiltonian system represents the dynamics of a system of two conser-

vation laws in canonical interaction and constitutes thereby a generalization to the

infinite dimensional case, of the standard Hamiltonian systems defined with respect

to a symplectic bracket (in the linear case, the harmonic oscillator).

4.2.5.2 Lossless vibrating string formulated using k-forms

The first example is again the example of the vibrating string which has already been

presented in Sect. 4.1.2.5. Now we shall briefly formulate it in terms of boundary

port Hamiltonian systems defined on differential forms of the 1-dimensional spatial

domain Z = [a, b]. In the sequel z denotes some coordinate of the interval Z.

The strain is a subject to a conservation law, hence it is defined be the 1-form

αq(t) = ε(t,z)dz (4.108)

The associated co-energy variable is the stress given by the 0-form

σ = T ∗αq (4.109)
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with T the elasticity modulus and ∗ the Hodge star operator (see Sect. 4.2.1.4). The

elastic-potential energy is the quadratic function of the strain defined by:

U(αq) =
1

2

∫ b

a
T ∗αq ∧αq (4.110)

and the stress 0-form is then indeed: σ = δαqU . The kinetic momentum is also a

conserved quantity subject to a conservation law, hence it is defined as the 1-form

αp(t) = p(t,z)dz (4.111)

The associated co-energy variable is the velocity given by the 0-form

v =
1

µ
∗αp = δpK (4.112)

and the kinetic energy function is given by the quadratic function

K(αp) =
1

2

∫ b

a
v∧ p (4.113)

In this case the Dirac structure is the Stokes-Dirac structure for n = p = q = 1, with

ε = −1, leading to the port Hamiltonian system (with H := U +K)

[
− ∂αp

∂ t

− ∂αq

∂ t

]
=

[
0 −d

−d 0

][
δpH

δqH

]

[
fb

eb

]
=

[
1 0

0 1

][
δpH|∂Z

δqH|∂Z

] (4.114)

with boundary variables being the velocity and stress 0-forms at the ends of the

string.

4.2.5.3 Maxwell’s equations

The formulation of Maxwell’s equations in terms of differential forms is very clas-

sical [92]. In this section we illustrate how it may be extended to a boundary port-

Hamiltonian system defined on the Stokes-Dirac structure with 3-dimensional con-

nected bounded spatial domain Z ⊂ R
3 having a 2-dimensional smooth boundary

∂Z. In the sequel we shall denote by (z1, z2, z3) some coordinates of the spatial

domain.

The electromagnetic field is defined by two energy variables that are the electric

field induction 2-form αp = D ∈ Ω 2(Z):

D =
1

2
Di j(t,z)dzi ∧dz j (4.115)



4.2 Stokes-Dirac structures and distributed port Hamiltonian systems 247

and the magnetic field induction 2-form αq = B ∈ Ω 2(Z):

B =
1

2
Bi j(t,z)dzi ∧dz j (4.116)

The corresponding Stokes-Dirac structure with n = 3, p = 2 and q = 2) is given as

(cf. (4.76)):

[
fp

fq

]
=

[
0 −d

d 0

][
ep

eq

] [
fb

eb

]
=

[
1 0

0 1

][
ep|∂Z

eq|∂Z

]
(4.117)

Usually in this case one does not start with the definition of the total energy (Hamil-

tonian) H, but instead with the co-energy variables δpH and δqH, given, respec-

tively, as the electric field intensity E ∈ Ω 1(Z):

E = Ei(t,z)dzi (4.118)

and the magnetic field intensity H ∈ Ω 1(Z):

H = Hi(t,z)dzi (4.119)

They are related to the energy variables through the constitutive relations of the

medium (or material equations)

∗D = εE ∗B = µH (4.120)

with the scalar functions ε(z) and µ(z) denoting the electric permittivity, respec-

tively magnetic permeability. Then one defines the Hamiltonian H as

H =
∫

Z

1

2
(E ∧D +H ∧B), (4.121)

and one immediately verifies that δpH = E and δqH = H .

Remark 4.4. There are other cases (corresponding to a nonlinear theory of the elec-

tromagnetic field, such as the Born-Infeld theory, see e.g. [92]) where the Hamil-

tonian H =
∫

Z h with the energy density h(D ,B) being a more general expression

than 1
2
(ε−1 ∗D ∧D + µ−1 ∗B∧B).

Assuming that there is no current in the medium Maxwell’s equations can now

be written as the two conservation laws in the electrical and the magnetic domains,

namely Ampère’s and Faraday’s law (see [92])

∂D

∂ t
= dH

∂B

∂ t
= −dE

(4.122)
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Explicitly taking into account the behavior at the boundary, Maxwell’s equations

on a domain Z ⊂ R
3 are then represented as the boundary port-Hamiltonian system

with respect to the Stokes-Dirac structure given by (4.117), as

[
− ∂D

∂ t

− ∂B
∂ t

]
=

[
0 −d

d 0

][
δDH

δBH

] [
fb

eb

]
=

[
δDH|∂Z

δBH|∂Z

]
(4.123)

The energy-balance (4.107) in the case of Maxwell’s equations takes the form

dH

dt
=
∫

∂Z
δBH ∧δDH =

∫

∂Z
H ∧E = −

∫

∂Z
E ∧H (4.124)

with E ∧H is the 2-form corresponding to the Poynting vector and character-

izing the outgoing electro-magnetic energy through the boundary of the domain

(see [92]).

4.2.6 Extension to distributed port variables and scattering

boundary variables

4.2.6.1 Distributed port variables and dissipation

In order to represent systems of conservation laws with sources (or general balance

equations), it is necessary to add to the boundary port variables also distributed port

variables. An example of this is provided by Maxwell’s equations (cf. Sect. 4.2.5.3),

where interaction may also take place via the current density J, which directly af-

fects the electric charge distribution in the domain Z. Another situation where such

distributed port variables arise concern multi-scale distributed parameter systems,

such as for instance models of the heart of fuel cells. In the sequel we shall treat

a little more general case where the port variables are defined on some arbitrary

spatial domain denoted by S, not necessarily equal to the domain Z.

In order to incorporate the distributed port variables, the effort and flow spaces

Fp,q and Ep,q as defined in (4.71), (4.73) are augmented to:

F a
p,q := Fp,q ×Ω d(S) E a

p,q := Ep,q ×Ω n−d(S) (4.125)

for some m-dimensional manifold S and some d ∈ {0,1, · · · ,m}, with ed ∈ Ω d(S)
denoting the distributed source effort variable, and f d ∈ Ω n−d(S) the conjugated

distributed flow variable, corresponding to an energy exchange

∫

S
f d ∧ ed (4.126)

The Stokes-Dirac structure (4.76) is now extended to
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


fp

fq

f d


=




0 (−1)rd Gp

d 0 Ge

−G∗
p −G∗

q 0






ep

eq

ed




[
fb

eb

]
=

[
1 0

0 −(−1)n−q

][
ep|∂Z

eq|∂Z

] (4.127)

with the compound map G:

G =

[
Gp

Gq

]
: Ω d(S) → Ω p(Z)×Ω q(Z) (4.128)

admitting a dual map:

G∗ = (G∗
p,G

∗
q) : Ω n−p(Z)×Ω n−q(Z) → Ω n−d(S) (4.129)

satisfying

∫

Z
[ep ∧Gp( fd)+ eq ∧Gq( fd)] =

∫

S

[
G∗

p(ep)+G∗
q(eq)

]
∧ fd (4.130)

for all ep ∈ Ω n−p(Z), eq ∈ Ω n−q(Z) and fd ∈ Ω d(S). The following proposition can

be easily checked.

Proposition 4.5. Equations (4.127) determine a Dirac structure Da ⊂ F a
p,q ×E a

p,q

with respect to the augmented bi-linear form on the bond space F a
p,q ×E a

p,q which

is obtained by adding to the bi-linear form (4.74) on Fp,q,×Ep,q the term

∫

S

[
e1

d ∧ f 2
d + e2

d ∧ f 1
d

]
(4.131)

By identifying fp =
∂αp

∂ t
, fq =

∂αq

∂ t
, ep = δpH and eq = δqH in the definition of

Da given by (4.127) we obtain a port-Hamiltonian system with external variables

( fb, fd ,eb,ed), with fb,eb the boundary external variables and fd ,ed the distributed

external variables. Furthermore, the energy balance (4.107) extends to

dH

dt
=

∫

∂Z
eb ∧ fb +

∫

S
ed ∧ fd (4.132)

with the first term on the right-hand side denoting the power flow through the bound-

ary, and the second term denoting the distributed power flow.

Note 4.5. It should be noted that the assumption that the map G admits a dual as

stated in (4.129) is a restrictive assumption from the physical modelling perspective.

It excludes for instance any map involving the exterior derivative as for instance it

was the case in the example of the vibrating string with structural damping. If one

would like to take account of such a case then the definition of the port variables

of the extended Dirac structure should be modified but this topic exceeds the scope

of this chapter. For the case of 1-dimensional spatial domains the reader is referred

to [211].
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Finally, irreversible processes may be incorporated in the framework of dis-

tributed parameter port-Hamiltonian systems by completing the model with some

dissipative relations on the port variables (boundary or distributed port variables).

For example, for distributed dissipation, let R : Ω n−d(S)→ Ω d(S) be a map satisfy-

ing ∫

S
ed ∧R(ed) ≥ 0, ∀ed ∈ Ω n−d(S) (4.133)

Then completing the port Hamiltonian system defined with respect to the Dirac

structure Da, with the dissipative relation:

fd = −R(ed) (4.134)

we obtain a port-Hamiltonian system with dissipation, satisfying the energy balance

equation and dissipation relation:

dH

dt
=
∫

∂Z
eb ∧ fb −

∫

S
ed ∧R(ed) ≤

∫

∂Z
eb ∧ fb (4.135)

Example 4.1. With reference to the Maxwell’s equations of Sect. 4.2.5.3, in the case

of a non-zero current density J ∈Ω 2(Z), we have to modify the first matrix equation

of (4.123) to [
− ∂D

∂ t

− ∂B
∂ t

]
=

[
0 −d

d 0

][
δDH

δBH

]
+

[
I

0

]
J (4.136)

with I denoting the identity operator from J ∈Ω 2(Z) to Ω 2(Z). Thus, in the notation

of (4.128), fd = J, S = Z, and Ω d(S) = Ω 2(Z). Furthermore, we add the equation

ed = −
[
I 0
][δDH

δBH

]
= −E , (4.137)

yielding the augmented energy balance

dH

dt
= −

∫

∂Z
E ∧H −

∫

Z
E ∧ J (4.138)

which is known as Poynting’s theorem. Finally, in order to incorporate energy dissi-

pation we write J = Jd + J̄, and we impose Ohm’s law

∗Jd = σE (4.139)

with σ(t,z) the specific conductivity of the medium.

4.2.6.2 An introduction to scattering variables

The description of open Hamiltonian systems, exchanging some energy with their

environment through the boundary of their spatial domain has led to the definition
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of port variables and port Hamiltonian systems defined with respect to Stokes-Dirac

structures. The balance equation on the Hamiltonian (for physical systems, the total

energy) is then written according to (4.107) as:

dH

dt
=
∫

∂Z
eb ∧ fb

where fb ∈ Ω n−p(∂Z) and eb ∈ Ω n−q(∂Z) with p + q = n + 1. The energy flow

through the boundary is expressed as the dual product between the conjugated pair

of boundary flow and effort variables. However it might be useful for control pur-

poses or model reduction purposes to consider so-called scattering variables. In this

paragraph we shall briefly introduce such boundary variables corresponding to the

Stokes-Dirac structure. Basically, the finite dimensional scattering theory discussed

in Sect. 2.8 is extended in order to locate the incoming and outgoing power flows on

the boundary of the infinite dimensional system. The first step is the generalization

of scattering subspaces to the distributed parameter case.

As discussed in Sect. 2.8.3, the scattering subspaces can be defined in a geometric

way once the space of power variables has been equipped with a symmetric bi-

linear operator (the +pairing) and a metric. According to Sect. 4.2.1.3, the pairing

for conjugated pairs of exterior forms defined on the boundary ∂Z of the spatial

domain Z is (see (4.50)):

〈e | f 〉 :=
∫

∂Z
e∧ f

with f ∈ Ω n−p(∂Z) ≡ F and e ∈ Ω n−q(∂Z) ≡ E , thus leading to the following

definition of +pairing:

≪ ( f1,e1),( f2,e2) ≫:= 〈e1 | f2〉+ 〈e2 | f1〉 =
∫

∂Z
e1 ∧ f2 +

∫

∂Z
e2 ∧ f1 (4.140)

with ( fi,ei) ∈ F ×E , i = 1,2. The most critical point is now the identification of a

suitable norm on the space of power variables. Since ∂Z is a Riemannian manifold,

a symmetric positive definite 2-contra-variant tensor g is well-defined and, based on

this tensor, the Hodge star operator can be also defined (see Sect. 4.2.1.4). Then, it

is possible to prove that, given with ( fi,ei) ∈ F ×E , i = 1,2,

〈( f1,e1),( f2,e2)〉 :=
∫

∂Z
e1 ∧∗e2 +

∫

∂Z
f1 ∧∗ f2 (4.141)

in an inner product on F ×E , and if ( f ,e) ∈ F ×E

‖( f ,e)‖2 := 〈( f ,e),( f ,e)〉 =
∫

∂Z
e∧∗e+

∫

∂Z
f ∧∗ f (4.142)

is a norm on on F × E . Then, taking into account Sect. 2.8.3 and, in particular,

Remark 2.11, it is possible to give the following:

Definition 4.10. Suppose that ∂Z is an (n− 1)-dimensional Riemannian manifold

and assume that F = Ω n−p(∂Z) is the space of flows and that E = Ω n−q(∂Z) is
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the space of efforts, with p+q = n+1. The scattering subspaces Σ+,Σ− ⊂ F ×E
are defined as

Σ+ :=
{
( f ,e) ∈ F ×E | ≪ ( f ,e),( f ,e) ≫= ‖( f ,e)‖2

}

Σ− :=
{
( f ,e) ∈ F ×E | ≪ ( f ,e),( f ,e) ≫= −‖( f ,e)‖2

}

From (4.141) and (4.142), we deduce that the scattering subspaces of Defini-

tion 4.10 can be written as:

Σ+ =
{
( f ,e) ∈ F ×E | f = ∗e ⇔ e = (−1)(n−p)(p−1)∗ f

}

Σ− =
{
( f ,e) ∈ F ×E | f = −∗e ⇔ e = −(−1)(n−p)(p−1)∗ f

}
(4.143)

These new expressions for Σ+ and Σ− are instrumental for proving that all the

main properties of Sect. 2.8.2, valid in finite dimensions, have been extended to the

distributed parameter case. More precisely, it is easy to verify that

• Σ+ ∩Σ− = {(0,0)};

• F , E , Σ+ and Σ− are isomorphic spaces;

• If σ+ ∈ Σ+ and σ− ∈ Σ−, then 〈σ+,σ−〉 = 0, which means that σ+ and σ− are

orthogonal with respect to the scalar product (4.141) defined on F ×E .

Immediate consequences are that F ×E = Σ+⊕Σ−, with Σ+ and Σ− orthogonal in

the sense of the inner product (4.141), and that for every ( f ,e) ∈ F ×E , σ+ ∈ Σ+

and σ− ∈ Σ− are unequivocally determined in such a way that (see (2.239) for the

finite dimensional case):

( f ,e) = σ+ +σ− (4.144)

Moreover, it can be verified that the +pairing (4.140) restricted on Σ+ and Σ− gives

the inner product (4.141). Finally, the scattering power decomposition (2.241) can

be proved to hold also in case of distributed parameter systems. In fact, given ( f ,e)∈
F ×E , we have that:

〈e | f 〉 =
1

2

∥∥σ+
∥∥2 − 1

2

∥∥σ−∥∥2

where σ+ and σ− are such that (4.144) holds, and the metric ‖·‖ is the one defined

by (4.142) and restricted on Σ+ and Σ−.

It is important to note that, as reported in Definition 4.10, the scattering subspaces

are subsets of F × E . On the other hand, through the Hodge star operator it is

possible to establish a bijection between the scattering subspaces and the space of

flows F or the space of efforts E . This can be easily deduced from (4.143). An

interesting consequence is that it makes sense to identify the scattering subspaces,

for example, with E . If Σ+
E ≡ E and Σ−

E ≡ E , then (4.144) can be written as

( f ,e) = (∗σ+
E ,σ+

E )+(−∗σ−
E ,σ−

E )
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Fig. 4.1 Interconnection of

systems A and B over a subset

Z̄ of their boundary.

∂ZB∂ZA

ZA

ZB

Z̄

A

B

with σ+
E ∈ Σ+

E and σ−
E ∈ Σ−

E . Consequently, we have that

f = ∗
(
σ+

E −σ−
E

)
e = σ+

E +σ−
E (4.145)

and that

σ+
E =

e+(−1)(n−1)(n−q)∗ f

2
σ−

E =
e− (−1)(n−1)(n−q)∗ f

2

which are the infinite dimensional counterpart of (2.248). Similar considerations can

be drawn by identifying the scattering subspaces with the space of flows F .

As in finite dimensions, scattering variables can be used to describe the power

conserving interconnection of distributed parameter systems (see Sect. 2.8.4). Con-

sider two infinite dimensional systems A and B with spatial domain given by two

n-dimensional Riemannian manifolds ZA and ZB. Then, suppose that their borders

∂ZA and ∂ZB are Riemannian manifolds too. On ∂ZA (resp. on ∂ZB), assume that

the space of flows is given by FA = Ω n−p(∂ZA) (resp. by FB = Ω n−p(∂ZB)), and

its dual, the space of efforts, by eA = Ω n−q(∂ZA) (resp. by eB = Ω n−q(∂ZB)). Since

a Riemannian metric gA (resp. gB) is defined over the border of each spatial domain

ZA and ZB, it is possible to define the Hodge star operator ∗A (resp. ∗B) and the

scattering subspaces Σ+
A and Σ−

A (resp. Σ+
B and Σ−

B ) on ∂ZA (resp. on ∂ZB), or their

equivalent representation in terms of elements of the space of efforts or flows.

If Z̄ = ∂ZA ∩ ∂ZB 6= /0, ZA and ZB are interconnected through the distributed

port Z̄, which is supposed to be an (n − 1)-dimensional Riemannian manifold.

This situation is represented in Fig. 4.1. The interconnection is power conserving

if eA ∧ fA + eB ∧ fB = 0 on Z̄, which leads e.g. to the well-known common-effort

and common-flow interconnections.

Assume, for example, a common-effort interconnection between system A and B.

Since Z̄ belongs to both the boundaries of A and B, we can say that, on this manifold,

two Riemannian metrics gA and gB are defined. These metrics are strictly related

to the physical properties of the two systems. Moreover, on Z̄ it will be possible to

define two Hodge star operators ∗A and ∗B and, consequently, two distinct scattering

decompositions. In other words, the space of power variables of A and B, restricted

to Z̄, can be described by using scattering variables related to two different scattering

decomposition, clearly defined by means of two (different) Hodge star operators.

Given ( fi,ei) ∈ Fi ×Ei, with i = A,B, from (4.144), in terms of scattering variables

it is possible to write that
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( fA,eA) = σ+
A +σ−

A ( fB,eB) = σ+
B +σ−

B

where σ+
i ∈ Σ+

i and σ−
i ∈ Σ−

i , with i = A,B. In this way, the interconnection can

be described in terms of the scattering variables. In case of the common-effort in-

terconnection on Z̄, i.e. fA = − fB and eA = eB, if systems A and B share the same

metric g = gA = gB on their boundary, from (4.145) it is easy to verify that

σ+
A = σ−

B σ+
B = σ−

A

This means that, if the two systems have the same physical properties, then the

outgoing power from A becomes the incoming power in B and, symmetrically, the

outgoing power from B becomes the incoming power in A. So, no power reflection

is present at the interconnection port Z̄, phenomena that is present if the physical

properties of the two systems are different, as it can be easily verified. This is exactly

what happens also in the finite dimensional case, as reported in Sect. 2.8.4. More

details can be found in [129].

4.3 Extension of port-Hamiltonian systems on Stokes-Dirac

structures

In Sect. 4.2, we have presented a canonical Dirac structure called Stokes-Dirac

structure and associated with systems of two conservation laws subject to the canon-

ical reversible inter-domain coupling relation given in (4.76). And we have shown

how one may define a port boundary Hamiltonian system with respect to this Stokes-

Dirac structure which accounts for energy flow through the boundary of the spatial

domain. However in Sect. 4.1, on the examples of dissipative physical systems,

we have considered Dirac structures which may be considered as extensions of the

canonical Stokes-Dirac structure. In this section we shall conclude with some exten-

sions of Stokes-Dirac structures appearing in models of reversible physical systems

on different paradigmatic examples.

The first example is the formulation of a flexible beam model, the Timoshenko

beam, as a boundary port Hamiltonian model. In this case actually there are two

physical domains in interaction the kinetic and potential elastic domains like for the

vibrating string. However the displacements of a flexible beam are not only transla-

tional but also rotational and therefore the Stokes-Dirac structure has to be extended

in order to encompasses the kinematic and static relations describing the assump-

tions on the configuration space. A further extension is necessary in order to formu-

late the port-Hamiltonian model of a nonlinear flexible link, which is presented as a

second example. Finally, the third example concern the 3-dimensional model of an

isentropic fluid. In this case also two physical domains, the kinetic and the spatial

domains are in canonical interaction but one has also to encompass the convec-

tion of momentum. For this purpose we shall recall how the canonical Stokes-Dirac

structure may be augmented with a nonlinear term generating the convection.
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4.3.1 Timoshenko beam

According to the Timoshenko theory, the motion of a beam can be described by the

following system of PDE:

ρ
∂ 2w

∂ t2
−K

∂ 2w

∂ z2
+K

∂φ

∂ z
= 0

Iρ
∂ 2φ

∂ t2
−EI

∂ 2φ

∂ z2
+K

(
φ − ∂w

∂ z

)
= 0

(4.146)

where t is the time and z ∈ [0,L] is the spatial coordinate along the beam in its

equilibrium position, w(z, t) is the deflection of the beam from the equilibrium con-

figuration and φ(z, t) is the rotation of the beam’s cross section due to bending; the

motion takes place in the wz-plane. Denote by Z := [0,L] the spatial domain and

by ∂Z = {0,L} its boundary. The coefficients ρ , Iρ , E and I, assumed to be con-

stant, are the mass per unit length, the mass moment of inertia of the cross section,

Young’s modulus and the moment of inertia of the cross section, respectively. The

coefficient K is equal to kGA, where G is the modulus of elasticity in shear, A is the

cross sectional area and k is a constant depending on the shape of the cross section.

The mechanical energy is equal to [102]

H(t) :=
1

2

∫ L

0

[
ρ

(
∂w

∂ t

)2

+ Iρ

(
∂φ

∂ t

)2

+K

(
φ − ∂w

∂ z

)2

+EI

(
∂φ

∂ z

)2
]

dz

(4.147)

thus showing the presence of two interactive energy domains, the kinetic and the

potential elastic. The potential elastic energy is a function of the shear and of the

bending, given by the following 1-forms:

εt = dw−∗φ εr = dφ (4.148)

with w,φ ∈ Ω 0(Z). The associated co-energy variables are the 0-forms (functions)

shear force and the bending momentum, given by σt(t,z) = K∗εt(t,z) and σr(t,z) =
EI∗εr(t,z). Besides, the kinetic energy is function of the translational and rotational

momenta, i.e. of the following 1-form:

pt = ρ
∂w

∂ t
pr = Iρ

∂φ

∂ t
(4.149)

with ρ, Iρ ∈ Ω 1(Z), and the associated co-energy variables are the 0-forms trans-

lational and rotational momenta, which are given by vt(t,z) = 1
ρ ∗pt(t,z) and

vr(t,z) = 1
Iρ
∗pr(t,z). Consequently, the total energy (4.147) becomes the follow-

ing (quadratic) functional:
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H(pt , pr,εt ,εr) =
1

2

∫

Z

(
1

ρ
∗pt ∧ pt +

1

Iρ
∗pr ∧ pr +K∗εt ∧ εt +EI∗εr ∧ εr

)

=
∫

Z
H (pt , pr,εt ,εr) (4.150)

with H : Ω 1(Z)× ·· ·×Ω 1(Z)×Z → Ω 1(Z) the energy density. Consider a time

function (pt(t), pr(t),εt(t),εr(t)) ∈ Ω 1(Z)× ·· ·×Ω 1(Z) with t ∈ R, and evaluate

the energy H along this trajectory. At any time t, the variation of internal energy,

that is the power exchanged with the environment, is given by

dH

dt
=
∫

Z

(
δpt H ∧ ∂ pt

∂ t
+δpr H ∧ ∂ pr

∂ t
+δεt H ∧ ∂εt

∂ t
+δεr H ∧ ∂εr

∂ t

)

=

∫

Z

[(
1

ρ
∗pt

)
∧ ∂ pt

∂ t
+

(
1

Iρ
∗pr

)
∧ ∂ pr

∂ t
+(K∗εt)∧

∂εt

∂ t
+(EI∗εr)∧

∂εr

∂ t

]

The differential forms
∂ pt

∂ t
,

∂ pr

∂ t
, ∂εt

∂ t
and ∂εr

∂ t
are the time derivatives of the energy

variables pt , pr, εt , εr and represent the generalized velocities (flows), while δpt H,

δpr H, δεt H, δεr H are the variational derivative of the total energy (4.150) They are

related to the rate of change of the stored energy and represent the generalized forces

(efforts).

The distributed port-Hamiltonian formulation of the Timoshenko beam can be

obtained either by expressing (4.146) in terms of pt , pr, εr and εt introduced in

(4.148) and (4.149), or, in a more rigorous way, by revealing the underlying Stokes-

Dirac structure of the model. For this purpose, it is necessary to define the space of

power variables. The space of flows is given by

F := Ω 1(Z)×Ω 1(Z)×Ω 1(Z)×Ω 1(Z)×Ω 0(∂Z)×Ω 0(∂Z) (4.151)

while its dual, the space of efforts E can be identified with

E := Ω 0(Z)×Ω 0(Z)×Ω 0(Z)×Ω 0(Z)×Ω 0(∂Z)×Ω 0(∂Z) (4.152)

Then, with the following proposition the Stokes-Dirac structure of the Timoshenko

beam is introduced.

Proposition 4.6. Consider the space of power variables F ×E with F and E de-

fined in (4.151) and (4.152) and the +pairing ≪ ·, · ≫ given by

≪
(

f 1
pt
, . . . , f

r,1
b ,e1

pt
, . . . ,er,1

b ,
)

,
(

f 2
pt
, . . . , f

r,2
b ,e2

pt
, . . . ,er,2

b

)
≫:=

:=
∫

Z

(
f 1
pt
∧ e2

pt
+ f 2

pt
∧ e1

pt
+ f 1

pr
∧ e2

pr
+ f 2

pr
∧ e1

pr

)
+

+
∫

Z

(
f 1
εt
∧ e2

εt
+ f 2

εt
∧ e1

εt
+ f 1

εr
∧ e2

εr
+ f 2

εr
∧ e1

εr

)
+

+
∫

∂Z

(
f

t,1
b ∧ e

t,2
b + f

t,2
b ∧ e

t,1
b + f

r,1
b ∧ e

r,2
b + f

r,2
b ∧ e

r,1
b

)

(4.153)
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Define the following linear subspace D of F ×E :

D =

{
(

fpt , fpr , fεt , fεr , f t
b, f r

b ,ept ,epr ,eεt ,eεr ,e
t
b,e

r
b

)
∈ F ×E |




fpt

fpr

fεt

fεr


= −




0 0 d 0

0 0 ∗ d

d −∗ 0 0

0 d 0 0







ept

epr

eεt

eεr


 ,




f t
b

f r
b

et
b

er
b


=




ept |∂Z

epr |∂Z

eεt |∂Z

eεr |∂Z








(4.154)

Then D = D⊥, that is D is a Stokes-Dirac structure.

Proof. The proof is quite similar to the one given for Proposition 4.3. More details

can be found in [121].

Assume that the total energy (4.150) is the Hamiltonian of the system.The rate of

change of the energy variables pt , pr, εt and εr can be connected to the Stokes-Dirac

structure (4.154) by setting

fpt = −∂ pt

∂ t
fεt = −∂εt

∂ t
fpr = −∂ pr

∂ t
fεr = −∂εr

∂ t
(4.155)

where the minus sign is necessary in order to have a consistent energy flow descrip-

tion. Moreover, the rate of change of the Hamiltonian with respect to the energy

variables, that is its variational derivatives, can be related to the Stokes-Dirac struc-

ture by setting

ept = δpt H eεt = δεt H epr = δpr H eεr = δεr H (4.156)

From (4.155) and (4.156), it is possible to obtain the distributed Hamiltonian formu-

lation with boundary energy flow of the Timoshenko beam. We give the following:

Definition 4.11. The port-Hamiltonian model of the Timoshenko beam with Stokes-

Dirac structure D (4.154) and Hamiltonian H (4.150) is given by




∂ pt

∂ t
∂ pr

∂ t
∂εt

∂ t
∂εr

∂ t


=




0 0 d 0

0 0 ∗ d

d −∗ 0 0

0 d 0 0







δpt H

δpr H

δεt H

δεr H







f t
b

f r
b

et
b

er
b


=




δpt H |∂Z

δpr H |∂Z

δεt H |∂Z

δεr H |∂Z


 (4.157)

Since the elements of every Stokes-Dirac structure satisfy the power conserving

property, we have that, given ( fpt , . . . , fεr ,ept , . . . ,eεr , f t
b, . . . ,e

r
b) ∈ D , then

∫

Z
( fpt ∧ ept + fpr ∧ epr + fεt ∧ eεt + fεr ∧ eεr)+

∫

∂Z

(
f t
b ∧ et

b + f r
b ∧ er

b

)
= 0

and, consequently, the following proposition can be proved.
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Proposition 4.7. Consider the distributed port-Hamiltonian model of the Timo-

shenko beam (4.157). Then

dH

dt
(t) =

∫

∂Z

(
et

b ∧ f t
b + er

b ∧ f r
b

)
=
[
et

b(t,z) f t
b(t,z)+ er

b(t,z) f r
b(t,z)

]z=L

z=0
(4.158)

or, in other words, the increase of energy kinetic/potential energy of the beam is

equal to the power supplied through the boundary.

Power exchange through the boundaries is not the only way by means of which

the system can interact with the environment. The “distributed control” is a well-

know control technique that can be fruitfully applied to flexible structures. The ac-

tuators are connected along the flexible structure and can act on the system applying

forces/couples that are functions of the configuration of the beam. The final result

is that vibrations can be damped in a more efficient way than acting only on the

boundary of the beam.

In order to introduce a distributed port, the space of power variables F × E
defined in (4.151, 4.152) and the Stokes-Dirac structure D defined in (4.154) have

to be modified. The space of power variables becomes Fd ×Ed , where

Fd := F ×Ω 1(Z)×Ω 1(Z)︸ ︷︷ ︸
distrib. flow

Ed := E ×Ω 1(Z)×Ω 1(Z)︸ ︷︷ ︸
distrib. effort

(4.159)

The modified Stokes-Dirac structure that incorporates the distributed port is given

by the following:

Proposition 4.8. Consider the space of power variables Fd ×Ed defined in (4.159)

and the +pairing operator ≪ ·, · ≫ given by (4.153). Define the following linear

subspace Dd of Fd ×Ed:

Dd =

{
(

fpt , fpr , fεt , fεr , f t
b, f r

b , f t
d , f r

d ,ept ,epr ,eεt ,eεr ,e
t
b,e

r
b,e

t
d ,e

r
d

)
∈ Fd ×Ed |




fpt

fpr

fεt

fεr


= −




0 0 d 0

0 0 ∗ d

d −∗ 0 0

0 d 0 0







ept

epr

eεt

eεr


−




1 0

0 1

0 0

0 0



[

f t
d

f r
d

]
,

[
et

d

er
d

]
=

[
1 0 0 0

0 1 0 0

]



ept

epr

eεt

eεr


 ,




f t
b

f r
b

et
b

er
b


=




ept |∂Z

epr |∂Z

eεt |∂Z

eεr |∂Z








(4.160)

Then Dd = Dd
⊥, that is Dd is a Stokes-Dirac structure.

Proof. The proof is very similar to the one given for Proposition 4.3 and Proposi-

tion 4.6.
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The port-Hamiltonian formulation of the Timoshenko beam with boundary and

distributed energy flow can be obtained simply combining the Stokes-Dirac struc-

ture Dd (4.160) with (4.155) and (4.156). The resulting model is given in the fol-

lowing:

Definition 4.12. The port-Hamiltonian model of the Timoshenko beam with Stokes-

Dirac structure Dd (4.160) and Hamiltonian H (4.150) is given by




∂ pt

∂ t
∂ pr

∂ t
∂εt

∂ t
∂εr

∂ t


=




0 0 d 0

0 0 ∗ d

d −∗ 0 0

0 d 0 0







δpt H

δpr H

δεt H

δεr H


+




1 0

0 1

0 0

0 0



[

f t
d

f r
d

]

[
et

d

er
d

]
=

[
1 0 0 0

0 1 0 0

]



δpt H

δpr H

δεt H

δεr H


 ,




f t
b

f r
b

et
b

er
b


=




δpt H |∂Z

δpr H |∂Z

δεt H |∂Z

δεr H |∂Z




(4.161)

The energy balance equation (4.158) becomes

dH

dt
=
∫

∂Z

(
f t
b ∧ et

b + f r
b ∧ er

b

)
+
∫

Z

(
f t
d ∧ et

d + f r
d ∧ er

d

)
(4.162)

which expresses the fact that the variation of internal stored energy equals the power

supplied to the system through the boundary and the distributed port.

4.3.2 Nonlinear flexible link

In this section, a simple way to model flexible robotic links is presented. Differently

from classical approaches and from Euler-Bernoulli [62, 100] or Timoshenko the-

ory [89,102,121] (see also Sect. 4.3.1), the proposed model is able to describe large

deflections in 3-D space and does not rely on any finite dimensional approximation

(e.g. modal approximation). The model has been formulated within the port Hamil-

tonian formalism because intuitive considerations on the geometric behavior of the

elastic link naturally define a Stokes–Dirac structure. Moreover, it should be already

clear that port Hamiltonian systems can be easily interconnected, thus allowing the

description of complex systems as a composition of parts in an object-oriented way.

By combining rigid bodies, springs, dampers, joints and, finally, flexible links (i.e.

by extending the modelling procedure illustrated in Sect. 3.2, see [124]), it is virtu-

ally possible to model and mathematically describe whatever complex mechanical

structure formed by beams, without relying on rough finite dimensional approxima-

tion of the elastic behavior, usually deduced from a combination of modal analysis

and system identification, [46, 61, 62, 155, 207, 215].

Consider a slender flexible beam of length L and with an unstressed configura-

tion which is not required to be a straight line. As illustrated in Fig. 4.2 and fol-
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Fig. 4.2 Schematic represen-

tation of a flexible link in

the deformed and unstressed

configurations.

E0

Eb(z)

z = 0

z = L

h0
b(z)

lowing [88, 193], if z ∈ [0,L] denotes the position along the link in the unstressed

configuration, assume that the configuration in the space of the cross section with

respect to an inertial reference E0 is given by h0
b(z) ∈ SE0

b (3), where the subscript

b denotes the body reference Eb(z) attached to the cross section. The motion of

the cross section is due to a wrench w
b,0
b (z) and described by a twist t

b,0
b (z). Both

quantities are expressed in Eb(z).
Making use of (3.41), the relative motion between infinitesimally closed cross

sections due to elasticity is given by

tb
δ (z) = Ad

hb
0(z)d

(
Adh0

b
(z)t

b,0
b (z)

)
(4.163)

if expressed in body reference. Note that thanks to the use of twists, in case in which

a pure rigid body motion is taking place, t
b,0
b (z) would be the same for all z ∈ [0,L]

and equal to the rigid body motion.

As shown in Fig. 4.3a, the twist t
b,0
b represents the “velocity” of the cross section

in space and is defined in each point of the spatial domain [0,L]. On the other hand,

tb
δ (z) provides the relative “velocity” of the cross section in z+∆z with respect to the

one in z (∆z→ 0) and can be integrated along the spatial domain for the same instant

in time to compute how the link deformation changes in time. Integrating t
b,0
b in z

does not provide any meaningful quantity. Even if t
b,0
b and tb

δ are both twists, they

are different objects. Since t
b,0
b is a function in [0,L], it is a se(3)-valued zero-form,

while tb
δ is a se(3)-valued one form. Roughly speaking, tb

δ requires an infinitesimal

∆z to make sense or, equivalently, can be integrated along the line.

The relative motion tb
δ (z) is related to a deformation and, consequently, a wrench

w
b,0
b acting on the cross section due to the elastic forces is present. As reported

in Fig. 4.3b, the difference between the elastic forces acting on the cross sections

in z + ∆z and in z generates a wrench wb
δ on the link element [z,z + ∆z] which is

responsible of the motion. Making use of (3.44), i.e. dually with respect to (4.163),

we have that

wb
δ (z) = Ad∗

h0
b
(z)

d
(

Ad∗
hb

0(z)
w

b,0
b (z)

)
(4.164)

where w
b,0
b and wb

δ are respectively se∗(3)-valued zero and one-forms. The integral

over the spatial domain of wb
δ provides the total wrench acting on the link.
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E0

Adh0
b
(z)

Adh0
b
(z+∆z)

Ad
hb

0(z)

t
b,0
b (z)

t
b,0
b (z+∆z)

tb
δ (z)

E0

Ad∗
hb

0(z)

Ad∗
hb

0(z+∆z)

Ad∗
h0

b
(z)

w
b,0
b (z)

w
b,0
b (z+∆z)

wb
δ (z)

Fig. 4.3a Computation of tb
δ (z). Fig. 4.3b Computation of w

b,0
b (z).

The link can interact with the environment through a pair of ports at its extrem-

ities. The boundary port variables are the twist and wrench of the cross sections in

z = 0 and z = L,

(
t
b,0
b (0),wb,0

b (0)
) (

t
b,0
b (L),wb,0

b (L)
)

(4.165)

Note that these quantities are expressed in body references Eb(0) and Eb(L).
Equations (4.163) and (4.164), together with the boundary terms (4.165), are

fundamental in the definition of the Stokes–Dirac structure describing the energetic

structure of the flexible link. Before providing such a Stokes–Dirac structure, it is

necessary to define the space of power variables. If V is a (finite dimensional) linear

space, denote with Ω k
V (Z) the space of V -valued k-forms on Z, [77]. Then, as far as

the space of flows is concerned, let us assume F d = Ω 1
se(3)(Z)×Ω 1

se∗(3)(Z), while

the space of efforts is E d = Ω 0
se∗(3)(Z)×Ω 0

se(3)(Z). This choice will become more

clear later. From (4.165), the natural space of boundary power variables is given by

F B ×E B = Ω 0
se(3)(∂Z)×Ω 0

se∗(3)(∂Z) =
(

se(3)× se∗(3)
)
×
(

se(3)× se∗(3)
)

since both the pairs twist/wrench in z = 0 and z = L have to be taken into account.

Given ( f q, f p, f B,eq,ep,eB) ∈ F d ×F B ×E d ×E B, the associated power (i.e.

the dual product) can be computed as follows:

〈
(eq,ep,eB) | ( f q, f p, f B)

〉
=

=
∫

Z
∗
(
〈eq | ∗ f q〉+ 〈∗ f p | ep〉

)
+
〈
eB | f B

〉∣∣∣
z=L

z=0
(4.166)

where ∗ is the Hodge star operator mapping one-forms to zero-forms and vice-versa

(see Sect. 4.2.1.4). The dual product on the right side is the natural pairing between

elements of se(3) and se∗(3). Note that (4.166) makes sense since ∗ f q and ∗ f p are

zero-forms (i.e. functions) on Z and then ∗
(
〈eq | ∗ f q〉+ 〈∗ f p | ep〉

)
a one-form that

can be integrated on Z.

Proposition 4.9. The set
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D =

{
( f q, f p, f B,eq,ep,eB) ∈ F d ×F B ×E d ×E B |

[
f q

f p

]
= −


Adhb

0(z)d
(

Adh0
b
(z) ep

)

Ad∗
h0

b
(z)

d
(

Ad∗
hb

0(z)
eq
)

 ,

[
f B

eB

]
=

[
eq |∂Z

ep |∂Z

]}
(4.167)

is a Stokes–Dirac structure with respect to the +pairing determined by the dual

product (4.166).

Proof. As discussed in [88] in the planar case, it is possible to find a coordinate

change that maps (4.167) into the Stokes–Dirac structure of Definition 4.8. An al-

ternative method is based on integration by parts and takes advantage of the skew-

adjoint properties of the differential operator that defines the subset (4.167), as in

the proof of Proposition 4.3. This method is extensively adopted also in [125–127]

in similar proofs involving also higher order differential operators.

The energy (state) variables associated with the flexible link are the infinitesimal

“deformation” q, i.e. the strain, and momentum p, expressed in body reference.

More in details, the state space is defined as X = Ω 1
se(3)(Z)×Ω 1

se∗(3)(Z), with q and

p se(3)-valued and se∗(3)-valued one-forms respectively. From a physical point of

view, it is necessary that these quantities are 1-forms because they are densities.

Once the space of state variables has been defined, the last step is the definition of

a Hamiltonian function, given by the sum of two contributions: the kinetic energy

and the potential elastic one, due to deformation. As far as the kinetic energy is

concerned, denote by I the inertia tensor which defines a quadratic form on se(3).
As discussed in Sect. 3.2, this tensor uniquely defines a bijection between elements

in se(3) and elements in se∗(3). More precisely, given t
0,b
b ∈ se(3), there is a unique

p ∈ se∗(3) such that p(t̄b) =
〈

t
0,b
b , t̄b

〉
I
, for every t̄b ∈ se(3). The quantity p is the

momentum of the cross section. Since I is non-singular, it is possible to define the

following one-form which represents the kinetic energy density of the link:

K (p) =
1

2
∗〈∗p,∗p〉Y (4.168)

where Y = I−1. Note that ∗p is a function of z ∈ Z with values in se∗(3). As far

as the elastic energy contribution is concerned, denote by C the compliance tensor,

with inverse C−1, which defines a quadratic form on se(3). Then, the elastic energy

density is given by the following one-form, [75, 188]:

W (q) =
1

2
∗〈∗q,∗q〉C−1 (4.169)

Again, ∗q is a function of z ∈ Z with values in se(3). Relation (4.169) holds under

the hypothesis of linear elasticity theory since the corresponding energy density is

quadratic in the strain. If non-linear effects have to be taken into account, (4.169)

should be replaced by a map W : Z×Ω 1
se(3)(Z)→ Ω 1

R
(Z), in which the dependence
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on the spatial variables has been also considered. For simplicity, in the remaining

part of the paper, a quadratic elastic energy density in the form (4.169) is assumed.

Finally, from (4.168) and (4.169), the total energy (Hamiltonian) function is given

by

H(p,q) =
1

2

∫

Z

(
K (p)+W (q)

)
=

1

2

∫

Z
∗
(
〈∗p,∗p〉Y + 〈∗q,∗q〉C−1

)
(4.170)

The port Hamiltonian model of a dynamical system follows from the correspond-

ing Stokes–Dirac structure once the port behavior of the energy storing components

(and in case of the resistive part) has been specified. Consequently, the port Hamil-

tonian model of the link results from (4.167) and from

− f q =
∂q

∂ t

(
= tb

δ

)
− f p =

∂ p

∂ t
− p∧ t

b,0
b

(
= wb

δ

)
(4.171)

and

eq = δqH
(
= w

b,0
b

)
ep = δpH

(
= t

b,0
b

)
(4.172)

The second relation in (4.171) is simply the second law of dynamics in body refer-

ence, with p∧ t
b,0
b ≡ ad∗

t
b,0
b

p (cf. Sect. 3.2).

The port Hamiltonian representation of the link follows immediately. Note how

the results presented in [88] have been easily extended in order to cope with defor-

mation in 3-dimensional space.





∂q

∂ t
= Adhb

0(z)d
(

Adh0
b
(z) δpH

)

∂ p

∂ t
= Ad∗

h0
b
(z)

d
(

Ad∗
hb

0(z)
δqH

)
+ p∧δpH

(4.173)

Furthermore, the boundary terms are given by

f B(0) = δpH |z=0 eB(0) = δqH |z=0

f B(L) = δpH |z=L eB(L) = δqH |z=L (4.174)

From the power conserving properties of a Dirac structure, the following energy

balance relation easily follows:

dH

dt
=
〈
eB(L) | f B(L)

〉
−
〈
eB(0) | f B(0)

〉
(4.175)

This relation states an obvious property of this physical system, i.e. the fact that the

variation of internal energy equals the total power flow at its boundary. Since no

dissipative effect is considered, if the boundary energy flow is set to zero (i.e. in the

case of a flexible beam clamped at both its extremities) energy is conserved. At the
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end of this section, a way to include dissipative effects, but also distributed actuation

or gravity, in terms of port interconnection is illustrated.

Note that the model (4.173) depends on the configuration of the cross section

with respect to the inertial reference h0
b(z), but the state variable of the system is

the strain q related to the infinitesimal deformation. However, if ĥ0
b : Z → SE0

b (3)
denotes the unstressed configuration, the “twist” n̂ ∈ Ω 1

se(3)(Z) describing how the

unstressed configuration evolves in the spatial variable s and expressed in body ref-

erence is given by (see also [193]):

n̂ =
(
ĥ0

b

)−1
dĥ0

b (4.176)

Similarly to what is presented in Sect. 3.2.3, for all t ∈ se(3), relation (4.163) be-

comes

Ad
hb

0
d
(

Adh0
b
t
)

= dt + ad(q+n̂)t (4.177)

and, dually, for every w ∈ se∗(3), (4.164) can be written as

Ad∗
h0

b

d
(

Ad∗
hb

0

w
)

= dw− ad∗(q+n̂)w (4.178)

By combining (4.173) with (4.177) and (4.178), the dynamics of the flexible link

assume the following equivalent expression:





∂q

∂ t
= dδpH + ad(q+n̂)δpH

∂ p

∂ t
= dδqH − ad∗(q+n̂)δqH + p∧δpH

(4.179)

Note the invariance of the dynamics to group action. The boundary terms remain

the same as in (4.174).

In (4.179), it is not immediate to see how the effects of a gravity field can be

taken into account since the configuration of the cross section with respect to the

inertial reference h0
b(z) is not available. Moreover, at present stage it is not clear

how dissipative effects can be taken into account and if it is possible to include

distributed actuation along the spatial domain of the flexible link. As discussed in

Sect. 4.2.6.1 for Maxwell’s equations, in Sect. 4.3.1 for the Timoshenko beam and

in [126] for piezo-electric materials, a possible solution can be to modify the Stokes–

Dirac structure (4.167) by including a distributed port along the domain. In the case

of flexible link, this distributed port is characterized by a space of power variables

F e×E e = Ω 0
se(3)(Z)×Ω 1

se∗(3)(Z), in which flows are twists, defined point-wise, and

the efforts are wrench density. If it is supposed that these quantities are expressed

in body reference, by taking into account (4.177) and (4.178), the Stokes–Dirac

structure (4.167) modifies into
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D =

{
( f q, f p, f e, f B,eq,ep,ee,eB) ∈ F d ×F e ×F B ×E d ×E e ×E B |

[
f q

f p

]
= −

[
dep + ad(q+n̂)e

p

deq − ad∗(q+n̂)e
q

]
−
[

0

ee

]
,

f e = ep,

[
f B

eB

]
=

[
eq |∂Z

ep |∂Z

]}
(4.180)

Note that the boundary terms ( f B,eB) defined in (4.167) remain the same. Thanks

to this distributed port it is possible to act on the flexible link along its spa-

tial domain by imposing a distributed “force” and, at the same time, to measure

the “velocity” of the cross section in space. This distributed port can be termi-

nated on a distributed impedance in order to model dissipative effects, such as vis-

cous friction, as in Sect. 4.2.6.1. In the linear case, it is sufficient to introduce a

quadratic form D on se(3) describing dissipation in body frame and to impose that

ee = −∗D f e = −∗DδpH. Note that the power flow is always less than zero. As far

as concerns gravity, a possible solution can be to integrate in time f e = δpH ≡ t
0,b
b

so that position and orientation in space of the cross section is known. Then, gravity

is a distributed source of effort modulates by orientation information that has to be

interconnected to ee.

Finally, suppose that deformation is small, that is q ≃ 0. If the unstressed con-

figuration is assumed to be a straight line along the x-axis of the fixed reference

frame, (4.179) simplifies to the superposition of a Timoshenko beam dynamics in

the y and z directions and of a transverse wave in the x direction. This can be proved

by writing (4.179) in coordinates and by taking into account the port Hamiltonian

formulation of the Timoshenko beam equations presented in Sect. 4.3.1. This re-

sult has been originally verified in [88] for the planar case by following a different

procedure.

4.3.3 Ideal isentropic fluid

The flow of an ideal compressible isentropic fluid in three dimensions consists in a

system of two conservation laws, the mass and the momentum balance equations.

It is described in Eulerian representation by the Euler equations [2, chap. 5], [8,

chap. 1], [157, chap. 2] which we recall below in the vector calculus notation:

∂ρ

∂ t
= −∇ · (ρv)

∂v

∂ t
= −v ·∇v− 1

ρ
∇p

(4.181)
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with ρ(z, t) ∈ R the mass density at the spatial position z ∈ R
3 at time t, v(z, t) ∈ R

3

the (Eulerian) velocity of the fluid at spatial position z and time t, and p(z, t) the

pressure function, derivable from an internal energy function U(ρ) as

p(z, t) = ρ2(z, t)
∂U

∂ρ
(ρ(z, t)) (4.182)

The Hamiltonian formulation of the ideal compressible isentropic fluid is classi-

cal and has been discussed with respect to different choices of state variables and

Poisson brackets in particular in [8,134,135,148,149]. In the sequel we shall firstly

construct a Dirac structure which extends the Poisson bracket of the Hamiltonian

formulation arising from the formulation of a system of two conservation laws in

order to encompass also possible exchange of the conserved quantities and energy

through the boundary of the spatial domain. Therefore we shall identify the func-

tions and vector fields in (4.181) and (4.182) with different differential forms. Sec-

ondly we shall define a boundary port-Hamiltonian system on this Dirac structure

which extends the Hamiltonian formulation of (4.181).

Let D ⊂ R
3 be a given domain, filled with the fluid. We assume the existence

of a Riemannian metric 〈·, ·〉 on D; usually the standard Euclidean metric on R
3.

Let Z ⊂ D be any 3-dimensional manifold with boundary ∂Z. First we identify the

mass-density ρ with a 3-form on Z (see e.g. [134, 135]), that is, with an element of

Ω 3(Z). Furthermore, we identify the Eulerian vector field v with a 1-form on Z, that

is, with an element of Ω 1(Z). By the existence of the Riemannian metric on Z we

can, by “index raising” or “index lowering”, identify vector fields with 1-forms and

vice versa. The vector space of flow variables Fp,q and of the effort variables Ep,q

with n = 3, p = 3 and q = 1 as defined in Sect. 4.2.4 are hence defined as:

Fp,q = Ω 3(Z)×Ω 1(Z)×Ω 0(∂Z) (4.183)

and

Ep,q = Ω 0(Z)×Ω 2(Z)×Ω 2(∂Z) (4.184)

In order to account for the convection term in the momentum balance equation,

the Hamiltonian formulation of the system (4.181) is defined on a Poisson struc-

ture which extends the Poisson bracket associated with the canonical inter-domain

coupling, to a Poisson bracket including a Lie-Poisson bracket associated with di-

vergence free vector fields [8, chap. 1]. This Poisson bracket is extended to the

following Dirac structure.

Definition 4.13. The vector space, called Stokes-Dirac structure with convection

term and denoted by Dm defined by
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Dm :=

{
(

fp, fv, fb,eρ ,ev,eb

)
∈ Fp,q ×Ep,q |

[
fρ

fv

]
=

[
dev

deρ + 1
∗ρ ∗((∗dv)∧ (∗ev))

]
,

[
fb

eb

]
=

[
eρ|∂Z

−ev|∂Z

]}
(4.185)

where ∗ denotes the Hodge star operator (corresponding to the Riemannian metric

on Z) is a Dirac structure of the bond space Fp,q × Ep,q defined in (4.183) and

(4.184).

A fundamental difference of the modified Stokes-Dirac structure Dm with re-

spect to the standard Stokes-Dirac structure is that Dm is non-linear in the sense

that it depends explicitly on the energy variables ρ and v (via the terms ∗ρ and dv in

the additional term 1
∗ρ ∗((∗dv)∧ (∗ev)). Completely similar to the proof of Proposi-

tion 4.3, it is shown that (Dm(ρ,v))⊥ = Dm(ρ,v) for all ρ,v; the crucial additional

observation is that the expression

e2
v ∧∗((∗dv)∧ (∗e1

v)) (4.186)

is skew-symmetric in e1
v ,e

2
v ∈ Ω 2(Z).

Remark 4.5. In the standard Euclidean metric, identifying via the Hodge star opera-

tor 2-forms βi with 1-forms, and representing 1-forms as vectors, we have in vector

calculus notation the equality

β2 ∧∗(α ∧∗β1) = α · (β1 ×β2) (4.187)

for all 2-forms β1,β2 and 1-forms α . This shows clearly the skew-symmetry of

(4.186).

The Eulerian equations (4.181) for an ideal isentropic fluid are obtained in the

port-controlled Hamiltonian representation by considering the Hamiltonian

H(ρ,v) :=
∫

Z

[
1

2

〈
v♯,v♯

〉
ρ +U(∗ρ)ρ

]
(4.188)

with v♯ the vector field corresponding to the 1-form v (“index lowering”), and U(∗ρ)
the potential energy. Indeed, by making the substitutions (4.64) and (4.65) in Dm,

and noting that

δH = (δρ H,δvH) =

(
1

2

〈
v♯,v♯

〉
+

∂

∂ ρ̃
(ρ̃U(ρ̃)) , iv♯ρ

)
(4.189)

with ρ̃ := ∗ρ , the port-Hamiltonian system takes the form
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−∂ρ

∂ t
= d(iv♯ρ)

−∂v

∂ t
= d

(
1

2

〈
v♯,v♯

〉
+w(∗ρ)

)
+

1

∗ρ
((∗dv)∧ (∗iv♯ρ))

fb =

[
1

2

〈
v♯,v♯

〉
+w(∗ρ)

]

|∂Z

eb = −iv♯ρ|∂Z

(4.190)

with

w(ρ̃) :=
∂

∂ ρ̃
(ρ̃U(ρ̃)) (4.191)

the enthalpy. The expression δρ H = 1
2

〈
v♯,v♯

〉
+ w(ρ̃) is known as the Bernoulli

function.

The first two equations of (4.190) can be seen to represent the Eulerian equations

(4.181). The first equation corresponds to the mass balance equation:

d

dt

∫

ϕt (V )
ρ = 0 (4.192)

where V denotes an arbitrary volume in Z, and ϕt is the flow of the fluid (transform-

ing the material volume V at t = 0 to the volume ϕt(V ) at time t). Indeed, (4.192)

for any V is equivalent to
∂ρ

∂ t
+Lv♯ρ = 0 (4.193)

Since by Cartan’s magical formula Lv♯ρ = d(iv♯ρ)+ iv♯dρ = d(iv♯ρ) (since dρ = 0)

this yields the first line of (4.190).

For the identification of the second equation of (4.190) with the second equation

of (4.186) we note the following. Interpret ∇· in (4.181) as the co-variant derivative

corresponding to the assumed Riemannian metric 〈·, ·〉 on Z. For a vector field u on

Z, let u♭ denote the corresponding 1-form u♭ := iu 〈·, ·〉 (“index raising”). The co-

variant derivative ∇ is related to the Lie derivative by the following formula (see for

a proof [8], p. 202):

Luu♭ = (∇uu)♭ +
1

2
d〈u,u〉 (4.194)

Since by Cartan’s magical formula Luu♭ = iudu♭ +d(iuu♭) = iudu♭ +d〈u,u〉, (4.194)

can be also written as

(∇uu)♭ = iudu♭ +
1

2
d〈u,u〉 (4.195)

This is the coordinate-free analog of the well-known vector calculus formula u ·
∇u = curl u×u+ 1

2
∇|u|2. Furthermore we have the identity

iv♯dv =
1

∗ρ
∗((∗dv)∧ (∗iv♯ρ)) (4.196)
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Finally, we have the following well-known relation between enthalpy and pressure

(obtained from (4.187) and (4.191))

1

ρ̃
dp = d(w(ρ̃)). (4.197)

Hence by (4.195) (with u = v♯), (4.108) and (4.197), we may rewrite the second

equation of (4.190) as

−∂v

∂ t
=
(

∇v♯v
♯
)♭

+
1

∗ρ
dp (4.198)

which is the coordinate-free formulation of the second equation of (4.181).

The boundary variables fb and eb given in (4.190) are respectively the stagnation

pressure at the boundary divided by ρ , and the (incoming) mass flow through the

boundary. The energy-balance (4.107) can be written out as

dH

dt
=
∫

∂Z
eb ∧ fb = −

∫

∂Z
iv♯ρ ∧

[
1

2

〈
v♯,v♯

〉
+w(∗ρ)

]

= −
∫

∂Z
iv♯

[
1

2

〈
v♯,v♯

〉
ρ +w(∗ρ)ρ

]

= −
∫

∂Z
iv♯

[
1

2

〈
v♯,v♯

〉
ρ +U(∗ρ)ρ

]
−
∫

∂Z
iv♯(∗p)

(4.199)

where for the last equality we have used the relation (following from (4.182),

(4.191))

w(∗ρ)ρ = U(∗ρ)ρ +∗p (4.200)

The first term in the last line of (4.199) corresponds to the convected energy through

the boundary ∂Z, while the second term is (minus) the external work (static pressure

times velocity).

Alternatively, emphasizing the interpretation of v as a 1-form, there is an al-

ternative interpretation of the momentum balance equation as Kelvin’s circulation

theorem
d

dt

∫

ϕt (C)
v = 0 (4.201)

where C denotes any closed contour. Indeed, (4.201) for any closed C is equivalent

to the 1-form ∂v
∂ t

+Lv♯v being closed. By (4.194) this is equivalent to requiring

∂v

∂ t
+
(

∇v♯v
♯
)♭

(4.202)

to be closed, that is
∂v

∂ t
+
(

∇v♯v
♯
)♭

= −dk (4.203)

for some (possibly locally defined) k : Z → R. Now additionally requiring that this

function k depends on z through ρ , that is
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k(z) = w(ρ(z)) (4.204)

for some function w, we recover (4.198) with 1
∗ρ dp replaced by dw, i.e. the differ-

ential of the enthalpy.

Remark 4.6. In the case of a one- or two-dimensional fluid flow the extra term in

the Dirac structure Dm as compared with the standard Stokes-Dirac structure D
vanishes, and so in these cases the fluid dynamics is defined as a boundary port-

Hamiltonian system with respect to the canonical Stokes-Dirac structure (with ρ
being a 1-form, respectively, a 2-form).

Furthermore, if in the 3-dimensional case the 2-form dv(t) happens to be zero at

a certain time-instant t = t0 (irrotational flow), then it continues to be zero for all

time t ≥ t0. Hence also in this case the extra term (4.186) in the modified Stokes-

Dirac structure Dm vanishes, and the port-Hamiltonian system describing the Euler

equations reduces to the standard distributed-parameter port-Hamiltonian system

given in Proposition 4.3.

Remark 4.7. For the modified Stokes-Dirac structure Dm given in (4.185), the space

of admissible mappings K adm given in (4.100) is the same as for the Stokes-Dirac

structure, but the resulting skew-symmetric bracket has an additional term:

{k1,k2}Dm =
∫

Z
[(δρ k1)∧ (−1)rd(δqk2)+(δqk1)∧d(δpk2)

+
1

∗ρ
δvk1 ∧∗((∗dv)∧ (∗δvk2))]

−
∫

∂Z
(−1)n−q(δqk1)∧ (δpk2)

(4.205)

For the skew-symmetry of the additional term see (4.186) and Remark 4.5.

4.4 Conclusion

In this chapter we have presented the port-Hamiltonian formulation of distributed

parameter systems. The core of the formulation is to consider systems of conser-

vation laws and to use the intrinsic variables associated with conservation laws,

namely exterior differential forms. We have considered essentially systems of two

conservation laws in reversible interaction as they appear in elasto-dynamic and

electro-magnetic systems. In this case we have defined a canonical Dirac structure

called Stokes-Dirac structure which is canonical in the sense that it is defined solely

on two adjoint (exterior) derivation and does not depend on any parameter. On this

Dirac structure we have defined port-Hamiltonian systems which are extensions of

infinite-dimensional Hamiltonian systems in the sense that they allow to encompass

open physical systems which exchange energy and other conserved quantities at the

boundary of their spatial domain.
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Extensions of this canonical Stokes-Dirac structure and the associated boundary

port Hamiltonian system have been presented for the Timoshenko beam, the ideal

compressible fluid – where the Stokes-Dirac structure has to be completed in order

to account for complex geometric configuration spaces as well as the convection of

momentum – and for a nonlinear 3-D model of a flexible link. It should be men-

tioned that we did not present in this chapter other extensions to Stokes-Dirac struc-

tures associated linear matrix differential operator for which the reader is referred

to [113, 211].

Finally it should also be mentioned that Stokes-Dirac structures also arise in

dissipative systems. In this case they arise both from the formulation of the dis-

tributed parameter system as a system of conservation laws and the basic axioms

of Irreversible Thermodynamics on the definition of the flux variables as linear

functions of the generating force due to thermodynamical non-equilibrium. This

has been illustrated on different examples of distributed parameter systems defined

on one-dimensional spatial domains in this chapter and the reader is also referred

to [211, 212].





Chapter 5

Control of Finite-Dimensional Port-Hamiltonian
Systems

E. Garcı́a-Canseco, R. Ortega, R. Pasumarthy, A. J. van der Schaft

Abstract We discuss in this chapter a number of approaches to exploit the model

structure of port-Hamiltonian systems for control purposes. Actually, the formu-

lation of physical control systems as port-Hamiltonian systems may lead in some

cases to a re-thinking of standard control paradigms. Indeed, it opens up the way to

formulate control problems in a way that is different and perhaps broader than usual.

For example, formulating physical systems as port-Hamiltonian systems naturally

leads to the consideration of ‘impedance’ control problems, where the behavior of

the system at the interaction port is sought to be shaped by the addition of a con-

troller system, and it suggests energy-transfer strategies, where the energy is sought

to be transferred from one part the system to another. Furthermore, it naturally leads

to the investigation of a particular type of dynamic controllers, namely those that

can be also represented as port-Hamiltonian systems and that are attached to the

given plant system in the same way as a physical system is interconnected to an-

other physical system. As an application of this strategy of ‘control by interconnec-

tion’ within the port-Hamiltonian setting we consider the problem of (asymptotic)

stabilization of a desired equilibrium by shaping the Hamiltonian into a Lyapunov

function for this equilibrium. From a mathematical point of view we will show that

the mathematical formalism of port-Hamiltonian systems provides various useful

techniques, ranging from Casimir functions, Lyapunov function generation, shap-

ing of the Dirac structure by composition, and the possibility to combine finite-

dimensional and infinite-dimensional systems.

5.1 Introduction

As discussed in Chapter 2, network modeling of complex physical systems (with

components from different physical domains) leads to a class of nonlinear sys-

tems, called port-Hamiltonian systems (see also [59, 138, 139, 144, 180, 183, 184]).

Port-Hamiltonian systems are defined by a Dirac structure (formalizing the power-

conserving interconnection structure of the system), an energy function (the Hamil-

273
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tonian), and a resistive structure. Key property of Dirac structures is that the power-

conserving interconnection or composition of Dirac structures again defines a Dirac

structure, see Sect. 2.5 and [139, 179]. This implies that any power-conserving in-

terconnection of port-Hamiltonian systems is again a port-Hamiltonian system, with

Dirac structure being the composition of the Dirac structures of its constituent parts,

Hamiltonian being the sum of the Hamiltonians, and total resistive structure deter-

mined by the resistive structures of the components taken together.

In this Chapter we describe how this framework may be exploited for control

purposes. More precisely, we review the framework of control by interconnection

within the port-Hamiltonian setting in a way that is more general than previous

expositions. We discuss three sets of control problems which may be naturally ad-

dressed within this framework. First we present the problem of transferring the en-

ergy of one part of the system towards another part (Energy Control). Secondly, we

recall the approach of asymptotic stabilization by Casimir generation for the closed-

loop system and how this relies on the composition of Dirac structures. Thirdly, we

pose the problem of Port Control, where by the addition of a port-Hamiltonian con-

troller system we seek to shape the behavior of the system at the interaction port.

We also focus on the precise role of energy dissipation in control strategies for

port-Hamiltonian systems. We show in general that for a function to be a conserved

quantity (Casimir) for one non-degenerate resistive relation at the resistive port it

actually needs to be a Casimir for all resistive relations, as anticipated in Sect. 2.6.2.

Finally we present two recent control techniques, the interconnection and damp-

ing assignment passivity–based control (IDA–PBC), a technique that regulates the

behavior of nonlinear systems assigning a desired port–Hamiltonian structure to

the closed–loop, and the power shaping methodology that allow us to formulate

the stabilization problem in terms of power (as opposed to energy) shaping, adding

“derivative actions” in the control.

An important special case of port-Hamiltonian systems is the class of input-state-

output port-Hamiltonian systems, introduced in Sect. 2.2.3, where there are no al-

gebraic constraints on the state space variables, and the flow and effort variables

at the resistive, control and interaction port are split into conjugated input-output

pairs. Such input-state-output port-Hamiltonian systems are of the form expressed

in (2.51), here reported for clarity sake:

P :





ẋ =
[
J(x)−R(x)

]∂H

∂x
(x)+g(x)u+ k(x)d

y = gT(x)
∂H

∂x
(x)

z = kT(x)
∂H

∂x
(x)

x ∈ X (5.1)

In (5.1), u, y are the input-output pairs corresponding to the control port C , while

d, z denote the input-output pairs of the interaction port I (see Fig. 2.2). Here the

matrix J(x) is skew-symmetric, that is J(x) =−JT(x). The matrix R(x) = RT(x)≥ 0

specifies the resistive structure. Note that yTu and zTd still denote the power corre-
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sponding to the control, respectively, interaction port. For more details, in particular

extensions of (5.1) to feed-through terms, we refer to Sect. 2.2.4 and [74, 180].

5.2 Energy–balancing control

In this chapter we are interested in lumped–parameter systems interconnected to the

external environment through some port power variables u ∈R
m and y ∈R

m, which

are conjugated in the sense that their product has units of power (e.g., currents and

voltages in electrical circuits, or forces and velocities in mechanical systems). We

assume the system satisfies the energy–balance equation

H[x(t)]−H[x(0)]︸ ︷︷ ︸
stored energy

=
∫ t

0
uT(s)y(s)ds

︸ ︷︷ ︸
supplied

− d(t)︸︷︷︸
dissipated

(5.2)

where x ∈ R
n is the state vector, H(x) is the total energy function, and d(t) is a non-

negative function that captures the dissipation effects (e.g., due to resistances and

frictions). Energy balancing is, of course, a universal property of physical systems;

therefore, our class, which is nothing other than the well–known passive systems,

captures a very broad range of applications that include nonlinear and time–varying

dynamics.

The control objective is to regulate the static behavior, that is, the equilibrium,

which is determined by the shape of the energy function. It is therefore natural to

recast our control problem in terms of finding a dynamical system and an intercon-

nection pattern such that the overall energy function takes the desired form. There

are at least two important advantages of adopting such an “energy shaping” perspec-

tive of control:

1. The energy function determines not just the static behavior, but also, via the

energy transfer between subsystems (through the ports), its transient behavior.

Focusing our attention on the systems energy, we can then aim, not just at stabi-

lization, but also at performance objectives that can, in principle, be expressed in

terms of “optimal” energy transfer. Performance and not stability is, of course,

the main concern in applications.

2. Practitioners are familiar with energy concepts, which can serve as a lingua

franca to facilitate communication with control theorists, incorporating prior

knowledge and providing physical interpretations of the control action.

Passivity–based control techniques achieve stabilization of nonlinear feedback

passive systems assigning a storage function with a minimum at the desired equilib-

rium. For physical systems a natural candidate storage function is the difference

between the stored and the supplied energies—leading to the so-called energy–

balancing control, whose underlying stabilization mechanism is particularly appeal-

ing. Two important corollaries follow from (5.2)
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• The energy of the uncontrolled system (i.e., with u ≡ 0) is non-increasing (that

is, H[x(t)]≤ H[x(0)]), and it will actually decrease in the presence of dissipation.

If the energy function is bounded from below, the system will eventually stop at

a point of minimum energy. Also, as expected, the rate of convergence of the

energy function is increased if we extract energy from the system, for instance,

setting u = −Kdiy, with Kdi = KT
di > 0 a so–called damping injection gain.

• Given that

−
∫ t

0
uT(s)y(s)ds ≤ H[x(0)] < ∞

the total amount of energy that can be extracted from a passive system is

bounded1.

Usually, the point where the open–loop energy is minimal (which typically co-

incides with the zero state) is not the one of interest, and control is introduced to

operate the system around some nonzero equilibrium point, say x⋆. Hence, the con-

trol problem consists in finding a control input u = β (x) + v such that the energy

supplied by the controller can be expressed as a function of the state. Indeed, from

(5.2) we see if we can find a function β (x) satisfying

−
∫ t

0
β T[x(s)]y(s)ds = Ha[x(t)]+κ

for some function Ha(x), then the control u = β (x) + v will ensure that the map

v → y is passive with new energy function

Hd(x) = H(x)+Ha(x). (5.3)

For port–Hamiltonian systems, the following proposition characterizes the class

of functions β (x) and Ha(x) such that the closed–loop system satisfies the new

energy–balancing equation

Hd [x(t)]−Hd [x(0)] =
∫ t

0
vT(s)y(s)ds−dd(t)

with the dissipation term dd(t) ≥ 0 to increase the convergence rate.

Proposition 5.1 ( [180]). Consider the port–Hamiltonian system (5.1) without in-

teraction ports, if we can find a function β (x) and a vector function K(x) satisfying

[
J(x)−R(x)

]
K(x) = g(x)β (x)

such that

1 This property, which (somehow misleadingly) is often stated with the inequality inverted, will be

instrumental in identifying the class of systems that are stabilizable with energy balancing PBC.
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i)
∂K

∂x
(x) =

∂K

∂ Tx
(x)

ii) K(x⋆) = −∂H

∂x
(x⋆)

iii)
∂K

∂x
(x⋆) > −∂ 2H

∂x2
(x⋆)

Then the closed–loop system is a port-Hamiltonian system of the form

ẋ =
[
J(x)−R(x)

]∂Hd

∂x
(x) (5.4)

with Hd given by (5.3) and Ha satisfying K = ∂Ha

∂x
(x). Furthermore, x⋆ is an stable

equilibrium point of (5.4).

5.2.1 Dissipation obstacle

Unfortunately, energy–balancing stabilization is stymied by the existence of perva-

sive dissipation, that appears in many engineering applications. Indeed, it has been

shown in [161] that a necessary condition to satisfy Proposition 5.1 is that the natural

damping of the port–Hamiltonian system satisfies

R(x)K(x) = 0.

Since R(x) is usually diagonal, this condition requires that no damping is present

in the coordinates that need to be shaped, that is, the coordinate where the function

H(x) has to be modified. To characterize the dissipation obstacle it is convenient to

adopt a control–by–interconnection viewpoint, which clearly reveals the limitations

of energy–balancing control, as we will see in the following sections. Some con-

trol methodologies as the interconnection and damping assignment passivity–based

control and power shaping, has been proposed in [159] and [161] respectively to

overcome the dissipation obstacle. See also Sect. 2.6.2.1 and Sect. 5.4.6 for further

details.

5.3 Control by port–interconnection

Control by port-interconnection is based on designing a controller system which is

interconnected to the control port with port-variables ( fC,eC). In principle this im-

plies that we only consider collocated control, where the controller will only use the

information about the plant port-Hamiltonian system that is contained in the con-

jugated pairs ( fC,eC) of port variables of the control port, without using additional

information about the plant (e.g. corresponding to observation on other parts of the

plant system). In the second place, we will restrict attention to controller systems
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which are themselves also port-Hamiltonian systems. There are two main reasons

for this. One is that by doing so the closed-loop system is again a port-Hamiltonian

system, allowing to easily ensure some desired properties. Furthermore, it will turn

out that the port-Hamiltonian framework suggests useful ways to construct port-

Hamiltonian controller systems. Second reason is that port-Hamiltonian controller

systems allow in principle for a physical system realization (thus linking to pas-

sive control and systems design) and physical interpretation of the controller ac-

tion. Of course, this raises the realization problem which (controller) systems can

be represented as port-Hamiltonian systems, for which some partial answers are

available [180].

Since we do not know the environment (or only have very limited information

about it), but on the other hand, the system will interact with this unknown environ-

ment, the task of the controller is often two-fold:

1. to achieve a desired control goal (e.g. set-point regulation or tracking) if the in-

teraction with the environment is marginal or can be compensated;

2. to make sure that the controlled system has a desired interaction behavior with

its environment. It is fair to say that up to now the development of the theory

of control of port-Hamiltonian systems has mostly concentrated on the second

aspect (which at the same time, is often underdeveloped in other control theories).

Most successful approaches to deal with the second aspect of the control goal

are those based on the concept of “passivity” (see also Sect. 2.6.1), such as dissipa-

tivity theory, impedance control and Intrinsically Passive Control (IPC). In fact, the

port-Hamiltonian control theory can be regarded as an enhancement to the theory

of passivity, making a much closer link with complex physical systems modeling

at one hand and with the theory of dynamical systems (in particular, Hamiltonian

dynamics) at the other hand.

As said above, in this section we will throughout consider controller systems

which are again port-Hamiltonian systems, in the same way as the plant system is

a port-Hamiltonian system. We will use the same symbols as above for the inter-

nal and external ports and port-variables of the controller port-Hamiltonian system,

with an added over-bar ·̄ or a superscript ·c in order to distinguish it from the plant

system. (The interaction port of the controller system may be thought of as an extra

possibility for additional controller action (outer-loop control).) In order to further

distinguish the plant system and the controller we denote the state space of the plant

system by Xp with coordinates xp, the Dirac structure by Dp and its Hamiltonian

by Hp, while we will denote the state space manifold of the controller system by Xc

with coordinates xc, its Dirac structure by Dc and its Hamiltonian by Hc : Xc → R.

The interconnection of the plant port-Hamiltonian system with the controller port-

Hamiltonian system is obtained by equalizing the port variables at the control port

by:

fC = − f̄C eC = ēC (5.5)

where f̄C and ēC denote the control port variables of the controller system. Here, the

minus sign is inserted to have a uniform notion of direction of power flow. Clearly,
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this ‘synchronizing’ interconnection is power-conserving, that is

eT
C fC + ēT

C f̄C = 0

Remark 5.1. A sometimes useful alternative for the power-conserving interconnec-

tion (5.5) is the gyrating power-conserving interconnection (see Sect. 2.5.1)

fC = −ēC eC = f̄C (5.6)

In fact, the standard feedback interconnection can be regarded to be of this type.

Consider a plant input-state-output port-Hamiltonian system as in (5.1)

P :





ẋp =
[
Jp(xp)−Rp(xp)

]∂Hp

∂xp

(xp)+gp(xp)u+ kp(xp)d

y = gT
p(xp)

∂Hp

∂xp

(xp)

z = kT
p(xp)

∂Hp

∂xp

(xp)

xp ∈ Xp

together with a controller input-state-output port-Hamiltonian system

C :





ẋc =
[
Jc(xc)−Rc(xc)

]∂Hc

∂xc

(xc)+gc(xc)ū+ kc(xc)d̄

ȳ = gT
c (xc)

∂Hc

∂xc

(xc)

z̄ = kT
c (xc)

∂Hc

∂xc

(xc)

xc ∈ Xc

Then the standard feedback interconnection

u = −ȳ y = ū

can be seen to be equal to the gyrating interconnection (5.6).

For both interconnection constraints it directly follows from the theory of com-

position of Dirac structures (see Sect. 2.5) that the interconnected (closed-loop)

system is again a port-Hamiltonian system with Dirac structure determined by

the Dirac structures of the plant port-Hamiltonian system and the controller port-

Hamiltonian system. The resulting interconnected port-Hamiltonian system has

state space Xp ×Xc, Hamiltonian Hp + Hc, resistive ports ( fR,eR, f̄R, ēR) and in-

teraction ports ( fI ,eI , f̄I , ēI), satisfying the power-balance

d

dt
(Hp +Hc) = eT

R fR + ēT
R f̄R + eT

I fI + ēT
I f̄I ≤ eT

I fI + ēT
I f̄I (5.7)

since both eT
R fR ≤ 0 and ēT

R f̄R ≤ 0. Hence we immediately recover the state space

formulation of the passivity theorem, see e.g. [180], if Hp and Hc are both non-
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negative, implying that the plant and the controller system are passive (with respect

to their controller and interaction ports and storage functions Hp and Hc), then also

the closed-loop system is passive (with respect to the interaction ports and storage

function Hp +Hc.)

Nevertheless, we will show in the next sections that, due to the Hamiltonian

structure, we can go beyond the passivity theorem, and that we can derive conditions

which ensure that we can passify and/or stabilize plant port-Hamiltonian systems for

which the Hamiltonian Hp is not non-negative (or bounded from below).

5.3.1 Energy control

Consider two port-Hamiltonian systems Σi (without internal dissipation) in input-

state-output form

Σi :





ẋi = Ji(xi)
∂Hi

∂xi

+gi(xi)ui

yi = gT
i (xi)

∂Hi

∂xi

i = 1, 2

both satisfying the power-balance

d

dt
Hi = yT

i ui

Suppose now that we want to transfer the energy from the port-Hamiltonian sys-

tem Σ1 to the port-Hamiltonian system Σ2, while keeping the total energy H1 + H2

constant. This can be done by using the following output feedback

[
u1

u2

]
=

[
0 −y1yT

2

y2yT
1 0

][
y1

y2

]
(5.8)

Since the matrix in (5.8) is skew-symmetric it immediately follows that the closed-

loop system composed of systems Σ1 and Σ2 linked by the power-conserving feed-

back is energy-preserving, that is d
dt

(H1 + H2) = 0. However, if we consider the

individual energies then we notice that

d

dt
H1 = −yT

1 y1yT
2 y2 = −||y1||2||y2||2 ≤ 0

implying that H1 is decreasing as long as ||y1|| and ||y2|| are different from 0. Con-

versely, as expected since the total energy is constant,

d

dt
H2 = yT

2 y2yT
1 y1 = ||y2||2||y1||2 ≥ 0
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implying that H2 is increasing at the same rate. In particular, if H1 has a minimum

at the zero equilibrium, and Σ1 is zero-state observable, then all the energy H1 of Σ1

will be transferred to Σ2, provided that ||y2|| is not identically zero, which again can

be guaranteed by assuming that H2 has a minimum at the zero equilibrium, and that

Σ2 is zero-state observable.

If there is internal energy dissipation, then this energy transfer mechanism still

works. However, the fact that H2 grows or not will depend on the balance between

the energy delivered by Σ1 to Σ2 and the internal loss of energy in Σ2 due to dissi-

pation.

We conclude that this particular scheme of power-conserving energy transfer is

accomplished by a skew-symmetric output feedback, which is modulated by the

values of the output vectors of both systems. Of course this raises, among others,

the question of the efficiency of the proposed energy-transfer scheme, and the need

for a systematic quest of similar power-conserving energy-transfer schemes. We

refer to [69] for a similar but different energy-transfer scheme directly motivated by

the structure of the example (control of a snake-board).

5.3.2 Stabilization by Casimir generation

We know that the interconnection of a plant port-Hamiltonian system with a con-

troller port-Hamiltonian system leads to a closed-loop port-Hamiltonian system,

with closed-loop Dirac structure being the composition of the plant and the con-

troller Dirac structure. Furthermore, we immediately obtain the power-balance (5.7)

d

dt
(Hp +Hc) = eT

R fR + ēT
R f̄R + eT

I fI + ēT
I f̄I ≤ eT

I fI + ēT
I f̄I

What does this mean about the stability properties of the closed-loop system, and

how can we design the controller port-Hamiltonian system in such a way that the

closed-loop system has desired stability properties? Let us therefore first consider

the stability of an arbitrary port-Hamiltonian system Σ = (X ,H,R,C ,I ,D) with-

out control or interaction ports, that is, an autonomous port-Hamiltonian system

Σ = (X ,H,R,D). Clearly, the power-balance (5.7) reduces to

d

dt
H = eT

R fR ≤ 0 (5.9)

Hence we immediately infer by standard Lyapunov theory that if x⋆ is a minimum

of the Hamiltonian H then it will be a stable equilibrium of the autonomous port-

Hamiltonian system Σ = (X ,H,R,D), which is actually asymptotically stable if

the dissipation term eT
R fR is negative definite outside x⋆, or alternatively if some sort

of detectability condition is satisfied, guaranteeing asymptotic stability by the use of

LaSalle’s Invariance principle. However, what can we say if x⋆ is an equilibrium that

is not a minimum of H, and thus we cannot directly use H as a Lyapunov function?
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A well-known method in Hamiltonian systems, sometimes called the Energy-

Casimir method, is to use in the Lyapunov analysis next to the Hamiltonian other

conserved quantities (dynamical invariants) which may be present in the system. In-

deed, if we may find other conserved quantities then candidate Lyapunov functions

can be sought within the class of combinations of the Hamiltonian H and those con-

served quantities. In particular, if we can find a conserved quantity C : X → R such

that V := H +C has a minimum at the equilibrium x⋆ then we can still infer stability

or asymptotic stability by replacing (5.9) by

d

dt
V = eT

R fR ≤ 0

and thus using V as a Lyapunov function. Functions that are conserved quantities of

the system for every Hamiltonian are called Casimir functions. Casimirs are com-

pletely characterized by the Dirac structure of the port-Hamiltonian system, as dis-

cussed in Sect. 2.6.2.

Casimir function can play an important role in the design of a controller port-

Hamiltonian system such that the closed-loop system has desired stability prop-

erties. Suppose we want to stabilize the plant with port-Hamiltonian formulation

(Xp,Hp,R,C ,Dp) around a desired equilibrium xp⋆ . We know that for every con-

troller port-Hamiltonian system the closed-loop system satisfies

d

dt
(Hp +Hc) = eT

R fR + ēT
R f̄R ≤ 0

What if x⋆ is not a minimum for Hp? A possible strategy is to generate Casimir

functions C(xp,xc) for the closed-loop system by choosing the controller port-

Hamiltonian system in an appropriate way. Thereby we generate candidate Lya-

punov functions for the closed-loop system of the form

V (xp,xc) := Hp(xp)+Hc(xc)+C(xp,xc)

where the controller Hamiltonian function Hc : Xc →R still has to be designed. The

goal is thus to construct a function V as above in such a way that V has a minimum

at (xp⋆ ,xc⋆) where xc⋆ still remains to be chosen. This strategy is based on finding all

the achievable Casimirs of the closed-loop system. Furthermore, since the closed-

loop Casimirs are based on the closed-loop Dirac structures, this reduces to finding

all the achievable closed-loop Dirac structures.

A comprehensive analysis of the finite dimensional case has been presented in

[45]. A brief recap of the main results is provided in Sect. 5.4. Moreover, in Sect. 6.4

(but cf. also [122, 164]), we show how to characterize the set of achievable Dirac

structures and achievable Casimirs in cases which are of a mixed finite-dimensional

and infinite-dimensional nature. In particular we study the case of an ideal transmis-

sion line connected at both ends to a finite-dimensional port-Hamiltonian system.
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5.3.3 Port control

In broad terms, the Port Control problem is to design, given the plant port-Hamiltonian

system, a controller port-Hamiltonian system such that the behavior at the interac-

tion port of the plant port-Hamiltonian system is a desired one, or close to a desired

one. This means that by adding the controller system we seek to shape the external

behavior at the interaction port of the plant system. If the desired external behavior at

this interaction port is given in input-output form as a desired (dynamic) impedance,

then this amounts to the Impedance Control problem as introduced and studied by

Hogan and co-workers [90]; see also [195] for subsequent developments.

The Port Control problem, as stated in this generality, immediately leads to two

fundamental questions:

1. Given the plant port-Hamiltonian system, and the controller port-Hamiltonian

system to be arbitrarily designed, what are the achievable behaviors of the closed-

loop system at the interaction port of the plant?

2. If the desired behavior at the interaction port of the plant is not achievable, then

what is the closest achievable behavior?

Of course, the second question leaves much room for interpretation, since there is no

obvious interpretation of what we mean by ‘closest behavior’. Also the first question

in its full generality is not easy to answer, and we shall only address an important

sub-problem.

An obvious observation is that the desired behavior, in order to be achievable,

needs to be the port behavior of a port-Hamiltonian system. This leads already to

the problem of characterizing those external behaviors which are port behaviors

of port-Hamiltonian systems. Secondly, the Port Control problem can be split into

a number of sub-problems. Indeed, we know that the closed-loop system arising

from interconnection of the plant port-Hamiltonian system with the controller port-

Hamiltonian system is specified by a Hamiltonian which is just the sum of the plant

Hamiltonian and the controller Hamiltonian, and a resistive structure which is the

“product” of the resistive structure of the plant and of the controller system, to-

gether with a Dirac structure which is the composition of the plant Dirac structure

and the controller Dirac structure. Therefore an important sub-problem is again to

characterize the achievable closed-loop Dirac structures. A fundamental problem

in addressing the Port Control problem in general theoretical terms is the lack of a

systematic way to specify ‘desired behavior’.

Example 5.1. Consider the plant system (in input-state-output port-Hamiltonian

form) 



[
q̇

ṗ

]
=

[
0 1

−1 0

][ ∂H
∂q
∂H
∂ p

][
0

1

]
u

y =
[
0 1
]
[

∂H
∂q
∂H
∂ p

]
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Fig. 5.1 Controlled mass.
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with q the position and p being the momentum of the mass m, in feedback intercon-

nection u = −ȳ+ fI , ū = y = eI , with the controller system (see Fig. 5.1):








∆̇qc

ṗc

∆̇q


=




0 1 0

−1 −b 1

0 −1 0







∂Hc

∂∆qc
∂Hc

∂ pc
∂Hc

∂∆qc







0

0

1


 ū

ȳ =
∂Hc

∂∆qc

(5.10)

where ∆qc is the displacement of the spring kc, ∆q is the displacement of the spring

k, and pc is the momentum of the mass mc. The plant Hamiltonian is H(p) = 1
2m

p2,
and the controller Hamiltonian is given as

Hc (∆qc, pc,∆q) =
1

2

[
p2

c

mc

+ k(∆q)2 + kc(∆qc)
2

]

The variable b > 0 is the damping constant, and fI is an external force, with eI

denoting the corresponding velocity. The closed-loop system possesses the Casimir

function

C(q,∆qc,∆q) = ∆q− (q−∆qc),

implying that along the solutions of the closed-loop system

∆q = q−∆qc + c (5.11)

with c a constant depending on the initial conditions. With the help of LaSalle’s

Invariance principle it can be shown that restricted to the invariant manifolds (5.11)

the system is asymptotically stable for the equilibrium q = ∆qc = p = pc = 0.

The problem of Port Control is to determine the controller system given by

(5.10), or by a more general expression, in such a way that the port behavior in

the port variables fI , eI is a desired one. In this particular (simple and linear) ex-

ample the desired behavior can be quantified e.g. in terms of a desired stiffness

and damping of the closed-loop system, which is easily expressed in terms of the

closed-loop transfer function from fI to eI . Of course, on top of the requirements

on the closed-loop transfer function we would also require internal stability of the

closed-loop system. For an appealing example of port control of port-Hamiltonian

systems within a context of hydraulic systems we refer to [105].
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5.4 Achievable Dirac structures with dissipation

The problem of control by interconnection of a plant port-Hamiltonian system P is

to find a controller port-Hamiltonian system C such that the closed-loop system has

the desired properties. The closed-loop system is again a port-Hamiltonian system

with Hamiltonian equal to the sum of the Hamiltonians of the plant and the con-

troller system, a total resistive structure depending on the resistive structures of the

plant and controller systems and the Dirac structure being the composition of the

Dirac structure of the plant and controller port-Hamiltonian systems. Desired prop-

erties of the closed-loop may include for example internal stability of the system

and behavior at the interaction port.

Within the framework of control by interconnection of port-Hamiltonian sys-

tems, which relies on the existence of Casimirs for the closed-loop system, the

problem is restricted to finding achievable Dirac structure of the closed-loop sys-

tem, that is given a Dp and a (to be designed) Dc, what are the achievable Dp ‖ Dc.

Consider here the case where Dp is given a Dirac structure (finite-dimensional) with

dissipation, and Dc a to be designed controller Dirac structure with dissipation. We

investigate what are the achievable Dp ‖ Dc, the closed-loop structures.

5.4.1 Achievable Dirac structures

Theorem 5.1. Given a plant Dirac structure DP with port variables ( f1,e1, f ,e),
and a desired Dirac structure D with port variables ( f1,e1, f2,e2). Then there exists

a controller Dirac structure DC such that D = DP ‖ DC if and only if the following

two conditions are satisfied

D0
P ⊂ D0 (5.12)

Dπ ⊂ Dπ
P (5.13)

where 



D0
P :=

{
( f1,e1) | ( f1,e1,0,0) ∈ DP

}

Dπ
P :=

{
( f1,e1) | ∃( f ,e) : ( f1,e1, f ,e) ∈ DP

}

D0 :=
{
( f1,e1) | ( f1,e1,0,0) ∈ D

}

Dπ :=
{
( f1,e1) | ∃( f2,e2) : ( f1,e1, f2,e2) ∈ D

}
(5.14)

The following proof of Theorem 5.1 is based on the following ‘copy’ (or ‘internal

model’) D∗
P of the plant Dirac structure DP:

D∗
P :=

{
( f1,e1, f2,e2) | (− f1,e1,− f2,e2) ∈ DP

}
(5.15)

It is easily seen that D∗
P is a Dirac structure if and only if DP is a Dirac structure.
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Fig. 5.2 DP ‖ D∗
P ‖ D .
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Proof. Necessity of (5.12) and (5.13) is obvious. Sufficiency is shown using the

controller Dirac structure

DC := D∗
P ‖ D

(see Fig. 5.2). To check that D ⊂ DP ‖ DC, consider ( f1,e1, f3,e3) ∈ D . Because

( f1,e1) ∈ Dπ , applying (5.13) yields that ∃( f2,e2) such that ( f1,e1, f2,e2) ∈ DP.

It follows that (− f1,e1,− f2,e2) ∈ D∗
P. Recall now the following interconnection

constraints in Fig. 5.2:

f2 = − f ∗2 e2 = e∗2 f ∗1 = − f ′1 e∗1 = e′1

By taking ( f ′1,e
′
1) = ( f1,e1) in Fig. 5.2, it follows that ( f1,e1, f2,e2) ∈ DP ‖ DC.

Therefore, D ⊂ DP ‖ DC. To check that DP ‖ DC ⊂ D , consider ( f1,e1, f2,e2) ∈
DP ‖ DC. Then there exist f = − f ∗, e = e∗, f ∗1 = − f ′1 and e∗1 = e′1 such that

( f1,e1, f ,e) ∈ DP (5.16)

( f ∗1 ,e∗1, f ∗,e∗) ∈ D∗
P ⇐⇒ ( f ′1,e

′
1, f ,e) ∈ DP (5.17)

( f ′1,e
′
1, f2,e2) ∈ D (5.18)

Subtracting (5.17) from (5.16), making use of the the linearity of DP, we get

( f1 − f ′1,e1 − e′1,0,0) ∈ DP ⇐⇒ ( f1 − f ′1,e1 − e′1) ∈ D0
P (5.19)

Using (5.19) and (5.12) we get

( f1 − f ′1,e1 − e′1,0,0) ∈ D (5.20)

Finally, adding (5.18) and (5.20), we obtain ( f1,e1, f2,e2) ∈ D , and so DP ‖ DC ⊂
D . Finally we show that conditions (5.12) and (5.13) are equivalent. In fact we prove

that (D0)⊥ = Dπ and the same for DP. Here, ⊥ denotes the orthogonal complement

with respect to the canonical bi-linear form on F1 ×F ∗
1 defined as

≪ ( f a
1 ,ea

1),( f b
1 ,eb

1) ≫:=
〈

ea | f b
〉

+
〈

eb | f a
〉

for ( f a
1 ,ea

1),( f b
1 ,eb

1)∈F1×F ∗
1 . Then, since D0

P ⊂D0 implies (D0)⊥ ⊂ (D0
P)⊥, the

equivalence between (5.12) and (5.13) is immediate. In order to show (D0)⊥ = Dπ

first take ( f1,e1) ∈ (Dπ)⊥, implying that

≪ ( f1,e1),( f̃1, ẽ1 ≫=
〈
e1 | f̃1

〉
+ 〈ẽ1 | f1〉 = 0
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for all ( f̃1, ẽ1) for which there exists ( f̃2, ẽ2) such that ( f̃1, ẽ1, f̃2, ẽ2) ∈ D . This im-

plies that ( f1,e1,0,0) ∈ D⊥ = D and thus that ( f1,e1) ∈ D0. Hence, (Dπ)⊥ ⊂ D0

and thus (D0)⊥ = Dπ , implying that there exists ( f2,e2) such that ( f1,e1, f2,e2) ∈
D = D⊥. Hence

〈
e1 | f̃1

〉
+ 〈ẽ1 | f1〉+

〈
e2 | f̃2

〉
+ 〈ẽ2 | f2〉 = 0

for all ( f̃1, ẽ1, f̃3, ẽ3)∈D , implying that
〈
e1 | f̃1

〉
+〈ẽ1 | f1〉= 0 for all ( f̃1, ẽ1,0,0)∈

D and thus ( f1,e1) ∈ (D0)⊥.

5.4.2 Achievable Resistive structures

Similar analysis could also be done for Resistive structures in which case we for-

mulate the problem as follows. We are given a R1 and the to-be-designed R2, then

what are the achievable Resistive structures R1 ‖ R2?

Theorem 5.2. Given a Resistive structure R1 with port variables ( fR1,eR1, f2,e2)
and a desired Resistive structure R with port variables ( fR1,eR1, fR3,eR3). Then

there exist an R2 such that R = R1 ‖ R2 if and only if the following two conditions

(these are no more equivalent) are satisfied

R0
1 ⊂ R0 (5.21)

Rπ ⊂ Rπ
1 (5.22)

where

R0
1 :=

{
( fR1,eR1) | ( fR1,eR1,0,0) ∈ R1

}

Rπ
1 :=

{
( fR1,eR1) | ∃( f2,e2) s.t. ( fR1,eR1, f2,e2) ∈ R1

}

R0 :=
{
( fR1,eR1) | ( fR1,eR1,0,0) ∈ R

}

Rπ :=
{
( fR1,eR1) | ∃( fR3,eR3) s.t (( fR1,eR1, fR3,eR3) ∈ R)

}

Proof. We again follow the same proof as that of achievable Dirac structures, we

now define the “copy” R∗
1 of R1 as

R∗
1 :=

{
( fR1,eR1, f2,e2) | (− fR1,eR1,− f2,e2)

}
∈ R1

again its clear that R∗
1 is a resistive structure if and only if R1 is a Resistive structure,

and by defining R2 := R∗
1 ‖ R. Rest of the proof follows the same procedure as in

Theorem 5.1 and hence we omit the details here.

Remark 5.2. It should be noted here that the conditions (5.21) and (5.22) are no

longer equivalent as in the case of Dirac structures. This is due to the property of the

Resistive structure that R⊥ = (−R), where again −R is a pseudo resistive structure

corresponding to negative resistance.
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Fig. 5.3 DR = DRP ‖
DR∗

P‖ DR.
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5.4.3 Achievable Dirac structures with dissipation

We now use the results in the previous two subsections to study the problem of the

achievable Dirac structures with dissipation for the closed loop system. We formu-

late the problem as follows. Given a DP with a RP (i.e a plant system with dissi-

pation) and a (to be designed) DC with RC (a controller system with dissipation),

what are the achievable (DP ‖RP) ‖ (DC ‖RC). For ease of notation we henceforth

use DRP for (DP ‖ RP) and DRC for (DC ‖ RC).Consider here the case where

DRP is given a Dirac structure with dissipation (finite-dimensional), and DRC a to

be designed controller Dirac structure with dissipation. We investigate what are the

achievable DRP ‖ DRC, the closed-loop structures.

Theorem 5.3. Given a plant Dirac structure with dissipation DRP with port vari-

ables f1,e1, fR1,eR1, f ,e and a desired Dirac structure with Dissipation DR with

port-variables f1, e1, fR1, eR1, f2, e2, fR2 and eR2. Here ( f1,e1), ( fR1,eR1) re-

spectively denote the flow and effort variables corresponding to the energy stor-

ing elements and the energy dissipating elements of the plant system. and similarly

with the controller system. Then there exists a controller system DRC such that

DR = DRP ‖ DRC if and only if the following two conditions are satisfied

DR0
P ⊂ DR0 (5.23)

DRπ ⊂ DRπ
P (5.24)

where

DR0
P :=

{
( f1,e1, fR1,eR1) | ( f1,e1, fR1,eR1,0,0) ∈ DRP

}

DRπ
P :=

{
( f1,e1, fR1,eR1) | ∃( f ,e) s.t. ( f1,e1, fR1,eR1, f ,e) ∈ DRP

}

DR0 :=
{
( f1,e1, fR1,eR1) | ( f1,e1, fR1,eR1,0,0,0,0) ∈ DR

}

DRπ :=
{
( f1,e1, fR1,eR1) | ∃( f2,e2, fR2,eR2)

s.t (( f1,e1, fR1,eR1, f2,e2,eR2,eR2) ∈ DR)}

(5.25)

Proof. The proof is again based on the copy DR∗
P of the plant system defined as

DR∗
P :=

{
( f1,e1, fR1,eR1, f ,e) | (− f1,e1,− fR1,eR1,− f ,e) ∈ DRP

}
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and defining a controller system DRC := DR∗
P ‖ DR. We follow the same pro-

cedure for the proof as in the case of achievable Dirac structures, Theorem(5.1).

Necessity of conditions (5.23) and (5.24) is obvious. Sufficiency is shown by using

the controller Dirac structure with dissipation

DRC := DR∗
P ‖ DR

To check that DR ⊂DR p ‖DRc, consider ( f1,e1, fR1,eR1, f2,e2,eR2,eR2) ∈DR.

Because ( f1,e1, fR1,eR1) ∈ DRπ , applying (5.24) yields that ∃( f ,e) such that

( f1,e1, fR1,eR1, f ,e) ∈ DR1. This implies that (− f1,e1,− fR1,eR1,− f ,e) ∈ DR∗
P.

With the interconnection constraints, see Fig. 5.3

f = − f ∗ e = e∗ f ∗1 = − f ′1 e∗1 = e′1

By taking ( f ′1,e
′
1, f ′R1

,e′R1
) = ( f1,e1, fR1,eR1

) in Fig. 5.3, it follows that

( f1,e1, fR1,eR1, f2,e2,eR2,eR2) ∈ DR p ‖ DRc

and hence DR ⊂ DR p ‖ DRc. To check that DR p ‖ DRc ⊂ DR, consider

( f1,e1, fR1,eR1, f2,e2,eR2,eR2) ∈ DR p ‖ DRc. Then, there exists f = − f ∗, e = e∗,

f ∗1 = − f ′1 and e∗1 = e′1 such that

( f1,e1, fR1,eR1, f ,e) ∈ DR1 (5.26)

( f ∗1 ,e∗1, f ∗R1,e
∗
R1, f ∗,e∗) ∈ DR∗

1 ⇔
⇔ ( f ′1,e

′
1, f ′R1

,e′R1
, f ,e) ∈ DR p (5.27)

( f ′1,e
′
1, f ′R1,e

′
R1, f2,e2,eR2,eR2) ∈ DR (5.28)

subtracting (5.27) from (5.23) and also by making use of the linearity on DR p we

get

( f1 − f ′1,e1 − e′1, fR1 − f ′R1,eR1 − e′R1,0,0) ∈ DR p ⇐⇒
⇐⇒ ( f1 − f ′1,e1 − e′1, fR1 − f ′R1,eR1 − e′R1) ∈ DR0

p (5.29)

Using (5.29) and (5.23) we get

( f1 − f ′1,e1 − e′1, fR1 − f ′R1,eR1 − e′R1,0,0,0,0) ∈ DR (5.30)

Finally, adding (5.30) and (5.28) we get ( f1,e1, fR1,eR1, f2,e2,eR2,eR2) ∈ DR and

hence DR p ‖ DRc ⊂ DR.

Remark 5.3. In this case also it can easily be checked that the conditions (5.23) and

(5.24) are no more equivalent as in the case of systems without dissipation.This is

again due to the compositional property of a Dirac structure with a resistive structure

given by as stated in Remark 5.2.
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5.4.4 Achievable Casimirs and constraints

An important application of Theorem 5.1 concerns the characterization of the

Casimir functions which can be achieved for the closed-loop system by intercon-

necting a given plant port-Hamiltonian system with associated Dirac structure DP

with a controller port-Hamiltonian system with associated Dirac structure DC. This

constitutes a cornerstone for passivity-based control of port-Hamiltonian systems as

developed e.g. in [160, 161]. Dually, we may characterize the achievable algebraic

constraints for the closed-loop system.

Recall that a Casimir function C : X → R of the port-Hamiltonian system

is defined to be a function which is constant along all trajectories of the port-

Hamiltonian system, irrespective of the Hamiltonian H and the resistive structure

(see Sect. 2.6.2). It follows from the above consideration of the admissible flows

that the Casimirs are determined by the subspace G1 = ImET
s , where Es and Fs

are the matrices providing the kernel/image representation (see Sect. 2.4.1) of the

Dirac structure D associated with the port-Hamiltonian system. Indeed, necessarily

fs = −ẋ(t) ∈ G1, and thus

ẋ(t) ∈ ImET
s t ∈ R.

Therefore C : X → R is a Casimir function if dC
dt

(x(t)) = ∂ TC
∂x

(x(t))ẋ(t) = 0 for all

ẋ(t) ∈ ImET
s . Hence C : X → R is a Casimir of the port-Hamiltonian system if it

satisfies the set of partial differential equations

∂C

∂x
(x) ∈ kerEs

Geometrically, this can be formulated by defining the following subspace of the dual

space of efforts

P0 =
{

es ∈ X ∗ | (0,es) ∈ D
}

Indeed, it can be easily seen that G1 = P⊥
0 where ⊥ denotes orthogonal complement

with respect to the dual product 〈· | ·〉. Hence C is a Casimir function iff

∂C

∂x
(x) ∈ P0

Remark 5.4. In the case of a non-constant Dirac structure the matrix Es will depend

on x, and kerEs will define a co-distribution on the manifold X . Then the issue

arises of integrability of this co-distribution, see Sect. 2.7 and [59].

Dually, the algebraic constraints for the port-Hamiltonian system are determined

by the space P1, since necessarily ∂ TH
∂x

(x) ∈ P1, which will induce constraints on the

state variables x.

Let us now consider the question of characterizing the set of achievable Casimirs

for the closed-loop system DP ‖ DC, where DP is the given Dirac structure of the
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Fig. 5.4 DP ‖ DC.
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plant port-Hamiltonian system with Hamiltonian H, and DC is the (to-be-designed)

controller Dirac structure. In this case, the Casimirs will depend on the plant state x

as well as on the controller state xc. Since the controller Hamiltonian HC(xc) is at our

own disposal we will be primarily interested in the dependency of the Casimirs on

the plant state x. Since we want to use the Casimirs for shaping the total Hamiltonian

H + HC to a Lyapunov function as anticipated in Sect. 5.3.2 and discussed in [160,

161].

Consider the notation given in Fig. 5.4, and assume the ports in ( fp,ep) are con-

nected to the (given) energy storing elements of the plant port-Hamiltonian system

(that is, fp = −ẋ, ep = ∂H
∂x

), while ( fc,ec) are connected to the (to-be-designed)

energy storing elements of a controller port-Hamiltonian system (that is, fc = −ẋc,

ec = ∂HC

∂xc
). Note that the number of ports ( fc,ec) can be freely chosen. In this sit-

uation the achievable Casimir functions are functions K(x,xc) such that ∂K
∂x

(x,xc)
belongs to the space

PCas =
{

ep | ∃DC s.t. ∃ec : (0,ep,0,e3) ∈ DP ‖ DC

}
(5.31)

Thus the question of characterizing the achievable Casimirs of the closed-loop sys-

tem, regarded as functions of the plant state x, is translated to finding a characteri-

zation of the space PCas. This is answered by the following theorem.

Theorem 5.4. The space PCas defined in (5.31) is equal to the linear space

P̃ =
{

ep | ∃( f ,e) : (0,ep, f ,e) ∈ DP

}

Proof. PCas ⊂ P̃ trivially. By using the controller Dirac structure DC = D∗
P, we im-

mediately obtain P̃ ⊂ PCas.

Remark 5.5. For a non-constant Dirac structure on a manifold X PCas defines a

co-distribution on X .

In a completely dual way we may consider the achievable constraints of the

closed-loop system, characterized by the space

GAlg =
{

fp | ∃DC s.t. ∃ fc : ( fp,0, fc,0) ∈ DP ‖ DC

}
(5.32)

Theorem 5.5. The space GAlg defined in (5.32) is equal to the linear space

{
fp | ∃( f ,e) : ( fp,0, f ,e) ∈ DP

}
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Remark 5.6. For a non-constant Dirac structure GAlg defines a distribution on the

manifold X .

Example 5.2. Consider the input-state-output port-Hamiltonian plant system with

inputs f and outputs e





ẋ = J(x)
∂H

∂x
(x)+g(x) f

e = gT(x)
∂H

∂x
(x)

x ∈ X , f , e ∈ R
m

where J(x) is a skew-symmetric n×n matrix. The corresponding Dirac structure is

given as the graph of the map

[
fp

e

]
=

[
−J(x) −g(x)

gT(x) 0

][
ep

f

]

It is easily seen that

PCas =
{

ep | ∃ f such that 0 = J(x)ep +g(x) f
}

implying that the achievable Casimirs K(x,xc) are such that ep = ∂K
∂x

(x) satisfies

J(x) ∂K
∂x

(x) ∈ Img, that is, K as a function of x is a Hamiltonian function corre-

sponding to a Hamiltonian vector field contained in the distribution spanned by the

input vector fields given by the columns of g(x). Similarly, it is easily seen that

GAlg =
{

fp | ∃ f s.t. fp = −g(x) f
}

= Img(x)

which implies that the achievable algebraic constraints are of the form ∂ TH
∂x

(x)g(x) =

k(xc). This simply means that the outputs e = gT(x) ∂H
∂x

(x) can be constrained in

any way by interconnecting the system with a suitable controller port-Hamiltonian

system.

From a ‘control by interconnection’ (or ‘impedance control’) point of view the

characterization of the achievable Dirac structures is only a first step towards char-

acterizing the achievable port-Hamiltonian closed-loop behaviors. Also, the transla-

tion of specifications on desired closed-loop behavior in terms of the entities defin-

ing the closed-loop port-Hamiltonian system is an important open issue for research.

5.4.5 The role of energy dissipation

In the modeling process of physical systems the precise specification of the resis-

tive relations is one of the most difficult parts. Furthermore, precisely these resistive
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relations are often subject to time-variation. Therefore, from a robust control per-

spective it may be desirable to base the construction of the controller in a way that

is independent of the precise resistive relations, and to make sure that the controller

behavior meets the required specifications for a sufficiently large range of resistive

effects. This raises a number of questions, some of which are addressed below.

5.4.6 Casimirs and the dissipation obstacle

Recall that we define a Casimir function for a port-Hamiltonian system with dissipa-

tion Σ = (X ,H,R,D) to be any function C : X → R such that e = ∂C
∂x

(x) satisfies

(0,e,0,0) ∈ D . Indeed, as derived above, this will imply that

d

dt
C =

∂ TC

∂x
(x(t))ẋ(t) =

∂ TC

∂x
(x(t)) fS = eT fS = 0 (5.33)

for every port-Hamiltonian system (X ,H,R,D) with the same Dirac structure D .

As shown in Sect. 2.6.2.1, the definition of Casimir function cannot relaxed by re-

quiring that (5.33) only holds for a specific resistive relation R f fR +ReeR = 0, where

the square matrices R f and Re satisfy the symmetry and semi-positive definiteness

condition (2.25) together with the dimensionality condition (2.26). In fact, a Casimir

for one resistive relation is actually a Casimir for all resistive relations, which is

closely related to the so-called dissipation obstacle in the case of input-state-output

port-Hamiltonian systems.

An obvious way to overcome the dissipation obstacle in particular cases is to

apply a preliminary feedback (for simplicity we restrict ourselves to input-state-

output port-Hamiltonian systems)

u = K(x)y+ v, K(x) = KT(x) ≥ 0

(negative damping injection), which leads to the closed-loop system

ẋ =
[
J(x)−R(x)+K(x)

]∂H

∂x
+g(x)v

Hence if we are able to design K(x) in such a way that R(x)−K(x) becomes zero, or

at least of rank less than rankR(x) (exact compensation of energy dissipation) then

the dissipation obstacle disappears, respectively is mitigated. An obvious drawback

of this strategy is that it relies on exact compensation, and hence may be highly

sensitive with respect to parameter uncertainty in the resistive relations. Another

strategy to overcome the dissipation obstacle in some cases is discussed in [136].
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Fig. 5.5 DRP ‖ DRC.
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5.4.7 Casimirs for any resistive relation

We now consider the question of characterizing the set of achievable Casimirs for

the closed-loop system DRP ‖ DRC with DRP the Dirac structure of the plant

port-Hamiltonian system with dissipation with Hamiltonian H, and DRC is the

controller Dirac structure. For all resistive relations and every port behavior. Then

the Casimirs depend on the plant state x and also on the controller state xc, with the

controller Hamiltonian Hc(xc) at our own disposal.

Consider DRP as in Fig. 5.5, with ( fp, fR, f ,ep,eR,e) ∈ DRP and a controller

Dirac structure DRC with ( fc, fRc ,− f ,ec,eRc ,e) ∈ DRC, with ( fp,ep) are con-

nected to the (given) energy storing elements of the plant port-Hamiltonian system

with dissipation, ( fR,eR) are connected to the energy dissipation elements of the

plant system, while ( fc,ec) connected to the (to be designed) energy storing ele-

ments of the controller port-Hamiltonian system with dissipation (that is fc = −ẋc

and ec = ∂Hc

∂xc
) while ( fRc ,eRc) are connected to the energy dissipation elements of

the controller system and ( f ,e) being the space of shared flows and efforts between

the plant and the controller Dirac structures. In this situation the achievable Casimirs

are functions C(x,xc) such that ∂ TC
∂x

(x,xc) belongs to the space

PCas =
{

ep | ∃DRC s.t ∃ec : (0,ep,0,0,0,ec,0,0) ∈ DRP ‖ DRC

}

The following theorem then addresses the question of characterizing the achievable

Casimirs of the closed-loop system, regarded as functions of the plant state x by

characterization of the space PCas.

Proposition 5.2. The space PCas defined above is equal to the space

P̃ =
{

e1 | ∃( f ,e s.t (0,e1,0,0, f ,e) ∈ Dp

}

Proof. We see that PCas ⊂ P̃ trivially and by using the controller Dirac structure

DRC = DR∗
P we obtain P̃ ⊂ PCas.
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5.4.8 Casimirs for a given resistive relation

In case of a specific resistive relation R given by R f fR +ReeR = 0, where the square

matrices R f and Re satisfy the symmetry and semi-positive definiteness condition

(2.25) together with the dimensionality condition (2.26), if C : X →R is a Casimir

function, then this means that e = ∂C
∂x

(x) satisfies

∂ TC

∂x
(x) fp = 0

for all fp such that exists es, fR and eR such that ( fp,ep, fRp,eRp) ∈ DR and

R f fR + ReeR = 0. This means that (0,e) ∈ (D ‖ R)⊥. Since we know by (2.214)

in Proposition 2.3 that (D ‖ R)⊥ = D ‖ −R, and thus the Casimirs are determined

by the following subspace

(0,ep,− fRp,eRp) ∈ DR

We now consider the question of finding all the achievable Casimirs for closed-loop

system DRP ‖ DRC, with DRP the Dirac structure of the plant port-Hamiltonian

system with dissipation with Hamiltonian H, and DRC is the controller Dirac struc-

ture; for a given resistive relations and every port behavior. Consider DRP and

DRC as above, and in this case the achievable Casimirs are functions C(x,xc) such

that ∂ TC
∂x

(x,xc) belongs to the space

PCas =
{

ep | ∃DRC s.t.

∃ec : (0,ep,− fRp,eRp,0,ec,− fRc,eRc) ∈ DRP ‖ DRC

}
(5.34)

Proposition 5.3. The space PCas defined above is equal to the linear space

P̃ =
{

e1 | ∃( f ,e) s.t. (0,e1,− fRp,eRp, f ,e) ∈ Dp

}

Proof. The proof follows the same procedure as in Proposition 5.2.

5.4.9 Application to control

The characterization of the set of achievable Casimirs in terms of the plant state

is useful in the sense that given a plant Dirac structure we can, without defining a

controller, determine whether or not there exist Casimir functions for the closed-

loop system. This is in addition to the fact that we also have knowledge of the

Casimir functions for all R and Rc, with R ≥ 0 and Rc ≥ 0.

Consider a port-Hamiltonian system (in the input-output form), with ( fp,ep)
respectively the flows and efforts corresponding to the energy storing elements,
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( fR,eR) the flows and efforts corresponding to the energy dissipating elements and

( f ,e) the port variables corresponding to the inputs and outputs. The corresponding

Dirac structure is given by




fp

eR

e


=



−J(x) −gR(x) −g(x)

gT
R 0 0

gT 0 0






ep

fR

f


 (5.35)

The characterization of the space PCas is given by

PCas =
{

ep | ∃ fp s.t. 0 = −J(x)ep −g(x) f and 0 = gT
R(x)ep

}

These are the conditions for existence of Casimirs for the closed-loop system in

terms of the plant state. The expression implies that the achievable Casimirs do not

depend on the coordinate where dissipation enters into the system and is well known

in literature as the “dissipation obstacle”, cf. Sect. 2.6.2.1. In addition to that they

are also the Hamiltonian functions corresponding to the input vector fields given by

the columns of g(x).

5.5 Casimirs and stabilization in finite dimensions

5.5.1 Specific Casimirs

Another way to interpret the generation of Casimirs for the closed-loop system is

to look at the level sets of the Casimirs as invariant sub-manifolds of the combined

plant and controller state space Xp ×Xc. Restricted to every such invariant sub-

manifold (part of) the controller state can be expressed as a function of the plant

state, whence the closed-loop Hamiltonian restricted to such an invariant manifold

can be seen as a shaped version of the plant Hamiltonian. To be explicit suppose

that we have found Casimirs of the form

xci −Fi(xp) i = 1, · · · ,np

where np is the dimension of the controller state space, then on every invariant mani-

fold xci−Fi(xp) = αi, i = 1, · · · ,np, where α = (α1, · · · ,αnp) is a vector of constants

depending on the initial plant and controller state, the closed-loop Hamiltonian can

be written as

Hs(xp) := Hp(xp)+Hc(F(xp)+α)

where, as before, the controller Hamiltonian Hc still can be assigned. This can be

regarded as shaping the original plant Hamiltonian Hp to a new Hamiltonian Hs.

Example 5.3. Consider the equations of a normalized pendulum
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d̈ + sinq+dq̇ = u

with d a positive damping constant. The total energy is given by H(q, p) = 1
2

p2 +
(1− cosq). The corresponding Dirac structure is given as

[
−q̇

−ṗ

]
=

[
0 −1

1 0

][
sinq

p

]
+

[
0 0

0 1

][
0

d p

]
−
[

0

1

]
u

eR =
[
0 p
]

e = p

and comparing with (5.35), we have

( fp,ep, fR,eR, f ,e) =

(
−
[

q̇

ṗ

]
,

[
sinq

p

]
,

[
0

d p

]
,

[
0

p

]
, u, e

)

and

gR(x) =

[
0 0

0 1

]

In terms of the plant state (q, p), the achievable Casimirs are such that

∂C

∂ p
= 0 (5.36)

The above expression implies that any Casimir function for this system does not

depend on the p term, which is precisely where dissipation enters into the system.

However we can find Casimirs depending on q and can use it for stability analysis

as shown below.

Let q⋆ be a desired equilibrium position of the pendulum. The objective is to

shape the potential energy P(q) = 1− cosq in such a way that it has a minimum at

q = q⋆. Consider a first order controller written in the input-output form as





ẋc = uc

yc =
∂Hc

∂xc

with the corresponding elements of the Dirac structure being

(
fc,ec, fRc,eRc, f ′,e′

)
=

(
ẋc,

∂Hc

∂xc

,0,0,uc,yc

)

The interconnection constraints between the plant and the controller given as

u = yc uc = −yp
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Since we are looking for Casimirs of the form C = xc −F(q), the solution to (5.36)

are functions of the form F(q) = q. Choosing

Pc(xc) = cosxc +
1

2
(xc −q⋆)

2

and substituting xc = F(q)+ c = q+ c we get the shaped potential energy as

Pd(q) = P(q)+Pc(F(q)+ c)

= cos(q+ c)+(1− cosq)+
1

2
(q+ c−q⋆)

However, in order to obtain a minimum at q = q∗ the controller needs to be initial-

ized in such a way that c = 0.

5.5.2 Casimirs in extended state–space

In this section a modification of the control by interconnection method to overcome

the problem of controller initialization mentioned above is proposed. The key idea

is to analyze the closed-loop system in the extended state space X ×Xc, with

the control objective of stabilization of a desired equilibrium (x,xc), for some xc

satisfying equilibrium conditions of the closed-loop system. To this end, we consider

general Casimir functions C : X ×Xc →R. These can be characterized by the space

as in (5.34). In this case we see that not only C(x,xc) is a Casimir function but all

functions of the form Ψ(C(x,xc)) are Casimirs of the closed-loop system. Thus we

have a whole family of Casimirs to choose from, instead of specific Casimirs. On

the basis of the Hamiltonian of the plant, the Hamiltonian of the controller and the

corresponding Casimir function a Lyapunov function candidate is built as the sum

of the plant and controller Hamiltonians and the Casimir function as

V (x,xc) = H(x)+Hc(xc)+Ψ(C(x,xc)) (5.37)

We have

d

dt
V (x,xc) = −∂ TH

∂x
(x)R(x)

∂ TH

∂x
(x)− ∂ THc

∂xc

(xc)Rc(xc)
∂ THc

∂xc

(xc) ≤ 0

and hence V (x,xc) qualifies as a Lyapunov function for the closed-loop dynamics.

The next step would be to shape the closed-loop energy in the extended state

space (x,xc) in such a way that it has a minimum at (x⋆,xc⋆), therefore we re-

quire that the gradient of (5.37) has an extremum at (x⋆,xc⋆) and that the Hessian at

(x⋆,xc∗) is positive definite, that is
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[
∂
∂x

[H(x)+Ψ(C(x,xc))]
∂

∂xc
[Hc(xc)+Ψ(C(x,xc))]

]∣∣∣∣∣
(x⋆,xc⋆)

= 0 (5.38)

and




∂ 2

∂x2 [H(x)+Ψ(C(x,xc))]
∂ 2

∂xc∂x
Ψ(C(x,xc))]

∂ 2

∂x∂xc
Ψ(C(x,xc))]

∂ 2

∂x2
c
[Hc(xc)+Ψ(C(x,xc))]




∣∣∣∣∣∣
(x⋆,xc⋆)

≥ 0 (5.39)

Suppose that V (x,xc) has a strict local minimum at (x⋆,xc⋆). Furthermore assume

that the largest invariant set under the closed–loop dynamics contained in

{
(x,xc) ∈ X ×Xc | ∂ TH

∂x
(x)R(x)

∂ TH

∂x
(x) = 0,

∂ THc

∂xc

(xc)Rc(xc)
∂ THc

∂xc

(xc) = 0

}

equals (x⋆,xc⋆). Then (x⋆,xc⋆) is a locally asymptotically stable equilibrium of the

closed–loop system.

Example 5.4. We again consider the case of the normalized pendulum as in the

above example. With first order controllers, we need to solve (5.36) for Casimirs

of the closed loop system. In other words we are looking for the solution of the PDE

∂C

∂x
(x,xc) =

∂C

∂xc

(x,xc)

The solution of this PDE should be of the form C(x,xc) = q− xc, hence any func-

tion of the form Ψ(q− xc) is a Casimir for the closed-loop system. As in the above

example, the objective is to stabilize the system at a desired equilibrium in the ex-

tended state space (q⋆,xc⋆). We shape the potential energy in such a way that it has

a minimum at q = q⋆, xc = xc⋆. This can be achieved by choosing a controller of the

form

Hc(xc) =
1

2
β

(
xc − xc⋆ −

1

β
sinq⋆

)2

and the function Ψ(C(q,xc)) = Ψ(q− xc) as

Ψ(q− xc) =
1

2
k

[
q−q⋆ − (xc − xc⋆)−

1

k
sinq⋆

]2

where β and k are chosen to satisfy (5.38) and (5.39). Simple computations show

that β and k should be chosen such that

cosq⋆ + k > 0 β cosq⋆ + k cosq⋆ + kβ > 0

The resulting passivity based input u is then given by
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u = −∂Hc

∂xc

(xc) = −β

(
xc − xc⋆ −

1

β
sinq⋆

)

Remark 5.7. In the same way we can also stabilize a system of n “fully actuated”

pendulums, in which case we have to solve n different PDE’s for each of the sub-

system, in order to find the corresponding Casimir functions.

Example 5.5. The model of a permanent magnet synchronous machine [166], in the

case of an isotropic rotor, in the (d,q) frame can be written as a pH system in the

input state output form, with the state vector x = [x1,x2,x3]
T

and

J(x) =




0 LP
J

x3 0

−LP
J

x3 0 −Φ
0 Φ 0


 R =




Rs 0 0

0 Rs 0

0 0 0


 g =




1 0

0 1

0 0


 ,

where x1,x2 are the stator currents, x3 is the angular velocity, P is the number of pole

pairs, L is the stator inductance, Rs is the stator winding resistance, and Φ and J are

the dq back emf constant and the moment of inertia both normalized with P. The

inputs are the stator voltages [vd , vq]
T

. The energy function of the system is given

by

H(x) =
1

2

(
Lx2

1 +Lx2
2 +

J

P
x2

3

)

The desired equilibrium to be stabilized is usually selected based on the so–called

“maximum torque per ampere” principle as

x⋆ =

[
0,

Lτl

PΦ
,

J

P
x3⋆

]T

where τl is the constant load torque2. Interconnecting the plant system with a port-

Hamiltonian control

[
ξ̇1

ξ̇2

]
=

[
uc1

uc2

] [
yc1

yc2

]
=




∂Hc

∂ξ1
(ξ1,ξ2)

∂Hc

∂ξ2
(ξ1,ξ2)




via the power preserving interconnection

vd = −yc1 uc1 =
∂H

∂x1
(x) vq = −yc2 uc2 =

∂H

∂x2
(x)

yields the closed–loop system

2 In the port-Hamiltonian model of the permanent magnet synchronous machine, τl acts as a per-

turbation to the system.
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


ẋ1

ẋ2

x3

ξ̇1

ξ̇2




=




−Rs
LP
J

x3 0 −1 0

−LP
J

x3 −Rs −Φ 0 −1

0 Φ 0 0 0

1 0 0 0 0

0 1 0 0 0







∂H
∂x1
∂H
∂x2
∂H
∂x3
∂Hc

∂ξ1
∂Hc

∂ξ2




Using Proposition 5.2, we get that the Casimir function is given by C = 1
Φ x3 − ξ2.

Thus, the resulting Lyapunov function would be of the form (5.37)

V (x,ξ ) =
1

2

(
Lx2

1 +Lx2
2 +

J

P
x2

3

)
+Hc(ξ )+Ψ

(
1

Φ
x3 −ξ2

)
.

However, we can see that the equilibrium assignment condition (5.38) cannot be

satisfied, because we need to shape both x2 and x3 to assign x⋆, and the Casimir

depends only on x3. To overcome this problem, the interconnection matrix J(x)
should be modified, but this is not possible with the Control by Interconnection

technique.

In general, it is not possible to apply the Control by Interconnection to the family

of electromechanical systems described in [170]. Firstly, in most cases, the closed–

loop matrix Jcl(x,ξ )− Rcl(x,ξ ) is full–rank, leading to Casimir functions of the

form C(x,ξ ) = c, with c a constant vector, which obviously cannot be used to shaped

the energy of the system. Secondly, even if we can determine the Casimirs – as in

the case of the permanent magnet synchronous machine – these functions do not

depend on the coordinates we need to shape. The source of the problem is the lack

of interconnection between the electrical and mechanical subsystems, which can be

solved modifying the interconnection matrix J(x), [160, 161].

In the case of electromechanical systems, using a control input u = − ∂Hc

∂ξ
+ v̄,

with v̄ a constant input, leads to a forced Hamiltonian system with dissipation. The

analysis of [136] also allows to modify the interconnection structure to generate

Lyapunov function for nonzero equilibria. However, even if Casimirs can be ob-

tained (namely, microelectronics actuators, magnetic levitation system, etc), the sta-

bility analysis reveals that the minimum cannot be assigned. This can be viewed as

a limitation of this procedure though further investigation remains open.

5.6 Interconnection and damping assignment passivity

based-control (IDA–PBC)

IDA–PBC was introduced in [161] as a procedure to control physical systems de-

scribed by port-Hamiltonian models in input–output form as
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



ẋ =
[
J(x)−R(x)

]∂H

∂x
(x)+g(x)u

y = gT(x)
∂H

∂x
(x)

x ∈ R
n, u, y ∈ R

m (5.40)

In the IDA–PBC procedure we select the structure of the closed–loop system as

another port-Hamiltonian system and then we characterize all assignable energy

functions compatible with this structure. This characterization is given in terms of

the solution of a partial differential equation (PDE) which is parametrized by three

(designer chosen) matrices that are related with the interconnection between the

subsystems, the damping and the kernel of the systems input matrix, respectively.

Several interpretations can be given to the role played by these matrices. At the

most basic computational level they can be simply viewed as degrees-of-freedom to

simplify the solution of the PDE. In the case of physical systems the interconnection

and the damping matrices determine the energy exchange and the dissipation of the

system, respectively, consequently they can often be judiciously chosen invoking

this kind of physical considerations. See [158] for an extensive list of references

and applications of this methodology.

The main proposition of IDA–PBC for port–Hamiltonian systems is stated as

follows [161]:

Proposition 5.4. Consider the system (5.40), assume there are matrices g⊥(x),
Jd(x) = −JT

d (x), Rd(x) = RT
d(x) ≥ 0 and a function Hd : R

n → R that verify the

PDE

g⊥(x)
[
J(x)−R(x)

]∂H

∂x
= g⊥(x)

[
Jd(x)−Rd(x)

]∂Hd

∂x
(5.41)

where g⊥(x) is a full-rank left annihilator of g(x), i.e., g⊥(x)g(x) = 0, and Hd(x) is

such that

x⋆ = argminHd(x) (5.42)

with x⋆ ∈ R
n the equilibrium to be stabilized. Then, the closed–loop system (5.40)

with u = β (x), where

β (x) =
[
gT(x)g(x)

]−1
gT(x)

{[
Jd(x)−Rd(x)]

∂Hd

∂x
−
[
J(x)−R(x)

]∂H

∂x

}

takes the port-Hamiltonian form

ẋ =
[
Jd(x)−Rd(x)

]∂Hd

∂x
(5.43)

with x⋆ a (locally) stable equilibrium. It will be asymptotically stable if, in addition,

x⋆ is an isolated minimum of Hd(x) and the largest invariant set under the closed–

loop dynamics (5.43) contained in

{
x ∈ R

n | ∂ THd

∂x
Rd(x)

∂Hd

∂x
= 0

}
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equals {x⋆}. An estimate of its domain of attraction is given by the largest bounded

level set {x ∈ R
n | Hd(x) ≤ c}.

Following the ideas of Chapter 2, the IDA–PBC methodology can be expressed

in the Dirac framework as follows. Consider the port-Hamiltonian system with state

space X , Hamiltonian H corresponding to the energy storage port S , resistive port

R and control port C , given in input-state-output form in (5.40). As in Sect. 2.4.1,

if the Dirac structure D is given in matrix kernel representation as

D =
{
( fS,eS, fR,eR, fc,ec) ∈ FS ×F ∗

S ×FR ×F ∗
R ×Fc ×F ∗

c |

FS fS +ESeS +FR fR +EReR +Fc fc +Ecec = 0
}

with
(i) ESFT

S +FSET
S +ERFT

R +FRET
R +EcFT

c +FcET
c = 0

(ii) rank
[
FS | ES | FR | ER | Fc | Ec

]
= dim(FR×F R ×Fc)

then, the port–Hamiltonian system (5.40) is given by the set of equations:

−FSẋ(t)+ES

∂H

∂x
(x(t))+FR fR(t)+EReR(t)+Fc f (t)+Ecec(t) = 0 (5.44)

where we have set the flows of the energy storing elements fS = −ẋ (the negative

sign is included to have a consistent energy flow direction) and the efforts corre-

sponding to the energy storing elements eS = ∂H
∂x

.

Restricting to linear resistive elements, the flow and effort variables connected to

the resistive elements are related as fR =−R̃eR, with R̃ = R̃T ≥ 0. Substituting these

into (5.44) leads to the description of the physical system (5.40) by the set of DAE’s

−FSẋ(t)+ES

∂H

∂x
(x(t))−FRR̃eR +EReR +Fc fc(t)+Ecec(t) = 0 (5.45)

where we can see that (5.40) is a special case of (5.45) by letting

Fs =




In

0

0


 ES =




J(x)
−gT

R(x)
−gT(x)


 FR =




gR(x)
0

0


 ER =




0

Ir

0




Fc =




g(x)
0

0


 Ec =




0

0

Im




with r = dimFR, and setting u = fc, y = ec and R(x) = gT
R(x)R̃gR(x) with gR repre-

senting the input matrix corresponding to the resistive port. As above the objective

of IDA–PBC is to find a control input u = β (x) such that the closed-loop system

(5.43) in implicit form is given by

−FSẋ(t)+ESd

∂Hd

∂x
(x(t))−FRd

R̃deRd
+ERd

eRd
= 0 (5.46)
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with

FS =




In

0

0


 ESd

=




Jd(x)
−gT

Rd
(x)

0


 FRd

=




gRd
(x)

0

0


 ERd

=




0

Ird

0




where Jd(x) =−JT
d (x), Rd(x) = gT

Rd
(x)R̃dgRd

(x) = RT
d (x)≥ 0, with gRd

representing

the input matrix corresponding to the desired resistive port and rd = dimFRd
.

Multiplying both sides of (5.45) and (5.46) by F⊥
c – a full-rank left annihilator of

Fc, i.e. F⊥
c Fc = 0 – and eliminating ẋ, we get

F⊥
c

[
ES

∂H

∂x
(x(t))−FRR̃eR +EReR +Ecec(t)

]
=

= F⊥
c

[
ESd

∂Hd

∂x
(x(t))−FRd

R̃deRd
+ERd

eRd

]

assigning F⊥
c = [g⊥(x) 0 0], with g⊥(x) a full–rank left annihilator of g(x), that

is, g⊥(x)g(x) = 0, the above equation becomes

F⊥
c

[
ES

∂H

∂x
(x(t))−FRR̃eR

]
= F⊥

c

[
ESd

∂Hd

∂x
(x(t))−FRd

R̃deRd

]

which is an equivalent representation of the matching condition (5.41).

5.6.1 Solving the matching equation

A key step in the IDA–PBC methodology is the solution of (5.41). We underscore

the fact that in this equation:

1. Jd(x) and Rd(x) are free-up to the constraint of skew-symmetry and positive

semi-definiteness, respectively;

2. Hd(x) may be totally, or partially, fixed provided we can ensure (5.42) – and

probably a properness condition;

3. there is an additional degree-of-freedom in g⊥(x) which is not uniquely defined

by g(x). As reported in [3], this degree of freedom can be used to linearize a

nonlinear PDE that appears in mechanical systems.

Therefore, to solve this equation there are, at least, three ways to proceed:

A. (Non–Parametrized IDA) In one extreme case, which was the original one

adopted in [161], we fix the desired interconnection and dissipation matrices

Jd(x) and Rd(x) – hence the name IDA – as well as g⊥(x). This yields a PDE

whose solutions define the admissible energy functions Hd(x) for the given inter-

connection and damping matrices. Among the family of solutions we select one

that satisfies (5.42).
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Fig. 5.6 Model of an electro-

static micro-actuator.

b k

u

r

q

q

m
+
-

1. (Algebraic IDA) At the other extreme, originally proposed by [79], one fixes

the desired energy function, then (5.41) becomes an algebraic equation in Jd(x),
Rd(x) and g⊥(x).

2. (Parametrized IDA) For some physical systems it is desirable to restrict the de-

sired energy function to a certain class, for instance, for mechanical systems the

sum of a potential energy term, that depends only on the generalized positions,

and the kinetic energy that is quadratic in the generalized momenta [162]. Fixing

the structure of the energy function yields a new PDE for its unknown terms and,

at the same time, imposes some constraints on the interconnection and damping

matrices.

Example 5.6. Consider the problem of position regulation of the micro–electrome-

chanical system depicted in figure(5.6). The dynamical equations of motion [130,

183], can be represented as a port–Hamiltonian system of the form (5.40) where

the state of the system is the air gap q (with q⋆ the equilibrium to be stabilized),

the momentum p and the charge of the device Q. The plate area, the mass of the

plate and the permittivity in the gap are represented by A, m, and ε , respectively.

The spring and friction coefficients are given respectively by the positive constants

k and b. The input resistance is r and u represents the input voltage which is the

control action. As pointed out in [130], p is usually not available for measurement.

The interconnection structure is given by

J =




0 1 0

−1 0 0

0 0 0


 R =




0 0 0

0 b 0

0 0 1
r


 g =




0

0
1
r




with the energy function

H(q, p,Q) =
1

2
k(q−q⋆)

2 +
1

2m
p2 +

q

2Aε
Q2

Let us start with the Algebraic IDA and assume we want to assign a quadratic energy

function, that is,
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Hd(q, p,Q) =
γ1

2
(q−q⋆)

2 +
1

2m
p2 +

γ2

2
Q2

where γ1, γ2 are positive constants. Denote the desired interconnection and damping

matrices, which are to be determined, as

Jd =




0 J12 J13

−J12 0 J23

−J13 −J23 0


 Rd =




r1 0 0

0 r2 0

0 0 r3


 (5.47)

After some simple calculations we get that equation (5.41) becomes an algebraic

equation, with one possible solution, the following matrices

Jd(Q) =




0 1 0

−1 0 − Q
2Aεγ2

0 Q
2Aεγ2

0


 Rd =




0 0 0

0 b 0

0 0 r3




with γ1 = k and γ2, r3 > 0 free parameters. The control law is obtained as

β (q, p,Q) =

(
1

2Aεγ2

p

m
− r3γ2

)
rQ+

1

Aε
qQ

Notice that the control depends on the unmeasurable state p. To apply the Non–

Parametrized IDA, we use the same structure of (Jd −Rd) in (5.47), this yields the

PDEs

r1
∂Hd

∂q
+ J12

∂Hd

∂ p
+ J13

∂Hd

∂Q
=

p

m

−J12
∂Hd

∂q
− r2

∂Hd

∂ p
+ J23

∂Hd

∂Q
= −k(q−q⋆)−

Q2

2Aε
− b

m
p

As there are no clear indications on how to choose the elements of Jd −Rd , we fix

them as constants. Based on physical considerations we can select the matrix Jd −Rd

as

Jd −Rd =




0 J12 0

−J12 −r2 J23

0 −J23 −r3




The solution of the PDEs yields a cumbersome expression and an even more com-

plicated controller that still depends on p. That is, setting r2 = J12b we get for the

desired energy function

Hd(q, p,Q) =
1

2J12

(
1

m
p2 +

k

2Aε
(q−q⋆)

2 +
J2

23

3J2
12Aε

q3 +
J23

J12Aε
q2Q+

1

Aε
qQ2

)

+ψ

(
J23

J12
q+Q

)
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where ψ(·) is a free function to be selected to guarantee the equilibrium assignment

condition (5.42). The expression for the controller is given by

β (q, p,Q) = −J23Rr

J12m
p− r3r

(
J23

2J2
12Aε

q2 +
1

4J12Aε
q+ψ ′

Q

)
+

1

Aε
qQ

Finally, we observe that the mechanical part of the system suggests to consider an

energy function consisting of the sum of the open-loop kinetic energy and a function

to be defined, that is

Hd(q, p,Q) =
1

2m
p2 +ϕ(q,Q)

This parametrization fixes (Jd −Rd) as

Jd −Rd =




0 1 0

−1 −b 0

0 0 −r3




The solution of the PDEs (5.41) yields

ϕ(q,Q) =
1

2
k(q−q⋆)

2 +
1

2Aε
qQ2 +ψ(Q)

with ψ(Q) again free for the equilibrium assignment. After some simple calcula-

tions we obtain the nice output–feedback control

β (q,Q) = −(r3r−1)
1

Aε
qQ− r3rψ ′

which does not depend on the unmeasurable state p. This controller contains, as

a particular case with r3 = 1
r

and ψ(Q) quadratic, the linear charge feedback con-

troller studied in [130], but it also allows to use nonlinear functions to guarantee for

instance, saturation levels. We should also mention that the control scheme of [130]

has been obtained using a damping control plus a control by interconnection ap-

proach.

5.6.2 Energy–balancing of IDA–PBC

The stabilization mechanism of IDA–PBC is particularly clear when applied to port-

Hamiltonian systems (5.40) with some “suitable” damping properties. Indeed, it has

been shown in [161] that if the natural damping of the port-Hamiltonian system

satisfies3

R(x)

(
∂Hd

∂x
− ∂H

∂x

)
= 0 (5.48)

3 Since R(x) is usually diagonal, this condition requires that no damping is present in the coordi-

nates that need to be shaped, that is, the coordinates where the function H(x) has to be modified.
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and no additional damping is injected, that is, Rd(x) = R(x), then (along the tra-

jectories of the closed-loop system) the desired energy function may be expressed

as

Hd(x(t)) = H(x(t))−
∫ t

0
uT(s)y(s)ds. (5.49)

As this expression reveals, in this case, the IDA–PBC assigns as energy function

the difference between the energy stored in the system and the energy supplied to it

from the environment, hence we say that the controller is energy–balancing. For the

case of mechanical systems, it can be shown that IDA–PBC is energy–balancing if

we modify only the potential energy of the system.

Even when (5.48) is not satisfied the control action of IDA–PBC admits an

energy–balancing–like interpretation. In [95] is shown that if the interconnection

and the damping are not modified, i.e., Jd(x) = J(x), Rd(x) = R(x), and the matrix

J(x)−R(x) is full rank, then Hd(x(t)) still satisfies (5.49) with y replaced by the

“new output”

ỹ = −gT(x)
[
J(x)−R(x)

]−T

{[
J(x)−R(x)

]∂H

∂x
+g(x)u

}

As a partial converse of this result we also have that for single input systems

that verify condition (5.48) the new output ỹ exactly coincides with the natural

one y. Although uTỹ does not have (in general) units of power anymore, it is also

shown in [95] that for electromechanical systems the new port variables are ob-

tained from a classical Thevenin-Norton transformation of the voltage-current port

variables (u,y).

5.7 Power–shaping stabilization

Energy–balancing control is restricted to systems that do not have “pervasive dissi-

pation”, term which refers to the existence of resistive elements whose power does

not vanish at the desired equilibrium point. As indicated in Sect. 5.2, systems having

pervasive dissipation cannot be stabilized by energy balancing, since they extract an

infinite amount of energy from the controller at the desired equilibrium point. An-

other practical drawback of energy–shaping control is the limited ability to “speed

up” the transient response leading to somehow sluggish transients and below par

overall performance levels.

To overcome these obstacles, an alternative method was introduced in [159] for

nonlinear RLC circuits described by the Brayton–Moser equations (cf. Sect. 2.3.2.1

and [27, 28]). In this new method called Power–Shaping the storage function used

to identify the passive maps is not the total energy but a function directly related

with the power in the circuit. Furthermore, in contrast with the well known passivity

property of the (conjugated variables) voltage and current, passivity is established
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now with respect to voltage and derivative of the current (or current and derivative

of the voltage).

5.7.1 From port-Hamiltonian systems to the Brayton–Moser

equations

Differently from what has been presented at the end of Sect. 2.3.2.1, let us now

consider a port-Hamiltonian system with dissipation and control ports, which can

be represented by the set of differential equations





ẋ = J(x)
∂H

∂x
+gR(x) fR +g(x) fc

eR = gT
R(x)

∂H

∂x

ec = gT(x)
∂H

∂x

(5.50)

where fc, ec represent the flows and efforts corresponding to the control port and the

resistive relation is specified by an (effort-controlled) Rayleigh dissipation function

fR = − ∂ R̃

∂eR

(eR)

As in Sect. 2.3.2.1, suppose that the mapping from the energy variables x to the

co–energy variables e = ∂H
∂x

is invertible, that is, the inverse transformation from the

co–energy variables to the energy variables is given by

x =
∂H∗

∂e
(e) (5.51)

where H∗ is the co–energy or Legendre transformation of H given as H∗ = eTx−
H(x). From (5.51) it follows that the dynamics of the port-Hamiltonian system

(5.50) can be expressed in the co-energy variables as





∂ 2H∗

∂e2
ė = J(x)e−gR(x)

∂ R̃

∂eR

(eR)+g(x) fc

eR = gT
R(x)e

ec = gT(x)e

(5.52)

where we may substitute (5.51) to obtain a differential equation solely in the co–

energy variables e. Assume that we may find coordinates x = (xq,xp), dimxq = k,

dimxp = n− k, such that in these coordinates the matrix J(x) takes the form
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J(x) =

[
0 −B(x)

BT(x) 0

]

with B(x) a k×(n−k) matrix, and moreover the Hamiltonian H splits as H(xq,xp) =
Hq(xq)+ Hp(xp). Accordingly to the splitting x = (xq,xp) the co–energy variables

e = (eq,ep) are given by

eq =
∂Hq

∂xq

ep =
∂Hp

∂xp

yielding the Legendre transform H∗(e) of H(x) as H∗(eq,ep) = H∗
q (eq)+ H∗

p(ep).
For simplicity assume that gR(x) and g(x) take the form

gR(xq,xp) = −
[

Ik 0

0 In−k

]
g(xq,xp) =

[
gq(xq) 0

0 gp(xp)

]

where gq(x) and gp(x) are k× k and (n− k)× (n− k) matrices respectively. Then

(5.52) becomes




∂ 2H∗
q

∂e2
q

0

0
∂ 2H∗

p

∂e2
p



[

ėq

ėp

]
=

[
0 −B(x)

BT(x) 0

][
eq

ep

]
+

[
∂ R̃
∂eq

(eq,ep)
∂ R̃
∂ep

(eq,ep)

]

+

[
gq(xq) 0

0 gp(xp)

]
fc

eR = −
[

eq

ep

]

ec =

[
gT

q (xq) 0

0 gT
p(xp)

][
eq

ep

]

(5.53)

Note the similarities between (5.53) and (2.106). Now define the function

P(eq,ep,x) = eT
q B(x)ep + R̃(eq,ep) (5.54)

It follows that the first equation of (5.53) can be alternatively written as




∂ 2H∗
q

∂e2
q

0

0 − ∂ 2H∗
p

∂e2
p



[

ėq

ėp

]
= −

[
∂P
∂eq

∂P
∂ep

]
+

[
gq(xq) 0

0 −gp(xp)

]
fc (5.55)

where we may substitute

xq =
∂H∗

q

∂eq

xp =
∂H∗

p

∂ep



5.7 Power–shaping stabilization 311

in order to obtain a differential equation solely in the co–energy variables (eq,ep).
Note however that if the matrix B(x) and therefore the function P non–trivially de-

pend on x, then (5.55) is not valid if we substitute x = ∂H∗
∂e

in the definition of

P(eq,ep,x) before taking the partial derivatives of P with respect to eq and ep.

Relation (5.55) together with the mixed potential function (5.54) correspond to

the type of equations that were obtained in [27, 28] for RLC circuits, commonly

called the Brayton–Moser equations (see example below, generalization of Exam-

ple 2.8).

Example 5.7. Consider a general nonlinear RLC circuit where the capacitors are

described by vector functions representing the capacitor charges qC = q̂C(vC) :

R
nC → R

nC and capacitor currents iC = q̇C = C(vC) d
dt

vC, with capacitance matrix

C(vC) = ∂ q̂C

∂vC
∈ R

nC ×R
nC . Analogously, the inductors are described by the inductor

flux–linkages φL = φ̂L(iL) : R
nL → R

nL and Faraday’s law vL = φ̇L = L(iL) d
dt

iL, with

vL denoting the inductor voltage. The inductance matrix is given by L(iL) = ∂ φ̂L

∂ iL
∈

R
nL ×R

nL . If the network is complete, the state equations in terms of the capacitor

charges qC and inductor flux-linkages φL is given by (5.50) with the energy variables

x = (qC,φL) and

J(x) =

[
0 −B

BT 0

]

for some constant matrix B consisting of 0, 1, and −1 elements, fully determined by

the topology of the network. The Hamiltonian (total energy) splits as the sum of the

electrical and magnetic energy as

H(qC,φL) = HC(qC)+HL(φL)

then the co–energy variables are given by

e =

[
eq

ep

]
=

[
∂HC

∂qC

∂HL

∂φL

]
=

[
vC

iL

]
. (5.56)

We have that the inverse transformation from the co–energy variables to the energy

variables is given by x = ∂H∗
∂e

, with the co–energy function H∗ defined as

H∗ = H∗
C(vC)+H∗

L(iL) =
∫ vC

0
q̂C(v′C)dv′C +

∫ iL

0
φ̂L(i′L)di′L (5.57)

The resistive relation is defined by

R̃(eq,ep) = R̃(vC, iL) = −G(vC)+F(iL)

where F(iL) is the total current potential (content) of all current-controlled resis-

tors and G(vC) is the total voltage potential (co-content) of all voltage-controlled

resistors. Then the mixed–potential function (5.54) becomes
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P(vC, iL) = vT
CBiL −G(vC)+F(iL). (5.58)

Substituting (5.56), (5.57) and (5.58) in (5.55) we get

[
C(vC) 0

0 −L(iL)

][ dvC
dt
diL
dt

]
= −

[
∂P
∂vC

∂P
∂ iL

]
+

[
gq 0

0 −gp

][
iS
vS

]

where we have set fc = (iS,vS) with iS ∈ R
niS the controlled current sources, vS ∈

R
nvS the controlled voltage sources, gq ∈ {−1,0,1}nC×niS and gq ∈ {−1,0,1}nL×nvS .

5.7.2 Geometry of Brayton–Moser’s equation

From a geometric viewpoint, the Brayton–Moser equations (5.55) can be interpreted

as gradient equations with respect to the mixed-potential function P (5.54) and the

indefinite inner product or pseudo-Riemannian metric defined by the symmetric ma-

trix 


∂ 2H∗
q

∂e2
q

0

0 − ∂ 2H∗
p

∂e2
p




Notice however that if the Hamiltonian H does not split as H(xq,xp) = Hq(xq) +
Hp(xp), we obtain instead of (5.55) the more general equation




∂ 2H∗
∂e2

q

∂ 2H∗
∂eq∂ep

− ∂ 2H∗
∂ep∂eq

− ∂ 2H∗
∂e2

p



[

ėq

ėp

]
= −

[
∂P
∂eq

∂P
∂ep

]
+

[
gq(xq) 0

0 −gp(xp)

]
fc (5.59)

Hence in this case the most left matrix appearing in (5.59) is not symmetric any-

more, and therefore does not define a pseudo–Riemannian metric. In the following

we will consider the Brayton–Moser equations defined in (5.55).

Like Port–Hamiltonian systems, the Brayton–Moser equations (5.55) can be also

written in the formalism of Dirac structures, using a non–canonical Dirac structure

representation [22]. For instance, consider the following non–canonical Dirac struc-

ture
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D(eq,ep) =

{
( fS,eS, fc,ec) ∈ FS ×F ∗

S ×Fc ×F ∗
c |

−




∂ 2H∗
q

∂e2
q

0

0 − ∂ 2H∗
p

∂e2
p


 fS = eS +

[
−gq 0

0 gp

]
fc,

ec =

[
−gT

q 0

0 gT
p

]
fS

}
(5.60)

defined with respect to the bi-linear form

≪ ( fS1
,eS1

, fc1
,ec1

),( fS2
,eS2

, fc2
,ec2

) ≫(eq,ep)=

= eT
S1

fS2
+ eT

S2
fS1

+ eT
c1

fc2
+ eT

c2
fc1

+ f T
S1

(
A (eq,ep)+A T(eq,ep)

)
fS2

where

A (eq,ep) =




∂ 2H∗
q

∂e2
q

0

0 − ∂ 2H∗
p

∂e2
p




Then, the Brayton–Moser equations can be described as a dynamical system with

respect to the non–canonical Dirac structure (5.60) by setting the flow variables

as the rate of change of the power variables (eq,ep), i.e. fS = −(ėq, ėp), the input

port variables u = fc = (uq,up), the effort variables as the co-power variables eS =

( ∂P
∂eq

∂P
∂ep

). Notice that the flow and effort variables are conjugated variables in the

sense that

Ṗ =
∂ TP

∂eq

ėq +
∂ TP

∂ep

ėp.

Recall from the last equation of (5.53) that the natural output variables for the

Brayton–Moser equations (5.55) are

ec =

[
gT

q 0

0 gT
p

][
eq

ep

]

since they are power-conjugated to the inputs fc, i.e. eT
c fc has units of power, it

turns out that they are not conjugated with respect to Ṗ which has units of power per

second. Hence, redefining the output port variables as

y =

[
−gT

q 0

0 gT
p

]
fS =

[
gT

q ėq

−gT
p ėp

]

the Brayton-Moser equations (5.55) can equivalently be written as the set of differ-

ential equations
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(
−ėq,−ėp,

∂P

∂eq

,
∂P

∂ep

,uq,up,g
T
q ėq,−gT

p ėp

)
(t) ∈ D(eq,ep), t ∈ R.

The above Dirac structure satisfies the “power balance equation”

0 = −∂ TP

∂eq

ėq −
∂ TP

∂ep

ėp + ėT
q gquq − ėT

pgpup+

+
[
ėT

q ėT
p

](
A (eq,ep)+A T(eq,ep)

)[
ėq

ėp

]

i.e.

Ṗ = yTu+ ėT
(
A (e)+A T(e)

)
ė. (5.61)

where e = (eq,ep). Relation (5.61) shows that P is not conserved, not even when

u ≡ 0 (i.e., when the power supplied to the network through its ports is zero).

5.7.3 Stabilization by power–shaping

We have seen that the Brayton–Moser equations (5.55) satisfy the power balancing

equation (5.61). However, we cannot establish a power balancing inequality since

A (eq,ep) is sign–indefinite. Furthermore, to obtain the passivity property an addi-

tional difficulty stems from the fact that the mixed potential P(eq,ep) is also not sign

definite. To overcome these difficulties, in [27, 28, 159], sufficient conditions have

been given under which the equations (5.55) can be equivalently written as

˜A (e)ė =
∂ P̃

∂e
(e)+g(e)u, (5.62)

with e = (eq,ep), u = (uq,up) and

g(e) =

[
−gq(e) 0

0 gp(e)

]

for some new “admissible pair” ( ˜A , P̃), satisfying

˜A (e)+ ˜A T(e) ≤ 0 P̃ ≥ 0 (5.63)

If (5.63) holds, it is clear that ˙̃P ≤ uTy, i.e, the circuit defines a passive system

with port variables (u,y) and storage function P̃, with the output variables given by

y = (gT
q ėq, −gT

p ėp). From the stability properties of a passive system, we know that

if (ēq, ēp) is a strict local minimum of P̃, then it is a stable equilibrium point of

the system (5.62) when u ≡ 0. However we would rather like to stabilize another

equilibrium point, denoted by (e⋆
q,e

⋆
p) corresponding to a possibly non–zero input

value u⋆.
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Fig. 5.7 Example of one–port

RLC network.

The objective of Power shaping is to find a state feedback law u = β (e) such that

the dynamics (5.62) becomes

Ã(e)ė =
∂ P̃d

∂e
(e) (5.64)

with

e⋆ being a strict local minimum of P̃d . (5.65)

Comparing (5.62) to (5.64) it follows than a power shaping controller u = β (e)
exists if and only if there exists a solution P̃a of the partial differential equation

∂ P̃a

∂e
(e) = g(e)β (e) (5.66)

such that (5.65) holds for P̃d = P̃+ P̃a. Notice that (5.66) can be written as

g⊥(e)
∂ P̃a

∂e
(e) = 0 (5.67)

where g⊥(e) is a full–rank left annihilator of g(e), i.e. g⊥(e)g(e) = 0. If the matching

equation (5.67) and the minimum condition (5.65) are satisfied, then a controller

solving (5.66) is given by

u = β (e) =
(
gT(e)g(e)

)−1
gT(e)

∂ P̃a

∂e
(e)

Example 5.8. Consider the circuit of Fig. 5.7. According to (5.55), the dynamics of

the circuit can be written as

A

[
d
dt

vC

d
dt

iL

]
= −

[
∂P
∂vC

∂P
∂ iL

]
+

[
0

−1

]
vS (5.68)

with A = diag{C,−L} and the mixed potential function P given by

P =
RC

2

(
vC

RC

− iL

)2

− 1

2
(RL +RC) i2L.

The equilibrium points (i⋆L,v⋆
C) of (5.68) are given by
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v⋆
C = RCi⋆L i⋆L =

v⋆
S

RC +RL

from which it is easy to see that for all (non-zero) equilibrium states, the power ex-

tracted from the controller is nonzero. Consequently, it is not possible to stabilize

the circuit via energy-balancing. We follow now the power-shaping procedure pro-

posed in [159] to derive an alternative representation of the circuit that reveals the

new passivity property. This is given by

Ã

[
d
dt

vC

d
dt

iL

]
=




∂ P̃
∂vC

∂ P̃
∂ iL


+

[
0

−1

]
vS

with the new admissible pair

Ã =

[
−C 0

2RCC −L

]
P̃ =

RC

2

(
vC

RC

− iL

)2

+
1

2
(RL +RC)i2L

Notice the positive sign in the second right hand term of P̃ and that the symmetric

part of the matrix Ã is negative definite under the condition L > R2
CC. We thus obtain

the desired dissipation inequality

˙̃P =
[

diL
dt

v̇C

]
Ã

[
diL
dt

v̇C

]
+

diS

dt
vS ≤

diS

dt
vS

Denoting with (i⋆L,v⋆
C) the desired equilibrium to be stabilized, we will shape the

function P̃ to assign a minimum at this point. To this end, we propose to find func-

tions P̃a(iL), v̂S(iL) such that

˙̃Pa(iL) = −diS

dt
v̂S(iL), (5.69)

yielding a new dissipation inequality for the desired potential function P̃d = P̃+ P̃a.

Since iL = iS, it is clear that, for any arbitrary (differentiable) function P̃a(iL), the

function v̂s(iL) =− ∂ P̃a

∂ iL
(iL) solves (5.69). We propose for simplicity to complete the

squares and add a quadratic term in the current errors with

P̃a = −(RL +RC)i⋆LiL +
1

2
K(iL − i⋆L)

2

with K ≥ 0 a tuning parameter. This results in the controlled voltage

vS = −K(iL − i⋆L)+(RL +RC)i⋆L

which globally stabilizes the system with Lyapunov function

P̃d =
RC

2

(
vC

RC

− iL

)2

+
1

2
(RL +RC +K)(iL − i⋆L)2
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5.7.4 Stabilization by Casimir generation

In this Subsection we consider the system (5.62), together with their outputs y =
−gT(e)ė, which can be written in a more general form as

˜A (e)ė =
∂ P̃

∂e
(e)+g(e)u

y = −gT(e)ė,

(5.70)

Following the methodology of Control by Port–Interconnection explained in Sect. 5.3,

we can interconnect (5.70) with the controller system

ẋc = uc

yc =
∂Hc

∂xc

(xc)

with xc,uc,yc ∈R and Hc(xc) : R
m →R, by means of the standard negative feedback

[
u

uc

]
=

[
0 −Im

Im 0

][
y

yc

]
.

yielding the closed–loop system

[
ė

ẋc

]
=

[
Ã−1 −Ã−1g

−gTÃ−1 gTÃ−1g

][ ∂ P̃
∂e

∂Hc

∂xc

]
(5.71)

In order to shape the total power function P̃(e) + Hc(xc), we are interested in

finding m Casimir functions C1(e,xc), . . . ,Cm(e,xc) relating e and xc which are con-

served quantities for the closed–loop system (5.71). Consider functions of the form

C j(e,xc) = C̃ j(e)− xc j, j = 1, . . . ,m, then it can be shown that Casimir functions

should satisfy the PDE

∂ C̃ j

∂e
(e) = −Ãg j(e) ≡ Φ j(e),

where g j denotes the j-th column of g, j = 1, . . . ,m. The above equation has a

solution C̃ j if and only if the vector Φ j satisfies the integrability conditions

∂ (Φ j)k

∂el

(e) =
∂ (Φ j)l

∂ek

(e) k, l = 1, . . . ,n (5.72)

where (Φ j)s denotes the s–th element of the vector Φ j. Assume the Φ j(e) satisfies

the integrability conditions for every j = 1, . . . ,m, then the stability analysis for

(5.71) can be carried out with the candidate Lyapunov function (see Sect. 5.3.2 for

further details)

V (e,xc) = P̃(e)+Hc(xc)+Ψ(C (e,xc))
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where the controller Hamiltonian function Hc(xc) and the function Ψ(C (e,xc)) have

to be designed, in such a way that V (e,xc) has a minimum at (e⋆,x⋆
c). Taking the time

derivative of V (e,xc) we can easily check that

V̇ (e,xc) = −∂ TP̃

∂e
R(e)

∂ P̃

∂e
=

1

2

∂ TP̃

∂e

(
˜A −1 + ˜A −T

) ∂ P̃

∂e

Since ˜A (e) + ˜A T(e) ≤ 0, thus V (e,xc) qualifies as a Lyapunov function for the

closed–loop dynamics.

5.7.5 Remarks

Instrumental for the application of the power shaping methodology is the identifi-

cation of the systems that enjoy new passivity properties, that is, systems for which

it is possible to “add differentiation” to the port terminals preserving passivity. In

the case of electrical circuits, a complete characterization of the linear RLC circuits

that enjoy these new property is given in [81]. For the nonlinear case we refer the

reader to [80, 159]. Current research is under way in two directions: extending the

technique to other physical systems and assessing the effective advantages of the al-

ternative framework with respect to energy–shaping based schemes like IDA–PBC.

See [22] for the geometric formalization of the ideas in [159] and [23].



Chapter 6

Analysis and Control of Infinite-Dimensional
Systems

A. Macchelli, C. Melchiorri, R. Pasumarthy, A. J. van der Schaft

Abstract Infinite dimensional port Hamiltonian systems have been introduced in

Chapter 4 as a novel framework for modeling and control distributed parameter sys-

tems. In this chapter, some results regarding control applications are presented. In

some sense, it is more correct to speak about preliminary results in control of dis-

tributed port Hamiltonian systems, since a general theory, as the one discussed in

Chapter 5 for the finite dimensional port Hamiltonian systems, has not been com-

pletely developed, yet. We start with a short overview on the stability problem for

distributed parameter systems in Sect. 6.2, together with some simple but useful sta-

bility theorems. Then, in Sect. 6.3, the control by damping injection is generalized

to the infinite dimensional case and an application to the boundary and distributed

control of the Timoshenko beam is presented. In Sect. 6.4, a simple generalization

of the control by interconnection and energy shaping to the infinite dimensional

framework is discussed. In particular, the control scheme is developed in order to

cope with a simple mixed finite and infinite dimensional port Hamiltonian system.

Then, an application to the dynamical control of a Timoshenko beam is discussed

in Sect. 6.5.

6.1 Introduction

In the last years, stimulated by the applications arising from space exploration, au-

tomated manufacturing and other areas of technological development, the control of

distributed parameter systems has been an active field of research for control sys-

tem people. The problem is quite complex since the systems to be controlled are

described by a set of partial differential equations, the study of which is not an easy

task. It is well-known that the semi-group theory provides a large number of results

on the analysis of systems of PDEs, and, in particular, on the exponential stability of

feedback laws for beam, wave and thermoelastic equations. Classical results can be

found in [56, 157], while in [117] some new contributions concerning the stability

and feedback stabilization of infinite dimensional systems are reported. In partic-

319
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ular, second order PDEs, such as the Euler-Bernoulli beam equation which arises

from control of several mechanical structures (e.g. flexible robots arms and large

space structures), are discussed.

As pointed out in Sect. 6.2, when dealing with infinite dimensional systems, the

main problem concerns about the intrinsic difficulties related to the proof of stability

of an equilibrium point. Moreover, it is important to underscore that this limitation

does not depend on the particular approach adopted to study the problem. Even

if a distributed parameter systems is described within the port Hamiltonian frame-

work, the stability proof of a certain control scheme will always be a difficult task.

So the distributed port-Hamiltonian approach does not simplify the control task.

Then, we can ask ourself: from the control point of view, what is the advantage

related to a port-Hamiltonian description of a distributed parameter system? It is

author’s opinion that two are the main advantages in adopting the distributed port-

Hamiltonian framework. At first, the development of control schemes for infinite

dimensional systems is usually based on energy considerations or, equivalently, the

stability proof often relies on the properties of an energy-like functional, a general-

ization of the Lyapunov function to the distributed parameters case. Some examples,

related to the stabilization of flexible beams, are in [102,202]. The Hamiltonian de-

scription of a distributed parameter system is given in terms of time evolution of

energy variables depending on the variation of the total energy of the system. In

this way, the energy of the system, which is generally a good Lyapunov function,

appears explicitly in the mathematical model of the system itself and, consequently,

both the design of the control law and the proof of its stability can be deduced and

presented in a more intuitive (in some sense physical) and elegant way.

Secondly, the port-Hamiltonian formulation of distributed parameter systems

originates from the idea that a system is the result of a network of atomic ele-

ment, each of them characterized by a particular energetic behavior, as in the fi-

nite dimensional case. So, the mathematical models originates from the same set

of assumptions. This fact is important and allows us to go further: in particular, it

is of great interest to understand if also the control schemes developed of finite di-

mensional port Hamiltonian systems could be generalized in order to deal with dis-

tributed parameter ones. For example, suppose that the total energy (Hamiltonian)

of the system is characterized by a minimum at the desired equilibrium configura-

tion, [121]. This happens, for example, in the case of flexible beams, for which the

zero-energy configuration corresponds to the undeformed beam. In this situation,

the controller can be developed in order to behave as a dissipative element to be

connected to the system at the boundary or along the distributed port. The amount

of dissipated power can be increased in order to reach quickly the configuration with

minimum energy. As in the finite dimensional case, it can happen that the minimum

of the energy does not correspond to a desired configuration. Then, it is necessary to

shape the energy function so that a new minimum is introduced. In other words, it

is interesting to investigate if the control by interconnection and energy shaping dis-

cussed in Sect. 5.3 can be generalized to the infinite dimensional case. More details

in [118, 119, 121, 171].
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6.2 Stability for infinite dimensional systems

6.2.1 Arnold’s first stability theorem approach

The idea behind the stability of distributed parameter systems remains the same of

the finite dimensional case: in order to have (local) asymptotic stability, the equilib-

rium solutions should be a (local) strict extremum of a proper Lyapunov functional,

that is the Hamiltonian in the case of distributed port Hamiltonian systems.

In finite dimensions, the positive definiteness of the second differential of the

closed-loop Hamiltonian function calculated at the equilibrium configuration is suf-

ficient to show that the steady state solution corresponds to a strict extremum of

the Hamiltonian, thus implying the asymptotic stability of the configuration itself.

On the other hand, as pointed out in [200], in infinite dimensions, the same con-

dition on the second variation of the Hamiltonian evaluated at the equilibrium is

not, in general, sufficient to guarantee asymptotic stability. This is due to the fact

that, when dealing with distributed parameter systems, it is necessary to specify the

norm associated with the stability argument, because stability with respect to a one

norm does not necessarily imply stability with respect to another norm. This is a

consequence of the fact that, unlike finite dimensional vector spaces, all norms are

not equivalent in infinite dimensions. In particular, in infinite dimensions, not every

convergent sequence on the unit ball converges to a point on the unit ball, that is

infinite dimensional vector spaces are not compact.

Denote by X∞ the configuration space of a distributed parameter system and by

H∞ : X∞ → R the corresponding Hamiltonian. Furthermore, denote by ‖·‖ a norm

on X∞. The definition of stability for infinite dimensional system can be given as

follows:

Definition 6.1. Denote by χ∗ ∈ X∞ an equilibrium configuration for a distributed

parameter system. Then, χ∗ is said to be stable in the sense of Lyapunov with respect

to the norm ‖·‖ if, for every ε > 0 there exists δε > 0 such that

‖χ(0)−χ∗‖ < δε ⇒ ‖χ(t)−χ∗‖ < ε

for all t > 0, where χ(0) ∈ X∞ is the initial configuration of the system.

In 1965, Arnold proved a set of stability theorems. These theorems are known

as Arnold’s first and second stability theorems for linear and nonlinear infinite di-

mensional systems. For a complete overview, refer to [200] where these results are

presented within the framework of Hamiltonian fluid dynamics. In this chapter, the

stability result we use in some of the proof is known as Arnold’s first nonlinear sta-

bility theorem. Instead of reporting the statement of the theorem, it is more useful

to report the underlying mathematical procedure for its proof. This procedure, illus-

trated in [121, 122, 171, 200], can be treated as a general method for verifying the

stability of an equilibrium configuration of a generic non-linear infinite dimensional

system. The procedure for proving the stability of the equilibrium χ∗ consists of the

following steps:
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1. Denote by H∞ a candidate Lyapunov function which, in the case of distributed

port-Hamiltonian systems, is the Hamiltonian function;

2. Show that the equilibrium point χ∗ satisfies the first order necessary condition

for an extremum of the candidate Lyapunov function, that is verify that

∇H∞(χ∗) = 0 (6.1)

Furthermore, it is necessary to verify that, at the equilibrium point, the inter-

connection constraints (boundary conditions) are compatible with the first order

condition (6.1).

3. Introduce the nonlinear functional

N (∆ χ) := H∞(χ∗ +∆ χ)−H∞(χ∗) (6.2)

which is proportional to the second variation of H∞ evaluated in χ∗. This means

that its Taylor expansion about ∆ χ is

N (∆ χ) ≈ 1

2
∇2H(χ∗)

4. Verify if the functional (6.2) satisfies the following convexity condition with re-

spect to a suitable norm on X∞, in order to assure its positive definiteness:

γ1 ‖∆ χ‖ ≤ N (∆ χ) ≤ γ2 ‖∆ χ‖α
(6.3)

with α, γ1, γ2 > 0.

A couple of applications of this result will be presented in Sect. 6.4.5.6, in the case

of a simple transmission line, and in Sect. 6.5, in order to prove the stabilization

property of a dynamical controller for the Timoshenko beam.

6.2.2 La Salle’s theorem approach

La Salle’s theorem is well-known result for the stability analysis of finite dimen-

sional nonlinear systems. If in a domain about the equilibrium point we can find

a Lyapunov function V (x) whose derivative along the trajectories of the system is

negative semidefinite, and if we can establish that no trajectory can stay identically

at point where V̇ (x) = 0 except at the equilibrium, then this configuration is asymp-

totically stable, [101]. This idea is also referred as La Salle’s invariance principle.

This result can be generalized in order to cope with distributed parameter sys-

tems. First of all, consider a distributed parameter system, e.g. the system (4.105)

if the port Hamiltonian formalism is adopted, and denote by X∞ the configuration

space. Then, it is possible to define an operator Φ(t) : X∞ → X∞ such that

(αE ,αM)(t) = Φ(t)(αE ,αM)(0)
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for each t ≥ 0. It is possible to prove that Φ(t) is a family of bounded and continuous

operators which is called C0-semi-group on X , [157]. The operator Φ gives the so-

lutions of the set of PDE (4.105) once initial and boundary conditions are specified.

For every χ ∈ X∞, denote by

γ(χ) :=
⋃

t≥0

Φ(t)χ (6.4)

the set of all the orbits of (4.105) through χ , and by

ω(χ) :=
{

χ̄ ∈ X∞ | χ̄ = lim
n→∞

Φ(tn)χ, with tn → ∞ as n → ∞
}

the (possibly empty) ω-limit set of χ . It is possible to prove that ω(χ) is always

positively invariant, i.e. Φ(t)ω(χ) ⊂ ω(χ), and closed. Moreover, from classical

topological dynamics we take the following result, [117].

Theorem 6.1. If χ ∈ X∞ and γ(χ) is precompact1, then ω(χ) is nonempty, com-

pact, connected. Moreover,

lim
t→∞

d(Φ(t)χ,ω(χ)) = 0

where, given χ̄ ∈ X∞ and Ω ⊂ X∞, d(χ̄,Ω) denotes the “distance” from χ̄ to Ω ,

that is

d(χ̄,Ω) = inf
ω∈Ω

‖χ̄ −ω‖

This theorem characterizes the asymptotic behavior of the distributed parameter

systems once the ω-limit set is calculated. Based on this result, it is possible to state

the La Salle’s theorem.

Theorem 6.2 (La Salle’s theorem). Denote by H∞ a continuous Lyapunov function

for the system (4.105), that is for Φ(t), and by B the largest invariant subset of

{
χ ∈ X∞ | Ḣ∞(χ) = 0

}

that is Φ(t)B = B for all t ≥ 0. If χ ∈ X∞ and γ(χ) is precompact, then

lim
t→∞

d(Φ(t)χ,B) = 0

An immediate consequence is expressed by the following corollary.

Proposition 6.1. Consider a distributed parameter system and denote by χ∗ an

equilibrium point and by H∞ a candidate Lyapunov function (the Hamiltonian in

the case of dpH systems). If the largest invariant subset of

{
χ ∈ X∞ | Ḣ∞(χ) = 0

}

1 See [56, 117].
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equals {χ∗}, then χ∗ is asymptotically stable.

6.3 Control by damping injection

6.3.1 Basic results

Consider the distributed port Hamiltonian system (4.105) extended to include the

distributed port variables ( f d ,ed) ∈ Ω n−d(Z)×Ω d(Z), with d ≥ 0, along the spa-

tial domain Z as in Sect. 4.2.6.1, and for which ( fb,eb) are the boundary power

variables, defined on ∂Z. Denote by χ = (αp,αq) the state of the distributed port-

Hamiltonian system and by χ∗ a desired equilibrium configuration. As in finite di-

mensions, if the energy function (Hamiltonian) H of the system is characterized by

a minimum in χ∗, then it is possible to drive the system in the desired configuration

by interconnecting a controller, that behaves as a dissipative element, to the plant.

If the controller is interconnected on the boundary of the spatial domain, we can

speak about boundary control of the distributed parameter system (more precisely,

about damping injection through the boundary). If the controller is interconnected

along the distributed port, we can speak about distributed control of the infinite

dimensional system (distributed damping injection). Consider the map

Rd : Ω n−d(Z)×Z → Ω d(Z)

and suppose that it is possible to find Z̄ ⊂ Z such that Rd(·,z) = 0 if z ∈ Z \ Z̄.

Furthermore, suppose that ∫

Z̄
Rd(ed)∧ ed ≥ 0

for every ed ∈ Ω d(Z). In the same way, consider the map

Rb : Ω n−q(∂Z)×∂Z → Ω n−p(∂Z)

and suppose that it is possible to find ¯∂Z ⊂ ∂Z such that Rb(·,z) = 0 if z ∈ ∂Z \ ¯∂Z

and that ∫

¯∂Z
Rb(eb)∧ eb ≥ 0

Distributed dissipation can be added if the controller can impose the following rela-

tions between ditributed effort and flow on Z:

fd = −Rd(ed) (6.5)

while boundary damping injection is introduced if

fb = −Rb(eb) (6.6)
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on ∂Z. Suppose that the power flow through Z \ Z̄ and ∂Z \ ¯∂Z is equal to zero or,

equivalently, that

fd = 0 on Z \ Z̄ 〈eb | fb〉 = 0 on ¯∂Z

From the energy balance equation (4.107) and (4.132), we have that

dH

dt
≤−

∫

Z̄
Rd(ed)∧ ed −

∫

¯∂Z
Rb(eb)∧ eb ≤ 0

Consequently, the energy function is non-increasing along system trajectories and it

reaches a steady state configuration when

RdG∗
[

δpH

δqH

]
= 0 (on Z̄)

Rb(eb) = 0 (on ¯∂Z) (6.7)

with G defined in (4.128). Denote by B the set of configuration χ compatible with

relations (6.7). Consequently, from Proposition 6.1, it is possible to state the follow-

ing proposition.

Proposition 6.2. Consider the distributed port Hamiltonian system (4.105), ex-

tended with the distributed port as in Sect. 4.2.6.1, thus characterized by the Stokes-

Dirac structure (4.127), and the control laws (6.5) and (6.6). If the largest invariant

subset of {
χ | Ḣ(χ) = 0

}
∩B

equals {χ∗}, then the configuration χ∗ is asymptotically stable.

Proof. The proof follows immediately from the La Salle invariance principle. Note

the similarities with the statement of Proposition 5.4.

6.3.2 Control of the Timoshenko beam by damping injection

In this section, some considerations about control by damping injection applied to

the Timoshenko beam are presented. In order to be as general as possible, consider

the dpH formulation of the Timoshenko beam with distributed port (4.161). The

energy functional (4.150) assumes its minimum in the zero configuration, i.e. when

pt = 0 pr = 0 εt = 0 εr = 0 (6.8)

or, equivalently, when

w(t,z) = α∗z+d∗ φ(t,z) = α∗ (6.9)
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Fig. 6.1 Control by damping

injection of a flexible beam.
H 11

1

Sf

Rd

Rb

where the constants α∗ and d∗ are determined by the boundary conditions on w and

φ . In (6.9), α∗ represents the rotation angle of the beam around the point x = z,

while d∗ is the vertical displacement in z = 0.

If dissipation is introduced by the control action, it is possible to drive the state

of the beam to the configuration where the (open loop) energy functional (4.150)

assumes its minimum. As discussed in Sect. 6.3.1, the controller can interact with

the system through the border and/or the distributed port and the energy dissipation

can be introduced by terminating these ports with a dissipative element, i.e. by a

generalized impedance. Clearly, it is the control algorithm that, in some sense, sim-

ulates the desired impedance. In Fig. 6.1, the interconnection of the Timoshenko

beam with a distributed and a boundary controller in z = L is presented.

In order to simplify some stability proofs that will be presented in the remaining

part of this section, it is important to characterize the behavior of the Timoshenko

beam equation when the energy function becomes constant and when the boundary

conditions are equal to zero. We give this important remark, [56, 117].

Remark 6.1. Consider the dpH model of the Timoshenko beam (4.157). The only

invariant solution compatible with Ḣ = 0 and with the boundary conditions

{
f t
b(0) = f r

b(0) = 0

et
b(L) = er

b(L) = 0
or

{
f t
b(L) = f r

b(L) = 0

et
b(0) = er

b(0) = 0

is the zero solution (6.8).

Note 6.1. More precisely, Remark 6.1 should be extended in order to contain also

informations about the observability of the Timoshenko beam model, as discussed

in [56]. These conditions can be interpreted as a generalization of the definition of

detectibility to the infinite dimensional case.

6.3.2.1 Boundary control

Suppose that a finite dimensional controller can be interconnected to the beam in

z = L and that the beam can interact with the environment in z = 0. Moreover,

suppose that no interaction can take place through the distributed port. The last

hypothesis means that, in (4.161), it can be assumed that

f t
d(t,z) = 0 f r

d(t,z) = 0
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The controller is designed in order to act as if a dissipative element is connected

to the power port of the beam in z = L. This is possible if the following relation

between flow an effort in z = L holds:





f t
b(t,L) = −bt(t)∗et

b(t,L)

f r
b(t,L) = −br(t)∗er

b(t,L)
⇔





1

ρ
∗pt

∣∣∣∣
z=L

= −bt(·)∗ K∗εt |z=L

1

Iρ
∗pr

∣∣∣∣
z=L

= −br(·)∗ EI∗εr|z=L

(6.10)

with bt > 0 and br > 0 smooth functions of t. In this way, the energy balance equa-

tion (4.162) becomes

dH

dt
(t) = −bt(t) [K∗εt |z=L]2 −br(t) [EI∗εr |z=L]2 +

+
[
et

b(t,0) f t
b(t,0)+ er

b(t,0) f r
b(t,0)

]
(6.11)

If, for example, the boundary conditions in x = 0 are

w(t,0) = 0 φ(t,0) = 0 (6.12)

and, consequently

f t
b(t,0) = f r

b(t,0) = 0

then (6.11) becomes

dH

dt
(t) = −bt(t) [K∗εt |z=L]2 −br(t) [EI∗εr |z=L]2 ≤ 0

So, it is possible to state the following proposition.

Proposition 6.3. Consider port Hamiltonian formulation of the Timoshenko beam

(4.157) and suppose that the boundary conditions in z = 0 are given by (6.12) and

that the controller (6.10) is interconnected to the beam in z = L. Then, the final

configuration is (6.9), with α∗ = 0 and d∗ = 0, i.e. w(t,z) = 0 and φ(t,z) = 0.

Proof. The proof is immediate from Remark 6.1 and Proposition 6.2. Furthermore,

it is necessary that α∗ = 0 and d∗ = 0 in (6.9), in order to be compatible with the

boundary conditions (6.12).

Note 6.2. These results were already presented in [102] using a different approach.

The proposed control law was written in the following form:

∂w

∂ t
(t,L) = −bt(t) ·K

[
∂w

∂ z
(t,L)−φ(t,L)

]

∂φ

∂ t
(t,L) = −br(t) ·EI

∂φ

∂ z
(t,L)

which is clearly equivalent to (6.10). The main advantage in approaching the prob-

lem within the port Hamiltonian framework is that both the way the control law is
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deduced and the proof of its stability can be presented in a more intuitive (in some

sense physical) and elegant way. The same considerations hold for the distributed

control of the beam by damping injection presented in the next section: also in this

case, the same results were already presented in [66], but with a different approach.

6.3.2.2 Distributed control

Following the same ideas presented in the previous section, it is possible to ex-

tend the control by damping injection to the case in which the interaction between

system and controller takes place through a distributed port. In this case, the (dis-

tributed) power port has to be terminated by a desired impedance implemented by

a distributed controller. In other words, in this section it is shown how stabilize the

Timoshenko beam with a locally distributed control based on an extension to the

infinite dimensional case of the damping injection control technique.

Assume that bt
d(t,z) and br

d(t,z) are smooth functions on Z and suppose that it

is possible to find Z̄ ⊂ Z and b0 > 0 such that bt
d(·,z) ≥ bt

0 and br
d(·,z) ≥ br

0 > 0 if

z∈ Z̄ ⊂ Z. Dissipation can be introduced through the distributed port if the controller

imposes the following relation between flows and efforts on Z:





f t
d = −bt

d∗et
d

f r
d = −br

d∗er
d

⇔





f t
d = −bt

d

ρ
pt

f r
d = −br

d

Iρ
pr

(6.13)

and, clearly, the closed-loop system is described by the following set of PDEs:

ρ
∂ 2w

∂ t2
−K

(
∂ 2w

∂x2
− ∂φ

∂x

)
+bt

d

∂w

∂ t
= 0

Iρ
∂ 2φ

∂ t2
−EI

∂ 2φ

∂x2
+K

(
∂w

∂x
−φ

)
+br

d

∂φ

∂ t
= 0

in which the boundary conditions have still to be specified. Moreover, the energy

balance (4.162) becomes

dH

dt
=
∫

∂Z

(
et

b ∧ f t
b + er

b ∧ f r
b

)
+
∫

Z̄

(
et

d ∧ f t
d + er

d ∧ f r
d

)

=

∫

∂Z

(
et

b ∧ f t
b + er

b ∧ f r
b

)
−
∫

Z̄

(
bt

d et
d ∧∗et

d +br
d er

d ∧∗er
d

)
(6.14)

Assume, for simplicity, that the beam is clamped in z = 0, that is

w(t,0) = 0 φ(t,0) = 0 (6.15)

and that there is no force/torque acting on z = L. Moreover, the boundary conditions,

i.e. the values assumed by the power variables on ∂Z, are given by
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



f t
b(t,0) = 0

f r
b(t,0) = 0





et
b(t,L) = 0

er
b(t,L) = 0

(6.16)

From (6.14), the energy balance relation (4.162) becomes

dH

dt
= −

∫

Z̄

(
bt

d et
d ∧∗et

d +br
d er

d ∧∗er
d

)
=

= −
∫

Z̄

[
1

bt
d

(
∂w

∂ t

)2

+
1

br
d

(
∂φ

∂ t

)2
]

dz ≤ 0 (6.17)

So, it is possible to state the following proposition.

Proposition 6.4. Consider the Timoshenko beam with distributed port (4.161) and

suppose that the boundary conditions are given by (6.15) or (6.16). Then, the dis-

tributed control action (6.13) asymptotically stabilizes the system in w(t,z) = 0 and

φ(t,x) = 0.

Proof. From (6.17), we have that Ḣ = 0 if εt = εr = 0 and pt = pr = 0 on Z̄. Con-

sequently, from Proposition 6.3 and from the boundary conditions (6.15) or (6.16),

we deduce that also on Z \ Z̄ we have εt = εr = 0 and pt = pr = 0. The only configu-

ration compatible with this energy configuration and the boundary conditions (6.15)

is clearly w(t,z) = 0 and φ(t,z) = 0.

Note 6.3. It is important to point out that, from a mathematical point of view, the

most difficult point in the analysis of the stability of the proposed control schemes

is the proof of Remark 6.1 which characterizes the invariants solutions of the Tim-

oshenko beam equations for zero boundary conditions. As regard the La Salle the-

orem, which is the second mathematical tool widely used in the proposed stability

proofs, the key point is the study of the γ(χ) set (6.4). More details on these prob-

lems and the rigorous way to solve them, as usual, in [56, 117].

6.4 Control by interconnection and energy shaping

6.4.1 General considerations

The control by damping injection can be fruitfully applied when the open-loop en-

ergy function is characterized by a minimum at the desired final configuration. Then,

by interconnecting a controller that behaves as a generalized impedance, it is pos-

sible to increase the amount of dissipated energy and then reaching the minimum

of energy. Then, the desired equilibrium configuration is asymptotically stabilized.

Problems arise when the equilibrium is chosen in a non-minimum energy configura-

tion. As discussed in Sect. 5.3 and in Sect. 5.6 for finite dimensional port Hamilto-

nian systems, it is necessary to develop a controller that properly shapes the energy
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Fig. 6.2 A 2-dof robot with

flexible links.
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ω2, τ2
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joint 1

joint 2

environment

of the systems, thus providing a closed-loop system characterized by a Hamiltonian

function with a minimum in the desired equilibrium point. The idea is the gener-

alization of this well-established control methodology to the distributed parameter

case.

In this section, the stabilization problem for mixed finite and infinite dimensional

port Hamiltonian systems is discussed. These are dynamical systems resulting from

the power conserving interconnection of finite and infinite dimensional Hamiltonian

systems. This is a quite common situation. Consider, for example, the simple stabi-

lization of a generic infinite dimensional system: the control law can be applied to

the plant only by means of finite dimensional actuators. We deduce that, whatever

situation is considered, the resulting closed-loop system is given by the intercon-

nection of two main subsystems, the finite dimensional and the infinite dimensional

ones. In particular, we suppose that the finite dimensional controller can act on the

finite dimensional plant through a distributed parameter system, which leads to a

generalization of the results discussed in [171].

An example is given in Fig. 6.2 which represents a 2-dof flexible robot. In this

case, the stabilization problem can be stated as follows: the controller acting on

joint-1 has to impose the control law τ1 = τ1(ω1) in order to properly stabilize the

position of joint-2 in the plane. Note that the regulator (finite dimensional) can act

on the system to be controller only through link-1, which is an infinite dimensional

systems. In the same way, the position of the end-effector can be stabilized by prop-

erly defining the control action τ2 = τ2(ω2) at joint-2 which modifies the position

of the gripper thanks to the flexible link 2.

Generally speaking, the open-loop energy function can be shaped by acting on

the energy function of the controller. As in the finite dimensional case, the key point

is to robustly relate the state variable of the controller by means of Casimir func-

tions (in infinite dimensions, it is more correct to speak about Casimir functional)

to the state variable of the system to be stabilized. In this way, the regulator energy

function, which is freely assignable, becomes a function of the configuration of the

plant and, then, it can be easily shaped in order to solve the regulation problem.
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This Section is organized as follows. In Sect. 6.4.2, the interconnection of finite

and infinite dimensional systems is studied and it is shown that the resulting in-

terconnection can be again described by a Dirac structure and the model by a port

Hamiltonian system. Then, the problem of the achievable Dirac structure that can be

obtained by interconnecting a to-be-designed finite dimensional controller to a given

plant belonging to a particular class of m-pH systems is finally studied, together with

its implications on the control of port Hamiltonian systems. The regulation problem

becomes a central issue in Sect. 6.4.5.2, where necessary and sufficient conditions

for the existence of Casimir functions for this particular class of m-pH systems are

deduced. So, in Sect. 6.4.5.2, under some further hypothesis on the distributed pa-

rameter subsystem, the control by interconnection methodology is generalized to

deal with mixed port-Hamiltonian systems. Finally, a simple example is discussed

in Sect. 6.4.5.6.

6.4.2 Interconnections of Dirac structures for mixed

port-Hamiltonian systems

Denote by D1 and D2 two Dirac structures and suppose that they are interconnected

to each other via a Stokes’-Dirac structure, denoted by D∞. As far as concerns the

Stokes’-Dirac structure, the simple case p = q = n = 1 in Proposition 4.3 is con-

sidered throughout, even if the results can be extended, if not easily, to the higher

dimensional case. An immediate example of the case p = q = n = 1 is that of a

transmission line (cf. Sect. 4.1.2.2).

Consider D1 on the product space F1 ×F0 of two linear spaces F1 and F0,

and the Stokes’-Dirac structure D∞ on the product space F0 ×Fp,q ×Fl , where

F0 and Fl are linear spaces (representing the space of boundary variables of the

Stokes’-Dirac structure) and Fp,q in an infinite dimensional function space, with p

and q representing the two different physical energy domains interacting with each

other. The linear space F0 is the space of shared flow variables and its dual F ∗
0 ,

the space of shared effort variables between D1 and D∞. Finally, suppose that D2 is

defined on the product space Fl ×F2 of two linear spaces, where Fl is the space

of shared flow variables while its dual F ∗
l is the space of shared effort variables

between D2 and D∞.

The interconnections between D1 and D∞ is defined as:

D1 ‖ D∞ :=

:=
{
( f1,e1, fp, fq,ep,eq, fl ,el) ∈ F1 ×F ∗

1 ×Fp,q ×F ∗
p,q ×Fl ×F ∗

l |

∃( f0,e0) ∈ F0 ×F ∗
0 s.t. ( f1,e1, f0,e0) ∈ D1 and

(− f0,e0, fp, fq,ep,eq, fl ,el) ∈ D∞

}

while the interconnection between D∞ and D2 as
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D1

f1

e1

f0

e0

D∞

− f0

e0

fl

el

fp,q ep,q

D2

− fl

el

f2

e2

Fig. 6.3 D1 ‖ D∞ ‖ D2.

D∞ ‖ D2 :=

:=
{
(− f0,e0, fp, fq,ep,eq, f2,e2) ∈ F0 ×F ∗

0 ×Fp,q ×F ∗
p,q ×F2 ×F ∗

2 |

∃( fl ,el) ∈ Fl ×F ∗
l s.t. (− f0,e0, fp, fq,ep,eq, fl ,el) ∈ D∞

and (− fl ,el , f2,e2) ∈ D∞

}

Hence, the total interconnection of D1, D∞ and D2 can be defined as (see also

Fig. 6.3):

D1 ‖ D∞ ‖ D2 :=

:=
{
( f1,e1, fp, fq,ep,eq, f2,e2) ∈ F1 ×F ∗

1 ×Fp,q ×F ∗
p,q ×F2 ×F ∗

2 |

∃( f0,e0) ∈ F0 ×F ∗
0 s.t. ( f1,e1, f0,e0) ∈ D1 and

(− f0,e0, fp, fq,ep,eq, fl ,el) ∈ D∞ and

∃( fl ,el) ∈ Fl ×F ∗
l s.t. (− f0,e0, fp, fq,ep,eq, fl ,el) ∈ D∞

and (− fl ,el , f2,e2) ∈ D∞

}

This yields the following bilinear form (+pairing operator) on F1 ×F ∗
1 ×Fp,q ×

F ∗
p,q ×F2 ×F ∗

2 :

≪ ( f a
1 , f a

p , f a
q , f a

2 ,ea
1,e

a
p,e

a
q,e

a
2),( f b

1 , f b
p , f b

q , f b
2 ,eb

1,e
b
p,e

b
q,e

b
2) ≫:=

:=
〈

eb
1 | f a

1

〉
+
〈

ea
1 | f b

1

〉
+
〈

ea
2 | f b

2

〉
+
〈

eb
2 | f a

2

〉
+

+
∫

Z

[
ea

p ∧ f b
p + eb

p ∧ f a
p + eb

q ∧ f a
q + ea

q ∧ f b
q

]
(6.18)

Theorem 6.3. Let D1, D2 and D∞ be Dirac structures as said above, which are

defined with respect to F1×F ∗
1 ×F0×F ∗

0 , Fl ×F ∗
l ×F2×F ∗

2 and F0×F ∗
0 ×

Fp,q ×F ∗
p,q ×Fl ×F ∗

l . Then, D = D1 ‖D∞ ‖D2 is a Dirac structure defined with

respect to the bilinear form on F1×F ∗
1 ×Fp,q×F ∗

p,q×F2×F ∗
2 given by (6.18).

Proof. Since D1, D2 and D∞ individually are Dirac structures, on F1×F ∗
1 ×F0×

F ∗
0 the +pairing is defined as
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≪ ( f a
1 , f a

0 ,ea
1,e

a
0),( f b

1 , f b
0 ,eb

1,e
b
0) ≫:=

〈
eb

1 | f a
1

〉
+
〈

ea
1 | f b

1

〉
+

+
〈

eb
0 | f a

0

〉
+
〈

ea
0 | f b

0

〉
(6.19)

and D1 = D1
⊥ with respect to the bilinear form (6.19). Similarly, on F2 ×F ∗

2 ×
Fl ×F ∗

l , the +pairing is defined as

≪ (− f a
l ,ea

l , f a
2 ,ea

2),(− f b
l ,eb

l , f b
2 ,eb

2) ≫:=
〈

eb
2 | f a

2

〉
+
〈

ea
2 | f b

2

〉
−

−
〈

eb
l | f a

l

〉
−
〈

ea
l | f b

l

〉
(6.20)

and D2 = D2
⊥ with respect to the bilinear form (6.20). Finally, on F0 ×F ∗

0 ×
Fp,q ×F ∗

p,q ×Fl ×F ∗
l the +pairing operator takes the following form:

≪ ( f a
p , f a

q , f a
b ,ea

p,e
a
q,e

a
b),( f b

p , f b
q , f b

b ,eb
p,e

b
q,e

b
b) ≫:=

:=

∫

Z

[
ea

p ∧ f b
p + eb

p ∧ f a
p + eb

q ∧ f a
q + ea

q ∧ f b
q

]
+

+
〈

ea
l | f b

l

〉
+
〈

eb
l | f a

l

〉
−
〈

ea
0 | f b

0

〉
+
〈

eb
0 | f a

0

〉
(6.21)

and D∞ = D⊥
∞ with respect to the bilinear form (6.21). The proof is completed into

two step. In the first one, it is proved that D ⊂ D⊥, while in the second one that

D⊥⊂ D .

• D ⊂ D⊥: let

( f a
1 , f a

p , f a
q , f a

2 ,ea
1,e

a
p,e

a
q,e

a
2) ∈ D

and consider any other

( f b
1 , f b

p , f b
q , f b

2 ,eb
1,e

b
p,e

b
q,e

b
2) ∈ D

Then, it is possible to find ( f a
0 ,ea

0) and ( f a
l ,ea

l ) such that

( f a
1 ,ea

1, f a
0 ,ea

0) ∈ D1

(− f a
l ,ea

l , f a
2 ,ea

2) ∈ D2

(− f a
0 ,ea

0, f a
p , f a

q ,ea
p,e

a
q, f a

l ,ea
l ) ∈ D∞

Furthermore, it is also possible to find ( f b
0 ,eb

0) and ( f b
l ,eb

l ) such that

( f b
1 ,eb

1, f b
0 ,eb

0) ∈ D1

(− f b
0 ,eb

0, f b
p , f b

q ,eb
p,e

b
q, f b

l ,eb
l ) ∈ D∞

(− f b
l ,eb

l , f b
2 ,eb

2) ∈ D2

Since D∞ is a Dirac structure with respect to (6.21), we have that
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∫

Z

[
ea

p ∧ f b
p + eb

p ∧ f a
p + eb

q ∧ f a
q + ea

q ∧ f b
q

]
= −

〈
ea

l | f b
l

〉
−
〈

eb
l | f a

l

〉

+
〈

ea
0 | f b

0

〉
−
〈

eb
0 | f a

0

〉
(6.22)

Substituting (6.22) in (6.18) and using the fact that the bilinear from (6.19) is

zero on D1 and (6.20) is zero on D2, we obtain

〈
eb

1 | f a
1

〉
+
〈

ea
1 | f b

1

〉〈
eb

2 | f a
2

〉
+
〈

ea
2 | f b

2

〉
+

+
∫

Z

[
ea

p ∧ f b
p + eb

p ∧ f a
p + eb

q ∧ f a
q + ea

q ∧ f b
q

]
= 0

and hence D ⊂ D⊥.

• D⊥ ⊂ D : we know that the flow and effort variables of D∞ are related as

D∞ :=

{
( f ,e) ∈ F ×F ∗ |

[
fp

fq

]
=

[
0 d

d 0

][
ep

eq

]
,

[
fb

eb

]
=

[
0 −1

1 0

][
ep|∂Z

eq|∂Z

]}
(6.23)

Let ( f a
1 , f a

p , f a
q , f a

2 ,ea
1,e

a
p,e

a
q,e

a
2) ∈ D⊥. Then, for all

( f b
1 , f b

p , f b
q , f b

2 ,eb
1,e

b
p,e

b
q,e

b
2) ∈ D

the right side of equation (6.18) is zero. Now, consider the vectors

( f b
1 , f b

p , f b
q , f b

2 ,eb
1,e

b
p,e

b
q,e

b
2) ∈ D

with f b
1 = f b

2 = eb
1 = eb

2 = 0 and also f b
0 = eb

0 = f b
l = eb

l = 0. Then, from (6.23)

and (6.18) we have that

∫

Z

[
ea

p ∧deb
q + eb

p ∧ f a
p + eb

q ∧ f a
q + ea

q ∧deb
p

]
= 0

This implies (see [184, Theorem 2.1]) that

f a
p = dea

q f a
q = dea

p (6.24)

By substituting (6.24) in (6.18), we have that

〈
eb

1 | f a
1

〉
+
〈

ea
1 | f b

1

〉
+
〈

eb
2 | f a

2

〉
+
〈

ea
2 | f b

2

〉
+

+

∫

Z

[
ea

p ∧deb
q + eb

p ∧dea
q + eb

q ∧dea
p + ea

q ∧deb
p

]
= 0

This yields by Stokes’ theorem:
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Fig. 6.4 Dp ‖ Dc.

Dp

fp,q

ep,q

fb

eb

Dc

f ′b

e′b

f

e

〈
eb

1 | f a
1

〉
+
〈

ea
1 | f b

1

〉
+
〈

eb
2 | f a

2

〉
+
〈

ea
2 | f b

2

〉
+
[〈

ea
p | eb

q

〉
+
〈

eb
p | ea

q

〉]l

0
= 0

for all ep and eq. Expanding the above and substituting for the boundary condi-

tions

〈
eb

1 | f a
1

〉
+
〈

ea
1 | f b

1

〉
+
〈

ea
0 | f b

0

〉
+
〈

eb
0 | f a

0

〉
+

+
〈

eb
2 | f a

2

〉
+
〈

ea
2 | f b

2

〉
−
〈

ea
l | f b

l

〉
−
〈

eb
l | f a

l

〉
= 0 (6.25)

since ( f b
0 ,eb

0, f b
l ,eb

l ) are arbitrary. With f b
l = eb

l = f b
2 = eb

2 = 0 the above equation

reduces to
〈

eb
1 | f a

1

〉
+
〈

ea
1 | f b

1

〉
+
〈

ea
0 | f b

0

〉
+
〈

eb
0 | f a

0

〉
= 0

which implies that ( f a
1 ,ea

1, f a
0 ,ea

0) ∈ D1. By using similar arguments (with f b
l =

eb
l = f b

1 = eb
1 = 0), (6.25) reduces to

〈
eb

2 | f a
2

〉
+
〈

ea
2 | f b

2

〉
−
〈

ea
l | f b

l

〉
−
〈

eb
l | f a

l

〉
= 0

implying (− f a
l ,ea

l , f a
2 ,ea

2) ∈ D2 and hence D⊥⊂ D , completing the proof.

6.4.3 Achievable Dirac structures for mixed port-Hamiltonian

systems

As discussed in Sect. 5.4, it is important to investigate which closed-loop port-

Hamiltonian systems can be achieved by interconnecting a plant port-Hamiltonian

system P (which in our case is an infinite dimensional port-Hamiltonian system)

with a controller port-Hamiltonian system(s) (which here are port-Hamiltonian sys-

tems connected at the boundaries of P) or, equivalently, what closed-loop Dirac

structures can be achieved. In particular, given a Stokes’-Dirac structure D∞ (which

is considered as the plant Dirac structure Dp) and to be designed Dirac structures

D1 and D2 (which comprise the controller Dirac structure Dc), the following Theo-

rem provides necessary and sufficient conditions which are able to describe all the

achievable Dirac structures in the form D1 ‖ D∞ ‖ D2 (or Dp ‖ Dc). Please, refer to

Fig. 6.4 for the symbol used. In particular, we have
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Dp

fp,q

ep,q

fb

eb

D∗
b

f ∗b

e∗b

f ∗p,q

e∗p,q

D
f ′p,q

e′p,q

f

e

Fig. 6.5 D = Dp ‖ D∗
p ‖ D .

fb =

[
− f0

fl

]
eb =

[
e0

el

]
f =

[
f1

f2

]
e =

[
e1

e2

]
f ′b =

[
f0

− fl

]
eb =

[
e0

el

]

such that ( f1,e1, f0,e0) ∈ D1 and (− fl ,el , f2,e2) ∈ D2.

Theorem 6.4. Given any plant Dirac structure Dp, a certain interconnected D =
Dp ‖ Dc can be achieved by a proper choice of the controller Dirac structure Dc if

and only if the following two conditions are satisfied

D0
p ⊂ D0

Dπ ⊂ Dπ
p

(6.26)

where

D0
p :=

{
( fp, fq,ep,eq) | ( fp, fq,ep,eq,0,0) ∈ Dp

}

Dπ
p :=

{
( fp, fq,ep,eq) | ∃( fb,eb) s.t. ( fp, fq,ep,eq, fb,eb) ∈ Dp

}

D0 :=
{
( fp, fq,ep,eq) | ( fp, fq,ep,eq,0,0) ∈ D

}

Dπ :=
{
( fp, fq,ep,eq) | ∃( f ,e) s.t. ( fp, fq,ep,eq, f ,e) ∈ D

}

(6.27)

Proof. As in [181] the proof is based on the “copy” of Dp (see Fig. 6.5) defined as

follows:

D∗
p :=

{
( fp, fq,ep,eq, fb,eb) | (− fp,− fq,ep,eq − fb,eb) ∈ Dp

}

The necessity of (6.26) and (6.27) is obvious and proof of sufficiency follows the

same procedure as in [181] by taking the controller Dirac structure Dc = D∗
p ‖ Dc

and first proving D ⊂ Dp ‖ Dc, and then Dp ‖ Dc ⊂ D . Hence, we omit the proof

here.

Remark 6.2. The resulting controller in the above theorem could be either a finite-

dimensional or an infinite-dimensional controller, depending on the choice of the

( f ,e) variables. Since the point of discussion here is on mixed finite and infinite-

dimensional systems we consider finite dimensional controllers for the rest of the

section.

Remark 6.3. We can also consider other mixed cases where we can take Dp as

the interconnection of the Stokes’ Dirac structure and a Dirac structure (finite-
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dimensional) connected to one of its boundary, and Dc would then be a Dirac struc-

ture (again finite dimensional) interconnected to the other end of the Stokes’-Dirac

structure. This is the case if we want to control a plant which is interconnected to a

controller through a infinite dimensional system, which is also one of the cases we

consider in the next section.

6.4.4 Control by Casimir generation

Like in the finite-dimensional case an important application of the above theory

concerns the characterization of the Casimir functions of the closed-loop system by

interconnecting a given plant port-Hamiltonian system with associated Dirac struc-

ture Dp with a controller port-Hamiltonian system with associated Dirac structure

Dc. This constitutes in the finite-dimensional case a cornerstone for passivity based

control of port-Hamiltonian systems, [160, 171, 180].

A Casimir function C : X → R of a port-Hamiltonian system has been intro-

duced in Sect. 2.6.2 as a function which is constant along all trajectories of the

port-Hamiltonian system, irrespective of the Hamiltonian H. Similarly to Sect. 5.4,

we consider now the question of characterizing the set of achievable Casimirs in

the mixed finite and infinite dimensional case for the closed-loop system Dp ‖ Dc,

where Dp is the given Dirac structure of the plant port-Hamiltonian system with

Hamiltonian H, and Dc is the controller Dirac structure. We here consider the case

where Dp is a Stokes’ Dirac structure and investigate as to what are the achievable

Casimirs. Again for simplicity we consider the case p = q = n = 1.

Consider the notation in Fig. 6.4, and assume that the ports ( fp, fq,ep,eq) are

connected to the (given) energy storing elements of the plant port-Hamiltonian sys-

tem, that is 



fp = −∂αp

∂ t
ep = δpH

and





fq = −∂αq

∂ t
eq = δqH

while ( f ,e) are connected to the (to be designed) energy storing elements of the

controller port-Hamiltonian system(s). From the power variable description of an

infinite-dimensional port-Hamiltonian system, the Casimir functions are determined

by the subspace {
(ep,eq) ∈ F ∗

p,q | (0,0,ep,eq) ∈ D∞

}

In this situation, the achievable Casimir functions are functions C(x,ξ ) such that
∂ TC
∂x

(x) belongs to the space

PC =
{
(ep,eq) | ∃Dc s.t ∃e s.t (0,0,ep,eq,0,e) ∈ Dp ‖ Dc

}
(6.28)

where again, as in the previous section, the controller Dirac structure Dc comprises

the Dirac structures D1 and D2 and
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e =

[
e1

e2

]

as reported in Fig. 6.4. Similar to the finite dimensional case (c.f. Theorem 5.4

and [181]), the following Theorem addresses the question of characterizing the

achievable Casimirs of the closed-loop system, regarded as functions of the plant

state x, by finding a characterization of the space PC.

Theorem 6.5. The space PC defined in (6.28) is equal to the linear space

P̃ =
{
(ep,eq) | ∃( fb,eb) s.t. (0,0,ep,eq, fb,eb) ∈ Dp

}

Proof. The inclusion PC ⊂ P̃ is obvious, and taking the controller Dirac structure

Dc = D∗
p , the second inclusion P̃ ⊂ PC is obtained. Since for all ep,eq ∈ P̃, we have

fp = fq = 0 and (0,0,ep,eq,− fb,eb) ∈ D∗
p . Moreover, in view of (6.23), this would

mean that the space P̃ is such that ep and eq are constants as functions of the spatial

variable, which in addition would mean f0 = fl and e0 = el , thus resulting in finite

dimensional controllers.

Example 6.1 (continued). In case of the transmission line the Casimir gradients be-

long to the following space

PC =

{
(eE ,eM) | ∃( fb,eb) s.t

[
0

0

]
=

[
0 − ∂

∂ z

− ∂
∂ z

0

][
eE

eM

]}

with ep |∂Z= ep and eq |∂Z= eq, and where E and M denote the electric and magnetic

energy domains respectively. This means that the Casimir functions are such that

∂

∂ z
δEC = 0

∂

∂ z
δMC = 0

or, in other words

δEC and δMC are constant as functions of z.

Thus, Casimirs are of the form

k1

∫ l

0
q(z, t)dz k2

∫ l

0
φ(z, t)dz

with k1 and k2 being constants.

Next, we consider the case where Dp is the interconnection of a Stokes’-Dirac

structure with a Dirac structure interconnected to one of its boundary. In terms of

Fig. 6.4, this would mean Dp := D1 ‖D∞ and then characterize the set of achievable

Casimirs for the closed-loop system Dp ‖Dc (see also Fig. 6.6). We assume that the

ports in ( f1,e1) are connected to the energy storing elements of D1, that is
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f1 = −ẋ e1 =
∂H

∂x

the ports in ( fp,q,ep,q) are connected to the (given) energy storing elements of D∞,

that is 



fp = −∂αp

∂ t
ep = δpH

and





fq = −∂αq

∂ t
eq = δqH

and ( f2,e2) are connected to the energy storing elements of the (to be designed)

controller port-Hamiltonian system D2, that is

f2 = −ξ̇ e2 =
∂H

∂ξ

Then, the achievable Casimirs are functions C(x,ξ ) such that ∂C
∂x

(x,ξ ) belongs to

the space

PC =
{

(e1,ep,eq) | ∃Dc s.t. ∃e2 s.t. (0,e1,0,ep,eq,0,e2) ∈ Dp ‖ Dc

}
(6.29)

Again as above, the following Theorem characterizes the set of achievable Casimirs

of the closed-loop system, regarded as functions of the plant state x, by finding a

characterization of the space PC.

Theorem 6.6. The space PC defined in (6.29) is equal to the linear space

P̃ =
{
(e1,ep,eq) | ∃( fl ,el) : (0,e1,0,0,ep,eq, fl ,el) ∈ Dp

}

Proof. The inclusion PC ⊂ P̃ is obvious, and by taking the controller Dirac structure

Dc = D∗
1 , the inclusion P̃ ⊂ PC is obtained immediately. D∗

1 is defined as

D∗
1 =

{
( f1,e1, f0,e0) | (− f1,e1,− f0,e0) ∈ D1

}

This is also equivalent to considering Dc = D∗
p (= D∗

1 ‖ D∗
∞) as in the previous

theorem where fp = fq = 0 would again mean that the space P̃ is such that ep and eq

are constants as functions of the spatial variable. This fact, in addition, would mean

f0 = fl and e0 = el , hence we can take Dc = D∗
1 .

Example 6.2. Consider the case as in Fig. 6.6, where the Dirac structure of the plant

is given by




f1

fp

fq


= −




J(x) 0 0

0 0 d

0 d 0






e1

ep

eq


−




g(x)
0

0


ep0

[
fl

el

]
=

[
−eql

epl

]

e0 = gT(x)e1

In this case
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Fig. 6.6 Dp ‖ Dc.

Dp

f1

e1

fl

el

fp,q ep,q

Dc

− fl

el

f2

e2

PC =

{
(e1,ep,q) | ∃( fl ,el) s.t. 0 = J(x)e1 +g(x)ep0 and 0 =

∂

∂ z
ep; 0 =

∂

∂ z
eq

}

Then the Casimir functions are such that they satisfy the following set of equations

J(x)
∂C

∂x
(x)+g(x)δpC |l = 0

dδpC = dδqC = 0

fl = −δqC |l
el = δpC |l

The first line of the above equation corresponds to the finite dimensional subsystem

of the plant Dirac structure, and the Casimirs (as a function of the plant state) are

similar to those in the finite dimensional plant-controller interconnection. The re-

maining linese correspond to the conditions for the Casimir functionals due to the

infinite dimensional part of the plant Dirac structure and if the infinite dimensional

subsystem is a transmission line then the conditions on the functional are the same

as in Example 6.1.

6.4.5 Control by interconnection of a class of mixed

port-Hamiltonian systems

6.4.5.1 Class of mixed port-Hamiltonian systems under study

By generalizing the framework proposed in the previous sections, here the stabiliza-

tion problem for a port Hamiltonian system made of the interconnection of two fi-

nite dimensional and a distributed parameter system is approached. In particular, we

suppose that the finite dimensional controller can act on the finite dimensional plant

through a set of transmission lines, as discussed in Sect. 6.4.3 and in Sect. 6.4.4. We

can say that this section is a generalization of the result presented there and in [171],

where only a single lossless transmission line is considered.

The problem is approached in a different way, that is by determining necessary

and sufficient conditions under which a functional defined on the mixed configu-

ration space could be a structural invariant (i.e. Casimir functional) for the closed-

loop system even in presence of dissipative effects in the distributed parameter sub-

system. Then, the controller state variable is related to the state variable of the plant
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Fig. 6.7 An example of mixed

port-Hamiltonian systems.

System B is given by the

m finite dimensional SISO

port Hamiltonian systems

B1, . . . ,Bm.

B1

B2

B3

B4

Bm A
(controller)

by means of a Casimir functional, thus implementing a structural state feedback

law. In this way, whatever energy function is chosen for the controller, it results in

a function of the plant variables and the energy shaping procedure can be easily

completed.

More in details, it is supposed to interconnect system





ẋa = [Ja(xa)−Ra(xa)]
∂Ha

∂xa

+Ga(xa)ua

ya = GT
a (xa)

∂Ha

∂xa

(6.30)

and 



ẋb = [Jb(xb)−Rb(xb)]
∂Hb

∂xb

+Gb(xb)ub

yb = GT
b (xb)

∂Hb

∂xb

(6.31)

by means of m distributed port Hamiltonian systems, each of them modeling a

one dimensional wave (e.g. telegrapher equation, 1D fluid, vibrating string). In

(6.30) and (6.31), denote by Xa and Xb the state space of system A and B respec-

tively, with dimXa = na and dimXb = nb, while Ha : Xa → R and Hb : Xb →
R are the Hamiltonian functions, bounded from below. Moreover, suppose that

Ja(xa) = −JT
a (xa) and Ra(xa) = RT

a (xa) for every xa ∈ Xa, that Jb(xb) = −JT
b (xb)

and Rb(xb) = RT
b (xb) for every xb ∈ Xb and that dimUa = dimUb = m.

As reported in Fig. 6.7, the controller (system A) acts on a set of m single-input,

single-output finite dimensional port Hamiltonian systems B1, . . . ,Bm that can be

modeled by means of an unique port Hamiltonian systems B with appropriate order.

Based on the model discussed in Sect. 4.1.3.2, the most general port Hamiltonian

description of a transmission line with dissipation is given by:
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[
−∂tαE,i

−∂tαM,i

]
=

{[
0 d

d 0

]
+

[
Gi∗ 0

0 Ri∗

]}[
δE,iH∞,i

δM,iH∞,i

]

[
fb,i

eb,i

]
=

[
0 −1

1 0

][
δE,iH∞,i |∂Di

δM,iH∞,i |∂Di

] (6.32)

where i denotes the transmission line under consideration, (αE,i,αM,i)∈X∞,i are the

state variables, with X∞,i := Ω 1(Zi)×Ω 1(Zi) and Zi := [0, ℓi] the spatial domain,

being ℓi the length of the i-th line, ( fb,i,eb,i) ∈ Ω 0(∂Zi)×Ω 0(∂Zi) are the power

conjugated boundary variables and Hi the total energy, which can be expressed, in

the simplest case, by means of the following quadratic functional:

H∞,i(αE,i,αM,i) =
1

2

∫

Zi

[
1

Ci

αE,i ∧∗αE,i +
1

Li

αM,i ∧∗αM,i

]

Furthermore, Ci, Li, Ri and Gi are, respectively, the distributed capacitance, induc-

tance, resistance and admittance of the i-th transmission line. Clearly, the set of

m transmission lines can be treated as a single port-Hamiltonian system with state

space X∞ := X∞,1 ×·· ·×X∞,m and total Hamiltonian

H∞(αE,1, . . . ,αE,m,αM,1, . . . ,αM,m) =
m

∑
i=1

H∞,i(αE,i,αM.i)

In fact, if

αE :=
[
αE,1 · · · αE,m

]T
αM :=

[
αM,1 · · · αM,m

]T

δEH∞ :=
[
δE,1H∞,1 · · · δE,mH∞,m

]T
δMH∞ :=

[
δM,1H∞,1 · · · δM,mH∞,m

]T

fb :=
[

fb,1 · · · fb,m

]T
eb :=

[
eb,1 · · · eb,m

]T

then the set of m transmission lines (6.32) can be written in a compact form as

[
−∂tαE

−∂tαM

]
=

{[
0 d

d 0

]
+

[
G∗ 0

0 R∗

]}[
δEH∞

δMH∞

]

[
fb

eb

]
=

[
0 −1

1 0

][
δEH∞ |∂Z

δMH∞ |∂Z

]

where R := diag(R1, . . . ,Rm) and G := diag(G1, . . . ,Gm).
Suppose to interconnect systems (6.30) and (6.31) by means of the m transmis-

sion lines (6.32) in a power conserving way. An admissible interconnection law is

ua =




eb,1(0)
...

eb,m(0)


 ya = −




fb,1(0)
...

fb,m(0)


 ub =




fb,1(ℓ1)
...

fb,m(ℓm)


 yb =




eb,1(ℓ1)
...

eb,m(ℓm)




(6.33)
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Note that, if ℓi = 0 for every i = 1, . . . ,m, then (6.33) reduces to

{
ub = −ya

yb = ua
(6.34)

that is the standard feedback/power conserving interconnection. The resulting sys-

tem is a mixed finite and infinite dimensional port Hamiltonian system, with config-

uration space

Xcl := Xa ×Xb ×X∞ (6.35)

total Hamiltonian

Hcl(xa,xb,αE,1, . . .αM,m) := Ha(xa)+Hb(xb)+H∞(αE,1, . . . ,αM,m) (6.36)

and whose dynamics is described by means of the following set of ODEs and PDEs:




ẋa

ẋb

α̇E

α̇M


=




Ja(xa)−Ra(xa) 0 Ga(xa) · |0 0

0 Jb(xb)−Rb(xb) 0 −Gb(xb) · |ℓ1,...,m

0 0 −G∗ −d

0 0 −d −R∗







∂xaHa

∂xb
Hb

δEH∞

δMH∞




0 =

[
GT

a (xa)∂xaHa

GT
b (xb)∂xb

Hb

]
−
[

0 · |0
· |ℓ1,...,m

0

][
δEH∞

δMH∞

]
(6.37)

It is easy to verify that (6.37) satisfies the following power balance relation:

dHcl

dt
≤−

(
∂ THa

∂xa

Ra

∂Ha

∂xa

+
∂ THb

∂xb

Rb

∂Hb

∂xb

)
≤ 0

6.4.5.2 Casimir functions for mixed port-Hamiltonian systems

As discussed in Sect. 5.3 for the finite dimensional case and in Sect. 6.4.4 in the

distributed parameter framework, the applicability of the control by interconnection

and energy shaping relies on the possibility of relating the controller state variables

to the state variables of the plant by means of Casimir functions. Equivalently, we

can say that the controller structure is chosen in order to constrain the closed-loop

trajectory to evolve on a particular sub-manifold of the whole state space. Differ-

ently from Sect. 6.4.4 and, in particular, from Example 6.1, the set of admissible

Casimir functions is not determined by finding the space PC but directly from the

definition itself of structural invariant. Since a Casimir function C : Xcl → R of

the port-Hamiltonian system (6.37) is a function which is constant along all trajec-

tories of the port-Hamiltonian system, irrespective of the Hamiltonian H, as dis-

cussed in Sect. 2.6.2 for the finite dimensional case or in Sect. 6.4.4 in the case of

mixed or distributed port-Hamiltonian systems, following an analogous procedure

as in [119, 121], we have that
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dC

dt
=

∂ TC

∂xa

ẋa +
∂ TC

∂xb

ẋb +
m

∑
i=1

∫

Zi

[
∂αE,i

∂ t
∧δE,iC +

∂αM,i

∂ t
∧δM,iC

]

Then, from (6.30), (6.31), (6.32) and (6.33) we obtain that

dC

dt
=

∂ TC

∂xa

[Ja −Ra]
∂Ha

∂xa

+
∂ TC

∂xa

Ga




δE,1H∞,1 |0
...

δE,mH∞,m |0


+

+
∂ TC

∂xb

[Jb −Rb]
∂Hb

∂xb

+
∂ TC

∂xb

Gb



−δM,1H∞,1 |ℓ1

...

−δM,mH∞,m |ℓm


+

+
m

∑
i=1

∫

Zi

[
− (dδM,iH∞,i +Gi∗δE,iH∞,i)∧δE,iC−

− (dδE,iH∞,i +Ri∗δM,iH∞,i)∧δM,iC
]

(6.38)

Since d(α ∧β ) = dα ∧β +α ∧dβ and (κ∗α)∧β = α ∧(κ∗β ) when α,β ∈ Ω 0(Z)
and κ ∈ R, the integral term in (6.38) becomes:

m

∑
i=1

∫

Zi

[δE,iH∞,i ∧ (dδM,iC−Gi∗δE,iC)+δM,iH∞,i ∧ (dδE,iC−Ri∗δM,iC)]−

−
m

∑
i=1

∫

Zi

[d(δM,iH∞,i ∧δE,iC)+d(δE,iH∞,i ∧δM,iC)] (6.39)

From the Stokes’ theorem, we have that

∫

Zi

d(δH ∧δC) =
∫

∂Zi

δH |∂Zi
∧δC |∂Zi

Then, from (6.38) and (6.39), we can write that
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dC

dt
=

{
∂ TC

∂xa

[Ja −Ra]+ [δE,1C |0 · · · δE,mC |0]GT
a

}
∂Ha

∂xa

+

+

{
∂ TC

∂xb

[Jb −Rb]−
[
δM,1C |ℓ1

· · · δM,mC |ℓm

]
GT

b

}
∂Hb

∂xb

+

+
m

∑
i=1

∫

Zi

[δE,iH∞,i ∧ (dδM,iC−Gi∗δE,iC)+δM,iH∞,i ∧ (dδE,iC−Ri∗δM,iC)]+

+

{
∂ TC

∂xa

Ga +[δM,1C |0 · · · δM,mC |0]
}



δE,1H∞,1 |0
...

δE,mH∞,m |0


+

+

{
∂ TC

∂xb

Gb +
[
δE,1C |ℓ1

· · · δE,mC |ℓm

]}


−δM,1H∞,1 |ℓ1

...

−δM,mH∞,m |ℓm




which has to be equal to zero for every Hamiltonian function Ha, Hb and H∞. There-

fore, the following set of conditions has to be satisfied:

∂ TC

∂xa

[Ja −Ra]+
[
δE,1C |0 · · · δE,mC |0

]
GT

a = 0 (6.40)

∂ TC

∂xb

[Jb −Rb]−
[
δM,1C |ℓ1

· · · δM,mC |ℓm

]
GT

b = 0 (6.41)

∂ TC

∂xa

Ga +
[
δM,1C |0 · · · δM,mC |0

]
= 0 (6.42)

∂ TC

∂xb

Gb +
[
δE,1C |ℓ1

· · · δE,mC |ℓm

]
= 0 (6.43)

dδM,iC−Gi∗δE,iC = 0 (6.44)

dδE,iC−Ri∗δM,iC = 0 (6.45)

where (6.44) and (6.45) have to hold for every i = 1, . . . ,m. These conditions are a

generalization of the classical definition of Casimir function reported in Sect. 2.6.2

and in [180]. In conclusion, the following proposition has been proved.

Proposition 6.5. Consider the mixed finite and infinite dimensional port Hamilto-

nian system (6.37), for which Xcl is the configuration space, defined in (6.35), and

Hcl is the Hamiltonian, defined in (6.36). Then, a functional C : Xcl → R is a

Casimir functional if and only if conditions (6.40)–(6.45) are satisfied.

Remark 6.4. Suppose that the m transmission lines are lossless, that is Ri = Gi = 0

for every i = 1, . . . ,m. Then, from (6.44) and (6.45), we deduce that C is a Casimir

functional if and only if relations (6.40)–(6.43) hold and

{
dδE,iC = 0

dδM,iC = 0
i = 1, . . . ,m (6.46)
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Consequently, it is necessary that δE,iC and δM,iC are constant on Zi as function of

z ∈ Zi, and anticipated in Example 6.1. Then, from (6.46), we have that

{
δE,iC = δE,iC |0= δE,iC |ℓi

δM,iC = δM,iC |0= δM,iC |ℓi

i = 1, . . . ,m (6.47)

Then, from (6.47) and by combining (6.40) with (6.43) and (6.41) with (6.42), we

deduce that C is Casimir functional if satisfies relation (6.46) and

∂ TC

∂xa

[Ja(xa)−Ra(xa)]−
∂ TC

∂xb

Gb(xb)G
T
a (xa) = 0

∂ TC

∂xb

[Jb(xb)−Rb(xb)]+
∂ TC

∂xa

Ga(xa)G
T
b (xb) = 0 (6.48)

Note that (6.48) are the necessary and sufficient conditions for the existence of

Casimir functions in the finite dimensional case, when the interconnection law is

purely algebraic and given by (6.34). They are also necessary and sufficient con-

ditions under the hypothesis that the interconnecting infinite dimensional system is

lossless.

6.4.5.3 Initial remarks on the control of mixed port-Hamiltonian systems by

energy shaping

Consider the system (6.31) and denote by x∗b a desired equilibrium point. As dis-

cussed in Sect. 5.5, in finite dimensions the stabilization of (6.31) in x∗b by means of

the controller (6.30) can be solved by interconnecting both the systems according to

(6.34) and looking for Casimir functions of the resulting closed-loop system in the

form Ci(xa,xb) = xa,i −Fi(xb), i = 1, . . . ,na, which have to satisfy conditions (6.48).

In this way, since Ċi = 0, we have that xa = F(xb) + κ for every energy function

Ha and Hb. This relation defines, then, a structural state feedback law. Furthermore,

Ha, which is freely assignable, can be expressed as a function of xb: the problem of

shaping the closed-loop energy in order to introduce a minimum in x∗b can be solved

by properly choosing Ha. Finally, if dissipation is added, then this new minimum is

reached (cf. Sect. 5.3 or Sect. 5.5).

The stabilization of the system (6.37) can be stated as follows. Denote by

(χ∗,x∗b)∈X∞×Xb a desired equilibrium configuration, where χ∗ is a configuration

of the infinite dimensional system that is compatible with the desired equilibrium

point x∗b of the finite dimensional sub-system. In order to stabilize the configuration

(χ∗,x∗b), it is necessary to chose the finite dimensional controller (6.30) so that the

open-loop energy function

m

∑
i=1

H∞,i(αE,i,αM,i)+Hb(xb) = H∞(αE,1, . . . ,αM,m)+Hb(xb)
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can be shaped by acting on Ha. As in the finite dimensional case (cf. Sect. 5.3), a

possible solution can be to robustly relate the controller state variable with the plant

state variable by means of a set of Casimir functions. If

Ci(xa,i,xb,αE,1, . . . ,αM,m) = xa,i −Fi(xb)−Fi(αE,1, . . . ,αM,m) (6.49)

with i = 1, . . . ,na, are a set of Casimir functionals for (6.37), then, independently

from the energy functions Ha, Hb and H∞, we have that:

xa,i = Fi(xb)+Fi(αE,1, . . . ,αE,m,αM,1, . . . ,αM,m)+κi (6.50)

with i = 1, . . . ,na. The constants κi depend only on the initial conditions and can

be set to zero if the initial state is known (see in Sect. 5.5.2 how to eliminate this

constraint). In this way, the controller state variable is expressed as function of the

state variable of the system (6.31) and of the configuration of the m transmission

lines (6.32). Consequently, the closed-loop energy function (6.36) becomes:

Hcl(xa,xb,αE,1, . . . ,αE,m,αM,1, . . . ,αM,m) = Hb(xb)+
m

∑
i=1

H∞,i(αE,i,αM,i)+

+Ha (F1 (xb)+F1 (αE,1, . . . ,αM,m) , . . . ,Fna (xb)+Fna (αE,1, . . . ,αM,m))

where Ha can be freely chosen in order to introduce a minimum in (χ∗,x∗b). The

na functionals (6.49) are Casimir functionals for (6.37) if and only if conditions

(6.40)–(6.45) are satisfied. In particular, (6.44) and (6.45) can be written as

{
dδM, jFi −G j∗δE, jFi = 0

dδE, jFi −R j∗δM, jFi = 0
i = 1, . . . ,na; j = 1, . . . ,m

which is a system of partial differential equations that has to be solved for every Fi.

6.4.5.4 The lossless transmission lines case

As in the finite dimensional case (cf. Sect. 5.4.6), dissipation introduces strong con-

straints on the applicability of passivity-based control techniques or, equivalently,

on the admissible Casimir functions for the closed-loop system. Clearly, these lim-

itations are present also when dealing with mixed port-Hamiltonian systems. Con-

sider, for the moment, that the infinite dimensional subsystem is lossless, as already

discussed in Example 6.1 and in Remark 6.4. In this case, condition (6.46) becomes

{
dδE,iF j = 0

dδM,iF j = 0
i = 1, . . . ,m; j = 1, . . . ,na

which expresses the fact that δE, jFi and δM, jFi are constant along Z j. Then, we

have that, for every i = 1, . . . ,na and j = 1, . . . ,m
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{
δE, jFi = δE, jFi |0= δE, jFi |ℓ j

δM, jFi = δM, jFi |0= δM, jFi |ℓ j

(6.51)

From (6.49) and (6.51), conditions (6.40)–(6.43) can be written as:

[Ja −Ra] =




δE,1F1 · · · δE,mF1

...
. . .

...

δE,1Fna · · · δE,mFna


GT

a (6.52)

∂ TF

∂xb

[Jb −Rb] =




δM,1F1 · · · δM,mF1

...
. . .

...

δM,1Fna · · · δM,mFna


GT

b (6.53)

Ga =




δM,1F1 · · · δM,mF1

...
. . .

...

δM,1Fna · · · δM,mFna


 (6.54)

∂ TF

∂xb

Gb =




δE,1F1 · · · δE,mF1

...
. . .

...

δE,1Fna · · · δE,mFna


 (6.55)

By substitution of (6.54) in (6.52), and of (6.55) in (6.53), after a post-multiplication

by ∂F
∂xb

, we deduce that

Ja +Ra =
∂ TF

∂xb

[Jb −Rb]
∂F

∂xb

(6.56)

Since Ja and Jb are skew-symmetric and Ra and Rb are symmetric and positive

definite, we deduce that, necessarily,

Ja =
∂ TF

∂xb

Jb

∂F

∂xb

(6.57)

Ra = 0 (6.58)

Furthermore, from (6.56) and (6.58), we deduce that

Rb

∂F

∂xb

= 0 (6.59)

and from (6.53), (6.54) and (6.59) that

∂ TF

∂xb

Jb = GaGT
b (6.60)

In conclusion, the following proposition has been proved.
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Proposition 6.6. Consider the mixed port-Hamiltonian system (6.37) and suppose

that the m transmission lines are lossless, that is Ri = Gi = 0, i = 1, . . . ,m. Then,

the na functionals (6.49) are Casimirs for this system if the conditions (6.51), (6.54),

(6.55) and (6.57)–(6.60) are satisfied.

Note that conditions (6.57)–(6.60), involving the finite dimensional subsystem of

(6.37), are the same required in the finite dimensional energy Casimir method, [180].

Furthermore, Proposition 6.6 generalizes the results presented in [171].

6.4.5.5 Introducing dissipation in the transmission lines

Problems arise when the infinite dimensional system is not lossless. For simplicity,

in (6.32) suppose that Gi = 0 and Ri 6= 0, i = 1, . . . ,m. Then, from (6.49), conditions

(6.44) and (6.45) can be written as the following set of ODEs in the spatial variable

z {
dδM, jFi = 0

dδE, jFi = R j∗δM, jFi

i = 1, . . . ,na; j = 1, . . . ,m

whose solution is given by

{
δM, jFi = Mi j

δE, jSi = R jMi jz+Ei j

i = 1, . . . ,na; j = 1, . . . ,m

where Ei j, Mi j ∈ R are constants to be specified and z ∈ Z j. Consequently, in (6.49),

we have that for every i = 1, . . . ,na

Fi(αE,1, . . . ,αM,m) =
m

∑
j=1

∫

Z j

[Mi jαM, j +(R jMi jz+Ei j)αE, j] (6.61)

If E := [Ei j], M := [Mi j] and L := diag(ℓ1, · · · , ℓm), then conditions (6.40)–(6.43)

can be written as

[Ja −Ra] = EGT
a (6.62)

∂ TF

∂xb

[Jb −Rb] = MGT
b (6.63)

Ga = M (6.64)

∂ TF

∂xb

Gb = − [MRL+E] (6.65)

From (6.63) and (6.64), we have that

∂ TF

∂xb

[Jb −Rb]
∂F

∂xb

= GaGT
b

∂F

∂xb

(6.66)

Then, combining (6.62), (6.63) and (6.66), it can be obtained that
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∂ TF

∂xb

[Jb −Rb]
∂F

∂xb

= Ja +Ra −GaRLGT
a (6.67)

Since Ja and Jb are skew-symmetric and Ra and Rb are symmetric and positive

definite, the controller interconnection and damping matrices can be chosen as

Ja =
∂ TF

∂xb

Jb

∂F

∂xb

(6.68)

Ra = GaRLGT
a (6.69)

Consequently, in (6.49), the functions Fi(·), i = 1, . . . ,na taking into account the

finite dimensional part of the port-Hamiltonian system (6.37) are the solution of the

following PDE:

Rb

∂F

∂xb

= 0 (6.70)

This is the same equation that has to be solved either for the finite dimensional and

mixed port-Hamiltonian system (with lossless transmission lines). Finally the input

matrix Ga of the controller is the solution of the following equation, resulting from

(6.63), (6.64) and (6.70):

∂ TF

∂xb

Jb = GaGT
b (6.71)

The same result holding in finite dimensions and when the distributed parameter

sub-system is lossless has been obtained again. Then, the following proposition has

been proved.

Proposition 6.7. Consider the mixed port-Hamiltonian system (6.37) and suppose

that Ri 6= 0 and Gi = 0, i = 1, . . . ,m. Then, the na functionals (6.49) are Casimir

functionals for this system if each Fi is given as in (6.61), i = 1, . . . ,na, and condi-

tions (6.68)-(6.71) are satisfied.

Remark 6.5. The presence of dissipative phenomena in the port-Hamiltonian sys-

tem (6.32) obviously modifies the expression of the Casimir functions (6.49) of the

closed-loop system. It is important to note, however, that, if xa,i−Fi(·), i = 1, . . . ,na,

are Casimir functions in finite dimensions, then the same functions Si appear in the

expression of the Casimir functions (6.49) for the m-pH system if the damping ma-

trix Ra of the controller is chosen according to (6.69). What happens is that the

contribution to the structural invariants (6.49) of the finite dimensional part is still

the solution of the PDE (6.70), which appears also in finite dimensions; furthermore,

in order to compensate the effect of dissipation in the m-pH system (6.32) which in-

terconnects plant (system B) and controller (system A), it is necessary to introduce

dissipation, expressed by (6.69) also in the controller. Note that the damping matrix

Ra of the controller depends on the overall dissipation inside the set of transmission

lines.

An analogous result holds if, in (6.32), it is supposed that Gi 6= 0 and Ri = 0,

i = 1, . . . ,na. In this case, conditions (6.44) and (6.45) transform into the following
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set of ODEs in the spatial variable z:

{
dδM, jFi = G j∗δE, jFi

dδE, jFi = 0
i = 1, . . . ,na; j = 1, . . . ,m

whose solution is given by

{
δM, jFi = G jEi jz+Mi j

δE, jFi = Ei j

i = 1, . . . ,na; j = 1, . . . ,m (6.72)

with Ei j, Mi j ∈ R. In (6.49), we have that for every i = 1, . . . ,na

Fi(αE,1, . . . ,αM,m) =
m

∑
j=1

∫

Z j

[Ei jαE, j +(G jEi jz+Mi j)αM, j] (6.73)

and conditions (6.40)–(6.43) can be written as

[Ja −Ra] = EGT
a (6.74)

∂ TF

∂xb

[Jb −Rb] = [EGL+M]GT
b (6.75)

Ga = M (6.76)

∂ TF

∂xb

Gb = −E (6.77)

It is possible to verify that

∂ TF

∂xb

[Jb −Rb]
∂F

∂xb

= Ja +Ra −
∂ TF

∂xb

GbGLGT
b

∂F

∂xb

(6.78)

Consequently, if the interconnection and damping matrices of the controller are

Ja =
∂ TF

∂xb

Jb

∂F

∂xb

(6.79)

Ra =
∂ TF

∂xb

GbGLGT
b

∂F

∂xb

(6.80)

then the functions Fi are again the solutions of the set of PDEs (6.70), which is the

same as in finite dimensions. In this case, the input matrix Ga is solution of the

following equation:

∂ TF

∂xb

[
Jb +GbGLGT

b

]
= GaGT

b (6.81)

Also in this case, it is necessary to introduce dissipation in the controller by means

of Ra in order to compensate the loss of energy in the transmission lines.
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Proposition 6.8. Consider the port-Hamiltonian system (6.37) and suppose that

Ri = 0 and Gi 6= 0, i = 1, . . . ,m. Then, the na functionals (6.49) are Casimirs for this

system if each Fi is given as in (6.73), i = 1, . . . ,na, and conditions (6.79)-(6.81)

are satisfied.

Once it is possible to choose the controller interconnection, damping and input

matrices in order to render the set of functions (6.49) structural invariants for the

closed-loop system (6.37), the energy function of the controller (6.30), that is its

Hamiltonian function Ha can be chosen in order to introduce a minimum in the

desired equilibrium configuration (χ∗,x∗b) ∈ X∞ ×Xb in the closed-loop energy

function (6.36). At this point, (asymptotic) stability can be verified by following the

method proposed in [200] and based on Arnold’s first and second stability theorem

for linear and nonlinear distributed parameter systems or by applying the general-

ization of La Salle’s Invariance Principle to infinite dimensions proposed in [117].

In the next section, the stabilization of a simple mixed port-Hamiltonian system

for which the stability proof relies on the application of the method proposed in

[200] is presented. This example is a generalization of the case study presented

in [171]. The same technique is also applied to the stabilization of the Timoshenko

beam by interconnection and energy shaping discussed in Sect. 6.5.

6.4.5.6 Stabilization of a simple mixed port-Hamiltonian system by energy

shaping

Consider the series RLC circuit whose port Hamiltonian model is given by





[
ẋb,1

ẋb,2

]
=

[
0 1

−1 −R

][
∂xb,1

Hb

∂xb,2
Hb

]
+

[
0

1

]
ub

yb =
∂Hb

∂xb,2

(6.82)

in which xb = [xb,1 xb,2]
T

is the state variable, with xb,1 the charge stored in the

capacitor and xb,2 the flux in the inductance, and

Hb(xb,1,xb,2) =
1

2

x2
b,1

Cb

+
1

2

x2
b,2

Lb

the total energy. As reported in Fig. 6.8, suppose to interconnect system (6.82) to

a transmission line in z = ℓ, where ℓ denotes the length of the line. Furthermore,

suppose that G 6= 0 and that R = 0 in (6.32). Finally, suppose to interconnect the

controller (6.30) to the transmission line in z = 0. If ( f0,e0) and ( fℓ,eℓ) are the

power conjugated port variables at z = 0 and z = ℓ respectively, then, after a port

dualization2 at both sides of the line in order to give physical consistency to efforts

2 The port dualization changes the role of efforts and flows variables in the transmission line. Dif-

ferently from Sect. 6.4.5.2 and Sect. 6.4.5.3, in which the finite dimensional systems are supposed
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Fig. 6.8 An example of mixed

port-Hamiltonian system.

transmission line sys. Bsys. A

· · ·

and flows, the interconnection law (6.33) can be written as

{
ya = −e0

ua = f0

{
yb = fℓ

ub = eℓ

Furthermore, denote by χ the state of the resulting mixed port-Hamiltonian system,

by C∞ the distributed capacitance and by L∞ the distributed inductance of the line.

Consequently, the total closed-loop energy function becomes

Hcl(χ) =
1

2

x2
b,1

Cb

+
1

2

x2
b,2

Lb

+Ha(xa)+
1

2

∫ ℓ

0

(
α2

E

C∞
+

α2
M

L∞

)
dz (6.83)

In order to apply the control by interconnection methodology, it is necessary to

find the Casimir functions of the form (6.49) for the closed-loop dynamics. Since

it is desired to conserve the finite dimensional part of the Casimir function even

in presence of an interconnection involving a distributed port-Hamiltonian systems,

condition (6.70) has to be satisfied. As in the finite dimensional case, we obtain that

∂F

∂xb,1
= 1 and

∂F

∂xb,2
= 0

which implies that F(xb) = xb,1. Moreover, as far as the functional F (αE ,αM) is

concerned, we obtain that

δMF (αE ,αM) = E and δEF (αE ,αM) = GEz+M (6.84)

where E, M ∈ R are constants that will be specified later on. It is easy to verify that

conditions (6.62)-(6.65) can be satisfied by choosing Ja = 0, Ra = Gℓ and Ga = −1

and, consequently, E = 1 and M = −Gℓ in (6.84), as presented in Proposition 6.7.

Then, a Casimir function for the closed-loop system is

C(xa,xb,αE ,αM) = xa − xb,1 −
∫ ℓ

0
[αE +G(z− ℓ)αM]dz (6.85)

and the closed-loop energy function (6.83) can be written as

to have an effort as input, in this case the input signal is a flow (i.e. a current). The immediate

consequence is that, even if it is supposed that G 6= 0 and R = 0, the result concerning the existence

of Casimir functions in the form (6.49) that has to be used is the one presented in Proposition 6.7.
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Hcl(χ) =
1

2

x2
b,1

Cb

+
1

2

x2
b,2

Lb

+

+Ha

(
xb,1 +

∫ ℓ

0
[αE +G(z− ℓ)αM]dz+κ

)
+

1

2

∫ ℓ

0

(
α2

E

C∞
+

α2
M

L∞

)
dz

since, from (6.85), we have that

xa = xb,1 +

∫ ℓ

0
[αE +G(z− ℓ)αM]dz+κ (6.86)

where κ ∈ R. If the initial configuration is known, it is possible to assume κ = 0.

Denote by χ∗ a desired equilibrium configuration, that is

χ∗ =
[
x∗b,1 x∗b,2 α∗

E α∗
M

]T
=

[
x∗b,1 0 C∞

x∗b,1

Cb

L∞

x∗b,1

Cb

G(ℓ− z)

]T

(6.87)

and by x∗a the value of xa given by (6.85) and evaluated in χ∗. Then, in the remaining

part of this section, it will be shown that, by selecting

Ha(xa) =
1

2

1

Ca

x̃2
a + kx̃a (6.88)

with x̃a := xa − x∗a, Ca > 0 and k ∈ R to be specified, it is possible to shape the

closed-loop energy in such a way that it has a minimum at the equilibrium point

χ∗. Furthermore, it will be verified that this configuration is stable in the sense

Definition 6.1. This property can be verified by following the procedure illustrated

in Sect. 6.2.1. First of all, it is necessary to verify that ∇Hcl(χ∗) = 0, relation that

holds if in (6.88) we chose k = − x∗1
C

. In fact

∇Hcl(χ∗) =




x∗1
C

+ k

0
α∗

E
C∞

+ k
α∗

M
L∞

+ kG(z− ℓ)


= 0

Then, it is necessary to compute the nonlinear functional N (∆ χ) := Hcl(χ∗ +
∆ χ)−Hcl(χ∗), which is proportional to the second variation of Hcl evaluated in

χ∗. It can be obtained that

N (∆ χ) =
1

2

∆x2
b,1

Cb

+
1

2

∆x2
b,2

Lb

+
∫ ℓ

0

(
∆α2

E

C∞
+

∆α2
M

L∞

)
dz+

+
1

2

1

Ca

(
∆xb,1 +

∫ ℓ

0
[∆αE +G(z− ℓ)∆αM]dz

)2

The stability proof is completed if it is possible to find α,γ1,γ2 > 0 such that
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γ1 ‖∆ χ‖2 ≤ N (∆ χ) ≤ γ2 ‖∆ χ‖α
(6.89)

where ‖·‖ is a suitable norm on Xcl . If the following norm is assumed:

‖χ‖ :=

(
∆x2

1 +∆x2
2 +

∫ ℓ

0
∆α2

Edz+
∫ ℓ

0
∆α2

Mdz

) 1
2

the constant γ1 can be easily estimated in

γ1 =
1

2
min

{
1

Cb

,
1

Lb

,
1

C∞
,

1

L∞

}

Moreover, note that

∣∣∆xb,1

∣∣
∣∣∣∣
∫ ℓ

0
[∆αE +G(z− ℓ)∆αM]dz

∣∣∣∣≤
1

2
∆x2

b,1+

+
1

2

(∫ ℓ

0
[∆αE +G(z− ℓ)∆αM]dz

)2

and

1

2

(∫ ℓ

0
[∆αE +G(z− ℓ)∆αM]dz

)2

≤ ℓ

(∫ ℓ

0
∆α2

Edz+G2ℓ2
∫ ℓ

0
∆α2

Mdz

)

Consequently, it is possible to chose

γ2 =
1

2
max

{
1

Cb

+2
1

Ca

,
1

Lb

,
1

C∞
+2

ℓ

Ca

,
1

L∞
+2

G2ℓ3

Ca

}

and α = 2 in order to complete stability proof of the desired configuration χ∗. In

other words, the following proposition has been proved.

Proposition 6.9. Consider the mixed port-Hamiltonian system of Fig. 6.8, where the

transmission line is not lossless (i.e. R = 0 and G 6= 0). If the controller intercon-

nection, damping and input matrices are equal to 0, Gℓ and −1 respectively, then,

if the controller energy function is given by (6.88), the configuration (6.87) is stable

in the sense of Definition 6.1.

6.5 Control by energy shaping of the Timoshenko beam

6.5.1 Model of the plant

Consider the mechanical system of Fig. 6.9, in which a flexible beam, modeled

according to the Timoshenko theory and whose port-Hamiltonian model is given
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Fig. 6.9 Flexible link with

mass in z = L.

0 L

q1

q2

m, J

fc

τc

by (4.157), is connected to a rigid body with mass m and inertia momentum J in

z = L and to a controller in z = 0. The controller acts on the system with a force

fc and a torque τc. Since the Timoshenko model of the beam is valid only for small

deformations, it is possible to assume that the motion of the mass is the combination

of a rotational and of a translational motion along z = L. The port Hamiltonian model

of the mass is given by:

[
q̇

ṗ

]
=

{[
0 I

−I 0

]
−
[

0 0

0 D

]}[ ∂H
∂q
∂H
∂ p

]
+

[
0

I

]
f

e =
∂H

∂ p
(6.90)

where q = [q1, q2]
T ∈ R

2 are the generalized coordinates, with q1 the distance from

the equilibrium configuration and q2 the rotation angle, p are the generalized mo-

menta, f,e ∈ R
2 are the port variables and

H(p,q) :=
1

2
pTM−1 p+

1

2
qTKq =

1

2

(
p2

1

m
+

p2
2

J

)
+

1

2

(
k1q2

1 + k2q2
2

)
(6.91)

is the total energy (Hamiltonian) function, with k1, k2 > 0. It is assumed that a trans-

lational and rotational spring is acting on the mass, with center of stiffness in (0,0).
As far as the controller is concerned, we assume that it can be modeled by means

of the following finite dimensional port Hamiltonian systems

[
q̇c

ṗc

]
=

{[
0 I

−I 0

]
−
[

0 0

0 Dc

]}[ ∂Hc

∂qc
∂Hc

∂ pc

]
+

[
0

Gc

]
fc

ec = GT
c

∂Hc

∂ pc

(6.92)

where qc ∈ R
2 are the generalized coordinates, pc the generalized momenta and

fc,ec ∈ R
2 the power conjugated port variables. Moreover, Hc(qc, pc) is the Hamil-

tonian and it will be specified in the remaining part of this section in order to drive

the whole system in a desired equilibrium configuration. The pseudo-bond graph

representation of the closed loop system made of the Timoshenko beam, the mass in

z = L and the finite dimensional port Hamiltonian controller acting in z = 0 is given

in Fig. 6.10. Then, the interconnections constraints between the port variables of the
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Fig. 6.10 Pseudo-bond graph

representation of the closed-

loop system. H HHc SGYSGY 1

subsystems are given by the following power-preserving relations:





[
f t
b(L) f r

f (L)
]T

= −e
[
et

b(L) er
b(L)

]T

= f





[
f t
b(0) f r

f (0)
]T

= ec
[
et

b(0) er
b(0)

]T

= fc

(6.93)

From (4.157), (6.90), (6.92) and (6.93), it is possible to obtain the mixed finite

and infinite dimensional port Hamiltonian representation of the closed-loop system.

The total energy Hcl is defined in the extended space

Xcl := R
4 ×R

4

︸ ︷︷ ︸
X

×Ω 1(Z)×Ω 1(Z)×Ω 1(Z)×Ω 1(Z)︸ ︷︷ ︸
X∞

(6.94)

and it is given by the sum of the energy functions of the subsystems, that is

Hcl := H +Hc +H (6.95)

Moreover, it is easy to verify that the energy rate is equal to

dHcl

dt
= −

(
∂ THcl

∂ p
D

∂Hcl

∂ p
+

∂ THcl

∂ pc

Dc

∂Hcl

∂ pc

)
≤ 0

where Dc and Hc have to be designed in order to drive the system in the desired

equilibrium position, which is still to be specified. Following the same procedure of

Sect. 6.4 (see Sect. 6.4.5.6, in particular), the idea is to shape the total energy Hcl by

properly choosing the controller Hamiltonian Hc in order to have a new minimum of

energy in the desired configuration that can be reached if some dissipative effect is

introduced. The first step is find the Casimir functionals of the closed-loop system.

6.5.2 Casimir functionals for the closed-loop system

Denote by C : X ×X∞ → R a scalar function defined on the extended state space

(6.94). This is a Casimir function for closed-loop system reported in Fig. 6.10, if

along system trajectories Ċ = 0 for every Hamiltonian of the system Hcl . Clearly,

dC

dt
=

∂ TC

∂q
q̇+

∂ TC

∂ p
ṗ+

∂ TC

∂qc

q̇c +
∂ TC

∂ pc

ṗc+

+
∫

Z

(
∂ pt

∂ t
∧δptC +

∂ pr

∂ t
∧δprC +

∂εt

∂ t
∧δεtC +

∂εr

∂ t
∧δεrC

)
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and, from (4.157), (6.90), (6.92) and the interconnection constraints (6.93), we ob-

tain

dC

dt
=

∂ TC

∂q

∂H

∂ p
+

∂ TC

∂ p

{
−∂H

∂q
−D

∂H

∂ p
+
[
δεt H |z=L δεr H |z=L

]T
}

+

+
∂ TC

∂qc

∂Hc

∂ pc

+
∂ TC

∂ pc

{
−∂Hc

∂qc

−Dc

∂Hc

∂ pc

+Gc

[
δεt H |z=0 δεr H |z=0

]T
}

+

+
∫

Z
[dδεt H ∧δptC +(dδεr H +∗δεt H)∧δprC]+

+
∫

Z
[(dδpt H −∗δpr H)∧δεrC +dδpr H ∧δεtC] (6.96)

Since dδH∧δC = d(δH∧δC)−δH∧dδC and ∗δH∧δC = ∗δH∧δC, the integral

term in (6.96) is equal to

∫

Z
[d(δεt H ∧δptC)+d(δεr H ∧δprC)+d(δpt H ∧δεtC)+d(δpr H ∧δεrC)]−

−
∫

Z
[δpt H ∧dδεtC +δpr H ∧ (dδεrC +∗δεtC)]−

−
∫

Z
[δεt H ∧ (dδptC−∗δprC)+δεr H ∧dδprC] (6.97)

where, from Stokes theorem, the first term can be written as

∫

∂Z
[δεt H |∂Z ∧δptC |∂Z + · · ·+δpr H |∂Z ∧δεrC |∂Z ] =

=
∫

∂Z

[
δptC |∂Z δprC |∂Z

][
δεt H |∂Z δεr H |∂Z

]T
+

+
∫

∂Z

[
δεtC |∂Z δεrC |∂Z

][
δpt H |∂Z δpr H |∂Z

]T
(6.98)

From (6.90), (6.92) and the interconnection constraints (6.93), we have that

[
δpt H |z=L

δpr H |z=L

]
= −e = −∂H

∂ p

[
δpt H |z=0

δpr H |z=0

]
= ec = GT

c

∂Hc

∂ pc

Then, combining (6.96) with (6.97) and (6.98), we obtain that
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dC

dt
=− ∂ TC

∂ p

∂H

∂q
− ∂ TC

∂ pc

∂Hc

∂qc

−

−
{
−∂ TC

∂q
+

∂ TC

∂ p
D+

[
δεtC |z=L δεrC |z=L

]} ∂H

∂ p
−

−
{
−∂ TC

∂qc

+
∂ TC

∂ pc

Dc +
[
δεtC |z=0 δεrC |z=0

]
GT

c

}
∂Hc

∂ pc

+

+

{
∂ TC

∂ p
+
[
δptC |z=L δprC |z=L

]}[
δεt H |z=L δεr H |z=L

]T
+

+

{
∂ TC

∂ pc

−
[
δptC |z=0 δprC |z=0

]}[
δεt H |z=0 δεr H |z=0

]T−

−
∫

Z
[δpt H ∧dδεtC +δpr H ∧ (dδεrC +∗δεtC)]−

−
∫

Z
[δεt H ∧ (dδptC−∗δprC)+δεr H ∧dδprC]

that has to be equal to zero for every Hamiltonian H, Hc and H. This is true if and

only if

dδεtC = 0
∂C

∂ p
= 0

dδptC−∗δprC = 0
∂C

∂ pc

= 0

dδεrC +∗δεtC = 0

[
δptC |z=L

δprC |z=L

]
= 0 (6.99)

dδprC = 0

[
δptC |z=0

δprC |z=0

]
= 0

∂C

∂q
=

[
δεtC |z=L

δεrC |z=L

]
∂C

∂qc

= Gc

[
δεtC |z=0

δεrC |z=0

]

In other words, the following proposition has been proved, [118, 119].

Proposition 6.10. Consider the mixed port-Hamiltonian system of Fig. 6.10, which

results from the power conserving interconnection (6.93) of the (4.157), (6.90) and

(6.92). If X ×X∞ is the extended state space of the system, introduced in (6.94),

then C : X ×X∞ →R is a Casimir for the closed-loop system if and only if relations

(6.99) hold.

6.5.3 Control by energy shaping of the Timoshenko beam

In order to control the flexible beam with the finite dimensional controller (6.92), the

first step is to find Casimir functionals for the closed-loop system that can relate the

state variables of the controller q to the state variables that describe the configuration
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of the flexible beam and of the mass connected to its extremity. In particular, we are

looking for some functionals C̃i, i = 1,2, such that

Ci(q, p,qc, pc, pt , pr,εt ,εr) := qc,i −C̃i(q, p, pc, pt , pr,εt ,εr), with i = 1, 2

are Casimir functionals for the closed loop system, i.e. satisfying the conditions

of Proposition 6.10. At first, from (6.99), it is immediate to note that every Casimir

functional cannot depend on p and pc. Moreover, since it is necessary that dδεtCi = 0

and dδprCi = 0, we deduce that δεtCi and δprCi have to be constant as function on

z on Z and their value will be determined by the boundary conditions on Ci. Since,

from (6.92), δprCi |∂Z= 0, we deduce that δprCi = 0 on Z. But dδptCi = ∗δprCi =
0, then, from the boundary conditions, we deduce that also δptCi = 0 on Z. As a

consequence, all the admissible Casimir functionals are also independent from pt

and pr. In other words, we are interested in finding Casimirs in the following form:

Ci(q,qc,εt ,εr) := qc,i −C̃i(q,εt ,εr), with i = 1, 2

Assuming Gc = I, we have that

∂C1

∂qc

=

[
1

0

]
=

[
δεtC1 |z=0

δεrC1 |z=0

]
(6.100)

and, consequently, δεtC1 = 1 on Z. From (6.99), we have that dδεrC1 = −∗δεtC1 =
−∗1 = −dz; then, δεrC1 = −z + c1, where c1 is determined by the boundary con-

ditions. Since, from (6.100), δεrC1 |z=0= 0, then c1 = 0; moreover, we deduce that

δεrC |z=L= −L, relation that introduces a new boundary condition in z = L. A con-

sequence is that
∂C1

∂q
=

[
δεtC1 |z=L

δεrC1 |z=L

]
=

[
1

−L

]

The first conclusion is that

C1(q,qc,εt ,εr) = qc,1 − (Lq2 −q1)−
∫

Z
(zεr − εt) (6.101)

is a Casimir for the closed loop system. Following the same procedure, it is possible

to calculate C2. From (6.99), we have that

∂C2

∂qc

=

[
0

1

]
=

[
δεtC2 |z=0

δεrC2 |z=0

]

and then δεtC2 = 0 on Z; moreover, dδεrC2 = 0 and, consequently, δεrC2 = 1 on Z

since (6.95) holds. Again from (6.99), we deduce that

∂C2

∂q
=

[
δεtC2 |z=L

δεrC2 |z=L

]
=

[
0

1

]

So we can state that
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C2(q,qc,εt ,εr) = qc,2 +q2 +
∫

Z
εr (6.102)

is another Casimir functionals for the closed loop system. In conclusion, the follow-

ing proposition has been proved, [118, 119].

Proposition 6.11. Consider the port-Hamiltonian system resulting from the power

conserving interconnection (6.93) of (4.157), (6.90) and (6.92) which is represented

in Fig. 6.10. Then, this systems is characterized by the Casimir functions (6.101)

and (6.102).

Note 6.4. Since Ci, i = 1,2, are Casimir functionals, they are invariant for the system

of Fig. 6.10. Then, for every energy function Hc of the controller, we have that

qc,1 = (Lq2 −q1)+

∫

Z
(zεr − εt)+C1 qc,2 = −q2 −

∫

Z
εr +C2 (6.103)

where C1 and C2 depend on the initial conditions. If the initial configuration of the

system is known, then it is possible to assume these constants equal to zero. Since

Hc is an arbitrary function of qc, it is possible to shape the total energy function of

the closed-loop system in order to have a minimum of energy in a desired configu-

ration: if some dissipation effect is present, the new equilibrium configuration will

be reached.

Suppose that (q∗,0), with q∗ = [q∗1 q∗2]
T

, is the desired equilibrium configuration

of the mass (6.90). Then, the corresponding equilibrium configuration of the beam

can be calculated as the solution of (4.157) with

∂ pt

∂ t
=

∂ pr

∂ t
=

∂εt

∂ t
=

∂εr

∂ t
= 0 on Z

and with boundary conditions in z = L given by

[
f t
b(L)

f r
b(L)

]
=

∂H

∂ p
(q∗,0) = 0

[
et

b(L)
er

b(L)

]
=

∂H

∂q
(q∗,0) =

[
k1q∗1
k2q∗2

]
(6.104)

From (4.157), we have that the equilibrium configuration has to satisfy the following

system of PDEs {
dδεt H = 0

∗δεt H +dδεr H = 0

whose solution, compatible with the boundary conditions (6.104), is equal to

εt
∗(x, t) =

k1

K
q∗1 εr

∗(x, t) =
k1q∗1
EI

(L− z)+
k2q∗2
EI

(6.105)

Furthermore, at the equilibrium, it is easy to compute that pt = pt
∗ = 0 and that

pr = pr
∗ = 0. From (6.103) and (6.105), define
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q∗c,1 = qc,1(q
∗
1,q

∗
2,εt

∗,εr
∗) = Lq∗2 −q∗1 +

∫ L

0
(zεr

∗− εt
∗)dz

= Lq∗2 −q∗1 +
∫ L

0

[
k1q∗1
EI

(L− z)z+
k2q∗2
EI

z− k1

K
q∗1

]
dz

=

(
k1

EI

L3

6
− k1

K
L−1

)
q∗1 +

(
k2

EI

L2

2
+L

)
q∗2

q∗c,2 = qc,2(q
∗
2,εr

∗) = −q∗2 −
∫ L

0
εrdz

= −q∗2 −
∫ L

0

[
k1q∗1
EI

(L− z)+
k2q∗2
EI

]
dz

= − k1

EI

L2

2
q∗1 −

(
k2

EI
L+1

)
q∗2

Note that, at the equilibrium, pc = p∗c = 0. The energy function Hc of the controller

(6.92) will be chosen in such a way that a minimum in the closed-loop energy func-

tion is introduced at χ∗ = (q∗, p∗, p∗c , pt
∗, pr

∗,εt
∗,εr

∗). In the remaining part of this

section it will proved that, by choosing the controller energy as

Hc(pc,qc) =
1

2
pT

c M−1
c pc +

1

2
Kc,1(qc,1 −q∗c,1)

2+

+
1

2
Kc,2(qc,2 −q∗c,2)

2 +Ψ1(qc,1)+Ψ(qc,2) (6.106)

with Mc = MT
c > 0, Kc,1, Kc,1 > 0 and Ψ1, Ψ2 functions still to be specified, the con-

figuration χ∗ is stable. The stability proof follows the Arnold first stability theorem

discussed in Sect. 6.2.1.

Denote by χ the state variable of the closed-loop system. From (4.158), (6.91)

and (6.106), the total energy function is given by

Hcl(χ) =
1

2

(
p2

1

m
+

p2
2

J

)
+

1

2

(
k1q2

1 + k2q2
2

)
+

+
1

2

∫

Z

(
1

ρ
pt ∧∗pt +

1

Iρ
pr ∧∗pr +Kεt ∧∗εt +EIεr ∧∗εr

)
+

+
1

2
pT

c M−1
c pc +

1

2
Kc,1(qc,1 −q∗c,1)

2 +
1

2
Kc,2(qc,2 −q∗c,2)

2+

+Ψ1(qc,1)+Ψ(qc,2)

The first step in the stability proof is to find under which conditions, that is for what

particular choice of the functions Ψ1 and Ψ2, relation (6.1) is satisfied. We have that
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∇Hcl(χ) =




∂Hcl

∂ p
∂Hcl

∂q
∂Hcl

∂ pt
∂Hcl

∂ pr
∂Hcl

∂εt
∂Hcl

∂εr




=




∂H
∂ p

∂
∂q

(H +Hc)

δpt H

δpr H

δεt (H +Hc)
δεr(H +Hc)




Clearly,

∂H

∂ p
(χ∗) = 0

∂Hc

∂ pc

(χ∗) = 0 δpt H(χ∗) = 0 δpr H(χ∗) = 0

Furthermore,

∂Hcl

∂q1
= k1q1 −Kc,1

(
qc,1 −q∗c,1

)
− ∂Ψ1

∂qc,1

∂Hcl

∂q2
= k2q2 +Kc,1

(
qc,1 −q∗c,1

)
L−Kc,2

(
qc,2 −q∗c,2

)
+

∂Ψ1

∂qc,1
L− ∂Ψ2

∂qc,2

and

δεt Hcl = K∗εt −Kc,1

(
qc,1 −q∗c,1

)
− ∂Ψ1

∂qc,1

δεr Hcl = EI∗εr +Kc,1

(
qc,1 −q∗c,1

)
z−Kc,2

(
qc,2 −q∗c,2

)
+

∂Ψ1

∂qc,1
z− ∂Ψ2

∂qc,2

then ∇Hcl(χ∗) = 0 if

{
Ψ1(qc,1) = k1q∗1qc,1 +ψc,1

Ψ2(qc,2) = (k2q∗2 + k1q∗1L)qc,2 +ψc,2

with ψc,1 and ψc,2 arbitrary constants. Once the equilibrium is assigned in χ∗, it is

necessary to verify the convexity condition (6.3) in χ∗ on the nonlinear functional

N defined as in (6.2). With some simple but boring calculation, it can be obtained

that

‖∆ χ‖ =
1

2
∆ pTM−1∆ p+

1

2
∆ pT

c M−1
c ∆ pc +

1

2
k1∆q2

1 +
1

2
k2∆q2

2

+
1

2

∫ L

0

(
1

ρ
∆ pt ∧∗pt +

1

Iρ
∆ pr ∧∗pr +K∆εt ∧∗∆εt +EI∆εr ∧∗∆εr

)

+
1

2
Kc,1

[
L∆q2 −∆q1 +

∫ L

0
(z∆εr −∆εt)

]2

+
1

2
Kc,2

[
∆q2 +

∫ L

0
∆εr

]2
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The convexity condition (6.3) requires a norm in order to be verified. As already

discussed in Sect. 6.4.5.6, a possible choice can be

‖χ‖2 =
1

2
∆ pT∆ p+

1

2
∆ pT

c ∆ pc +
1

2
∆q2

1 +
1

2
∆q2

2

+
1

2

∫ L

0
(∆ pt ∧∗pt +∆ pr ∧∗pr +∆εt ∧∗∆εt +∆εr ∧∗∆εr)

In (6.3), a possible choice for γ1 can be

1

2
min

{
|M−1|, |M−1

c |, k1, k2,
1

ρ
,

1

Iρ
, K, EI

}

Moreover, if

γ̃2 =
1

2
max

{
|M−1|, |M−1

c |, k1, k2,
1

ρ
,

1

Iρ
, K, EI, Kc,1, Kc,2

}

we have that

N (∆ χ) ≤ γ̃2 ‖∆ χ‖+ γ̃2

[
L∆q2 −∆q1 +

∫ L

0
(x∆εr −∆εt)

]2

+ γ̃2

[
∆q2 +

∫ L

0
∆εr

]2

Since

[
L∆q2 −∆q1 +

∫ L

0
(z∆εr −∆εt)

]2

≤

≤ 2(L∆q2 −∆q1)
2 +2

[∫ L

0
(z∆εr −∆εt)

]2

≤

≤ 4
(
|∆q1|2 +L2|∆q2|2

)
+4

(∫ L

0
x∆εr

)2

+4

(∫ L

0
∆εt

)2

≤

≤ 4
(
|∆q1|2 +L2|∆q2|2

)
+4L

(∫ L

0
∆εt ∧∗∆εt +L

∫ L

0
∆εr ∧∗∆εr

)

and

[
∆q2 +

∫ L

0
∆εr

]2

≤ 2|∆q2|2 +2

(∫ L

0
∆εr

)2

≤ 2|∆q2|2 +2L

∫ L

0
∆εr ∧∗∆εr

it is possible to satisfy (6.3) by choosing α = 2 and

γ2 = γ̃2 ·max
{

2, 2L2 +2L+1
}

which completes the stability proof. In other words, the following proposition has

been proved.
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Proposition 6.12. Consider the port-Hamiltonian system which results from the

power conserving interconnection (6.93) of (4.157), (6.90) and (6.91). If in (6.92) it

is assumed that Gc = I and Hc is chosen according to (6.106), then the configuration

χ∗ is stable in the sense of Lyapunov, i.e. in the sense of Definition 6.1.

An analogous result can be proved in the case that the mass at the extremity is

under the effect of a gravitational field [120], that is the Hamiltonian function (6.91)

is replaced by

H(p,q) =
1

2

(
p2

1

m
+

p2
2

J

)
+mgq1

Then, the desired equilibrium configuration of the beam expressed in terms of en-

ergy variables are

pt
∗(t,z) = pr

∗(t,z) = 0 εt
∗(t,z) = −mg

K
εr

∗(t,z) =
mg

EI
(z−L) (6.107)

It is important to note that the effect of the gravity field on the flexible beam have

been neglected in order to make the model of the infinite dimensional subsystem

easier. On the other hand, if these effects have to be taken into account, it is neces-

sary to introduce a port along the spatial domain of the beam, as reported in (4.161),

that is interconnected to a distributed source of effort equal to −ρg, the gravity

force per unit length. If q∗1 and q∗2 are the desired position and rotational angle of

the mass, that is w∗(t,L) = q∗1 and φ ∗(t,L) = q∗2, the desired configuration (6.107)

of the beam can be easily expressed in terms of its vertical displacement and cross

section rotation:

w∗(t,z) =
mg

6EI
(z−L)3 +

(
q∗2 −

mg

K

)
(z−L)+q∗1

φ ∗(t,z) =
mg

2EI
(z−L)2 +q∗2

The energy function Hc of the controller (6.92) will be developed in order to regulate

the closed-loop system in the configuration χ∗ = (q∗, p∗, p∗c , pt
∗, pr

∗,εt
∗,εr

∗). By

choosing the controller energy as

Hc(qc, pc) :=
1

2
pT

c M−1
c pc +

1

2
Kc,1(qc,1 −q∗c,1)

2+

+
1

2
Kc,2(qc,2 −q∗c,2)

2 +Ψ1(qc,1 −q∗c,1)+Ψ2(qc,2 −q∗c,2)

with Mc = MT
c > 0, Kc,1, Kc,2 > 0, q∗c,1 and q∗c,2 given by (6.103) evaluated in the

equilibrium configuration, Ψ1 and Ψ2 to be properly chosen, the configuration χ∗

previously introduced is stable. If Hcl = H +Hc +H is the closed loop energy func-

tion, by simple calculations, it is possible to prove that ∇Hcl(χ∗) = 0 if

Ψ1(qc,1 −q∗c,1) = −mg(qc,1 −q∗c,1) Ψ2(qc,2 −q∗c,2) = −mgL(qc,2 −q∗c,2)

Moreover, also Hcl(χ∗) = 0. Then, the linear functional (6.2) becomes
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N (∆ χ) =
1

2
∆ pTM−1∆ p+

1

2
∆ pT

c M−1
c ∆ pc+

+
1

2

∫

Z

(
∆ pt

2

ρ
+

∆ pr
2

Iρ
+K∆εt

2 +EI∆εr
2

)
dz

+
1

2
Kc,1

(
L∆q2 −∆q1 +

∫

Z
(z∆εr −∆εt)dz

)2

+

+
1

2
Kc,2

(
∆q2 +

∫

Z
∆εrdz

)2

(6.108)

The upper bound for N , required in (6.3), is obtained by choosing α = 2 and

γ2 =
1

2
max

{∣∣M−1
∣∣ ,
∣∣Mc

−1
∣∣ , 1

ρ
,

1

Iρ
,ξ a

2 ,ξ b
2 ,ξ c

2

}

where

ξ a
2 := K +4LKc,1K +4LKc,1

ξ b
2 := EI +2LKc,2 +4L3Kc,1

ξ c
2 := 2(Kc,1 +L2Kc,2)

As regard the lower bound on N , note that

(
∆q2 +

∫

Z
∆εrdz

)2

≥ 1

2
∆q2

2 −
(∫

Z
∆εrdz

)2

≥ 1

2
∆q2

2 −L

∫

Z
∆εr

2dz

and, in the same way, that

(
L∆q2 −∆q1 +

∫

Z
(z∆εr −∆εt)dz

)2

≥

≥ 1

2
∆q2

1 −2L2∆q2
2 −4L

∫

Z
∆εt

2dz−4L3
∫

Z
∆εr

2dz

If Kc,1 and Kc,2 are chosen such that

ξ a
1 := K −4LKc,1 > 0

ξ b
1 := EI −4L3Kc,1 −LKc,2 > 0 (6.109)

ξ c
1 :=

1

2
Kc,2 −2L2Kc,1 > 0

then (6.3) can be satisfied if

γ1 =
1

2
min

{∣∣M−1
∣∣ ,
∣∣Mc

−1
∣∣ , 1

ρ
,

1

Iρ
,

1

2
Kc,1,ξ

a
1 ,ξ b

1 ,ξ c
1

}
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Fig. 6.11 Initial (dashed) and

final (solid) configurations

of the system. The system

has been stabilized around

the configuration for which

q∗1 = q∗2 = 0, starting from the

zero initial condition.

L

0

w(ℓ, t)
φ(ℓ, t)

ℓ

w

x

where ξ a
1 , ξ b

1 and ξ c
1 are given in (6.109).

Simulation results showing the validity of the latest developed controller are pre-

sented. In Fig. 6.11, the initial (dashed) and final (solid) configurations assumed by

the beam are presented. The aim of the simulations is to show how it is possible to

stabilize the whole system around the configuration for which q∗1 = q∗2 = 0, starting

from the zero initial condition. As far as the beam parameters are concerned, let as-

sume that L = 1.0m, ρ = 1.0 kg/m, Iρ = 1.0kg ·m, K = 103 N and EI = 10N ·m2. The

simulation of the Timoshenko model of the beam (which is an infinite dimensional

dynamical system) is possible once an approximated finite dimensional model is

provided. In this case, the discrete model of the Timoshenko beam proposed in [89]

is used. In particular, the beam has been divided in n = 20 identical parts, whose

bond-graph model is described in details in [89]. By discretization of the PDE equa-

tion describing the dynamics of the Timoshenko beam, a class of finite dimensional

approximation models can be obtained depending on the value of a free parame-

ter α ∈ [0,1]. This parameter determines the accuracy of the approximation model,

which is maximum for α = 1/2. This is the value assumed in the proposed simula-

tions.

Two sets of simulations have been carried out. As already presented in Sect. 6.5.1,

the controller is interconnected to the beam in z = 0, where it can apply a torque and

a force. In this way, the extremity of the beam in z = 0 can translate along w and

rotate (see again Fig. 6.11), thus allowing the regulation of both vertical displace-

ment and rotation of the mass interconnected in z = L. In the first simulation, the

values m = 10−2 kg and J = 10−2 kg ·m2 have been assumed for the mass at the

free-end, and the corresponding results are reported in Figures 6.12a and 6.13a.

The parameters of the controller have been chosen as Kc,1 = 1 N/m, Kc,2 = 1N,

Dc = diag
(
3 N·s2/m, 3N · s2

)
and Mc = diag

(
10−3 kg, 10−3 kg ·m2

)
. In the second

case, the values m = 0.3kg and J = 0.2kg ·m2 have been assigned to the mass.

The results are shown in Figures 6.12b and 6.13b. In this case, the control param-

eters have been chosen in order to decrease the settling time of the closed-loop

system. In particular, it has been assumed that Kc,1 = 4 · 10−2 N/m, Kc,2 = 10−1 N,

Dc = diag
(
10 N·s2/m, 5N · s2

)
and Mc = diag

(
10−3 kg, 10−3 kg ·m2

)
.

In Figures 6.12a and 6.13a, the time evolution of the deflection of the beam from

the initial configuration is given. In particular, the position deviation w of the beam

in z = L, z = 0.75L, z = 0.50L, z = 0.25L and z = 0 is represented. As presented
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Fig. 6.12a Deflection w of the beam in z = L,

z = 0.75L, z = 0.50L, z = 0.25L and z = 0,

with m = 0.01kg.

Fig. 6.12b Rotation φ of the beam cross-

section in z = L, z = 0.75L, z = 0.50L, z =
0.25L and z = 0, with m = 0.01kg.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

time (s)

v
e

rt
ic

a
l 
d

is
p

la
c
e

m
e

n
t 

−
 w

 (
m

)

w(L,t) 

w(0,t) 

w(0.25L,t) 

w(0.50L,t) 

w(0.75L,t) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time (s)

c
ro

s
s
−

s
e

c
ti
o

n
 r

o
ta

ti
o

n
 −

 p
h

i 
(r

a
d

)

phi(L,t) 

phi(0.75L,t) 

phi(0.50L,t) 

phi(0.25L,t) 

phi(0,t) 

Fig. 6.13a Deflection w of the beam in z = L,

z = 0.75L, z = 0.50L, z = 0.25L and z = 0,

with m = 0.3kg.

Fig. 6.13b Rotation φ of the beam cross-

section in z = L, z = 0.75L, z = 0.50L, z =
0.25L and z = 0, with m = 0.3kg.

in Fig. 6.11, the vertical displacement of the mass is, clearly, equal to the deflection

of the beam in z = L. Moreover, in Figures 6.12b and 6.13b, the time evolution of

the rotation of the beam cross section φ is given. Again, only the values in z = L,

z = 0.75L, z = 0.50L, z = 0.25L and z = 0 are reported. Clearly, the rotation of the

mass at the extremity of the beam is equal to the rotation of the beam cross section

in z = L.



Appendix A

Model Transformations and Analysis using
Bond Graphs

P. C. Breedveld

Abstract This appendix illustrates the main procedures for model transformations

and analysis using the bond graph formalism.

A.1 Model transformations

A.1.1 Conversion of an ideal physical model into a bond graph

A standard procedure for the translation of an ideal physical model (IPM) into a

bond graph contains the following steps (specifics between brackets apply to the

mechanical domain that is treated in a dual way due to the common choice of vari-

ables, i.e. the force-voltage analogy):

1. Identify the domains that are present.

2. Choose a reference effort (velocity reference and direction) for each of the do-

mains (degrees of freedom).

3. Identify and label the other points with common effort (velocity) in the model.

4. Identify, classify and accordingly label the ports of the basic one- and two-port

elements: C, I, GY, etc. in the model. A label consists of a node type and a unique

identifier, e.g. in the linear case the constitutive parameter connected by a colon.

5. Identify the efforts (velocities) and effort differences (relative velocities) of all

ports identified in the previous step.

6. Represent each effort by a 0-junction, (each velocity by a 1-junction). Use a

1-junction (0-junction) and bonds to construct a relation between each effort

difference (relative velocity) and the composing efforts (velocities) as follows,

taking care that each effort difference (relative velocity) is explicitly represented

by a 0-junction (1-junction), see Fig. A.1.

7. Connect all ports identified in steps 4 and 5 to the corresponding junctions. Note

that after this step all of the ports identified in step 4 are directly connected to a

0-junction (1-junction) only.
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Fig. A.1 Construction of

effort and flow differences.

Table A.1 Equivalence rules for simple junction structures.

8. (optional) Simplify the bond graph where necessary according to the equivalence

rules in Table A.1.

These steps not only support this translation process, but also give a better insight

when dynamic models are directly written in terms of a bond graph as well. In

that case steps 1, 3, 4 and 5 should be changed from a translation of already made

modeling choices into the modeling choices themselves.

This process is merely intended to establish a link between familiar represen-

tations and a bond graph representation. It does not suggest that the use of bond

graphs to support modeling always takes place on the basis of an existing IPM. On

the contrary, the process of making modeling choices is supported best by direct ap-

plication of the bond graph representation, especially when it is causally augmented
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Fig. A.2a Sketch of an elevator sys-

tem.

Fig. A.2b Word bond graph.

Fig. A.3 Iconic diagram of

the IPM of the elevator system

(step 1).

as will be shown in section , where the advantage of a bond graph as an alternative

model ‘view’ will be illustrated.

A.1.2 Example: systematic conversion of a simple

electromechanical system model into a bond graph

representation.

In order to demonstrate the relationship between the domain-independent bond

graph representation of a model and a domain dependent representation, e.g. the

iconic diagram of the model of the elevator system in Fig. A.2a, a systematic con-

version is demonstrated in Figures A.3 through A.10 following the eight steps de-

scribed in the previous section. This conversion ignores the automatic feedback on

modeling decisions from a bond graph, as the modeling decisions have already been

made.
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Fig. A.4 The IPM with refer-

ences (step 2).

Fig. A.5 The IPM with rel-

evant voltagees and (angular

velocities indicated (step 3).

Fig. A.6 Representation of

voltages by 0-junctions and of

velocities by 1-junctions (step

4).

Fig. A.7 Construction of the

difference variables (steps 5

and 6).

A.1.3 Conversion of causal bond graphs into block diagrams

As a causal bond represents a bi-lateral signal flow with fixed directions, a causal

bond graph (e.g. Fig. A.11) can be expanded into a block diagram in three to four

steps:

1. All node symbols are encircled and all bonds are expanded into bilateral signal

flows according to the assigned causality (Fig. A.12).

2. All constitutive relations of each node are written into block diagram form, ac-

cording to the assigned causality of each port. 0-junctions are represented by

a signal-node for the efforts and a summation for the flows, while 1-junctions
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Fig. A.8 Complete bond

graph (step 7).

Fig. A.9 Simplification of the

bond graph (step 8a).

Fig. A.10 Simplification of

the bond graph (step 8b).

are represented by a signal-node for the flows and a summation for the efforts

(Fig. A.13).

3. All signals entering a summation resulting from a junction are given a sign cor-

responding to the half-arrow direction: if, while traveling from causal input to

causal output, the bond orientation does not change (this does not exclude an ori-

entation opposite to the signal direction!), then a plus sign is added representing

a positive contribution to the summation; by contrast if the bond orientation does

change, then a minus sign is added representing a negative contribution to the

summation (Fig. A.14). In principle, a complete block diagram is obtained at this
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Fig. A.11 Causal bond graph.

Fig. A.12 Expansion of

causal bonds into bilateral

signals.

Fig. A.13 Expansion of the

nodes into operational blocks.

Fig. A.14 Addition of signs

to the summations.

point. However, its topology is not common due to the location of the conjugate

signals. This may be omitted in the next step.

4. (optional) Redraw the block diagram in such a way that the inputs are at the

left-hand side and the outputs (observed variables) are at the right-hand side

(Fig. A.15) with the integrators in the forward path. The block diagram may

be manipulated according to the standard rules for block diagrams as to obtain a

canonical form.

The procedure to obtain a signal flow graph is completely analogous to the above

procedure as all operations represented by blocks, including the signs of the summa-

tions, are combined as much as possible and then written next to an edge, while all

summations become nodes, as signal nodes can be distinguished from signal sum-

mation points by observing the signal directions (signal node has only one input,

summation has only one output).
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Fig. A.15 Conversion into

conventional form.

A.1.4 Generation of a set of mixed algebraic and differential

equations

An arbitrary bond graph with n bonds contains 2n conjugate power variables, 2n

ports and 2n corresponding port relations (constitutive relations). If a bond graph

is made causal, the order in which the causal strokes are assigned to the bonds can

uniquely label the bonds and their corresponding efforts and flows by using the se-

quence numbers of this process as indices. Next the constitutive relation of each

port is written in the form that corresponds to the assigned causality. This results in

a mixed set of 2n algebraic and first-order differential equations in an assignment

statement form. Note that the differential equations that belong to storage ports in

preferred integral causality have a time derivative at the left-hand side of the assign-

ment statements, indicating a ‘postponed’ integration, if it were. During numerical

simulation, this integration is performed by the numerical integration method to

allow for the next model evaluation step.

The switched junctions have the same causal port properties as the regular junc-

tions, but no acausal form of the constitutive relations exists, while it necessarily

contains ‘if-then-else’ statements that can only be written after causality has been

assigned.

The algebraic relations can be used to eliminate all the variables that do not

represent the state of a storage port or an input variable, thus resulting in a set of

ordinary differential equations (ODE) if all storage ports have preferred causality or

in a set of differential and algebraic equations (DAE) if there are dependent storage

ports.

If the elimination of the algebraic relations is done by hand, the following three

intermediate steps are advised:

1. Eliminate all variables that are dependent on the identities of junctions (0, 1) and

sources ((M)Se, (M)Sf);

2. Eliminate all variables that are related by the algebraic port relations of all the

ports that are not junction ports and not source ports ((M)R(S), (M)TF, (M)GY);

3. Eliminate all variables that are related by the port relations of all the ports that

are junction summations (0, 1);

4. If an algebraic loop is present (active arbitrary causality) choose a variable in this

loop to write an implicit algebraic relation and solve symbolically if possible.

Otherwise the use of an implicit numerical method is required;

5. If present and possible, eliminate a differentiated state variable at the right-hand

side of the relations symbolically if possible. Otherwise the use of an implicit

numerical method is required.
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For example, the bond graph in Fig. A.11 contains 10 bonds, 20 equations and

20 variables of which two are state variables, such that 18 variables have to be

eliminated. There are 9 identities (2 source and 3 + 2 + 2 = 7 junction ports), 6

multiplications (2× 2 transducer +2 R) and 3 summations (3 junctions) resulting

in the 18 necessary algebraic relations. The final result, assuming linearity of the

elements, is

d f3

dt
=

1

I1
(e(t)−R1 f3 −n1e7) = −R1

I1
f3 −

n1

I1
e7 +

1
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de7

dt
=
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n1 f3 −
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1
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or in matrix form
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]
=
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]
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][
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f (t)

]
(A.1)

A.2 Linear analysis

A.2.1 Introduction

Even though it may support a frequently encountered, persistent misapprehension

that the port-based approach and its bond graph representation require the restric-

tion that all constitutive relations of the nodes of a bond graph should be linear,

this assumption will be made in the next section, but only to show the link between

bond graphs and commonly used linear analysis techniques in system dynamics.

However, it should be strongly emphasized that much of the linear analysis directly

applied to the bond graph representation can be qualitatively generalized to the non-

linear case, as it still provides an insight. At the least, it gives an impression about

small-signal behavior near an operating point of a nonlinear system model.

Direct application of the wide range of linear analysis techniques on a bond graph

should serve a purpose in the sense that it provides some additional information. If

this is not the case, there is no need to change from a conventional model repre-

sentation already obtained, like a set of linear state equations, into a bond graph

representation.

If all constitutive relations of the nodes of a bond graph are assumed to be linear,

the bond graph represents a linear system model and each elementary node other

than the junctions (and the unit gyrator called symplectic gyrator) can be character-

ized by one parameter (C, I, R, TF, GY) or input(signal) ((M)Se, (M)Sf). In case of

(external) modulation, the linear system model becomes time-variant (MR, MTF,

MGY). Note that internal modulation causes nonlinearity and cannot occur in the

linear case.
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Table A.2 Impedance and admittance formulations of 1-port elements and corresponding gains.

Table A.3 Gains 2-port elements in various causal forms.

Given that a causal, linear bond graph is equivalent with any other linear system

representation, it can be used to support all kinds of linear analysis. The conversion

of a bond graph into a block diagram, a signal flow graph or a set of differential

equations was already discussed. This makes clear that any linear analysis technique

that exists for these kinds of models formulations can be directly applied to a causal,

linear bond graph as well. In particular transmission matrices and Mason’s loop rule

can be used to derive transfer functions between a chosen input and a chosen output

in case of tree and chain structures [36]. As the identification of signal loops takes

place in a bond graph via the causal paths, there is an immediate connection during

modeling between the properties of a transfer function and the physical properties.

The advantage of applying these techniques directly to the bond graph is that the

relation of certain aspects of the linear analysis or the transfer function in particular

with the physical structure can be directly observed and used to create or to adapt to

desired behavior. This not only supports modeling decisions, but also allows insight

in how physical changes can be made to obtain a required transfer.

In particular, an impedance analysis will be discussed, as it provides a means to

directly generate port equivalent compositions and decompositions. For linear anal-

ysis purposes, it is often useful to write the gain related to a node directly in the bond
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Table A.4 Composition rules for junctions and 1-ports.

Table A.5 Composition rules for 2-ports and 1-ports.

Table A.6 (De-)composition rules involving transducers.

graph. In order to distinguish this notation from the regular notation of characteris-

tic parameters (:) or generating functions (::) the gains, in which differentiations and

integrations are replaced by the Laplace operator s and 1/s respectively, are placed

between square brackets ([]).

A.2.2 Impedance analysis using bond graphs

A port of an element in effort-out causality can be characterized by an impedance,

while a port with flow-out causality is best described by an admittance.

Tables A.2 and A.3 provide listings of the possible gains that characterize the

basic elements, both in impedance and in admittance form. Table A.4 illustrates that

(de-)composition operations involving a 1-junction are best performed in impedance
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Fig. A.16 Word bond graph

of a simple servo system.

Fig. A.17 Bond graph of the

dominant behaviors.

form, while (de-)composition operations involving a 0-junction are best performed

in admittance form as this leads to simple summation operations. Tables A.5 and A.6

list some elementary (de-)composition rules and the results for basic elements re-

spectively.

A.3 Port-based modeling and simulation of dynamic behavior of

physical systems in terms of bond graphs: a simple example

The model structure of a simple servo system is generated in order to give an impres-

sion of the port-based approach and the feedback on modeling decisions provided by

the causal analysis. First a word bond graph is drawn at the component level, com-

bined with a block diagram representation of setpoint, controller and closed loop

(Fig. A.16). This gives an impression of the important domains and the correspond-

ing variables of interest. Next the components are replaced by the nodes of a bond

graph that represent the dominant behavior of each of the components (Fig. A.17).

The causality shows that, apart from the dynamics of the controller and the integra-

tion in the position sensor the drive system model has no dynamics: the imposed

voltage directly determines the servo speed (1st order system). In order to add some

dynamic behavior, the resistance and inductance of the motor circuit, the friction

and inertia of the rotor are added as well as the inertia of the load (Fig. A.18). The

causality not only shows that the rigid connection between the rotor inertia and the

load inertia makes them dependent, but also that the inductance of the motor circuit

forms a second order loop (causal path) with the mechanical inertia (rotor & load)

via the gyrator (3rd order system). Fig. A.19 demonstrates that modeling the tor-

sion of the drive system resolves the dependency between rotor and load inertia, but

creates a new second order loop (5th order system). Fig. A.20 shows that changing

from a voltage control of the motor to current control not only suppresses its elec-

trical time constant, but also the second order loop between inertia and inductance

via the gyrator.

Figures A.16 through A.20 are all screen dumps of models that can directly be

simulated when relevant parameters are selected. The information of all these steps

supports the modeling process, depending on the problem context.

The introduction to bond graph concepts and notation in previous sections has al-

ready discussed many links between the representation and the modeling process. It
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Fig. A.18 Bond graph of the

dominant behaviors and some

important dynamics.

Fig. A.19 Addition of the

torsion of the drive system

resolves the dependency

between rotor and load inertia.

Fig. A.20 Current-control

of the motor suppresses the

electrical time constant as

well as the second order loop

via the GY.

cannot be sufficiently emphasized that modeling is a decision process that is differ-

ent each time, but which can be supported by looking for conceptual structure based

on universal principles as well as a direct link with computational issues, which pro-

vides direct feedback on modeling decisions. The bond graph notation supports this

due to its domain independence and its ability to represent conceptual and compu-

tational information simultaneously. A true understanding of these features is only

obtained by sufficient practicing.



Appendix B

Mathematical Background

B.1 Linear algebra and differential geometry

This appendix presents a short intuitive overview of some of the mathematical con-

cepts used in this book. More detailed, precise, and extended treatments can be

found in many textbooks, such as [111, 208] for linear algebra and vector spaces,

[41,68,186] for differential geometry and manifolds, and [175,187] for Lie groups.

B.1.1 Duality in vector spaces

We start with two basic definitions of mappings and some possible properties. These

properties are illustrated in the figures B.1a-B.1d.

Definition B.1 (mappings). A mapping f between two sets A and B associates ex-

actly one element of B to each element of A. We denote it abstractly as f : A → B,

and its action on an element a ∈ A as f (a) 7→ b with b ∈ B. The set A is called the

domain of f , and the set B its co-domain. The set of all b ∈ B such that there exists

an a ∈ A with f (a) 7→ b is called the range of f .

Definition B.2 (surjective, injective, bijective). A mapping f : A → B is surjective

(or onto), if its range is equal to its co-domain. It is injective (or one-to-one) if for

every b in its range, there is exactly one a ∈ A such that f (a) 7→ b. A mapping is

bijective (or one-to-one and onto) if it is injective and surjective.

In addition, a diffeomorphism is a mapping between R
n and R

n that is injective,

continuously differentiable, and has a continuously differentiable inverse. Some ex-

amples of different types of mappings f : R → R are the functions f (x) 7→ x2 (not

surjective, not injective), f (x) 7→ tan(x) (surjective, not injective), f (x) 7→ ex (not

surjective, injective), and f (x) 7→ x3 (bijective).

381
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A
B

f

A
B

f

Fig. B.1a Examples of mappings f : A → B:

not surjective and not injective.

Fig. B.1b Examples of mappings f : A → B:

surjective and not injective.

A
B

f

A
B

f

Fig. B.1c Examples of mappings f : A → B:

not surjective and injective.

Fig. B.1d Examples of mappings f : A → B:

surjective and injective.

Definition B.3 (vector space). A real vector space V is a set of elements (called

vectors), one element called the identity (or zero-vector
−→
0 ), and two operations ⊕

(addition of two vectors) and · (multiplication of a vector by a scalar), such that

• for all two elements v1,v2 ∈V , also v1 ⊕ v2 ∈V ;

• for all elements v ∈V and x ∈ R, also x · v ∈V ;

• for all elements v ∈V , there exists a v−1 ∈V such that v⊕ v−1 =
−→
0 ;

and such that the following properties hold for all v1,v2,v3 ∈V and x1,x2 ∈ R.

v1 ⊕
−→
0 = v1 (v1 ⊕ v2)⊕ v3 = v1 ⊕ (v2 ⊕ v3)

1 · v1 = v1 (x1 + x2) · v1 = (x1 · v1)⊕ (x2 · v1)

x1 · (x2 · v1) = (x1x2) · v1 x1 · (v1 ⊕ v2) = (x1 · v1)⊕ (x1 · v2)

where x1 + x2 and x1x2 are standard addition and multiplication of real numbers.

The abstract definition of a vector space includes many different spaces with a

linear structure. Not only an obvious example like the space of all velocity vectors of

a point mass is a vector space, but, for example, also the space of all 2×3 matrices, if

we take element-wise addition as the ⊕ operator and the zero-matrix as the identity

element.

Since a vector space is closed under addition and scalar multiplication, we can

search for the smallest number of elements ei ∈ V such that any element of V can

be constructed by addition and scalar multiplication of the elements ei. If we can

find n < ∞ elements ei that accomplish this, then the vector space is said to be n-

dimensional, and the ei elements are called a basis of the vector space. The dimen-

sion n of a vector space is unique, but the choice of basis ei is not. By definition, we
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can express any element v ∈V as a linear combination of the basis elements, i.e. as

v =
n

∑
i=1

viei = v1e1 + v2e2 + . . .+ vnen (B.1)

the n numbers vi ∈ R can serve as coordinates for V , as they define a bijective

mapping between R
n and V .

Definition B.4 (dual vector space). The dual space V ∗ of a vector space V is the

space of all linear mappings (called co-vectors) from V to R, i.e. all mappings f :

V → R such that for all vi ∈V and xi ∈ R.

f ((x1 · v1)⊕ . . .⊕ (xk · vk)) = x1 f (v1)+ . . .+ xk f (vk) (B.2)

Definition B.5 (dual product). The dual product is the natural pairing of an element

v ∈V and an element f ∈V ∗ as 〈 f | v〉 := f (v) ∈ R

If we choose a basis ei for V , we can express any element v ∈ V as (B.1), and

hence from (B.2) we see that the mapping of v by an element f ∈V ∗ can be written

as

〈 f | v〉 = f (v) = f

(
n

∑
i=1

viei

)
=

n

∑
i=1

vi f (ei) (B.3)

i.e. as a linear combination of the mappings of the basis elements. This shows that

a dual element f is fully defined by how it maps the basis elements, and, since each

element f (ei) is a single real number, it shows that the dimension of V ∗ is equal to

the dimension of V , i.e. the number of basis elements ei. It also suggests a basis for

the dual space V ∗, which we denote by e j and is defined by the condition

〈
e j | ei

〉
= e j(ei) = δ j

i :=

{
1 when i = j

0 when i 6= j
(B.4)

where δ i
j is the Kronecker delta. Any f ∈V ∗ can then be written as a linear combi-

nation of the basis elements ei

f =
n

∑
j=1

f je
j = f1e1 + f2e2 + . . .+ fnen (B.5)

with the numbers f j ∈ R again defining coordinates for V ∗ in the basis e j. With

these choices of bases, computing the dual product (B.3) becomes

〈 f | v〉 =

(
n

∑
j=1

f je
j

)(
n

∑
i=1

viei

)
=

n

∑
i=1

n

∑
j=1

f jv
ie j(ei) =

n

∑
i=1

fiv
i (B.6)
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so, for these choices of bases, computing the dual product of a vector and a co-vector

simply means summing the pair-wise products of their coordinates.

Vector spaces and their duals define an interesting mathematical structure, but

they can also be used to represent a physical structure, for example as follows. Con-

sider a robotic mechanism with n joints. The space of velocities q̇ (at a point q)

forms a vector space V , and we can choose a basis for example as ei = q̇i, i.e. each

basis element describes the unit-velocity of one joint, and zero velocity of the other

joints. This vector space V automatically induces a dual space V ∗ of abstract linear

operators mapping a velocity to a real number. We can just ignore this dual space,

but we can also think of it as the space of all collocated joint torques, i.e. the n-

dimensional space with elements τ and basis elements ei = τi. From the structure of

the vector space and its dual, we can pair elements as

〈τ | q̇〉 =
n

∑
i=1

τiq̇
i (B.7)

such that applying τ to q̇ produces a real number. The reason for choosing this

interpretation of a vector space and its dual becomes clear when we interpret also

this real number: the dual product represents the mechanical power flowing into the

system when it is moving with velocity q̇ and with applied torques τ .

Associating the abstract mathematical concept of (dual) vector spaces to the prac-

tical physical concept of collocated power variables (force and velocity) can help

reasoning about the physical concepts. The mathematical structure constrains com-

putations to make sense. For example, computing the power as (B.7) only makes

sense when τ and q̇ are collocated, which is equivalent to V and V ∗ having dual

bases as defined in (B.4). In this way, keeping the mathematical structure between

physical variables in mind can help to avoid mistakes.

Definition B.6 (tensor). Given a vector space V and its dual V ∗, a tensor T is a

mapping of the form

T : V ∗×·· ·×V ∗
︸ ︷︷ ︸

p times

×V ×·· ·×V︸ ︷︷ ︸
q times

→ R (B.8)

that is linear in all its arguments. The tensor T is said to have order p + q, order p

contra-variant and order q co-variant, and is called a type (p,q) tensor.

Tensors are linear operators that map vectors and co-vectors to R, and as such,

are generalizations of the concepts of vectors and co-vectors. In fact, a co-vector

is a type (0,1) tensor, since it maps a vector (an element of one copy of V ) to R.

Similarly, a vector is a type (1,0) tensor, since it maps a co-vector (an element of

one copy of V ∗) to R. Both mappings are defined by the dual product.

Basis elements and the corresponding coordinates for tensors can be constructed

from coordinates for vectors and co-vectors, simply by taking the appropriate co-

ordinates for each of the arguments. The (i1, . . . , ip, j1, . . . , jq)th coordinate of a

type (p,q) tensor T , i.e. the result of applying T to the basis vectors e1, . . . ,ep and



B.1 Linear algebra and differential geometry 385

co-vectors e1, . . . ,eq, is denoted by T
i1,...,ip

j1,..., jq
. This convention of writing the contra-

variant indices as superscripts and the co-variant indices as subscripts can be useful

to quickly assess the type of tensor from its representation in coordinates.

A metric tensor, often denoted by g, is a symmetric positive-definite type (0,2)
tensor. It is symmetric in the sense that g(v,w) = g(w,v) for any two vectors v,w,

and positive-definite in the sense that g(v,v) > 0 for all vectors v except the zero-

vector (in which case it returns zero by linearity of tensors). With a metric-tensor,

we define the inner product between two vectors v and w as

〈v,w〉 :=g(v,w) = g(w,v) = ∑
i, j

gi jv
iw j (B.9)

the length of a vector v as

‖v‖ :=
√

〈v,v〉 =
√

g(v,v) =
√

∑
i, j

gi jviv j (B.10)

and the cosine of the angle between two nonzero vectors v and w as

cos(∠(v,w)) =
〈v,w〉

‖v‖‖w‖ (B.11)

When 〈v,w〉 = 0, the vectors v and w are said to be orthogonal in the metric g.

We can again relate the mathematical concept of a metric to physical variables.

In this case, we take e.g. again the space of velocities q̇ as the vector space V , and

now the mass matrix M as a metric tensor, since it is indeed symmetric and positive

definite. Then, when we apply the tensor M to two copies of q̇, that is, we multiply

the matrix with the vectors as q̇TMq̇, we obtain a number that represents the physical

quantity of twice the kinetic co-energy associated with the velocity q̇.

We can also define a new tensor by applying the metric tensor only to one copy of

V . The resulting tensor maps one tangent vector to R, and is hence a tensor of type

(0,1) – a co-vector. If we again take the physical example of a robot with velocity q̇

and mass matrix M, the new tensor is Mq̇ – the generalized momentum (co) vector.

Hence, we have seen two interpretations of the dual vector space: one as the space

of forces, and one as the space of generalized momenta.

The distinction between the different types of tensors allow to assess what op-

erations between them are possible. For example, a metric tensor is an operator

mapping two vectors to R, and hence it does not make mathematical sense to apply

them to co-vectors, even though the coordinates of a metric tensor (represented by

an n×n matrix) can be multiplied by the coordinates of a co-vector (represented by

an n-dimensional column vector).
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B.1.2 Manifolds

The configuration space of a system is generally represented by an abstract space

that is not directly equal to R
n for some suitable n. For example, Sect. 3.2 shows

how the configuration of a rigid body is described by an element of SE(3), and how

using R
6 (six numbers, e.g. including Euler angles) leads to singularities and other

numerical problems that are not present in physics.

Differential geometry is a field of mathematics that makes exact the global prop-

erties of a configuration space such as SE(3), while still allowing to do computations

locally using real numbers. In this section, we give a very brief intuitive overview of

the idea of differential geometry and how it can help to use some concepts from this

field. The central concept in differential geometry is the concept of a manifold. We

can think intuitively of a manifold as some kind of abstract space (such as SE(3))
that locally looks like R

n. More precise, if we take a point in the abstract space, then

the space around this point can locally be described by coordinates in an open sub-

set of R
n. An example of such a manifold is the surface of the earth, which globally

is (more or less) a sphere, and locally (at each point) can be described by coordi-

nates in R
2, i.e. a flat chart. These charts, unfortunately, are not global, due to the

topology of the sphere. Once it becomes clear that a space is a manifold, i.e. once

we have found enough local coordinate charts to R
n to cover the whole space, we

can define global objects on the manifold (such as functions) by defining them first

locally for each chart, and then checking certain compatibility conditions between

the charts. These compatibility conditions ensure, for example, that a certain point

in the abstract space, with two different coordinates in two different local charts,

still has the same function value.

A manifold is called differentiable, if the mappings that change coordinates be-

tween different charts are diffeomorphisms. At each point p of a differentiable man-

ifold M , the space of all tangent vectors is called the tangent space, denoted TpM .

This space is a linear vector space of dimension n, and describes all possible direc-

tions around p. The union of the tangent spaces over all points of M is called the

tangent bundle, denoted TM . An element of the tangent bundle consists of a point

p ∈ M plus a vector in TpM : the tangent bundle is hence 2n dimensional. The

fact that the tangent space is a vector space allows to generalize the linear algebra

concepts from Sect. B.1.1 to the setting of differential geometry. Since the tangent

vector space at every point p has a dual, denoted by T ∗
p M , we can define the co-

tangent or dual tangent bundle T ∗M as the union of all dual tangent spaces. The

concept of a tensor can be generalized to a tensor field, which is an object, defined

on the manifold, that at each point p maps copies of the tangent space TpM and

dual tangent space T ∗
p M to a real number, and that varies smoothly over M . Note

that tensor fields only operate on vectors and co-vectors that are elements of tangent

and co-tangent space at the same point p.

An example of a tensor field is a vector field, which is a tensor field of type

(1,0) that assigns to each point of the manifold a tangent vector. Fig. B.2a shows

an example. It also shows how, from a vector field, we can define its integral curves

as the curves with velocity vector at all points equal to the value of the vector field
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φ(t)
X

p 0

f

t

LX f (p)

Fig. B.2a Vector field X and one

of its integral curves φ(t).
Fig. B.2b A function f and its Lie derivative along X .

The curve φ(t) is parameterized by t with φ(0) = p.

at those points. Integral curves can be interpreted as the trajectories of a particle

flowing along the vector field.

Given a function f : M → R of the points of the manifold, this function is ob-

viously also defined for the points of the integral curves. If the function is differen-

tiable, we define its Lie derivative along the vector field X at a point p as

(LX f )(p):=
d

dt

(
f (φ(t))

)∣∣∣∣
t=0

(B.12)

where φ(t) is an integral curve of X with φ(0) = p. It can be shown that this expres-

sion is independent of the choice of integral curve. An example of a Lie derivative

is shown in Fig. B.2b. From two vector fields X and Y , we can also define a third

vector field Z as the unique vector field such that for all functions f

LZ f = L[X ,Y ] f = LX (LY f )−LY (LX f ) (B.13)

This new vector field is called the Lie bracket of the two vector fields. It roughly

represents the velocity when moving a little along X , then a little along Y , then a

little along −X , and finally a little along −Y .

Another example of a tensor field is a metric tensor field, which assigns to each

point of the manifold a metric tensor, i.e. a symmetric positive definite type (0,2)
tensor. Such a tensor defines the metric concepts (dot-product, length, and angle)

for tangent vectors at all points of the manifold.

B.1.3 Geometric structures

A geometric structure on a manifold is, loosely speaking, an object (structure) that

is defined on all points of the manifold and that does not depend on the chosen co-

ordinate systems for the manifold. The word ‘geometric’ refers to the fact that you

can usually picture these structures as geometric entities (subspaces, planes, lines,

etcetera) attached in some way to the manifold. Examples of geometric structures

were already given in the previous section. For example, the tangent bundle is a geo-
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metric structure, as it is defined independently from the coordinates on the manifold

as the space of all vectors tangent to the manifold. Similarly, a certain vector field

on a manifold is a geometric structure, as the elements of the field attach certain

‘arrows’ to all points of the manifold. Of course, the parameterization of geometric

structures does depend on the coordinates, in the sense that the elements that be-

long to the structure are expressed in different coordinates for different coordinate

systems on the manifold, but these expressions are such that the elements of the

structure themselves are invariant under coordinate changes. For example, the co-

ordinates of elements of the tangent bundle may change under coordinate changes,

but the geometrical ‘arrows’ that they represent remain the same.

Another example of a geometric structure on a manifold is a vector bundle, which

assigns to each point of the manifold a vector space (not necessarily the tangent

space), in such a way that the vector spaces at different points have the same struc-

ture, such that the vector spaces at different points can be mapped to each other

by isomorphisms. A direct example of a vector bundle is the tangent bundle on a

manifold, but another example is the Dirac structure, as defined in Definition 2.2.

Finally, the Whitney sum of two vector bundles B1 and B2 is defined as the vector

bundle B1 ⊕B2 with vector space at each point equal to the direct sum of the two

vector spaces of B1 and B2 at that point. In other words, if two vector bundles Bi

assign to each point of the manifold a vector space Vi, then the Whitney sum B1⊕B2

assigns to each point of the manifold a vector space V1 ⊕V2, the direct sum of V1

and V2.

B.1.4 Lie groups and algebras

Definition B.7 (group). A group G is a set S together with a binary operator

• : S×S → S

and an element I ∈ S, such that for all s1,s2,s3 ∈ S we have

identity element: s1 • I = I • s1 = s1 (B.14)

associativity: (s1 • s2)• s3 = s1 • (s2 • s3) (B.15)

inverse element: ∃ s−1
1 ∈ S such that s1 • s−1

1 = s−1
1 • s1 = I (B.16)

If also s1 • s2 = s2 • s1 (commutativity property), the group is called abelian.

A simple example of a group is the set Z = {. . . , −2, −1, 0, 1, 2, . . .} together

with the standard addition operator and identity element 0. It can be checked that

this is indeed a group: adding zero to any element of the set indeed gives that same

element, addition is associative, and for each element, the inverse is simply the

negation of that element. Since summation is even commutative, this group is also

abelian.
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Definition B.8 (Lie group). A Lie group G is a manifold that is also a group, i.e. it

has a binary operator • : G ×G → G and an identity element I ∈ G that satisfy the

group properties.

A Lie group is basically a group with a differentiable structure, which allows to

talk about curves, velocities, tangent spaces, etcetera. We discuss a few examples of

Lie groups that are useful for robotics, i.e. examples that describe positions and ori-

entations in space. Since these groups are generally abstract, we also discuss matrix

representations, i.e. sets of matrices with certain properties, which, together with

the usual matrix multiplication as binary operator and the identity matrix as identity

element, can be related one-to-one to abstract elements of the group. The matrix

representations can be used in numerical computations as a type of singularity-free

(though redundant) set of coordinates.

Example B.1 (Translation). The group of all translations in n dimensions is denoted

by T (n), e.g. the group of translations in three dimensions is denoted by T (3).
Clearly these groups can be directly identified with R

n, and so a matrix representa-

tion of T (n) would be the space of n-dimensional column-vectors pn, together with

vector addition as the the binary operator, and the zero vector as the identity ele-

ment. Another possible representation is as the set of all (n+1×n+1) dimensional

matrices structured as

[
In pn

0 1

]
(B.17)

with pn the translation vector, together with matrix multiplication as binary operator

and the identity matrix as identity element. This method looks cumbersome and the

matrix representation is highly redundant, but it proves useful when translations are

combined with rotations.

Example B.2 (Fixed-axis rotation). The space of rotations around a fixed axis forms

a group under the binary operator of combining rotations by performing one rotation

after the other. The group is denoted by SO(2) and can be identified with the circle

S 1. The group is one-dimensional, and in practice, it is often described by a single

real number (the angle of rotation). This, however, neglects the fact that a full 360◦

rotation does not change the group element, although it does change the angle; this

is the difference between a circle and a straight line. Instead, the group of rotations

can be described by the set of special orthogonal 2×2 matrices (whence the name

SO(2)), meaning 2× 2 orthogonal matrices with determinant +1. These matrices

have the form

R =

[
cos(φ) −sin(φ)
sin(φ) cos(φ)

]
(B.18)

where φ is the angle of rotation. Together with matrix multiplication as the binary

operator, and the identity matrix (φ = 0) as the identity element, these matrices form

a complete representation of the group of fixed-axis rotations.
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Example B.3 (Spatial rotation). The space of free rotations around any axis in three

dimensions forms a group, and is denoted by SO(3). The group is three-dimensional,

and is often represented locally by three angles, called the Euler angles, that de-

scribe three consecutive rotations around three (local) axes. Such a parameterization,

however, has singularities, which results in non-smooth behavior of the coordinates

around singularities. Instead, rotations can be fully and uniquely identified with the

set of all special orthogonal 3×3 matrices (whence the name SO(3)), meaning 3×3

orthogonal matrices with determinant +1.

Another representation of the group of spatial rotations is by unit quaternions. In

this representation, a vector of the form

q =
[
cos( θ

2
) n1 sin( θ

2
) n2 sin( θ

2
) n3 sin( θ

2
)
]

(B.19)

is used to describe rotation around an axis n =
[
n1 n2 n3

]
with angle θ . The axis

n is constrained to have unit norm (in the Euclidean sense), which means that also

the vector q has unit norm. This representation is singularity free, but it doubly

covers SO(3), since the rotation angles α and α + 360◦ (for some α) define the

same rotation, but are represented by different vectors q.

Example B.4 (Planar motion). We can combine the group of two-dimensional trans-

lations, i.e. translations in a plane, with the group of fixed-axis rotations and take

the fixed axis to be orthogonal (in the Euclidean sense) to the translational plane.

The resulting object is again a Lie group, and it describes all planar motions, that is,

the set of all possible ways that an object can be positioned in a plane. This group is

called the special Euclidean group of dimension two, denoted SE(2).
As representation of this group, we can simple use a combination of a two-

dimensional vector p to describe translation and a matrix R of the form (B.18) for

the translation. This choice is often made in literature, but computations in this rep-

resentation are cumbersome, since two consecutive motions need to be combined

as

R13 = R23R12 p13 = p23 +R23 p12 (B.20)

which leads to long and tedious equations for multiple consecutive motions. Instead,

we combine translation and rotation in one so-called homogeneous matrix of the

form

H =

[
R p

0 1

]
(B.21)

where R is the rotation matrix (B.18). Consecutive planar motions can now be rep-

resented by simple matrix multiplications of the corresponding homogeneous ma-

trices. The matrix representation of a translation as (B.17) is a special case of (B.21)

for zero rotation, R = I.

Example B.5 (Three-dimensional motion). Similar to the planar situation, we can

combine the group of translations in three dimensions T (3) with the group of free-
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axis rotations SO(3). The result is the special Euclidean group in three dimensions,

or, SE(3), that describes the space of all possible relative positions and orientations

in three-dimensional space. It can also be represented by a matrix of the form (B.21)

but now with R a three-dimensional rotation matrix, and p a three-dimensional trans-

lation vector. Again, consecutive motions are simply represented by matrix multi-

plication of the appropriate homogeneous matrices.

The examples show how many useful transformations are actually Lie groups,

and that these can be represented globally and without singularities by matrices

with the appropriate properties. The realization that these transformations are Lie

groups allows to perform certain useful operations on them. First, because of the

group structure, we can take an element of the group and combine it with another

element of the group. This is called (left or right) translation, since effectively it

transports one element of the group to another place, by means of group multiplica-

tion. In particular, since every element of a group has an inverse, we can transport a

group element to the identity of the group. This transport can be done in two ways,

either by pre- or post-multiplication with the inverse. Secondly, since a Lie group

has a differentiable manifold structure, we can talk about continuous and differen-

tiable curves in the group, which represent smooth consecutive transformations, i.e.

smooth motions of an object. The derivatives of these curves represent the (angular,

linear, or combined) velocities of the moving objects.

Combining these two aspects (the group aspect and the manifold aspect), we can

transport a curve γ(t) near an element A ∈ G to a curve near the identity by applying

A−1 to every element of the curve. We can then take the derivative of the transformed

curve to obtain an element of the tangent space TIG at the identity. Depending on

whether left or right translation is chosen, different velocity vectors are obtained.

Since in this way, velocity vectors at any point A ∈ G can be transported to the tan-

gent space at the identity, this tangent space provides a common vector space which

allows to compare and add different velocities. Furthermore, the tangent space at

the identity can be given the structure of a Lie algebra, which is defined as follows.

Definition B.9 (Lie algebra). A Lie algebra is a vector space together with a bi-

nary operator [, ] : V ×V → V (called Lie bracket or commutator), that satisfies the

following properties for all v1,v2,v3 ∈V and a1,a2 ∈ R

bilinearity:

{
[a1v1 +a2v2,v3] = a1[v1,v3]+a2[v2,v3]

[v1,a1v2 +a2v3] = a1[v1,v2]+a2[v1,v3]
(B.22)

skew-symmetry: [v1,v2] = −[v2,v1] (B.23)

Jacobi’s identity: [v1, [v2,v3]]+ [v2, [v3,v1]]+ [v3, [v1,v2]] = 0 (B.24)

An example of a Lie algebra is the vector space V of all n×n matrices with the Lie

bracket defined as [A,B]:=AB−BA for A,B ∈V .

In the case of a Lie group, the tangent space at the identity can be given the

structue of a Lie group by defining the appropriate Lie bracket on it, and this tangent

space is thus usually called the Lie algebra of the group, and is denoted by g:=TIG .
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Finally, as shown in Sect. 3.2, the tangent vectors at the identity of a group can have

a clear physical interpretation, much more than tangent vectors at general points

A ∈ G .

B.2 Legendre transforms and co-energy

A concise overview of homogeneous functions and Legendre transformations is

given and applied to energy functions, thus leading to the concept of co-energy.

Various properties of energy and co-energy related to storage are shortly discussed

and related to a physical interpretation. Finally some domain specific forms of co-

energy are discussed.

B.2.1 Homogeneous functions and Euler’s theorem

A function F(x), with x = x1, . . . ,xk, is homogeneous of order (or degree) n if

F(αx) = αnF(x). Define yi(x) = ∂F
∂xi

, then yi(x) or

yi(αx) =
∂F(αx)

∂αxi

=
αn

α

∂F(x)

∂xi

= αn−1yi(x) (B.25)

is homogeneous of order (n − 1). For a homogeneous function, Euler’s theorem

holds:

∑ i = 1k ∂F

∂xi

xi = nF(x) or F(x) =
1

n

k

∑
i=1

yixi =
1

n
yT · x (B.26)

with y = y1, . . . ,yK . By definition:

dF =
k

∑
i=1

∂F

∂xi

·dxi =
k

∑
i=1

yidxi = yT ·dx (B.27)

but also

dF = d

(
1

n
yT · x

)
=

1

n
yT ·dx (B.28)

Hence:

dyT · x = (n−1)yT ·dx →





for n = 1: dyT · x = 0

for n 6= 1: dF =
1

n−1
dyT · x

(B.29)
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Fig. B.3 Bond graph repre-

sentation of a storage element

with n−1 ports constrained.
C

e1

f1

n−1
Sf: 0

B.2.2 Homogeneous energy functions

The energy of a system with k state variables qi is E(q) = E(q1, . . . ,qk). If qi is

an extensive state variable, this means that E(αq) = αE(q) = α1E(q). Hence E(q)
is first order (i.e., n = 1) homogeneous, so ei(q) = ∂E

∂qi
is zero-th order (i.e., n−

1 = 0) homogeneous, which means that ei(q) is an intensive variable, i.e. ei(αq) =
α0ei(q) = ei(q). This also means that in case n = 1 and k = 1, e(q) is constant, i.e.
∂e
∂q

= de
dq

= 0, which changes the behavior of this element into that of a source. In

order to enable storage, storage elements = multiports (k > 1). Hence, the common

‘1-port storage element’ = n-port storage element with flows of n−1 ports kept zero,

i.e. the corresponding n−1 states remain constant and are not recognized as states.

Such a state is often considered a parameter: if E(q1,q2, . . . ,qn)|dqi = 0 ∀i 6= 1 =
E ′(q1), then E ′(qi) is not necessarily first-order homogeneous in q1. This can be

represented in bond graph form as in Fig. B.3.

For n = 1 and k independent extensities there are only k−1 independent intensi-

ties, because for n = 1 we find a generalized Gibbs’ fundamental relation:

E(q) = eT ·q

By definition, already dE = eT · dq, and combining these equations results in the

generalized Gibbs-Duhem relation:

deT ·q = 0 (B.30)

B.2.3 Legendre transform

A Legendre transform of a homogeneous function F(x) with respect to xi is defined

as

L{F(x)}xi
= Lxi

= F(x)− yixi (B.31)

where yi = ∂F
∂xi

. Moreover, the total Legendre transform of F(x) is

L{F(x} = L = F(x)−
k

∑
i=1

yixi (B.32)

Note that for n = 1, L = 0. Now
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dLxi
= dF −d(yixi) = dF − yidxi −didyi = ∑

j 6=i

y jdx j −didyi (B.33)

or Lxi
= Lxi

(x1, . . . ,xi−1,yi,xi+1, . . . ,xk), which means that xi is replaced by yi as

independent variable or ‘coordinate’! Hence L = L(y) and dL = −∑k
i=1 xidyi =

−dyT · x.

B.2.4 Co-energy function

The co-energy E∗
qi

of E(q) with respect to qi is by definition:

E∗
qi

= −Lqi
= E∗

qi
(q1, . . . ,qi−1,ei,qi+1, . . . ,qk) (B.34)

Hence E(q)+E∗
qi
(. . . ,ei, . . .) = eiqi. The total co-energy E∗(e) of E(e) is E∗ = −L,

hence E(q)+E∗(e) = eT ·q. For n = 1, we have that

E∗(e) = 0

thus confirming the earlier conclusion that there are only k− 1 independent ei. For

n = 2,

E(q) = E∗(e) =
1

2
eT ·q

and for n = 3,

E(q) =
1

3
eT ·q E∗(e) =

2

3
eT ·q

B.2.5 Relations for co-energy functions

dE∗
qi

= deiqi − ∑
j 6=1

e jdq j (B.35)

dE∗ =
k

∑
i=1

deiqi = deT ·q = (n−1)eT ·dq = (n−1)dE (B.36)

E∗ = (n−1)E =
n−1

n
eT ·q =

(
1− 1

n

)
eT ·q (B.37)
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Table B.1 Extensities qi and intensities ei(q), with internal energy U .

extensities qi intensities ei(q) = ∂E
∂qi

entropy S temperature T = ∂U
∂S

volume V pressure p = − ∂U
∂V

total mole number N total material potential µtot = ∂U
∂N

mole number per i-th species Ni chemical potential µi = ∂U
∂Ni

B.2.6 Legendre transforms in simple thermodynamics

In thermodynamics, the Legendre transforms appear in the following relations. The

meaning of the involved quantities is explained in Table B.1.

Free energy F : F = LS = U −T S = −pV +
m−1

∑
i=1

µiNi + µ tot ·N

dF = −SdT − pdV +
m−1

∑
i=1

µidNi + µ tot ·dN

F(T,V,N,Ni) (= Ni f (T,v,c))

Enthalpy H: H = LV = U − (−pV ) = U + pV

dH = T dS +V dp+
m−1

∑
i=1

µi ·dNi + µ tot ·dN

H(S, p,N,Ni) (= Nih(s, p,c))

Gibbs free enthalpy G: G = LS,V = U −T S− (−pV ) = µ tot ·N +
m−1

∑
i=1

µiNi

dG = −SdT +V dp+
m−1

∑
i=1

µidNi + µ tot ·dN

G(T, p,N,Ni) (= Nig(T, p,c))

For m = 1: g = µ tot(T, p)

B.2.7 Legendre transforms and causality

If an effort is forced on a port of a C-element (i.e. with derivative causality or

flow causality), this means that the roles of e and q are interchanged in the set of

independent variables, which means that the energy has to be Legendre transformed

in order to continue to serve as a generating function for the constitutive relations.
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u
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Fig. B.4a Bond graph associated to dF = udq. Fig. B.4b Bond graph associated to

P = dF
dt

Such a transformation is particularly useful when the effort e is constant (e.g. an

electrical capacitor in an isothermal environment with T = Tconst):

• dF = udq−SdT = udq, or as the bond graph of Fig. B.4a;

• P = u · q̇ = dF
dt

, or as the bond graph of Fig. B.4b.

B.2.8 Constitutive relations

The function ei(q) is called constitutive relation, also called constitutive equation.

constitutive law, state equation, characteristic equation, etcetera. If ei(q) is linear,

i.e. first order homogeneous, then E(q) is second order homogeneous, i.e. E(q) is

quadratic. In this case, and only in this case:

E(αq) = α2E(q)

E(q) =
1

2
eT ·q

deT ·q = eT ·dq = dE

B.2.9 Maxwell reciprocity

From the principles of energy conservation (first law) can be derived that

∂ 2E

∂qi∂q j

=
∂ 2E

∂q j∂qi

∂e j

∂qi

=
∂ei

∂q j

i.e. the Jacobian matrix of the constitutive relation is symmetric. This is called

Maxwell reciprocity or Maxwell symmetry.

B.2.10 Intrinsic stability

Intrinsic stability requires that this Jacobian is positive-definite
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det

(
∂e

∂q

)
> 0

and that the diagonal elements of the Jacobian are positive

∂ei

∂qi

> 0 ∀ i

B.2.11 Legendre transforms in mechanics

In mechanical systems with kinetic energy T , potential energy V , displacements x,

momenta p, velocities v, and forces F , the following holds:

Hamiltonian H: E(q) = H(x, p) = T +V

Lagrangian L: H∗
p = −Lp = vT · p−H

= (T +T ∗)− (T +V ) = T ∗−V = L(x,v)

with v =
∂H

∂ p

co-Hamiltonian: H∗
x,p = vT · p+FT ·q−H

= (T +T ∗)+(V +V ∗)− (T +V )

= T ∗ +V ∗ = H∗(F,v)

co-Lagrangian or Hertzian: H∗
x = FT ·q−H = (V +V ∗)− (T +V )

= V ∗−T = −L∗(F, p)

with F =
∂H

∂x

B.2.12 Legendre transforms in electrical circuits

In electrical circuits with capacitor charger q, voltages u, coil flux linkages Φ , and

currents i, we have

E(q,Φ) = EC(q)+EL(Φ)

E∗(u, i) = uT ·q+ iT ·Φ −E

Only in the linear case, it follows that E∗ = E.





Appendix C

Nomenclature and Symbols appearing in
Sect. 3.4

Abstract This appendix summarizes the notation (i.e nomenclature, symbols and

vector/tensor operators) adopted in Sect. 3.4.

Nomenclature

A surface area or affinity

a activity defined with respect to the state of pure component

(AB)∓ activated complex

A, B chemical symbol

C molar concentration

c specific heat capacity

d driving force for diffusion

D diffusion coefficient

e effort variable for diffusion

E activation energy of a chemical reaction

f flux of scalar quantity per unit of surface area

F total flux of a scalar quantity

G, g total and specific Gibbs free energy

g external body force per unit of mass

H, h total and specific enthalpy

h̄, h̄′ total energy per mass unit for a thermodynamic system

h̄ Planck constant

I unit tensor of order 2

k̄ Boltzmann constant

k chemical rate constant

K equilibrium constant

399
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l distance

M, M̄ total and molar mass

N number of moles or number of components in a mixture

p momentum per mass unit

P pressure

Pr chemical symbol of a product

r, r̃ rate of a chemical reaction by unit of volume and its linearized counterpart

R number of independent chemical reactions and ideal gas constant

Re chemical symbol of a reactant

r radial position

S, s total and specific entropy

T absolute temperature

Tr trace of a tensor

t time

U, u total and specific internal energy

V, v total and specific volume

v, v velocity and its modulus

W, w total or work per unit of volume

Y, y total and specific scalar quantity

y specific vectorial quantity

For a total quantity Y , the specific quantity per mass unit is y, and the specific quan-

tity per mole unit is ȳ. ∆rY is the variation of Y associated to a chemical reaction.

Greek symbols

α heat transfer coefficient or conductance by unit of surface area

θ1, θ2 parameters in an equation of state

ϕ equation of state

κ constant for a linearized rate equation or volume viscosity

Φ tensor of the momentum flux

τ shear stress tensor

σ source term per unit of volume

η viscosity

µ chemical potential

ρ density or mass concentration

χ extent of a chemical reaction or molar fraction

ν stoechiometric coefficient

γ activity coefficient defined with respect to the state of pure component

λ , λ0 heat conductivity and a parameter in the heat conductivity expression
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ω mass fraction

Ψ potential energy per mass unit

∆ difference

δ small quantity

Σ total source term

Subscripts

ext surrounding

f forward

h̄, h̄′ total energy

i, j indexes for components

k index for chemical reaction

l index for pipes

m mixtures

P constant pressure

q heat or thermal energy

p momentum

r reverse

re f origin or reference state

s entropy

u internal energy

v constant volume

w non-thermal energy

y scalar quantity

∓ activated state

Superscripts

a anti-symmetric

b boundary

e excess

eq equilibrium

f forward

k index for chemical reactions

R flux expressed with respect to a moving frame

Reac due to a chemical reaction

Rev reversibly

r reverse
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s symmetric

Sc scalar

T thermal diffusion coefficient (Soret effect)

Tens tensorial

Vect vectorial

∗ pure component in the same state then a mixture

id ideal solution

ig ideal gas

0 standard state

Vectors and tensors notation

We give here only the notations of the main quantities that are manipulated in

Sect. 3.4 defined in a cartesian system of coordinates (x1,x2,x3). For a more com-

plete presentation of this topic, see for example [5, 21] and Sect. 4.2.1 (and the

references therein) for their geometric, coordinate-free interpretation in terms of

differential forms.

The gradient of a scalar quantity y, i.e. ∇y, is a vector of which the coordinates

are

∇y =




∂y
∂x1

∂y
∂x2

∂y
∂x3




By extension, one can also define the gradient of a vector y = [y1 y2 y3]
T

, i.e. ∇y, by

the second order tensor:

∇y =




∂y1
∂x1

∂y2
∂x1

∂y3
∂x1

∂y1
∂x2

∂y2
∂x2

∂y3

∂x2

∂y1
∂x3

∂y2
∂x3

∂y3
∂x3




The divergence of a vector y is a scalar quantity:

∇ ·y =
∂y1

∂x1
+

∂y2

∂x2
+

∂y3

∂x3

An element of τ , the viscous part of the momentum flux (or shear stress tensor) is

defined as follows: τi j is the force for unit of surface area exerted in the direction i

on a plane perpendicular to direction j. The divergence of τ is given by:

∇ · τ =




∂τ11
∂x1

∂τ21
∂x2

∂τ31

∂x3

∂τ12
∂x1

∂τ22
∂x2

∂τ32
∂x3

∂τ13
∂x1

∂τ23
∂x2

∂τ33
∂x3



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The convected momentum vp is given by the following tensor:

vp =




v1 p1 v2 p1 v3 p1

v1 p2 v2 p2 v3 p2

v1 p3 v2 p3 v3 p3




The flux of work per unit of surface are done by the tensor τ is given by:

τ ·v =




τ11v1 τ21v1 τ31v1

τ12v2 τ22v2 τ32v2

τ13v3 τ23v3 τ33v3




The power dissipation per unit of volume due to viscous forces is given by:

τ : v =
3

∑
i=1

3

∑
j=1

τ ji

∂vi

∂x j
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