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Summary

Hybrid Integrator-Gain Systems
Analysis, Design, and Applications

Fundamental limitations of linear time-invariant (LTI) control for LTI systems
pose a serious challenge for meeting the ever increasing demands on accuracy,
speed, and reliability of high-precision positioning systems such as wafer scan-
ners. As a potential means for overcoming these limitations, and realize perfor-
mance beyond what is achievable with LTI control, this thesis studies the use of a
hybrid control solution known as the hybrid integrator-gain system (HIGS). The
working principle underlying HIGS is inspired by reset integrators, and offers
phase advantages over LTI integrators that suggest the possibility for overcom-
ing limitations imposed by, e.g., Bode’s gain-phase relationship. In achieving
these phase advantages, HIGS avoids the need for hard state resets and gener-
ates continuous (non-smooth) control signals. The latter may provide a distinct
benefit over reset control both from a practical as well as a system-theoretic
perspective. This thesis contributes to the development of (practically) effec-
tive tools for the design and analysis of HIGS-based controllers aiming toward
performance improvements of LTI systems, and is structured in three parts.

In the first part of this thesis, HIGS is formally presented, and the fundamen-
tal question if (and how) HIGS-based control can enable genuine performance
advantages over LTI control is addressed. A positive answer to this question is
provided in the form of a numerical example that explicitly demonstrates the
possibility for overcoming inherent time-domain performance limitations of LTI
control. Key in these results is the careful interplay between the linear filters
and HIGS as a consequence of their sequence in the controller. The obtained
insights provide valuable guidelines for a general control design with HIGS.

Despite its potential, the hybrid nature of HIGS makes a closed-loop sta-
bility and performance analysis far from trivial. In addressing this issue, the
second part of this thesis develops rigorous tools for analysing (robust) stability
and performance of the feedback interconnection of an LTI system and HIGS.
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Regarding stability analysis, two approaches are considered. The first approach
leads to novel frequency-domain conditions for robust stability that can be ver-
ified graphically using (measured) frequency response data, something which is
highly valued by control engineers in practice. However, ease-of-use may come
at the expense of increased conservatism in the conditions. As an alternative,
the second approach presents seemingly less conservative, but more involved
time-domain (Lyapunov-based) conditions for stability that make use of piece-
wise quadratic (PWQ) functions, and are formulated in terms of numerically
tractable linear matrix inequalities (LMIs). For performance analysis, the LMI
conditions are extended toward computation of the H2-norm and L2-gain. The
generality of these measures, however, may not always reflect the actual per-
formance objective of the system under study, concerning, for instance, specific
steady-state response characteristics in the presence of specific inputs. To ac-
commodate such situations, another approach toward performance analysis is
pursued that exploits the notion of convergent systems. Such systems enjoy the
property of having for each bounded (time-varying) input, a unique and bounded
steady-state response, thereby allowing for accurate performance characteriza-
tions. By exploiting incremental properties of HIGS, time-domain conditions for
convergence of HIGS-based control systems are formulated in terms of LMIs. A
frequency-domain interpretation of these LMIs is provided as well, resulting in
graphically verifiable conditions for convergence. The conditions are extended
for estimating the accuracy of a performance analysis using describing functions.

The third part of this thesis addresses (practical) design aspects and exper-
imental evaluation of HIGS-based controllers for LTI systems. In particular, a
design procedure is proposed that exploits describing functions within a robust
loop-shaping framework, and complies with the current industrial practice. The
procedure guides a HIGS-based PID controller design for a wafer-stage system of
an industrial wafer scanner. Compared to a linear equivalent design, the phase
advantages associated with a HIGS-based design enable a substantial increase in
proportional gain and controller bandwidth. Wafer-stage measurement results
demonstrate a significant improvement in low-frequency disturbance rejection
without excessive transmission of high-frequency noise. The results support the
potential of HIGS-based control for industrial high-precision systems.

This thesis contributes to the design and analysis of HIGS-based controllers
for LTI systems. With a suitable design, HIGS-based controllers have the ability
to outperform any LTI controller, thereby opening up unique possibilities to push
the performance of high-tech systems to new heights.
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Chapter 1

Introduction

1.1 Control of high-precision motion systems

Over the last decades, progress in science and technology has been a major de-
termining factor for economic growth and social welfare (Coccia, 2019; Mokyr,
2018; Solarin and Yuen, 2016). A fundamental mechanism for driving scien-
tific and technological innovations is an increase in precision with which it is
possible to observe and interact with the physical world. A prominent example
is found in the semiconductor industry, where increased precision in complex
lithography machines such as wafer scanners enables a continued exponential
growth in available computing power, greatly impacting all aspects of science
and technology as well as everyday life (Moore, 1998; van Schoot et al., 2017).
Other examples illustrating the impact of increased precision include electron
microscopy for molecular research (Callaway, 2015), pick-and-place equipment
in the manufacturing industry (Huang and Wey, 2010), and laser interferometry
used, for example, in the detection of gravitational waves (Abbott et al., 2016).

To meet the extreme requirements on precision, as well as the increasing
demands on operating speed, stability, and reliability, high-precision systems
heavily depend on the control solutions being used. Control of high-precision
systems is often simplified by a stiff mechanical design combined with strate-
gically placed actuators and sensors. The electro-mechanical system compo-
nents such as motors, bearings, and transmissions are optimized as to achieve a
functional behaviour that is highly deterministic, predictable, and reproducible
(Munnig Schmidt et al., 2014). Consequently, the plant dynamics can be mod-
elled accurately according to the linear paradigm. A decoupling strategy is
typically applied for reducing multivariable design aspects to multi-loop single-
input single-output (SISO) design, see, e.g., Butler, 2011. Given this practice,
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the class of SISO linear time-invariant (LTI) plants is of particular relevance in
the high-precision industry, and will be of primary scope in this thesis.

The specific class of (to-be-controlled) SISO LTI plants allows for the ap-
plication of well-developed LTI feedback control methods such as proportional-
integral-derivative (PID) control (Åström and Hägglund, 2001) that can be de-
signed using intuitive techniques such as loop-shaping (Franklin et al., 2005;
Steinbuch and Norg, 1998), and more advanced methods including H∞-optimal
design and µ-synthesis (Skogestad and Postlethwaite, 2010; van de Wal et al.,
2002). The sense and simplicity of an LTI control design in meeting performance
requirements makes it a widely adopted method in practice that often sets the
industrial standard (Samad et al., 2020).

1.2 Trade-offs in linear control design

Despite the clear advantages, restricting the applied control solutions to the
linear time-invariant domain only is not without drawbacks. No matter the va-
riety of LTI control structures or the method used to design the controllers, all
LTI designs are bound to fundamental limitations in both time- and frequency-
domain, leading to inevitable design trade-offs (Freudenberg et al., 2000; Mid-
dleton, 1991; Seron et al., 1997). These trade-offs are generally encountered in
high-precision positioning systems where an increase in precision and speed often
require enhanced low-frequency disturbance suppression and increased controller
bandwidths (Heertjes et al., 2020; Lamnabhi-Lagarrigue et al., 2017). However,
improving low-frequency disturbance rejection properties of linear systems, e.g.,
by increasing the bandwidth or adding integral action to the controller, directly
comes at the cost of increased sensitivity to high-frequency noise. This is an
inevitable consequence of the Bode sensitivity integral, often referred to as the
“waterbed effect” (Freudenberg and Looze, 1985; Freudenberg et al., 2000). Sim-
ply stated: a change in controller design to achieve sensitivity reduction in some
frequency interval necessarily comes at the expense of a sensitivity increase in
another frequency interval.

Even if a desired shape on the sensitivity is determined that yields an accept-
able trade-off between low-frequency disturbance suppression and high-frequency
noise amplification, it may still be possible that no robustly stabilizing LTI con-
troller exists that achieves such a shape. This is due to a limitation known
as Bode’s gain-phase relationship, which states that the phase of the frequency
response of a linear system is completely determined by its magnitude character-
istics and vice versa. Hence the two parameters - gain and phase - that describe
a complex function yield only one degree of freedom in design (Freudenberg et
al., 2000). As a consequence, attempts to specify certain design requirements
in one frequency range may compromise those in other frequency ranges. An
example is given by the use of low-pass filters in the controller design with the
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aim to provide high-frequency roll-off. As prescribed by Bode’s gain-phase re-
lationship, this roll-off comes at the expense of phase lag that may compromise
robust stability margins and limits the achievable bandwidth, see Åström, 2000.

Besides suffering from limitations in the frequency-domain, time-domain lim-
itations also pose restrictions on linear time-invariant feedback designs. For ex-
ample, it is well-known (Seron et al., 1997) that a stable closed-loop LTI system
having at least two open-loop integrators must necessarily exhibit overshoot
in its step-response. Typical high-precision positioning systems often contain
a free-moving mass (or inertia) and therefore generally satisfy this limitation.
Moreover, adding integral action in the controller for the purpose of counteract-
ing static disturbances and improving low-frequency disturbance rejection prop-
erties may come at the expense of overshoot, which can compromise settling
time, resulting in loss of system throughput.

The fact that modern linear techniques such as H∞-design and µ-synthesis
(Skogestad and Postlethwaite, 2010) cannot overcome the fundamental design
trade-offs in LTI control systems poses a serious challenge for meeting the ever
tightening performance requirements for high-precision positioning systems.

1.3 Hybrid control as a possible solution?

Part of the limitations discussed above are a consequence of the LTI structure
imposed on the feedback controller. This naturally raises the question whether
these limitations can be overcome by using nonlinear/hybrid feedback control
strategies. Being aware of the complexity normally associated with nonlinear
systems, at first sight it may appear counter-intuitive to intentionally de-linearise
an otherwise linear system. However, in some cases there may be good reason for
doing so. Nonlinear/hybrid systems generally do not obey the same rules as LTI
systems, and thus may potentially offer the necessary design freedom to break
away from the fundamental limitations imposed by classical LTI control. Over
the years, many different nonlinear/hybrid control strategies that specifically
aim at overcoming the limitations of LTI control have been proposed. Examples
include variable-gain control (Armstrong et al., 1996; Armstrong et al., 2006;
Heertjes et al., 2009; Heertjes and Steinbuch, 2004; Heertjes and Verstappen,
2014; Hunnekens et al., 2016), sliding-mode control (Abidi and Sabanovic, 2007;
Sam et al., 2004; Utkin, 1993), switching control (Deenen et al., 2021; Feuer et
al., 1997; Heertjes et al., 2019; Hespanha and Morse, 2002; Lau and Middleton,
2003; Liberzon, 2003; Sharif et al., 2021b), and reset control (Aangenent et
al., 2010; Beker et al., 2001; Clegg, 1958; Heertjes et al., 2013; Horowitz and
Rosenbaum, 1975; Nešić et al., 2011; Zaccarian et al., 2011). Some of these
strategies have, in fact, explicitly been shown to be able to outperform LTI
feedback control for LTI plants, see, for instance, the works in Beker et al.,
2001; Hunnekens et al., 2016; Stoorvogel, 1995; Zhao et al., 2019.



4 Chapter 1. Introduction

In this thesis, the focus is explicitly on dealing with the unavoidable phase
lag involved with LTI filters that limits the increase of bandwidth and may
compromise time-domain performance properties. Within this scope, several
hybrid control concepts are of particular interest. Hybrid controllers consist of
a dynamical system with interacting continuous and discrete (or non-smooth)
components (Goebel et al., 2009). Three prominent “classical” examples of
hybrid control strategies dedicated to overcoming fundamental limitations of
LTI control are given by reset control, split-path nonlinear filters, and hybrid
integrator-gain systems.

1.3.1 Reset control

Reset control emerged with the introduction of the Clegg integrator (Clegg,
1958), being an integrator that resets its state to zero upon a zero crossing of
its input. Compared to an LTI integrator, the resetting mechanism in the Clegg
integrator forces the sign of the integrator output to be equivalent to the sign of
its input at all times. A typical response of the classical Clegg integrator when
subjected to a sinusoidal input is shown in Figure 1.1 (in black), together with
the response of an LTI integrator (in grey).

Figure 1.1. Typical time response of a linear integrator (grey) and the Clegg
integrator (black) when subject to a sinusoidal input signal (dotted).

A desirable feature of the resetting mechanism in the Clegg integrator is char-
acterized by its describing function, which relates amplitude and phase proper-
ties of the driving sinusoidal input to amplitude and phase properties of the first
harmonic in the corresponding steady-state response (Gelb and Vander Velde,
1968). The describing function of the Clegg integrator exhibits a 20 dB/decade
amplitude decay similar to that of a linear integrator, but with an induced
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phase lag of only 38.15 degrees as opposed to 90 degrees for the linear integrator
(Chait and Hollot, 2002). Clearly, such favourable phase behaviour hints to-
ward improved performance of LTI systems by designing a compensator capable
of supplying the required bandwidth with less gain at high frequencies. The
development of reset control involved various generalizations such as the first-
order reset element (Beker et al., 2004; Chait and Hollot, 2002; Horowitz and
Rosenbaum, 1975; Zhao et al., 2019), second-order reset element (Hazeleger et
al., 2016), generalized fractional order reset elements (HosseinNia et al., 2013),
and conditional reset integrators (Gruntjens et al., 2019) to name but a few.
Extensive research on reset control systems has led to various fruitful results
regarding stability and performance analysis (Aangenent et al., 2010; Baños and
Barreiro, 2012; Beerens et al., 2019; Beker et al., 2004; Carrasco et al., 2010;
Loquen et al., 2010; Nešić et al., 2008; Zaccarian et al., 2011; Zhao et al., 2013;
Zhao and Wang, 2016), hybrid formulations (Zaccarian et al., 2005), and experi-
mental demonstrations of reset control systems achieving improved performance
(Beerens et al., 2022; Gruntjens et al., 2019; HosseinNia et al., 2014; Panni et al.,
2014; Saikumar et al., 2019; Zheng et al., 2000). To date, reset control is one
of the few nonlinear strategies that has been shown to overcome fundamental
time-domain limitations of LTI control (Beker et al., 2001; Zhao et al., 2019).

1.3.2 Split-path nonlinear (SPAN) filters

Related strategies that specifically challenge Bode’s gain-phase relationship, but
have received considerably less attention than reset control are given by the
driven limiter (Bailey, 1963) and split-path nonlinear (SPAN) filter (Aangenent
et al., 2005; Fong and Szeto, 1980; Foster et al., 1966; Karybakas, 1977). The
main design philosophy of these strategies is to “split” the magnitude and phase
characteristics of a filter as to design these separately, thereby facilitating an ad-
ditional degree-of-freedom for controller design. Variants of the SPAN filter that
include integral action have recently been proposed in Sharif et al., 2021b; van
der Maas et al., 2017; van Loon et al., 2016. These so-called SPAN integrators
(SPANI) aim for an improved integrator design, with all the benefits of a linear
integrator in terms of achieving zero steady-state tracking error, but without
introducing the usual 90 degrees phase lag. For achieving this, the output of the
SPAN integrator is composed as the product of the absolute value (magnitude)
of the integrator state, and the sign (phase) of the input signal. A typical re-
sponse of a SPAN integrator subject to a sinusoidal input is shown in Figure 1.2
in black, along with the response of an LTI integrator in grey. In terms of its
describing function, the SPAN integrator exhibits similar magnitude character-
istics as an LTI integrator, but with zero phase lag (Sharif et al., 2021b). The
absence of phase lag is attributed to the fact that the output of the SPAN filter
shows a certain symmetry after the switching instance.

Regarding its design philosophy, the SPAN(I) filter exhibits some interesting
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Figure 1.2. Typical time response of a linear integrator (grey) and the SPAN
integrator (black) when subject to a sinusoidal input signal (dotted).

analogies with the previously discussed reset control strategy. Both strategies
adopt “close-to-linear” thinking in their design. That is, the designs adopt the
structure of basic LTI filters such as an integrator to which certain modifications
are made in order to provide additional functionality. In particular, SPAN(I)
filters and reset strategies use a switching surface to trigger changes in the control
signal, leading to the injection of discontinuous control signals into an otherwise
smooth (linear) feedback system.

Although promising, the aforementioned control structures were only par-
tially successful. The reasons vary from lack of appealing for broad adoption in
industrial applications or complications in establishing essential system-theoretic
results. For instance, the hard resets in the Clegg integrator as in Figure 1.1,
and the discontinuous control signals of the SPAN filter as shown in Figure 1.2
increase the risk of exciting higher-order modes in the controlled plant (Arm-
strong et al., 2006). In particular, such signals may distribute low-frequency
input energy over a broad frequency interval, including the high-frequency range
in which the controlled system may contain multiple lightly-damped resonances.
As a result the controlled system is usually more sensitive in the high-frequency
range. This may lead to unwanted behaviour that generally deteriorates per-
formance and may even lead to system failure or damage. Moreover, the need
for taking into account discontinuities in the state trajectories may hamper the
formal derivation of key properties such as incremental stability (Angeli, 2002;
Biemond et al., 2018) and convergence (Pavlov et al., 2006b), as well as the
development of easy-to-use (frequency-domain) tools for controller design and
analysis (Kamenetskiy, 2017). These aspects are instrumental to set up compre-
hensive design and analysis frameworks that adhere to the “close-to-linear” way
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of thinking, something which is highly valued by control engineers in industry
and which could expedite the acceptance in industry.

1.3.3 Hybrid integrator-gain systems (HIGS)

As an alternative to discontinuous control strategies, a nonlinear integrator re-
ferred to as the hybrid integrator-gain system (HIGS) has been proposed recently
by Deenen et al., 2017, see also Deenen et al., 2021. The underlying philosophy
of HIGS is inspired by the Clegg integrator, i.e., keeping the sign of the inte-
grator’s output equal to that of the input at all times, thereby inheriting the
hinted phase advantages of reset control. However, HIGS avoids hard resets of
the integrator state, and instead exploits mode switching between an integrator-
mode and a gain-mode (hence the terminology hybrid integrator-gain system)
to enforce sign-equivalence. Switching is done in a manner that results in a
continuous output signal as opposed to the discontinuous signals generated by
reset control or as generated by SPAN(I) filters. A typical response of HIGS
subject to a sinusoidal input is shown in Figure 1.3. The describing function
characteristics of HIGS demonstrate an amplitude decay comparable to that of
an LTI integrator, but with an induced phase lag of at most 38.15 degrees.

Figure 1.3. Typical time response of a linear integrator (grey) and HIGS
(black) when subject to a sinusoidal input signal (dotted).

Given the previous discussion on the possible difficulties arising from the use
of discontinuous control signals with reset control and SPAN(I) filters, continu-
ous control with HIGS offers comparable performance benefits as the previous
strategies, for example in terms of reduced phase lag, but may provide different
opportunities in both application-based as well as system-theoretic directions. In
particular, due to their continuous nature, HIGS-based controllers may be easier
to construct, analyse, employ, and adopt than their discontinuous counterparts.
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Finally, within the context of continuous control with HIGS, the related line
of research on so-called “soft-reset” control systems that has emerged recently
in Le and Teel, 2021 and Teel, 2022 should be mentioned. This strategy aims
at approximating hard reset controllers via a differential inclusion, resulting in
continuous states/outputs, which is also the objective with HIGS. As discussed
in Teel, 2022, however, within a closed-loop setting this approach may not always
bear much resemblance to reset control, thereby potentially loosing the intuitive
and desirable features of a reset control strategy.

1.4 Research objectives and contributions

1.4.1 Objective statement

This thesis is devoted to studying the potential of hybrid integrator-gain systems
(HIGS) within the control design. The general objective pursued in this thesis
can be stated as follows:

Explore the possibilities of HIGS as a viable hybrid control strategy for enabling
performance improvements for continuous time SISO LTI motion systems, and
develop comprehensive and useful tools for the design and analysis of HIGS-
controlled systems.

In view of this research objective, this thesis contributes to the development of
the theory and practice concerning the relatively new concept of HIGS. In order
for any nonlinear/hybrid control strategy to be accepted as a viable extension
to the well-developed class of linear control methods, two key aspects should
be addressed. First, performance advantages in comparison to linear control
should be evident. Second, techniques for design and analysis should be accu-
rate, systematic, and easy-to-use, the latter possibly conflicting with the former
requirements. Taking this into account, the general objective of this thesis can
be refined in terms of the following research objectives:

(i) Establish rigorous performance advantages of HIGS-based control in com-
parison to well-accepted linear control strategies. (Chapter 3)

(ii) Develop novel techniques for accurately analysing stability and perfor-
mance of HIGS-controlled systems, preferably by exploiting “easy-to-use”
frequency-domain tools accommodating relevant performance measures.
(Chapter 4-6)

(iii) Develop practically relevant and systematic guidelines for the performance-
based design of HIGS-controlled systems. (Chapter 7)

(iv) Demonstrate by experiment the performance improving potential of HIGS-
based control on an industrial high-tech application. (Chapter 8)

The next section discusses the main contributions of this thesis.
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1.4.2 Contributions

This thesis presents five main contributions that directly address the four re-
search objectives such as discussed above.

Contribution 1. The first main contribution of this thesis, addressing the
first research objective and presented in Chapter 3, establishes the possibility of
overcoming a fundamental time-domain limitation of LTI control for LTI sys-
tems by carefully embedding HIGS into an otherwise linear feedback control
structure. The fundamental limitation that is shown to be overcome is the un-
avoidable presence of overshoot in the step-response of a closed-loop controlled
single-input single-output (SISO) LTI plant having a real unstable open-loop
pole. It is shown that with a HIGS-based controller design, overshoot can be
completely avoided. In addition, it is demonstrated that the trade-off between
overshoot and zero steady-state error in the presence of constant input distur-
bances that typically arises when using integral control can be alleviated with
HIGS-based control. Key for alleviating the overshoot limitations is the se-
quence in which the linear filters in the controller appear with respect to the
HIGS component(s). This insight provides a valuable guideline for controller
design with HIGS to enable genuine performance advantages over LTI controller
designs. The main results in Chapter 3 are based on van den Eijnden et al.,
2020a. Related results can be found in Dinther et al., 2021.

Contribution 2. The second main contribution, addressing the second research
objective and presented in Chapters 4-5, is the development of techniques for
stability analysis of HIGS-controlled systems. Two directions are pursued: a di-
rection developing frequency-domain based conditions for stability, and a direc-
tion that presents time-domain conditions in the form of numerically tractable
linear matrix inequalities (LMIs) (Boyd et al., 1994). The former frequency-
domain approach allows for easy-to-verify conditions based on measured plant
data, but possibly at the cost of increased conservatism, whereas the latter time-
domain approach allows for very tight stability estimates, but possibly at the
cost of increased (numerical) complexity in verifying the conditions. The specific
contributions in Chapter 4 and Chapter 5 are as follows.

In Chapter 4 novel (sufficient) stability conditions for HIGS-controlled sys-
tems based on frequency-response functions are presented. The results are novel
in the sense that these guarantee the existence of a quadratic Lyapunov function
that is only positive in a subset of the state-space where trajectories of the con-
trolled system can exist. In this way the class of admissible Lyapunov function
candidates underlying the frequency-domain conditions is extended and the con-
servatism in the analysis is generally reduced as compared to existing methods
such as the circle-criterion (Khalil, 2002). The presented conditions are easy-to-
use on the basis of a graphical Popov-like plot which can be assessed by using
non-parametric models such as (measured) frequency-response functions. The
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results in Chapter 4 are based on van den Eijnden et al., 2021.

In Chapter 5 the use of piecewise quadratic (PWQ) Lyapunov functions for
stability analysis is considered. For constructing such functions, a novel par-
titioning of the subset determining the active modes of HIGS is considered.
Inspired by the seminal work in Johansson and Rantzer, 1998, this partitioning
allows for parametrizing the PWQ function in such a manner that the necessary
continuity requirements are directly incorporated in the description of the PWQ
function, thereby guaranteeing continuity a priori, see also Deenen et al., 2021.
On the basis of this strategy, rigorous conditions for stability are formulated as
a set of LMIs. The LMI conditions are extended toward performance analysis
in terms of the L2-gain and the H2-norm, providing quantitative measures for
disturbance rejection and transient performance. Additional insight regarding
(in)feasibility of the LMI conditions is provided, and highlights the indispensable
flexibility offered by PWQ functions over, e.g., quadratic ones. By means of a
numerical study, it is shown that the conditions can lead to accurate stability
and performance estimates. The main contents in Chapter 5 are based on Van
den Eijnden et al., 2019 and van den Eijnden et al., 2022b. Related results are
presented in Deenen et al., 2021.

Contribution 3. The third main contribution in this thesis, addressing the
second research objective and presented in Chapter 6, is the development of
techniques for incremental stability and convergence analysis of HIGS-controlled
systems. Convergent systems enjoy the property of possessing for each bounded
(time-varying) input, a unique and bounded steady-state response. This prop-
erty opens up the possibility for characterizing steady-state performance in a
more accurate manner as compared to, e.g., the L2-gain as presented in Chap-
ter 5. Namely, the generality of the L2-gain may not always reflect the ac-
tual performance objective of the system under study, concerning, for instance,
specific steady-state response characteristics in the presence of specific inputs.
Establishing the desirable property of incremental stability/convergence for hy-
brid/switched systems is, in general, not an easy task. The thesis contributes
to this problem by presenting time- and frequency-domain conditions for verify-
ing incremental stability and convergence of HIGS-controlled systems. Though
specifically tailored to these systems, the approaches may open up fruitful di-
rections for analysis of other classes of hybrid/switched systems as well.

The specific contributions in Chapter 6 are as follows. Novel LMI-based
conditions for convergence of HIGS-controlled systems are presented. In deriv-
ing the conditions, new incremental properties of the vector field of HIGS are
exploited. These properties are shown to hold only in subregions of the state-
space, thereby motivating the construction of a piecewise quadratic incremental
Lyapunov function. The existence of such a function is cast as a verifiable set
of LMI conditions. In addition, a frequency-domain interpretation of the LMIs
is provided, leading to graphically verifiable conditions for convergence. The
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results in Chapter 6 are based on van den Eijnden et al., 2022a.

Contribution 4. The fourth contribution, addressing the third research ob-
jective and presented in Chapter 7, is the development of design tools for HIGS-
controlled systems. Two distinct approaches are pursued in this chapter. The
first approach exploits the conditions presented in Chapter 4. In particular, the
frequency-domain conditions presented in this chapter are reformulated as ma-
trix inequalities. Combined with conditions for L2-performance as derived in
Chapter 5, these lead to appropriate (robust) synthesis conditions.

An alternative approach toward HIGS-based controller design exploits a de-
scribing function characterization of HIGS within a robust loop-shaping frame-
work. Key in the approach is to express the modelling error induced by the
describing function as an uncertainty in the controller. Deriving such an uncer-
tainty is highly specific to the problem at hand. Nevertheless, practically useful
guidelines are presented which allow for effective frequency-domain-based con-
troller design. The approach strongly connects to the industrial practice and in
that sense may aid further development of HIGS as a nonlinear control solution.
Part of the content in Chapter 7 is based on the concepts in van den Eijnden
et al., 2018 and Heertjes et al., 2021.

Contribution 5. The fifth contribution, addressing the fourth research ob-
jective and which is presented in Chapter 8, is the experimental validation of
a HIGS-based PID control strategy on an industrial wafer scanner. Controller
design is based on frequency-domain loop-shaping such as outlined in Chapter 7,
and which is demonstrated to be valuable in an industrial setting. Compared
to the state-of-practice linear control solution, the HIGS-based strategy allows
for a significant increase in both controller bandwidth and low-frequency distur-
bance rejection properties as hinted by a describing function analysis. This is
supported by measurements which show a significant improvement in tracking
accuracy without strong penalties on high-frequency noise amplification, thereby
underlining the potential of HIGS-based control in the industrial practice. Chap-
ter 8 is based on the preliminary results in van den Eijnden et al., 2020b and
van den Eijnden et al., 2020c.

1.5 Outline of the thesis

The remainder of this thesis is divided into four parts. Part I consists of Chap-
ters 2 and 3 and provides a mathematical introduction to the concept of HIGS, as
well as a demonstration of its performance advantages, covering Contribution 1.
Part II consists of Chapters 4-6 and presents the results in this thesis related
to (incremental) stability and performance analysis, covering Contributions 2
and 3. Proofs and technical results are provided at the end of each chapter in an
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appendix. Part III includes Chapters 7 and 8, which present approaches toward
design as well as an experimental case-study, covering Contributions 4 and 5.
It should be mentioned that Chapters 3–8 are largely based on research papers
such that, besides some prerequisites from Chapter 2, each of these chapters
can be read individually. Note that this may introduce some repetition with
respect to the introductions and/or system descriptions in the individual chap-
ters. However, the chapters do provide some continuity and relevant information
linking them with each other. Finally, Part IV, consisting of Chapter 9 provides
a reflection of the obtained results by summarizing the main conclusions of this
thesis together with recommendations for future research.



Part I

Fundamentals of HIGS





Chapter 2

Formalization and Basic Results

2.1 Introduction

The hybrid integrator-gain system, abbreviated as HIGS, first appeared in the
literature in Deenen et al., 2017 where it was introduced for dealing with the
classical trade-offs resulting from the use of linear time-invariant (LTI) integral
control. The underlying principle of HIGS is inspired by reset control solutions,
see, e.g., Aangenent et al., 2010; Baños and Barreiro, 2012; Beker et al., 2004;
Clegg, 1958; Nešić et al., 2008; Van Loon et al., 2017, and can best be understood
when considering the step-response of the feedback interconnection of an LTI
integrator and a plant. The integrator accumulates its input - the feedback error
signal - over time for achieving zero steady-state error. When the error crosses
zero for the first time, however, the accumulated past (positive) error signal is
still stored in the integrator’s state. As a consequence, the integrator produces a
positive output and keeps on pushing the system in the direction away from zero
error, causing overshoot. To improve upon this aspect, a simple idea is to keep
the sign of the integrator’s output the same as that of its input, thereby forcing
the system toward zero error at all times. Reset integrators achieve this sign-
equivalence by instantaneously resetting their buffer (state) to zero upon a sign
change of the input. Discontinuities in the generated output signal resulting from
the resetting action, however, may increase the risk of exciting structural modes
of the plant dynamics, possibly leading to unwanted behaviour that potentially
can damage the system. To avoid state resets, but still preserve sign equivalence
of the integrator’s input and output signals, HIGS exploits switching between
integrator dynamics and gain characteristics. In particular, a HIGS element acts
as a linear integrator as long as its input-output pair lies within a sector. This
mode of operation is referred to as the integrator-mode. At moments when the
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sector conditions tend to be violated, a switch is enforced to keep trajectories to
stay on the boundary of the mentioned sector. This second mode of operation is
referred to as the gain-mode, explaining the terminology hybrid integrator-gain
system. Switching between integrator and gain characteristics is orchestrated in
a manner such that the generated output is guaranteed to be continuous. As a
result, HIGS inherits the benefits of reset controllers, often expressed in terms
of phase advantages, but avoids explicit resets.

To introduce HIGS properly, this chapter presents relevant preliminaries.
In particular, a mathematical description of HIGS in an open-loop setting is
provided in Section 2.2. To obtain more insights in the working principle of
HIGS, and better appreciate its benefits, time- and frequency-domain properties,
the latter of which are studied by means of the describing function method,
are discussed. In Section 2.3, the formal closed-loop setting with HIGS that
will be considered throughout this thesis is presented. Additional preliminaries
regarding the upcoming stability and performance analysis are provided as well.
The most important findings in this chapter are summarized in Section 2.4.

2.2 Open-loop system representation

In this section, the hybrid integrator-gain system is introduced. In order to
develop insights into its working principle, and appreciate the benefits it can
offer for control, an open-loop analysis is conducted in both time- and frequency-
domain, the latter which is based on the describing function method.

2.2.1 State-space description of HIGS

The hybrid integrator-gain system (HIGS) can mathematically be formulated as
a piecewise linear (PWL) system with discontinuous right-hand side, given by

H :


ẋh(t) = ωhz(t), if (z(t), u(t), ż(t)) ∈ F1,

xh(t) = khz(t), if (z(t), u(t), ż(t)) ∈ F2,

u(t) = xh(t),

(2.1a)

(2.1b)

(2.1c)

where xh(t) ∈ R denotes the state of the integrator, z(t) ∈ R is the input,
and u(t) ∈ R is the generated output at time t ∈ R≥0. Note that (2.1b) can
alternatively be described by ẋh(t) = khż(t), indicating the discontinuous nature
of the vector field of (2.1). To have well-defined behaviour, it is assumed that
the input z is a continuous piecewise Bohl (PB) function (see, e.g. Heemels et
al., 2002, Definition IV.2, and Deenen et al., 2021, Definition 2.2), such that its
time-derivative ż exists for almost all times t. Though in general this assumption
is somewhat restrictive, for the purpose of illustrating the working principle of
HIGS it is sufficient at this point. In the next section, regularity conditions on
the input signals will be discussed and motivated within the closed-loop setting.
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The parameters ωh ∈ (0,∞) and kh ∈ (0,∞) in (2.1) represent the integrator
frequency and the proportional gain, respectively. The active mode of HIGS is
dictated by the flow sets F1 and F2. When (2.1a) is active, HIGS is said to
operate in integrator-mode, whereas if (2.1b) is active, it is said to be in gain-
mode. Before specifying the sets F1 and F2 in more detail, the design philosophy
of HIGS is discussed first.

In its primary mode of operation, HIGS exhibits integrator dynamics (2.1a).
To maintain the idea of keeping the sign of the integrator’s output u equal to
that of its input z at all times, operating in integrator-mode is allowed as long
as the input-output pair (z, u) remains inside the [0, kh]-sector defined by

F :=

{
(z, u, ż) ∈ R3 | zu ≥ 1

kh
u2

}
. (2.2)

However, using integrator dynamics on the boundary u = khz of the sector F ,
may result in the vector-field (ẋh, ż) = (ωhz, ż) to point outside of the sector
F . As a consequence, the corresponding trajectory can escape the sector when
sticking to the integrator-mode. Specifically, provided u = khz, this occurs when
ẋh > khż for z > 0, or when ẋh < khż for z < 0. Since in integrator-mode one has
ẋh = ωhz, the inequalities can equivalently be expressed in a quadratic form by
ωhz

2 > khżz. To prevent a trajectory from escaping the sector, a switch to gain-
mode (2.1b) is initiated, thereby enforcing the trajectory to slide continuously
over the sector boundary according to the dynamics ẋh = khż. A transition
from gain-mode back to integrator-mode is allowed whenever ωhz

2 ≤ khzż, i.e.,
when the vector field (ẋh, ż) = (ωhz, ż) that results from applying the integrator
dynamics, points to the interior of the sector F . Note that on the boundary of
F defined by u = 0, enforcing the integrator dynamics ẋh = ωhz will ensure the
vector field (ẋh, ż) = (ωhz, ż) to point toward the interior of the sector.

On the basis of the above reasoning, the sets governing the active dynamics
of HIGS are constructed as

F1 :=
{

(z, u, ż) ∈ R3 | khzu ≥ u2 ∧ (z, u, ż) 6∈ F2

}
, (2.3a)

F2 :=
{

(z, u, ż) ∈ R3 | u = khz ∧ ωhz2 > khżz
}
. (2.3b)

By construction, it follows that F = F1∪F2. A visualization of the sets in (2.3)
is provided in Figure 2.1.

Remark 2.2.1. Note that the dynamics in (2.1) are currently defined for initial
values (z(0), u(0), ż(0)) ∈ F , but can be extended such that these are also defined
for (z(0), u(0), ż(0)) 6∈ F . To account for the latter, additional jump dynamics
can be defined as

xh(t+) = cz(t), if (z, u, ż) ∈ J , (2.4)

where c ∈ [0, kh], and in which the jump set is defined by

J :=

{
(z, u, ż) ∈ R3 | zu < 1

kh
u2

}
. (2.5)
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z
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u = khz

F1

F1

(a) Two-dimensional (z, u)-plane
with ż = 0.
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z
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(b) Two-dimensional (z, ż)-plane
with u = khz.
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ωhz = khż →
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(c) Three-dimensional region F = F1 ∪ F2.

Figure 2.1. Flow sets F1 and F2 as described in (2.3), which determine the
active dynamics of HIGS. The integrator mode region F1 is depicted in gray,
and the gain mode region F2 is depicted in blue.

These dynamics describe an instantaneous reset which, by the choice of c ∈
[0, kh], results in (z(t+), u(t+), ż(t+)) ∈ F . Note that such reset occurs only at
the initial time t = 0 and not at times t > 0, as from the previous reasoning
(and the fact that z is continuous) the specific switching strategy of HIGS would
enforce (z(t), u(t), ż(t)) to remain within the sector F for all times t > 0.

Figure 2.2 illustrates the switching strategy in (2.3) by depicting a simulated
response of HIGS in (2.1) to a multi-sine input z(t) = sin(t)+0.5 sin(3t), with the
parameters set to kh = 1.5, and ωh = 1 rad/s. When starting in integrator-mode,
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the system generates the output u, depicted by the red curve in Figure 2.2. Upon
reaching the sector boundary u = khz, HIGS switches to gain-mode, resulting
in the output u as depicted by the blue curve which slides along the sector
boundary until the integrator output no longer leads to a violation of the sector
constraint. At that point, the gain-mode terminates and HIGS re-enters the
integrator-mode. The system continues in integrator-mode, again followed by a
switch to gain-mode when necessary, and so on. In this manner, HIGS generates
a continuous (but non-smooth) output that satisfies the sector constraint in (2.2)
at all times. Figure 2.2 additionally shows the two-valued switching sequence
(dotted), where the zero values correspond to HIGS being in integrator-mode,
and the non-zero values indicate HIGS being in gain-mode.

(a) Time-series response of HIGS to a multi-sine input.

z

u
u = khz

F1

F1

(b) Trajectory in (z, u)-plane.

-1

0

1 -1

0

1-1

0

1

ż
z

u

(c) Trajectory in (z, u, ż)-space.

Figure 2.2. Time response of HIGS when subjected to a multi-sine input
z(t) = sin(t) + 0.5 sin(3t), t ∈ R≥0 (top figure) and corresponding spatial plots
of the input-output trajectories (bottom figures).
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2.2.2 Time-domain properties

In this section, useful time-domain properties of HIGS in (2.1) are discussed.
Before, going into more detail, however, the adopted solution concept for the
discontinuous differential equation in (2.1) is formalized first.

Definition 2.2.2. Let T ⊂ R≥0 be an interval of the form [0, T ] or [0, T ) with
T ∈ R≥0 a finite number, or T = R≥0. A locally absolutely continuous (AC)
function xh : R→ R is called a solution to the discontinuous differential equation
in (2.1) on T with initial state xh(0) = xh,0 ∈ R and locally integrable input
z ∈ Lloc

1 , if (z(t), xh(t), ż(t)) ∈ F for almost all t ∈ T, and (2.1) holds almost
everywhere in T.

The solutions in Definition 2.2.2 are Carathéodory-type of solutions, see,
e.g., Cortes, 2008 for more details regarding solution concepts for discontinuous
dynamical systems. Under the assumption that the input z is an (absolutely)
continuous Piecewise Bohl function, using similar arguments as in Section 4 of
Deenen et al., 2021, it can be guaranteed that (2.1) admits at least one solution
on [0,∞), and all maximal solutions are forward complete.

The following result establishes an important and useful input-output (pas-
sivity) property of HIGS.

Theorem 2.2.3. The hybrid integrator-gain system in (2.1) is strictly passive
in the sense that there exists a positive definite storage function V (xh) = λ

2x
2
h

with λ = k/ωh and k ∈ (0, 1) that satisfies

V̇ ≤ −cx2
h + zu, with c ∈ (0, kh), (2.6)

along all solutions of (2.1) with continuous z ∈ Lloc
1 for almost all times t ∈ R≥0.

Proof. The proof can be found in Appendix 2.A.1 and builds on some technical
results that will be introduced in Section 2.3.

Strict passivity (Khalil, 2002; van der Schaft, 2017) is a particularly useful
property for stability analysis as it implies that a well-posed feedback intercon-
nection of HIGS with any strictly passive nonlinear plant is passive, see also
Khalil, 2002, Theorem 6.1. Under mild detectability conditions, this, in turn,
can imply asymptotic stability of the closed-loop system.

The next result establishes useful incremental properties of HIGS.

Theorem 2.2.4. For any input z ∈ PB that is bounded and continuous, and
initial states xh,0, x

′
h,0 ∈ R the hybrid integrator-gain system in (2.1) is incre-

mentally asymptotically stable, i.e., it is incrementally stable (in the sense of
Lyapunov), and

‖xh(t, xh,0, z)− x′h(t, x′h,0, z)‖ → 0 as t→∞. (2.7)
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Proof. The proof can be found in Appendix 2.A.2.

Theorem 2.2.5. The hybrid integrator-gain system in (2.1) is homogeneous of
degree one in the sense that for any α ∈ R, inputs z ∈ Lloc

1 , and initial condition
xh(0) ∈ R the solutions satisfy

αxh(t, xh(0), z(t)) = xh(t, αxh(0), αz(t)) (2.8)

for all times t ∈ R≥0.

Proof. Denote xh(t) := xh(t, xh(0), z(t)) and xh,α(t) := xh(t, αxh(0), αz(t)).
Then, one can deduce in a similar manner as in the proof of Theorem 2.2.4
that a Lyapunov function candidate of the form V (xh, xh,α) = 1

2 (αxh − xh,α)2

satisfies V̇ ≤ 0 for almost all t ≥ 0. Since αxh(0) = xh,α(0) one finds V (0) = 0
which implies V (t) = 0 for all t ∈ R≥0.

From Theorem 2.2.4 and Theorem 2.2.5 several important properties of HIGS
appear. First, from the result in Theorem 2.2.5 it immediately follows (with
α = 1) that for an initial state xh(0) and z ∈ Lloc

1 the solution to the dis-
continuous differential equation in (2.1) is unique. Moreover, for all admissible
initial conditions xh,1(0) 6= xh,2(0) and z ∈ PB there is a unique steady-state
solution (for t → ∞), and for any periodic input z(t) = z(t + T ) with pe-
riod time T , the corresponding steady-state solution is periodic with the same
period, i.e., xh(t) = xh(t + T ) for all t ∈ R≥0 (Angeli, 2002). For switched
systems with discontinuous right-hand sides such as in (2.1), properties such as
uniqueness of (steady-state) solutions are far from being trivial (Pavlov et al.,
2006b), making this result remarkable. From (2.8) it is also immediate that
the output of HIGS scales linearly with input amplitude, hence demonstrat-
ing amplitude invariance. Moreover, it is an odd function in the sense that
−xh(t, xh(0), z(t)) = xh(t,−xh(0),−z(t)). The discussed properties are instru-
mental in conducting a describing function analysis in the next section.

Remark 2.2.6. The above properties do not rely upon the specific class of piece-
wise Bohl (PB) inputs. Hence, these results still apply when other input classes
are considered for which (2.1) is well-posed in the sense of having a solution
defined on [0,∞), and forward completeness of maximal solutions is established

2.2.3 Describing function analysis

A cornerstone of the success of LTI control is the fact that industry relies heavily
on frequency-domain design techniques. A reason for the latter is that frequency-
domain characterizations such as magnitude and phase provide transparent in-
sights in the behaviour of a feedback loop in terms of robust stability and per-
formance. However, the behaviour of nonlinear systems in general, and HIGS
in specific, cannot be evaluated in the frequency-domain in the same manner
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as is done for LTI systems, the main reasons being: i) the absence of the su-
perposition principle, ii) the fact that a nonlinear system may possess multiple
steady-state solutions to a single (periodic) excitation, and iii) the fact that
a single-frequency excitation signal typically induces a response that contains
harmonic content at multiple frequencies. To deal with these shortcomings, the
describing function method is adopted (Gelb and Vander Velde, 1968). In de-
scribing function analysis, an approximate frequency-domain characterization
of nonlinear systems is determined by relating a sinusoidal input signal to the
fundamental harmonic of the system’s steady-state response. Higher harmonics
that the output signal may contain are usually neglected in the analysis.

In the previous section it has been shown in Theorem 2.2.4 that HIGS in
(2.1) has a unique steady-state response to a given input signal. This justifies
the use of the describing function approach to study frequency-domain properties
of HIGS. For this purpose, consider a sinusoidal input (which is a Bohl function)
of the form

z(t) = A sin(ωt), (2.9)

with amplitude A ∈ R, and frequency ω ∈ R≥0. Remark that by virtue of
Theorem 2.2.5 the steady-state response of HIGS scales linearly with the input
amplitude, such that without loss of generality the amplitude of (2.9) can be
set to one, i.e., A = 1. Moreover, the steady-state response of HIGS to the
sinusoidal input in (2.9) is unique, and has a period of 2π/ω seconds. The
response is found analytically by solving (2.1) for xh(0) = 0 within the time-
interval [0, 2π/ω], resulting in

u(τ) =


ωh
ω (1− cos(τ)) , if 0 ≤ τ ≤ γ(ω),

kh sin(τ), if γ(ω) ≤ τ ≤ π,
ωh
ω (−1− cos(τ)) , if π ≤ τ ≤ π + γ(ω),

kh sin(τ), if π + γ(ω) ≤ τ ≤ 2π,

(2.10)

where τ = ωt and γ(ω) represents the switching instance, which is specified
hereafter. The steady-state response in (2.10) is depicted in Figure 2.3.

An explicit expression for the switching instance γ(ω) is found from equating
the generated output in integrator-mode to the output in gain-mode, that is

ωh
ω

(1− cos(γ(ω))) = kh sin(γ(ω)). (2.11)

Using the standard trigonometric identities 1− cos(a) = 2 sin2(a2 ) and sin(a) =
2 sin(a2 ) cos(a2 ) this yields

ωh
ω

sin

(
γ(ω)

2

)
= kh cos

(
γ(ω)

2

)
, (2.12)
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Figure 2.3. Steady-state response of HIGS (black) to a sinusoidal input (thin
grey) for ωh = ω and kh = 1.5, alongside the maximum allowable output as
given by the sector [0, kh] (bold grey).

which by tan(a) = sin(a)
cos(a) gives

γ(ω) = 2 arctan

(
khω

ωh

)
. (2.13)

Given the uniqueness and periodicity of the response in (2.10), it is possible
to write u(τ) in the form of the Fourier series expansion

u(τ) =
a0

2
+

∞∑
k=1

(ak(ω) cos(kτ) + bk(ω) sin(kτ)), (2.14)

where the Fourier coefficients are given by

ak(ω) =
ω

π

∫ 2π

0

u(τ) cos(kτ)dτ, (2.15a)

bk(ω) =
ω

π

∫ 2π

0

u(τ) sin(kτ)dτ, (2.15b)

with k ∈ Z>0 a multitude of the input frequency. Since u(τ) in (2.10) is an odd
function, i.e., u(−τ) = −u(τ), it follows that a0 = 0 in (2.14). The coefficients
for k = 1 obtained after some algebra are given by (where for brevity dependency
of γ on ω is omitted)

a1(ω) =
1

2π

(ωh
ω

(4 sin(γ)− sin(2γ)− 2γ)− kh (1− cos(2γ))
)
, (2.16a)

b1(ω) =
1

2π

(ωh
ω

(3− 4 cos(γ) + cos(2γ)) + kh (2(π − γ) + sin(2γ))
)
. (2.16b)
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By neglecting all contributions in (2.14) at k > 1, and using Euler’s formula, the
describing function of HIGS is derived as

D(jω) = b1(ω) + ja1(ω)

=
ωh
jω

(
γ(ω)

π
+ j

e−2jγ(ω) − 4e−jγ(ω) + 3

2π

)
+ kh

(
π − γ(ω)

π
+ j

e−2jγ(ω) − 1

2π

)
.

(2.17)

The direct contribution of the integrator dynamics and gain dynamics can be
recognized by the combination of the terms ωh/jω and kh in the respective
ratios γ(ω)/π and (π− γ(ω))/π, which correspond to the relative time-intervals
in which these dynamics are active, see also Figure 2.3.

A Bode-like plot of the describing function in (2.17) for different values of
ωh and kh is shown in Figure 2.4.

Figure 2.4. Bode-like diagram of the describing function in (2.17) for different
values of kh and ωh. The cross-over frequency is given by ωc = |1 + 4j/π|ωh

kh
.

Two asymptotes appear in this figure:

• For ω → 0, the describing function (2.17) tends to a static gain, i.e.,

lim
ω→0
D(jω) = kh, (2.18)

as a result of limω→0 γ(ω) = 0. This can be explained in the time-domain
as for harmonic inputs with ω << ωh/kh, the integrator buffer reaches its
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sector-admissible value after a time interval negligible when compared to
the input frequency, meaning HIGS effectively reduces to a static gain. In
the same spirit, for ωh/kh →∞ the above asymptote holds for all ω ∈ R≥0.

• In contrast, for ω → ∞, the describing function characteristics tend to
that of an integrator in terms of the magnitude, but with significantly less
phase lag. Given (2.13), (2.17) this is found by limω→∞ γ(ω) = π yielding

lim
ω→∞

D(jω) =
ωh
jω

(
1 +

4j

π

)
, (2.19)

for which the magnitude and phase characteristics can be computed as

lim
ω→∞

|D(jω)| =
∣∣∣∣1 +

4j

π

∣∣∣∣ ωhω ≈ 1.62
ωh
ω
, (2.20a)

lim
ω→∞

∠D(jω) = arctan
(
−π

4

)
≈ −38.15◦. (2.20b)

Interestingly, for ω → ∞, (2.19) tends to the describing function char-
acteristics of the Clegg (reset) integrator, see Clegg, 1958; Horowitz and
Rosenbaum, 1975. A time-domain interpretation is given as follows. For
ω >> ωh/kh, the integrator buffer builds up very slowly compared to the
time-scale of excitation, making the time interval in which the gain mode
is active negligible compared to the interval in which integrator dynamics
are active. As sign-equivalence is enforced due to switching, this behaviour
somewhat resembles that of the Clegg integrator, though without hard re-
sets. The asymptote is also found for ωh/kh → 0.

From the above reasoning, one may observe the ratio ωh/kh as the leading
factor that determines whether integrator or gain characteristics dominate the
overall behaviour of HIGS both in time- and frequency-domain. This is also seen
from the cross-over frequency of the describing function (2.17), which is given
by ωc := |1 + 4j/π|ωhkh rad/s. Loosely speaking, for ωh/kh →∞, HIGS behaves

as a linear gain kh, whereas for ωh/kh → 0, HIGS mimics the behaviour of a
Clegg (reset) integrator without hard resets. This behaviour can be recognized
in time-domain from the simulated time-responses as depicted in Figure 2.5.

2.2.4 HIGS and projected dynamical systems

A strongly related, but seemingly different approach for formalizing the working
principle and closed-loop description of HIGS comes from considering a class of
systems referred to as projected dynamical systems (PDS), see e.g., Dupuis and
Nagurney, 1993; Heemels et al., 2000; Nagurney and Zhang, 1996. Such systems
are described by differential equations of which the solutions are restricted to be
contained in a constraint set. At moments when the solutions tend to leave this
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(a) Time-response for ωh/kh = 6ω. (b) Time-response for ωh/kh = ω/16.

Figure 2.5. Time-response of HIGS (black) for different ratios of ωh/kh. The
response in Figure 2.5a resembles that of a linear gain, whereas the response in
Figure 2.5b resembles that of the Clegg integrator. Note that in both cases the
responses are continuous, but not smooth.

set, the vector field of the system is changed by means of projection to ensure
that the solutions remain inside the constraint set. Although the PDS philosophy
naturally resembles that of HIGS, there are key differences that prevent a direct
description of HIGS as a PDS. For instance, the constraint set of HIGS (the
sector), does not satisfy certain regularity requirements necessary for the PDS
framework to be applicable, see Henry, 1973. Furthermore, in the case of PDS,
the complete vector field is projected on the constraint set. In a control context,
however, when considering HIGS in feedback with a physical plant as done in
the next section, it is only possible to project the dynamics of the controller
and not the full dynamics including the plant. For that reason, in Deenen et al.,
2021; Sharif et al., 2019 a generalization of PDS, referred to as extended projected
dynamical systems (ePDS) has been proposed, which deals with these issues in a
natural manner, thereby allowing for an alternative and intuitive representation
of HIGS. One of the main advantages of formulating a HIGS-controlled system
in the ePDS framework is that it may link to other classes of dynamical systems
such that system theoretical properties directly transfer from one class to the
other, see for instance the results in Heemels et al., 2020; Sharif et al., 2021a.
In Deenen et al., 2021, it was shown that in a closed-loop setting, the ePDS
formulation can be written equivalently as a piecewise linear (PWL) model. As
such, properties established for the former representation are directly inherited
by the latter. Moreover, as for classical PDS stability and performance properties
are well-established, these may naturally extend to systems with HIGS. In this
thesis, however, the PWL formulation that will be introduced in the next section
is adopted as it is more convenient for the stability and performance analysis
approaches adopted in the subsequent parts. For a thorough exposition of the
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ePDS framework in general, and the link with HIGS in particular, the reader is
referred to Sharif et al., 2019 and Deenen et al., 2021.

2.3 Closed-loop system representation

Having developed more insight into the working principle and key properties
of HIGS, this section formally discusses the closed-loop setting as considered
for stability and performance analysis purposes throughout this thesis. The
generic setup is depicted in Figure 2.6, and consists of a linear time-invariant
(LTI), multi-input multi-output (MIMO) generalized plant G interconnected
with a single-input single-output (SISO) HIGS element H. The generalized
plant G contains the linear parts of the system, including the physical plant to
be controlled and filters related to the LTI part of the feedback controller. In
state-space formulation, the plant G is given by

G :


ẋg(t) = Agxg(t) +Bgu(t) +Bww(t),

y(t) = Cgxg(t) +Dgu(t) +Dww(t),

q(t) = Cqxg(t) +Dqw(t) +Duu(t),

(2.21)

with states xg(t) ∈ Rp, regulated outputs q(t) ∈ Rr, and external inputs w(t) ∈
Rm. The input and output of HIGS are denoted by z(t) = −y(t) ∈ R, and
u(t) ∈ R, respectively.

G
Σ

H Σ

y

z

−
u

w q

Σ

Figure 2.6. Generic feedback interconnection of an LTI system G and HIGS
H with inputs w and outputs q.

The realization (Ag, Bg, Cg, Dg) is assumed to be a minimal realization. For
ensuring the closed-loop system in Figure 2.6 to have well-behaved dynamics,
the following standing assumption is made throughout this thesis.

Assumption 2.3.1. The LTI system G given in (2.21) and depicted in Fig-
ure 2.6 satisfies Dg = Dw = 0 and CgBg = CgBw = 0.

This assumption implies that the transfer functions from u to y and w to y
have a relative degree of at least two. It removes the occurrence of an algebraic
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loop when HIGS is in gain-mode, ensures the absence of a direct feedthrough
from the signals (w, ẇ) to (z, ż), and guarantees the input to HIGS to be con-
tinuous and at least one time continuously differentiable. Note that within the
relevant and broad class of motion systems, where plants are typically described
by double integrators with additional structural dynamics, the relative degree
assumption is often naturally satisfied.

2.3.1 Closed-loop system description

Due to the piecewise linear (PWL) nature of HIGS in (2.1), and under As-
sumption 2.3.1, the closed-loop system in Figure 2.6 naturally admits the PWL
formulation

Σ :

{
ẋ(t) = Aix(t) +Bw(t), if x(t) ∈ Xi, i ∈ {1, 2}
q(t) = Cx(t) +Dw(t),

(2.22)

with state x(t) =
[
xg(t)

> xh(t)
]> ∈ Rn, in which xg and xh are the states of G

and H, respectively, so that n = p+ 1. The sets Xi, i ∈ {1, 2}, are defined as

Xi := {x ∈ Rn | Ex ∈ Fi} , (2.23)

in which the matrix E extracts those signals from x that determine mode switch-
ing of HIGS, i.e., E is such that Ex := (z u ż)

>
, and is, therefore, given by

E> =

[
−C>g 0 −(CgAg)

>

0 1 0

]
. (2.24)

Remark that X1 ∪ X2 = X := {x ∈ Rn | Ex ∈ F}, with F the sector defined in
(2.2). The mode-dependent system matrices in (2.22) are given by

A1 =

[
Ag Bg
−ωhCg 0

]
, and A2 =

[
Ag Bg

−khCgAg 0

]
, (2.25)

and furthermore B = [B>w , 0]>, C = [Cq, Du], and D = Dq. Note that this
formulation results from Assumption 2.3.1 and explicit differentiation of the
algebraic constraint xh = khz in (2.1) in gain-mode.

It can be seen that (2.22) describes a discontinuous differential equation.
This makes proving (global) existence of solutions, given an initial state x0 and
external signal w a difficult problem, since typical continuity properties used
for studying differential equations/inclusions (such as upper-semicontinuity of
the right-hand side conform Aubin and Cellina, 1984) are not fulfilled, see also
Cortes, 2008. The next section briefly revisits some of the results presented
in Deenen et al., 2021 regarding well-posedness of the HIGS-controlled system
(2.22) in the sense of global existence and forward completeness of solutions.
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2.3.2 Solution concept and well-posedness

For the results in Deenen et al., 2021 to be applicable, the class of exogenous
signals that are considered here should be of a piecewise Bohl (PB) nature, see
Deenen et al., 2021, Definition 2.2. As sines, cosines, exponentials, polynomials,
and sums thereof are all Bohl functions, the class of PB functions is considered to
be sufficiently rich to accurately describe (deterministic) input signals frequently
encountered in practice. In particular, any piecewise constant signal is PB, and
thus this class of functions can approximate any measurable function arbitrarily
close. The following solution concept, related to Definition 2.2.2 is adopted from
Deenen et al., 2021.

Definition 2.3.2. Let T ⊂ R≥0 be an interval of the form [0, T ] or [0, T ) with
T ∈ R≥0 a finite number, or T = R≥0. A locally absolutely continuous (AC)
function x : T→ Rn is called a solution to the HIGS-controlled system in (2.22)
on T with initial state x0 ∈ X and w ∈ Lloc

1 , if x(0) = x0, x(t) ∈ X for all t ∈ T,
and (2.22) holds almost everywhere in T.

Definition 2.3.3 (Deenen et al., 2021). Let T ⊂ R≥0 be an interval of the
form [0, T ] or [0, T ) with T ∈ R≥0 a finite number, or T = R≥0. A solution
x : T→ Rn to (2.22) with w ∈ Lloc

1 on T is called maximal if there does not exist
a solution x′ : T′ → Rn with w ∈ Lloc

1 on T′, where T′ = [0, T ′) with T ′ ∈ R≥T ,
that satisfies x(t) = x′(t) for t ∈ T. A solution x : T → Rn is called forward
complete if T = R≥0.

Theorem 2.3.4. For all initial states x0 ∈ X and exogenous inputs w ∈ PB
the HIGS-controlled system in (2.22) admits at least one solution on [0,∞), and
all maximal solutions for w ∈ PB are forward complete.

This result is an immediate consequence of applying Theorem 4.1 and Theo-
rem 4.2 in Deenen et al., 2021, and excludes the existence of Zeno-solutions for
PB inputs (Goebel et al., 2009).

Remark 2.3.5. Since the response of HIGS is amplitude invariant and an odd
function (Theorem 2.2.5), it immediately follows that the solutions of the closed-
loop interconnection of HIGS and an LTI system as in (2.22) scale linearly with
the input amplitude as well, i.e., x(t, αx(0), αw(t)) = αx(t, x(0), w(t)) for α ∈ R.

2.3.3 Stability and performance: Preliminaries

One of the primary objectives in this thesis is to develop tools for verifying
stability and performance of the HIGS-controlled system in (2.22). To make the
discussions in this thesis precise, preliminary definitions and results heavily used
throughout the remainder of this thesis are provided in this section.

To study stability properties of the closed-loop system in (2.22), the notion
of input-to-state stability (ISS) is adopted.
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Definition 2.3.6 (Sontag and Wang, 1995). The closed-loop system in (2.22)
is said to be input-to-state stable (ISS), if there exist a KL-function α and a
K-function β such that for any initial condition x(0) = x0 ∈ X and any bounded
input signal w ∈ Lloc

1 , all corresponding solutions to (2.22) satisfy

‖x(t)‖ ≤ α(‖x(0)‖, t) + β

(
sup

0≤τ≤t
‖w(τ)‖

)
, (2.26)

for all t ∈ dom x, where dom x denotes the projection of a signal t 7→ x(t) on
the time (t) axis.

Remark 2.3.7. Definition 2.3.6 accounts for the possibility of (maximal) so-
lutions not being forward complete, e.g., solutions of which the domain is not
defined for all times t ∈ R≥0. Allowing for this situation separates conditions for
forward completeness of solutions from conditions on stability, see also Goebel
et al., 2009, Section 3.1 and Van Loon et al., 2017, Remark 5.

In the study of ISS for discontinuous dynamical systems such as in (2.22),
non-smooth Lyapunov functions are often employed, see e.g., Branicky, 1998;
Heemels and Weiland, 2008; Rantzer and Johansson, 2000; Shevitz and Paden,
1994. In this context, it is considered useful to revisit some of the machinery
used in non-smooth analysis.

Definition 2.3.8 (Clarke, 1983; Shevitz and Paden, 1994). For a locally Lips-
chitz function V : Rn → R the generalized gradient of V at x is defined as

∂V (x) = co
{

lim
i→∞

∇V (xi) | xi → x, xi 6∈ ΩV

}
, (2.27)

where co denotes the closed convex hull, ∇V denotes the gradient of V (at states
where it is defined), and ΩV is the set of measure zero where the gradient of V
is not defined.

Theorem 2.3.9. Let V : Rn → R≥0 be a locally Lipschitz continuous function
and x a locally absolutely continuous solution to ẋ(t) ∈ F (x(t), w(t)) for some
locally integrable function w ∈ Lloc

1 . Then t 7→ V (x(t)) is locally Lipschitz
continuous and

d

dt
V (x(t)) ≤ max

p∈∂V (x(t))
max

f∈F (x(t),w(t))
〈p, f〉 (2.28)

for almost all times t.

Proof. The proof largely proceeds as the proof of Theorem 3.3 in Heemels and
Weiland, 2008. First, observe that since V is locally Lipschitz continuous, and
x is locally absolutely continuous, the composite function t 7→ V (x(t)) is lo-
cally absolutely continuous and consequently, t 7→ V (x(t)) is differentiable al-
most everywhere with respect to time t. Suppose that at time t both ẋ(t) and
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dV (x(t))/dt exist. Note that ẋ(t) = f ∈ F (x(t), w(t)). Using the same argu-
ments as in the proof of Theorem 3.3 in Heemels and Weiland, 2008, it can be
concluded that

d

dt
V (x(t)) = lim

h→0

V (x(t+ h))− V (x(t))

h

= lim
h↓0

V (x(t) + hf)− V (x(t))

h
.

(2.29)

To evaluate the right-hand side of (2.29) use is made of Lebourg’s Lipschitz
mean-value theorem (Clarke, 1983, Theorem 2.3.7), which states that for any V
that is Lipschitz on an open set containing the closed line segment [a, b], there
is a point c in the open line segment (a, b) such that

V (a)− V (b) ∈ 〈a− b, ∂V (c)〉. (2.30)

Applying this to V (x(t) + hif)− V (x(t)) for hi ↓ 0 when i→∞, one obtains

d

dt
V (x(t) = lim

i→∞
〈pi, f〉, (2.31)

where pi ∈ ∂V (x(t) + αif) with αi ∈ (0, hi). Since V is a locally Lipschitz
continuous function, it follows by application of Clarke, 1983, Proposition 2.1.2
and Clarke, 1983, Proposition 2.1.5 that for αi converging to zero, there is a
subsequence {pi}i∈N converging to p, and one has p ∈ ∂V (x). It then follows
that the right-hand side in (2.29) is equal to

d

dt
V (x(t)) = 〈p, f〉 (2.32)

for some p ∈ ∂V (x). Then, an upper-bound on the time-derivative of V imme-
diately follows as

d

dt
V (x(t)) ≤ max

p∈∂V (x(t))
max

f∈F (x(t),w(t))
〈p, f〉, (2.33)

which holds for almost all times t.

The above result provides a basis for the definition of an ISS-Lyapunov func-
tion for the HIGS-controlled system in (2.22), in line with Heemels and Weiland,
2008; Sontag and Wang, 1995.

Definition 2.3.10. A locally Lipschitz continuous function V : Rn → R≥0 is
said to be an ISS-Lyapunov function for the system in (2.22), if

• there exist K∞-functions α1, α2 such that for all x ∈ Rn

α1(|x|) ≤ V (x) ≤ α2(|x|), (2.34)
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• there exist K-functions α and β such that for all x ∈ Rn and w ∈ Rm

max
p∈∂V (x)

max
f∈F (x,w)

〈p, f〉 ≤ −α(|x|) + β(|w|), (2.35)

where

F (x,w) =

{
A1x+Bw if x ∈ X1,

A2x+Bw if x ∈ X2.
(2.36)

Theorem 2.3.11. If there exists an ISS-Lyapunov function for (2.22) in the
sense of Definition 2.3.10, then system (2.22) is ISS for any bounded w ∈ Lloc

1 .

Proof. The proof is obtained following similar steps as the proof of Heemels and
Weiland, 2008, Theorem 3.5.

In studying different (input-output) performance properties of the closed-
loop system in (2.22) the concept of dissipativity will be particularly useful.

Definition 2.3.12 (Willems, 2007). The closed-loop system in (2.22) is said
to be dissipative with respect to a supply function s : Rn × Rr × Rm → R, if
there exist a positive (semi-)definite continuous function V : Rn → R≥0, called
a storage function, and K∞-functions α1, α2 such that α1(|x|) ≤ V (x) ≤ α2(|x|)
for all x ∈ X , and

V (x(t))− V (x(0)) ≤
∫ t

0

s(w(τ), q(τ), x(t))dτ, (2.37)

for all t ∈ dom x and all (x, q, w) with dom q 6= {0} satisfying (2.22) for almost
all times t ∈ dom x.

The definition of an ISS-Lyapunov function as given in Definition 2.3.10 can
be extended toward a storage function by relaxing condition (2.35) to

max
p∈∂V (x)

max
f∈F (x,w)

〈p, f〉 ≤ s(w, q, x). (2.38)

Supply functions that are often used to assert performance in terms of, for
example, the L2-gain and H2-norm are given by s(w, q, x) = γ2‖w‖2 − ‖q‖2,
with γ > 0, and s(w, q, x) = −‖q‖2, see, e.g., van der Schaft, 2017.

2.3.4 Robustness aspects

Some comments are in order regarding robustness issues that can arise for dis-
continuous differential equations of the form

ẋ(t) = f(x(t), w(t)), when x(t) ∈ X , (2.39)
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with x(t) ∈ Rn, w(t) ∈ Rm, and X ⊆ Rn, just as the closed-loop system in
(2.22). As discussed in Goebel et al., 2009, in order to obtain robust sta-
bility/performance guarantees (with respect to arbitrary small state pertur-
bations), it is important to consider the so-called Krasovskii regularization
(Krasovskii and Subbotin, 1988) of (2.39), which is defined as

ẋ(t) ∈
⋂
δ>0

co(f(B(x(t), δ) ∩ X , w(t)), when x(t) ∈ X , (2.40)

where B(x(t), δ) is the open ball of radius δ around x(t) and for a set Ω ⊆ Rn,
co(Ω) denotes its closed convex hull and Ω denotes the closure. The Krasovskii
regularization of (2.22) can be calculated explicitly, giving

ẋ(t) ∈
{
A1x(t) +Bw(t) if x(t) ∈ X \ X 2,

co(A1x(t), A2x(t)) +Bw(t) if x(t) ∈ X 2.
(2.41)

Solutions to (2.41) are understood in the sense of Krasovskii, see, e.g., Sanfelice
et al., 2008. In the remainder it will be shown that for specific choices of V ,
the conditions in Definition 2.3.10 guarantee ISS/dissipativity of the Krasovskii
regularization in (2.41) as well, and thus stronger stability and performance
guarantees for (2.22) can be obtained including state perturbations.

The definitions and results as discussed in this chapter will be instrumental
in deriving verifiable conditions for asserting (robust) stability and performance
properties of the feedback interconnection of the closed-loop system as in (2.22),
and are heavily exploited in Chapters 4–6.

2.4 Summary

In this chapter, the hybrid integrator-gain system, abbreviated with HIGS, is
formally presented. It is shown that specific switching between integrator and
gain characteristics ensures the generated output of the hybrid integrator to have
a sign that is equivalent to the sign of the input at all times, thereby adhering to
the traditional philosophy of the Clegg (reset) integrator. Different from reset
integrators, however, HIGS avoids hard resets, and generates continuous (non-
smooth) outputs which may provide benefits. Both time- and frequency-domain
properties of HIGS are studied, the latter in an approximate sense through its
describing function which reveals magnitude characteristics that correspond to
a (weak) integrator, but with an induced phase lag of only 38.15 degrees.

In the next chapter, the properties of HIGS are exploited for constructing
nonlinear controllers that are able to overcome some of the fundamental perfor-
mance limitations of linear time-invariant control.
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2.A Proofs and technical results

2.A.1 Proof of Theorem 2.2.3

The proof exploits some of the machinery introduced in Section 2.3. Consider
the quadratic storage function candidate V (xh) = λ

2x
2
h with λ = k/ωh and

k ∈ (0, 1). This function is Lipschitz continuous and positive definite. Since xh
is a locally absolutely continuous solution to ẋh(t) ∈ {ωhz(t), khż(t)} for some
continuous z ∈ Lloc

1 , it follows from Theorem 2.3.9 that in integrator-mode

V̇ = ∇V (xh)ωhz = kzxh. (2.42)

On the other hand, in gain-mode one finds

V̇ = ∇V (xh)khż = λkhxhż < kzxh, (2.43)

where for the inequality use is made of the fact that in gain-mode one has
xh = khz and ωhz

2 > khzż, see also the definition of the gain-mode set in
(2.3b). As such, one finds as a common upper-bound V̇ ≤ kzxh = kzu, which
shows that HIGS is passive. To show strict passivity, observe that

V̇ ≤ −(1− k)zxh + zu ≤ −kh(1− k)x2
h + zu, (2.44)

where for obtaining the second inequality use is made of the sector condition
x2
h ≤ khzxh. Denote c = kh(1 − k) and observe that since k ∈ (0, 1), one finds
c ∈ (0, kh). This completes the proof.

2.A.2 Proof of Theorem 2.2.4

Consider the difference between two solutions starting from different initial con-
ditions as δxh(t) := xh(t, xh(0), z(t))−xh(t, x′h(0), z(t)) and define an incremen-
tal Lyapunov function candidate as

V (δxh) =
1

2
(δxh)2. (2.45)

Clearly, (2.45) is positive definite. Moreover, since solutions to HIGS in (2.1)
are locally absolutely continuous functions, t 7→ V (δxh(t)) is a locally absolutely
continuous function as well, and thus dV (δxh(t))/dt exists almost everywhere.

Suppose two trajectories starting at different initial conditions are both in
integrator-mode. In this case, one finds the time-derivative along the solutions of
(2.1) to satisfy V̇ = 0, such that V itself remains constant. A similar observation
can be made when both trajectories are in gain-mode, in which case it holds that
V̇ = 0 and V = 0. Note that the latter case implies δxh = 0.
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Next, consider the case where both trajectories are in different modes, for
which one finds

V̇ =

{
(xh(t)− khz(t))(ωhz(t)− khż(t)), if (xh(t), x′h(t)) ∈ F1 ×F2,

(khz(t)− x′h(t))(khż(t)− ωhz(t)), if (xh(t), x′h(t)) ∈ F2 ×F1,

(2.46)
where xh(t) = xh(t, xh(0), z(t)) and x′h(t) = xh(t, x′h(0), z(t)). In the remainder,
dependency on time is omitted for brevity. Suppose x′h resides in gain-mode. In
that case, it holds that ωhz

2 > khżz (see the definition of the gain-mode set F2

in (2.3b)). Moreover, since z 6= 0 and khz−xh 6= 0 (xh cannot be on the sector-
boundary otherwise it must be in gain-mode from the fact that ωhz

2 > khżz), it
follows that (khz−xh)z > 0. Hence, xh−khz and ωhz−khż have opposite signs
and are both non-zero, such that V̇ < 0. A similar reasoning applies for the case
when xh is in gain mode. At this point, it is known that V̇ ≤ 0, which implies
that i) HIGS in (2.1) is incrementally uniformly stable, and ii) solutions to HIGS
are unique. However, this does not yet imply the attractivity property in (2.7).
For showing (2.7), first note that there are three “trouble-making” situations in
which V̇ = 0, and thus V 6= 0 can get stuck after some time t ≥ T with T ≥ 0:

1. The dynamics governing xh and x′h both remain in integrator-mode for all
t ≥ T ;

2. The dynamics governing xh and x′h both remain in gain-mode for all t ≥ T ;

3. The dynamics governing xh and x′h synchronously switch between
integrator-mode and gain-mode for all t ≥ T ;

The last two situations can be easily ruled out. Namely, when both dynamics
switch to gain-mode at some finite time instance t∗ ≥ 0, one finds xh(t∗) =
x′h(t∗) = khz(t

∗). Since V̇ ≤ 0 one finds V (δxh(t∗)) = 0 and thus xh(t∗) = x′h(t∗)
for all t ≥ t∗. Hence, this leaves the case that both dynamics get stuck in
integrator-mode and remain therein forever. However, due to the assumption
that z is bounded this cannot happen as will be shown next. First observe that
in integrator-mode one has

x2
h(t)− k2

hz
2(t) =

(∫ t

tk

ωhz(τ)dτ + xh(tk)

)2

− k2
hz

2(t), (2.47)

where tk ≥ 0 denotes the time from which solutions evolve according to the
integrator-mode. A lower-bound for (2.47) is given by(∫ t

tk

ωhz(τ)dτ + xh(tk)

)2

− k2
hz

2(t) ≥
(∫ t

tk

ωhz(τ)dτ)

)2

− k2
hz

2(t), (2.48)

in which it is used that xh(tk)
∫ t
tk
z(τ)dτ ≥ 0 due to the sector-condition. Next,

suppose that z(t) has no zero-crossings in finite time. This is the relevant case to
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consider, because a zero-crossing z(t) = 0 at t = t∗ implies xh(t∗) = x′h(t∗) = 0
due to the sector condition, and, in turn, this implies V (δxh(t∗)) = 0. Since
V̇ ≤ 0 this implies V (δxh(t)) = 0 for all t ≥ t∗. In the absence of zero-crossings
in z and thus z(t) 6= 0 for all t ≥ 0, because of continuity and boundedness of z
one finds 0 < c1 ≤ |z| ≤ c2 such that

x2
h(t)− khz2(t) ≥

(∫ t

tk

ωhz(τ)dτ)

)2

− k2
hz

2(t) ≥ (ωhc1(t− tk))2 − (khc2)2.

(2.49)

When t − tk > T (c1, c2) := (khc2)/(ωhc1), it follows that x2
h − khz2 > 0, which

violates the sector-condition in integrator-mode and thus a switch to gain-mode
must have occurred at a time t < tk+T (c1, c2). As such, T (c1, c2) <∞ provides
a finite upper-bound on the time-interval in which trajectories can both reside
in integrator-mode and thus V̇ = 0. It remains to be shown that V cannot
converge to a non-zero constant. Hereto, the following claim is proven first.

Claim: In the absence of zero crossings, i.e., z(t) 6= 0 for all time t ≥ 0, there
exists a time τ ≤ T (c1, c2) such that xh(τ) = x′h(τ).

Proof of the claim: First note that without zero crossings, z retains a similar
sign for all t ≥ 0. It is sufficient to consider the case z > 0 (the case z < 0
follows analogously). Without loss of generality, suppose xh(0) ≥ x′h(0), and
assume that x′h starts in integrator-mode (starting in gain-mode leads to a trivial
situation). As shown before, x′h must switch to gain-mode after some finite time
τ ≤ T (c1, c2). Suppose that xh(t) ≥ x′h(t) for all t ≤ τ . This is the relevant
case to consider, because when xh(t) ≤ x′h(t) there must have been a time
τ∗ ≤ τ for which xh(τ∗) = x′h(τ∗) (since initially xh(0) ≥ x′h(0)). Since z > 0,
it holds that khz(t) ≥ xh(t) for all time t ≥ 0. Then, at time t = τ one finds
khz(τ) ≥ xh(τ) ≥ x′h(τ) = khz(τ), which implies xh(τ) = x′h(τ), thereby proving
the claim.

Given the previous claim, it follows that at some time τ ≤ T (c1, c2) one has
V (δxh(τ)) = 0. In turn, since V̇ ≤ 0, it follows that V (δxh(t)) = 0 for all t ≥ τ .
Thus, one finds V (δxh(t)) ≤ V (δxh(0)) for 0 ≤ t ≤ τ , and V (δxh(t)) = 0 for
t ≥ τ . Based on this knowledge, one can construct the upper-bound

V (δxh(t)) ≤ e−(t−T∗)V (δxh(0)), (2.50)

in which T ∗ = min {T0, T (c1, c2)} ≥ τ , and where T0 denotes the time at which
the first zero crossing of z occurs. In the absence of zero crossings, one finds
T0 = ∞. Based on the bound in (2.50), one finds ‖δxh(t)‖ → 0 for t → ∞,
thereby demonstrating the attractivity property. Combined with incremental
stability (in the sense of Lyapunov) this implies incremental asymptotic stability.



Chapter 3

A Remedy for Performance
Limitations in LTI Control?

3.1 Introduction

Fundamental limitations of linear time-invariant (LTI) feedback control design
imposed by Bode’s gain-phase relationship (Middleton, 1991; Seron et al., 1997;
Skogestad and Postlethwaite, 2010) form an excellent motivation for the use
of hybrid controllers in general (Feuer et al., 1997; Lau and Middleton, 2003),
and hybrid integrator-gain systems (HIGS) in particular. As discussed in the
previous chapter, the switching functionality of HIGS gives access to (weak)
integrator characteristics with a phase lag of only 38.15 degrees as observed
from its describing function. Although the concept of phase is generally defined
for linear systems only, these apparent characteristics hint toward the possibility
to break free from classical design trade-offs and thus may allow for increased
bandwidths and enhanced closed-loop disturbance rejection on the one hand, and
desired transient response and robust stability properties on the other hand.

Despite these potential benefits, the fundamental question if (and how)
closed-loop LTI systems can truly benefit from feedback control with HIGS
in particular in the sense of overcoming LTI performance limitations remains
open. One of the objectives in this chapter is to provide a positive answer to
this question. To this end, an LTI example is studied that suffers from inherent
time-domain performance limitations. In particular, a third-order single-input
single-output (SISO) LTI plant containing a real unstable open-loop pole, of
which the presence inevitably leads to overshoot in the step-response for any
stabilizing LTI feedback controller is considered. By exploiting HIGS in com-
bination with specifically designed LTI filters, it is shown for the example that
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overshoot in the step-response can be avoided altogether. The results are ac-
companied by key design considerations, which form important elements in a
general design philosophy for control systems including HIGS elements. Sys-
tematic design of reset/hybrid controllers so that the performance limitations of
LTI controllers can be overcome is acknowledged to be an open research problem,
see Zhao et al., 2013.

Within the context of this chapter, it must be mentioned that other results
are known in the literature that explicitly demonstrate the ability of nonlinear
control strategies to meet certain transient time-domain performance specifica-
tions that are unattainable with LTI control. For instance, in Beker et al., 2001;
Feuer et al., 1997; Zhao et al., 2019; Zhao et al., 2013, examples are given of
hybrid and reset control strategies that can meet transient performance spec-
ifications in terms of overshoot and rise time, which cannot be achieved with
any LTI controller. Also, in Hunnekens et al., 2016 it is shown by a numer-
ical example that overshoot requirements unattainable by any LTI controller
can be met using phase-based variable-gain control, see also Armstrong et al.,
2006. Interestingly, these examples all employ a nonlinear element that produces
discontinuous outputs, while the example with HIGS in this chapter uses con-
tinuous (non-smooth) signals. Other recent examples in which HIGS is shown
to be able to overcome inherent performance limitations of LTI controllers can
be found in Dinther et al., 2021.

This chapter is organized as follows. In Section 3.2, fundamental time-domain
limitations of LTI systems linking the presence of real unstable, and simple
open-loop poles to the occurrence of overshoot and performance trade-offs are
revisited. The nonlinear control context is discussed in Section 3.3 and a nu-
merical example that illustrates the ability of HIGS to overcome this limitation
is presented in Section 3.4. Important design considerations and insights are
provided in Section 3.5. The main conclusions of this chapter are summarized
in Section 3.6.

3.2 Limitations of LTI control

The example in this chapter involves the class of SISO LTI feedback control
systems, depicted in Figure 3.1. Here, an LTI plant given by the transfer function
P (s), s ∈ C, is placed in feedback interconnection with an LTI controller C(s).
The input to the plant consists of the control signal u(t) ∈ R and an input
disturbance d(t) ∈ R, both applied at time t ≥ 0. The plant output y(t) ∈ R is
subtracted from the setpoint r(t) ∈ R to form the feedback error e := r − y.

A third-order SISO LTI plant P (s) that has a real open-loop pole at s = p is
considered. For p > 0, i.e., in case of an open-loop unstable pole, when placing
this plant in feedback interconnection with any internally stabilizing LTI con-
troller C(s), a fundamental time-domain limitation exists between the rise time
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Figure 3.1. Closed-loop system configuration with SISO LTI plant P (s) and
SISO LTI feedback controller C(s).

and the amount of overshoot of the closed-loop system’s step-response when
subject to a unit-step input r(t) = 1 for t ≥ 0, and r(t) = 0 otherwise. For
p = 0, i.e., in case of a simple integrator, an inherent design trade-off exists
between overshoot in the step-response and zero steady-state error in the pres-
ence of constant input disturbances. Before explicitly stating these limitations,
necessary definitions for internal stability, rise time, overshoot, and steady-state
error are introduced.

Definition 3.2.1 (Seron et al., 1997). Let the open-loop system in Figure 3.1 be
given by L(s) = P (s)C(s). The closed-loop system is said to be internally stable,
if all poles of the transfer function S(s) = (1 + L(s))−1 lie in the open left-half
complex plane, and there are no unstable pole-zero cancellations in L(s).

Definition 3.2.2 (Seron et al., 1997). The rise time of a closed-loop system’s
step response y, when subject to a unit-step input r(t) = 1 for t ≥ 0, and r(t) = 0
otherwise, and for zero initial conditions, is defined as

tr := sup
T>0

{
T : y(t) ≤ t

T
for all t ∈ [0, T ]

}
. (3.1)

Definition 3.2.3 (Seron et al., 1997). The overshoot of a closed-loop system’s
step response y when subject to a unit-step input r(t) = 1 for t ≥ 0, and r(t) = 0
otherwise, and for zero initial conditions is defined as

yos := sup
t≥0

(y(t)− r(t)) , (3.2)

that is, the maximum value by which the step response exceeds the final set-point
value.

Definition 3.2.4 (Zhao et al., 2019). The steady-state error of the closed-loop
system in Figure 3.1, when subject to a reference r and an input disturbance d,
is defined as the difference between the reference r and the output y as t → ∞,
that is

ess = lim
t→∞

(r(t)− y(t)). (3.3)
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Proposition 3.2.5 (Seron et al., 1997). Suppose that the plant P (s) in Fig-
ure 3.1 has a real pole at s = p with p > 0. If the closed-loop system is internally
stabilized by any LTI controller C(s), then the step response y resulting from a
unit-step input r(t) = 1 for t ≥ 0, and r(t) = 0 otherwise, exhibits overshoot,
which satisfies the lower-bound

yos ≥
(ptr − 1) exp (ptr) + 1

ptr
≥ ptr

2
. (3.4)

Proof. The proof can be found in Seron et al., 1997, Section 1.3.

Proposition 3.2.6. Suppose that the plant P (s) in Figure 3.1 contains at least
one pole at s = p with p = 0. Then, for any stabilizing LTI controller C(s) at
least one of the following holds:

• The closed-loop system has non-zero steady-state error |ess| > 0 in the
presence of a constant disturbance d(t) = c for all values of c ∈ R \ {0}.

• The closed-loop system has overshoot in its step response y resulting from
a unit-step input r(t) = 1 for t ≥ 0, and r(t) = 0 otherwise.

Proof. By virtue of the internal model principle (Skogestad and Postlethwaite,
2010), zero steady-state error in the presence of a constant input disturbance
requires the use of integral action in the controller. When using integral control,
however, the open-loop system C(s)P (s) has at least two poles at s = 0 such
that, by virtue of Seron et al., 1997, Theorem 1.3.2, the closed-loop system nec-
essarily has overshoot in its step-response. Hence, at least one of the conditions
stated in the proposition must hold.

Although both Proposition 3.2.5 and Proposition 3.2.6 address the presence
of overshoot in the step-response when using LTI control, there is an essential
difference. Namely, whereas no internally stabilizing LTI controller exists that
leads to non-overshoot in case the plant has an unstable real open-loop pole,
for plants containing multiple integrators, one can actually find LTI controllers
that lead to no overshoot, but at the cost of not meeting other requirements
such as zero steady-state error. Hence, while in the first case one has to accept
overshoot, in the second case there is a possibility to balance objectives in a
somewhat more desirable, but still limited, manner if one restricts oneself to
LTI control. In this context, HIGS can offer more favourable results as will be
shown in the upcoming parts.

3.3 Nonlinear control context

The nonlinear control configuration considered in the numerical examples that
demonstrates the ability of HIGS-based control to overcome the limitations
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stated in Proposition 3.2.5, and Proposition 3.2.6, is depicted in Figure 3.2.

Σ C1 H C2 Σ P
r e z u v y

d

−

HIGS-based controller

Figure 3.2. Closed-loop system configuration with SISO LTI plant P (s) and
HIGS-based controller as considered in the numerical examples.

In this figure, P (s) is an LTI plant, C1(s), C2(s) are LTI weighting filters,
which are to be specified later, and H represents HIGS, which has been defined
in Chapter 2, Section 2.2 and for convenience is repeated here as

H :


ẋh(t) = ωhz(t), if (z(t), u(t), ż(t)) ∈ F1,

xh(t) = khz(t), if (z(t), u(t), ż(t)) ∈ F2,

u(t) = xh(t),

(3.5a)

(3.5b)

(3.5c)

with state xh(t) ∈ R, input z(t) ∈ R, time-derivative ż (provided it exists),
output u(t) ∈ R at all times t ∈ R≥0, and

F1 =
{

(z, u, ż) ∈ R3 | khzu ≥ u2 ∧ (z, u, ż) 6∈ F2

}
, (3.6a)

F2 =
{

(z, u, ż) ∈ R3 | u = khz ∧ ωhz2 > khżz
}
. (3.6b)

As discussed in the previous chapter, the feedback interconnection of HIGS
in (3.5) with an LTI system admits the piecewise linear (PWL) state-space rep-
resentation

Σ :

{
ẋ(t) = Aix(t) +Biw(t), if (x(t), w(t)) ∈ Xi, i = {1, 2} ,
y(t) = Cx(t) +Dw(t),

(3.7)

where x(t) = [x>p (t), x>c2(t), xh(t), x>c1(t)]> ∈ Rm collects the states xp(t) of the
plant P (s), the states xc1(t), xc2(t) of the LTI filters C1(s), C2(s), and the state
xh(t) of HIGS, respectively, w(t) ∈ Rw is the vector of exogenous input signals,
and y(t) ∈ R is the relevant performance output at time t ∈ R≥0. Furthermore,
the sets Xi, i = {1, 2}, are given by

Xi =
{

(x,w) ∈ Rm+w | Ex+ Fw ∈ Fi
}
, (3.8)

in which the matrices E ∈ R3×m and F ∈ R3×w satisfy Ex + Fw = [z, u, ż]>.
An explicit derivation of the relevant system matrices in (3.7) and (3.8) can
be found in Appendix 3.A. For further details on closed-loop system aspects
regarding solution concepts and properties the reader is referred to Chapter 2.
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Before presenting the example in more detail, closed-loop stability of the
nonlinear system in Figure 3.2 is discussed. Although stability is not the main
topic in this chapter, it is a prerequisite for performance, and forms an integral
part in the limitations stated above. Therefore, it should be addressed here for
making a fair comparison between linear and nonlinear control strategies. In
this context, the notion of input-to-state stability (ISS) introduced in Chapter 2
in Definition 2.3.6 is adopted, as it links to the concept of internal stability given
in Definition 3.2.1.

Theorem 3.3.1. Consider the closed-loop system in (3.7). Suppose there exist
a symmetric m ×m matrix P � 0 and a number µ ∈ R that satisfy the matrix
inequalities

A>1 P + PA1 ≺ 0, and (A2 + µbH)>P + P (A2 + µbH) ≺ 0 (3.9)

with b = [0, 1, 0]> and H = [kh,−1, 0]E. Then, the closed-loop system (3.7) is
input-to-state stable in the sense of Definition 2.3.6.

The proof of Theorem 3.3.1 largely proceeds along standard steps that can be
found in published works on stability of switched and hybrid systems, see e.g.,
Johansson, 2002; Kamenetskiy, 2017; Liberzon, 2003. Key in the proof is the
use of Finsler’s lemma (Boyd et al., 1994) for the second inequality in (3.9) via
the gain-mode constraint Hx = khz − u = 0 for w = 0. Different (possibly less
conservative) conditions for stability are extensively discussed in Chapters 4–5,
and the result presented in Theorem 3.3.1 forms a special case of these more
general results. Therefore, the proof is omitted here.

3.4 Plant with a real unstable pole

In this section, a numerical example is presented that illustrates the possibility
to overcome the fundamental overshoot limitation in Proposition 3.2.5. Consider
the LTI plant

P (s) =
(s+ q)ω2

(s− p)(s2 + 2ζωs+ ω2)
, (3.10)

which has a real unstable pole located at s = p, with p = 1, two stable poles at
s = −ω(ζ ±

√
ζ2 − 1), where ω = 5 · 2π rad/s and ζ = 1.5, and a zero at s = −q

with q = 3. Third-order characteristics with a real unstable pole such as in
(3.10) may appear for instance in active magnetic bearings (Maslen et al., 2005;
Thibeault and Smith, 2002). As a control objective, a feedback controller must
be designed that i) internally stabilizes the closed-loop system, and ii) achieves a
zero steady-state tracking error when the system is subject to a unit-step input
r without overshoot.
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3.4.1 LTI control

When considering an LTI controller C(s), the requirement for internal stability of
the closed-loop system removes the possibility for C(s) to introduce an unstable
pole-zero cancellation, whereas the objective of having zero steady-state tracking
error necessitates integral action in the controller C(s) by virtue of the internal
model principle (see, e.g., Skogestad and Postlethwaite, 2010). A controller C(s)
suitable for this purpose is designed on the basis of the Nyquist stability criterion
(Franklin et al., 2005, Section 6.3), resulting in

C(s) =
ωi
s

(3.11)

with integrator frequency ωi = 10 rad/s. Note that for achieving the given
control objectives, other types of LTI controllers can be considered as well (al-
though all would result in overshoot by virtue of Proposition 3.2.5). To keep
the exposition simple and preserve insights in the effects of the controller on the
transient response, the choice for an integrator in (3.11) is made.

According to Proposition 3.2.5, the closed-loop system with plant (3.10), and
LTI controller (3.11) must exhibit overshoot in its step-response (with d(t) = 0),
so that the objective regarding overshoot cannot be met. In this specific exam-
ple, an aspect that additionally contributes to the presence of overshoot is the
necessity for integral control. This can be understood as follows. Assuming zero
initial conditions, the error initially satisfies e(t) > 0, such that the integrator in
(3.11) ‘sums’ the error over time to provide a positive input u(t) > 0 for driving
the system toward the setpoint. For achieving zero steady-state error, it follows
from the final value theorem (Middleton, 1991) that

lim
t→∞

u(t) = lim
s→0

sC(s)

1 + C(s)P (s)
· 1

s
= −p

q
< 0. (3.12)

Hence, a negative steady-state input is needed for achieving zero steady-state
error. This implies a sign change of u, which can only be achieved if e changes
sign, thus requiring overshoot. In case P (s) only has stable poles, and thus p < 0,
the steady-state input should be positive, and overshoot does not necessarily
occur.

3.4.2 HIGS-based control

Given the previous observations, a HIGS-based integrator is proposed that
adopts the functionality of a linear integrator for achieving zero steady-state
error, but aims at reducing/eliminating overshoot. Hereto, HIGS in (3.5) is ap-
pended with LTI filters C1(s) and C2(s) in a manner as depicted in Figure 3.2.
The filters are specifically chosen as

C1(s) =

(
s

ωc
+ 1

)
, and C2(s) =

ωi
s

(3.13)
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with ωc = |1 + 4j/π|ωhkh rad/s. This particular choice is motivated by using
describing function reasoning. The describing function of HIGS, which has been
derived in Chapter 2, and which is repeated here as

D(jω) =
ωh
jω

(
γ

π
+ j

e−2jγ − 4e−jγ + 3

2π

)
+ kh

(
π − γ
π

+ j
e−2jγ − 1

2π

)
(3.14)

with γ(ω) = 2 arctan(khω/ωh), implies first-order low-pass magnitude charac-
teristics with cross-over frequency ωc = |1 + 4j/π|ωhkh rad/s, accompanied by a

phase lag that does not exceed 38.15 degrees. The filter C1(s) ‘compensates’ the
magnitude characteristics of D(jω), and provides additional phase lead up to 90
degrees. As a result, for all ω ∈ (0,∞) it follows that ‖C1(jω)D(jω)‖ ≈ 1, and
∠(C1(jω)D(jω)) ∈ (0, 51.85) degrees. The describing function characteristics of
the HIGS-based integrator, which also includes C2(s) = ωi/s, is given by

Ci(jω) = C1(jω)D(jω)C2(jω), (3.15)

and demonstrates the characteristic 20 dB/decade magnitude decay similar to
the linear integrator in (3.11), but with a phase lag that can be reduced up to
38.15 degrees as shown in Figure 3.3, i.e., ∠(Ci(jω)) ∈ (−90,−38.15) degrees. A
useful feature of this design is that the parameter ωh (with kh = 1) can be used
to vary the phase lag reduction independent from the magnitude, which pro-
vides extra freedom in dealing with inherent design limitations. The apparent
phase advantage hints toward the possibility for reducing overshoot. Compa-
rable strategies that combine LTI filters with nonlinear elements such as reset
integrators (Clegg, 1958) or split-path filters (Sharif et al., 2021b; van Loon et
al., 2016) for creating new elements with favourable gain and phase properties
can be found in the literature, see for instance Karybakas, 1977; Li et al., 2011;
Palanikumar et al., 2018; Zheng et al., 2000.

Remark 3.4.1. For a practical implementation of the non-proper filter C1(s)
in (3.13), the following adaptations can be made:

C1(s) =

(
s

ωc
+ 1

)
· 1

(τs+ 1)
, and C2(s) =

ωi
s
· (τs+ 1),

where τ > 0 is chosen sufficiently small. Both C1(s) and C2(s) are proper filters.
Note that the describing function characteristics in (3.15) remain unchanged by
these transformations.

Remark 3.4.2. It is interesting to mention that for ωh → 0 the describing func-
tion characteristics of the HIGS-based integrator as depicted in Figure 3.3 are
equivalent to that of the Clegg integrator (Clegg, 1958; Horowitz and Rosenbaum,
1975). However, there is an essential difference between the HIGS-based integra-
tor and the Clegg integrator. Namely, due to the additional state in C2(s), the
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Figure 3.3. Bode-like representation of a HIGS-based integrator (3.15) for
different values of HIGS’ integrator frequency ωh (with kh = 1).

HIGS-based integrator is able to preserve a buffer when e(t) = 0 to compensate
for constant disturbances. The Clegg integrator, however, is not able to preserve
such buffer since due to the resetting mechanism the output of the integrator is
reset to zero as soon as e(t) = 0, such that a constant disturbance is no longer
compensated for by the integrator, see also Zhao et al., 2019, Remark 8.

3.4.3 Simulation results

The step-response of the plant (3.10) in feedback with the HIGS-based controller,
the latter being the series interconnection of the filters C1(s), and C2(s) with
τ = 10−4 conform Remark 3.4.1, and HIGS with kh = 1, ωh = 0.8 rad/s, is
shown in Figure 3.4 (in black), along with the generated control output u. In
addition, the step-response and control output with the linear controller (3.11)
are shown in grey. Overshoot is clearly present for the linear closed-loop system,
whereas for the HIGS-based control system there is no overshoot under fairly
limited control effort. Note that in both cases the output of the controller
attains the steady-state value u(∞) = −p/q = −1/3 that appears necessary for
achieving zero steady-state tracking error. It is emphasized that for the linear
control system, the overshoot in Figure 3.4 may be influenced by a different
choice of LTI filters, e.g., PID-filters, but overshoot cannot be avoided as a
consequence of the fundamental limitation stated in Proposition 3.2.5. Moreover,
given the rise time tr = 0.95 seconds of the HIGS-controlled system, any linear
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controller resulting in a similar (or larger) rise time yields an overshoot of at least
yos = ptr

2 = 0.475 according to the lower-bound in (3.4). These results highlight
the distinct advantage of the HIGS-based controller over any LTI controller in
achieving performance without overshoot.

Figure 3.4. Step-response y (top) and control output u (bottom) of the linear
(grey) and non-linear (black) closed-loop system.

Before arriving at the final conclusion that for the example discussed, the
fundamental limitation in Proposition 3.2.5 is truly overcome with HIGS, it
remains to be shown formally that the corresponding closed-loop system is ISS.
Hereto, the matrix conditions in Theorem 3.3.1 are solved numerically for which
the result is given in Appendix 3.A. Given feasibility of the matrix inequalities in
(3.9), together with the time-series simulation result in Figure 3.4, it is concluded
that the fundamental limitation presented in Proposition 3.2.5 is truly overcome
with the proposed HIGS-based control strategy for the example discussed.

3.4.4 Robust non-overshoot performance

In order to study robust non-overshoot performance properties of the presented
approach in the presence of plant uncertainties, the location of the pole p in (3.10)
is varied in the range p ∈ [−5, 10]. The amount of overshoot as a function of the
pole location is shown in Figure 3.5. Because the plant is different, the amount of
overshoot, rise-time, and fundamental lower-bound are different. However, for a
range of unstable open-loop poles, the qualitative closed-loop system behaviour
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appears the same, in the sense that overshoot is avoided, thereby indicating a
certain amount of robustness to plant uncertainties. Stability of the closed-loop
system with HIGS has been formally verified by means of the matrix conditions
in Theorem 3.3.1 for all p ∈ [−5, 1.8]. However, a stable step-response is observed
in simulations up to p = 7.8. Note that for the LTI case, internal stability is
guaranteed for all p ≤ 4.5. These observations hint toward improved robust
stability properties with HIGS-based control. One could argue that increased
robustness is enabled by the alleged reduction in phase lag by the HIGS-based
integrator, as opposed to its linear counterpart (see Figure 3.3 in this regard).

Figure 3.5. Overshoot as a function of the open-loop pole p for the closed-loop
system with an LTI integrator (grey) and a HIGS-based integrator (black).

From Figure 3.5 zero overshoot is obtained also for s = p with p = 0. In case
of LTI integral control, the open-loop contains two integrators which inherently
leads to overshoot. When using no integrator in the controller, overshoot can
be avoided (for instance with C(s) = 1) but at the cost of non-zero steady-
state error in the presence of non-zero constant input disturbances. This is
stated formally in Proposition 3.2.6. With the considered HIGS-based integra-
tor, however, both constant disturbance rejection as well as non-overshoot in the
step-response are achieved. This demonstrates that the fundamental trade-off
in Proposition 3.2.6 is overcome for this example, and indicates the additional
design flexibility that is offered with HIGS-based control.

3.5 Design considerations and non-overshoot

3.5.1 Controller configuration

The nonlinear control strategy applied to the previous example is initially based
on HIGS’ describing function characteristics. From a quasi-linear perspective,
the particular sequence in which the filters in the HIGS-based controller appear,
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is interchangeable. However, from a time-domain perspective this is not the
case as switching of HIGS is directly determined by its input z, and, therefore,
by the choice for the filter C1(s) in Figure 3.2. The effect of filter sequence on
time-domain performance has also been pointed out in Cai et al., 2020. The
rationale behind the proposed configuration in Figure 3.2 for reducing overshoot
and alleviating performance trade-offs can be explained as follows.

• By using the output of HIGS directly as an input to the filter C2(s)
which contains the integrator buffer in the HIGS-based controller, a con-
trol mode-switching mechanism is provided for filling/depleting this buffer
at a variable rate, hence, C2(s) containing the integrator is located directly
after HIGS. Despite the integrator-mode, HIGS itself cannot maintain a
buffer necessary for achieving zero steady-state error due to its sector-
boundedness, underlining the necessity for including a pure integrator in
the designs.

• Due to the previous choice, the output of HIGS should have zero crossings
for allowing a sign change of the linear integrator’s output; recall the ear-
lier discussions regarding LTI control designs. Sign equivalence of HIGS
input and output signals then necessitates the input of HIGS to have zero
crossings. For achieving non-overshoot performance, by definition, a sign-
change of e must be avoided. Hence, e cannot be used directly as an input
to HIGS. Rather, C1(s) as in (3.13) is used for realizing a filtered version
of e, i.e., z = ė

ωc
+ e. The weighted combination of e and ė creates the

possibility for z to have zero crossings without e crossing zero, i.e., without
inducing overshoot.

3.5.2 Non-overshoot mechanism

From the previous rationale, in particular the second point, it is clear that the
parameter ωh largely determines whether switching primarily occurs on the basis
of the error e or its time-derivative ė, and thus directly influences the interplay
between HIGS and the integrator buffer contained in the filter C2(s). To illus-
trate the effect of ωh on such interplay, consider again the example presented
in Section 3.4 with p = 1. Figure 3.6 depicts the time-response of the HIGS
state xh, and the state xi of the linear integrator in C2(s) when subject to a
step-input for the values ωh = {0.08, 0.8, 80} rad/s.

The choice ωh = 80 rad/s (bottom figure) leads to overshoot. This can
be explained from the fact that for ωh → ∞ the path composed of C1(s) and
HIGS (see Figure 3.2) effectively reduces to a linear gain. The characteristics
of the nonlinear controller tend to that of its linear counterpart, i.e., inherently
having overshoot. Hence, choosing ωh too large results in overshoot. On the
other hand, both the choices ωh = 0.08 rad/s (top figure) and ωh = 0.8 rad/s
(middle figure) result in the absence of overshoot. To understand the underlying
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Figure 3.6. HIGS-state xh(t) (red: integrator-mode, blue: gain-mode) and
integrator state xi(t) =

∫ t
0
xh(τ)dτ as a function of time for ωh = 0.08 rad/s

(top figure), ωh = 0.8 rad/s (middle figure), and ωh = 80 rad/s (bottom figure).
The final value of the integrator state for attaining zero steady-state error is
indicated by the dashed black line and corresponds to −p/q = −1/3.

mechanism leading to non-overshoot, first note that according to the discussion
in Chapter 2, for ωh → 0 the characteristics of HIGS tend to that of the Clegg
integrator, leading to an arbitrarily fast reduction to zero of the HIGS state xh
whenever z crosses zero. When considering a step-response, one initially finds
e(0) > 0 and ė(0) = 0, such that z(0) > 0. In that case, the linear integrator
placed behind HIGS starts building up a positive buffer and pushes the system
in the direction toward zero error. However, as e is decreasing, at some point the
magnitude of e > 0 is relatively small compared to the (weighted) magnitude of
ė < 0, which results in a sign-change of z. Physically, this means that, relative
to the distance toward the set-point, the system is moving fast in the direction of
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this set-point. To avoid overshoot, the system must rapidly ‘slow down’. This is
achieved through HIGS by enforcing Clegg-like switching that either limits the
linear integrator buffer build-up or starts depleting it. Such characteristics are
particularly visible for ωh = 0.08 rad/s in Figure 3.6 (top). Note, however, that
with ωh small, even a small change in ė may already induce a sign change in z.
Consequently, the Clegg-like mechanism is triggered in a high-frequent manner,
which impedes the integrator build-up and can lead to an extremely slow step-
response. This is also observed in Figure 3.6 (top) as the integrator state xi
slowly converges to its steady-state value. When choosing ωh = 0.8 rad/s, non-
overshoot is still achieved, but the integrator attains its steady-state value at
a much faster rate as can be seen in Figure 3.6 (middle). In turn, this results
in a faster step-response. For an additional discussion on the non-overshoot
mechanism see also Dinther et al., 2021; van den Eijnden et al., 2020a.

From the above observations, the parameter ωh appears as a tuning knob for
adjusting the overshoot and settling time. As such, a simple tuning guideline
for a HIGS-based integrator design can be derived. One may start with ωh =
∞, and tune all remaining parameters (ωi in the example) by means of linear
design techniques, e.g., via loop-shaping. Subsequently, one can adjust ωh to
balance the level of overshoot and settling time according to specifications. Note,
however, that during such a design process stability of the feedback system needs
to be guaranteed. Stability aspects are discussed in more detail in the upcoming
chapters.

3.6 Summary

In this chapter, an example is discussed in which HIGS-based control is able to
overcome fundamental performance limitations inherent to LTI systems. The
example addresses an overshoot performance limitation resulting from the pres-
ence of a real unstable or simple open-loop pole in the plant. By interconnecting
HIGS in series with well-crafted linear filters, overshoot is avoided, and the lim-
itations are alleviated. Key in the approach is the sequence in which the linear
filters appear with respect to HIGS. The obtained insights provide valuable ele-
ments for a general control design framework based on HIGS.

Although briefly discussed in this chapter, guaranteeing stability of the
closed-loop system remains an issue to be dealt with, particularly in terms of
providing easy-to-check and non-conservative conditions. To address this issue,
in the next chapter frequency-domain conditions for stability of HIGS-based con-
trol systems are presented. Not only are these conditions less conservative than
the ones proposed in this chapter, they also provide direction for control design.
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3.A Additional details and numerical results

In this appendix, some additional details and numerical results for the example
presented in this chapter are discussed. This includes the explicit derivation of
the relevant closed-loop system matrices, and numerical solutions to the matrix
conditions in Theorem 3.3.1.

3.A.1 State-space derivation

Consider the feedback control system with HIGS as depicted in Figure 3.2 and
recall that the closed-loop system dynamics can be written as a switched linear
system of the form

Σ :

{
ẋ(t) = Aix(t) +Biw(t), if (x(t), w(t)) ∈ Xi, i = {1, 2} ,
y(t) = Cx(t) +Dw(t),

(3.16)

with state vector x(r) = [x>p (t), x>c2(t), xh(t), x>c1(t)]>, where xp(t) ∈ Rp denotes
the states of the plant P (s), xc1(t) ∈ Rm and xc2(t) ∈ Rn denote the state of
the LTI filters C1(s) and C2(s), respectively, and xh(t) ∈ R denotes the state
of HIGS. The exogenous inputs are denoted by w(t) ∈ Rw, and y(t) ∈ R is the
relevant performance output. For the considered set-up, the closed-loop system
matrices A1 and A2 are given by

A1 =

 Ap BpCc2 BpDc2 0
0 Ac2 Bc2 0

−ωhDc1Cp 0 0 ωhCc1
−Bc1Cp 0 0 Ac1

 , (3.17a)

A2 =

 Ap BpCc2 BpDc2 0
0 Ac2 Bc2 0

−kh(Cc1Bc1Cp +Dc1CpAp) 0 0 khCc1Ac1
−Bc1Cp 0 0 Ac1

 , (3.17b)

in which the matrices (Ap, Bp, Cp, Dp) describe the plant P (s), i.e.,

P (s) = Cp(sI −Ap)−1Bp +Dp,

and the matrices (Ac1 , Bc1 , Cc1 , Dc1), and (Ac2 , Bc2 , Cc2 , Dc2) describe the filters
C1(s) and C2(s), respectively, such that

C1(s) = Cc1(sI −Ac1)−1Bc1 +Dc1 ,

C2(s) = Cc2(sI −Ac2)−1Bc2 +Dc2 .

For the considered configuration, the relevant input vector is given by w =
[r, ṙ, d]> ∈ R3, and the performance channel y is defined as the output of the
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plant, such that the input matrices B1, B2 are given by

B1 =

 0 0 ωhDc1 Bc1
0 0 0 0
Bp 0 0 0

> , B2 =

 0 0 khCc1Bc1 Bc1
0 0 khDc1 0
Bp 0 0 0

> , (3.18)

and with output matrices C =
[
Cp 0 0 0

]
, and D =

[
0 0 Bp

]
. Finally,

the matrices E and F in the sets Xi, i = {1, 2} defined in (3.8) are given by

E =

 −Dc1Cp 0 0 Cc1
0 0 1 0

−Cc1Bc1Cp −Dc1CpAp −Dc1CpBp 0 Cc1Ac1

 , (3.19a)

F =

 Dc1 0 0
0 0 0

Cc1Bc1 Dc1 0

 . (3.19b)

3.A.2 Numerical solutions to the matrix inequalities

Recall the example of Section 3.4 with LTI plant (3.10) and LTI filters (3.13).
The respective matrices are given by

 Ap Bp

Cp Dp

 =


0 1 0 0

0 0 1 0

pω2 ω(2pζ − ω) p− 2ζω ω2

q 1 0 0

 ,
 Ac1 Bc1

Cc1 Dc1

 =

 − 1
τ

1
τ

1− 1
τωc

1
τωc

 , and

 Ac2 Bc2

Cc2 Dc2

 =

 0 ωi

1 ωiτ

 ,
with parameters ω = 5 · 2π rad/s, ζ = 1.5, p = 1, q = 3, ωi = 10 rad/s, kh = 1,
ωh = 0.8 rad/s, ωc = 1.29 rad/s, and τ = 10−4. Using the matrices A1 and A2

in (3.17), the matrix inequalities in (3.9) are iteratively solved by means of the
Matlab toolbox Yalmip (Löfberg, 2004) together with the external solver MOSEK
(Andersen et al., 2003). The resulting matrix P is found to be

P =


5268896.19 1756629.55 −1384.5403 −4474.1597 61.1298 1757783.13
1756629.55 585690.381 −459.0564 −1521.3239 20.6351 586047.961
−1384.5403 −459.0564 0.5415 −0.87052 0.00006012 −461.2236
−4474.1597 −1521.3239 −0.87052 27.6577 −0.2525 −1500.5993

61.1298 20.6351 0.00006012 −0.2525 0.005326 20.4599
1757783.13 586047.961 −461.2236 −1500.5993 20.4599 586425.592

 ,
with corresponding eigenvalues

λ(P ) = [6440982.17 58.1617 0.01999 0.009841 0.003120 0.0007173]

showing P to be positive definite, and µ = 1.5.
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Stability and Performance





Chapter 4

Frequency-Domain Tools for
Robust Stability Analysis

4.1 Introduction

The potential of hybrid integrator gain-systems (HIGS) for overcoming funda-
mental performance limitations of linear time-invariant (LTI) control systems
has been shown in the previous chapter. Unfortunately, performance enhancing
benefits often do not come without a cost. While linear systems lend themselves
well for robust stability and performance analysis using frequency-domain tools
such as the Nyquist stability criterion and Bode plots (Skogestad and Postleth-
waite, 2010), the nonlinear/hybrid nature of a control system featuring HIGS
renders many of such tools inapplicable. As the current control practice highly
exploits frequency-domain methods, lack of appropriate tooling may compromise
broad adoption of nonlinear and hybrid control strategies like HIGS in industry.

To accommodate for this situation, frequency-domain tools for stability anal-
ysis and design of switched/hybrid systems in general have been recently pro-
posed in, e.g., Arcak et al., 2003; Beker et al., 2004; Dastjerdi et al., 2020; Deenen
et al., 2017; Griggs et al., 2010; Kamenetskiy, 2017; Kamenetskiy, 2019; King et
al., 2011; Kunze et al., 2008; Shorten et al., 2009; Van Loon et al., 2017. Under-
lying these tools is the well-known Kalman-Yakubovich-Popov lemma (Khalil,
2002; Yakubovich, 1962), which allows for establishing the equivalence between
certain frequency-domain conditions and the existence of a common quadratic
Lyapunov function for switched systems, the latter being posed in the time-
domain. In principle, these frequency-domain conditions can be verified using
measured frequency-response function data of the plant to be controlled, thereby
making them useful in practical situations, where accurate parametric models
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of the plant are often difficult, if not impossible, to obtain.

Although valuable from a practical perspective, existing frequency-domain
conditions that are applicable to the class of HIGS-based control systems, such
as the ones presented in, e.g., Deenen et al., 2021; Kamenetskiy, 2017; King
et al., 2011; Kunze et al., 2008; Van Loon et al., 2017 often render a rather
conservative estimate on closed-loop stability. To some extent, this conservatism
is caused by the fact that the conditions do not sufficiently take into account the
particular switching characteristics of HIGS, thereby leading to overly restrictive
formulations. For example, the results in Kamenetskiy, 2017; Kunze et al.,
2008, are limited to systems with arbitrary switching, which is too restrictive
for HIGS as it adopts a specific state-dependent switching strategy. In King
et al., 2011, this result is extended by including state-dependent constraints,
leading to improved conditions. Such constraints are also considered in Deenen
et al., 2021; Van Loon et al., 2017, but at the same time HIGS is regarded as
a generic sector-bounded nonlinearity, thereby ignoring its underlying internal
dynamic behaviour. It is interesting to remark that in all mentioned works,
the quadratic Lyapunov function that results from satisfying the conditions is
guaranteed to be positive within the full state-space. This may be restrictive too
because trajectories of a closed-loop system with HIGS are confined to a subset
of the state-space only.

The main contribution in this chapter is the presentation of a novel frequency-
domain condition for stability analysis of the feedback interconnection of an LTI
system and HIGS. The conditions are novel in the sense that, if satisfied, these
guarantee the existence of a quadratic Lyapunov function that is not necessarily
positive within the full state-space, but rather in a subset of the state-space
where HIGS is active. The same holds true for negative definiteness of its corre-
sponding time-derivative. In this way, the class of admissible Lyapunov function
candidates is extended and the conservatism in the analysis is generally reduced
compared to existing methods. Frequency-domain conditions for guaranteeing
the existence of such class of Lyapunov functions have not been established in
the literature before. It is shown that the conditions can be verified graphically
in a manner that is comparable with the classical Popov plot (Khalil, 2002).
The results are further extended toward robust stability analysis. In particular,
the presented frequency-domain conditions are reformulated in a manner that
takes into account multiplicative uncertainties in the LTI part of the feedback
control system. The approach is inspired by the results in Impram and Munro,
2001; Tsypkin and Polyak, 1992, which present robustified versions of classical
circle- and Popov criteria that allow for a graphical verification of robust sta-
bility, something which is well appreciated in an industrial setting where plant
uncertainty is highly relevant.

This chapter is organized as follows. In Section 4.2 the control system setting
is discussed, and the problem formulation is given. In Section 4.3, the main
results of this chapter are presented in the form of a theorem that sets forth
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graphically verifiable frequency-domain stability conditions. The conditions are
compared to existing results in a numerical example. An extension toward a
robust stability analysis is discussed in Section 4.4. Application of the presented
results is demonstrated on an experimental motion control set-up in Section 4.5.
A summary of this chapter is provided in Section 4.6.

4.1.1 Notation

Throughout this chapter, use is made of the following notation. A single-input
single-output (SISO) transfer function is said to be stable if all its poles are lo-
cated in the open left-half complex plane. The space of proper and real rational
stable SISO transfer functions is denoted by RH∞. The real and imaginary
parts of a frequency response function W (jω) ∈ C, ω ∈ R, are denoted by
Re {W (jω)} and Im {W (jω)}, respectively, and the complex conjugate is indi-
cated by W ∗(jω) = W (−jω). The set of real symmetric matrices in Rn×n is
denoted by Sn×n. A symmetric matrix M ∈ Sn×n is positive (negative) definite,
denoted by M � 0 (M ≺ 0), if x>Mx > 0 (x>Mx < 0) for all x ∈ Rn \ {0}.
The inequality symbols >,≥, <,≤ for vectors are understood componentwise.

4.2 System setting and problem formulation

4.2.1 Closed-loop system description

In this section, the generic closed-loop system setting with HIGS as discussed in
detail in Chapter 2 is briefly repeated here for convenience. Hereto, the single-
input single-output (SISO) configuration as depicted in Figure 4.1 is considered.

G
Σ

H Σ

y

z

−
u

w

Σ

Figure 4.1. Feedback interconnection of an LTI system G and HIGS H.

In this figure, the LTI system G is given by

G :

{
ẋg(t) = Agxg(t) +Bgu(t) +Bww(t),

y(t) = Cgxg(t),
(4.1)

with states xg(t) ∈ Rm, exogenous input w(t) ∈ PB belonging to the class of
piecewise Bohl functions (conform Chapter 2), controlled output y(t) ∈ R, and
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control input u(t) ∈ R at time t ∈ R≥0. It is assumed that (Ag, Bg, Cg) is
minimal and the transfer functions from u to y and w to y are denoted by

Gyu(s) = Cg(sI −Ag)−1Bg, (4.2a)

Gyw(s) = Cg(sI −Ag)−1Bw. (4.2b)

Conform Assumption 2.3.1 the transfer functions in (4.2) have a relative degree
of at least two, which implies that CgBg = CgBw = 0.

A hybrid integrator-gain system H in Figure 4.1 is described by a piecewise
linear (PWL) system with discontinuous right-hand side

H :


ẋh(t) = ωhz(t), if (z(t), u(t), ż(t)) ∈ F1,

xh(t) = khz(t), if (z(t), u(t), ż(t)) ∈ F2,

u(t) = xh(t),

(4.3)

where xh(t) ∈ R denotes the state of the integrator, z(t) = −y(t) ∈ R is the input
to HIGS, which in the context of Figure 4.1 (recall Chapter 2) is differentiable,
ż(t) = −ẏ(t) denotes the corresponding time-derivative, and u(t) ∈ R is the
generated output at time t ∈ R≥0. The sets F1 and F2 dictating, respectively,
the integrator-mode and gain-mode in (4.3) are given by

F1 =
{

(z, u, ż) ∈ R3 | khzu ≥ u2 ∧ (z, u, ż) 6∈ F2

}
, (4.4a)

F2 =
{

(z, u, ż) ∈ R3 | u = khz ∧ ωhz2 > khżz
}
, (4.4b)

for which the union is given by the “[0, kh]-sector”, defined as

F = F1 ∪ F2 =
{

(z, u, ż) ∈ R3 | khzu ≥ u2
}
. (4.5)

The closed-loop system in Figure 4.1 with G as in (4.1), and H as in (4.3), (4.4)
can be written as the PWL system

Σ :

{
ẋ(t) = Aix(t) +Bw(t), if x(t) ∈ Xi, i ∈ {1, 2} ,
y(t) = Cx(t),

(4.6)

with augmented state vector x(t) = [xg(t)
>, xh(t)]> ∈ Rn, where n = m + 1.

The sets Xi, i ∈ {1, 2}, in (4.6) are given by

Xi = {x ∈ Rn | Ex ∈ Fi} , (4.7)

in which the matrix E is such that Ex = [z u ż]
>

, and is, therefore, given by

E> =

[
−C>g 0 −(CgAg)

>

0 1 0

]
. (4.8)
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The mode-dependent system matrices are given by

A1 =

[
Ag Bg
−ωhCg 0

]
, and A2 =

[
Ag Bg

−khCgAg 0

]
, (4.9)

and furthermore B = [B>w 0]>, and C = [Cg 0]. Recall from Chapter 2 that for
all inputs w ∈ PB, global existence and forward completeness of solutions to
the discontinuous differential equation in (4.6) is guaranteed.

Remark 4.2.1. The system matrix A2 in (4.9) results from explicit differenti-
ation of the algebraic constraint xh − khz = 0 in gain-mode. Consequently, A2

is rank deficient and has at least one zero eigenvalue. In the upcoming parts it
will be useful to remove this rank deficiency. This can be accomplished by adding
the algebraic constraint in gain-mode to A2, giving A2 := A2 +µbH with µ ∈ R,
b = [0 1]> and H = [−khCg − 1]. Since A2x = A2x for all x ∈ X2, this exten-
sion is not changing the dynamics in (4.6). Using the matrix A2 rather than A2

is particularly useful in further analysis where the dynamics in gain-mode are
required to be stable, and thus the matrix A2 must be Hurwitz.

4.2.2 Problem formulation

Stability properties of the closed-loop system in (4.6) are studied through the
notion of input-to-state stability (ISS), for which the definition has been given
earlier in Definition 2.3.6. According to Theorem 2.3.11 in Chapter 2, the closed-
loop system in (4.6) is ISS, if it admits an ISS-Lyapunov function in the sense
of Definition 2.3.10. Linearity of the individual sub-dynamics in (4.6) moti-
vates the choice for considering a candidate ISS-Lyapunov function V to be of
a quadratic form, i.e., V (x) = x>Px with P = P> ∈ Sn×n. The next theorem
presents sufficient conditions in the form of linear matrix inequalities (LMIs) for
guaranteeing the existence of a quadratic ISS-Lyapunov function for the HIGS-
controlled system in (4.6), thereby proving ISS.

Theorem 4.2.2. Consider the closed-loop system in (4.6) and depicted in Fig-
ure 4.1. Suppose there exist a symmetric matrix P = P> ∈ Sn×n and constants
τi ≥ 0, i ∈ {1, 2, 3}, that satisfy the LMIs

P − τ1S>JS � 0, (4.10a)

A>1 P + PA1 + τ2S
>JS ≺ 0, (4.10b)

Θ>(A>2 P + PA2 + τ3T
>JT )Θ ≺ 0, (4.10c)

where

S =

[
Cu

khCz − Cu

]
, T =

[
Cu

Cz (ωhI − khA2)

]
, J =

[
0 1
1 0

]
, (4.11)
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with Cz = [−Cg 0], Cu = [0 1], and Θ> = [I − khC
>
g ]. Then, the closed-

loop system (4.6) is ISS in the sense of Definition 2.3.6 with an ISS-Lyapunov
function given by V (x) = x>Px.

Proof. The proof is based on showing that, under the hypothesis of the theorem,
V (x) = x>Px satisfies the conditions in Definition 2.3.10 thereby qualifying as
a suitable ISS-Lyapunov function for the closed-loop system in (4.6).

Feasibility of the LMI in (4.10a) implies V (x) = x>Px > τ1x
>S>JSx for

any x ∈ Rn \ {0}. Since x>S>JSx = 2(khz − u)u ≥ 0 for all x ∈ X1 ∪ X2, and
τ1 ≥ 0, it follows by virtue of the S-procedure that V is positive definite, such
that the first condition (see (2.34)) is satisfied.

In a similar manner, feasibility of the LMI in (4.10b) implies

∇V (x)(A1x+Bw) = x>(A>1 P + PA1)x+ 2x>PBw

≤ −ε‖x‖2 − τ2x>S>JSx+ 2x>PBw

≤ −α1‖x‖2 + β1‖w‖2,
(4.12)

for sufficiently small ε > 0 and positive values for α1 and β1. For obtaining the
last inequality in (4.12), use is made of the S-procedure and Young’s inequality.

In gain-mode one finds xh = khz = −khCgxg with xg ∈ Rm the states of the
LTI part of the system, such that x = Θxg. Then, by virtue of Finsler’s lemma
(Boyd et al., 1994), satisfaction of the inequality in (4.10c) implies the existence
of some µ ∈ R such that for all x ∈ X2

∇V (x)(A2x+Bw) = x>(A>2 P + PA2)x+ 2x>PBw

≤ −ε2‖x‖2 − x>
(
τ3T

>JT + µH>H
)
x+ 2x>PBw

≤ −α2‖x‖2 + β2‖w‖2,
(4.13)

with H = [−khCg −1], and for some sufficiently small ε2 > 0 and positive values
for α2 and β2. The last inequality in (4.13) follows from use of the S-procedure
relaxation terms x>T>JTx = 2(ωhz − khż)u > 0 and Hx = khz − u = 0,
which hold for all x ∈ X2. Taking α = min {α1, α2} and β = max {β1, β2}, it
immediately follows that the second condition in Definition 2.3.10 is satisfied (see
(2.35)), and thus V (x) = x>Px is an ISS-Lyapunov function for the closed-loop
system in (4.6). Invoking the result in Theorem 2.3.11 completes the proof.

The next result demonstrates that the conditions in Theorem 4.2.2 provide
somewhat stronger robust (with respect to arbitrary small state perturbations)
stability guarantees for the closed-loop system in (4.6). It is an immediate
consequence from the use of a quadratic Lyapunov function, and the fact that
the S-procedure relaxation inequalities hold true for all x ∈ X i, i = {1, 2}.

Corollary 4.2.3. If the conditions in Theorem 4.2.2 are satisfied, then the
Krasovskii regularization of (4.6) (see (2.41) in Section 2.3.4) is ISS.
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Although numerically tractable, solving the LMIs in (4.10) requires a para-
metric model, which, in practice, may be hard to obtain if one desires an accu-
rate model description. Moreover, the conditions provide limited insight in the
(re)design of HIGS-based controllers for guaranteed (robust) stability when the
set of LMIs (4.10) turns out to be infeasible. Motivated by these concerns, the
main objective in this chapter is to establish frequency-domain conditions that
exploit non-parametric models for guaranteeing the existence of a solution to the
inequalities in (4.10). This allows for making the transition from time-domain
conditions to frequency-domain conditions for guaranteeing ISS.

4.3 Frequency-domain conditions for ISS

4.3.1 Existing results

Before presenting the main results, existing frequency-domain conditions for
switched systems as presented in Kamenetskiy, 2017; King et al., 2011; Van
Loon et al., 2017 are tailored to the specific class of HIGS-controlled systems
(see also Deenen et al., 2021 in this regard). The equivalence between these
conditions and the existence of a particular solution to the LMI problem in
(4.10) is provided explicitly in the next two theorems, the first which relates to
the results in Deenen et al., 2021; Van Loon et al., 2017, and the second which
relates to Kamenetskiy, 2017; King et al., 2011.

Theorem 4.3.1. Suppose the matrix Ag in (4.1) is Hurwitz, thereby having that
the linear part of the closed-loop system in (4.6) is ISS. The following conditions
are equivalent:

(i) The frequency-domain inequality

1 + Re
{
khCg(jωI −Ag)−1Bg

}
> 0 (4.14)

is satisfied for all ω ∈ R ∪ {∞}.
(ii) The LMIs in (4.10) admit a solution of the form P = diag(M,m) � 0,

with M ∈ S(n−1)×(n−1), m > 0, τ1 = 0, τ2, τ3 ≥ 0.

Proof. A proof is given in Appendix 4.A.3.

Theorem 4.3.2. Suppose the matrix A1 in (4.9) is Hurwitz, thereby having
that the integrator-mode subsystem in (4.6) is ISS. The following conditions are
equivalent:

(i) There exist constants α1 ≥ 0 and α2 ∈ R such that the frequency-domain
inequality

1 + Re
{
c(jωI −A1)−1b

}
> 0 (4.15)

with c = Cz(ωhI − khA2) +α1Cz +α2H, H = khCz −Cu, and b = [0 1]>,
is satisfied for all ω ∈ R ∪ {∞}.
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(ii) The LMIs in (4.10) admit a solution of the form P � 0, τ1 = τ2 = 0,
τ3 ≥ 0.

Proof. A proof is given in Appendix 4.A.4.

The frequency-domain conditions in (4.14) and (4.15) arise from applying
specific loop transformations to the original feedback configuration as depicted
in Figure 4.2. In particular, specific properties of HIGS are exploited for re-
arranging the original feedback interconnection into an equivalent interconnec-
tion of two passive subsystems (Khalil, 2002; van der Schaft, 2017). The loop
transformation underlying (4.14) is shown in Figure 4.2b, and transforms HIGS
into a dynamical system H̄ with input z̄ = z − u/kh and output ū = u/kh.
Sector-boundedness yields z̄ū ≥ 0 such that H̄ preserves input-output passivity
properties. The linear system is transformed to

Ḡyu(s) = 1 + khGyu(s) = 1 + khCg(sI −Ag)−1Bg,

which, under condition (4.14), is a strictly passive system. Using standard pas-
sivity arguments (see, e.g., Khalil, 2002, Theorem 6.3) one finds the original
feedback interconnection to be (strictly) passive, which, possibly under some
additional observability conditions may imply asymptotic stability. In a com-
parable manner, the loop transformation underlying the frequency-domain con-
dition in (4.15) is depicted in Figure 4.2c. In this figure, HIGS is transformed
into a dynamical system H̄ with input z̄ = khż + (k + ωh)z + α2u − u̇, where
k = −ωh − α1 − khα2, and output ū = u̇ − ωhz. Note that xh = u is differen-
tiable for almost all times t ∈ R≥0. In integrator-mode, one finds ū = 0 such
that z̄ū = 0, and in gain-mode one has z̄ū = α1z(ωhz − khż) ≥ 0, such that
overall z̄ū ≥ 0, and the transformed system H̄ preserves input-output passivity
properties. The linear part in Figure 4.2c is transformed according to

Ḡyu(s) = 1 +
Gyu(s)(khs+ k) + α2

s+ ωhGyu(s)
= 1 + c(sI −A1)−1b,

which, when satisfying the frequency-domain inequality (4.15), is guaranteed to
be a (strictly) passive system. By virtue of, e.g., Khalil, 2002, Theorem 6.3,
one can eventually conclude on passivity of the original system. Under some
additional observability conditions this, in turn, can imply asymptotic stability
of the closed-loop system. Interestingly, the loop transformation underlying
condition (4.14) only exploits static input-output properties of HIGS, whereas
the transformation underlying condition (4.15) also exploits knowledge of the
internal (integrator) dynamics of HIGS.

Regarding Theorem 4.3.1 and Theorem 4.3.2, more observations can be made:

1. As a consequence of the fact that both theorems guarantee the existence
of a solution to the LMI problem (4.10) with τ1 = 0, an ISS-Lyapunov
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Gyu1
s

Σ khs+ k Σ

α2

Σ Σ

ωh

HsΣ
1

khs+k
Σ

α2

Σ

ωh

Σ

− +

−

u z −
−

+

−
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(c) Loop transformation applied in Theorem 4.3.2 with k = −ωh − α1 − khα2.

Figure 4.2. Loop transformations underlying the frequency-domain inequali-
ties (4.14) and (4.15) in Theorem 4.3.1 and Theorem 4.3.2, respectively.
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function V (x) = x>Px is found that is guaranteed to be positive in the
full state space Rn, while the states of the closed-loop system only evolve
in part of the state space. This observation reveals possible restrictions
on the considered class of Lyapunov function candidates that are used
in Theorem 4.3.1–4.3.2. In that sense, the conditions potentially become
conservative.

2. Theorem 4.3.1 is applicable to HIGS-based control systems for which the
LTI part Gyu is stable. However, in many applications that may benefit
from HIGS-based control, such as motion systems, the linear part of the
dynamics contains simple integrators, which renders Theorem 4.3.1 not
straightforwardly applicable as Gyu is not stable. As indicated before, the
interplay between the LTI dynamics and the integrator-dynamics of HIGS
is not exploited in the conditions of Theorem 4.3.1, and HIGS is regarded
as a static sector-bounded nonlinearity. This is also visible from the fact
that the frequency-domain inequality in (4.14) does not depend on ωh.

3. Theorem 4.3.2 is only applicable to HIGS-based control systems having
stable linear dynamics in integrator mode. This narrows down the scope
of applications for which Theorem 4.3.2 may be a useful tool for stability
analysis. In fact, one may argue that unstable integrator-mode dynamics
largely contribute to potential performance improvements with HIGS, and
therefore is a desirable property of a HIGS-based controller design.

4. Closer inspection of the proofs of Theorem 4.3.1 and Theorem 4.3.2 reveals
that the conditions (4.14) and (4.15) imply the existence of a common
quadratic Lyapunov function (CQLF) for the pairs (Ag, Ag−khBgCg) and
(A1, A1 − bc), respectively. Existence of a CQLF for (Ag, Ag − khBgCg) is
only possible when the gain-mode dynamics are asymptotically stable, i.e.,
the matrix Ag−khBgCg is Hurwitz. On the other hand, when considering a
CQLF for (A1, A1−bc), one finds that since A1−bc = A2−b(α1Cz+α2H),
restricting α1 = 0 leads to a CQLF for the integrator-mode and gain-mode
dynamics (recall from Remark 4.2.1 that α2 does not alter the gain-mode
dynamics). This is equivalent to saying that the piecewise linear system
(4.6) is asymptotically stable under arbitrary switching. As switching of
HIGS is dictated by state-dependent conditions only, this possibly leads to
conservative results.

In conclusion, although the results in Theorem 4.3.1 and Theorem 4.3.2 are
of interest, they suffer from specific restrictions that are not always beneficial
for HIGS-based design as indicated in the above observations. Therefore, lift-
ing these restrictions in the sense of obtaining less conservative conditions is
considered important for useful practical applications.
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4.3.2 Main results

To address the previously discussed issues and provide less restrictive conditions,
consider the next theorem, which forms the main result of this chapter.

Theorem 4.3.3. Suppose the matrix Ag − khBgCg is Hurwitz, thereby having
that the gain-mode subsystem in (4.6) is ISS. If there exist numbers λ ≥ 0, k ≥ 1
such that for all ω ∈ R ∪ {∞} the frequency-domain inequality

1 + Re

{(
λkCu + F +

(
λ+ k

ωh
kh

)
H

)
(jωI −A2)

−1
b

}
> 0 (4.16)

is satisfied, with A2 = A2 +k ωhkh bH, H = khCz−Cu, and F = Cz (khA1 − ωhI),

then the LMI problem (4.10) admits a feasible solution of the form P = (M +
λH>H) + τ1S

>JS with M = M> � 0, τ1 = λk, τ2 = λk(k − 1)ωh/kh and
τ3 = 0.

Proof. The proof can be found in Appendix 4.A.5.

To obtain insights in the frequency-domain condition (4.16), it is instructive
to study aspects of the underlying loop transformation depicted in Figure 4.3,
in particular, passivity of the transformed system H̄. Passivity properties of
the LTI loop-transformed system Ḡyu are discussed thereafter, and finally the
connection with the existence of an ISS-Lyapunov function is highlighted.

Observe that in Figure 4.3 the loop-transformed nonlinear system H̄ admits
an input z̄ = (W + khL

−1)z− (K +L−1)u = (ωhz− u̇)−λ(khz− (1− k)u), and
output ū = L−1(u − khz) = u̇ − khż + k ωhkh (u − khz). Passivity of H̄ does not
directly follow from a similar reasoning as for the transformations studied in the
previous section, since non-negativity of the input-output product z̄ū does not
necessarily hold point-wise in time. However, observe that for almost all times
t ∈ R≥0 one may write

z̄(t)ū(t) = τR (z(t), u(t)) + U̇ (z(t), u(t)) +O (z(t), u(t), ż(t), u̇(t)) (4.17)

in which τ = λk(k − 1)ωh/kh ≥ 0, and

R(z, u) = u(khz − u), (4.18a)

U(z, u) = λ

(
ku(khz − u) +

1

2
(khz − u)

2

)
, (4.18b)

and where

O(z, u, ż, u̇) = (ωhz − u̇)(u̇− khż + (K + λ)(khz − u)). (4.19)

From sector-boundedness of HIGS in (4.3), one finds point-wise in time that
R(z(t), u(t)) ≥ 0, U(z(t), u(t)) ≥ 0, and since u̇ = ωhz in integrator-mode and
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Ḡyu

H̄

Figure 4.3. Loop transformation underlying the frequency-domain inequality
in (4.16) in Theorem 4.3.3, where K = λ(k−1)−kωh/kh, L(s) = (s+kωh/kh)−1,
and W (s) = ωh(1− k)− λkh − khs.

both u = khz and u̇ = khż in gain-mode, one has O(z(t), u(t), ż(t), u̇(t)) = 0 for
almost all times t. Since τ ≥ 0, one then finds (with some abuse of notation for
R(t) and O(t))

U(0) +

∫ T

0

z̄(t)ū(t)dt = U(T ) +

∫ T

0

(τR(t) +O(t)) dt ≥ 0, (4.20)

which implies that the transformed system H̄ in Figure 4.3 preserves input-
output passivity properties. Note that the key difference with the transfor-
mations employed in Theorem 4.3.1 and Theorem 4.3.2 is that, besides static
input-output properties and knowledge regarding the underlying dynamics, also
integral properties are exploited here.

Next, passivity properties of the transformed LTI system Ḡyu(s) in Figure 4.3
are studied. Observe from Figure 4.3 that this transfer function is given by

Ḡyu(s) = 1 +

(
K +W (s)Gyu(s)

1 + khGyu(s)

)
L(s). (4.21)

To see the relation with the frequency-domain condition in (4.16), first observe
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that (4.21) admits the state-space formulation

Σ̄ :

{
˙̄x = Āx̄+ B̄ū,
ȳ = C̄x̄+ D̄ū (4.22)

with state x̄ ∈ Rn, input and output ū, ȳ ∈ R, and matrices

[
Ā B̄
C̄ D̄

]
=


Ag − khBgCg Bg 0

0 −k ωhkh 1

Fg − λkhkCg K 1

 , (4.23)

in which Fg = Cg(ωhI − khAg) and K = λ(k− 1)− kωh/kh. Consider the state
transformation x = T x̄ with

T =

[
I 0

−khCg 1

]
, and T−1 =

[
I 0

khCg 1

]
. (4.24)

Using this transformation, one finds an equivalent state-space description as

[
T ĀT−1 T B̄
C̄T−1 D̄

]
=

[
A2 B
C D

]
=


Ag Bg 0

−khCgAg − kωhCg −k ωhkh 1

Fg − (λkh + kωh)Cg K 1

 ,
(4.25)

such that, in turn, (4.21) is equivalent to

Ḡyu(s) = C (sI −A2)
−1 B +D

=

(
λkCu + F +

(
λ+ k

ωh
kh

)
H

)
(sI −A2)

−1
b+ 1.

(4.26)

As such, the frequency-domain condition in (4.16) implies the LTI part Ḡyu in
Figure 4.3 to be (strictly) passive, such that, in turn, the interconnection in
Figure 4.3 is (strictly) passive.

To see the connection with an ISS-Lyapunov function and feasibility of the
LMIs in (4.10), first note that strict passivity of Ḡyu is equivalent (Khalil, 2002;
van der Schaft, 2017) to the existence of a quadratic storage function W (x) =
x>Mx > 0 satisfying

Ẇ (x) = x>
(
A>2 M +MA2

)
x+ x>Mbū+ ū>b>Mx+ 2x>MBw

= −εx>Mx− 2z̄ū+ 2x>MBw.
(4.27)

This, however, is not an appropriate ISS-Lyapunov function in the sense of
Definition 2.3.10. On the other hand, consider the function

V (x) = W (x) + 2λU(z, xh) > 0, for all x ∈ X = X1 ∪ X2, (4.28)
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where U(z, xh) = kxh(khz − xh) + 1
2 (khz − xh)2, and λ ≥ 0. The inequality

in (4.28) follows from the fact that W (x) > 0 for all non-zero x ∈ Rn and
U(z, xh) ≥ 0 for all x ∈ X . The time-derivative of V satisfies for all x ∈ X and
almost all time t ∈ R≥0

V̇ (x) ≤ −εx>Mx− 2z̄ū+ 2U̇(z, xh) + 2x>MBw < −α‖x‖2 + β‖w‖2, (4.29)

where for obtaining the second inequality it is used that z̄(t)ū(t) = τR(t) +
U̇(t) + O(t), with τR(t) + O(t) ≥ 0. Hence, V is an ISS-Lyapunov function
that is guaranteed to be positive definite for all x ∈ X , and for which the
existence is guaranteed by the frequency-domain inequality in (4.16). In fact,
one can write V (x) = x>Px with P = M + λH>H + τ1S

>JS and τ1 = λk,
which coincides with the specific ISS-Lyapunov function that results from The-
orem 4.3.3. The connection between the frequency-domain inequality and the
existence of the quadratic ISS-Lyapunov function (and, therefore, feasibility of
the LMIs in (4.10)) is formally shown in the proof of Theorem 4.3.3 as provided
in Appendix 4.A.5

Remark 4.3.4. Satisfying the inequality in (4.16) with λ = 0 results in a com-
mon quadratic Lyapunov function for the piecewise linear system (4.6), which
follows from the fact that this choice yields z̄ū = 0 for all times. Hence, in this
case no further information about HIGS is exploited, and the condition is found
to be equivalent to (4.15) with α1 = 0 and α2 = kωh/kh.

4.3.3 Verifying the frequency-domain conditions

While the above discussion helps in establishing links with results from the
literature and insights in the existence of a particular ISS-Lyapunov function, at
this point in the analysis it is not immediately clear how to verify the frequency-
domain condition (4.16) in an effective manner. In order to derive a practical
method for verifying the conditions, recall that the relevant transfer function is
given by

Ḡyu(s) = 1 +

(
λ(kCu +H) + F + k

ωh
kh
H

)
(sI −A2)−1b

= 1 +

(
KS(s) +

1

kh
W (s)T (s)

)
L(s)

= 1 +

(
ωh
kh

(T (s)− k)− sT (s)

)
L(s)− λ(1− kS(s))L(s),

(4.30)

where S(s) = 1/(1 + khGyu(s)) and T (s) = khGyu(s)S(s) with Gyu(s) given in
(4.2) equal the sensitivity and complementary sensitivity functions in gain-mode.

For verifying the conditions of Theorem 4.3.3, one should first verify if the
gain-mode dynamics are input-to-state stable. This can be done by applying the
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Nyquist stability criterion (Franklin et al., 2005, Section 6.3) to the open-loop
characteristics 1+khGyu(jω). Note that (part of) the characteristics of Gyu(jω)
may be obtained from frequency-response function (FRF) measurements. Next,
condition (4.16) can be verified by searching for parameters λ ≥ 0, k ≥ 1 such
that the frequency-domain inequality Re(Ḡyu(jω)) > 0 with Ḡyu(jω) given in
(4.30) holds for all ω ∈ R. This amounts to verifying the inequality

1 +X(jω, k)− λY (jω, k) > 0, (4.31)

where

X(jω, k) = Re

{((
ωh
kh
− jω

)
T (jω)− kωh

kh

)
L(jω, k)

}
=
ωh
kh

Re {(T (jω)− k)L(jω, k)}+ ωIm {T (jω)L(jω, k)} ,
(4.32a)

and

Y (jω, k) = Re {(kT (jω)− k + 1)L(jω, k)}
= kRe {T (jω)L(jω, k)}+ (1− k)Re {L(jω, k)} . (4.32b)

For any fixed k, condition (4.31) can be verified graphically by inspecting if the
(X,Y )-curve lies to the right of the line 1+X−λY = 0, i.e., a line in the (X,Y )-
plane that passes through the point (X,Y ) = (−1, 0) with a slope of 1/λ. The
parameter k ≥ 1 can be used for shaping the (X,Y )-curve. This graphical test
shows resemblance with the classical Popov plot (Khalil, 2002).

A few useful insights that follow from the representation in (4.31) are estab-
lished in the following corollaries.

Corollary 4.3.5. If the conditions in Theorem 4.3.1 are satisfied, then the
conditions in Theorem 4.3.3 are satisfied as well.

Proof. Choose λ = ωh/kh and observe that with this choice one finds limk→∞(1+
X(jω, k)) = 0 and

lim
k→∞

λY (jω, k) = Re {T (jω)− 1} = −Re

{
1

1 + khGyu(jω)

}
. (4.33)

Hence, for k →∞ condition (4.31) reduces to

Re

{
1

1 + khGyu(jω)

}
=

1 + khRe {Gyu(jω)}
‖1 + khGyu(jω)‖2 > 0. (4.34)

Obviously, if (4.14) is satisfied, then the matrix Ag − khBgCg is Hurwitz, and
the inequality in (4.34) is also satisfied.

Corollary 4.3.5 implies that the conditions in Theorem 4.3.3 are equally or
less restrictive than the conditions in Theorem 4.3.1.
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Corollary 4.3.6. Consider the closed-loop system in (4.6) and suppose that
the gain-mode subsystem is input-to-state stable for all ωh ≥ ω∗h with ω∗h ≥ 0.
Then for any ωh > max {ω∗h, 2µkh}, with µ = supωh≥ω∗h ‖ωT (jω, ωh)‖∞, the

closed-loop system (4.6) is ISS.

Proof. Choose λ = ωh
kkh

such that (4.31) evaluates to

1+X(jω, k)−λY (jω, k) = 1+ωIm {T (jω)L(jω)}−ωh
kh

(
k2 − k + 1

k

)
Re {L(jω)} .

(4.35)
Since

Re {L(jω)} =
kkhωh

k2
hω

2 + (kωh)2
≤ kh
kωh

, for all ω ∈ R, (4.36)

and k(k − 1) ≥ 0, one finds that (4.35) is bounded from below by

1 +X(jω, k)− λY (jω, k) ≥
(
k − 1

k2

)
+ ωIm {T (jω)L(jω)} . (4.37)

From the assumption that the gain-mode is stable for any ωh ≥ ω∗h, it holds that
‖ωT (jω, ωh)‖∞ ≤ µ̃(ωh) ≤ µ with µ = supωh≥ω∗h ‖ωT (jω, ωh)‖∞, and, therefore,

‖ωT (jω)L(jω)‖∞ ≤ ‖ωT (jω)‖∞‖L(jω)‖∞ ≤ µkh/(kωh). This, in turn, implies

|ωIm {T (jω)L(jω)} | ≤ µ kh
kωh

. (4.38)

Choose k = 2 such that (4.37) yields(
k − 1

k2

)
+ ωIm {T (jω)L(jω)} ≥ 1

4
− µkh

2ωh
. (4.39)

Hence, for ωh > max {ω∗h, 2µkh} one finds that (4.31) holds. The conditions of
Theorem 4.3.3 are satisfied, thereby guaranteeing ISS of (4.6).

Remark 4.3.7. In case T (jω) is independent of ωh, one has ω∗h = 0, and
µ = ‖ωT (jω)‖∞.

The result in Corollary 4.3.6 is not surprising. As the time-domain behaviour
of HIGS tends to a gain for ωh → ∞, the characteristics of the piecewise lin-
ear closed-loop system (4.6) tend to that of the gain-mode dynamics. Stability
properties of the closed-loop system are then determined by stability properties
of the gain-mode dynamics. Hence, in this manner the nonlinear contribution
of HIGS can be mitigated. This, in turn, shows that it is always possible for
a HIGS-based control system to fall back onto a linear design when choosing
ωh sufficiently large, thereby demonstrating a simple mechanism to balance be-
tween dominant “linear” and “nonlinear” behaviour of the closed-loop system.
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These observations also allow for an intuitive tuning approach for HIGS-based
control systems with guaranteed stability. One can start with choosing ωh suf-
ficiently large and a stable gain-mode design, the latter obtained via, e.g., loop-
shaping techniques (Steinbuch and Norg, 1998). By gradually decreasing ωh,
the minimum value ω∗h can be found for which the frequency-domain condition
(4.31) is satisfied. By decreasing ωh, the effect of the nonlinearity is made more
pronounced. Using a (time-domain) performance objective, one can iteratively
search for an appropriate value for ωh ≥ ω∗h. Small values for ωh have been ob-
served to benefit transient performance properties, see for instance the example
discussed in Chapter 3. Interestingly, for the example considered in Chapter 3,
ISS can be verified on the basis of Theorem 4.3.3.

4.3.4 Example: Mass-spring-damper system

To demonstrate the potential improvements resulting from the frequency-domain
condition (4.16) in Theorem 4.3.3, a comparative study is made for the control
configuration given in Figure 4.4.

Σ H C Σ P
z u

w

y

−

G

Figure 4.4. Mass-spring-damper example with HIGS.

In this example, the plant is a mass-spring-damper system represented by
the transfer function

P (s) =
1

ms2 + bs+ k
, (4.40)

with m = 1 kg, b = 0.0564 Ns/m, and k = 1 N/m, and the linear part of the
HIGS-based feedback controller is given by a first-order lead filter

C(s) = kp

(
s+ ωz
s+ ωp

)
, (4.41)

with kp = 1.4 Nm, ωz = 5 rad/s, and ωp = 6.95 rad/s. The transfer function
from u to y is given by Gyu(s) = C(s)P (s), and the transfer function from w to
y is given by Gyw(s) = P (s). In this control configuration, HIGS is deployed as
a first-order low-pass filter with less phase-lag than its linear counterpart. For
this system, the LMIs in (4.10), as well as the frequency-domain conditions in
Theorem 4.3.1–4.3.3 are verified for several values of the parameters ωh and kh.
The corresponding results are shown in Figure 4.5.
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(a) Feasibility of the LMIs (4.10) in
Theorem 4.2.2.

(b) Feasibility of the FDI (4.14) in
Theorem 4.3.1.

(c) Feasibility of the FDI (4.15) in
Theorem 4.3.2.

(d) Feasibility of the FDI (4.16) in
Theorem 4.3.3.

Figure 4.5. A comparison between the time-domain conditions (LMIs) in
Theorem 4.2.2 and the frequency-domain conditions (FDIs) in Theorem 4.3.1–
4.3.3 for different values of the HIGS parameters ωh and kh.

As can be seen from Figure 4.5b, the conditions in Theorem 4.3.1 guarantee
a solution to the LMI problem in (4.10) for kh ≤ 0.12. This value results
from the fact that condition (4.14) treats HIGS as a generic sector-bounded
nonlinearity, and, therefore, does not take into account its integrator dynamics.
This is manifested by the fact that (4.14) is independent of ωh. Since (for values
kh > 0.12) a solution to the LMIs in (4.10) clearly depends on ωh as well, (4.14)
can never be satisfied beyond this point.

Similarly, the conditions in Theorem 4.3.2 are found to guarantee a solution
for all ωh ≤ 0.056 rad/s as is shown in Figure 4.5c. This bound is the result
from the fact that for ωh > 0.056 rad/s, the integrator dynamics are unstable
and, therefore, Theorem 4.3.2 cannot be applied to these cases. Compared to the
actual region in Figure 4.5a where the LMIs in (4.10) admit a solution, the results
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obtained with Theorem 4.3.1 and Theorem 4.3.2 appear quite conservative.

On the other hand, as can be seen from Figure 4.5d, the conditions in Theo-
rem 4.3.3 lead to a close match with the region where the LMIs in (4.10) have a
solution. In fact, the frequency-domain inequality (FDI) in (4.16) and the LMIs
in (4.10) almost appear to be identical for the given example (Figure 4.5a versus
Figure 4.5d). A graphical check of the conditions in (4.31) through a Popov-like
plot as discussed previously is shown in Figure 4.6 for the pair kh = 0.23 and
ωh = 1.05, with k = 4 and λ = 1.35.

Figure 4.6. Popov-like plot of the (X, Y )-curve for the system in Figure 4.4
with kh = 0.23 and ωh = 1.05. The stability parameters k, λ for satisfying
(4.31) are found to be k = 4 and λ = 1.35.

It is stressed that, when compared to the actual stable region obtained
by time-domain simulations (grey area), the LMIs in (4.10) resulting from a
quadratic Lyapunov function still introduce conservatism in the analysis. Other
techniques such as the construction of piecewise quadratic Lyapunov functions
(Rantzer and Johansson, 2000) should be used for further reducing this conser-
vatism. The construction of piecewise quadratic Lyapunov functions for HIGS-
based control systems is discussed in Chapter 5. For the example discussed it
will be shown later in Section 5.5 that a stability analysis based on such an
approach can approximate the grey area in Figure 4.5 very closely.
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4.4 Robustifying the conditions

The transition from time-domain tools toward frequency-domain tools for stabil-
ity analysis of nonlinear systems allows for an intuitive extension toward dealing
with plant uncertainties. This is particularly useful for industrial applications
where one often designs a single controller for a population of systems that in-
cludes many system realizations. For the classical circle- and Popov critera,
extensions toward robust stability have been made in, e.g., Impram and Munro,
2001; Tsypkin and Polyak, 1992. Inspired by these works, the frequency-domain
criteria presented in Theorem 4.3.3 are extended toward systems with multi-
plicative uncertainties.

4.4.1 Stability criteria for plants with multiplicative
uncertainty

Suppose that the SISO LTI plant Gyu(s) in (4.2) is not exactly known, but
instead is known to belong to the multiplicative uncertainty set

Π = {Gyu(s) | Gyu(s) = G0(s)(1 +W (s)∆(s)),∆(s) ∈ RH∞ and ‖∆‖∞ ≤ 1} ,
(4.42)

where G0(s) is a nominal model of the plant, W (s) is a proper and stable weight-
ing function that captures magnitude information on uncertainties in the system,
and ∆(s) is the (normalized) uncertainty which can be represented by an arbi-
trary proper and stable transfer function that satisfies ‖∆‖∞ ≤ 1. For more
details on uncertainty modelling and appropriate weighting filter selection for
SISO LTI systems, see, e.g., Skogestad and Postlethwaite, 2010, Chapter 7.

To verify stability of the HIGS-based control system (4.6) for all possible
plants Gyu(s) ∈ Π, one essentially has to check two conditions: 1) stability of
the nominal gain-mode dynamics with respect to all allowable perturbations,
and 2) satisfaction of the frequency-domain inequality (4.31) for all Gyu(s) ∈ Π.
In the next proposition, these conditions are formalized and expressed in terms
of requirements on the nominal system, i.e., with ∆(s) = 0.

Proposition 4.4.1. Suppose that the LTI part of the closed-loop system (4.6)
dictating the transfer from u to y satisfies Gyu(s) ∈ Π with Π the uncertainty set
given in (4.42), and assume that the nominal gain-mode dynamics with ∆(s) = 0
are input-to-state stable. If for all ω ∈ R the closed-loop system (4.6) satisfies

‖W (jω)L0(jω)‖ < ‖1 + L0(jω)‖ , (4.43)

with L0(s) = khG0(s), and there exist numbers λ ≥ 0, k ≥ 1 such that for all
ω ∈ R the frequency-domain inequality

1 +X0(ω, k)− λY0(ω, k)− ρ(ω)

√(
ωh
kh
− λk

)2

+ ω2 > 0, (4.44)
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is satisfied, where

X0(ω, k) =
ωh
kh

Re {(T0(jω)− k)Cl(jω)}+ ωIm {T0(jω)Cl(jω)} , (4.45a)

Y0(ω, k) = kRe {T0(jω)Cl(jω)}+ (1− k)Re {Cl(jω)} , (4.45b)

with

T0(s) =
L0(s)

1 + L0(s)
, and Cl(s) =

1

s+ k ωhkh
, (4.46)

and where

ρ(ω) =
‖T0(jω)W (jω)Cl(jω)‖

‖1 + L0(jω)‖ − ‖W (jω)L0(jω)‖ , (4.47)

then, the overall closed-loop system (4.6) is ISS for all plants Gyu(s) ∈ Π.

Proof. The proof can be found in Appendix 4.A.6.

Condition (4.43) is standard practice in robust control theory for LTI sys-
tems, and can be verified by plotting the Nyquist diagram of the nominal open-
loop characteristics L0(jω). At each frequency ω superimpose a circle with center
L0(jω) and radius r(ω) := ‖W (jω)L0(jω)‖. If none of these circles in the com-
plex plane cover the critical point (−1, 0), then (4.43) is satisfied which means
that the gain-mode dynamics are robustly stable with respect to all allowable
plant perturbations contained in Π.

Due to the nonlinear appearance of λ in (4.44), however, it is not immediately
clear how to check this condition graphically. One possible approach is to plot
the nominal (X0, Y0) locus and for each frequency ω draw an ellipse centered at
(X0, Y0) and described by the quadratic equation

x2 − 2
ωh
kkh

xy +

(
ω2
h

k2k2
h

+
ω2

k2

)
y2 − (ωρ(ω))2 = 0. (4.48)

The resulting hull of the ellipses should lie to the right of the line 1+x−λy = 0.
A less involved, but possibly more conservative method, follows from the

inequality (Tsypkin and Polyak, 1992)√(
ωh
kh
− λk

)2

+ ω2 ≤
√(

ωh
kh

)2

+ ω2 + λk.

One can construct a lower-bound for the left-hand side in (4.44) as

1 +

X0(ω, k)− ρ(ω)

√(
ωh
kh

)2

+ ω2

− λ (Y0(ω, k) + kρ(ω))

= 1 +X ′0(ω, k)− λY ′0(ω, k).

(4.49)

Hence, if (4.49) is positive, then the inequality in (4.44) is satisfied. Positiveness
of (4.49) can be verified by inspecting if the shifted locus (X ′0, Y

′
0) lies to the

right of the straight line defined by 1 + x− λy = 0 for some λ ≥ 0, k ≥ 1.
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4.4.2 Example: Rotating beam

To illustrate the applicability of the conditions for robust stability in Proposi-
tion 4.4.1, consider a rotating beam with a mass located at the tip, representing,
for example, a robotic arm with end effector (Sciavicco and Siciliano, 2000).
The plant dynamics from input torque τ to the tip deflection θ are not exactly
known, but instead are known to belong to the set

Π = {P (s) = P0(s) (1 +W (s)∆(s)) | ∆(s) ∈ RH∞ and ‖∆‖∞ ≤ 1} , (4.50)

where P0(s) = 1/s2 is a rigid body model of the beam, and

W (s) =
3.5s2 + 4.9s+ 3.5

s2 + 27.2s+ 289
(4.51)

is a second-order weighting filter that accounts for unmodelled high-frequency
dynamics such as, e.g., the flexible modes of the beam or actuator/sensor dy-
namics (Sciavicco and Siciliano, 2000). For robustly stabilizing the beam around
the horizontal position defined by θ∗ = 0, a HIGS-based feedback controller, be-
ing the series interconnection of HIGS and an LTI filter, is considered. The
closed-loop configuration is depicted in Figure 4.7.

Σ H C P0 Σ

W ∆

τ θ

−

P

Figure 4.7. Feedback control configuration for the rotating flexible beam.

The linear part of the controller is constructed as the series interconnection
of a lead filter, a second-order low-pass filter, and an additional zero, that is,

C(s) = kp

(
s+ ωz
s+ ωp

)
ω2
lp(s+ ωc)

s2 + 2βωlps+ ω2
lp

. (4.52)

The lead filter in (4.52) is used for stabilizing the gain-mode dynamics, whereas
the second-order low-pass filter is used for providing sufficient roll-off at high fre-
quencies. The zero in (4.52) at ωc in series with HIGS provides a (local) phase
lag reduction in the control loop, intended to improve the transient properties
of the closed-loop system, see also the design rationale as discussed earlier in
Chapter 3. The controller (4.52) is initially designed on the basis of the nom-
inal rigid-body model P0(s) in such a manner that the nominal closed-loop in
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gain-mode is stable and satisfies a peaking constraint of 4 dB on the sensitivity
function. Note that enforcing such a robustness bound helps in keeping the per-
turbation term (4.47) small, as this directly relates to the worst-case sensitivity
in gain-mode. The resulting parameters are given by kp = 10 N/m, ωz = 0.8
rad/s, ωp = 9 rad/s, ωlp = 11 rad/s, β = 1.2 and ωc = ωh|1 + 4jπ| rad/s, kh = 1
and ωh = 3.5 rad/s.

Figure 4.8. Uncertainty region around the nominal open-loop L0(jω) =
khC(jω)P0(jω) (black) generated by the multiplicative uncertainty. The critical
point (−1, 0) is not covered by this region, so the nominal gain-mode dynam-
ics are robustly stable against the given uncertainty. The dashed-dotted circle
indicates a 4 dB robustness bound (modulus margin) on the nominal system.

The nominal open-loop characteristics L0(jω) = khC(jω)P0(jω) together
with the uncertainty region generated by the multiplicative uncertainty are
shown in Figure 4.8. From this figure it is concluded that condition (4.43) is
satisfied, and the gain-mode dynamics are stable for all possible plants P (s) ∈ Π.

Verification of the frequency-domain condition in (4.44) is done by means of
inspecting the shifted (X0, Y0)-locus in (4.49), as well as the uncertainty region
around the nominal (X0, Y0)-locus generated by ellipsoids of the form described
in (4.48). The corresponding plots (with k = 10) are given in Figure 4.9. First
note on the basis of the nominal locus (black curve) in the figure that the nominal
HIGS-based control system is ISS. Remark that for this case the conditions in
Theorem 4.3.1 and Theorem 4.3.2 are not applicable due to the presence of a
double integrator in the plant, and the unstable integrator-mode dynamics.

Regarding stability of the perturbed system, no conclusions can be drawn on
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Figure 4.9. Verifying inequality (4.44) by means of i) the shifted (X0, Y0)-
locus (red), and ii) the uncertainty region around the nominal (X0, Y0)-locus
(black) generated by the ellipses described in (4.48). Stability for all P (s) ∈ Π
is verified by means of the latter approach with k = 10 and λ = 1.05.

(a) Nyquist plot of the gain-mode. (b) Popov-like plot.

Figure 4.10. Graphical illustration of the conditions in Theorem 4.3.3 for the
nominal plant P (s) = P0(s), and two perturbed plants P (s) = P0(s)(1−W (s))
and P (s) = P0(s)(1 +W (s)).

the basis of the shifted (X0, Y0)-locus (red curve), as there is no λ ≥ 0 such that
this curve lies to the right of the line 1 + x − λy = 0. On the other hand, the
ellipse-based uncertainty region (dotted) around the nominal locus is found to
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remain to the right of such line with λ = 1.05 and thus (4.44) holds with k = 10
and λ = 1.05. This clearly illustrates that, despite its computational advantage,
using the shifted locus for verifying inequality (4.44) can be more conservative
than the approach using ellipses. Since all conditions in Proposition 4.4.1 are
satisfied, one can conclude that the HIGS-based control system is ISS for all
P (s) ∈ Π. For a final demonstration, two perturbed plants are considered with
∆(s) = −1 and ∆(s) = 1 for which the relevant plots are given in Figure 4.10.
Conform the previous results, the conditions in Theorem 4.3.3 are satisfied and
the corresponding closed-loop systems are ISS. A numerically obtained solution
to the LMI problem in (4.10) for these cases that follows from satisfying the
frequency-domain conditions in Theorem 4.3.3 is provided in Appendix 4.B.

4.5 Application to a motor-load motion system

In this section, applicability of the presented tools is demonstrated on an ex-
perimental motion control application. The set-up is shown in Figure 4.11
and consists of two rotating masses connected by a thin, flexible shaft. Non-
collocated actuation is considered, i.e., measurements by the encoder at the
load side (right-side) are separated from actuation at the motor side (left side),
see, e.g., Preumont, 1997 for further details on these type of systems. The mea-
sured frequency-response function (FRF) of the plant P (jω) from actuator input
to encoder position of the load is shown in Figure 4.12, and is obtained from
closed-loop measurements with a sampling frequency of 2 kHz.

1
2

3

4 4

Figure 4.11. Experimental motor-load motion system set-up with 1©: actuator
(motor side), 2©: encoder (load side), 3©: flexible shaft, and 4©: rotating masses.
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Figure 4.12. Measured frequency response function (FRF) of the experimental
motor-load motion system.

4.5.1 Controller design

Consider the feedback control scheme as depicted in Figure 4.13. Given a ref-
erence command r(t) ∈ R, a servo error signal e(t) is constructed using the
relation e(t) = r(t) − q(t), where q(t) ∈ R represents the measured output of
the motor-load motion system P at time t ∈ R≥0. This system is subject to an
input disturbance d(t) ∈ R for t ∈ R≥0. For dealing with external (set-point

Σ Σ Cnom Σ P

Ci

r q

−

de v
Cfb

Figure 4.13. Feedback control scheme for the motor-load motion system.

induced) disturbances, a feedback controller Cfb = (1 + Ci)Cnom with integral
action is designed. The nominal LTI filter Cnom(s) is given by

Cnom(s) = kp

(
s+ ωz
s+ ωp

)(
ω2
lp

s2 + 2βlpωlps+ ω2
lp

)
, (4.53)
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whereas Ci is a HIGS-based integrator as depicted in Figure 4.14 with ωc =
ωh|1 + 4j/π|/kh. This specific HIGS-based integrator design stems from the
ideas in Chapter 3 and is intended for balancing transient and steady-state per-
formance properties in a more desirable manner.

1
ωc
· s+ωcτs+1 H ωi · τs+1

s

e z u v

Figure 4.14. HIGS-based integrator Ci.

Tuning of the controller is done on the basis of the approach discussed previ-
ously in Section 4.3.3 by initially setting ωh =∞ such that Ci effectively reduces
to an LTI integrator and the linear scheme Cfb(s) = (1 + ωi

s )Cnom(s) is effec-
tively recovered. Using classical loop-shaping techniques, a stable LTI design is
obtained with kp = 3.3 Nm, ωi = 8 · 2π rad/s, ωz = 2 · 2π rad/s, ωp = 50 · 2π
rad/s, ωlp = 50 · 2π rad/s, and βlp = 0.5. After fixing kh = 1, and τ = 2 · 10−3,
the HIGS integrator frequency ωh is reduced to ωh = 5 · 2π rad/s.

To verify ISS of the closed-loop system design, first observe that due to the
simple integrators in Ci and P , one cannot apply Theorem 4.3.1 and thus one
should resort to Theorem 4.3.2 or Theorem 4.3.3. The open-loop characteristics
of the individual integrator- and gain-modes, given by

Lint(jω) =

(
1 +

ωh
jω

(
ωi
ωc

+
ωi
jω

))
Cnom(jω)P (jω),

Lgain(jω) =

(
1 + kh

(
ωi
ωc

+
ωi
jω

))
Cnom(jω)P (jω),

are inspected through the Nyquist plot depicted in Figure 4.15. On the basis
of the Nyquist stability criterion, it immediately follows from this figure that
the integrator-mode is unstable, whereas the gain-mode is stable. Hence, one
cannot apply Theorem 4.3.2 either, and, hence, one should resort to the new
result in Theorem 4.3.3 for a frequency-domain stability analysis. Note that in
the configuration of Figure 4.13, the relevant transfer function from y = −z to
u needed for verifying the frequency-domain inequality in (4.31) is identified as

Gyu(jω) =

(
ωi
ωc

+
ωi
jω

)
· Cnom(jω)P (jω)

1 + Cnom(jω)P (jω)
. (4.54)

The corresponding Popov-like plot with k = 15, and λ = 10 is shown in Fig-
ure 4.16. Clearly, for these values the frequency-domain inequality in (4.31)
is satisfied, such that, together with stability of the gain-mode subsystem, all
conditions of Theorem 4.3.3 are satisfied. Hence, the closed-loop system is ISS.
Interestingly, the smallest value for which ISS could be shown on the basis of
Theorem 4.3.3 was found to be ωh = 1.5 · 2π rad/s. For smaller values of ωh,
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Figure 4.15. Nyquist plot of the open-loop characteristics of the integrator-
and gain-mode using the measured FRF of the motor-load motion system.

Figure 4.16. Popov-like plot constructed on the basis of the measured FRF
of the motor-load motion system and parameter values k = 15, λ = 10.
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satisfaction of the conditions in Theorem 4.3.3 is limited by the fact that the
gain-mode dynamics become unstable. Nevertheless, for smaller values stable
closed-loop behaviour was observed during experiments. For improving upon
this aspect, it may be useful to refine the conditions in Theorem 4.3.3 to allow
for unstable gain-mode dynamics as well.

Typical step-responses of the closed-loop system for ωh ∈ {5, 10, 100} · 2π
rad/s are shown in Figure 4.17, and clearly demonstrate the beneficial effect of
reducing ωh on transient properties such as overshoot and settling times.

Figure 4.17. Measured time-responses of the closed-loop system with ωh ∈
{5, 10, 100} · 2π rad/s when subject to a step input r(t) = 1, t ∈ R≥0.

4.6 Summary

In this chapter, novel frequency-domain conditions for input-to-state stability
(ISS) of HIGS-based control systems have been presented. The conditions result
from exploiting integral properties of HIGS, and guarantee the existence of a
quadratic Lyapunov function that is strictly positive only within the relevant
subregion of the state-space where the dynamics of HIGS are active. As such,
these conditions may provide a substantial advantage over existing results such
as the circle-criterion in the sense of reducing conservatism in the analysis. The
derived frequency-domain conditions can be verified graphically in a manner that
is comparable to the classical Popov plot. An extension is made for verifying
ISS of systems that are subject to multiplicative uncertainty, and several design
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insights for (robust) HIGS-based controller design are addressed. Effectiveness
of the presented tools is demonstrated by means of an experimental case-study
on a benchmark motion control application.

Although the presented frequency-domain conditions for (robust) stability
are particularly valuable for practical design and analysis purposes, at the same
time these can still be conservative. This conservatism is a result from the
fact that underlying the conditions is the use of a common quadratic Lyapunov
function for an essentially piecewise linear system. In the next chapter, a stability
and performance analysis based on piecewise quadratic Lyapunov functions is
pursued. Such functions are known to introduce a significant amount of flexibility
in the analysis, which can lead to reduced conservatism, though potentially at the
expense of losing the more practically verifiable frequency-domain interpretation.

4.A Proofs and technical results

4.A.1 Preliminaries

Before stating the proofs of several theorems presented in this chapter, some
useful preliminary results are given first. The following general version of the
Kalman-Yakubovich-Popov (KYP)-lemma, which is free of any hypothesis on
minimality of the system, is provided. This result will play a central role in the
upcoming proofs (see also Leonov et al., 1996; Narendra and Taylor, 1973 for
other versions of the KYP-lemma).

Theorem 4.A.1 (Rantzer, 1996, Theorem 1). Given A ∈ Rn×n, B ∈ Rn×m,
Q = Q> ∈ R(n+m)×(n+m) with det(jωI − A) 6= 0 for all ω ∈ R. The following
two statements are equivalent:

1. For all ω ∈ R ∪ {∞} the following inequality is satisfied[
(jωI −A)−1B

I

]∗
Q

[
(jωI −A)−1B

I

]
≺ 0; (4.55)

2. There exists a symmetric matrix P = P> ∈ Rn×n such that[
A>P + PA PB

B>P 0

]
+Q ≺ 0. (4.56)

The corresponding equivalence holds for non-strict inequalities in both (4.55) and
(4.56), if the pair (A,B) is controllable.

The following useful result for the scalar case (m = 1) is a special case of
Theorem 4.A.1.
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Lemma 4.A.2. Given a Hurwitz matrix A, a vector B ∈ Rn and a matrix

Q =

[
0 −Q12

−Q>12 q22

]
(4.57)

with q22 < 0 and arbitrary Q12 ∈ Rn for which the conditions in Theorem 4.A.1
are satisfied. Then there exist a positive definite matrix P ∈ Rn×n, a positive
semi-definite matrix N = N> ∈ Rn×n, a vector L ∈ Rn and a number ε > 0
that satisfy

A>P + PA = −L>L−N − εP (4.58)

PB = Q12 −
√
|q22|L>. (4.59)

Proof. Note that since A is Hurwitz, det(jωI − A) 6= 0 for all ω ∈ R, such that
Theorem 4.A.1 can be applied for A, B, and Q as in (4.57). Since q22 < 0 it
follows by virtue of the Schur complement that (4.56) is equivalent to

A>P + PA+
1

|q22|
(PB −Q12) (PB −Q12)

> ≺ 0, (4.60)

which implies the existence of a matrix N̂ = N̂> � 0 and a number ε > 0 such
that

A>P + PA+
1

|q22|
(PB −Q12) (PB −Q12)

>
= −(N̂ − εP )− εP. (4.61)

By choosing ε sufficiently small, one can always ensure the matrix N := N̂ − εP
to be positive (semi-)definite. Define

L> =
1√
|q22|

(PB −Q12) (4.62)

and substitute this identity in (4.61) to obtain (4.58) and (4.59). It remains to
show that P is positive definite. Since (4.58) implies A>P + PA ≺ 0 and A is
Hurwitz, the result is immediate (see, e.g., Leonov et al., 1996, Lemma 1.10.1).
This completes the proof.

4.A.2 Summary of relevant matrices

The upcoming proofs heavily exploit structure in the system matrices defined
in the main text of this chapter. For readability of the proofs, relevant matrices
are briefly summarized here. Matrices related to the closed-loop system in (4.6)
are given by

A1 =

[
Ag Bg
−ωhCg 0

]
, A2 =

[
Ag Bg

−khCgAg 0

]
, B =

[
Bw
0

]
, (4.63)
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and C =
[
Cg 0

]
, with matrices (Ag, Bg, Bw, Cg) given in (4.1). Furthermore,

the extended system matrix in gain-mode is given by A2 = A2 + k ωhkh bH with

b =
[
0 1

]>
, and H =

[
−khCg −1

]
= khCz − Cu, (4.64)

and in which

Cz = −C =
[
−Cg 0

]
, and Cu = b> =

[
0 1

]
. (4.65)

Additional S-procedure matrices related to the set of LMIs in Theorem 4.2.2 are
given by Θ> = [I − khC>g ], and

S =

[
Cu

khCz − Cu

]
, T =

[
Cu

Cz (ωhI − khA2)

]
, J =

[
0 1
1 0

]
. (4.66)

Other matrices relevant in the proofs will be specified in detail when needed.

4.A.3 Proof of Theorem 4.3.1

(i) =⇒ (ii). First observe that by Assumption 2.3.1 one has
limω→∞

(
1 + Re

{
khCg(jωI −Ag)−1Bg

})
> 0. Indeed, due to the assumption

on the relative degree of Gyu(s) = Cg(sI−Ag)−1Bg one has lim|ω|→∞Gyu(jω) =
0. Remark that satisfaction of the frequency-domain inequality (4.14) implies
that 1− ε+ Re {khGyu(jω)} > 0 for all ω ∈ R∪ {∞} must be satisfied for some
sufficiently small 0 < ε < 1. Since Ag is Hurwitz, one finds det(jωI − Ag) 6= 0,
such that (4.55) in item 1 of Theorem 4.A.1 is satisfied for

Q =

[
0 khC

>
g

khCg −2(1− ε)

]
.

Furthermore, by Lemma 4.A.2 there exist matrices M = M> � 0, N = N> � 0
and L, and a constant ε > 0 such that

A>gM +MAg = −L>L− εM −N, (4.67a)

MBg = khC
>
g −

√
2(1− ε)L>. (4.67b)

Take P = diag(M,m) with m = µ/ωh and µ > 0 such that P � 0. As such,
(4.10a) is satisfied with τ1 = 0. Next, observe that with this choice for P together
with the equalities in (4.67), one finds

A>1 P + PA1 =

[
A>gM +MAg MBg − µC>g
B>g M − µCg 0

]
= −U>U +

[
−εM −N (kh − µ)C>g
(kh − µ)Cg 2(1− ε)

]
,

(4.68)
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with U = [L,
√

2(1− ε)]. Next, note that

S>JS =

[
0 −khC>g

−khCg −2

]
, (4.69)

such that one finds

A>1 P + PA1 + S>JS = −U>U +

[
−εM −N −µC>g
−µCg −2ε

]
. (4.70)

Via the Schur complement, it follows that the right-hand side of (4.70) is negative

definite if −εM + µ2

2εC
>
g Cg ≺ 0. Since M is positive definite, one finds

− εM +
µ2

2ε
C>g Cg �

(
−ελmin(M) +

µ2

2ε
λmax(C>g Cg)

)
I, (4.71)

which, by choosing 0 < µ <
√
ελmin(M)/(2ελmax(C>g Cg)) ensures (4.70) to be

negative definite. Hence, (4.10b) is satisfied with τ2 = 1.
In a similar manner, observe that the above choice for P together with the

equalities in (4.67) leads to

A>2 P + PA2 =

[
A>gM +MAg MBg − µ khωh (CgAg)

>

B>g M − µ khωhCgAg 0

]

= −U>U +

[
−εM −N khC

>
g − µ khωh (CgAg)

>

khCg − µ khωhCgAg 2(1− ε)

]
,

(4.72)

and note that

T>JT =

[
0 (khAg − ωhI)>C>g

Cg(khAg − ωhI) 0

]
. (4.73)

Now consider Γ = [0, 1] and m = µ/ωh, and observe that one then finds

A>2 P+PA2 +mT>JT+Γ>H+H>Γ = −U>U+

[
−εM −N −µC>g
−µCg −2ε

]
. (4.74)

A similar choice for µ as above makes the right-hand side of (4.74) negative
definite. Since HΘ = 0 one finds

Θ>
(
A>2 P + PA2 +mT>JT

)
Θ ≺ 0, (4.75)

such that (4.10c) is satisfied with τ3 = m = µ/ωh.
(ii) =⇒ (i). Suppose the LMIs (4.10) are feasible with P = diag(M,m) � 0,
τ1 = 0, τ2, τ3 ≥ 0. Then, one finds from (4.10b)

A>1 P + PA1 + τ2S
>JS =

[
A>gM +MAg MBg − γkhC>g
B>g M − γkhCg −2τ2

]
≺ 0, (4.76)
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with γ = τ2 +mωh/kh > 0. From this inequality it immediately follows that[
A>g L+ LAg LBg − khC>g
B>g L− khCg −2

]
≺ 0, (4.77)

with L = M/γ. By the KYP-lemma (Theorem 4.A.1) this implies

1 + Re
{
khCg(jωI −Ag)−1Bg

}
> 0 (4.78)

for all ω ∈ R ∪ {∞}, which completes the proof.

4.A.4 Proof of Theorem 4.3.2

(i) =⇒ (ii). First of all, observe that the transfer function defined by W (jω) =
c(jωI−A1)−1b has a relative degree of one such that lim|ω|→∞Re {W (jω)} = 0.
Since by assumption A1 is Hurwitz, one finds det(jωI − A1) 6= 0 for all ω ∈ R.
Together with satisfaction of the frequency-domain inequality (4.15) this implies
the transfer function 1 + W (jω) to satisfy the frequency-domain inequality in
Theorem 4.A.1 with

Q =

[
0 c>

c −2

]
, (4.79)

in which c = Cz(ωhI − khA2) + α1Cz + α2H. By Lemma 4.A.2 it follows that
this is equivalent to the existence of matrices P = P> � 0, N = N> � 0 and L,
and a constant ε > 0 such that

A>1 P + PA1 = −L>L− εP −N (4.80a)

Pb = c> −
√

2L>. (4.80b)

It immediately follows that (4.10a) and (4.10b) are satisfied with τ1 = τ2 = 0.
Next, observe that A2 = A1 − bK with b = [0, 1] and K = Cz(ωhI − khA2), and
consider

A>2 P + PA2 = A>1 P + PA1 − PbK − (bK)>P

= −L>L− εP −N −He
(
c>K −

√
2L>K

)
� −(L−

√
2K)>(L−

√
2K)−He

(
(α1Cz + α2H)>K

) (4.81)

where H = khCz − Cu and He(X) = X> +X. From this, one can find

A>2 P + PA2 + (α1 + α2)(H>K +K>H) + τ3T
>JT

� −εP − (L−
√

2K)>(L−
√

2K) +

(
τ3 −

α1

kh

)
(C>u K +K>Cu),

(4.82)

such that the choice τ3 = α1/kh makes (4.82) negative definite. Since HΘ = 0,
one finds that negative definiteness of the matrix in the left-hand side of (4.82)
implies

Θ>
(
A>2 P + PA2 + τ3T

>JT
)

Θ ≺ 0. (4.83)
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Hence, (4.10c) is satisfied with τ3 = α1/kh.

(ii) =⇒ (i). Suppose that the LMIs (4.10) are feasible for some P � 0,
τ1 = τ2 = 0 and τ3 ≥ 0. From Finsler’s lemma it follows that there exists a
constant γ ∈ R such that the following set of LMIs is satisfied:

A>1 P + PA1 ≺ 0, (4.84a)

A>2 P + PA2 + τ3T
>JT + γH>H ≺ 0. (4.84b)

Two possible cases arise: γ ≥ 0 and γ < 0. In both cases it still holds that
A>1 P + PA1 − |γ|H>H ≺ 0 and A>2 P + PA2 + τ3T

>JT − |γ|H>H ≺ 0. Using
the identities A2 = A1 − bK, T>JT = C>u K +K>Cu, and b = C>u , the second
inequality can equivalently be written as

A>1 P + PA1 − (P − τ3I)bK − (bK)>(P − τ3I)− |γ|H>H ≺ 0. (4.85)

As the difference between (4.85) and the inequality A>1 P+PA1−|γ|H>H ≺ 0 is
given by (Pb− τ3b)K−K>(b>P + τ3b

>), it immediately follows from Kamenet-
skiy, 2017, Theorem 1 that there exists a number ε1 > 0 such that

A>1 P + PA1 − |γ|H>H

+

(
ε1√

2
Pb− 1

ε1

√
2

(τCu +K)>
)(

ε1√
2
Pb− 1

ε1

√
2

(τCu +K)>
)>
≺ 0,

(4.86)

where τ = τ3ε
2
1. By using the vector property aa> − bb> = 1

2 (a + b)(a − b)> +
1
2 (a− b)(a+ b)> together with (4.86) and the fact that A>1 P +PA1 ≺ 0, it again
follows from Kamenetskiy, 2017, Theorem 1 that there exists a number ε2 > 0
such that

A>1 P + PA1 +

(
ε2√

2
p+

1

ε2

√
2
q

)(
ε2√

2
p+

1

ε2

√
2
q

)>
≺ 0, (4.87)

with

p =

(
ε1

2
Pb− 1

2ε1
(τCu +K)>

)
+

√
|γ|
2
H>, (4.88a)

q =

(
ε1

2
Pb− 1

2ε1
(τCu +K)>

)
−
√
|γ|
2
H>. (4.88b)

Denote b̄ = ε1
2 b, c̄ = 1

2ε1
(τCu +K)>, and h̄ =

√
|γ|
2 H

> such that p = P b̄− c̄+ h̄

and q = P b̄− c̄− h̄, and (4.87) can be written as

A>1 P + PA1 + ρ2
(
P b̄− c̄+ κh̄

) (
P b̄− c̄+ κh̄

)> ≺ 0, (4.89)
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where ρ = ε2√
2

+ 1
ε2
√

2
and κ = 1 − 2/(ρε2

√
2) = 1 − 2/(ε2

2 + 1). Note that

−1 < κ < 1 and ρ ≥
√

2 for all ε2 > 0, and thus (4.89) implies that

A>1 P + PA1 + 2
(
P b̄− c̄+ κh̄

) (
P b̄− c̄+ κh̄

)> ≺ 0 (4.90)

also holds. By applying the Schur complement to (4.90) one finds[
A>1 P + PA1

√
2(P b̄− c̄+ κh̄)√

2(P b̄− c̄+ κh̄)> −1

]
≺ 0, (4.91)

which, by the KYP-lemma (Theorem 4.A.1) is equivalent to the frequency-
domain inequality for all ω ∈ R ∪ {∞}

1+4Re
{

(c̄− κh̄)(jωI −A1)−1b̄
}

= 1 + Re
{

(F + β1Cu + β2H(jωI −A1)−1b
}
> 0,

(4.92)

with β1 = τ and β2 = −κε1

√
2|γ|. This corresponds to the frequency-domain

inequality (4.15) with α1 = khβ1 and α2 = β2 − β1. This completes the proof.

4.A.5 Proof of Theorem 4.3.3

First note that from the assumption that Ag − khBgCg is Hurwitz and k ≥ 1, it
follows that the matrix A2 = A2 + k ωhkh bH is Hurwitz. To see this, consider the

similarity transformation TA2T
−1 with

T =

[
I 0

khCg 1

]
, and T−1 =

[
I 0

−khCg 1

]
, (4.93)

which leads to

Ā2 := TA2T
−1 =

[
Ag − khBgCg Bg

0 −k ωhkh

]
. (4.94)

Due to its upper triangular structure, the eigenvalues of the matrix Ā2 in (4.94)
are given by the eigenvalues of Ag − khBgCg and −kωh/kh. Therefore, Ā2 is
Hurwitz, and thus also A2 is Hurwitz.

Next, observe that the transfer function

W (jω) =

(
λkCu + F +

(
λ+ k

ωh
kh

)
H

)
(jωI −A2)−1b

with F = Cz(khA1−ωhI) has a relative degree of at least one. Hence, one finds
lim|ω|→∞Re {W (jω)} = 0. Since A2 is Hurwitz, it follows that det(jωI−A2) 6=
0 for all ω ∈ R. Together with satisfaction of the frequency-domain inequality
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in (4.16), this implies the transfer function 1 +W (jω) to satisfy the frequency-
domain inequality in Theorem 4.A.1 with

Q =

 0
(
λkCu + F +

(
λ+ k ωhkh

)
H
)>

λkCu + F +
(
λ+ k ωhkh

)
H −2

 . (4.95)

By virtue of Lemma 4.A.2 this implies the existence of matrices M = M> � 0,
N = N> � 0 and L, and a constant ε > 0 such that

A>2 M +MA2 = −L>L− εM −N (4.96a)

Mb = λ(kCu +H)> + F> + k
ωh
kh
H> −

√
2L>. (4.96b)

Since A2 = A1 + bG with G = F + k ωhkhH the equalities in (4.96) yield

A>1 M +MA1 = −G>b>M −MbG− L>L− εM −N
= −He

((
λ(kCu +H)> +G> −

√
2L>

)
G
)
− L>L− εM −N

= −
(
L−
√

2G
)> (

L−
√

2G
)
−He

(
λ(kCu +H)>G

)
− εM −N

≺ −λ
(

(kCu +H)>
(
F + k

ωh
kh
H

)
+

(
F + k

ωh
kh
H

)>
(kCu +H)

)
,

(4.97)

where He(X) = X> +X. Observe that one can write F = HA1 such that

(kCu +H)>F = (kCu +H)>HA1 = (kS>JS +H>H)A1 − kωhH>Cz, (4.98)

where use is made of the identities S>JS = C>u H +H>Cu, and CuA1 = ωhCz.
Substituting (4.98) in (4.97) yields

A>1 M +MA1 + λHe

(
(kS>JS +H>H)A1(
k
ωh
kh

(kCu +H)− kωhCz
)>

H

)
≺ 0.

(4.99)

Choose P = (M + λH>H) + λkS>JS and observe that since M � 0, this
choice yields P − λkS>JS � 0. Hence, (4.10a) is satisfied with τ1 = λk ≥ 0.
Furthermore, with this choice for P , (4.99) evaluates to

A>1 P + PA1 + λ
ωh
kh

He
(
(k(kCu +H)− kkhCz)>H

)
≺ 0. (4.100)

Since Cz = 1
kh

(H + Cu) the last term in the left-hand side of (4.100) yields

λk(kCu +H)>H − λkkhC>z H = λk(k − 1)C>u H. (4.101)
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Under the assumption that λ ≥ 0, k ≥ 1, and with the identity S>JS = C>u H +
H>Cu this yields

A>1 P + PA1 + τ2S
>JS ≺ 0, (4.102)

with τ2 = λkωh(k − 1)/kh ≥ 0. As such, (4.10b) is satisfied. Additionally, with
the choice for P , one finds from the equality in (4.96a) that

A>2 M +MA2 = A>2 P + PA2 − λHe
(
H>

(
(H + kCu)A2 − k2C>u H

))
≺ 0.
(4.103)

Since HΘ = 0, (4.10c) is satisfied with τ3 = 0. This completes the proof.

4.A.6 Proof of Proposition 4.4.1

The proof is based on showing that, when (4.43) and (4.44) are satisfied, the
conditions of Theorem 4.3.3 hold for all Gyu(s) ∈ Π. Namely, for all possible
plants 1) the gain-mode dynamics are stable, and 2) the frequency-domain in-
equality (4.16) is satisfied.

1) Stability of the gain-mode dynamics for all Gyu(s) ∈ Π.
Consider the open-loop characteristics of the gain-mode dynamics, which,
under the assumption of multiplicative uncertainties, can be represented
as

L(s) = khGyu(s) = L0(s)(1 +W (s)∆(s)), (4.104)

where L0(s) = khG0(s) denotes the nominal open-loop. From the as-
sumption that the nominal closed-loop gain-mode dynamics are stable, it
immediately follows from Skogestad and Postlethwaite, 2010, Section 7.5
that when (4.43) holds for all ω ∈ R, the nominal gain-mode dynamics are
robustly stable with respect to all allowable perturbations. Therefore, un-
der the hypothesis of the proposition, the gain-mode dynamics are stable
for all Gyu(s) ∈ Π.

2) Satisfying the frequency-domain inequality in (4.16) for all
Gyu(s) ∈ Π.
Observe that the complementary sensitivity function T (s) can be written
as

T (s) =
khGyu(s)

1 + khGyu(s)
=

L(s)

1 + L(s)
= T0(s)(1 +W (s)∆T (s)), (4.105)

with

T0(s) =
L0(s)

1 + L0(s)
, and ∆T (s) =

∆(s)

1 + L(s)
. (4.106)

Since ∆(s) ∈ RH∞, it follows that whenever the gain-mode is robustly
stable, one has ∆T (s) ∈ RH∞. The magnitude of the relative uncertainty
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in T (s) then admits an upper-bound of

‖∆T (jω)‖ ≤ 1

‖1 + L0(jω)‖ − ‖W (jω)L0(jω)‖ , (4.107)

which follows from selecting the worst-case perturbation ‖∆(jω)‖ =
1 for all ω ∈ R such that the complex numbers 1 + L0(jω) and
W (jω)∆(jω)L0(jω) point in opposite directions. Observe that this cor-
responds to an upper-bound on the magnitude of all possible sensitivity
functions S(s) = 1− T (s).

From substituting the perturbed system (4.105) in the frequency-domain
inequality (4.31), it follows that this inequality is satisfied for all possible
plants Gyu(s) ∈ Π if

1 + (X0(ω, k) + δx(ω, k))− λ(Y0(ω, k) + δy(ω, k)) > 0. (4.108)

Here, the nominal terms are given by

X0(ω, k) =
ωh
kh

Re {(T0(jω)− k)Cl(jω)}+ ωIm {T0(jω)Cl(jω)} ,

Y0(ω, k) = kRe {T0(jω)Cl(jω)}+ (1− k)Re {Cl(jω)} ,

and the perturbations are expressed as

δx(ω, k) =
ωh
kh
δu(ω) + ωδv(ω),

δy(ω, k) = kδu(ω),

in which δu and δv are given by

δu(ω) = Re {T0(jω)W (jω)∆T (jω)Cl(jω)} ,
δv(ω) = Im {T0(jω)W (jω)∆T (jω)Cl(jω)} ,

and satisfy the constraint√
δ2
u(ω) + δ2

v(ω) ≤ ‖T0(jω)W (jω)Cl(jω)‖
‖1 + L0(jω)‖ − ‖W (jω)L0(jω)‖ := ρ(ω). (4.111)

The minimum of (4.108) subject to the constraint in (4.111) can be esti-
mated as follows. Observe that one may write

δu(ω) = ν(ω) cos(θ), and δv(ω) = ν(ω) sin(θ), (4.112)

where ν(ω) ≤ ρ(ω), and θ ∈ [0, 2π]. Then, using the standard trigonomet-
ric identity a cos(φ) + b sin(φ) =

√
a2 + b2 cos(φ−ψ) with ψ = arctan(b/a)

it follows that (4.108) reads

1 +X0(ω, k)− λY0(ω, k) + γ(ω) cos(θ − ϕ) > 0 (4.113)
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where

γ(ω) = ν(ω)

√(
ωh
kh
− λk

)2

+ ω2, and ϕ = arctan

(
(khω)2

(ωh − λkkh)2

)
.

The minimum of the left-hand side in (4.113) over all possible perturbations
is given by

1 +X0(ω, k)− λY0(ω, k)− ρ(ω)

√(
ωh
kh
− λk

)2

+ ω2 > 0. (4.114)

Hence, satisfying (4.114) for some λ ≥ 0 and k ≥ 1 implies that the
inequality in (4.31), and, therefore the one in (4.16) is satisfied for all
Gyu(s) ∈ Π.

It follows that the conditions of Theorem 4.3.3 are satisfied for all possible plants
Gyu(s), and therefore the HIGS-based control system (4.6) is robustly ISS with
respect to all perturbed plants Gyu(s) ∈ Π. This completes the proof.

4.B Numerical results for the rotating beam
example

By virtue of the KYP-lemma, see Theorem 4.A.1, satisfaction of the frequency-
domain inequality (4.16) (or equivalently (4.31)) is equivalent to feasibility of
the matrix inequality

[A>2 M +MA2 Mb− (λ(kCu +H)> + F> + k ωhkhH
>)

? −2

]
≺ 0, (4.115)

with some matrix M = M> � 0. Positive definiteness of M follows from the
fact that A2 is Hurwitz. For the considered plants P (s) = P0(s)(1 +W (s)∆(s))
with ∆(s) = {−1, 0, 1}, the frequency-domain inequality (4.16) is satisfied with
k = 10 and λ = 1.05. The numerical values for M obtained by solving the LMI
in (4.115) with k = 10, λ = 1.05 for each plant are provided next. For the sake
of presentation, the matrix M is partitioned as

M =

[
M11 M12

M>12 M22

]
.
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Nominal case P (s) = P0(s):

M11 =

[
3271.2854 82193.7721 534807.0409
82193.7721 3004106.9455 19530867.0090
534807.0409 19530867.0090 178395426.3242

]
,

M12 =

[
1574208.5725 1204195.6982 193.6223
55267119.4324 42759474.2704 5322.5116
532538659.7802 395523311.3937 42307.3639

]
,

M22 =

[
2026477013.5053 1493823228.4453 160464.7104
1493823228.4453 2160096399.0418 111424.8123

160464.7104 111424.8123 22.7148

]
.

Perturbed case P (s) = P0(s)(1−W (s)):

M11 =

 4880.7755 251826.0241 4191785.8755 39016697.2764
251826.0241 16510934.0492 302309543.5827 2743984637.6464
4191785.8755 302309543.5827 7587169458.3818 72761822581.433
39016697.2764 2743984637.6464 72761822581.433 881540530984.12

 ,
M12 =

 199224663.4201 472787522.7299 328062752.3567 194.3089
13092392632.769 29888238457.862 20575239560.836 9294.7132
338418179289.5 767746791900.84 517746603541.71 186354.9208
4599831505793.6 9963315985129.3 7358773017871 2476973.7529

 ,
M22 =

27545089834524 65932522976148 46503156198819 16452428.8539
65932522976148 191562522048800 135108155437422 46019570.0211
46503156198819 135108155437422 183015500663288 31124546.6947
16452428.8539 46019570.0211 31124546.6947 23.2877

 .
Perturbed case P (s) = P0(s)(1 +W (s)):

M11 =

 5236.2926 279488.5565 4949323.5059 40714645.3085
279488.5565 17085147.7713 324839323.4501 2753567067.9138
4949323.5059 324839323.4501 7594793298.9262 70205901470.309
40714645.3085 2753567067.9138 70205901470.309 760739074665.45

 ,
M12 =

 94681293.0386 511850879.0378 346410474.6424 222.5935
12829886381.139 31995174956.989 21948710840.095 10894.7828
331294005217.72 823668242739.55 564716797770.18 216726.8692
4049693004175.1 10108792675510 7305193912176.1 2238633.8050

 ,
M22 =

24473169128149 65339497795751 47724442948185 15035711.6402
65339497795751 194151848611488 149313749273044 49491927.7282
47724442948185 149313749273044 182828306824733 30773635.4780
15035711.6402 49491927.7282 30773635.4780 26.9618

 .
A numerical solution to the LMIs in (4.10) for each plant is then given by

P = M + λH>H + λk(C>u H +H>Cu),

with τ1 = λk = 10.5, τ2 = λkωh(k − 1)/kh = 330.75, τ3 = 0, and the resulting
quadratic (ISS-)Lyapunov function is given by V (x) = x>Px.





Chapter 5

Time-Domain Tools for Stability
and Performance Analysis: An

LMI Approach

5.1 Introduction

In the previous chapter, frequency-domain conditions for (robust) stability and
performance of hybrid integrator-gain systems (HIGS) have been derived. The
power of these conditions is represented by the fact that these do not require
the use of parametric models, but rather can be verified (often graphically) on
the basis of easy-to-measure frequency response function (FRF) data. Moreover,
these conditions allow for intuitive controller tuning procedures. Such aspects
make the frequency-domain conditions valuable tools in an industrial environ-
ment. The advantages, however, can possibly come at the expense of increased
conservatism in the analysis, which is mainly attributed to the underlying use of
a quadratic Lyapunov function for an essentially piecewise linear (PWL) system.
It is known, see, e.g., Johansson and Rantzer, 1998; Johansson, 2002; Rantzer
and Johansson, 2000 that some stable PWL systems do not admit a quadratic
Lyapunov function, thereby narrowing down applicability of these tools for sys-
tems containing HIGS. To deal with this issue and improve upon the previous
results, in this chapter use of more flexible piecewise quadratic (PWQ) Lya-
punov functions is considered (Ambrosino and Garone, 2015; Branicky, 1998;
Deenen et al., 2021; Hassibi and Boyd, 1998; Iervolino et al., 2015; Johansson
and Rantzer, 1998; Johansson, 2002; Pettersson and Lennartson, 1996; Rantzer
and Johansson, 2000; Xie et al., 1997).

The use of PWQ Lyapunov functions for stability and performance analysis
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of switched/hybrid systems has been successfully applied to numerous fields of
control applications, including reset control systems, see, e.g., Aangenent et al.,
2010; Loquen et al., 2010; Nešić et al., 2008; Zaccarian et al., 2011. Key in the
works on constructing PWQ Lyapunov functions for reset systems is a partition-
ing of subsets of the state-space that dictate flow of the reset control system into
smaller regions, each to which a different quadratic function is assigned. Since
each function has to satisfy certain demands in the associated subregions only,
the set of admissible Lyapunov functions may be significantly increased, thereby
reducing conservatism.

Inspired by the approaches mentioned above, and the work in Deenen et al.,
2021, in this chapter an extension toward HIGS-based control systems is made.
In particular, the three-dimensional subspace determining the active dynamics
of HIGS is partitioned into convex polyhedral cones. There are many possi-
ble choices for the sizes and shapes of the polyhedral cones. For example, in
Deenen et al., 2021 a polyhedral partitioning based on a spherical division of
the three-dimensional region of HIGS is proposed. In this chapter, however,
an alternative approach is pursued in which the relevant subspace is divided
into three-dimensional simplicial cones, i.e., polyhedral convex cones that are
generated by the intersection of three half-spaces (Concini and Procesi, 2010;
Iervolino et al., 2015). This choice is mainly motivated by numerical consid-
erations. Namely, when considering polyhedral cones that result from a larger
number of intersecting half-spaces such as in Deenen et al., 2021, ensuring con-
tinuity of the PWQ function in a numerical search procedure should typically
be done by posing explicit equality constraints. From a computational point-of-
view, such constraints are particularly hard to satisfy as numerical solvers work
with finite precision and can therefore only approximate a solution (Oehlerking,
2011, Chapter 4, Section 4.5). On the other hand, when using simplicial cones,
one can exploit a compact matrix parametrization of piecewise quadratic func-
tions on polyhedral partitions in a manner as introduced in Johansson, 2002.
This parametrization allows for the continuity requirement to be directly incor-
porated in the description of each local quadratic function, thereby guaranteeing
continuity a priori, and making the need for equality constraints in the eventual
set of constraints redundant. Moreover, for the partitioning considered, this way
of ensuring continuity is shown to be done in a non-conservative manner.

On the basis of this partitioning strategy, rigorous conditions for stability
and performance of HIGS-based control systems are formulated in this chapter.
Two performance measures are considered, namely the L2-gain, which charac-
terizes the worst-case energy gain of the system with respect to a specific class
of inputs, and the H2-norm, which reflects the transient behaviour through the
energy in the system’s impulse response. These measures are well-established
for linear time-invariant (LTI) systems (Boyd et al., 1994; Scherer et al., 1997;
Willems, 2007) and have also been extensively studied for reset control systems
(Aangenent et al., 2010; Carrasco et al., 2010; Mercader et al., 2013; Nešić et al.,
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2011; Zhao and Wang, 2016). The relevance of these particular measures for sys-
tems with HIGS comes from the possibility to improve disturbance suppression
properties and transient properties as illustrated in Chapter 3.

By exploiting a tailored partitioning with PWQ functions, the conditions for
stability and performance of HIGS-based control systems are formulated in terms
of linear matrix inequalities (LMIs) in a manner that is robust from a numerical
perspective. In addition, novel algebraic conditions are presented that provide
relevant insights regarding (in)feasibility of the LMIs. These results rigorously
demonstrate the benefits obtained from exploiting partition refinements, and
help in guiding such refinements as to increase the possibility of finding a solution
to the presented LMI conditions. To the best of the authors knowledge, algebraic
results formally demonstrating the benefits of a partition refinement have not
appeared in the literature before.

The remainder of this chapter is organized as follows. In Section 5.2 the
closed-loop system setting with HIGS is presented. In Section 5.3, the partition-
ing strategy for the construction of PWQ functions is discussed. This approach
is subsequently used in Section 5.4 in deriving rigorous time-domain conditions
for stability and performance. Applicability of the presented analysis tools is
demonstrated through numerical examples in Section 5.5. Section 5.6 provides
a summary of the main conclusions.

5.1.1 Notation

The following notations are adopted throughout this chapter. The set of real
symmetric matrices in Rn×n is denoted by Sn×n, and the set of real symmetric
matrices having non-negative elements is denoted by Sn×n≥0 . A symmetric matrix

M ∈ Sn×n is positive (negative) definite, denoted byM � 0 (M ≺ 0), if x>Mx >
0 (x>Mx < 0) for all x ∈ Rn \ {0}. The symbols >,≥, <,≤ for vectors are
understood componentwise. The interior and closure of a set X ⊆ Rn are denoted
by int(X ) and X , respectively. For a signal, t 7→ v(t) the notation dom v denotes
its projection on the time (t) axis, and Tv = sup dom x indicates the maximal
time of the domain. The set of square-integrable functions is denoted by L2 and

endowed with the L2-norm defined as ‖v‖2 = (
∫ Tv

0
‖v(t)‖2dt) 1

2 .

5.2 System setting and problem formulation

5.2.1 Closed-loop system description

For the sake of readability, the generic closed-loop system setting with HIGS
that is considered throughout this thesis and is discussed in detail in Chapter 2
is repeated in this section. The setting is depicted in Figure 5.1 in which G is a
generalized plant that contains the interconnection to be controlled, and filters
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related to the LTI part of the controller, possibly augmented with LTI input-
output weighting filters. The latter weighting filters are added for the purpose
of including problem-specific input knowledge into the system description, e.g.,
through known spectra of exogenous signals, and penalizing regulated output
variables (see also van de Wal et al., 2002).

G
Σ

H Σ

y

z

−
u

w q

Σ

Figure 5.1. Feedback interconnection of a MIMO LTI system G and a SISO
HIGS H with inputs w and performance channel q.

In state-space representation, G is represented as the LTI multi-input multi-
output (MIMO) system

G :


ẋg(t) = Agxg(t) +Bgu(t) +Bww(t),

q(t) = Cqxg(t) +Duu(t) +Dqw(t),

y(t) = Cgxg(t),

(5.1)

with states xg(t) ∈ Rm, performance channel q(t) ∈ Rr which contains per-
formance variables such as servo errors and control actions, and w(t) ∈ Rp
denotes the inputs, such as disturbances, noise, and reference profiles at time
t ∈ R≥0. In the setting considered, w is assumed to belong to the class of piece-
wise Bohl functions (PB). The input to and output of HIGS H are denoted
by z(t) = −y(t) ∈ R, and u(t) ∈ R, respectively. Recall that the matrices
(Ag, Bg, Cg) are minimal and by virtue of the standing assumption on the rela-
tive degree (Assumption 2.3.1) one has CgBg = CgBw = 0.

In Figure 5.1 the hybrid integrator-gain system H is given by

H :


ẋh(t) = ωhz(t) if (z(t), u(t), ż(t)) ∈ F1,

xh(t) = khz(t) if (z(t), u(t), ż(t)) ∈ F2,

u(t) = xh(t),

(5.2)

where xh(t) ∈ R denotes the state of the integrator, z(t) ∈ R is the input, which
in the closed-loop setting of Figure 5.1 is at least one time differentiable, ż(t) ∈ R
is the corresponding time-derivative, and u(t) ∈ R is the generated output. The
sets F1 and F2 are given by

F1 =
{

(z, u, ż) ∈ R3 | khzu ≥ u2 ∧ (z, u, ż) 6∈ F2

}
, (5.3a)

F2 =
{

(z, u, ż) ∈ F | u = khz ∧ ωhz2 > khżz
}
, (5.3b)
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and
F = F1 ∪ F2 =

{
(z, u, ż) ∈ R3 | khzu ≥ u2

}
, (5.4)

which is often referred to as the “[0, kh]-sector”. For a detailed discussion and
motivation for HIGS, and visualization of the sets F1, F2, and F , see Chapter 2.

The interconnection of the LTI system G as in (5.1) and HIGS H in (5.2) is
written as the PWL system

Σ :

{
ẋ(t) = Aix(t) +Bw(t), if x(t) ∈ Xi, i ∈ {1, 2} ,
q(t) = Cx(t) +Dw(t),

(5.5)

with augmented state vector x(t) = [xg(t)
>, xh(t)]> ∈ Rn, where n = m + 1.

The sets Xi, i ∈ {1, 2} in (5.5) are given by

Xi = {x ∈ Rn | Ex ∈ Fi} , (5.6)

where the matrix E is such that Ex = (z u ż)
>

, and, therefore, is given by

E> =

[
−C>g 0 −(CgAg)

>

0 1 0

]
. (5.7)

The mode-dependent system matrices are given by

A1 =

[
Ag Bg
−ωhCg 0

]
, and A2 =

[
Ag Bg

−khCgAg 0

]
, (5.8)

and furthermore B = [B>w , 0]>, C = [Cg, 0], and D = Dq. Recall from Chap-
ter 2 that under the assumption that w ∈ PB, global existence and forward
completeness of solutions to the discontinuous differential equation in (5.5) with
x(0) ∈ X1 ∪ X2 = X = {x ∈ Rn | Ex ∈ F} is guaranteed, see also the details in
Deenen et al., 2021; Sharif et al., 2019.

5.2.2 Problem formulation

This chapter is mainly concerned with formulating potentially less conservative
conditions for stability and performance of a HIGS-controlled system as in (5.5).
Stability is meant here in the sense of input-to-state stability (ISS), for which
the definition has been given earlier in Chapter 2, Definition 2.3.6. Performance
is quantified in terms of two measures, being the L2-gain and the H2-norm.

The L2-gain is often considered as a steady-state performance measure, char-
acterizing the system’s energy transmission from an input w to the output q.
Formally, the L2-gain is defined as follows.

Definition 5.2.1. The closed-loop system in (5.5) is said to have an L2-gain
from w to q smaller than or equal to γ, if there exists a K∞-function ν such
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that for any w ∈ L2, and any initial condition x(0) = x0 ∈ X , all corresponding
solutions to (5.5) with dom q 6= {0} satisfy

‖q‖2 ≤ ν(‖x0‖) + γ‖w‖2. (5.9)

One of the possible interpretations of the H2-norm is the total energy content
of the output q due to an impulsive input w. For LTI systems, the response to
such impulsive input is equivalent to the response when the system is subject to
an initial condition x0 = B, where B denotes the input column. This interpre-
tation of the H2-norm is adopted in this chapter, and motivates the following
definition for the H2-norm (see also Aangenent et al., 2010 in the context of
reset control).

Definition 5.2.2. The closed-loop system in (5.5) with w = 0 is said to have an
H2-norm smaller than or equal to γ if for a specific initial value x(0) = x0 ∈ X
the corresponding solutions to (5.5) with dom q 6= {0} satisfy

‖q‖2,x0 ≤ γ. (5.10)

Note that the above definitions allow for (maximal) solutions not being for-
ward complete, as was also done in the definition for ISS (Definition 2.3.6). As
in the previous chapter, ISS can be verified by finding a suitable ISS-Lyapunov
function, see Definition 2.3.10. For assessing performance in terms of the L2-gain
and H2-norm, the concept of dissipativity as introduced in Chapter 2, Defini-
tion 2.3.12 is useful. Recall that the closed-loop system in (5.5) admits a finite
L2-gain from w to q smaller than or equal to γ, if it is dissipative with respect
to the supply function s(w, q, x) = γ2‖w‖2 − ‖q‖2. By a comparable reasoning,
it has an H2-norm smaller than or equal to γ for some initial condition x0, if it
is dissipative with respect to the supply function s(w, q, x) = −‖q‖2. Hence, de-
termining upper-bounds on the L2-gain and H2-norm amounts to finding appro-
priate storage functions that satisfy the conditions in Definition 2.3.12 with the
corresponding supply functions. Given this rationale, the main objective in this
chapter is to provide computationally tractable conditions for the existence of
ISS-Lyapunov/storage functions to characterize stability and performance of the
closed-loop system in (5.5) under an as small as possible level of conservatism.
For that purpose, an approach, which is inspired by the works in Aangenent
et al., 2010; Deenen et al., 2021; Johansson, 2002; Loquen et al., 2010; Nešić
et al., 2011; Rantzer and Johansson, 2000; Zaccarian et al., 2005, and exploits
piecewise quadratic functions is pursued.

5.3 Partition strategy, PWQ functions, and
constraint matrices

Key in the construction of PWQ functions is the division of (a subset of) the
state-space of the considered system into smaller sub-regions. This section dis-
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cusses the specific partitioning strategy for HIGS, and provides a procedure for
efficiently constructing the matrices associated with the computation of PWQ
functions. Before going into detail, some definitions regarding cones and conical
partitions are introduced.

Definition 5.3.1 (Positive hull, Concini and Procesi, 2010). The positive hull
of a set R ⊂ Rn is the set of all positive combinations of elements from R, i.e.,

pos (R) =

{
M∑
m=1

λmrm | rm ∈ R, λm ≥ 0,m = 1, . . . ,M, for some M ∈ N>0

}
.

Definition 5.3.2 (Polyhedral cone, Concini and Procesi, 2010). A polyhedral
cone is the positive hull of a minimal (non-redundant) set R := {r1, . . . , rM}
with a finite number of elements. In this case R is called the generating set of
the polyhedral cone, and r1, . . . , rM are generators.

Definition 5.3.3 (Simplicial cone, Concini and Procesi, 2010). A simplicial
cone in Rn is the positive hull of a set R with n linearly independent generators.

Polyhedral and simplical cones can be written as

S = {x ∈ Rn | Sx ≥ 0} ,

for some suitable matrix S ∈ Rq×n of full rank (Concini and Procesi, 2010). For
simplicial cones it follows that the matrix S is a square invertible matrix. The
notation −S indicates the set {x ∈ Rn | −x ∈ S}, also denoted by its negative
complement. In the remainder, a set F is called symmetric if it is formed as
the union between a set and its negative complement, that is, F = S ∪−S. For
an in-depth discussion on the topic of polyhedral and simplicial cones, see, e.g.,
Concini and Procesi, 2010.

Definition 5.3.4 (Simplicial partition, Iervolino et al., 2015). Let a set F ⊆ Rn
and an integer N > 0 be given. A simplicial partition of F is a family PF =
{S1, . . . ,SN} consisting of a finite number of simplicial cones Sn, n ∈ N :=
{1, . . . , N}, that satisfy F =

⋃
n∈N Sn, and int(Sn) ∩ int(Sm) = ∅ for n 6= m.

5.3.1 Simplicial partitioning of F
As discussed in the introduction, for the approach in this chapter, the three-
dimensional region F as defined in (5.4) and shown in Figure 5.2 is partitioned
into simplicial cones, see Definition 5.3.4. A simplicial partition of the region
F is constructed in the following manner. From (5.4) and Figure 5.2, it can be
seen that F is formed as the union of two polyhedral cones Ŝ and −Ŝ, that is,
F = Ŝ ∪ −Ŝ, with

Ŝ :=
{
ξ ∈ R3 | Ŝξ ≥ 0

}
, (5.11)
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where ξ = [z, u, ż]
>

, and

Ŝ =

[
0 1 0
kh −1 0

]
. (5.12)

The intersection of Ŝ and −Ŝ is defined by Ŝξ = 0, and coincides with the line

-1

0

1 -1

0

1-1

0

1

ωhz = khż →

ż
z

u

Figure 5.2. Three-dimensional region F as defined in (5.4). In this figure,
the integrator mode region F1 in (5.3a) is depicted in gray, and the gain mode
region F2 in (5.3b) is depicted in blue.

ξ =
{

[0, 0, ż]> | ż ∈ R
}

, see Figure 5.2. According to Concini and Procesi, 2010,
Lemma 1.40, polyhedral cones with non-empty interior can always be partitioned
into a finite number of simplicial cones. This result allows the polyhedral cone
Ŝ in (5.11) to be partitioned into N simplicial cones Ŝn given by

Ŝn =
{
ξ ∈ R3 | Ŝnξ ≥ 0

}
, n ∈ N := {1, . . . , N} , (5.13)

with Ŝn ∈ R3×3 an invertible matrix. An illustration of a simplicial cone Ŝn
is provided in Figure 5.3. The cone is spanned by three unit vectors r1

n, r
2
n, r

3
n,

denoted as the generators such that Ŝn = pos
{
r1
n, r

2
n, r

3
n

}
, and the generating

set (see Definition 5.3.2) is given by Rn =
{
r1
n, r

2
n, r

3
n

}
.

Denote the simplicial partition of Ŝ into N simplicial cones by

PŜ :=
{
Ŝ1, . . . , ŜN

}
. (5.14)

A generating set R of the partition PŜ is constructed as the union of the gen-

erating sets Rn of each simplicial cone Ŝn ∈ PŜ , i.e., R =
⋃
n∈N Rn. In what
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z

ż

u

r1n

r2n

r3n

Figure 5.3. Illustration of a simplicial cone Ŝn, which is spanned by three
vectors r1

n, r
2
n, r

3
n, referred to as generators such that Ŝn = pos

{
r1
n, r

2
n, r

3
n

}
.

The generating set of the cone is given by Rn =
{
r1
n, r

2
n, r

3
n

}
.
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Figure 5.4. Impression of a simplicial partition of F into N simplicial cones
Ŝn. The blue shaded regions correspond to “boundary planes” T̂m, m ∈ M
that partition the gain-mode region F2.
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follows, it is assumed that the simplicial partition PŜ is constructed in such a
manner that the unit vectors [0, 0, 1]> and [0, 0,−1]> are generators, and thus
{[0, 0, 1], [0, 0,−1]} ∈ R. Moreover, it is assumed that the (normalized) vector
defining the line u = khz, ωh = khż describing a common boundary of the set F1

and F2 is a generator of the partition as well. Clearly, a partition of −Ŝ directly
results from a partitioning of Ŝ, and is denoted by −PŜ := {−Ŝ1, . . . ,−ŜN}.
Due to symmetry of the region F , a simplicial partition of F is then given by
PF := PŜ ∪ −PŜ . An impression of a possible partition of F into simplicial
cones is illustrated in Figure 5.4. Several efficient numerical procedures can be
employed for constructing an appropriate simplicial division of an n-dimensional
space, such as bisection along the longest edge techniques (Iervolino et al., 2015),
and ray-gridding algorithms (Yfoulis and Shorten, 2004).

Since F1 = F , a partition of the integrator-mode region F1 in (5.3a), denoted
by PF1

is equivalent to a partition of the full region F , i.e., PF1
= PF . As

F2 forms a “boundary set” of F , it follows that a partitioning of F induces
a simplicial partitioning of F2, denoted by PF2

. The cones belonging to the
partitioning PF2

are described by T̂m = pos
{
rim, r

j
m

}
, m ∈M, (i, j) ∈ {1, 2, 3},

where the set M ⊂ N contains the indices of the cones Ŝm, m ∈ N for which
F2 ∩ Sm 6= ∅, and rim, r

j
m are those generators of Ŝm that satisfy rim, r

j
m ∈ F2.

As such, the generating set of T̂m is given by R′m =
{
rim, r

j
m

}
. Clearly, T̂m are

polyhedral cones in R3, and can alternatively be described by

T̂m =
{
ξ ∈ R3 | T̂m ≥ 0 ∧ hξ = 0

}
, m ∈M ⊂ N , (5.15)

where T̂m ∈ R2×3 is a full row rank matrix, and h = [kh,−1, 0]. The partition
PF2

of the gain-mode region is then given by

PF2
=
{
T̂m1

, . . . , T̂mM
}
∪
{
−T̂m1

, . . . ,−T̂mM
}

= PT̂ ∪ −PT̂ , (5.16)

where {m1, . . . ,mM} =M and M ≤ N denotes the number of elements in M.
The generating set R′ of the partition PF2

is formed as R′ :=
⋃
m∈MR′m, and

contains all generators rn, n ∈ N of the partition PF that satisfy rn ∈ F2.

5.3.2 PWQ function parametrization and constraint
matrices

The main advantages of using a simplicial partitioning as discussed above, are
1) the possibility to directly incorporate continuity properties in the definition
of the PWQ function, and 2) doing so without introducing additional conser-
vatism. Particularly, by exploiting a compact matrix parametrization of piece-
wise quadratic functions on polyhedral partitions, adopted from Johansson and
Rantzer, 1998; Rantzer and Johansson, 2000 (see also Ambrosino and Garone,



5.3 Partition strategy, PWQ functions, and constraint matrices 107

2015; Iervolino et al., 2015), and defined as

Vi(x) = x>Pix = x>F>i ΦFix, (5.17)

where Fi ∈ Rr×n, i ∈ N form the so-called continuity matrices satisfying Fix =
Fjx for all x on a boundary shared by two polyhedral regions, and Φ ∈ Sr×r
is a symmetric matrix that contains the decision variables, continuity of the
PWQ functions over cell boundaries is guaranteed (see Lemma 4.2 in Johansson,
2002). This formulation makes explicit equality constraints obsolete, which has
computational advantages.

Based on the partitioning strategy as illustrated in Figure 5.4, the following
two propositions present useful results for the construction of the matrices Ŝi
in (5.13) and T̂i in (5.15) describing the simplicial cones, and the continuity
matrices used in (5.17). These results are based on the ideas outlined in the
seminal works Johansson and Rantzer, 1998, and Johansson, 2002. In formu-
lating the propositions, it will be useful to collect the generators of a simplicial
cone Ŝi ∈ PŜ in a matrix Ri := [r1

i , r
2
i , r

3
i ] ∈ R3×3, i ∈ N , and the generators of

a cone T̂j ∈ PT̂ in a matrix R′j := [r1
j , r

2
j ] ∈ R3×2, j ∈M.

Proposition 5.3.5. Consider a simplicial partition PŜ . The matrices

Ŝi = R−1
i , i ∈ N (5.18)

T̂j =
(
(R′j)

>R′j
)−1

(R′j)
>, j ∈M (5.19)

and h = [kh,−1, 0] satisfy the inequalities in (5.13) and (5.15), respectively.

Proof. The proof can be found in Appendix 5.A.1.

Proposition 5.3.6. Consider a simplicial partition PŜ . Define the set R̄ :=
R\

{
[0, 0,−1]>

}
, and collect its elements in the matrix R̄ := [r1, . . . rp] ∈ R3×p.

Let the matrices Ei ∈ Rp×3, i ∈ N have its q-th row equal to zero for all
q ∈ {1, . . . , p} such that rq 6∈ Si, and the remaining rows equal to the rows of a
three-dimensional identity matrix such that R̄Ei = Ri, in which no distinction
is made between the generators [0, 0, 1]> and [0, 0,−1]>. Then, the matrices

F̂i = Ei
(
R̄Ei

)−1
, i ∈ N , (5.20)

satisfy the property F̂iξ = F̂jξ for all ξ ∈ Ŝi∩Ŝj and ξ ∈ −Ŝi∩−Ŝj , i, j ∈ N×N ,

i 6= j, and all ξ ∈ Ŝi ∩ −Ŝj, i, j ∈ N ×N .

Proof. A proof is given in Appendix 5.A.2.

Example 5.3.7. In order to emphasize the subtlety in Proposition 5.3.6 of mak-
ing no distinction between the generators [0, 0, 1]> and [0, 0,−1]> for construct-
ing the continuity matrices, consider Figure 5.5 which shows an example of a
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ż
z

u

Figure 5.5. Example of a simplicial partitioning of the symmetric set F . The
regions Ŝ and −Ŝ are partitioned into three simplicial cones Ŝn, n = {1, 2, 3}.
The unit vectors ri, i = {1, . . . , 5} are the generators of the partitioning, and the
simplicial cones are given by Ŝ1 = pos {r1, r2, r3} (grey), Ŝ2 = pos {r2, r3, r4}
(blue), and Ŝ3 = pos {r3, r4, r5} (green).

simplicial partitioning of the three-dimensional region Ŝ (respectively −Ŝ) into
three simplicial cones. The generating set R of the partitioning is given by
R = {r1, r2, r3, r4, r5} , with generators

r1 =

0
0
1

 , r2 =
1√
3

1
1
1

 , r3 =

1
0
0

 , r4 =
1√
3

 1
1
−1

 , r5 =

 0
0
−1

 .
The reduced set R̄ is given by R̄ = R \

{
[0, 0,−1]>

}
= {r1, r2, r3, r4}. The

simplicial cones Ŝn, n = {1, 2, 3} are formed by Ŝ1 = pos {r1, r2, r3}, Ŝ2 =
pos {r2, r3, r4}, and Ŝ3 = pos {r3, r4, r5}, see also Figure 5.5. The selection
matrices En are then constructed as

E1 =


1 0 0
0 1 0
0 0 1
0 0 0

 , E2 =


0 0 0
1 0 0
0 1 0
0 0 1

 , and E3 =


0 0 1
0 0 0
1 0 0
0 1 0

 ,
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and the continuity matrices as in (5.20) follow as

F̂1 =


0 −1 1

0
√

3 0
1 −1 0
0 0 0

 , F̂2 =


0 0 0

0
√

3
2

√
3

2
1 −1 0

0
√

3
2 −

√
3

2

 , and F̂3 =


0 1 1
0 0 0
1 −1 0

0
√

3 0

 .
Consider the point ξ = [z, u, ż]> = [2, 1, 1]>, which is located on the boundary
between Ŝ1 and Ŝ2. For this point one finds F̂1ξ = F̂2ξ = [0,

√
3, 1, 0]>. For

the point ξ = [2, 1,−1]> located on the boundary between Ŝ2 and Ŝ3 one finds
F̂2ξ = F̂3ξ = [0, 0, 1,

√
3]>. For ξ = [0, 0,−1]>, which is on the boundary between

Ŝ3 and −Ŝ1, one finds F̂1ξ = F̂3ξ = [−1, 0, 0]>. If the vector r5 would have been
taken into account for constructing the continuity matrices F̂i, i = 1, 2, 3, then
for ξ = [0, 0,−1]> one finds F̂1ξ = [1, 0, 0, 0, 0]> and F̂3ξ = [0, 0, 0, 0,−1]>.
Hence, F̂1ξ 6= F̂3ξ for all ξ ∈ {Ŝ1 ∩ −Ŝ3} ∪ {−Ŝ1 ∩ Ŝ3}. The reason for this is
that the common boundary is described by both r1 and r5 = −r1. Eliminating r5

(or r1) ensures that this boundary is represented by only one vector in R̄.

Using ξ = Ex, with E given in (5.7), the sets Ŝi, i ∈ N in (5.18) and T̂j ,
j ∈M in (5.19) are transformed to

Si = {x ∈ Rn | Six ≥ 0} , (5.21a)

Tj = {x ∈ Rn | Tjx ≥ 0 ∧Hx = 0} , (5.21b)

where
Si = ŜiE, Tj = T̂jE, and H = hE, (5.22)

for describing the polyhedral partitions in the state space of the closed-loop
system (5.5). The continuity matrices are extended to

Fi =
[
(F̂iE)>, I

]>
, (5.23)

where F̂i is defined in (5.20), and I is an n×n identity matrix that is added for
the purpose of ensuring full rank of Fi. Note that

⋃
i∈N {Si ∪ −Si} = X 1 = X ,

and
⋃
j∈M {Tj ∪ −Tj} = X 2, where X = X1 ∪ X2 is defined in (5.6).

It may appear that the parametrization (5.17) with the continuity matrices
as in (5.23) can introduce some conservatism in the analysis due to fixing the
structure of the matrices Pi a priori. This is indeed true when the region Z :={

(z, ż) ∈ R2 | z ≥ 0
}

, (alternatively −Z), i.e., the (z, ż)-plane with z ≥ 0 (or
z ≤ 0) is divided into only two regions. In that case, one finds for u = 0 and
v = (z, ż) ∈ R2 that FiHv = FjHv = Fv, where imH = kerU with U = [0, 1, 0].
Hence, in that case the PWQ function V as in (5.17) degenerates to a quadratic
function in that plane, i.e., V = v>H>PiHv = v>H>PjHv = v>F>ΦFv =
v>Pv. This follows from the fact that Fi and Fj are based on the same generating
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vectors in Z. It is relatively simple to construct examples for which a piecewise
quadratic function can still be constructed with this partitioning, and thus using
a quadratic one introduces conservatism. A degenerate case can be found in
Example 5.3.7. When dividing Z into more than two regions, however, ensuring
the continuity property through the parametrization in (5.17) is done in a non-
conservative manner, as follows from the next proposition.

Proposition 5.3.8. Consider a symmetric simplicial partitioning of F in which
the region Z =

{
(z, ż) ∈ R2 | z ≥ 0

}
is divided into more than two regions. Then,

the following statements are equivalent:

i) A PWQ function of the form

V (x) = x>Pix, if x ∈ Si ∪ −Si, i ∈ N , (5.24)

with Pi = P>i defined over a polyhedral partition PX = {S1, . . . ,SN} ∪
{−S1, . . . ,−SN}, with Si given in (5.21a), is continuous.

ii) There exists a symmetric matrix Φ ∈ Rr×r such that

Pi = F>i ΦFi, i ∈ N , (5.25)

with Fi given in (5.23).

iii) There exist symmetric matrices Pi = P>i , i ∈ N that satisfy

Z>ij (Pi − Pj)Zij = 0, (5.26)

where imZij = kerHij, and Hij describes the boundary between Si and Sj.
Proof. See Appendix 5.A.3.

It is also worth mentioning in this regard that compared to a generic poly-
hedral partitioning strategy, a simplicial partitioning strategy itself does not
introduce more conservatism in the analysis. Namely, since each polyhedral
cone with non-empty interior can be partitioned into a finite number of sim-
plical cones (Concini and Procesi, 2010, Lemma 1.40), then when defining a
continuous function over a polyhedral partitioning such as discussed in Deenen
et al., 2021, this same function can be defined over a simplicial partitioning as
well. The converse, however, not necessarily holds true.

5.4 LMI conditions for stability and
performance

5.4.1 Main results

This section presents the main results of this chapter in the form of LMI condi-
tions which, if feasible, guarantee the existence of PWQ ISS-Lyapunov and stor-
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age functions that can be used for certifying ISS and computing upper-bounds
on the L2-gain and H2-norm of the closed-loop system in (5.5).

Theorem 5.4.1. Consider the closed-loop system in (5.5) with w ∈ L2, and let
a polyhedral symmetric partition PX = {S1, . . . ,SN} ∪ {−S1, . . . ,−SN} with Si
as in (5.21a) be given. Suppose there exist matrices Ui, Wi ∈ S3×3

≥0 for all i ∈ N ,

and Vj ∈ S2×2
≥0 , Lj ∈ Rq for all j ∈ M, a matrix Φ ∈ Sq×q, and constant γ > 0,

such that Pi = F>i ΦFi, i ∈ N satisfies the following LMI conditions:

Pi − S>i WiSi � 0, i ∈ N , (5.27)A>1 Pi + PiA1 + S>i UiSi PiB C>

B>Pi −γI D>

C D −γI

 ≺ 0, i ∈ N , (5.28)

Ā>2 Pj + PjĀ2 + T>j VjTj +Qj PjB C>

B>Pj −γI D>

C D −γI

 ≺ 0, j ∈M, (5.29)

in which Qj = LjH + (LjH)>, and Ā2 = A2 + µbH, with b = [0, 1]> and µ ∈ R
a fixed number, and where Si, Tj, H, and Fi are given in (5.22) and (5.23).
Then the closed-loop system in (5.5) is input-to-state stable (ISS) and has a
finite L2-gain from w to q smaller than or equal to γ.

Proof. The proof can be found in Appendix 5.A.4.

Remark 5.4.2. The motivation for using the extended system matrix Ā2 =
A2 + µbH rather than A2, comes from numerical considerations. Since A2 re-
sults from explicit differentiation of the algebraic constraint in gain-mode, this
matrix is singular. Consequently, the LMI problem in (5.27), (5.28) may be-
come ill-conditioned, which potentially leads to numerical issues; note that Ā2

being singular corresponds to µ = 0. By appending A2 with an additional matrix
µbΠ, the resulting matrix Ā2 becomes non-singular, thereby leading to numer-
ically more favourable conditions, see also the related discussion in Chapter 4,
Remark 4.2.1. Note that the gain-mode dynamics remain unchanged, that is,
A2x = Ā2x for all x ∈ X2. A suitable choice for µ may be one that minimizes
the condition number of Ā2.

Inspired by the results for generic PWL systems in Johansson and Rantzer,
1998; Rantzer and Johansson, 2000, and reset control systems in, e.g., Aangenent
et al., 2010; Nešić et al., 2011, the following theorem presents conditions for
computing an upper-bound on the H2-norm of the closed-loop system in (5.5).

Theorem 5.4.3. Consider the closed-loop system in (5.5) with w = 0 and an
initial condition x(0) = x0 ∈ X . Let a polyhedral partition PX = {S1, . . . ,SN}∪
{−S1, . . . ,−SN} with Si as in (5.21a) be given. Suppose there exist matrices Ui,
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Wi ∈ S3×3
≥0 for all i ∈ N , and Vj ∈ S2×2

≥0 , Lj ∈ Rq, for all j ∈ M, a matrix

Φ ∈ Sq×q, and a constant γ > 0, such that Pi = F>i ΦFi, i ∈ N satisfies the
following LMI conditions

Pi − S>i WiSi � 0, i ∈ N , (5.30)

A>1 Pi + PiA1 + S>i UiSi + C>C ≺ 0, i ∈ N , (5.31)

Ā>2 Pj + PjĀ2 + T>j KjTj +Qj + C>C ≺ 0, j ∈M, (5.32)

γ2 − x>0 Pqx0 ≥ 0, q ∈ J (x0) (5.33)

in which Qj = LjH + (LjH)>, Ā2 = A2 + µbH, with b = [0, 1]> and µ ∈ R
a fixed number, Si, Ti, H, and Fi are defined in (5.22) and (5.23), and where
J (x0) := {i ∈ N | x0 ∈ Si ∪ −Si}. Then, for initial condition x0 ∈ X , the
closed-loop system in (5.5) has an H2-norm smaller than or equal to γ.

Proof. Taking similar steps as in the proof of Theorem 5.4.1, it follows that
conditions (5.30)–(5.32) imply V (x(t))− V (x(0)) ≤ −‖q‖2. Using V (x(t)) ≥ 0,
x(0) = x0, and (5.33) yields ‖q‖2,x0 ≤ γ, thereby completing the proof.

The following result shows that, similar to the quadratic case in Chapter 4,
the conditions in Theorem 5.4.1 and 5.4.3 resulting from the use of a PWQ func-
tion provide stronger robust (with respect to arbitrary small state perturbations)
stability and performance guarantees for the closed-loop system in (5.5).

Corollary 5.4.4. If the conditions in Theorem 5.4.1 and Theorem 5.4.3 are
satisfied, then the Krasovskii regularization of (5.5) (see (2.41) in Section 2.3.4)
is ISS and has a finite L2-gain/H2-norm smaller than or equal to γ.

Proof. Note that by construction, in each cell Tj ⊂ Sj , j ∈ M with M ⊂ N
a “common” Pj is employed for both the integrator-mode and gain-mode. As
such, it readily follows that for all x ∈ Tj ∪ −Tj , j ∈M

x>∇Pj (co(A1x,A2x) +Bw) ≤ s(w, q, x). (5.34)

The remaining point to worry about is the point where Ex = (z, u, ż) = 0, since
in that point all piecewise functions come together, and (5.34) needs to hold
for all j ∈ N . Note, however, that for Ex = 0 one has A1x = A2x. Since
x>∇Pi(A1x+Bw) ≤ s(w, q, x), for all x ∈ Si ∪ −Si, i ∈ N , which contains the
point Ex = 0, the result immediately follows.

5.4.2 On (in)feasibility of the LMI conditions

When the LMIs in Theorem 5.4.1 or Theorem 5.4.3 turn out to be infeasible for
a certain partitioning, this partitioning can be iteratively refined to increase the
possibility of finding a solution, if existing. In this regard, it might be useful to
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know in advance under which conditions and for which partitioning the LMIs
will not be feasible, such that these cases do not have to be considered. In
general, this is difficult to assess since the LMI conditions are only sufficient
conditions for stability. However, some insights regarding (in)feasibility of the
LMIs can be obtained when one or both submodes of the HIGS-controlled system
are unstable. This is formalized in the following proposition.

Proposition 5.4.5. Let a simplicial partitioning PF be given. The LMI condi-
tions in Theorem 5.4.1 and Theorem 5.4.3 do not admit a feasible solution for
that specific partitioning PF if one (or both) of the following conditions holds:

C1. The matrix A1 given in (5.8) has eigenvalues λ ∈ C with Re(λ) > 0 that
satisfy for some i ∈ N

 Re(λ)
ωh

Re(λ)2 − Im(λ)2

 ,
 Im(λ)

0
2Re(λ)Im(λ)

 ⊂ Ŝi ∪ −Ŝi, (5.35)

with Ŝi defined in (5.13).

C2. The matrix Ag + khBgCz with Ag, Bg, Cz given in (5.1) has eigenvalues
λ ∈ C with Re(λ) > 0 that satisfy for some j ∈M{[

1
Re(λ)

]
,

[
0

Im(λ)

]}
⊂ T̂j ∪ −T̂j , (5.36)

with T̂j defined in (5.15).

Proof. The proof is given in Appendix 5.A.5.

The result of Proposition 5.4.5 shows the benefits of considering a partition-
ing in the full (z, u, ż)-space in contrast to, e.g., a partitioning in the (z, u)-space.
Namely, when (5.35) and/or (5.36) are true, one can refine the partitioning to
render these conditions false, whereas for a simpler partitioning and refinement
strategy this may not be possible due to limited flexibility. For example, in case
the gain-mode region is not partitioned (see for instance the partitioning strat-
egy in Van den Eijnden et al., 2019), one has T̂ ∪ −T̂ = F2 such that (5.36) is
always satisfied for any eigenvalue λ of the matrix Ag + khBgCz that satisfies
0 ≤ Re(λ) ≤ ωh

kh
and Im(λ) ∈ R. When the gain-mode region is partitioned, this

is not necessarily true. With these conditions one may test upfront if a simpler,
computationally less demanding partitioning could potentially work, or a more
involved three-dimensional partitioning should be considered. Moreover, these
conditions give direct insights into some of the necessary properties that a parti-
tion refinement should admit. The application and relevance of Proposition 5.4.5
will be illustrated in Section 5.5.
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Closer inspection of the results in Proposition 5.4.5 reveals that, under some
simple algebraic conditions on the eigenvalues related to the system matrices in
integrator-mode and gain-mode, there exists no partitioning for which the LMIs
are feasible. These conditions are summarized in the following corollary.

Corollary 5.4.6. There is no simplicial symmetric partitioning PF of F such
that the LMI conditions in Theorem 5.4.1 and Theorem 5.4.3 admit a feasible
solution, if one or both of the following conditions hold:

(i) there is a real eigenvalue λ of A1 that satisfies λ > ωh
kh

;

(ii) there is a real eigenvalue λ of Ag + khBgCz that satisfies 0 ≤ λ < ωh
kh

.

Proof. Consider the vectors

v1 =

 Re(λ)
ωh

Re(λ)2 − Im(λ)2

 , and v2 =

 1
kh

Re(λ)

 . (5.37)

Suppose that (i) holds. Since Im(λ) = 0 by assumption, it follows that v1 ∈ F1.
As Ŝi ∪ −Ŝi ⊂ F1 for all i ∈ N , there always exists a region Ŝi ∪ −Ŝi such
that v1 ∈ Ŝi ∪ −Ŝi. Similarly, assume that (ii) holds such that v2 ∈ F2. Since
Im(λ) = 0 and T̂j ∪ −T̂j ⊂ F2 for all j ∈ M, there always exists a region

T̂j ∪−T̂j such that v2 ∈ T̂j ∪−T̂j . Consequently, condition (5.35) and/or (5.36)
are satisfied for all partitions, and thus the LMIs are not feasible.

Interestingly, this geometric result can directly be interpreted in terms of
unstable closed-loop system behaviour. Indeed, the vectors v1 and v2 in (5.37)
define a possible direction along which the (z, u, ż)-trajectory can evolve in the
regions F1 or F2. When condition (i) in Corollary 5.4.6 is satisfied, the z-
trajectory evolves at a rate of at least 1/kh times faster than the u-trajectory, i.e.,
0 ≤ du/dz < kh. Consequently, the sector boundary u = khz cannot be reached
such that switching, as a potentially stabilizing mechanism, is not initiated. A
similar interpretation is given for the gain-mode. When condition (ii) is satisfied,
the ż-trajectory evolves at least ωh/kh times slower than the z-trajectory. As
such, 0 ≤ dż/dz < ωh/kh and the switching boundaries ωhz = khż or z = 0
cannot be reached. Note that a condition on the magnitude of the eigenvalues is
thus a consequence of the fact that trajectories of HIGS evolve in a sector. The
above observations can be translated into necessary conditions for input-to-state
stability as formalized in the following theorem.

Theorem 5.4.7. A necessary condition for the closed-loop system in (5.5) to be
input-to-state stable is that none of the conditions in Corollary 5.4.6 hold true.

Proof. If the conditions in Corollary 5.4.6 are satisfied, then one (or both) of the
sub-modes is unstable, and according to Corollary 5.4.6 (see also the proof of
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Proposition 5.4.5) it follows that the eigenvector v ∈ Rm corresponding to the
unstable real eigenvalue satisfies Ev = α1v1 ∈ F1 or EΘv = α2v2 ∈ F2, with
v1, v2 given in (5.37) and α1, α2 ∈ R. When starting in the integrator-mode
with initial condition x(0) = v and w = 0, the corresponding trajectory evolves
according to x(t) = eλtv. For the integrator-mode one finds for all t ≥ 0

(z(t), u(t), ż(t)) = eλtEv ∈ F1. (5.38)

Similarly, starting with initial condition x(0) = Θv in gain-mode yields x(t) =
eλtΘv such that for t ≥ 0

(z(t), u(t), ż(t)) = eλtEΘv ∈ F2. (5.39)

The (z, u, ż)-trajectory moves along the line spanned by Ev ∈ F1 or EΘv ∈ F2.
The system cannot switch: it remains in the unstable linear mode and thus there
is a trajectory that diverges exponentially from the origin. This directly violates
the property of an ISS system that for zero inputs, the origin is asymptotically
stable for any admissible initial condition x0 ∈ Rn.

Remark 5.4.8. For planar HIGS-controlled systems, being the interconnection
of HIGS with a one-dimensional linear plant, the conditions in Theorem 5.4.7
can be shown to be necessary and sufficient, see also a related result for reset
systems in Nešić et al., 2011, Theorem 3 and linear complementary systems in
Camlibel et al., 2003, Theorem III.3.

5.5 Numerical examples

In this section, applicability of the time-domain tools for stability and perfor-
mance analysis is demonstrated by means of two numerical examples. In the
first example, the potential for reducing conservatism in the analysis when us-
ing PWQ functions is illustrated for the mass-spring-damper system discussed
previously in Chapter 4. In the second example, stability and performance of a
HIGS-based control design for a fourth-order motion system is studied in detail.
For this example, the relevance of Proposition 5.4.5 is highlighted in particular.

5.5.1 Mass-spring-damper system revisited

Recall the example presented earlier in Chapter 4, Section 4.3, in which a mass-
spring-damper system, given by

P (s) =
1

ms2 + bs+ k
, (5.40)
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with m = 1 kg, b = 0.0564 Ns/m, and k = 1 N/m, is placed in feedback with
the series interconnection of HIGS and an LTI filter, the latter given by

C(s) = kp

(
s+ ωz
s+ ωp

)
, (5.41)

where kp = 1.4 N/m, ωz = 5 rad/s, and ωp = 6.95 rad/s. Note that this example
serves the purpose of demonstrating the potential benefits when using a state-
space partition in a stability and performance analysis, and is not necessarily
designed to achieve the best performance in L2 or H2 sense.

Stability analysis
For assessing ISS of the closed-loop system, the LMI-conditions in Theorem 5.4.1
are solved by means of the MATLAB toolbox YALMIP (Löfberg, 2004) together with
the external solver MOSEK (Andersen et al., 2003) for different values of ωh and kh,
and using different partitioning strategies. In particular, a comparison is made
between i) using no partitioning (leading to a single quadratic Lyapunov function
as in Chapter 4), ii) a two-dimensional partitioning in which the [0, kh]-sector
in the (z, u)-space is iteratively partitioned into a maximum of 1200 smaller
sub-sectors, and iii) a three-dimensional partitioning in which the (z, u, ż)-space
is iteratively partitioned into at most 1200 three-dimensional subregions. The
results are presented in Figure 5.6.

From Figure 5.6a it can be seen that, compared to the simulation-based stable
region (grey) obtained from applying a unit step input to the system, a consid-
erable degree of conservatism remains in concluding on ISS of the closed-loop
system when using an LMI-based approach without partitioning (black dots).
This is a result from considering a common (smooth) quadratic ISS-Lyapunov
function. In Figure 5.6b, it is shown that a two-dimensional partitioning of the
[0, kh]-sector (see also the strategy discussed in Van den Eijnden et al., 2019)
is able to partly alleviate this problem, resulting in a significantly larger set of
parameters for which ISS can be guaranteed. For parameter pairs close to the
edge of the stable region, however, also this approach is consistently unable to
provide stability guarantees. Finally, Figure 5.6c illustrates the potential of a
three-dimensional partitioning in terms of reducing conservatism. The resulting
range of (kh, ωh)-values for which closed-loop stability can be concluded on the
basis of the LMI conditions closely coincides with the stable region found from
time-series simulations. In fact, the results seem to closely resemble what would
be expected from a necessary condition for closed-loop stability of the nonlinear
feedback system.

Performance analysis - L2-gain
An upper-bound on the L2-gain of the closed-loop system from w to y with
kh = 0.23 and for various values of ωh is computed by minimizing γ in Theo-
rem 5.4.1 under the LMI constraints (5.27)–(5.29), and with different partition-
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(a) No partitioning. (b) Two-dimensional partitioning.

(c) Three-dimensional partitioning.

Figure 5.6. A comparison between solving the LMI conditions in Theo-
rem 5.4.1 using different partitioning strategies for different parameter values
of ωh and kh. See also Figure 4.5 in Chapter 4 for a similar analysis but on the
basis of frequency-domain conditions.

ing strategies. The results from solving the LMIs are shown in Figure 5.7.
In addition, an estimate obtained from simulated experiments is provided in

this figure. For this purpose, a truncated sinusoid, defined by

w(t) =

{
sin(ωt) for all t ∈ [0, T ],

0 otherwise,
(5.42)

with T = 100 · 2π/ω and ω > 0 is applied to the closed-loop system at various
frequencies. The simulation time is set to ts = 10T seconds to ensure the
response has sufficiently settled. A lower-bound on the L2-gain is then estimated
by taking the maximum ratio of the L2-norms of the input w and output q = y.

The result in Figure 5.7 clearly illustrates the benefits of a state-space par-
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Figure 5.7. Estimated L2-gain (normalized) obtained by means of i) Theo-
rem 5.4.1 with different partitioning strategies, and ii) time-domain simulations.

tition as the estimates become significantly tighter. Note that for certain val-
ues of ωh a small discrepancy between the estimates resulting from the LMIs
with a three-dimensional partitioning and the time-domain simulations remains.
This may be caused by i) numerical artefacts, ii) remaining conservatism in
the analysis due to a finite partitioning, and iii) the chosen class of input
signals, which may only provide a lower-bound for the true L2-gain, that is,
γsim ≤ γtrue ≤ γLMI.

Performance analysis - H2-norm
An upper-bound on the H2-norm of the closed-loop system with w = 0, and
when subject to an initial condition x(0) that corresponds to an initial state
y(0) = 1, ẏ(0) = 0 of the simply supported mass, is computed for kh = 0.23 and
various ωh. Specifically, γ in Theorem 5.4.3 is minimized under the LMI con-
straints (5.27)–(5.29), and with different partitionings. The results are shown in
Figure 5.8, along with the true H2-norm obtained from time-series simulations.

Again, a clear benefit can be seen from using a three-dimensional partitioning
strategy as the estimate of the H2-norm closely corresponds to the true value
obtained by simulations, underlining the accuracy of the LMIs.

5.5.2 Fourth-order motion system

For the second example, consider a typical motion system represented by the
fourth-order transfer function

P (s) =
1

ms2
− 1

m(s2 + 2β0ω0s+ ω2
0)
, (5.43)
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Figure 5.8. Estimated H2-norm (normalized) obtained by means of Theo-
rem 5.4.3 with different partitioning strategies, and the true H2-norm obtained
through time-domain simulations.

which is a combination of rigid-body and non-rigid-body dynamics, and where
m = 18 kg, ω0 = 1200 · 2π rad/s, and β0 = 0.03. This system is placed in
feedback with a controller Cfb being the series interconnection of a linear PID-
filter Cpid(s), a second-order low-pass filter Clp(s), and a notch filter Cn(s). The
individual filters are constructed as

Cpid(s) = kp

(
1 +

ωi
s

+
s

ωd

)
, (5.44)

Clp(s) =
ω2
lp

s2 + 2βωlps+ ω2
lp

, (5.45)

Cn(s) =
ω2
p

ω2
z

· s
2 + 2βzωzs+ ω2

z

s2 + 2βpωps+ ω2
p

. (5.46)

To potentially improve transient and steady-state performance, HIGS is added
in series with an additional output filter Cz(s) = s+ωc

ωc
with ωc = ωh

kh
|1 + 4j

π |.
The linear portion of the controller is then given by

C(s) := Cz(s)Clp(s)Cpid(s)Cn(s). (5.47)

The system is subject to a bounded input disturbance d ∈ L2, and a unit step-
input r(t) = 1 for t ≥ 0, r(t) = 0 otherwise. The specific closed-loop configura-
tion is depicted in Figure 5.9, and satisfies Assumption 2.3.1.

An initial controller is designed by means of a loop-shaping procedure
(Franklin et al., 2005; Skogestad and Postlethwaite, 2010; Steinbuch and Norg,
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Σ H C Σ P
e u v y

−

r = 1

dCfb

Figure 5.9. Schematic representation of the closed-loop system.

1998) in which HIGS is replaced by its describing function D(jω) (see Chap-
ter 2). The aim is to maximize the bandwidth, i.e., the frequency at which the
quasi-linear open-loop frequency response function L(jω) := P (jω)C(jω)D(jω)
crosses 0 dB for the first time, while satisfying a peaking constraint of 8 dB on
the quasi-linear sensitivity function S(jω) := (1 +L(jω))−1. The phase benefits
associated with HIGS may allow for an increase in bandwidth as compared to an
LTI design. The loop-shaping design procedure exploited here will be discussed
in detail in Chapter 7.

On the basis of this approach, the following parameter values are obtained:
kp = 4.816 · 107 N/m, ωi = 150 · 2π rad/s, ωd = 240 · 2π rad/s, ωlp = 1400 · 2π
rad/s, β = 0.7, ωz = 1160 · 2π rad/s, βz = 0.01, ωp = 850 · 2π, βp = 0.3,
ωh = 300 · 2π rad/s, kh = 1, and the bandwidth is 305 Hz. A Nyquist-like plot
of the describing function L(jω), together with the open-loop characteristics of
the linear gain- and integrator-mode is shown in Figure 5.10.

Stability Analysis
For verifying input-to-state stability of the resulting design, the conditions in
Theorem 5.4.1 are checked. However, before doing so, note from Figure 5.10
that the individual LTI integrator-mode subsystem and gain-mode subsystem
are unstable. In fact, it turns out that one of the complex eigenvalue pairs of
the system matrix in gain-mode is given by λ = 52.2± 5102j, and satisfies

0 ≤ Re(λ) = 52.2 ≤ ωh/kh = 300 · 2π.

According to Proposition 5.4.5 the closed-loop system does not admit a common
quadratic Lyapunov function, but also there does not exist a PWQ Lyapunov
function with any two-dimensional partitioning, i.e., a partitioning in which the
gain-mode region is not partitioned (see also Aangenent et al., 2010; Loquen
et al., 2010; Van den Eijnden et al., 2019). Therefore, when existing, a PWQ
(ISS)-Lyapunov function can only be found with a three-dimensional partitioning
(or more). A feasible solution to the LMIs in Theorem 5.4.1 was found with a
division of the region Ŝ into a total of 28 simplicial cones.

The closed-loop system is simulated with r = d = 0, and random initial con-
ditions for the plant and LTI part of the controller, whereas the initial state of
HIGS is set to xh(0) = 0. The corresponding evolution of the Lyapunov function
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Figure 5.10. Nyquist plot of the quasi-linear open-loop frequency response
function L(jω) (black) together with the associated linear gain-mode character-
istics (grey) and linear integrator-mode characteristics (red).

along trajectories of the system is shown in Figure 5.11. As can be seen for a spe-
cific solution, this function is positive, continuous, and monotonically decreasing.

Performance analysis - L2-gain
Next, performance in terms of the L2-gain is studied using Theorem 5.4.1. Simi-
lar as before, γ is minimized under the LMI constraints (5.27)–(5.29). The result
for an increasing number of subdivisions N of the three-dimensional region F
is given in Table 5.1, together with an estimate for the lower-bound obtained
from simulations with the truncated sinusoid in (5.42) as an input disturbance
d at different frequencies ω. The maximum for this lower-bound was found at
an input frequency of ω = 229.78 · 2π rad/s.

Table 5.1. L2-gain estimation.

N = 70 N = 100 N = 250 N = 700 N = 1200

γsim (·107) 1.24 1.24 1.24 1.24 1.24

γLMI (·107) 4.59 3.17 2.25 1.93 1.73

∆ 270% 155% 81% 56% 39%
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Figure 5.11. Time-evolution of the PWQ Lyapunov function (normalized)
along the trajectories of the system.

The results in Table 5.1 show the benefit of a partition refinement for im-
proving the accuracy of the LMI approximation. Remark that a gap between
the LMI approximation and the simulation result remains due to the fact that
the chosen input signal may not necessarily reflect the worst-case disturbance
for the closed-loop system, numerical artefacts, and remaining conservatism.

Performance analysis - H2-norm
For a final exposition of the tools presented in this chapter, an estimate for the
H2-norm of the error response when the system is subject to a unit-step input is
computed. For this purpose, a state-transformation is applied as follows. When
being in a state of equilibrium with (z, u) = (0, 0) the system must be in in-
tegrator mode. The equilibrium state is determined as x∗ = −A−1

1 B, where
invertibility of A1 follows from the absence of zero eigenvalues. Remark that
due to the presence of an integrator in Cfb, the only possibility for the tracking
error e = r − y is to be zero when the system is in equilibrium. Consider the
transformation ξ := x−x∗ for which simple calculations show that the dynamics
of the transformed system read

ξ̇ = Aiξ, when ξ ∈ Xi, i = {1, 2} ,

with initial condition ξ(0) = −A−1
1 B. The LMI conditions in Theorem 5.4.3 are

solved for this transformed autonomous system with an increasing number of
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subdivisions N of F . The results are provided in Table 5.2, along with the true
H2-norm obtained from time-series simulations. Note that as an alternative for
computing the H2-norm, one could have approximated the unit-step input by
an LTI input filter Wr(s) = 1

s+ε with small ε > 0 and initial state xr(0) = 1,
see also Aangenent et al., 2010 for such an approach. A step-response of the
closed-loop system is shown in Figure 5.12.

Table 5.2. H2-norm estimation.

N = 70 N = 100 N = 250 N = 700 N = 1200

γsim 0.041 0.041 0.041 0.041 0.041

γLMI 0.101 0.075 0.061 0.058 0.056

∆ 146% 83% 49% 42% 36%

Figure 5.12. Step-response of the closed-loop system.

Although refinement of the partitioning shows a significant benefit for im-
proving an estimation of the H2-norm, a discrepancy of 36% still remains. This
difference may partly be due to remaining conservatism in the analysis. To po-
tentially refine the results, one can use a different partitioning or search for, e.g.,
alternative (piecewise) polynomial storage functions (Chesi, 2010; Garulli et al.,
2013). It is furthermore expected that the increased computational complexity
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due to an increased system dimension may lead to numerical problems, and, as
such, contributes to this gap. Also note that for the previous (numerically sim-
pler) example, the conditions lead to a very tight estimate of the true H2-norm.
Moreover, one should keep in mind that for the current example a feasible solu-
tion to the LMIs does not even exist at all when using either no partitioning or
a two-dimensional partitioning, making the conditions still relevant.

Remark 5.5.1. To improve overall numerical conditioning of the LMIs for this
example, a Gramian-based balancing of the closed-loop state-space realization
has been performed (Laub et al., 1987; Moore, 1981). Hereto, a similarity trans-
formation xb = Tx is computed on the basis of the state-space description in
integrator-mode, which is subsequently applied to both the integrator-mode and
gain-mode state-space models for constructing a balanced closed-loop model. In
addition, input/output scaling has been used. Namely, the input matrix B in
(5.5) has been multiplied with a factor of 104 for lifting the L2-gain, thereby lead-
ing to more favourable numerical conditions. Output scaling has been applied to
ż such that z, u and ż are approximately of the same order of magnitude.

5.6 Summary

This chapter presented rigorous time-domain conditions for stability and per-
formance of HIGS-based control systems. For potentially reducing conservatism
in the analysis and obtain tighter performance estimates, the conditions exploit
flexible piecewise quadratic functions defined over a tailored and a numerically
robust state-space partition. The latter is constructed by dividing the full re-
gion that determines mode-switching of HIGS into smaller, conic regions, each to
which a quadratic function is assigned. On the basis of this partition with piece-
wise quadratic functions, conditions for stability and performance are formulated
as a convex optimization problem in terms of numerically verifiable LMIs. For
achieving more insights regarding (in)feasibility of the LMIs, sufficient conditions
are given under which the LMIs cannot be solved, guiding partition refinements
which are important for obtaining accurate stability and performance estimates.
The effectiveness of the presented tools (along with some shortcomings) has been
demonstrated on numerical control examples.

Despite the L2-gain considered in this chapter being a valuable measure for
(steady-state) time-domain performance of HIGS-based control systems, it may
be conservative as it applies to a broad class of input signals and may not always
reflect the actual performance objective. However, one often has more knowledge
about external signals acting on the system. Therefore, it is of interest to seek
for alternative ways in quantifying (steady-state) time-domain performance of
systems containing HIGS. In the next chapter, the notion of convergent systems
is adopted, which opens up the possibility for accurately characterizing steady-
state performance in both time- and frequency-domain.
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5.A Proofs and technical results

5.A.1 Proof of Proposition 5.3.5

First, it is shown that ξ ∈ Ŝi ⇐⇒ Ŝiξ ≥ 0 for all i ∈ N .

• ξ ∈ Ŝi ⇒ Ŝiξ ≥ 0. Since Ŝi = pos
{
r1
i , r

2
i , r

3
i

}
is a simplicial cone, each

ξ ∈ Ŝi can uniquely be written as a positive combination of columns from
Ri = [r1

i , r
2
i , r

3
i ], that is,

ξ = Riλ, with 0 ≤ λ ∈ R3. (5.48)

Invertibility of Ri results in λ = R−1
i ξ ≥ 0, which by the choice Ŝi = R−1

i

yields the inequality.

• Ŝiξ ≥ 0⇒ ξ ∈ Ŝi. Suppose Ŝiξ = λ ≥ 0. Invertibility of Ŝi yields ξ = Riλ
and thus ξ ∈ pos

{
r1
i , r

2
i , r

3
i

}
= Ŝi. The result follows.

Next it is shown that ξ ∈ T̂j ⇐⇒ T̂jξ ≥ 0, hξ = 0 for all j ∈M.

• ξ ∈ T̂j ⇒ T̂jξ ≥ 0, hξ = 0. The equality hξ = 0 follows immediately

from the observation that T̂j ⊂ F2, and thus each ξ ∈ T̂j is perpendicular

to the vector defined by h. Since T̂j = pos
{
r1
j , r

2
j

}
is a polyhedral cone,

each ξ ∈ T̂j can be written as the positive combination of columns in
R′j = [r1

j , r
2
j ], that is

ξ = R′jλ, with 0 ≤ λ ∈ R2. (5.49)

Since R′j has linearly independent columns, it follows that the matrix prod-

uct (R′j)
>R′j also has linearly independent columns and, therefore, is in-

vertible. Multiplying (5.49) from the left by ((R′j)
>R′j)

−1(R′j)
> yields(

(R′j)
>R′j

)−1
(R′j)

>ξ = λ ≥ 0.

From the choice for T̂j in (5.15) the result follows.

• T̂jξ ≥ 0, hξ = 0 ⇒ ξ ∈ T̂j . Suppose T̂jξ = λ with λ ≥ 0. Pre-
multiplication of this equality with (R′j)

>R′j yields (R′j)
>ξ = (R′j)

>R′jλ,
which, in turn, yields

(R′j)
> (ξ −R′jλ) = 0. (5.50)

Clearly, since R′j ∈ R3×2 there is no unique solution to this equation.
Consider a solution that satisfies ξ − R′jλ 6= 0. Since the columns of R′j
both belong to the plane defined by ker(h), it must hold that the vector
ξ − R′jλ is perpendicular to this plane. However, since R′jλ ∈ ker(h), this
contradicts the assumption that ξ ∈ ker(h). As such, the only solution
that can satisfy (5.50) when hξ = 0 holds, is ξ = R′jλ. For λ ≥ 0 this

implies ξ ∈ pos
{
r1
j , r

2
j

}
= T̂j .
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5.A.2 Proof of Proposition 5.3.6

The first part of the proof follows similar arguments as in Johansson, 2002,
Section A.4. First, the continuity property is shown for all ξ ∈ Ŝi ∩ Ŝj , i, j ∈
N ×N , i 6= j. Observe that each ξ ∈ Ŝi can be written as a linear combination
of elements from R̄, such that

ξ =

p∑
q=1

rqwq,i = R̄w̄i, (5.51)

where w̄i = [w1,i, . . . , wp,i]
> ∈ Rp collects the weights wq,i. One can set wq,i = 0

for all q such that rq 6∈ Ŝi (where no distinction is made between [0, 0, 1]> and
[0, 0,−1]>). By doing so, it follows that w̄i = EiE

>
i w̄i, such that (5.51) can

equivalently be written as ξ = R̄EiE
>
i w̄i. Since Ei extracts those columns from

R̄ that coincide with the generators of Ŝi, it follows that the columns of the
matrix R̄Ei are linearly independent and thus R̄Ei is invertible. From this, one

finds the mapping w̄i = Ei
(
R̄Ei

)−1
ξ. On the boundary shared by two simplicial

cones Ŝi and Ŝj , the only non-zero elements of wq,i, wq,j are those that describe

this common boundary. Therefore, wq,i(ξ) = wq,j(ξ) for all ξ ∈ Ŝi ∩ Ŝj . The

result trivially follows for ξ ∈ −Ŝi ∩ −Ŝj , i, j ∈ N ×N , i 6= j.
It remains to show that (5.20) also yields the continuity property for ξ ∈

Ŝi ∩ −Ŝj , i, j ∈ N × N which corresponds to the line ξ = [0, 0, ż]>. Since the
vector [0, 0,−1]> is excluded from R̄, this common boundary is represented by
only one column in R̄, being the vector [0, 0, 1]>. Therefore, for each ξ ∈ Ŝi∩−Ŝj ,
i, j ∈ N ×N , the only non-zero element in wq,i and wq,j describes this common
boundary. This concludes the proof.

5.A.3 Proof of Proposition 5.3.8

Parts of the proof are inspired by the proofs of Ambrosino and Garone, 2015,
Lemma 1, and Ambrosino and Garone, 2015, Theorem 2.

i) =⇒ ii): Suppose V in (5.24) is continuous. Consider the state transfor-

mation x̄ = Tx, with T =
[
E> U>

]>
, and where Im(U) = ker(E), such that

one finds x̄ = [ξ>, x̂>]> with ξ = [z, u, ż]> ∈ R3 and x̂ ∈ Rn−3. Note that T
has full rank and thus is invertible. In terms of the transformed coordinates,
the function V reads as V (x̄) = x̄>P̄ix̄

> with P̄i = T−>PiT
−1. Partition the

matrix P̄i, i ∈ N as

P̄i =

[
P̄ 11
i P̄ 12

i

P̄ 21
1 P̄ 22

i

]
, (5.52)

with P̄ 12
i = (P̄ 21

i )>, such that

V (x̄) = ξ>P̄ 11
i ξ + 2x̂>P̄ 12

i ξ + x̂>P 22
i x̂. (5.53)
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Continuity of V then implies for all ξ ∈ Ŝi∩ Ŝj , (i, j) ∈ N ×N and all x̂ ∈ Rn−3

ξ>(P 11
i − P 11

j )ξ + 2x̂>(P 12
i − P 12

j )ξ + x̂>(P 22
i − P 22

j )x̂ = 0. (5.54)

First consider all p ∈ N and all ξ ∈ Ŝp. Since ξ = 0 ∈
{
Ŝi ∩ Ŝj

}
for all

(i, j) ∈ N ×N , it should hold that x̂>(P 22
i − P 22

j )x̂ = 0 for all x̂ ∈ Rn−3. This

is only possible if there exists a symmetric matrix Φ22 ∈ S(n−3)×(n−3) such that
for all i ∈ N one has P 22

i = Φ22.

In a similar manner, when x̂ = 0, it should hold for all ξ ∈
{
Ŝi ∩ Ŝj

}
,

(i, j) ∈ N × N that ξ>(P 11
i − P 11

j )ξ = 0. On the basis of Ambrosino and
Garone, 2015, Theorem 2, one can conclude that the equalities

r>mP̄
11
i rm = r>mP̄

11
j rm = φmm (5.55a)

r>mP̄
11
i rn = r>mP̄

11
j rn = φmn, (5.55b)

hold true for all rm, rn ∈ Ri ∩Rj , where Ri denotes the set of generators of Ŝi.
Note that for all rm, rn ∈ Ri ∩Rj , with rn = [0, 0,−1] one has

r>n P̄
11
i rn = r>n P̄

11
j rn = r>k P̄

11
i rk = r>k P̄

11
j rk = φnn = φkk (5.56a)

r>mP̄
11
i rn = r>mP̄

11
j rn = −r>mP̄ 11

i rk = −r>mP̄ 11
j rk = φmn = −φmk, (5.56b)

with rk = −rn = [0, 0, 1]>. Note that in case rm and rk already are generators
of a region Ŝl, l 6= j, l 6= i, then φmk is already defined, and one should consider
both rk, and rn as separate generators, otherwise there will be overlap in the φ-
elements. This degenerate situation, however, only arises when the (z, ż) region
is divided into two regions. For divisions into more than two regions, there is
no need to make a distinction between the vectors [0, 0, 1]> and [0, 0,−1]> since
it is always possible to express the constraints in terms of either one of these
vectors without creating overlap.

Considering the non-degenerate cases, by the result in Ambrosino and
Garone, 2015, Lemma 1 there exists a symmetric matrix Φ11 = {φpq} ∈ Sr×r for
all p = 1, . . . , r and all q = 1, . . . , r. Note that Φ11 can always be constructed by
simply collecting the elements in (5.56). Moreover, if for a couple (m,n) and an
integer i such that rm, rn ∈ Ri does not exist, then φmn remains unconstrained.

On a per region basis, one can write

R>i P̄
11
i Ri = Φ11

i = E>i Φ11Ei, (5.57)

with Ri the matrix collecting the generators of Ŝi, and Φ11
i the matrix con-

taining the parameters associated with the region Ŝi. The second inequality in
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(5.57) explicitly follows from the construction of the extraction matrices Ei as
in Proposition 5.3.6. Since Ri is invertible, one finds

P̄ 11
i = R−>i ΦiR

−1
i = (R̄Ei)

−>Φi(R̄Ei)
−1 = (R̄Ei)

−>E>i Φ11Ei(R̄Ei)
−1,
(5.58)

with R̄ the matrix collecting the distinct generators of the partitioning PŜ . Due

to symmetry, the identity (5.58) also applies to all ξ ∈ −Ŝp, p ∈ N . Note
that continuity over the boundary defined by the vector [0, 0,−1]> is implied
by (5.56). From the definition of the continuity matrices as F̂i = Ei(R̄Ei)

−1, it
follows that

P̄i = F̂>i Φ11F̂i. (5.59)

Since x̂>(P 22
i − P 22

j )x̂ = 0 for all x̂ ∈ Rn−3, and ξ>(P 11
i − P 11

j )ξ = 0 for all

ξ ∈ ±Ŝi ∩ ±Ŝj , i, j ∈ N ×N , it must also be true that x̂>(P 12
i − P 12

j )ξ = 0 for

all (x̂, ξ) ∈
{
Rn−3

}
×
{
±Ŝi ∩ ±Ŝj

}
. In a similar manner as before, one finds

the equality

P 12
i rm = P 12

j rm = φm (5.60)

to hold for all rm ∈ Ri∩Rj . Moreover, for all rm ∈ Ri∩Rj with rm = [0, 0,−1]>

one finds

P 12
i rm = P 12

j rm = φm = −P 12
i rn = −P 12

j rn = −φn, (5.61)

where rn = −rm = [0, 0,−1]>. Similar as before, there is no need to make a
distinction between [0, 0, 1]> and [0, 0,−1]>. Collect all elements in a matrix
Φ12 = {φp} ∈ R3×r for all p = 1, . . . , r, and observe that

P̄ 12
i Ri = Φ12

i = Φ12Ei. (5.62)

Since Ri is invertible, it follows that

P̄ 12
i = Φ12EiR

−1
i = Φ12Ei(R̄Ei)

−1 = Φ12F̂i. (5.63)

As such, the partitioned matrix in (5.52) is equivalently written as

P̄i =

[
F̂>i Φ11F̂i Φ12F̂i

F̂>i Φ21 Φ22

]
=

[
F̂i 0

0 I

]> [
Φ11 Φ12

Φ21 Φ22

][
F̂i 0

0 I

]
. (5.64)

Pre- and post-multiplying this with x̄ = [ξ>, x̂>]> yields

x̄>P̄ix̄ = ξ>F̂>i Φ11F̂iξ + 2x̂>Φ12F̂iξ + x̂>Φ22x̂

= ξ>F̂>i Φ11F̂iξ + x̄>ΓΦ12F̂iξ + ξ>F̂>i Φ21Γx̄+ x̄>Γ>Φ22Γx̄,
(5.65)
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with Γ = [0, I]. As such, one finds

x̄P̄ix̄ =

[
ξ

x̄

]> [
F̂>i Φ11F̂i F̂>i Φ12Γ

Γ>Φ21F̂i Γ>Φ22Γ

][
ξ

x̄

]

=

[
ξ

x̄

]> [
F̂i 0

0 I

]> [
Φ11 Φ12Γ

Γ>Φ21 Γ>Φ22Γ

][
F̂i 0

0 I

][
ξ

x̄

]
.

(5.66)

Then, using Pi = T>P̄iT , and [ξ>, x̄>]> = [E>, T ]>x with T = [E>, U>]>, one
finds

Pi =

[
F̂iE

T

]> [
Φ11 Φ12Γ

Γ>Φ21 Γ>Φ22Γ

][
F̂iE

T

]

=

[
F̂iE

I

]> [
Φ11 Φ12U

U>Φ21 U>Φ22U

][
F̂iE

I

]
= F>i ΦFi.

(5.67)

Hence, continuity of V implies the existence of a symmetric matrix Φ such that
Pi = F>i ΦFi.

ii) =⇒ iii). Suppose that there exists a symmetric matrix Φ such that
Pi = F>i ΦFi for all i ∈ N , and where Fi = [(EiR

−1
i E)>, I]. By partitioning Φ

as

Φ =

[
Φ11 Φ12

Φ21 Φ22

]
, (5.68)

one can write

Pi = Φ22 + (F̂iE)>Φ11F̂iE + Φ12F̂iE + (F̂iE)>Φ21, (5.69)

with F̂i = EiR
−1
i . Now observe that for all (i, j) ∈ N ×N such that Si∩Sj 6= ∅,

the boundary between two adjacent regions can be written as

Hij = (EiR
−1
i − EjR−1

j )E = (F̂i − F̂j)E, (5.70)

which clearly by construction of the continuity matrices implies Hijx = 0 for all

x ∈ Si ∩ Sj . In turn, one finds F̂iE = Hij + F̂jE. Then for all (i, j) ∈ N × N
such that Si ∩ Sj 6= ∅ the difference Pi − Pj after simplification reads

Pi − Pj =
(

Φ12 + Φ11F̂jE
)>

Hij +H>ij

(
Φ21 + Φ11F̂jE

)
. (5.71)

Since imZij = kerHij it holds true that HijZij = 0, from which it immediately
follows that Z>ij (Pi − Pj)Zij = 0.
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iii) =⇒ i). Assume there exist matrices Pi such that Z>ij (Pi − Pj)Zij = 0.
On the boundary between two regions Si and Sj , one can write x = Zijv with
v ∈ Rn−2. Assuming the equality holds, then for any v ∈ Rn−2 one finds

v>Z>ij (Pi − Pj)Zijv = x>(Pi − Pj)x = x>Pix− x>Pjx = 0, (5.72)

which clearly implies a function of the form Vi(x) = x>Pix if x ∈ Si ∪−Si to be
continuous. This completes the proof.

5.A.4 Proof of Theorem 5.4.1

Consider the piecewise quadratic function

V (x) = Vi(x) := x>Pix, when x ∈ Si ∪ −Si, i ∈ N , (5.73)

where Pi = F>i ΦFi. The proof is based on showing that, under the conditions
of the theorem, V classifies both as a storage function, as well as a suitable ISS-
Lyapunov function for the closed-loop system in (5.5) (see Definition 2.3.10).

First, observe that solutions to (5.5) are locally absolutely continuous,
and V is composed by locally Lipschitz continuous functions. By virtue of
Proposition 5.3.6, V is continuous over the boundaries of the partitioning,
making V a (non-smooth) locally Lipschitz continuous function on the set
X = {x ∈ Rn | Ex ∈ F}.

Positive definiteness of V (and thus satisfaction of condition (2.34) in Defi-
nition 2.3.10) is implied by (5.27). Indeed, from the results in Proposition 5.3.5
and non-negativity of the elements in Wi, it follows that

x>S>i WiSix ≥ 0, when x ∈ Si ∪ −Si, i ∈ N . (5.74)

Application of the S-procedure then shows that

V (x) > x>S>i WiSix ≥ 0 if 0 6= x ∈ Si ∪ −Si, i ∈ N . (5.75)

The strict inequality implies the existence of some sufficiently small α1 > 0 such
that V (x) ≥ α1‖x‖2. Furthermore, due to the piecewise quadratic construction
of V there exists α2 > 0 such that V (x) ≤ α2‖x‖2. Hence, one finds

α1‖x‖2 ≤ V (x) ≤ α2‖x‖2, (5.76)

which yields the corresponding result.
Next, it is shown that the LMIs in (5.28) and (5.29) imply satisfaction of the

condition (2.35) in Definition 2.3.10. Hereto, consider first the LMI condition
in (5.28). Using the results from Proposition 5.3.5, and non-negativity of the
elements in Ui, one finds that x>S>i UiSix ≥ 0 when x ∈ Si∪−Si. Application of
the S-procedure in combination with the Schur complement of (5.28) shows that
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the inequality in (5.28) implies for i ∈ N that at all points where the gradient
of V is defined, it satisfies

∇Vi(x)(A1x+Bw) = x>
(
A>1 Pi + PiA1

)
x+ 2x>PiBw

≤ −ε‖x‖2 − (Cx+Dw)
>

(Cx+Dw) + γ2‖w‖2

= −ε‖x‖2 − ‖q‖2 + γ2‖w‖2.

In a similar manner, consider the LMI condition in (5.29). Combining the re-
sults of Proposition 5.3.5 with non-negativity of the elements in Vj shows that
x>T>j VjTjx ≥ 0 for all x ∈ Tj ∪ −Tj , j ∈ M. Application of the S-procedure,
Finsler’s lemma, and the Schur complement then shows that the inequality in
(5.29) at all points where the gradient of V is defined it satisfies

∇Vj(x)(A2x+Bw) = x>
(
A>2 Pj + PjA2

)
x+ 2x>PjBw + 2µx>Pj(bΠ)x

≤ −ε‖x‖2 − (Cx+Dw)
>

(Cx+Dw) + γ2‖w‖2

= −ε‖x‖2 − ‖q‖2 + γ2‖w‖2,

where the algebraic relation Hx = 0 is used, which holds true for all x ∈ Tj∪−Tj ,
j ∈M. From the above inequalities, one can conclude that

max
(p,q)∈PQ

∇Vp(x)(Aqx+Bw) ≤ −ε‖x‖2 + γ2‖w‖2, (5.77)

where PQ := {{1} × N} ∪ {{2} ×M}. This implies condition (2.35) to hold,
thereby demonstrating that under the hypothesis of the theorem, V classifies as
an ISS-Lyapunov function. By virtue of Theorem 2.3.11 this implies ISS of the
closed-loop system in (5.5).

In a similar manner, from the above inequalities one can conclude

max
(p,q)∈PQ

∇Vp(x)(Aqx+Bw) ≤ −‖q‖2 + γ2‖w‖2 (5.78)

to hold, such that V classifies as a storage function with supply rate s(w, q, x) =
−‖q‖2 + γ2‖w‖. The proof can be finished using standard arguments such as
in, e.g., Khalil, 2002 and van der Schaft, 2017 for showing that the closed-loop
system in (5.5) admits an L2-gain smaller than or equal to γ.

5.A.5 Proof of Proposition 5.4.5

For proving infeasibility of the LMIs (5.27), (5.28) and (5.30)–(5.33), it is suffi-
cient to prove that the LMIs

Pi − S>i WiSi � 0, (5.79a)

A>1 Pi + PiA1 + S>i UiSi ≺ 0, (5.79b)

Ā>2 Pj + PjĀ2 + T>j KjTj + LjH + (LjH)> ≺ 0, (5.79c)
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with Si, Tj , and H defined in (5.22), cannot be feasible for some i ∈ N and
j ∈M under conditions (5.35) and/or (5.36).

C1. Consider the integrator-mode subsystem. When feasible, the con-
ditions in (5.79) imply that for any complex nonzero vector v ∈ Cm
and its complex conjugate v̄ it holds that v̄>

(
Pi − S>i WiSi

)
v > 0 and

v̄>
(
A>1 Pi + PiA1 + S>i UiSi

)
v < 0. Choose v to be an eigenvector of A1 such

that A1v = λv with λ ∈ C the corresponding eigenvalue. Observe the identity

Ev
(5.7)
=

 Cz 0

0 1

CzAg 0

 v =


1
ωh
CuA1

Cu
1
ωh
CuA

2
1

 v = ρCuv (5.80)

with Cu := [01×p, 1], ρ :=
[
λ
ωh

1 λ2

ωh

]>
and the matrices Ag, Cz = −C are

given in (5.1) and (5.8), respectively. Note that here use is made of the fact that
CzBg = 0 by virtue of Assumption 2.3.1. Assume λ ∈ C such that

ρ =
1

ωh


 Re(λ)

ωh

Re(λ)2 − Im(λ)2

+ j

 Im(λ)

0

2Re(λ)Im(λ)


 . (5.81)

By construction of Si as in (5.22), it follows that

Siv = R−1
i Ev = R−1

i ρCuv

= R−1
i (Re(ρ) + jIm(ρ))Cuv.

(5.82)

Note that, additionally,

Siv̄ = R−1
i (Re(ρ)− jIm(ρ))Cuv̄.

If Re(ρ), Im(ρ) ∈ Ŝi then R−1
i Re(ρ) ≥ 0 and R−1

i Im(ρ) ≥ 0 hold entry-wise.

Similarly, for Re(ρ), Im(ρ) ∈ −Ŝi one has R−1
i Re(ρ) ≤ 0 and R−1

i Im(ρ) ≤ 0.

Moreover, if Re(ρ) ∈ ±Ŝi and Im(ρ) ∈ ∓Ŝi, then R−1
i Re(ρ) and R−1

i Im(ρ) have
opposite signs. For any symmetric matrix Xi with non-negative elements one
finds

v̄>S>i XiSiv = v̄>C>u

[
Re(ρ)

Im(ρ)

]>
Qi

[
Re(ρ)

Im(ρ)

]
Cuv ≥ 0, (5.83)

with Qi = diag
(
R−>i XiR

−1
i , R−>i XiR

−1
i

)
a block diagonal matrix. Note that

the cross product of real and imaginary parts cancels.
Suppose (5.79a) holds. Through (5.83) with Xi = Wi, this implies v̄>Piv >

0, which, in turn, for Re(λ) > 0 implies

v̄>
(
A>1 Pi + PiA1

)
v + v̄>S>i UiSiv

= 2Re(λ)v̄>Piv + v̄>S>i UiSiv > 0.
(5.84)
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Hence, under condition (5.35) the inequalities in (5.79) cannot be satisfied, which
shows that the LMIs in Theorem 5.4.1 and Theorem 5.4.3 are infeasible in this
case.

C2. Consider the gain-mode subsystem. As these dynamics are defined in
a lower-dimensional region of F , namely F2 in (5.3b), it follows from Finsler’s
lemma that for any j ∈ M, the first and third LMI in (5.79) can equivalently
be written as

Θ>
(
Pj − S>j WjSj

)
Θ � 0, (5.85a)

Θ>
(
A>2 Pj + PjA2

)
Θ + Θ>T>j VjTjΘ ≺ 0, (5.85b)

with Θ = [I, khC
>
z ]> and A2 is given in (5.8). Also note that HΘ = 0. Next,

observe that

A2Θ =

[
Ag Bg

khCzAg 0

][
I

khCz

]
=

[
Ag + khBgCz

khCzAg

]
= ΘÂ2,

where Â2 := Ag + khBgCz with Ag, Bg, Cz = −C given in (5.1) and (5.8), and
use is made of the fact that CzBg = 0. Consider v ∈ Cm−1 to be an eigenvector

of Â2 such that Â2v = λv with λ ∈ C the corresponding eigenvalue. Then the
following identity holds

EΘv =

 Cz 0

0 1

CzAg 0

[ I

khCz

]
v =

 Cz

khCz

CzĀ2

 v = ρCzv, (5.86)

with ρ :=
[
1 kh λ

]>
. Assume λ ∈ C such that

ρ =

 1

kh

Re(λ)

+ j

 0

0

Im(λ)

 . (5.87)

The vectors Re(ρ) and Im(ρ) both belong to the plane in F defined by hξ =
[kh,−1, 0]ξ = 0, ξ ∈ R3, i.e., the two-dimensional plane in F on which the gain-
mode is defined. Consequently, since T̂j , j ∈ M is a subset of this plane, and

T̂j ⊂ Ŝj for all j ∈M, it follows that{[
1

Re(λ)

]
,

[
0

Im(λ)

]}
⊂ T̂j ⇔ {Re(ρ), Im(ρ)} ⊂ Ŝj .

Using a similar reasoning as before, it follows that if (5.36) is true, then
v̄>ΘS>j WjSjΘv ≥ 0 and v̄>ΘT>j VjTjΘv ≥ 0. Suppose (5.85a) is feasible. To-

gether with the above this implies v̄>P̄jv > 0 with P̄j := Θ>PjΘ. Consequently
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it must be true that

v̄>
(
Â>2 P̄j + P̄jÂ2

)
v + v̄ΘT>j VjTjΘv

= 2Re(λ)v̄>P̄jv + v̄>ΘT>j VjTjΘv > 0.
(5.88)

This contradicts (5.85), which implies that (5.79) cannot be feasible when (5.36)
is true. In turn, this shows that for this case the LMIs in Theorem 5.4.1 and
Theorem 5.4.3 cannot be feasible. This completes the proof.



Chapter 6

Steady-State Performance
Analysis: A Convergent

Dynamics Approach

6.1 Introduction

Steady-state performance of a feedback control system indicates, in a certain
sense, the sensitivity of its steady-state response to external inputs. In the
previous chapter, (steady-state) performance of hybrid integrator-gain systems
(HIGS) has been characterized through the notion of the L2-gain, which is often
interpreted as a measure for the worst-case system’s energy transmission from
an input to an output. Although such an approach is valid for a broad class
of input signals and provides a worst-case performance metric, it does not take
into account additional knowledge regarding the nature of the inputs, and in
that sense can be conservative when dealing with specific inputs, such as pe-
riodic inputs. To characterize the steady-state performance of control systems
containing HIGS in a more accurate manner, this chapter pursues an alternative
approach that exploits the notion of convergent systems.

The term convergent system was first coined in the Russian literature (Demi-
dovich, 1967; Pliss, 1964) and refers to nonlinear systems having the property
that, when excited by an arbitrary bounded input, there exists a unique time-
varying solution (related to the input) that is bounded on the whole time axis
and is globally asymptotically stable. Regardless of the initial conditions of the
system, all other solutions converge to this steady-state solution. Contrary to
asymptotically stable linear systems, this property does not hold for nonlinear
systems in general. Moreover, it is not trivially established. However, proving
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the convergence property leads to the guarantee of having a unique and bounded
steady-state response, which opens up the possibility for characterizing steady-
state performance in an exact manner using a variety of numerical tools such as
forward integration, periodic solvers (Ascher et al., 1988) or the more efficient
mixed time-frequency (MTF) algorithm (Pavlov et al., 2013) to name but a few.
Besides, it facilitates a means to construct nonlinear Bode plots (Alcorta Gar-
cia et al., 2010; Pavlov et al., 2007; Thenozhi and Tang, 2016) and quantify
the accuracy of approximate methods such as the describing function (Pavlov
et al., 2008; Pogromsky and van den Berg, 2014). Notions closely related to
convergence, i.e., describing the property of solutions converging to each other,
are known in the literature as incremental stability and contraction, see, e.g.,
Angeli, 2002; Forni and Sepulchre, 2012; Fromion et al., 1996; Li et al., 2014;
Lohmiller and Slotine, 1998; Russo et al., 2010; Waitman et al., 2016 and the
references therein.

Motivated by the aforementioned desirable properties and tools related to
convergence, the main objective in this chapter is to investigate the relevant
convergence property for HIGS-controlled systems. For systems containing a
scalar, memoryless nonlinearity, conditions for convergence typically hinge upon
the nonlinearity satisfying an incremental sector condition (Ghodrat and Mar-
quez, 2021; Pavlov et al., 2006a; Romanchuk and Smith, 1999). HIGS, however,
inherently violates such incremental sector condition due to its underlying dy-
namics in combination with the discontinuous vector field. Moreover, discontin-
uous vector fields can significantly complicate a convergence analysis as is also
highlighted in Pavlov et al., 2006b, where conditions for convergence of piece-
wise affine (PWA) systems with discontinuous right-hand sides are formulated in
terms of linear matrix inequalities (LMIs). In said work, discontinuities may only
occur due to affine terms in the dynamics. For HIGS, however, discontinuities in
the dynamics also result from other terms, such that the results in Pavlov et al.,
2006b do not translate to the setting considered here. In Morinaga et al., 2004;
Waitman et al., 2016; Waitman et al., 2019 piecewise quadratic/polynomial Lya-
punov functions are used for deriving incremental stability properties of classes
of PWA systems. These results, however, do not exploit knowledge regarding
(incremental) properties of the closed-loop system dynamics, possibly making
them conservative in the current context.

In this chapter, a piecewise quadratic approach is pursued as well, but dif-
ferent from the results in Morinaga et al., 2004; Waitman et al., 2016, here spe-
cific incremental properties of the vector field of HIGS are taken into account.
In particular, by partitioning HIGS’ incremental input-output space, regional
properties are identified that can be conveniently exploited for constructing ap-
propriate piecewise incremental Lyapunov functions. Essentially, these functions
result from “connecting” separate incremental storage functions (each linked to
different incremental properties) in a suitable manner. In order to make the
results applicable to a larger class of systems, the integrator-mode in HIGS is
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replaced by a generic nonlinear vector field. Under certain assumptions on this
vector field, conditions for convergence are established which, in turn, can be
formulated in terms of numerically tractable LMIs. A frequency-domain inter-
pretation of the LMIs, which allows for a graphical verification of the conditions
and may yield valuable tuning insights, is presented as well. The conditions are
further extended to provide rigorous error bounds on steady-state performance
predictions based on the describing function approximation.

The organization of this chapter is as follows. In Section 6.2 the system
set-up and a modification to the original HIGS description are discussed. In
Section 6.3, the incremental form of the closed-loop dynamics is formulated, and
local properties are identified that play an essential role in the analysis. The
main results of this chapter are presented in Section 6.4 and Section 6.5 in the
form of time- and frequency-domain conditions for convergence. An extension
toward steady-state performance estimation is made in Section 6.6. Application
of the presented tools is demonstrated on a numerical example in Section 6.7.
The main findings in this chapter are summarized in Section 6.8.

6.1.1 Notations

Along with the notations from previous chapters, in this chapter use is made
of some additional notations. The Euclidian inner product between two vectors
a ∈ Rn and b ∈ Rn, denoted by 〈a, b〉, is defined as 〈a, b〉 = a>b. A “weighted”
inner product based on a symmetric matrix P , denoted by 〈·, ·〉P , is defined as
〈a, b〉P = a>Pb. The root-mean-square (RMS) value of a periodic signal y with

period T > 0, i.e., y(t) = y(t+ T ) is defined by ‖y‖2,T = ( 1
T

∫ T
0
|y(t)|2dt) 1

2 .

6.2 System setting and problem formulation

This chapter is concerned with Lur’e-type systems as shown in Figure 6.1, which
represent the feedback interconnection of a single-input single-output (SISO)
linear time-invariant (LTI) system G, and a sector-bounded integrator H.

G
Σ

H Σ

y

z

−
u

w

Σ

Figure 6.1. Lur’e-type system interconnection of an LTI system G and a
sector-bounded, dynamic nonlinearity H.
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Similar as in previous chapters, the linear portion of the closed-loop system
is described by the state-space formulation

G :

{
ẋg(t) = Agxg(t) +Bgu(t) +Bww(t),

y(t) = Cgxg(t)
(6.1)

with state xg(t) ∈ Rm, external input w(t) ∈ R, control input u(t) ∈ R, and
output y(t) ∈ R at time t ∈ R≥0. The system description in (6.1) is assumed to
be a minimal representation, and

Gyu(s) = Cg (sI −Ag)−1
Bg, (6.2a)

Gyw(s) = Cg (sI −Ag)−1
Bw, (6.2b)

denote the transfer functions from u to y, and w to y, respectively. Recall from
Assumption 2.3.1 that the transfer functions Gyu(s) and Gyw(s) in (6.2) have a
relative degree of at least two, such that CgBg = CgBw = 0.

6.2.1 An extended hybrid integrator design

In the original description of HIGS as provided in Chapter 2, the dynamics in
integrator-mode are linear. To introduce more flexibility from a design point-
of-view, as well as more generality from a system-theoretic perspective, below
extended versions of HIGS are presented in which the underlying integrator
dynamics are allowed to be nonlinear. In particular, consider the nonlinear
discontinuous dynamical system described by

H :


ẋh(t) = f(xh(t), z(t)), if (z(t), u(t), ż(t)) ∈ F̂1,

xh(t) = khz(t), if (z(t), u(t), ż(t)) ∈ F̂2,

u(t) = xh(t),

(6.3)

where xh(t) ∈ R denotes the state, z(t) ∈ R is the input, ż(t) denotes the time-
derivative of z at time t, and u(t) ∈ R is the output. The signal z is assumed to
be continuously differentiable and f : R× R→ R is a (non)linear function. On
the basis of a similar reasoning as discussed in Chapter 2, Section 2.2, the sets
F̂1 and F̂2 dictating the active dynamics of (6.3) are defined as

F̂1 :=
{

(z, u, ż) ∈ R3 | khzu ≥ u2 ∧ (z, u, ż) 6∈ F̂2

}
, (6.4a)

F̂2 :=
{

(z, u, ż) ∈ R3 | u = khz ∧ f(xh, z)z > khżz
}
, (6.4b)

where the union F̂ := F̂1 ∪ F̂2 defines the [0, kh]-sector. The terms “integrator-
mode” and “integrator-dynamics” are sometimes used throughout the rest of
this chapter to indicate the mode of (6.3), where the nonlinear dynamics ẋh =
f(xh, z) are active.

Concerning the function f in (6.3), the following assumptions are made.
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Assumption 6.2.1. The nonlinear function f in (6.3) satisfies f(0, 0) = 0 and
f(0, z)z ≥ 0.

Assumption 6.2.2. There exist constants c1, c2 ∈ R such that the nonlinear
function f in (6.3) satisfies for all xh, z, x

′
h, z
′ ∈ R

((f(xh, z)− f(x′h, z
′)) δxh ≤ c1δx2

h + c2δxhδz, (6.5)

where δxh := xh − x′h, and δz := z − z′.
Assumption 6.2.1 ensures (xh, z) = (0, 0) to be an equilibrium point of (6.3)

for zero input, and ensures for xh = 0, z 6= 0 that the vector field in integrator-
mode points toward the interior of F̂1. The latter is important for guarantee-
ing that trajectories of (6.3) cannot escape the [0, kh]-sector through the line
(z, u) = (z, 0). Assumption 6.2.2 can be seen as a monotonicity type of condi-
tion. For functions of the form f(xh, z) = g(xh) + ωhz, with ωh ∈ R≥0, g(·)
a globally Lipschitz continuous function, and g(0) = 0, Assumption 6.2.1 and
Assumption 6.2.2 are always satisfied. A simple choice for g(·) includes (but
is not limited to) g(xh) = αxh, α ∈ R, leading to first-order linear dynam-
ics in integrator-mode. This choice strongly links to a first-order reset element
(FORE) as discussed in, e.g., Chait and Hollot, 2002; Horowitz and Rosenbaum,
1975. For α = 0, one recovers f(xh, z) = ωhz, i.e., the description of HIGS as
considered in the previous chapters.

6.2.2 Closed-loop system formulation

Due to the piecewise nonlinear nature of H in (6.3), the closed-loop system
resulting from the feedback interconnection of G in (6.1) (with z = −y = −Cgxg)
and H in (6.3) admits the state-space description

Σ :


ẋ(t) = A1x(t) + bF (x(t)) +Bw(t) if Ex(t) ∈ F̂1,

ẋ(t) = A2x(t) +Bw(t) if Ex(t) ∈ F̂2,

y(t) = Cx(t)

(6.6)

with states x(t) = [xg(t)
>, xh(t)]> ∈ Rn, n = m+ 1, exogenous input w(t) ∈ R,

output y(t) ∈ R at time t ∈ R≥0, and where (with some abuse of notation)
F (x) = f(xh,−Cgxg). The mode-dependent system matrices are given by

A1 =

[
Ag Bg

0 0

]
, and A2 =

[
Ag Bg

−khCgAg 0

]
, (6.7)

and furthermore b = [0 1]>, B = [B>w 0]>, and C = [Cg 0]. The signals that
determine mode switching are extracted by the matrix E, which is given by

E> =

[
−C>g 0 −kh(CgAg)

>

0 1 0

]
=
[
−C> b> −kh(CA1)>

]
, (6.8)
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i.e., Ex = (z, u, ż). Note that the matrix A2 results from explicit differentiation
of the algebraic constraint in gain-mode, see also Chapter 4, Remark 4.2.1.

A few words on well-posedness properties of the nonlinear closed-loop system
in (6.6) are in order. For the system with f(xh, z) = ωhz, i.e., the original
description of HIGS, global existence of absolutely continuous (AC) solutions to
(6.6) is formally guaranteed for all inputs w that belong to the class of piecewsie
Bohl functions (Deenen et al., 2021; Sharif et al., 2019). The results in Sharif
et al., 2019 can be extended to guarantee global existence of solutions to (6.6)
for all “Bohl inputs” w if f is linear and satisfies Assumption 6.2.1. More
general guarantees on global existence of solutions is considered as interesting
and important future work. In the remainder of this chapter, it is assumed that
for inputs w to the system (6.6) belonging to the class of piecewise Bohl (PB)
functions, AC solutions to (6.6) exist globally (for all t ∈ [0,∞)).

Remark 6.2.3. For assessing input-to-state stability and/or L2/H2 perfor-
mance properties of the closed-loop system in (6.6), one may extend the tools
developed in Chapters 4 and 5 accordingly. In case f(xh, z) = −αxh +ωhz, i.e.,
the underlying dynamics are linear, such an extension is straightforward. On the
other hand, when f is nonlinear and Assumption 6.2.2 holds, using state strict
passivity of H (which results from the fact that khzu− x2

h ≥ 0), one is still able
to apply Theorem 4.3.1 (circle-criterion) directly, but application of the other
results may be more involved. One possible approach to extend the existing tools
in this case is by viewing (6.6) as a “perturbed” version of a nominal piecewise
linear (PWL) system. In particular, consider the system

Σ :


ẋ(t) = A1x(t) + b(F (x(t)) + (αCu − ωhCz)x(t)) +Bw(t) if Ex(t) ∈ F̂1,

ẋ(t) = A2x(t) +Bw(t) if Ex(t) ∈ F̂2,

y(t) = Cx(t)

(6.9)
where Cu, Cz ∈ Rn are defined such that Cux = xh and Czx = z, and

A1 =

[
Ag Bg

ωhCz −α

]
, and A2 =

[
Ag Bg

khCzAg 0

]
. (6.10)

By assuming that |F (x) + (αCu−ωhCz)x| ≤ ε|x| for some ε ≥ 0, one can derive
stability and performance conditions for the true piecewise nonlinear system by
combining tools from Chapters 4 and 5 for the nominal PWL system with, e.g.,
small-gain type of arguments, see also Khalil, 2002, Chapter 9 and related ideas
presented in Rantzer and Johansson, 2000, Section VII. In dealing with the
(possibly non-convex) set F̂2, conditions related to the gain-mode dynamics in
(6.9) should be posed for the inflated set F̃2, defined by

F̃2 :=
{

(z, u, ż) ∈ R3 | u = khz ∧ (khc1 + c2)z2 > khżz
}
, (6.11)
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allowing for formulating LMI conditions. This inflated set along with c1, c2 ∈ R
is a consequence of applying Assumption 6.2.2 to the inequality f(xh, z)z > khżz
in gain-mode. Clearly one finds that F̂2 ⊆ F̃2, so that when conditions hold for
all Ex ∈ F̃2, these also hold for all Ex ∈ F̂2. For the nonlinear case, the tooling
presented in earlier chapters is thus still highly relevant.

6.2.3 Incremental stability, convergence, and problem
formulation

This chapter is concerned with studying the behaviour of (steady-state) solutions
to the closed-loop system in (6.6). Of particular interest is the stability of
solutions with respect to each other. This property can be characterized through
the notions of incremental (input-to-state) stability (δISS), and (input-to-state)
convergence (ISC).

Definition 6.2.4 (Angeli, 2002). The closed-loop system (6.6) is said to be uni-
formly incrementally asymptotically stable (δUAS), if there exists a KL-function
β such that for any input w ∈ PB ∩ L∞, and initial conditions x0, x

′
0 ∈ X at

time t = 0, with

X :=
{
x ∈ Rn | Ex ∈ F̂

}
, (6.12)

all solutions to (6.6) satisfy

‖x(t, x0, w)− x(t, x′0, w)‖ ≤ β (‖x0 − x′0‖, t) , (6.13)

for all t ∈ R≥0.

Definition 6.2.5 (Angeli, 2002). The closed-loop system (6.6) is said to be
incrementally input-to-state stable (δISS), if there exist a KL-function β and a
K-function γ such that for inputs w,w′ ∈ PB ∩ L∞, and all initial conditions
x0, x

′
0 ∈ X at time t = 0, all solutions to (6.6) satisfy

‖x(t, x0, w)− x(t, x′0, w
′)‖ ≤β (‖x0 − x′0‖, t) + γ

(
sup

0≤τ≤t
‖w(τ)− w′(τ)‖

)
,

(6.14)

for all t ∈ R≥0.

Definition 6.2.6 (Demidovich, 1967; Pavlov et al., 2006a). The closed-loop
system (6.6) is said to be uniformly convergent (UC), if

1. all solutions x corresponding to an initial condition x0 ∈ X at time t = 0
and some input w ∈ PB ∩ L∞ exist for all t ∈ [0,∞);

2. there exists a solution x̄w of (6.9), depending on the input w, defined and
bounded for all t ∈ R;
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3. the solution x̄w is uniformly asymptotically stable, i.e., there exists a KL-
function β such that for any x0 ∈ X at time t = 0 and any input w ∈
PB ∩ L∞, all solutions x to (6.6) satisfy for the same input w

‖x(t, x0, w)− x̄w(t, x̄w,0, w)‖ ≤ β(‖x0 − x̄w,0‖, t), (6.15)

for all t ∈ R≥0.

Definition 6.2.7 (Demidovich, 1967; Pavlov et al., 2006a). The closed-loop
system (6.6) is said to be input-to-state convergent (ISC), if it is UC, and addi-
tionally there exist a KL-function β, and a K∞-function γ such that solutions x
of the system (6.6) corresponding to inputs w,w′ ∈ PB satisfy

‖x(t, x0, w
′)− x̄w(t, x̄w,0, w)‖ ≤ β(‖x0 − x̄w,0‖, t) + γ

(
sup

0≤τ≤t
|w′(τ)− w(τ)|

)
,

(6.16)

for all times t ∈ R≥0.

In general, the properties of incremental (input-to-state) stability and uni-
form (input-to-state) convergence are not equivalent. However, as shown in
Ruffer et al., 2013, uniform convergence and incremental stability are equiva-
lent on compact positively invariant sets. By virtue of this fact, for proving
convergence of the closed-loop system in (6.6) it is then sufficient to 1) verify in-
cremental stability to guarantee any two solutions to converge to each other, and
2) verify for bounded inputs w the existence of a compact positively invariant
set to guarantee the existence of at least one solution x̄w(t) that is bounded on
R (Demidovich, 1967; Yakubovich, 1964). The next result presents a Lyapunov
characterization of these sufficient conditions for convergence.

Theorem 6.2.8 (Pavlov et al., 2006a). Consider the closed-loop system in (6.6).
If there exist a locally Lipschitz continuous function V : Rn × Rn → R≥0, class
K∞-function α1, and class K-functions α2, α, β satisfying for all x, x′ ∈ X , and
all inputs w,w′ ∈ PB ∩ L∞

α1(|x− x′|) ≤ V (x, x′) ≤ α2(|x− x′|), (6.17a)

max
p∈∂V (x,x′)

max
f∈F (x,w,x′,w′)

〈p, f〉 ≤ −α(|x− x′|) + β(|w − w′|), (6.17b)

then the closed-loop system in (6.6) is input-to-state convergent (ISC).

In proving this theorem, the following auxiliary result will be useful.

Lemma 6.2.9 (Pavlov et al., 2006a; Yakubovich, 1964). Consider system (6.6)
with input w ∈ PB ∩ L∞. Suppose that

(i) the system (6.6) admits a unique solution on R≥0 for every initial state
x0 ∈ X at time t = 0 and for the input w;
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(ii) these solutions depend on the initial state x0 in a continuous manner;

(iii) there exists a compact set D ⊆ X , which is positively invariant with respect
to system (6.6) for the input w ∈ PB ∩ L∞.

Then there exists at least one solution x̄w depending on the input w that is
defined and bounded for all t ∈ R≥0.

Proof of Theorem 6.2.8. By Theorem 2.3.9 and Theorem 2.3.11, it can be shown
that conditions (6.17a) and (6.17b) imply the closed-loop system in (6.6) to be
incrementally input-to-state stable (δISS), and, in turn, uniformly incrementally
asymptotically stable (δUAS). From the definition of δUAS (Definition 6.2.4) it
then immediately follows that solutions corresponding to an initial state x0 ∈ X
at time t = 0 and input w ∈ PB are unique, and depend continuously on these
initial states.

Next, take (x(t), w(t)) with w ∈ PB to be an arbitrary trajectory of the sys-
tem and let w′(t) ≡ 0, x′(t) ≡ 0 for all t ∈ R. Due to Assumption 6.2.1, it follows
that f(0, 0) = 0, and the point (x,w) = (0, 0) is an equilibrium of the system
(6.6). Then, using standard arguments it follows that (6.17a) and (6.17b) imply
the set D(c) :=

{
x ∈ Rn | V (x) ≤ α2 ◦ α−1 ◦ β(c)

}
to be a compact positively

invariant set for every input w ∈ PB ∩ L∞ satisfying |w(t)| ≤ c for all t ∈ R.
Here, ◦ denotes the composition of functions. By Lemma 6.2.9 there exists a
solution x̄w that is defined and bounded for all t ∈ R≥0. From the fact that the
system is δUAS, it follows that this solution is uniformly asymptotically stable,
and, as a consequence, the system is uniformly convergent.

Furthermore, since the system is δISS, one finds by setting x′(t) = x̄w(t) that
(6.14) implies (6.16) to hold for some appropriate functions β and γ. Hence, the
system is input-to-state convergent (ISC). This completes the proof.

Remark 6.2.10. It is worthwhile noting that an immediate consequence of satis-
fying the conditions in Theorem 6.2.8 is the guarantee for uniqueness of solutions
corresponding to an initial state x0 ∈ X . Hence, establishing δUAS properties
provides sufficient conditions for uniqueness of solutions, which for HIGS-based
control systems has been an open issue.

The main challenge in satisfying the conditions of Theorem 6.2.8 lies in find-
ing an appropriate incremental Lyapunov function V . In line with the previous
chapters, the main objective in this chapter is to formulate constructive time-
and frequency-domain conditions for guaranteeing the existence of such function.
In doing so, properties of the incremental form of the LTI system (6.1) and the
modified HIGS in (6.3) are studied first.
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6.3 Incremental form and system properties

For assessing convergence properties of the closed-loop system in (6.6) it is in-
structive to study the incremental form of the LTI system G in (6.1) and the
nonlinearity H in (6.3). This section presents the incremental dynamics along
with some properties that serve a key purpose in deriving useful conditions for
guaranteeing convergence.

6.3.1 Incremental dynamics

Define δxg(t) := xg(t) − x′g(t) ∈ Rm as the difference between two trajectories
xg(t) = xg(t, xg,0, w(t), u(t)) and x′g(t) = xg(t, x

′
g,0, w

′(t), u′(t)) generated by
the linear system (6.1) subject to inputs w, u,w′, u′ ∈ R, and initial conditions
xg,0, x

′
g,0 ∈ Rm, respectively, at time t ∈ R≥0. The incremental form of the

linear system G in (6.1) then reads

δG :

{
δẋg(t) = Agδxg(t) +Bgδu(t) +Bwδw(t),

δy(t) = Cgδxg(t),
(6.18)

with δu(t) := u(t) − u′(t) ∈ R the incremental control input, δw(t) := w(t) −
w′(t) ∈ R the incremental external input, and δy(t) := y(t) − y′(t) ∈ R the
incremental output, at time t ∈ R≥0. Clearly, when the system matrix Ag is
Hurwitz, this linear sub-system is convergent.

Consider δxh(t) := xh(t) − x′h(t) ∈ R as an increment of the state of the
nonlinearity H in (6.3). The incremental dynamics of H are then given by

δẋh(t) =


f(xh(t), z(t))− f(x′h(t), z′(t)), if (q(t), q′(t)) ∈ F̂1 × F̂1,

khδż(t), if (q(t), q′(t)) ∈ F̂2 × F̂2,

f(xh(t), z(t))− khż′(t), if (q(t), q′(t)) ∈ F̂1 × F̂2,

khż(t)− f(x′h(t), z′(t)), if (q(t), q′(t)) ∈ F̂2 × F̂1,

(6.19)

where δz(t) := z(t)− z′(t) = −δy(t) ∈ R is the incremental input, and in which

(q, q′) =
(
q>, q′>

)>
with q = (z, u, ż) ∈ R3, and q′ = (z′, u′, ż′) ∈ R3. The

output generated by the incremental dynamics in (6.19) is given by δu(t) =
δxh(t). Note that the last three lines in (6.19) result from explicit differentiation
of the algebraic constraint in gain-mode.

6.3.2 Properties

The following properties of the incremental system in (6.19) appear particularly
useful for deriving convergence properties. These essentially shows that, under
Assumption 6.2.2 on the vector field f , in subregions of the incremental input-
output space the system in (6.19) satisfies certain monotonicity-like properties.
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Property 6.3.1. Suppose that Assumption 6.2.2 is satisfied. Then, the incre-
mental system in (6.19) satisfies

(δxh)2 ≤ khδzδxh, for all (δz, δxh) ∈ Ω1, (6.20a)

(δẋh)δxh ≤ c1δx2
h + c2δxhδz, for all (δz, δxh) ∈ Ω2, (6.20b)

where

Ω1 :=

{
(δz, δxh) ∈ R2 | δzδxh ≥

1

kh
δx2
h

}
, (6.21a)

Ω2 := R2 \ Ω1. (6.21b)

Proof. A proof can be found in Appendix 6.A.1.

Property 6.3.2. Suppose that Assumption 6.2.2 is satisfied. Then, the incre-
mental system in (6.19) satisfies for all (δz, δxh) ∈ Ω2 with Ω2 defined in (6.21)
the inequality

δẋh(δxh − khδz) ≤ (c1δxh + c2δz)(δxh − khδz), for (δz, δxh) ∈ Ω2. (6.22)

Proof. For all (δz, δxh) ∈ Ω2 it holds that δxh(δxh − khδz) > 0, and thus δxh
and δxh− khδz have similar signs and are both non-zero. Then, from (6.20b) as
an immediate consequence one finds for all (δz, δxh) ∈ Ω2

δẋh(δxh − khδz) ≤ (c1δxh + c2δz)(δxh − khδz). (6.23)

This yields the result.

It is interesting to observe that both Property 6.3.1 and Property 6.3.2 re-
semble regional monotonicity-like characteristics of the vector field of (6.19).
The concept of monotonicity (which can also be related to a one-sided Lipschitz
condition (Hu, 2006)) often plays an important role in characterizing asymptotic
stability, incremental stability and convergence of non-smooth systems through
quadratic Lyapunov functions, see, e.g., Brogliato and Tanwani, 2019; Heemels
et al., 2020. Property 6.3.1 and Property 6.3.2 will turn out to be instrumental
in formulating conditions for input-to-state convergence (ISC), as will be seen
in the next sections.

6.4 Time-domain conditions for ISC

6.4.1 A small-gain condition

Before discussing the use of monotonicity properties in deriving conditions for
convergence, consider the following observation. Regarding δz(t) as an input
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to the incremental system in (6.19), one may recognize from (6.20b) in Prop-
erty 6.3.1 that δx2

h could resemble a regional δISS-Lyapunov function for this
system in case c1 < 0. Combining this with the incremental gain property in
(6.20a), in fact, suggests (6.19) to be ISS. This important insight is formalized
in the next result.

Lemma 6.4.1. Consider the incremental nonlinear system in (6.19). Suppose
that Assumptions 6.2.2–6.2.1 are satisfied with c1 < 0 and furthermore suppose
that δz is bounded in the sense that |δz(τ)| is finite for all t ∈ R≥0. Then, (6.19)
satisfies

‖δxh(t)‖ ≤ e−εt‖δxh(0)‖+ γz

(
sup

0≤τ≤t
|δz(τ)|

)
(6.24)

with γz = max
{
kh,

c2
|c1|−ε

}
and 0 < ε < |c1|.

Proof. Consider the set

M :=
{

(δz, δxh) ∈ R2 | ‖δz‖ ≤ ρ, ‖δxh‖ ≤ γzρ
}
, ρ := sup

0≤τ≤t
‖δz(τ)‖, (6.25)

which is visualized in Figure 6.2 by the black rectangle.
Suppose that (δz(0), δxh(0)) 6∈ M . Note from the fact that −ρ ≤ δz(0) ≤

ρ, this implies that ‖δxh(t)‖ > γzρ ≥ γz‖δz(t)‖ for all t ≥ 0 for which
(δz(t), δxh(t)) 6∈M , such that (δz(t), δxh(t)) ∈ Ω2, see also Figure 6.2. Then, it
immediately follows from Property 6.3.1 with c1 < 0 that (6.20b) satisfies

(δẋh)δxh ≤ c1δx2
h + c2δxhδz ≤ −εδx2

h, (6.26)

due to ‖δz(t)‖ ≤ 1
γz
‖δxh(t)‖ ≤ |c1|−ε

c2
‖δxh(t)‖. By the Bellmann-Gronwall

lemma this leads to
‖δxh(t)‖ ≤ e− ε2 t‖δxh(0)‖ (6.27)

for all time t ≥ 0 as long as (δz(t), δxh(t)) 6∈ M . Then, there must exist a
finite time t′ ≥ 0 for which (δz(t′), δxh(t′)) ∈ M . Once (δz(t′), δxh(t′)) ∈ M , it
remains there for all times t ≥ t′, as it follows from (6.27) that M is a positively
invariant set, and

‖δxh(t)‖ ≤ γzρ for all t ≥ t′. (6.28)

In case (δz(0), δxh(0)) ∈ M the above applies with t′ = 0. Combining the
inequalities in (6.27) and (6.28) leads to (6.24). A sketch of the mechanism
underlying the ISS property is illustrated in Figure 6.2.

The next result is a direct consequence of Lemma 6.4.1.

Theorem 6.4.2. Consider the closed-loop system (6.6), and the incremental
systems in (6.18) and in (6.19). Suppose the matrix Ag in (6.18) is Hurwitz and
the small-gain relation

γzγu < 1 (6.29)
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δz

δxh

M

ρ−ρ

Ω1

Ω1
Ω2

Ω2

δẋh < 0δẋh < 0

δẋh > 0δẋh > 0

c2
|c1|

kh

Figure 6.2. Visualization of the mechanism underlying the ISS property of
the incremental system in (6.19) with γz = c2

|c1|−ε .

is satisfied, where γz = max
{
kh,

c2
|c1|

}
and γu =

∫∞
0
|CgeAgτBp|dτ . Then the

closed-loop system (6.6) is input-to-state convergent (ISC).

Proof. For a proof, see Appendix 6.A.2.

Note that γu =
∫∞

0
|CgeAgτBg|dt =

∫∞
0
|L−1 {Gyu(s)} |dt corresponds to

the induced L∞-norm of the SISO LTI system described by Gyu(s) = Cg(Ag −
sI)−1Bg, which is equivalent to the L1-norm of its impulse response, see also
Skogestad and Postlethwaite, 2010, p. 540, and γz is an upper-bound on the
induced L∞-norm of (6.19).

6.4.2 Lyapunov-based conditions

In deriving Lyapunov-based conditions for convergence, the following definition
and auxiliary result that follows directly from the previously discussed properties
will be particularly helpful in understanding the rationale behind the upcoming
results.

Definition 6.4.3 (Heemels et al., 2020). A function g : Rm → Rn is called
α-strongly P -monotone if there exists α > 0 such that

〈(g(x)− g(y)), x− y〉P ≥ α‖x− y‖2P (6.30)

for all x, y ∈ Rm.
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Lemma 6.4.4. Suppose Assumption 6.2.2 is satisfied, and there exist a positive
definite symmetric matrix P and a number 0 ≤ τ ≤ 1 that satisfy

A>P + PA ≺ 0 and Pb = C>u − τkhC>z (6.31)

with matrices

A =

[
Ag Bg

−c2Cg c1

]
, and b =

[
0

1

]
, (6.32)

then for all (δz, δxh) ∈ Ω2 the incremental system (6.18)–(6.19) satisfies the
α-strongly P -monotone condition

〈−δẋ, δx〉P ≥ α‖δx‖2P (6.33)

with δx =
[
δx>g , δxh

]>
and some α > 0.

Proof. One can write the incremental dynamics as

δẋ = Aδx+ bφ, (6.34)

where φ = δẋh − c1δxh − c2δz. From this, it follows that for all (δz, δxh) ∈ Ω2

〈δẋ, δx〉P = 〈Pδẋ, δx〉 = 〈PAδx, δx〉+ 〈Pbφ, δx〉 ≤ −ν‖δx‖2, (6.35)

for some positive ν, where it is used that δx>(A>P +PA)δx ≤ −ν‖δx‖2 and by
virtue of Property 6.3.1 and Property 6.3.2 for all (δz, δxh) ∈ Ω2 one finds

〈Pbφ, δx〉 = φ(Cu − τkhCz)δx = φ(δxh − τkhδz)
= (δẋh − c1δxh − c2δz) ((1− τ)δxh + τ(δxh − khδz)) ≤ 0.

(6.36)

This shows the α-strongly P -monotone condition.

The result in Lemma 6.4.4 forms the inspiration for constructing a specific
incremental Lyapunov function for the closed-loop system in (6.6) as follows.
A function of the form W (δx) = δx>Pδx with P ∈ Rm×m satisfying (6.31) in
Lemma 6.4.4 qualifies as a “regional” incremental Lyapunov function for the
system in (6.6) when (δz, δxh) ∈ Ω2, with Ω2 defined in (6.21). Note that due
to the second condition in (6.31), the function W can equivalently be written as
W (δxg) = δx>g P11δxg + v(δxh, δz) with P11 = P>11 and v(δxh, δz) := δxh(δxh −
2τkhδz). For all (δz, δxh) in the region Ω1, however, this specific function W may
not qualify as an incremental Lyapunov function as the monotonicity property
in (6.33) is not guaranteed to hold.

On the other hand, for all (δz, δxh) ∈ Ω1 the incremental sector condition in
(6.20a) holds true. Then, a natural incremental Lyapunov function candidate for
this region is one that stems from the circle-criterion and is given by U(δxg) =
δx>gMxg with M ∈ Rm×m a symmetric positive definite matrix that satisfies
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the corresponding circle criterion conditions (see, e.g., the conditions posed in
Theorem 4.3.1 in Chapter 4).

The question that arises at this point is how to “patch” these functions
together over the boundaries shared by Ω1 and Ω2 to obtain a continuous func-
tion. A particular idea is to fix τ = 1/2 and set M = P11 a priori. Then,
for all (δxh, δz) ∈ Ω1 ∩ Ω2 one finds v(δxh, δz) = 0 and W (δx) = U(δxg).
Fixing τ , however, may possibly be restrictive and not necessary. Now ob-
serve that when keeping τ variable, v(δxh, δz) can be rewritten as v(δxh, δz) =
(1−2τ)δx2

h+2τδxh(δxh−khδxh). While the second term vanishes at the bound-
aries of Ω1 and Ω2 where δxh = 0 or δxh = khδz, the first term only vanishes
at δxh = 0. To account for this term, a further partitioning of the incremental
input-output space of (6.19) as depicted in Figure 6.3 is proposed. Based on
this partitioning, a candidate piecewise quadratic function of the form

V (δx) = δx>gMδxg + kmax
{
δx2
h, k

2
hδz

2
}

+ max {0, v(δxh, δz)} , (6.37)

with k > − 1
2 is considered. Essentially, the max functions correspond to “tran-

δz

δxh

Ω̂1

Ω̂1 Ω̂3

Ω̂3

Ω̂2

Ω̂2

−kh kh

Figure 6.3. Partitioning of the incremental input-output space of (6.19) in-
duced by the piecewise quadratic function V in (6.37) where Ω̂1 = Ω1 and
Ω̂2 ∪ Ω̂3 = Ω2.

sitions” from one region to another. Note that by construction, V in (6.37) is a
locally Lipschitz continuous piecewise quadratic function.

Based on the ideas outlined above, the next theorem presents sufficient con-
ditions for V in (6.37) to classify as an incremental Lyapunov function through
which input-to-state convergence of the closed-loop system in (6.6) is guaranteed.
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Theorem 6.4.5. Consider the closed-loop system in (6.6), and suppose As-
sumption 6.2.2 is satisfied. If there exist constants k > − 1

2 , τ1, τ2 ≥ 0 and a
symmetric matrix M = M> that satisfy the LMI conditions

M + kk2
hC
>
g Cg � 0, (6.38a)

and [
A>gM +MAg MBg

B>g M 0

]
+ k

[
Qg 0

0 0

]
+ τ1S1 ≺ 0, (6.38b)[

A>gM +MAg MBg

B>g M 0

]
+ k

[
0 − c22 C>g

− c22 Cg 2c1

]
+ T ≺ 0, (6.38c)[

A>gM +MAg MBg

B>g M 0

]
+ k

[
Qg 0

0 0

]
+ T + τ2S2 ≺ 0, (6.38d)

where Qg = A>g C
>
g Cg + C>g CgAg,

T =

[
−khc2C>g Cg

(
khc1

2 − c2
)
C>g + kh

2 A
>
g C
>
g

Cg
(
khc1

2 − c2
)

+ kh
2 CgAg 2c1

]
, (6.39a)

and

S1 =

[
0 −khC>g

−khCg −2

]
, S2 =

[
0 khC

>
g

khCg −2

]
, (6.39b)

then the closed-loop system in (6.6) is input-to-state convergent (ISC).

Proof. The proof is provided in Appendix 6.A.3.

Remark 6.4.6. Necessary conditions for the LMIs in (6.38) to be feasible are
τ1 > 0, and c1 < 0. Furthermore, the choice k = 0 makes the LMI in (6.38d)
redundant since satisfying (6.38c) ensures the existence of a sufficiently small
τ2 ≥ 0 such that (6.38d) can always be satisfied as well.

Remark 6.4.7. The above results show a strong relation with recently presented
results for so-called oblique projected dynamical systems (oPDS) with state con-
straints. In particular, the conditions presented in Lemma 6.4.4 correspond to
typical conditions for δISS of an oPDS with states that are confined to a closed,
convex constraint set (see Heemels et al., 2020, Theorem 2). In the context of
HIGS, it was shown in Sharif et al., 2021a that, under some additional condi-
tions, a HIGS-controlled system as in (6.6) can be reformulated as a switched
oPDS. In that case, the positive definite matrix associated with state projections
onto a constraint set is given by

P =

[
P11 −khC>z
−khCz 1

]
, (6.40)
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which coincides with the matrix that results from the conditions in Lemma 6.4.4
for τ = 1. However, as the constraint set for a HIGS-controlled system is a non-
convex set that is given by the union of two convex polyhedral cones, the results
in Heemels et al., 2020 for showing δISS of HIGS-controlled systems can not
be applied directly. In this regard, Theorem 6.4.5 provides a possible approach
for overcoming this hurdle, and may further help in studying δISS properties of
more generic oPDS with non-convex constraint sets.

6.5 Frequency-domain conditions for ISC

When studying the set of LMIs in (6.38) in more detail, one may recognize the in-
dividual LMI conditions (6.38b)–(6.38d) to resemble certain passivity conditions.
Due to the strong link between the concept of passivity and frequency-domain
properties via the KYP-lemma (Yakubovich, 1962), it is interesting to verify if
the set of LMIs in Theorem 6.2.8 admit a frequency-domain interpretation. As
also motivated in Chapter 4, frequency-domain conditions are highly valuable
from a practical perspective as these often lead to insights regarding design and
robustness aspects.

In order to make the transition from time-domain conditions toward
frequency-domain conditions, the LMIs in (6.38) are simplified by a priori as-
suming k = 0 and c2 ≥ 0. This assumption is useful for reducing the three LMIs
in (6.53b)–(6.53d) to two LMIs. Although such a simplification may restrict the
solution space of the LMIs, and in that sense comes at the cost of introducing
conservatism, it is believed that the associated frequency-domain conditions can
still yield valuable tuning insights and may further aid the development of more
advanced (frequency-domain) conditions for convergence.

For k = 0, c2 ≥ 0, it is possible to verify that the LMIs in (6.38) admit a
solution if there exist a matrix M � 0 and a constant τ > 0 that satisfy the
following LMI conditions[
A>gM +MAg MBg

B>g M 0

]
+ τ

[
0 −khC>g

−khCg −2

]
≺ 0, (6.41a)[

A>gM +MAg MBg

B>g M 0

]
+

[
0

(
λI + kh

2 A
>
g

)
C>g

Cg
(
λI + kh

2 Ag
)

2c1

]
≺ 0, (6.41b)

with λ = khc1
2 −c2. Note that the term −khc2C>g Cg in the matrix T in (6.39a) is

left out to further simplify the conditions. The next theorem presents a necessary
and sufficient condition in the frequency-domain for feasibility of the LMIs in
(6.41) with M � 0.

Theorem 6.5.1. The linear matrix inequalities in (6.41) admit a feasible solu-
tion if and only if the transfer function G(s) = Gyu(s) = Cg(sI − Ag)−1Bg is
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stable, and there exist constants τ, ε > 0 that satisfy for all ω ∈ R[
khRe {G(jω)}+ 1 1

2
√

2
W (jω)

1
2
√

2
W ∗(jω) 1− k1

2 Re {U(jω)}

]
� 0, (6.42)

with U(jω) = (k2 + k3jω)G(jω), W (jω) = 1√
τ
U∗(jω)− k1

√
τkhG(jω) and

k1 =

(
ε+

1

ε

)√
1

2|c1|
+

(
ε− 1

ε

)√
τ

2
kh, (6.43a)

k2 =

(
ε+

1

ε

)√
1

2|c1|

(
khc1

2
− c2

)
+

(
1

ε
− ε
)√

τ

2
kh, (6.43b)

k3 =

(
ε+

1

ε

)√
1

2|c1|
kh
2
. (6.43c)

Proof. The proof is provided in Appendix 6.A.4.

It is interesting to mention that the diagonal elements of the matrix in
(6.42) pose necessary conditions for feasibility of (6.41a) and (6.41b), respec-
tively, which correspond to circle criterion-like conditions (see also the frequency-
domain conditions for stability in Chapter 4, Theorem 4.3.1). The off-diagonal
elements account for the coupling in the LMIs in (6.41) through the matrix M .

Clearly, the variable ε appears in an awkward manner in (6.42). For the
choice ε = 1, however, the frequency-domain inequality in (6.42) simplifies sig-
nificantly, but at the cost of loosing necessity of the conditions. Still, one obtains
sufficient conditions for convergence that can be assessed graphically and may
provide some direction toward parameter tuning.

Corollary 6.5.2. Suppose the transfer function G(s) = Gyu(s) as in (6.2a) is
stable. Then the closed-loop system in (6.6) is ISC if the following frequency-
domain conditions are satisfied:

1. The transfer function G(s) satisfies for all ω ∈ R ∪ {∞}

1 + khRe {G(jω)} > 0; (6.44)

2. The transfer function G(s) satisfies for all ω ∈ R ∪ {∞}

1 +X(jω)− αY (jω) > 0, (6.45)

in which α = 1/c1 and

X(jω) =
3kh
2

Re {G(jω)}+
k2
h

4
G(jω)2, (6.46a)

Y (jω) = c2Re {G(jω)}+
kh
2
ωIm {G(jω)}+

khc2
2

G(jω)2; (6.46b)
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3. There exists a τ > 0 such that for all ω ∈ R ∪ {∞}, it follows that∥∥∥∥ √
τ

jω + 2ωc(τ)

∥∥∥∥ > kh
4

√
|α|‖G(jω)‖√

1 +X(jω)− αY (jω)
, (6.47)

with ωc(τ) =

√(
1

2α − c2
kh

)2

+ τ2.

Proof. The proof can be found in Appendix 6.A.5.

The first condition in Corollary 6.5.2 corresponds to a classical circle-criterion
condition and can be checked graphically by inspecting the Nyquist plot of
G(jω). The second condition corresponds to a Popov-like condition that can
be verified graphically by inspecting if the (X,Y )-locus remains to the right of a
line that passes through the point (−1, 0) and has a slope of α = 1/c1 (see also
Chapter 4). The third condition essentially implies that the weighted magnitude
characteristics of G(jω) should be upper-bounded by the magnitude characteris-
tics of a specific first-order low-pass filter, for which both the gain at ω = 0 and
cut-off frequency are determined by the choice of τ . This can be verified in a
Bode magnitude plot. Note the resemblance with assessing robust performance
for SISO LTI systems (see e.g., Skogestad and Postlethwaite, 2010, Chapter 7)
where the low-pass filter represents a specific weighting filter.

6.6 Steady-state performance estimation

The property of convergence paves the way for quantifying the accuracy of ap-
proximate, but easy-to-use tools such as the describing function method for
steady-state performance analysis of the closed-loop system in (6.6). This sec-
tion presents a computationally efficient method for quantifying the accuracy
of a steady-state performance estimation using a describing function approxi-
mation. The presented ideas are inspired by the results in Pavlov et al., 2008;
Pogromsky and van den Berg, 2014; van den Berg et al., 2008. A different ap-
proach that exploits the notion of contractive systems can be found in Coogan
and Margaliot, 2019.

6.6.1 Linear approximation of steady-state solutions

Consider an LTI system of the form

Σ̂ :

{
˙̂xg(t) = Agx̂g(t) +Bgû(t) +Bww(t)

ŷ(t) = Cgx̂g(t)
(6.48)

with states x̂g(t) ∈ Rm, external input w(t) ∈ R, and output ŷ(t) ∈ R at time
t ∈ R≥0. The external input w : R≥0 → R is assumed to be periodic with period
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time T > 0. Define the signal û : R≥0 → R as

û(t) =
1

2π

∫ ∞
−∞

Û(jω)ejωtdω with Û(jω) = −T̂ (jω)W (jω), (6.49)

in which W (jω) denotes the Fourier series of the periodic input w, and where
the complex mapping T̂ : C→ C is defined as

T̂ (jω) =
Ψ(jω)Gyw(jω)

1 + Ψ(jω)Gyu(jω)
,

with transfer functions Gyw(s) = Cg(sI − Ag)
−1Bw and Gyu(s) = Cg(sI −

Ag)
−1Bg, and where Ψ : C→ C denotes a harmonic linearization of the nonlinear

element H with respect to a harmonic input. In this regard, Ψ may for example
represent the sinusoidal input describing function as derived in Chapter 2, or a
two-sinusoidal/incremental input describing function, see, e.g., Gelb and Vander
Velde, 1968. It is assumed that 1 + Ψ(jω)Gyu(jω) 6= 0 for all ω ∈ R∪{∞}. It is
important to realize that by definition û(t) = û(t+T ) is periodic with the same
fundamental period time T as that of the input w(t) = w(t+ T ).

Under the assumption that Ag is Hurwitz, and since both û and w are har-
monic inputs, it follows that the limit (steady-state) solution of the LTI system
in (6.48), denoted by ˆ̄y, is unique, periodic with period time T , and is expressed
in the frequency-domain as

ˆ̄Y (jω) = Gyu(jω)Û(jω) +Gyw(jω)W (jω)

=
Gyw(jω)

1 + Ψ(jω)Gyu(jω)
W (jω).

(6.50)

Observe that (6.50) is, in fact, the response obtained through a harmonic lin-

earization of the closed-loop system in (6.6) (Khalil, 2002). Note that ˆ̄y and ˆ̄Y

are fully known, and that Û(jω) = −Ψ(jω) ˆ̄Y (jω) = −T̂ (jω)W (jω).

6.6.2 Accuracy of the harmonic linearization

It is of interest to quantify in some way the accuracy of the linear approximation
in (6.50). To this end, suppose that the closed-loop system in (6.6) is a uniformly
convergent system. As such, when forced by a periodic input w(t) = w(t+T ), it
admits a unique and periodic steady-state solution x̄ satisfying x̄(t) = x̄(t+ T )
for all t ∈ R≥0 with x̄(t) = [x̄g(t)

>, x̄h(t)]>, see also Angeli, 2002.
Let ξ be the difference ξ(t) := x̄g(t) − ˆ̄xg(t), where ˆ̄xg(t) denotes the

unique steady-state solution of (6.48) subject to the same input w, and ζ(t) :=
x̄h(t)− ˆ̄xh(t), in which ˆ̄xh(t) is the unique response of (6.3) subject to the input
ˆ̄z(t) = −ˆ̄y(t), i.e., the open-loop response of HIGS. Then, the dynamics of the
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differences ξ, ζ can be written as

ξ̇(t) = Agξ(t) +Bgζ(t) +Bg∆(t),

ζ̇(t)
a.e.
=

d

dt

(
x̄h(t)− ˆ̄xh(t)

)
,

q(t) = Cgξ(t),

(6.51)

where q is the difference between the performance output ȳ = Cgx̄g of the true
(convergent and nonlinear) system and the estimate ˆ̄y = Cg ˆ̄xg, and where

∆(t) = ˆ̄xh(t)− û(t) (6.52)

with û defined in (6.49). It is important to realize that since ˆ̄y is known, ˆ̄xh is
completely known, and the expression in (6.52) can always be computed, either
numerically or analytically. Moreover, since ˆ̄y(t) = ˆ̄y(t + T ), it follows that
ˆ̄xh(t) = ˆ̄xh(t + T ), and since û(t) = û(t + T ) it holds that ∆(t) = ∆(t + T )
for all t ∈ R≥0. As such, one can consider (6.51) as the incremental system
(6.18), (6.19) subject to a periodic input ∆(t). The following theorem presents
a method for quantifying the mismatch between the linear approximation in
(6.50) and the true nonlinear response of (6.6) in terms of an upper-bound on
the root-mean-square (RMS) value of q = ȳ − ˆ̄y.

Theorem 6.6.1. Consider the closed-loop system in (6.6) subject to a bounded,
T -periodic input w, and assume that this system satisfies Assumption 6.2.2 and
is input-to-state convergent (ISC). Suppose there exist constants k > −1/2,
τ1, τ2 ≥ 0, µ > 0 and a symmetric matrix P = P> that satisfy the conditions

P + kk2
hC
>
g Cg � 0, (6.53a)

andA
>
g P + PAg + C>g Cg PBg PBg

B>g P 0 0

B>g P 0 −µ2

+ k

Qg 0 0

0 0 0

0 0 0

+ τ1S1 ≺ 0, (6.53b)

A
>
g P + PAg + C>g Cg PBg PBg

B>g P 0 0

B>g P 0 −µ2

+ k

 0 − c22 C>g 0

− c22 Cg 2c1 0

0 0 0

+ T ≺ 0,

(6.53c)A
>
g P + PAg + C>g Cg PBg PBg

B>g P 0 0

B>g P 0 −µ2

+ k

Qg 0 0

0 0 0

0 0 0

+ T + τ2S2 ≺ 0,

(6.53d)
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where Qg = A>g C
>
g Cg + C>g CgAg,

T =

 −khc2C>g Cg
(
khc1

2 − c2
)
C>g + kh

2 A
>
g C
>
g 0

Cg
(
khc1

2 − c2
)

+ kh
2 CgAg 2c1 0

0 0 0

 , (6.54a)

and

S1 =

 0 −khC>g 0

−khCg −2 0

0 0 0

 , S2 =

 0 khC
>
g 0

khCg −2 0

0 0 0

 . (6.54b)

Then, the approximation error q = ȳ − ˆ̄y satisfies√
1

T

∫ T

0

|q(t)|2dt ≤ µν(T ), with ν(T ) =

√
1

T

∫ T

0

∆2(t)dt. (6.55)

Proof. Consider the piecewise quadratic function

V (ξ, ζ) = ξ>Pξ + kmax
{
ζ2, khe

2
}

+ max {0, v(ζ, e)} , (6.56)

with e = −ȳ+ ˆ̄y, and v(ζ, e) = ζ(ζ−khe). Similar to the proof of Theorem 6.4.5
it can be shown that, under the hypothesis of the theorem, V is continuous,
positive definite, and its time-derivative satisfies for almost all time

d

dt
V (ξ(t), ζ(t)) ≤ −q2(t) + µ2∆2(t). (6.57)

Since by assumption the closed-loop system (6.6) is ICS, the steady-state solution
x̄ is T -periodic, i.e., x̄(t) = x̄(t + T ). Moreover, as the steady-state solutions
of the LTI system in (6.48) are T -periodic, the differences ξ and ζ are also T -
periodic. As such, V is periodic and satisfies V (t) = V (t+T ). Integrating (6.57)
from t to t+ T , and using periodicity of V yields the inequality in (6.55).

By computing the approximation error, one can find an upper- and lower-
bound for the RMS value of the performance variable ȳ as

‖ˆ̄y‖2,T − ‖ȳ − ˆ̄y‖2,T ≤ ‖ȳ‖2,T ≤ ‖ˆ̄y‖2,T + ‖ȳ − ˆ̄y‖2,T , (6.58)

where use is made of the (reverse) triangle inequality. From ‖ȳ− ˆ̄y‖2,T = ‖q‖2,T ,
the result in (6.58) allows, for instance, for computing upper- and lower-bounds
on the RMS ratio of an input w(t) = sin(ωt) with ω ∈ R>0 and the corresponding
steady-state response ȳ as

M̂(ω)− d(ω) ≤M(ω) ≤ M̂(ω) + d(ω), (6.59)
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in which

M(ω) :=
‖ȳ‖2,T
‖w‖2,T

, and M̂(ω) :=
‖ˆ̄y‖2,T
‖w‖2,T

=

∥∥∥∥ Gqw(jω)

1 + Ψ(jω)Gqu(jω)

∥∥∥∥ , (6.60)

and where d(ω) := µν(ω)/‖w‖2,T . Note that, in this context,M(ω) can be seen
as a generalization of a traditional transfer function for LTI systems (Pavlov
et al., 2008), and M̂(ω) is a harmonic approximation with Ψ(jω) being the
sinusoidal input describing function. The term d(ω) estimates the mismatch
between M(jω) and M̂(jω) due to, for instance, the presence of higher-order
harmonics in the true nonlinear response.

6.7 A numerical case-study

To demonstrate the applicability of the tools that are presented in this chapter,
consider the feedback interconnection as depicted in Figure 6.4.

Σ Σ C Σ P

H

y

−

d
z u

G

Figure 6.4. Feedback control scheme with nonlinearity H.

Here, the plant P is a second-order LTI system that is described by the
transfer function

P (s) =
1

s2 + 2β0ω0s+ ω2
0

, (6.61)

with natural frequency ω0 = 54 ·2π rad/s and dimensionless damping coefficient
β0 = 0.009. The nominal LTI feedback controller C is given by

C(s) = kp

(
s+ ωi
s

)(
ω2
lp

s2 + 2βωlps+ ω2
lp

)
(6.62)

with kp = 7 · 104 N/m, ωi = 4.75 · 2π rad/s, ωlp = 6.5 · 2π rad/s, and βlp = 0.8.
The nonlinearity H is given in (6.3) with f(xh, z) = −αxh+ωhz, and α, ωh ∈

R>0, and furthermore kh = 0.6. Note that f satisfies Assumption 6.2.2 with
c1 = −α and c2 = ωh. The purpose of adding this element to the existing
LTI controller C is to balance between additional suppression of low-frequency
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disturbances and transient time-domain response in a more desirable manner
(see also Deenen et al., 2017; Gruntjens et al., 2019; Van Loon et al., 2017 for
comparable strategies). A derivation of the sinusoidal input describing function
for the nonlinearityH, denoted by D(jω) is provided in Appendix 6.B and will be
used later for estimating steady-state performance properties of the closed-loop
system in Figure 6.4.

The feedback configuration in Figure 6.4 can be rearranged into an equivalent
Lur’e form as depicted earlier in Figure 6.1. In the context of this figure one
finds w = d and G(s) = [Gyu(s), Gyw(s)], with

Gyu(s) =
P (s)C(s)

1 + P (s)C(s)
, and Gyw(s) =

P (s)

1 + P (s)C(s)
. (6.63)

By design, these transfer functions are Hurwitz and satisfy the standing assump-
tion on the relative degree (Assumption 2.3.1).

6.7.1 Convergence

Convergence of the closed-loop system is studied for different values of ωh ∈
(0, 10·2π] and different ratios for α/ωh ∈ [0, 1.8]. This ratio determines the effect
of an additional pole in the integrator dynamics. In principle, the smaller the
ratio α/ωh, the more the characteristics of H tend to that of HIGS as considered
in Chapters 2–5. The corresponding results from evaluating the LMI conditions
in Theorem 6.4.5 as well as the frequency-domain conditions in Corollary 6.5.2
are shown in Figure 6.5.

(a) Feasibility of the LMIs in
Theorem 6.4.5.

(b) Feasibility of the FDIs in
Theorem 6.5.1.

Figure 6.5. A comparison between feasibility of the LMI conditions in Theo-
rem 6.4.5 (left figure), the frequency-domain conditions in Corollary 6.5.2 (right
figure), and the small-gain condition in Theorem 6.4.2 (indicated by the region
to the right of the red line) for different values of ωh and ratios α/ωh.
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As expected, the range for which convergence can be shown by means of
Theorem 6.4.5 is larger than the one resulting from Corollary 6.5.2 as the latter
assumes a specific solution to the LMIs in (6.38). Furthermore, note that since
Re {Gyu(jω)} ≥ −0.209, by virtue of the circle criterion the closed-loop system
in Figure 6.4 is ISS for all kh <

1
0.209 = 3.37. For the SISO LTI system described

by Gyu it is easy to verify that the L1-norm of Gyu(s), denoted by γ1, satisfies
γ1 = 1.419. Since γ1kh = 0.85 < 1, it then follows that the small-gain condition
in Theorem 6.4.2 is satisfied for all α/ωh > 1.419. This region is indicated by
the region to the right of the red line in Figure 6.5. It is interesting to remark
that for small values of ωh and large ratios of α/ωh, convergence is guaranteed
by the small-gain condition in Theorem 6.4.2, but not by the LMIs and the
frequency-domain conditions in Theorem 6.4.5 and Corollary 6.5.2, respectively.
This indicates that for the example discussed, the small-gain condition is not
necessarily more restrictive than the Lyapunov-based conditions, and in that
sense both conditions can complement each other.

(a) Circle criterion in (6.44). (b) Popov-like condition in (6.45).

(c) Small-gain-like condition in (6.47).

Figure 6.6. Graphical interpretation of the three frequency-domain conditions
in Corollary 6.5.2 for ωh = 4 · 2π rad/s, α/ωh = 0.6 and and τ = 67.2.
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A graphical illustration of the frequency-domain conditions in Corollary 6.5.2
for ωh = 4·2π rad/s and α/ωh = 0.6 with τ = 67.2 is provided in Figure 6.6. Note
that the circle criterion condition is satisfied with significant margin, whereas
the Popov-like condition and small-gain like condition appear more restrictive.

The closed-loop system with ωh = 4 · 2π rad/s and α/ωh = 0.6 is simulated
for different initial conditions, and with a sinusoidal input disturbance given by
d(t) = sin(ωt) with input frequency ω = 6 ·2π rad/s. The corresponding steady-
state error e = −y and the output u of the nonlinearity are shown in Figure 6.7.
Clearly, the solutions converge to a unique steady-state periodic solution (shown
in black) that has a fundamental period of 6 Hz, which is the same as that of the
input w. Moreover, note that the output u is continuous, but it is not smooth.

6.7.2 Steady-state performance estimation

Next it is shown how the tools from Section 6.6 can be applied for estimating
performance of the closed-loop system from Figure 6.4 on the basis of a describ-
ing function approximation with guaranteed error margins. For this purpose,
suppose that the closed-loop system is subject to a sinusoidal input disturbance
d(t) = sin(ωt). Steady-state performance is quantified by the RMS ratio between
the sinusoidal input d and the corresponding unique steady-state response ȳ at
various input frequencies ω. For LTI systems, this ratio corresponds to the pro-
cess sensitivity which indicates how a harmonic input disturbance affects the
steady-state output ȳ, i.e., how well disturbances are rejected by the closed-loop
system. For the nonlinear system in Figure 6.4 disturbance rejection proper-
ties can be estimated through a describing function-based approximation of the
process sensitivity as given by

M̂(jω) =
P (jω)

1 + (1 + Ψ(jω))P (jω)C(jω)
, (6.64)

in which Ψ(jω) = D(jω), with D(jω) ∈ C the sinusoidal input describing func-
tion of H in (6.3) with f(xh, z) = −αxh + ωhz as provided in Appendix 6.B.

Error bounds for the approximation in (6.64) can be established via the
inequalities in (6.59). Note that in case of a sinusoidal input and for Ψ(jω) =
D(jω), the term ∆(t) that is used for constructing the bounds is specifically
computed as

∆(t) = ‖M̂(jω)‖
(
ˆ̄u(t)− ‖D(jω)‖ sin(ωt+ ∠D(jω))

)
, (6.65)

where ˆ̄u is the response of H to a sinusoidal input, and is given by

ˆ̄u(t) =


ωh√
ω2+α2

sin(ωt+ ϕ) + ωh
ω2+α2ωe

−αt, if 0 ≤ t < γ(ω)
ω ,

kh sin(ωt), if γ(ω)
ω ≤ t < π

ω ,
ωh√
ω2+α2

sin(ωt+ ϕ)− ωh
ω2+α2ωe

−α(t− πω ), if π
ω ≤ t <

π+γ(ω)
ω ,

kh sin(ωt), if π+γ(ω)
ω ≤ t < 2π

ω
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(a) Error response of the closed-loop system.

(b) Output of the nonlinearity H.

Figure 6.7. Time-series simulation of the closed-loop system for different initial
conditions and input w(t) = sin(ωt) with ω = 6 · 2π rad/s. The (transient)
responses for different initial conditions are indicated in grey, and the steady-
state solution is indicated in black.

with γ(ω) the (numerically obtained) switching instance and ϕ = arctan(−ωα ).
The value for µ as in (6.59) can be found numerically by solving the matrix
inequalities in Theorem 6.6.1.

A steady-state performance estimate for the closed-loop system with ωh =
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4·2π rad/s and α = 0.6ωh at various input frequencies is illustrated in Figure 6.8.
In this figure, an estimate for the RMS ratio ‖ȳ‖2,T /‖d‖2,T by means of the
approximation in (6.64) is depicted by the red line, and the error bounds with
µ = 6.101 are indicated by the dotted black lines. The true RMS ratio obtained
by means of time-series simulations is shown by the red dots.

Figure 6.8. Describing function approximation of the RMS ratio between a
sinusoidal input d(t) = sin(ωt) at various input frequencies and the steady-state
response ȳ (red line), error-bounds (dotted black), and time-series simulations
(red dots).

It can be seen that the error-bounds provide a useful uncertainty interval for
steady-state performance and are computationally far less demanding to obtain
than the exact RMS ratios via time-series simulations. Furthermore, for this
example the describing function approximation seems to provide an accurate
prediction of the closed-loop system performance when considering sinusoidal
inputs. For each input frequency ω, the error ‖ȳ− ˆ̄y‖2,T is shown in Figure 6.9.
The largest value for ‖ȳ − ˆ̄y‖2,T , i.e., the largest discrepancy (in terms of RMS
value) between the unique steady-state response and its linear approximation is
found to be 2.37 · 10−7 and occurs at an input frequency of ω = 18 · 2π rad/s.
This frequency coincides with 1/3-th of the resonance frequency at 54 Hz in the
plant P , such that the third harmonic in the output ofH is amplified in this case.
Note that peaks are also visible at 1/5-th and 1/7-th of this resonance frequency.
Despite these amplifications, the contribution of higher-harmonics in the output
remains small, which may be attributed to the fact that the closed-loop transfer
function Gyu(s) from u to z = −y has significant low-pass filter characteristics,
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Figure 6.9. RMS value of the steady-state approximation error ‖ȳ − ˆ̄y‖2,T at
various input frequencies.

thereby largely filtering the higher-order harmonics generated by H.

6.8 Summary

In this chapter, time- and frequency-domain conditions for input-to-state conver-
gence (ISC) of systems consisting of the feedback interconnection of an LTI plant
and a hybrid integrator are presented. The latter can be seen as a generalization
of HIGS as discussed in earlier chapters. By exploiting incremental properties
of the hybrid integrator that hold in a subset of the state-space, a set of nu-
merically tractable LMI conditions is formulated that, when feasible, guarantee
the existence of a specific piecewise quadratic incremental Lyapunov function
for the system. A frequency-domain interpretation of the LMIs is given which
allows for a graphical verification of the conditions. The convergence property
is further exploited for estimating steady-state performance on the basis of the
describing function with guaranteed error margins.

The tools that have been developed so far are particularly useful for analysis
of a given system containing HIGS (or a generalization thereof). Although some
of these tools also provide a useful direction for parameter tuning, these do not
immediately support intuitive design of a closed-loop controller in its totality
for the best interplay between linear and nonlinear parts. To deal with this, in
the next chapter two approaches toward the design of HIGS-based controllers
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are pursued. The first approach exploits rigorous LMIs for controller synthesis,
whereas the second approach is based on heuristics and exploits the describing
function within a loop-shaping framework.

6.A Proofs and technical results

6.A.1 Proof of Property 6.3.1

First consider the following observations.

1) Since the region Ω1 in (6.21) describes the same [0, kh]-sector as defined
by F̂ , inequality (6.20a) trivially follows.

2) When both trajectories are in ‘gain-mode’, the sector-condition is inher-
ently satisfied and thus (δz, δxh) ∈ Ω1. In this case, (6.20a) is satisfied
with an equality.

3) When trajectories belong to Ω2, and are both in ‘integrator-mode’ it follows
that

(δẋh)δxh = (f(xh, z)− f(x′h, z
′))δxh,

which, by virtue of Assumption 6.2.2 implies that the inequality in (6.20b)
is satisfied.

4) From the definition of the set Ω2 in (6.21) it follows that all (δz, δxh) ∈
Ω2 inherently violate the [0, kh]-sector condition as in (6.21a). This
implies that the pairs (z, xh) and (z′, x′h) must belong to the same

cone K ⊂ F̂ or −K ⊂ F̂ where the cone K is described by K ={
(z, u) ∈ R2 | u ≥ 0, khz ≥ u

}
, and, consequently, z, z′, xh, x

′
h all have

similar signs. Moreover, z, z′ are non-zero. The latter follows from the fact
that if z = 0 (or z′ = 0), then also xh = 0 (or x′h = 0), and consequently
khδxhδz = khxhz ≥ x2

h = δx2
h (or khδxhδz = khx

′
hz
′ ≥ x′2h = δx2

h). Hence,
in that case the [0, kh]-sector condition is satisfied and (δxh, δz) ∈ Ω1.
This, however, contradicts the assumption that (δxh, δz) ∈ Ω2.

It remains to show that (6.20b) holds when (δz, δxh) ∈ Ω2 and the trajecto-
ries are in different modes. To show this, the following claim is proven first.

Claim: for all (δz, δxh) ∈ Ω2 the following implications hold:

1. if xh = khz then zδxh > 0,

2. if x′h = khz
′ then z′δxh < 0.

Proof of the claim. Observe that for all (δz, δxh) ∈ Ω2, the following inequal-
ity is satisfied:

δx2
h > khδzδxh. (6.66)
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It will be shown that due to this inequality, the only possible cases when
xh = khz or x′h = khz

′ are given by the implications that are stated in the
claim.

• Suppose xh = khz, and δxh < 0. Dividing both sides in (6.66) by δxh then
yields

khz − x′h = xh − x′h < kh(z − z′), (6.67)

which, in turn, implies khz
′ < x′h. From the sector condition in (6.4a) it

must be true that z′ < 0, and x′h < 0. As for all (δz, δxh) ∈ Ω2 the signals
z, xh, z

′, x′h have similar signs and z, z′ are non-zero, one finds z < 0, and
thus zδxh > 0.

• Suppose xh = khz, and δxh > 0. Dividing both sides in (6.66) by δxh
yields

khz − x′h = xh − x′h > kh(z − z′), (6.68)

which implies khz
′ > x′h. Due to the sector condition in (6.4a) it must be

true in this case that z′ > 0, and x′h > 0. As for all (δz, δxh) ∈ Ω2 the
signals z, xh, z

′, x′h have similar signs and are non-zero, one finds z > 0,
and, consequently, zδxh > 0.

• Suppose x′h = khz
′, and δxh < 0. Given these (in)equalities, it follows

from (6.66) that

xh − khz′ = xh − x′h < kh(z − z′), (6.69)

which, in turn, implies xh < khz. By the sector condition in (6.4a) it must
be true that z > 0, and xh > 0. Sign-equivalence then yields z′ > 0, and
thus z′δxh < 0.

• Suppose x′h = khz
′, and δxh > 0. As before it follows from (6.66) that

xh − khz′ = xh − x′h > kh(z − z′), (6.70)

which implies xh > khz. Invoking the sector condition in (6.4a) shows
that z < 0, and xh < 0. Sign-equivalence then yields z′ < 0, and thus
z′δxh < 0.

This proves the claim.
Now suppose the trajectories are in different modes. Then, according to

(6.19) two possibilities arise:

(δẋh)δxh = (khż − f(x′h, z
′)) δxh, (6.71a)

(δẋh)δxh = (f(xh, z)− khż′) δxh. (6.71b)
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From the previous claim, one finds that whenever the first trajectory is in gain-
mode, and thus xh = khz, then z and δxh have similar signs and are non-
zero. Exploiting the inequality khżz < f(xh, z)z in gain-mode, see (6.4b), yields
khżδxh < f(xh, z)δxh. As such, one finds

(khż − f(x′h, z
′)) δxh ≤ (f(xh, z)− f(x′h, z

′))δxh. (6.72)

In a similar manner, when the second trajectory is in gain-mode, and thus x′h =
khz
′, then according to the claim z′ and δxh have opposite signs. By the gain

mode condition in (6.4b) this leads to khż
′δxh > f(x′h, z

′)δxh. Consequently

(f(xh, z)− khż′) δxh ≤ (f(xh, z)− f(x′h, z
′))δxh. (6.73)

Invoking Assumption 6.2.2 then leads to the inequality in (6.20b). This com-
pletes the proof.

6.A.2 Proof of Theorem 6.4.2

Without loss of generality one can assume (possibly after a state transformation)
that ‖Cg‖ = 1 such that ‖δz(t)‖ = ‖ − Cgδxg(t)‖ ≤ ‖δxg(t)‖. Since under the
small-gain assumption stated in the theorem, the non-incremental system in
(6.6), i.e., the interconnection of the LTI system in (6.1) and H in (6.3) is ISS,
it follows that solutions of (6.6) remain bounded and thus |δz| is finite for all
t ≥ 0. Hence, the result from Lemma 6.4.1 holds true. The solution of the LTI
system in (6.18) is given by

δxg(t) = eAgtδxg(0) +

∫ t

0

eAg(t−τ)Bgδu(τ)dτ +

∫ t

0

eAg(t−τ)Bwδw(τ)dτ, (6.74)

from which one finds

‖δz(t)‖ ≤ ‖δxg(t)‖ ≤ ke−λt‖δxg(0)‖+γu

(
sup

0≤t′≤t
‖δu(t′)‖

)
+γw‖δw‖∞, (6.75)

with γu =
∫∞

0
|CgeAgτBg|dτ < ∞, where boundedness of γu results from the

fact that Ag is Hurwitz. Applying the small-gain theorem for ISS (or in this case
input-to-output stable) systems (Jiang et al., 1994, Theorem 2.1) with γuγz < 1
in (6.29) then shows that there exist m,µ, γ̃w > 0 such that

‖δz(t)‖+ ‖δxh(t)‖ ≤ me−µt(‖δxg(0)‖+ ‖δxh(0)‖) + γ̃w‖δw‖∞. (6.76)

Define δx(t) = [δxg(t)
>, δxh(t)]> and observe from the fact that ‖δx‖ ≤ ‖δxg‖+

‖δxh‖ that at this point one has the following two inequalities:

‖δx(t)‖ ≤ ne−κt‖δx(0)‖+ γh

(
sup

0≤t′≤t
‖δxh(t′)‖

)
+ γ̂w‖δw‖∞ (6.77)

‖δxh(t)‖ ≤ me−µt‖δx(0)‖+ γ̃w‖δw‖∞. (6.78)
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Following the same arguments as in the proof of Jiang et al., 1994, Proposition
3.1, then shows that there exist r, σ, γ̄w > 0 such that

‖δx(t)‖ ≤ re−σt‖δx(0)‖+ γ̄w‖δw‖∞, (6.79)

which shows that the interconnected system (6.18), (6.19) is δISS. The proof can
then be completed in a similar manner as the proof of Theorem 6.2.8 to conclude
the system to be ISC.

6.A.3 Proof of Theorem 6.4.5

The proof is based on showing that the LMI conditions in (6.38) imply the
piecewise quadratic function

V (δx) = U(δxg) + kmax
{
δx2
h, khδz

2
}

+ max {0, v(δxh, δz)} , (6.80)

where U(δxg) := δx>gMδxg and v(δxh, δz) := δxh(δxh − khδz) to satisfy the
hypothesis of Theorem 6.2.8.

Before proceeding, recall that V induces a partitioning of the incremental
input-output region of (6.19), which is also depicted in Figure 6.3. It is useful
to write out V explicitly in these subregions, leading to

V (δx) =


V1(δx) = U(δxg) + kk2

hδz
2 if (δxh, δz) ∈ Ω̂1,

V2(δx) = U(δxg) + kδx2
h + δxh(δxh − khδz) if (δxh, δz) ∈ Ω̂2,

V3(δx) = U(δxg) + kk2
hδz

2 + δxh(δxh − khδz) if (δxh, δz) ∈ Ω̂3,

where

Ω̂1 :=
{

(δz, δxh) ∈ R2 | khδzδxh ≥ (δxh)2
}
, (6.81a)

Ω̂2 :=
{

(δz, δxh) ∈ R2 | (khδz)2 ≤ (δxh)2
}
, (6.81b)

Ω̂3 :=
{

(δz, δxh) ∈ R2 | −khδzδxh ≥ (δxh)2
}
. (6.81c)

Remark that Ω̂1 = Ω1 and Ω̂2 ∪ Ω̂3 = Ω2 with Ω1,Ω2 defined in (6.21) (see also
Figure 6.3).

Continuity - For showing continuity, it is sufficient to note that U is
a Lipschitz continuous function, and the functions max

{
δx2
h, khδz

2
}

and
max {0, v(δx)h, δz)} are locally Lipschitz continuous. As such, V is a locally
Lipschitz continuous function.

Positive definiteness - Observe that condition (6.38a) implies the existence
of α1, α2 > 0 such that

α1‖δxg‖2 ≤ V1(δx) ≤ α2‖δxg‖2, (6.82)
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where specifically α1 = λmin(M + kk2
hC
>
g Cg) and α2 = λmax(M + kk2

hC
>
g Cg).

For all (δxh, δz) ∈ Ω̂1 the incremental sector condition ‖δxh‖ ≤ kh‖δz‖ ≤
kh‖Cg‖‖δxg‖ as in (6.20a) holds true such that

α3‖δx‖2 ≤ V (δx) = V1(δx) ≤ α4‖δx‖2, (6.83)

with α3 = α1 · min
{

µ
(kh‖Cg‖)2 , 1− µ

}
, 0 < µ < 1, and α4 = α2. For the

left-hand side inequality, specific use is made of the sector condition ‖δxh‖2 −
k2
h‖Cg‖2‖δxg‖2 ≤ 0 in an S-procedure manner.

For all (δxh, δz) ∈ Ω̂2 it holds that V (δx) = V2(δx) = V1(δx) + k(δx2
h −

k2
hδz

2) + δxh(δxh − khδz). An upper-bound on V for all (δz, δxh) ∈ Ω̂2 then
follows trivially from δxh(δxh−khδz) ≤

(
1 + kh

2

)
‖δxh‖2+ kh

2 ‖Cg‖2‖δxg‖2 where
specific use is made of Young’s inequality. For deriving a lower-bound, two cases
are considered: i) k ≥ 0 and ii) −1/2 < k ≤ 0. Observe that in both cases
one has for all (δxh, δz) ∈ Ω̂2 that δxh(δxh − khδz) ≥ νδxh(δxh − khδz) with
0 < ν ≤ 1 and δx2

h ≥ k2
hδz

2. Then, for k ≥ 0 this results in

V (δx) ≥ α1‖δxg‖2 + νδxh(δxh − khδz)
≥ (1− κ)α1‖δxg‖2 +

κα1

‖Cg‖2
δz2 + ν(δx2

h − khδxhδz)

= (1− κ)α1‖δxg‖2 + ξ>Qξ,

(6.84)

where 0 < κ < 1, ξ := [δxh, δz]
>, and

Q :=

[
ν −νkh2

−νkh2
κα1

‖Cg‖2

]
. (6.85)

Since ν > 0 it follows that the matrix Q in (6.85) is positive definite if and only

if κα1

‖Cg‖2 −
νk2
h

4 > 0, which is achieved by choosing 0 < ν < min
{

1, 4κα1

k2
h‖Cg‖2

}
.

Using ‖ξ‖2 ≥ ‖δxh‖2 one finds for all (δxh, δz) ∈ Ω2 and k ≥ 0 that

α+
5 ‖δx‖2 ≤ V (δx) ≤ α+

6 ‖δx‖2, (6.86)

with

α+
5 = min {(1− κ)α1, λmin(Q)} ,

α+
6 = max

{
α2 +

kh
2
‖Cg‖2, 1 + k +

kh
2

}
.

For −1/2 < k ≤ 0 one finds

V (δx) ≥ α1‖δxg‖2 + |k|(δxh − khδz)2 + (1− 2|k|)δxh(δxh − khδz)
≥ (1− κ)α1‖δxg‖2 +

κα1

‖Cg‖2
δz2 + ε(δx2

h − khδxhδz)

= (1− κ)α1‖δxg‖2 + ξ>Q̂ξ,

(6.87)
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where 0 < κ < 1, 0 < ε < 1− 2|k|, ξ = [δxh, δz]
>, and

Q̂ :=

[
ε − εkh2
− εkh2 κα1

‖Cg‖2

]
. (6.88)

The matrix Q̂ is positive definite if ε < 4κα1

k2
h‖Cg‖2

. Hence, by choosing 0 < ε <

min
{

1− 2|k|, 4κα1

k2
h‖Cg‖2

}
one obtains the bounds

α−5 ‖δx‖2 ≤ V (δx) ≤ α−6 ‖δx‖2, (6.89)

with

α−5 = min
{

(1− κ)α1, λmin(Q̂)
}
,

α−6 = max

{
α2 +

(
kk2

h +
kh
2

)
‖Cg‖2, 1 +

kh
2

}
.

As such, it follows that for all (δxh, δz) ∈ Ω̂2 one finds

α5‖δx‖2 ≤ V (δx) ≤ α6‖δx‖2, (6.90)

with α5 = min
{
α+

5 , α
−
5

}
and α6 = max

{
α+

6 , α
−
6

}
.

Finally, for all (δxh, δz) ∈ Ω̂3 it holds that V (δx) = V3(δx) = V1(δx) +
δxh(δxh− khδz), which admits an equivalent lower-bound as in (6.90). As such,
one finds for all (δxh, δz) ∈ Ω̂3 that

α7‖δx‖2 ≤ V (δx) ≤ α8‖δx‖2, (6.91)

where α7 = α+
5 , α8 = max

{
1 + kh

2 , α2 + kh
2 ‖Cg‖2

}
. Combining (6.83), (6.90)

and (6.91) yields a common upper- and lower-bound for all δx ∈ Rn as

α9‖δx‖2 ≤ V (δx) ≤ α10‖δx‖2, (6.92)

with α9 = min {α3, α5, α7}, and α10 = max {α4, α6, α8}. Hence, the function V
in (6.80) satisfies condition (6.17a) in Theorem 6.2.8.

Generalized derivative - For the time being, consider w(t) = w′(t) for all
t ∈ R. Then, for all (δxh, δz) ∈ Ω̂1 one finds

∂V (δx)δẋ = He
(
δx>g (A>g (M + kC>g Cg)δxg + δx>gMBgδxh

)
. (6.93)

By pre- and post multiplication of the LMI in (6.38b) with δx, and noting that
for all (δxh, δz) ∈ Ω̂1 one has τ1δx

>S1δx = 2τ1δxh(khδz − δxh) ≥ 0, it follows
by virtue of the S-procedure that (6.38b) implies ∂V (δx)δẋ ≤ −ε1‖δx‖2, ε1 > 0,
for all (δxh, δz) ∈ Ω̂1.
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For all (δxh, δz) ∈ Ω̂2, one finds at almost all t and for all points where
∂V (δx) exists that

∂V (δx)δẋ = ∂U(δxg)δẋg + 2(k + 1)δxhδẋh − kh(δxhδż + δzδẋh)

= δx>(A>P + PA)δx+ 2δx>Pbφ,
(6.94)

where A and b are given in (6.32), P is given by

P =

[
M −kh2 C>z

−kh2 C>z 1 + k

]
, (6.95)

and φ = δẋh − c1δxh − c2δz. By observing that A>P + PA corresponds to
the matrix in the left hand side of the LMI in (6.38c), satisfying the LMI in
(6.38c) implies that A>P + PA ≺ 0. Moreover, since Pb = (1 + k)C>u − kh

2 C
>
z

it follows that δx>Pbφ = ((1 + k)δxh− kh
2 δz)φ. By virtue of Property 6.3.1 and

Property 6.3.2 one finds along all possible vector fields of δxh that ((1 +k)δxh−
kh
2 δz)φ ≤ 0 for all (δxh, δz) ∈ Ω̂2. As such, ∂V (δx)δẋ ≤ −ε2‖δx‖2, ε2 > 0, for

all (δxh, δz) ∈ Ω̂2.
In a similar manner, one finds for all (δxh, δz) ∈ Ω̂2 that at those points

where ∂V (δx) exists, and for almost all t

∂V (δx)δẋ = ∂U(δxg)δẋg + 2kk2
hδzδż + δẋh(2δxh − khδz)− khδxhδż

= δx>(A>P̄ + P̄A)δx+ 2δx>P̄ bφ,
(6.96)

where A and b are given in (6.32), P̄ is given by

P̄ =

[
M + kk2

hC
>
z Cz −kh2 C>z

−kh2 C>z 1

]
, (6.97)

and φ = δẋh − c1δxh − c2δz. From the fact that for all (δxh, δz) ∈ Ω̂3 one has
τ2δx

>S2δx = −2τ1δxh(δxh + khδz) ≥ 0. It follows by virtue of the S-procedure
that the LMI in (6.38d) implies δx>(A>P̄ + P̄A)δx < 0 for all (δxh, δz) ∈ Ω̂3.
Moreover, since δx>P̄ bφ = (δxh − kh

2 δz)φ it follows by a similar reasoning as

before that ∂V (δx)δẋ ≤ −ε3‖δx‖2, ε3 > 0 for all (δxh, δz) ∈ Ω̂3.
By virtue of Theorem 2.3.9 one finds

d

dt
V (δx(t)) ≤ −ε‖δx(t)‖2 (6.98)

with ε = min {ε1, ε2, ε3} to hold for almost all times t. For w 6= w′, this result is
easily extended as δw = w−w′ enters the incremental LTI system G in (6.18) in
an affine manner. By completing squares one finds for almost all times t ∈ R≥0

that
d

dt
V (δx(t)) ≤ −(ε− σ)‖δx(t)‖2 + β‖δw(t)‖2, (6.99)
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where 0 < σ < ε and β = 2‖MBw‖/σ. As such, condition (6.17b) is satisfied, so
that all conditions in Theorem 6.2.8 are satisfied and the system is input-to-state
convergent (ISC).

6.A.4 Proof of Theorem 6.5.1

The following results is instrumental in formulating the proof.

Lemma 6.A.1 (Kamenetskiy, 2017). For satisfying a system of two matrix
inequalities

I1 ≺ 0, I2 ≺ 0, (6.100)

for which the difference can be written as I2 − I1 = Q = pq> + qp>, for some
vectors p, q ∈ Rn, it is necessary and sufficient that there exists a number ε > 0
such that one inequality

I1 +Q+(ε) = I2 +Q−(ε) ≺ 0, (6.101)

with

Q±(ε) =

(
ε√
2
p± 1

ε
√

2
q

)(
ε√
2
p± 1

ε
√

2
q

)>
(6.102)

is satisfied.

Proof. The proof can be found in Kamenetskiy, 2017, Section 3.

Proof of the theorem - The proof constists of two main steps. In the first
step it is shown through application of Lemma 6.A.1 that the feasibility of the
two LMIs in (6.41) is equivalent to feasibility of a single matrix inequality. In
the second step, it is shown by the Kalman-Yakubovich-Popov (KYP)-lemma
that feasibility of this matrix inequality, in turn, is equivalent to satisfying the
frequency-domain inequality in (6.42).

First, it is important to note that for feasibility of the LMIs it is necessary
that c1 < 0. Via the Schur complement, the LMIs in (6.41a) and (6.41b) can be
reformulated as

I1 : A>gM +MAg +
1

2τ

(
MBg − τkhC>g

) (
MBg − τkhC>g

)> ≺ 0, (6.103)

I2 : A>gM +MAg +
1

2|c1|
Pm

(
MBg +

(
λI +

kh
2
A>g

)
C>g

)
≺ 0, (6.104)

with Pm (X) = XX>. Consider the difference I2 − I1 which reads

I2 − I1 =
1

2|c1|
Pm

(
MBg +

(
λI +

kh
2
A>g

)
C>g

)
− 1

2τ

(
MBg − τkhC>g

) (
MBg − τkhC>g

)>
.

(6.105)
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Using the vector relation aa> − bb> = 1
2 (a + b)(a − b)> + 1

2 (a − b)(a + b)> for
all a, b ∈ Rn it follows that (6.105) is equivalent to

I2 − I1 = pq> + qp> (6.106)

in which p and q are given by

p =
1√
2

(
a1MBg +Q1C

>
g

)
, and q =

1√
2

(
a2MBg +Q2C

>
g

)
, (6.107)

where

a1 =

(
1√
2|c1|

+
1√
2τ

)
, (6.108a)

a2 =

(
1√
2|c1|

− 1√
2τ

)
, (6.108b)

Q1 =
1√
2|c1|

(
λI +

kh
2
A>g

)
−
√
τ

2
khI, (6.108c)

Q2 =
1√
2|c1|

(
λI +

kh
2
A>g

)
+

√
τ

2
khI. (6.108d)

By Lemma 6.A.1, it follows that solvability of the inequalities I1, I2 is equivalent
to the existence of ε > 0 such that one inequality is feasible:

A>gM +MAg +
1

2τ

(
MBg − τkhC>g

) (
MBg − τkhC>g

)>
+

(
ε√
2
p+

1

ε
√

2
q

)(
ε√
2
p+

1

ε
√

2
q

)>
≺ 0.

(6.109)

Using the expressions for p and q in (6.107), it follows that (6.109) can be written
as

A>gM +MAg +
1

2τ

(
MBg − τkhC>g

) (
MBg − τkhC>g

)>
+

1

4
Pm

((
εa1 +

1

ε
a2

)
MBg +

(
εQ1 +

1

ε
Q2

)
C>g

)
≺ 0.

(6.110)

Define B̄ = [B1, B2], C̄ = [C1, C2] with

B1 = Bg, (6.111a)

B2 =

√
2|c1|
2

(
εa1 +

1

ε
a2

)
Bg, (6.111b)

C1 = −τkhC>g , (6.111c)

C2 =

√
2|c1|
2

(
εQ1 +

1

ε
Q2

)
C>g . (6.111d)
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With this choice, the inequality in (6.110) can be written more compactly as

A>gM +MAg +
(
MB̄ + C̄>

)
Γ−1

(
MB̄ + C̄>

)> ≺ 0, (6.112)

with Γ−1 = diag([1/(2τ), 1/(2|c1|)]). Since Γ is invertible, by virtue of Schur’s
complement, (6.112) is equivalent to[

A>gM +MAg MB̄ + C̄>

B̄>M + C̄> −Γ

]
≺ 0. (6.113)

Hence, by Lemma 6.A.1, feasibility of (6.113) is equivalent to feasibility of (6.41).
From the Kalman-Yakubovich-Popov (KYP)-lemma (Rantzer, 1996) it fol-

lows that, in turn, feasibility of (6.113) is equivalent to satisfying the frequency-
domain inequality (FDI) given byW1(jω) W2(jω)

1 0

0 1


∗  0 C>1 C>2
C1 −2τ 0

C2 0 −2|c1|


W1(jω) W2(jω)

1 0

0 1

 ≺ 0, (6.114)

for all ω ∈ R, where W1(jω) = (jωI − Ag)−1B1 ∈ Cn, and W2(jω) = (jωI −
Ag)

−1B2 ∈ Cn. Note that under the assumption that Gyu(s) is stable, Ag is
Hurwitz and M must necessarily be positive definite.

Expanding the left-hand side of (6.114) yields[
W ∗1 (jω)C>1 + C1W1(jω)− 2τ W ∗1 (jω)C>2 + C1W2(jω)

C2W1(jω) +W ∗2 (jω)C>1 W ∗2 (jω)C>2 + C2W2(jω)− 2|c1|

]
=[

−2τ (khRe {G(jω)}+ 1) −W̃ (jω)

−W̃ ∗(jω) −|c1| (2− k1Re {(k2 + k3jω)G(jω)})

]
,

(6.115)

where

W̃ (jω) =

√
2|c1|
2

((k2 − k3jω)G∗(jω)− τkhk1G(jω)) (6.116)

and

k1 =

(
ε+

1

ε

)√
1

2|c1|
+

(
ε− 1

ε

)√
τ

2
kh, (6.117a)

k2 =

(
ε+

1

ε

)√
1

2|c1|

(
khc1

2
− c2

)
+

(
1

ε
− ε
)√

τ

2
kh, (6.117b)

k3 =

(
ε+

1

ε

)√
1

2|c1|
kh
2
. (6.117c)



174 Chapter 6. Steady-State Analysis: A Convergent Dynamics Approach

By performing a congruence transformation to (6.115) with the matrix T =
diag([1/

√
2τ , 1/

√
2|c1|]) and reversing signs one finds the FDI[

khRe {G(jω)}+ 1 W (jω)

W ∗(jω) 1− k1

2 Re {(k2 + k3jω)G(jω)}

]
� 0 (6.118)

with

W (jω) =
1

2
√

2τ
(k2 − k3jω)G∗(jω)− khk1

2

√
τ

2
G(jω). (6.119)

Hence, satisfying the frequency-domain inequality in (6.118) is equivalent to
satisfying (6.114), and, in turn, is equivalent to satisfying the LMIs in (6.41).

Note that the crux in proving necessity and sufficiency of the frequency-
domain conditions for feasibility of the LMIs in (6.41) is the possibility to refor-
mulate the two LMIs in (6.41) into a single matrix inequality.

6.A.5 Proof of Corollary 6.5.2

Consider the conditions in Theorem 6.5.1 with the choice ε = 1. In that case,
one has

k1 =

√
2

|c1|
, k2 = k1

(
khc1

2
− c2

)
, and k3 = k1

kh
2
,

and the frequency-domain inequality in (6.42) reduces tokhRe {G(jω)}+ 1 k1

2
√

2
Ŵ (jω)

k1

2
√

2
Ŵ ∗(jω) 1 + 1

c1
Re
{
Û(jω)

} � 0, (6.120)

with Û(jω) =
(
khc1

2 − c2 + kh
2 jω

)
G(jω), Ŵ (jω) = 1√

τ
Û∗(jω) − √τkhG(jω).

By invoking a Schur complement, it follows that the necessary and sufficient
conditions for the matrix in (6.120) to be positive definite are given by

M11(jω) > 0, (6.121)

M11(jω)M22(jω)−M12(jω)M∗12(jω) > 0, (6.122)

for all ω ∈ R, and where

M11(jω) = khRe {G(jω)}+ 1,

M22(jω) = 1 +
λ

c1
Re {G(jω)} − kh

2c1
ωIm {G(jω)} ,

M12(jω) =
1

2
√
|c1|

(
1√
τ

(
λ− kh

2
jω

)
G∗(jω)−√τkhG(jω)

)
,
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with λ =
(
khc1

2 − c2
)
. Expansion of the product M12(jω)M∗12(jω) yields

M12(jω)M∗12(jω) = F1(jω) + F2(jω)

with

F1(jω) =
kh
2c1

(
λ
(

Re {G(jω)}2 − Im {G(jω)}2
)
− khωRe {G(jω)} Im {G(jω)}

)
F2(jω) =

1

4|c1|

(
1

τ

(
k2
h

4
ω2 + λ2

)
+ τk2

h

)
G(jω)2.

Then, it follows that a necessary condition for satisfying the frequency-
domain inequalities in (6.121) and (6.122) is that M11(jω) = 1+khRe {G(jω)} >
0, hence condition 1 in the corollary.

For satisfying the second condition in (6.122), first observe that since only
positive values for τ are considered, one has F2(jω) ≥ 0 for all ω ∈ R. Hence, a
necessary condition for the existence of τ > 0 such that th inequality in (6.122)
holds is that for all ω ∈ R

M11(jω)M22(jω)− F1(jω) =

1 +

(
kh +

λ

c1

)
Re {G(jω)} − kh

2c1
ωIm {G(jω)}+

kh
2

λ

c1
G(jω)2 > 0.

(6.123)

Collecting all terms that contain c1 yields that (6.123) is equivalently written as

1 +X(jω)− αY (jω) > 0, (6.124)

where α = 1/c1 and

X(jω) =
kh
2

Re

{
G(jω)

(
3 +

kh
2
G(jω)

)}
, (6.125a)

Y (jω) = Re

{
G(jω)

(
c2 −

kh
2
jω + c2

kh
2
G(jω)

)}
. (6.125b)

Hence, condition 2 in the corollary.
Finally, observe that (6.122) can be written as 1+X(jω)−αY (jω) > F2(jω).

Suppose that condition 2 is satisfied, i.e., for all ω ∈ R it holds that 1+X(jω)−
αY (jω) > 0. Then, (6.122) is equivalent to (after division by the left-hand side
and taking the square root)∥∥∥∥ √

τ

jω + 2ωc(τ)

∥∥∥∥ > kh
4

√
|α|‖G(jω)‖√

1 +X(jω)− αY (jω)
, (6.126)

with ωc(τ) =

√(
1

2α − c2
kh

)2

+ τ2. This results in condition 3.
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6.B Describing function for HIGS with an
additional pole

Consider the hybrid integrator in (6.3) with f(xh, z) = −αxh+ωhz representing
HIGS with an additional pole α ∈ R. With this choice, the “extended” hybrid
integrator shows a certain resemblance with a first-order reset element (FORE)
as considered in, e.g., Horowitz and Rosenbaum, 1975; Zaccarian et al., 2005.
When including an additional pole α > 0, it can be easily deduced from the
proof of Theorem 2.2.4 in Chapter 2 that H in (6.3) is incrementally uniformly
exponentially stable, which is thus a stronger property than what is derived for
α = 0, for which only incremental asymptotic stability was shown. Also, ampli-
tude invariance can be shown in a similar manner as was done in Theorem 2.2.5.
For α < 0, however, these properties are harder to verify due to the resulting
unstable dynamics in “integrator-mode”. Still, for inputs that cross zero in finite
time such as sinusoids, it can be shown that there can exist only one steady-
state response which is also amplitude invariant. Here, the fact that the input
crosses zero in finite time is explicitly used. By the grace of these properties it
is possible to conduct a describing function analysis (see also Chapter 2).

Consider z(t) = sin(ωt) as an input to (6.3). Then, with xh(0) = 0, the
corresponding unique steady-state response is given by

u(t) =


ωh

ω2+α2 (ωe−αt − ω cos(ωt) + α sin(ωt)) , for 0 ≤ t < γ(ω)
ω ,

kh sin(ωt), for γ(ω)
ω ≤ t < π

ω ,
ωh

ω2+α2

(
−ωe−α(t− πω ) − ω cos(ωt) + α sin(ωt)

)
, for π

ω ≤ t <
π+γ(ω)

ω ,

kh sin(ωt), for π+γ(ω)
ω ≤ t < 2π

ω ,

where t = γ(ω)/ω is the switching instance, which follows from the intersection

ωh
ω2 + α2

(
ωe−α

γ(ω)
ω − ω cos(γ(ω)) + α sin(γ(ω))

)
= kh sin(γ(ω)). (6.127)

While for α = 0, the closed-form solution γ(ω) = 2 arctan (khω/ωh) can be
found, for α 6= 0 (6.127) does not admit a closed-form solution. Nevertheless,
a numerical solution can be found efficiently via, e.g., standard zero-finding
algorithms. The steady-state response to a sinusoid for different ratios of α/ωh
is shown in Figure 6.10.

The Fourier coefficients of the first harmonic in u are given by

a1(ω) =
2ω

π

(
ωh

ω2 + α2

)(
ω2

ω2 + α2

(α
ω
− e−α γω

(α
ω

cos(γ)− sin(γ)
))
−

2γ + sin(2γ)

4

)
+

(
αωh

ω2 + α2
− kh

)
1− cos(2γ)

2π
,
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Figure 6.10. Response ofH in (6.3) with f(xh, z) = −αxh+ωhz to a sinusoidal
input for kh = 1, ωh = π rad/s, and different ratios of α/ωh.

Figure 6.11. Describing function D(jω) of H in (6.3) with f(xh, z) = −αxh +
ωhz for kh = 1, ωh = π rad/s, and different ratios of α/ωh.

and

b1(ω) =
2ω

π

(
ωh

ω2 + α2

)(
ω2

ω2 + α2

(
1− e−α γω

(
cos(γ) +

α

ω
sin(γ)

))
− sin2(γ)

2

)
+ kh +

(
αωh

ω2 + α2
− kh

)
2γ − sin(2γ)

2π
,
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and the describing function is given by D(jω) = a1(ω) + jb1(ω). Note that for
α = 0 one recovers the Fourier coefficients for HIGS as given in (2.16). The
corresponding describing function characteristics for different ratios of α/ωh are
shown in Figure 6.11. It can be seen that the choice α > 0 (stable pole) results in
more damping, whereas the opposite is seen for the choice α < 0 (unstable pole).
For ratios satisfying |α/ωh| < 1 the discrepancy with the case α = 0 appears to
be small. Note that in all cases, limω→∞D(jω) = ωh

jω (1+4j/π), which resembles
the describing function of the classical Clegg integrator, see also Chapter 2 and
Clegg, 1958; Horowitz and Rosenbaum, 1975.



Part III

Design and Applications





Chapter 7

HIGS-Based Controller Design

7.1 Introduction

The tools that have been developed so far are particularly useful for the purpose
of analysis, but provide limited direction toward design of HIGS-based controllers
that can achieve improved system performance. As performance improvements
do not result from blind application of HIGS, but rather from a careful interplay
between its switching mechanism and the remaining linear time-invariant (LTI)
parts of the system, there is a need for comprehensive design procedures.

This chapter considers two approaches for HIGS-based controller design. The
first approach presents a method for robust controller synthesis by exploiting
matrix inequalities that are derived from the frequency-domain conditions pre-
sented in Chapter 4, and combines these with the L2-performance measure as
discussed in Chapter 5. The approach links to the work in Arcak et al., 2003
where circle and Popov criteria are used as tools for nonlinear feedback design.

A possible drawback of an approach based on matrix inequalities, however,
is the lack of a clear physical interpretation regarding parameter tuning, and
limited guidance for re-design when the set of inequalities turns out to be in-
feasible. In an industrial setting these aspects may be experienced as less desir-
able. Therefore, as an alternative, a second approach that exploits a describing
function characterization of HIGS within a robust loop-shaping framework is
presented. Key in this approach is to express the modelling error induced by the
describing function approximation as an uncertainty in the controller (Ferreres
and Fromion, 1998; Impram and Munro, 2001; Katebi and Zhang, 1995). Con-
troller design with the describing function of HIGS as a frequency-domain ap-
proximation of its nonlinear steady-state input-output behaviour then proceeds
in a manner similar to that for LTI systems, and entails robustness against both
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modelling errors in the plant as well as in the controller. One may argue that de-
sign based on describing functions is not relevant (if at all possible) in the given
nonlinear control context, for example due to the lack of mathematical rigour
in the statements on stability and performance. But, as frequency-domain tools
are widely adopted by control engineers in industry, such an approach may be
of great practical value and the benefits associated with it cannot be ignored. It
is advocated that the approach is not only useful for HIGS-based control design,
but applies to the design of other nonlinear strategies, for example reset control
(Beker et al., 2001; Clegg, 1958; Nešić et al., 2008) as well. Also notice in this
regard that the need for systematic design procedures in general is acknowledged
as being one of the open problems in reset and hybrid control (Zhao et al., 2013).

The remainder of this chapter is organized as follows. In Section 7.2 the
control design problem formulation is specified. In Section 7.3 robust synthesis
of HIGS-based controllers using matrix inequalities is discussed. Section 7.4
presents a design approach that exploits describing functions within a robust
loop-shaping framework. The main findings of this chapter are summarized in
Section 7.5.

7.2 System description and problem
formulation

7.2.1 General system description

Consider the control configuration as depicted in Figure 7.1. Here, G is the
generalized plant, which is represented as the linear time-invariant (LTI) multi-
input multi-output (MIMO) system

G :


ẋg(t) = Agxg(t) +Bgv(t) +Bww(t) +Bw∆

w∆(t),

y(t) = Cgxg(t) +Dgv(t) +Dww(t) +Dw∆
w∆(t),

q(t) = C̄qxg(t) + D̄qv(t) + D̄ww(t) + D̄w∆w∆(t),

q∆(t) = Ĉqxg(t) + D̂qv(t) + D̂ww(t) + D̂w∆w∆(t),

(7.1)

where xg(t) ∈ Rm denotes the states of the generalized plant, q(t) ∈ Rr contains
the performance variables, such as tracking errors and control actions, w(t) ∈ Rl
are the exogenous input signals, such as disturbances, measurement noise, and
reference commands. The matrices (Ag, Bg, Cg, Dg) are assumed to be minimal,
and the remaining matrices in (7.1) are of appropriate dimension. The uncer-
tainty channels w∆(t) ∈ Rp, q∆(t) ∈ Rq are related by w∆ = ∆Gq∆, where
∆G ∈ ∆̄ is an unstructured plant uncertainty that belongs to the set

∆̄ :=
{

∆G ∈ RHp×q∞ | ‖∆G‖∞ < 1
}
, (7.2)

in which RHp×q∞ denotes the space of proper and real rational stable transfer
function matrices of size p × q. The measured output y(t) ∈ R is fed back to a
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(non)linear single-input single-output (SISO) feedback controller K that gener-
ates the control signal v(t) ∈ R. The generalized plant G in Figure 7.1 contains
a nominal model of the plant to be controlled, scaling filters that normalize the
uncertainty, and performance weighting filters (Glover and McFarlane, 1989;
Skogestad and Postlethwaite, 2010). The latter filters are added for the pur-
pose of including problem-specific input knowledge into the system description,
and trade-off performance objectives between different input-output channels.
In an LTI context, these filters can be used for specifying magnitude bounds on
closed-loop transfer functions (Ortega et al., 2006; van de Wal et al., 2002).

G

K

∆G

qw

v y

w∆ q∆

Figure 7.1. Generalized feedback configuration with plant uncertainty.

7.2.2 Problem formulation

The feedback controller K aims at stabilizing the closed-loop system, and achiev-
ing a certain level of system performance by minimizing (in some sense) the
closed-loop mapping from exogenous inputs w to performance variables q. All
of this must be achieved in the face of plant uncertainties. Formally, the design
of a (non)linear SISO feedback controller K can be formulated as the following
constraint optimization problem:

minimize
K

J(K)

subject to ‖Tw→q(K,∆G)‖∞ ≤ γ,
K stabilizes G∆,

K ∈ K,

(7.3)

in which Tw→q(K,∆G) : Rn → Rm is the closed-loop mapping from inputs w to
the performance channel q, for given K and ∆G ∈ ∆̄, which is desired to have
an H∞-norm of at most γ with γ > 0. The H∞-norm of a system is defined in
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terms of the L2-gain (see also Chapter 5 for a formal definition):

‖Tw→q‖∞ = sup
w∈L2\{0}
dom q 6={0}

‖q‖2
‖w‖2

. (7.4)

For LTI systems one finds the equivalence ‖Tw→q‖∞ = supω σ̄(Tw→q(jω)) where
σ̄ denotes the maximum singular value of a transfer function matrix, which, in
the SISO case corresponds to the peak value of ‖T (jω)‖. In (7.3), G∆ represents
the interconnection of the generalized plant G in (7.1) and the uncertainty ∆G,
J(K) is an objective function that resembles certain control system requirements
(e.g., defined in terms of γ), and K ∈ K represents a structural constraint on the
controller. In particular, the set K specifies the structure of the controller, as
well as constraints on the associated tuning parameters. Structural constraints
are added for accommodating practical situations, where it may be desired to
find low-order controllers with a given structure, such as PID-based controllers,
see, e.g., Apkarian and Noll, 2006.

7.2.3 Toward HIGS-based controller design

In an LTI context, two main directions can be found in the literature for solving
the controller design problem (7.3): state-space methods and frequency-domain
methods. In a state-space approach, it is customary to solve (7.3) using lin-
ear matrix inequalities (LMIs) (Apkarian and Noll, 2006; Apkarian et al., 2015;
Doyle et al., 1989; Gahinet and Apkarian, 1994; Packard and Doyle, 1993; Zhou
et al., 1996). The main advantage of these methods is that the structure of
the controller is completely left to the optimization routine, and the resulting
controller is guaranteed to be the optimal one (with respect to the performance
objective). However, these approaches all require a state-space realization of
the plant and controller. In a frequency-domain approach, (7.3) is solved via
frequency-domain loop-shaping, done either manually (Glover and McFarlane,
1989; Steinbuch and Norg, 1998), or guided by an autotuner (Bruijnen et al.,
2006; Åström et al., 1992). Although a loop-shaping approach not necessar-
ily leads to an optimal controller, and the structure of the controller should be
determined beforehand by the control engineer, the main advantages over nu-
merical state-space methods are the possibility to directly use non-parametric
models of the plant in the procedure, and the possibility for an intuitive/direct
assessment of the effects from adjusting the controller parameters on the per-
formance requirements. For these reasons, frequency-domain loop-shaping to
this day remains the most popular method for LTI controller design in practice
(Samad, 2017; Samad et al., 2020).

The objective in this chapter is to formulate a procedure for effectively solv-
ing (7.3), in which K = K(Ci,H) is a HIGS-based controller that is constructed
by interconnecting HIGS H with several LTI filter elements Ci(s), i = 1, . . . ,m.
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Note that the set K in (7.3) includes all controllers of this form. Inspired by
the various directions for LTI controller design available in the literature, two
approaches for solving (7.3) with K being a HIGS-based controller are pursued
in this chapter. The first approach is based on matrix inequalities, and provides
a synthesis procedure that leads to a closed-loop controller design with guaran-
teed robust stability and performance properties. It closely links to state-space
methods for LTI design. The second approach exploits the describing function
within a robust frequency-domain loop-shaping framework. It can be seen as a
tuning procedure and connects to frequency-domain loop-shaping methods that
are widely adopted in industry. Both approaches are discussed in detail in the
next two sections.

7.3 Synthesis using matrix inequalities

7.3.1 System setting

In this section, a rigorous approach toward synthesis of HIGS-based controllers
for the purpose of input disturbance rejection within the setting depicted in Fig-
ure 7.2 is considered. In this figure, P is the LTI plant, C1, C2 are the LTI parts
of the controller K, H represents HIGS, d(t) is a scalar-valued input disturbance
signal, y(t) is the scalar-valued measured output signal used for feedback control,
and q(t) is the scalar-valued performance output signal. The (strictly) proper
and stable SISO LTI weighting filters W and W∆ are, respectively, used to in-
clude knowledge of the input disturbance and plant uncertainty. Note that input
multiplicative uncertainty is considered here, but, given the SISO LTI character-
istics of the SISO plant and uncertainty, output multiplicative uncertainty can
be considered as well.

It is assumed that the plant P in Figure 7.2 has a relative degree of at least
two, such that, conform Assumption 2.3.1, the external inputs v, w,w∆ as well
as their time-derivatives do not appear directly as an input to HIGS.

The SISO LTI filters in K are initially fixed to C2(s) = 1 and C1(s) = C(s)
with C described in state-space by

C :

{
ẋc(t) = Acxc(t) +Bcu(t),

v(t) = Ccxc(t) +Dcu(t),
(7.5)

with xc(t) ∈ Rs, u(t) ∈ R and v(t) ∈ R the filter state, input, and output,
respectively, at time t ∈ R≥0, and Ac, Bc, Cc, Dc matrices of consistent dimen-
sions. This specific choice for C1(s) and C2(s) is useful for deriving synthesis
conditions, and will be reconsidered later.
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Figure 7.2. Input disturbance rejection within the generalized plant set-up.

Recall from Chapter 2 that HIGS is formulated as

H :


ẋh(t) = ωhz(t), if (z(t), u(t), ż(t)) ∈ F1,

xh(t) = khz(t), if (z(t), u(t), ż(t)) ∈ F2,

u(t) = xh(t),

(7.6)

where xh(t) ∈ R is the integrator state, z(t) ∈ R is the input, ż(t) is the corre-
sponding time-derivative, u(t) ∈ R is the output at time t ∈ R≥0, and the sets
F1 and F2 are given by

F1 =
{

(z, u, ż) ∈ R3 | khzu ≥ u2 ∧ (z, u, ż) 6∈ F2

}
, (7.7a)

F2 =
{

(z, u, ż) ∈ R3 | u = khz ∧ ωhz2 > khżz
}
. (7.7b)

The design parameters of HIGS are given by the integrator frequency ωh ∈ (0,∞)
and the gain kh ∈ (0,∞). Closer inspection reveals that within the specific con-
figuration of Figure 7.2 the gain kh is redundant when used in conjunction with
additional filters, as its effect can always be achieved by appropriate scaling of
the output u, and integrator parameter ωh. This effect can thus be encapsu-
lated in the proportional gain of C1 = C. In the remainder of this section, this
parameter is therefore fixed at kh = 1.
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Interconnecting (7.1)–(7.6) in the manner as shown in Figure 7.2, and treat-
ing q∆, w∆ as additional input-output channels results in the standard closed-
loop system description

Σ :


ẋ(t) = Aix(t) +Bw(t) +B∆w∆(t), if x(t) ∈ Xi, i ∈ {1, 2}
q(t) = Cx(t),

q∆(t) = C∆x(t) +D∆w(t),

(7.8)

with states x(t) =
[
xg(t)

>, xh(t), xc(t)
>]> ∈ Rn+1, n = m + s. The sets Xi,

i = {1, 2}, are given by

Xi = {x ∈ Rn | Ex ∈ Fi} , (7.9)

where the matrix E is given by

E =
[
C>z C>u (CzA1)>

]>
, (7.10)

with Cz = [Cp 0 0] and Cu = [0 1 0]. The system matrices are written as

A1 =

 Ag BgDc BgCc

ωhCp 0 0

0 Bc Ac

 , A2 =

 Ag BgDc BgCc

khCpAg 0 0

0 Bc Ac

 , (7.11a)

whereas the input matrices are given by

B =
[
B>w 0 0

]>
, B∆ =

[
B>w∆

0 0
]>

, (7.11b)

and the output matrices are

C =
[
C̄q 0 0

]
, C∆ =

[
Ĉq D̂qDc D̂qCc

]
, D∆ = D̂w. (7.11c)

7.3.2 From analysis to synthesis

Input-to-state stability (ISS) of the nominal closed-loop system in Figure 7.2
(with ∆G = 0) can be assessed via Theorem 4.3.3, where the existence of a
quadratic ISS-Lyapunov function was guaranteed via the frequency-domain in-
equality

1 + Re

{(
λkCu + F +

(
λ+ k

ωh
kh

)
H

)
(jωI −A2)−1b

}
> 0, (7.12)

with λ ≥ 0, k ≥ 1, and where the corresponding system matrices are given by
b = C>u , H = khCz−Cu, F = Cz(khA1−ωhI), and A2 = A2+k ωhkh bH. From the
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Kalman-Yakubovich-Popov (KYP) lemma (see also Chapter 4) it readily follows
that (7.12) is equivalent to the set of matrix inequalities

M = M> � 0, (7.13a)(A2 + k ωhkh bH
)>

M +M
(
A2 + k ωhkh bH

)
Mb− c>

b>M − c −2

 ≺ 0. (7.13b)

in which c = λkCu + F + (λ+ k ωhkh )H. Recall from Theorem 4.3.3 in Chapter 4

that (7.13) are sufficient conditions for guaranteeing feasibility of the set of
inequalities in (4.10) with τ1, τ2 ≥ 0 and τ3 = 0, i.e., the existence of a common
quadratic Lyapunov function (including S-procedure terms) for the closed-loop
system in (7.8). Different from the set of “direct” inequalities in (4.10), however,
the set of inequalities in (7.13) can also be used in an LTI context. In this regard,
typical machinery used for synthesizing LTI controllers via matrix inequalities
comparable with (7.13) can conveniently be exploited for synthesizing HIGS-
based controllers. Before discussing this in more detail, the inequalities in (7.13)
are extended toward conditions for robust performance of the closed-loop system
in (7.8). Hereto, a small-gain theorem from the input channel w∆ to the output
q∆ is essentially exploited.

Proposition 7.3.1. Consider the closed-loop system in (7.8) with w∆ = ∆Gq∆.
Suppose there exist a symmetric matrix M = M> � 0 and numbers λ ≥ 0, k ≥ 1,
and γ > 0 that satisfy the inequality

(
A2 + k ωhkh bH

)>
M +M

(
A2 + k ωhkh bH

)
Mb− c> MB̄ C̄>

b>M − c −2 0 0

B̄>M 0 −Γ D̄>

C̄ 0 D̄ −Γ

 ≺ 0,

(7.14)
in which B̄ = [B B∆], C̄ = [C> C>∆ ]>, D̄ = diag(0, D∆), and Γ = diag(γ, 1).
Then for all ∆G ∈ ∆̄ the closed-loop system in (7.8) is input-to-state stable (ISS)
and has a finite L2-gain from w to q as in (7.4) smaller than or equal to γ.

Proof. By virtue of the Schur complement, (7.14) is equivalent to[
A>2 M +MA2 +Q MB̄

B̄>M −Γ

]
+

[
C̄>

D̄>

]
Γ−1

[
C̄ D̄

]
≺ 0, (7.15)

with A2 =
(
A2 + k ωhkh bH

)
and Q = 1

2

(
Mb− c>

) (
Mb− c>

)> � 0. Pre- and

post multiplying (7.15) with (x, w̄) = (x,w,w∆) yields

x>
(
A>2 M +MA2 +Q

)
x+ 2x>MB̄w̄ +

1

γ
q2 − γw2 + q2

∆ − w2
∆ < 0. (7.16)
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Define V (x) = x>Px with

P = M + λH>H + λk(C>u H +H>Cu), (7.17)

and observe that due to the assumption on the relative degree, one finds PB̄ =
MB̄. Then, using the result in Theorem 4.3.3 it follows that t 7→ V (x(t)) satisfies
for almost all times and all x ∈ Xi

V̇ ≤ −εV + γw2 − 1

γ
q2 + w2

∆ − q2
∆, (7.18)

with ε > 0 sufficiently small. By virtue of the bounded real lemma (Khalil,
2002) it follows that for all ∆G ∈ ∆̄ there exists a V∆(x∆) > 0 with x∆ ∈ Rs the
(internal) states pertaining ∆G that satisfies V̇∆ ≤ −µV∆ + q2

∆ − w2
∆. Hence,

for the interconnection of the nominal system with the uncertainty ∆G one finds
U(x, x∆) = V (x) + V∆(x∆) > 0 for all (x, x∆) ∈ Xi ∪ Rs, and

U̇ ≤ −τU − 1

γ
q2 + γw2, (7.19)

for all (x, x∆) ∈ Xi∪Rs, and where τ = min {ε, µ}. The proof is then completed
using standard arguments.

The matrix inequality in (7.14) is instrumental in synthesizing robust HIGS-
based controllers with guaranteed performance properties. In reformulating
(7.14) into appropriate synthesis conditions, note that the parameters associ-
ated with the LTI part of the controller only appear in the matrices A2 and C̄.
By gathering all LTI controller parameters into the single variable

Kc =

[
Ac Bc

Cc Dc

]
, (7.20)

and introducing the notation

A =

 Ag 0 0

khCpAg 0 0

0 0 0

 =

[
A0 0

0 0

]
, C̄0 =

[
C̄q 0 0

Ĉq 0 0

]
, (7.21)

and

B =

0 Bg

0 0

I 0

 , C =

[
0 0 I

0 I 0

]
, D =

[
0 0

0 D̂q

]
(7.22)

the matrix A2 can be written more compactly as A2 = A+ BKcC, whereas the
matrix C̄ is written as C̄ = C̄0+DKcC. As such, one can write the corresponding



190 Chapter 7. HIGS-Based Controller Design

inequality in (7.14) in the form
A>M +MA Mb− c> MB̄ C̄>0
b>M − c −2 0 0

B̄>M 0 −Γ D̄>

C̄0 0 D̄ −Γ

+ He


MB0
D

Kc

[
C 0 0

] ≺ 0,

(7.23)

in which A = A+k ωhkh bH, with A given in (7.21). The inequality in (7.23) is not
an LMI and cannot be used directly for synthesis. However, it is in a standard
form that allows for direct application of the elimination lemma (Boyd et al.,
1994). Following the steps in Gahinet and Apkarian, 1994, Theorem 4.2 and
Theorem 4.3, it is possible to show that the conditions in Proposition 7.3.1 are
equivalent to the following set of inequalities:

WB0
0

0 I

I 0


>

A0R+RA>0 b0 −Rc>0 B0 RC>0
b>0 − c>0 R −2 0 0

B>0 0 −Γ D>0
C0R 0 D0 −Γ


WB0

0

0 I

I 0

 ≺ 0, (7.24a)

WC0 0

0 I

I 0


>

SA0 +A>0 S Sb0 − c>0 SB0 C>0
b>0 S − c0 −2 0 0

B>0 S 0 −Γ D>0
C0 0 D0 −Γ


WC0 0

0 I

I 0

 ≺ 0, (7.24b)

[
R I

I S

]
� 0, (7.24c)

in which A0 = A0 + k ωhkh b0H0 with A0 given in (7.21),

B0 =

[
Bw Bw∆

0 0

]
, C0 =

[
C̄q 0

Ĉq 0

]
, D0 = D̄, (7.25)

and b0 = [0, 1]>, H0 = [khCp,−1], c0 = λkb>0 + F0 + (λ + k ωhkh )H0 with F0 =

[Cp(khAg − ωhI), 0]. Furthermore, the matrices WB0 and WC0 satisfy

Im(WB0
) = ker([B>g , D̂q]), and Im(WC0) = ker([0, I]). (7.26)

Note that the above inequalities result from assuming the following structure on
the matrix M :

M =

[
R X

X> ?

]
, and M−1 =

[
S Y

Y > ?

]
, (7.27)
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where R,S ∈ R(m+1)×(m+1) and X,Y ∈ Rs×s. For details regarding the struc-
ture in (7.27) and the explicit steps taken in reformulating the inequalities, see
Gahinet and Apkarian, 1994.

7.3.3 Controller synthesis algorithm

Based on the conditions derived above and under the assumption kh = 1, the
controller synthesis problem can be formulated as follows:

minimize
R,S,k,λ,ωh

γ

subject to (7.24)

λ ≥ 0, k ≥ 1, ωh > 0.

(7.28)

The inequalities in (7.24) are not LMIs due to products of the variables R,S
with λ, k, ωh, such that (7.28) is a non-convex optimization problem potentially
with multiple local minima. Clearly, one could perform an exhaustive search
over the parameters λ, k, and ωh to find a (local) minimum to (7.28). Such
approach, however, may be computationally intensive. To potentially improve
the computational efficiency, one could exploit additional structure in (7.24).
Namely, from the observation that b>0 WC0 = 0 the inequality in (7.24b) appears
to be quasi-convex, in the sense that the inequality is convex (in the variables S,
λ, ωh, and γ) for fixed τ := kωh. This allows for a simple and intuitive two-step
approach for finding a solution to the inequalities in (7.24), which is summarized
as follows:

• Step 1: Fix τ , and minimize γ subject to the LMIs (7.24b), S � 0, λ ≥ 0,
and τ ≥ ωh > 0 in which the free variables are S, λ, and ωh.

• Step 2: With the obtained values for S, λ, ωh, and k = τ/ωh, minimize
γ subject to the LMIs (7.24a), and (7.24c).

If feasible, the resulting controller has guaranteed robust performance indicated
by the maximum γ obtained in the above two steps and with respect to all
uncertainties ∆G ∈ ∆̄. Although numerically efficient, the solution of this ap-
proach is not guaranteed to be a (local) minimum to (7.28). In order to refine
the result, one can perform a bisection over the performance variable γ, or resort
to more sophisticated (iterative) schemes such as, e.g., branch-and-bound algo-
rithms (Goh et al., 1994), path-following, and linearization approaches (Hassibi
et al., 1999; Tran Dinh et al., 2012).

When a feasible solution is found, the LTI controller parameters Kc in (7.20)
can be retrieved from the obtained matrices R and S by reconstructing M in
(7.27). Hereto, the equality XY > = I−RS should be solved first, e.g., by using
a singular value decomposition of I −RS, to obtain X and Y . Then, M can be
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retrieved as (see Gahinet and Apkarian, 1994, Section 7)

M =

[
S I

Y > 0

][
I R

0 X>

]−1

. (7.29)

The obtained matrix M , parameters λ, k, ωh and performance level γ can then
be used in (7.23) to compute Kc. Note that a solution to (7.23) is guaranteed
to exist when (7.24) is feasible.

The resulting LTI part of the controller can be written as C(s) = Cc(sI −
Ac)
−1Bc + Dc. Referring to Figure 7.2, the a priori choice C1(s) = C(s) and

C2(s) = 1 will yield a robustly stable closed-loop system with guaranteed perfor-
mance indicated by γ. However, note that any (strictly) proper and stable C1(s)
and C2(s) satisfying C1(s)C2(s) = C(s) will yield a robust input-to-state sta-
ble closed-loop system, since the transfer function from u to z does not change.
However, an L2-gain smaller than γ may not be guaranteed. In principle, one
can set C1(s) = C(s)F−1(s) and C2(s) = F (s) with F (s) a (strictly) proper and
stable filter. Clearly, the choice for F (s) has an effect on switching properties
of HIGS, and may benefit performance (recall the results in Chapter 3). At this
point it is not clear what an appropriate choice for F (s) would be in general,
but this is expected to be highly dependent on the performance objective, as
well as the nature of the external input signals.

7.3.4 Example

To demonstrate the merit of the above synthesis procedure, consider the second-
order system

P (s) =
1

s2 + 0.18s+ 1
(7.30)

for which a robustly stabilizing HIGS-based controller must be designed. For
taking into account unmodelled dynamics at high frequencies, the uncertainty
is characterized through the weighting filter

W∆(s) =
0.045s+ 0.2

0.02s+ 1
. (7.31)

To enforce integral action in the controller and obtain a gain of at least 20
dB at lower frequencies, the performance weighting filter W is set to W (s) =
10−3/(s + ε) with ε = 10−5. Interconnecting the plant and weighting filters
results in the generalized plant description

G :


ẋg = Agxg +Bgv +Bww +Bw∆

w∆,

y = Cgxg,

q = Cqxg,

q∆ = Ĉqxg + D̂qv,

(7.32)
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with plant and filter states x>g = [x>p , xw, xw∆
]> ∈ R4, system matrices

[
Ag Bg

Cg Dg

]
=


0 1 0 0 0

−1 −0.18 1 0 1

0 0 −10−5 0 0

0 0 1 −50 1

−1 0 0 0 0

 ,

and input-output matrices Bw = [0 0 10−3 0]>, Bw∆ = [0 1 0 0]>, Cq = −Cg,
Ĉq = [0 0 2.25 − 102.5], and D̂q = 2.25. A controller is synthesized by solving
the conditions in (7.24) through the proposed two-step approach. The obtained
controller is given by

Ac =


−73.03 8.59 −5.91 −21.57 −2.27 · 103

6.69 · 10−2 110.58 6.88 600.47 −3.41 · 104

−2.71 · 10−2 −68.02 −10.33 −3.06 · 102 2.06 · 104

4.22 · 10−4 1.10 9.75 · 10−2 4.65 −3.37 · 102

3.45 · 10−2 0.95 4.70 · 10−2 5.25 −2.93 · 102

 ,

Bc =
[
−4.48 · 105 −1.54 · 105 7.72 · 104 −724.28 1.35 · 103

]>
,

Cc =
[
−1.99 · 10−2 −6.15 · 10−2 6.10 · 10−3 −0.48 19.86

]
,

Dc = 9.51,

with kh = 1, ωh = 0.25 rad/s, and is guaranteed to achieve an L2-gain smaller
than γ = 4.18. Note that this can be a conservative estimate as the conditions
in (7.24) are only sufficient. The frequency-domain characteristics of the LTI
part of the HIGS-based controller are shown in Figure 7.3 in solid black.

Interestingly, the LTI part by itself demonstrates PID-like characteristics
having high gain at high-frequencies. However, from a describing function
perspective, HIGS acts as low-pass filter and provides desired roll-off at high-
frequencies while inducing less phase lag as compared to a linear low-pass filter.
The frequency-domain condition in (7.12) with λ = 0.03 and k = 2.6 is shown in
Figure 7.4, and is seen to be satisfied with a certain margin, indeed indicating
some room for uncertainty in the plant.

7.4 Robust loop-shaping design

In this section, an approach toward the design of HIGS-based controllers is pre-
sented that exploits a frequency-domain approximation of HIGS within a robust
loop-shaping design framework. Key in the approach is to regard the modelling
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Figure 7.3. Frequency-domain characteristics of C(jω) = Cc(jωI−Ac)−1Bc+
Dc (solid) and describing function of the HIGS-based controller (dashed).

Figure 7.4. Frequency-domain check in (7.12) with λ = 0.03 and k = 2.6.
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error induced by the controller approximation as an additional uncertainty in
the system, next to possible uncertainties in the plant. Before presenting the
approach in detail, it is stressed that the aim is not to provide a rigorous, but
rather a practically helpful design procedure.

7.4.1 A conceptual loop-shaping idea

Consider the generalized plant set-up as depicted in Figure 7.1 in which K =
K(Ci,H) represents a HIGS-based controller, being the interconnection of HIGS
H with additional LTI filters Ci, i = 1, . . . ,m. By separating HIGS from the LTI
filters and embedding the latter into the generalized plant G, which results in the
LTI interconnection L = L(Ci, G), i = 1, . . . ,m the original plant description
can be rearranged into an equivalent Lur’e form as depicted in Figure 7.5a.

L

H

∆G

qw

u z

w∆ q∆

(a) Lur’e representation.

L(jω)

Ψ(jω, ẑ)

∆G(jω)

q̂w

û ẑ(≈ z)

ŵ∆ q̂∆

(b) Quasi-linear approximation.

Figure 7.5. Lur’e representation (left), and quasi-linear approximation (right).

A classical way for design and analysis of a nonlinear system as in Figure 7.5a
is to replace the corresponding nonlinearity by a describing function approxima-
tion (Atherton, 1982; Gelb and Vander Velde, 1968). In general, a describing
function can be defined for each harmonic input component of the nonlinearity
to the component of the same frequency at the output of the nonlinearity. For
example, for an input to HIGS of the form

z(t) =

n∑
i=1

Ai sin(ωit+ ϕi) (7.33)

with n ∈ N≥1, frequencies ωi ∈ R≥0, amplitudes Ai ∈ R, and phase ϕ ∈ [0, 2π)
the output u of HIGS will contain, among components at many frequencies,
components at frequencies ωi, i = 1, . . . , n. Let the complex Fourier coefficient
of these components be denoted by Ui(jωi) ∈ C. Then, the general describing
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function for each component is defined as (Gelb and Vander Velde, 1968)

Ψ(jωi, z) =
Ui(jωi)

Aiejϕi
. (7.34)

For n = 1, (7.34) will coincide with the sinusoidal input describing function,
which for HIGS has been explicitly derived in Chapter 2, and is given by

D(jω) =
ωh
jω

(
γ

π
+ j

e−2jγ − 4e−jγ + 3

2π

)
+ kh

(
π − γ
π

+ j
e−2jγ − 1

2π

)
, (7.35)

with γ(ω) = 2 arctan (khω/ωh). When an explicit expression for (7.34) is avail-
able, it can aid the design and analysis of the nonlinear system using (approx-
imate) frequency-domain loop-shaping techniques. This setting is depicted in
Figure 7.5b, where q̂, û, ẑ, ŵ∆, and q̂∆ are approximations of the corresponding
nonlinear closed-loop signals in Figure 7.5a in steady-state. For a single sinu-
soidal input to the nonlinearty, loop-shaping based on sinusoidal input describing
functions has been considered in the literature for the design of nonlinear sys-
tems, see, e.g., Colgren and Jonckheere, 1997; Gelb and Vander Velde, 1968;
Saikumar et al., 2019. For such approach to be meaningful, the input to the
nonlinearity must be nearly sinusoidal. In practice, this is often not the case,
for example when the external input w in Figure 7.5 contains multiple harmonic
components. In case of multi-harmonic input signals to the nonlinearity, how-
ever, an exact analytical expression for Ψ(jω, ẑ) in (7.34) may be difficult (or
even impossible) to obtain, because in general it not only depends on the in-
put frequencies, but also on the amplitude distribution of harmonic components
in the input, as well as the phase. As such, direct use of multiple-harmonic
describing functions may be of limited value in practice.

In order to still exploit frequency-domain reasoning for HIGS-based controller
design, it is proposed to approximate (7.34) by the sinusoidal input describing
function in (7.35), and lump the modelling error induced by this approximation
in an additive uncertainty in the controller. This uncertainty is characterized as

∆Ψ(jω, ẑ) = Ψ(jω, ẑ)−D(jω), (7.36)

where ẑ provides an approximation of the closed-loop signal z to HIGS in Fig-
ure 7.5a. This idea is depicted in Figure 7.6, in which N represents the nominal
model resulting from the interconnection of L(Ci, G), i = 1, . . . ,m and D. Con-
troller design now entails loop-shaping with the describing function to obtain
robustness of the nominal closed-loop system N against both uncertainty in the
plant as well as uncertainty in the controller. One may argue that the difficulty
in finding an appropriate expression for Ψ is now only shifted toward the char-
acterization of ∆Ψ. But, within a robust control design framework there is no
need to find ∆Ψ exactly, as one can exploit an estimate for the characteristics of
∆Ψ (e.g., in terms of an upper-bound on its magnitude), which may be easier to
obtain. Interesting work related to this approch can be found in Taylor, 1970.
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L(jω)

D(jω)

∆Ψ(jω, ẑ)

∆G(jω)

q̂w

Σ

û

ũ

ẑ

ŵ∆ q̂∆

u∆

Ψ

(a) Controller uncertainty.

N (jω)

∆Ψ(jω, ẑ)

∆G(jω)

q̂w

u∆ z∆

ŵ∆ q̂∆

(b) Quasi-linear system.

Figure 7.6. Approximation with controller uncertainty (left), and quasi-linear
system representation with uncertainties (right).

Approximating the multi-harmonic describing function Ψ in (7.34) by the
sinusoidal input describing function D in (7.35) seems rather naive given the
absence of superposition in HIGS. However, there are good reasons for doing
this. First of all, D in (7.35) closely relates to standard frequency-response func-
tions for LTI systems. It can be easily embedded into existing and intuitive
frequency-domain loop-shaping tools which are well understood by practising
control engineers. Second, as observed in previous chapters, the describing func-
tion in (7.35) provides a surprisingly accurate prediction for stability of a motion
system in feedback with a HIGS-based controller. This heuristic observation sug-
gests the possibility for separating design aspects for robust stability from design
aspects for robust performance. Namely, design for robust stability involves only
N and ∆G, whereas design for performance involves N , ∆G, and ∆Ψ. As such,
∆Ψ is considered relevant only for performance-based controller design.

7.4.2 Characterizing ∆Ψ

For developing insights into properties of the modelling error ∆Ψ it is instructive
to consider an input signal to HIGS of the form

ẑ(t) = A1 sin(ω1t) +A2 sin(ω2t+ ϕ), (7.37)
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with frequencies ω1, ω2 ∈ R≥0, amplitudes A1, A2 ∈ R, and phase ϕ ∈ [0, 2π).
For such inputs, Ψ(jω, ẑ) in (7.34) corresponds to the two-sinusoidal input de-
scribing function (Gelb and Vander Velde, 1968, Chapter 5). Although an
explicit expression for this describing function cannot be derived, assuming
ω1 < ω2, some practically useful insights can be obtained from considering two
cases: i) the low-frequency component at ω1 rad/s dominates in the input to
HIGS, i.e., A1/A2 >> 1, and ii) the high-frequency component at ω2 rad/s
dominates in the input to HIGS, i.e., A1/A2 << 1. Input-output characteristics
typical for these two situations are depicted in Figure 7.7.

Figure 7.7. Input-output characteristics of HIGS for an input of the form
ẑ(t) = A1 sin(2πt) + A2 sin(20πt) with A1/A2 = {0.33, 33}, kh = 1, and ωh =
3π rad/s. In case the low-frequency content dominates in the input to HIGS
(A1/A2 = 33 >> 1, in the left part) switching is mainly triggered by the
low-frequency component. The presence of a dominating high-frequency term
(A1/A2 = 0.33 << 1, in the right part) triggers high-frequency switching.

From Figure 7.7 it can be seen that the dominating harmonic in the input to
HIGS triggers the switching mechanism of HIGS, thereby largely determining its
response. This is a direct consequence of the loss of superposition. Regarding the
modelling error in (7.36), two worst-case situations can be recognized. First, for
A1/A2 >> 1 and ω1 → 0 one finds u(t) ≈ khẑ(t) in which case HIGS essentially
behaves as a linear gain, and Ψ(jω1, ẑ) ≈ Ψ(jω2, ẑ) ≈ kh, leading to

∆Ψ(jωi, ẑ) ≈ kh −D(jωi), i = {1, 2} . (7.38)

Second, for A1/A2 << 1 and ω2 →∞ one finds u(t) ≈ 0 such that Ψ(jω1, ẑ) ≈
Ψ(jω2, ẑ) ≈ 0, and

∆Ψ(jωi, ẑ) ≈ 0−D(jωi), i = {1, 2} . (7.39)
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Although discussed for a two sinusoidal input, the above rationale holds true for
an input with an arbitrary number of harmonics, where the dominating harmonic
in the input to HIGS largely determines its response. Note that (7.38) is typical
for HIGS and results from the presence of the static gain-mode, whereas (7.39)
results from the dynamic integrator-mode and can also be found to occur in other
type of hybrid/switching nonlinearities such as reset integrators (Clegg, 1958;
Horowitz and Rosenbaum, 1975; Zaccarian et al., 2005) or split-path integrators
(Sharif et al., 2021b; van Loon et al., 2016). From the above rationale, it is
possible to estimate an upper-bound on the magnitude of the modelling error
∆Ψ in (7.36) for any input ẑ consisting of multiple harmonics, namely

‖∆Ψ(jω, ẑ)‖∞ ≤ max {‖kh −D(jω)‖, ‖0−D(jω)‖} (7.40)

for all ω ∈ R≥0. However, the upper-bound in (7.40) may be restrictive since it
assumes the presence of harmonics at ω = 0 and ω =∞. In practice, the frequen-
cies of the present harmonics are restricted to a finite range. Also, the upper-
bound on ∆Ψ to some extent should reflect the nature of ẑ. For example, for an
input ẑ(t) = sin(ωt) one finds ∆Ψ(jω, ẑ) = 0. Noting that limω→0D(jω) = kh
and limω→∞D(jω) = 0, and from the observation that the dominant harmonic
largely dictates properties of the response of HIGS, an alternative, potentially
less conservative estimate for ∆Ψ is conjectured as follows.

Conjecture 7.4.1. For an input signal of the form ẑ(t) =
∑n
i=1Ai sin(ωit+ϕi)

with amplitude Ai ∈ R, phase ϕi ∈ [0, 2π), and non-harmonically related input
frequencies ωi ∈ R≥0, the approximation error ∆Ψ in (7.36) satisfies for all
ω = ωi, i = 1, . . . , n

‖∆Ψ(jω, ẑ)‖∞ ≤ max {‖D(jω)−D(jω)‖, ‖D(jω)−D(jω)‖} , (7.41)

where ω, ω ∈ R≥0 denote the smallest and largest frequencies present in ẑ.

For a sinusoidal input ẑ(t) = A sin(ωt) one has ω = ω = ω such that the
upper-bound in (7.41) reduces to zero, whereas for a two-sinusoidal input as
in (7.37) one has ω = ω1 and ω = ω2, leading to ‖D(jω2) − D(jω1)‖ when
considering ω = ω1, and ω = ω2. Though the estimation in (7.41) is based on
heuristics, and a formal justification is lacking, the practical value of this bound
is supported by the numerical results presented in Figure 7.8.

Figure 7.8 depicts the modelling error ∆Ψ(jω, ẑ) for the component at a
frequency ω = ω1 of a two-sinusoidal input ẑ(t) = A1 sin(ω1t) +A2 sin(ω2t+ ϕ)
to HIGS, with a fixed frequency ω2 = {0.2π, 2π, 20π, 200π} rad/s, for different
amplitude ratios A1/A2 = {0.1, 1, 10}, and with ϕ = 0. The upper-bound given
in (7.41) is depicted in black in Figure 7.8. It can be seen that in all cases
considered, the inequality in (7.41) is satisfied, and the largest values are indeed
obtained for smaller values of the ratio A1/A2, i.e., when the harmonic at ω2

dominates the input. The contribution of a non-zero phase ϕ is not depicted in
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Figure 7.8. Numerically obtained modelling error ‖∆Ψ(jω1, ẑ)‖ =
‖Ψ(jω1, ẑ) − D(jω1)‖ as a function of ω1 for an input of the form ẑ(t) =
A1 sin(ω1t) +A2 sin(ω2t+ϕ), with a fixed frequency ω2 = {0.2π, 2π, 20π, 200π}
rad/s, various amplitude ratios A1/A2 = {0.1, 1, 10}, and phase ϕ = 0. The
estimated upper bound ‖∆Ψ(jω1, ẑ)‖∞ ≤ ‖D(jω1)−D(jω2)‖ is shown in solid
black. The parameters of HIGS are set to kh = 1 and ωh = 2π rad/s.

Figure 7.8 as this parameter is observed to have little effect on the results. These
observations are in line with Gelb and Vander Velde, 1968, Chapter 5 where it
is argued that for non-harmonically related input sinusoids the phase ϕ can be
seen as a random variable, making the describing function independent of ϕ.

Remark 7.4.2. For harmonically related input frequencies, Conjecture 7.4.1
may be false. Namely, given Ψ(jωi, ẑ) = Ui(jωi)/Aie

jϕi , for Ai → 0, Ui may
be non-zero when related to higher-harmonics generated by input components
at frequencies lower than ωi. In that case Ψ(jωi, ẑ) → ∞, such that (7.41) is
violated. Note that Figure 7.8 depicts numerical results for both harmonically
and non-harmonically related input components. As in all cases considered the
upper-bound is satisfied, these results indicate that, at least to some extent, (7.41)
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can be of use for harmonically related input components.

The following example illustrates several phenomena that can occur in a
closed-loop system with HIGS, and which are captured effectively through the
modelling error ∆Ψ.

Example 7.4.3. Consider the system in Figure 7.9, where the LTI plant P and
LTI part of the controller C are given by

P (s) =
1

s2 + 0.18s+ 1
, and C(s) =

ωi
s
· ωlp

(s+ ωlp)
. (7.42)

The closed-loop system is subject to an input of the form r(t) = r1 sin(ω1t) +
r2 sin(ω2t), with amplitudes r1, r2 ∈ R, and frequencies ω1, ω2 ∈ [0.01, 2] rad/s.

Σ H CP
r e u y

−

Figure 7.9. Nonlinear system configuration with multi-sine input r.

A nominal controller is designed using the describing function within a stan-
dard loop-shaping setting, resulting in ωi = 0.24 rad/s, ωlp = 1.25 rad/s, kh = 1,
and ωh = 0.2 rad/s. The nominal quasi-linear sensitivity characteristics

S(jω) =
1

1 +D(jω)C(jω)P (jω)
(7.43)

are shown in Figure 7.10 by the bold black curve. From the nature of the external
input r, it is reasonable to approximate the input to HIGS by e(t) ≈ ẑ(t) =
A1 sin(ω1t + ϕ1) + A2 sin(ω2t + ϕ2). Based on this approximation, one finds
∆Ψ(jω, ẑ) = W∆(jω, ẑ)∆ψ0

(jω, ẑ), with ‖∆Ψ0
(jω, ẑ)‖ ≤ 1, and

W∆(jω, ẑ) = max {‖D(0.01j)−D(jω)‖, ‖D(jω)−D(2j)‖} . (7.44)

The worst-case sensitivity magnitude characteristics are given by

‖S∆(jω, ẑ)‖ =
1

‖1 +D(jω)C(jω)P (jω)‖ − ‖W∆(jω, ẑ)C(jω)P (jω)‖ , (7.45)

and are depicted in Figure 7.10 by the thin black curve.
Figure 7.10 predicts a significant variation in both low-frequency disturbance

attenuation as well as sensitivity to high-frequencies. The steady-state error
e = r − y resulting from a two-sinusoidal input r can be written as

e(t) = e1 sin(ω1t+ ϕ1) + e2 sin(ω2t+ ϕ2) + e∗(t),
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Figure 7.10. Nominal sensitivity characteristics (bold black) and predicted
worst-case characteristics (thin black).

where e∗ contains the harmonics at frequencies different from those in the input.
Note that Figure 7.10 predicts ‖S(jωi)‖ ≤ |ei/ri| ≤ ‖S∆(jωi)‖, i = {1, 2}. The
numerically obtained amplification ratios |e1/r1| and |e2/r2| with their predicted
minimum and maximum, as well as the relative contribution of higher harmonics
to the total energy in the error response for an input with ω1 = 0.03 rad/s,
ω2 = 0.94 rad/s, and various amplitude ratios r1/r2 are reported in Table 7.1.
The numerical values in Table 7.1 are in accordance with the predictions based on
the sensitivity characteristics in Figure 7.10. Note, however, that the predicted
worst-case amplifications appear conservative.

Table 7.1. Predicted and numerically obtained error characteristics of the
nominal design with ω1 = 0.03 rad/s, ω2 = 0.94 rad/s, and r1/r2 = {104, 102, 1}.

|e1/r1| in dB |e2/r2| in dB ‖e∗‖2/‖e‖2 in %

prediction
nominal −18.10 2.41 −
worst-case −2.39 33.89 −

simulation

r1/r2 = 104 −18.03 20.61 2.51

r1/r2 = 102 −17.66 10.21 10.27

r1/r2 = 1 −10.13 2.43 5.22
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The numerical results in Table 7.1 demonstrate a large dependency on the
input amplitude ratio r1/r2. For decreasing values of r1/r2, the high-frequency
content in the input r is becoming more dominant, which results in the input to
HIGS to have an increasingly dominating component at 0.94 rad/s. As a conse-
quence, switching of HIGS is mainly triggered by this high-frequency component,
leading to a decrease of low-frequency suppression properties at 0.03 rad/s. On
the other hand, for increasing values of r1/r2, the low-frequency component at
0.03 rad/s is dominantly present in the input to HIGS, resulting in significant
amplification of high-frequency content at 0.94 rad/s. In all cases considered,
the relative contribution of higher-harmonics in the error remains contained.

7.4.3 Design procedure

From the results in Example 7.4.3 it is clear that performance of a closed-loop
system with HIGS largely depends on the distribution of input amplitudes. This
amplitude dependency is an immediate consequence of the loss of superposi-
tion in HIGS, and may compromise low-frequency tracking properties or high-
frequency sensitivity. Two complementary design solutions for effectively dealing
with these potential issues are discussed next. In particular, a solution for the
reduced low-frequency disturbance suppression is explicitly considered in time-
domain, whereas a solution for the increased sensitivity at high frequencies is
proposed in terms of a design constraint in the frequency-domain.

Pre- and post-filtering strategy
Deteriorated suppression properties of the closed-loop system at low-frequencies
stem from the fact that for A1/A2 << 1 the high-frequency component at ω2

rad/s in the input to HIGS acts as a carrier wave for the low-frequency compo-
nent at ω1 rad/s. As a consequence of high-frequency switching, the output of
HIGS is significantly smaller than what is required for achieving the anticipated
low-frequency suppression properties, recall Figure 7.7 (right). This situation is
comparable to a low-gain feedback control design.

An intuitive solution to the problem of “gain-loss” at low-frequencies may
be found in a pre- and post-filtering strategy as depicted in Figure 7.11. Such
strategy has already been applied effectively within the context of audio appli-
cations and variable-gain control (Heertjes et al., 2009; Oppenheim et al., 1968).

W H W−1
z̃ z u ũ

Figure 7.11. Pre- and post-filtering strategy.

The LTI weighting filter W (s), s ∈ C in Figure 7.11 should be chosen such
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that it lifts the relevant frequency content in the input to HIGS, and switching is
triggered in an appropriate manner. With such approach, one effectively enforces
the situation A1/A2 >> 1. Possible design choices for W include (skew) notch
filters, low-pass filters, and bandpass filters. In any case, the use of weighting
filters that sustain a constant (DC) output, like an integrator, should generally
be avoided. The reason for this being that input signals having an offset can
cause undesired (asymmetric) switching of HIGS, or in the absence of any zero-
crossings may prevent switching at all.

The inverse operation W−1 in Figure 7.11 is included to compensate for
the additional gain and phase introduced by W , so that the overall describing
function characteristics are preserved. Furthermore, in a closed-loop setting it
assures that the loop transfer connecting the output u to the input z (see also
Figure 7.5a) remains unaffected, so that closed-loop stability properties remain
unaffected as well. The justification for applying the inverse operation W−1

on the output u, which could lead to the amplification of higher-harmonics,
should be in accordance with the usual low-pass filter hypothesis (Gelb and
Vander Velde, 1968, Chapter 3). This renders a well-balanced choice for pre-
and post-filters dependent on the interconnected system, and exogenous inputs.
It is important to realize that the weighting filter W will not play a role in
the frequency-domain loop-shaping procedure discussed in the previous section
due to its cancellation by the exact inverse W−1 in the chain of filters. This
makes these filters susceptible to time-domain tuning only. It is argued that this
weighting filter strategy is not only effective for HIGS, but is sufficiently generic
to allow for extension to various other types of nonlinear integrators, including
reset and split-path integrators.

Sensitivity constraints
As mentioned before, applying a pre- and post-filter strategy essentially enforces
the situation A1/A2 >> 1, in which case the only relevant component in (7.41)
to consider is

‖∆Ψ(jω, ẑ)‖∞ ≤ ‖D(jω)−D(jω)‖, (7.46)

which implies small modelling error at low frequencies, and larger error at high-
frequencies. In limiting the sensitivity peaking associated with such modelling
error (see Figure 7.10), one may consider ∆Ψ(jω, ẑ) = W∆(jω, ẑ)∆Ψ0

(jω, ẑ),
with normalized uncertainty ‖∆Ψ0(jω, ẑ)‖∞ ≤ 1 for all ω ∈ R≥0 ∪ {∞}, and

W∆(jω, ẑ) = D(jω)−D(jω), (7.47)

where the latter filter can be used as a robust performance weighting filter to be
included in the plant N in Figure 7.6b. Design of a HIGS-based controller can
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then be formulated as a quasi-linear loop-shaping procedure as:

minimize
K(Ci,D)

J(K(Ci,D))

subject to ‖M(jω, ẑ)‖∞ ≤ 1, for all ω ∈ R ∪ {∞} ,
K(Ci,D) stabilizes G,

K(Ci,D) ∈ K,

(7.48)

in which K(Ci,D) denotes the quasi-linear controller description (where HIGS
is replaced by D), and M represents the nominal system N augmented with
the weighting filter W∆ in (7.47). As in the LTI case, (7.48) can be solved by a
standard manual/automated loop-shaping approach.

Remark 7.4.4. By the approach in (7.48) no formal guarantees are given for
the resulting nonlinear system in terms of robust closed-loop stability and per-
formance. To deal with this shortcoming, the results from Proposition 7.3.1 can
be applied. In fact, by the KYP-lemma the matrix inequality in (7.14) admits an
equivalent frequency-domain interpretation that can be embedded in the quasi-
linear optimization procedure (7.48). Specifically, the quasi-linear constraint
“K(Ci,D) stabilizes G” can be replaced with this sufficient frequency-domain
condition. The latter can be integrated effectively in the design procedure (7.48)
without the need for a parametric model. In this way, robust stability with re-
spect to plant uncertainties ∆G ∈ ∆̄ is guaranteed for the true nonlinear system,
and the worst-case L2-gain is given by γ. Additional performance criteria are
enforced through describing function characteristics. Hence, such approach com-
bines the rigorous design procedure in Section 7.3 with describing function-based
reasoning. The main difference with the approach in Section 7.3, however, is
that the structure of the controller should be selected a priori. Also, including
the rigorous frequency-domain constraints in (7.48) may lead to a conservative
design that limites the potential of HIGS. An interesting direction to explore
further in this regard is to translate the matrix inequalities in Chapter 5 into
frequency-domain conditions, potentially reducing this conservatism.

Summarizing, design of a HIGS-based (motion) controller may proceed ac-
cording to the following steps:

• Step 1: Robust frequency-domain design based on the quasi-linear loop-
shaping procedure outlined in (7.48), in which high-frequency modelling
error is accounted for by the weighting filter in (7.47).

• Step 2: Augment the controller with pre- and post weighting filters that
are designed as to enforce switching of HIGS within the relevant frequency
range (for instance, a range below the bandwidth).

Example 7.4.5 (Example 7.4.3 revisited). Returning to the previous example
in Figure 7.9 with P given in (7.42), the controller is redesigned on the basis of
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the above design procedure with W∆(jω, ẑ) = D(0.01j)−D(jω), resulting in

C(s) =
0.22

s
· 0.53

(s+ 0.53)
, (7.49)

with kh = 1, and ωh = 0.25 rad/s. The resulting sensitivity characteristics are
shown in Figure 7.12 and demonstrate a significant reduction of high frequency
sensitivity as compared to the initial design in Figure 7.10. Key in this example
for achieving reduced sensitivity is sufficient rotation of the resonance of the
plant in the open-loop toward the complex right-half plane in the Nyquist plot by
reducing the cut-off frequency of the low-pass filter in (7.49).

Figure 7.12. Nominal sensitivity characteristics (bold black) for the system
with redesigned controller, and predicted worst-case characteristics (thin black).

The numerical results presented in Table 7.2 for ω1 = 0.03 rad/s, ω2 = 0.94
rad/s, and various r1/r2 support the effectiveness of the robust loop-shaping de-
sign approach, as for all r1/r2 the amplification factor |e2/r2| at 0.94 rad/s re-
mains significantly more contained as compared to the initial design in Table 7.1.
However, low-frequency suppression properties are still compromised for an in-
creasingly dominant high-frequency component in the input, i.e., for decreasing
values of r1/r2. To account for this, a pre-filter is chosen as

W (s) =
s2 + 2βzωzs+ ωz
s2 + 2βpωps+ ω2

p

, (7.50)

with ωz = ωp = ω2 = 0.94 rad/s, βz = 0.005, and βp = 0.1. This filter
suppresses content at 0.94 rad/s in the input to HIGS, thereby enforcing the
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switching mechanism to be primarily triggered by the component at 0.03 rad/s.
Effectiveness of the filtering strategy for improving low-frequency rejection prop-
erties is demonstrated by the numerical results in Table 7.2. Compared to the
previous designs, dependency on the amplitude distribution of the input signal is
reduced, and low-frequency disturbance rejection is achieved without significant
high-frequency amplification. Note that, compared to the results in Table 7.1,
the robust redesign provides some additional robustness against the effects of
higher-harmonics. An industrial example illustrating the effectiveness of the de-
sign approach for a broader input spectrum of input frequencies is discussed in
detail in Chapter 8.

Table 7.2. Predicted and numerically obtained error characteristics of the ro-
bust redesign with ω1 = 0.03 rad/s, ω2 = 0.94 rad/s, and r1/r2 = {104, 102, 1}.

|e1/r1| in dB |e2/r2| in dB ‖e∗‖2/‖e‖2 in %

prediction
nominal −17.20 1.10 −
worst-case −3.25 6.01 −

without pre- and post-filtering strategy

simulation

r1/r2 = 104 −17.19 4.72 2.21

r1/r2 = 102 −17.18 4.47 2.49

r1/r2 = 1 −10.85 1.14 2.01

with pre- and post-filtering strategy

simulation

r1/r2 = 104 −17.19 4.40 2.63

r1/r2 = 102 −17.19 4.22 3.13

r1/r2 = 1 −16.10 3.39 2.39

7.5 Summary

In this chapter, two methods for HIGS-based controller design are presented.
The first method provides a rigorous way for controller synthesis. In particu-
lar, the frequency-domain stability conditions as derived in Chapter 4 are re-
formulated into matrix inequalities which allow for a direct translation toward
appropriate synthesis conditions. The latter conditions show a strong resem-
blance with synthesis conditions typically used in an LTI setting. The presented
approach returns a robustly stabilizing HIGS-based controller with guaranteed
L2-performance properties. The approach, however, requires the use of a para-
metric model and provides limited insight in parameter tuning and robust re-
design, which in an industrial setting is sometimes considered to be a drawback.
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As an alternative, a practical tuning approach is presented that hinges on the
use of the describing function within a robust loop-shaping framework. Key in
the approach is to approximate the closed-loop system by a quasi-linear system,
and capture the modelling error induced by the describing function approxi-
mation as an uncertainty in the controller, for which a heuristic bound on the
magnitude characteristics is derived. Through this bound, relevant performance
issues are revealed for which effective solutions are proposed in the form of both
time- and frequency-domain design guidelines. The approach strongly connects
to the industrial practice where frequency-domain loop-shaping design with non-
parametric models typically sets the standard.

Given the practical applicability of the loop-shaping design approach guided
by describing functions, in the next chapter this approach is used for the design
of a HIGS-based PID controller for a scanning stage system of an industrial wafer
scanner. Performance of the resulting nonlinear feedback design is compared to
that of a baseline linear strategy.



Chapter 8

Case-Study on an Industrial
Wafer Scanner

8.1 Introduction

Wafer scanners employ a crucial step during the manufacturing process of inte-
grated circuits (IC’s), namely, transferring the circuit topology obtained from a
reticle onto the photosensitive layers of a silicon wafer. Both reticle and wafer
are part of separate high-precision positioning systems: the reticle-stage and the
wafer-stage. The dynamical behaviour of these stages can be accurately modelled
according to the linear paradigm, allowing for the application of well-developed
linear feedforward and feedback control methods (Butler, 2011; Martinez and
Edgar, 2006). In fact, most of the feedback control loops in wafer scanners
originate from a decoupling design in combination with proportional-integral-
derivative (PID) control (Heertjes et al., 2020; Oomen et al., 2014). Despite the
clear advantages of PID control in terms of simplicity and predictability, servo
performance is usually compromised as a result of inherent design trade-offs.
The fact that modern linear techniques such as H∞ control cannot overcome
these trade-offs poses a serious challenge for meeting the ever growing demands
on scanning accuracy and throughput in wafer scanners.

As a potential means to alleviate the problem, this chapter considers the use
of multiple HIGS-based filters within an otherwise linear PID configuration that
is commonly used for feedback control of the reticle- and wafer-stages. From
a describing function perspective, the HIGS-based filters demonstrate similar
magnitude characteristics as their linear counterparts, but with preferable phase
properties that can be tuned independently of the magnitude. This extra de-
sign freedom facilitates increased controller bandwidths, giving rise to improved
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disturbance rejection and transient properties of the closed-loop system. Per-
formance is evaluated through measurement results obtained from a wafer stage
system of an industrial wafer scanner. In order to show the relative improve-
ments in both time- and frequency-domain, a comparison is made with a baseline
linear PID design. Besides demonstrating the potential benefits of HIGS-based
control in practice, the experiments are valuable for identifying practically rele-
vant factors that may affect controller performance within an industrial setting,
and, therefore, require specific attention in the early phases of the design process.

This chapter is organized as follows. To develop some intuition for the wafer
scanning application at hand, Section 8.2 introduces relevant scanning principles
and performance measures. The wafer stage dynamics and current feedforward
and feedback control methods are discussed in Section 8.3, whereas the HIGS-
based feedback control strategy is presented in Section 8.4. Practically relevant
design aspects are considered in Section 8.5, and measurement results are pre-
sented in Section 8.6. Section 8.7 summarizes the main findings of this chapter.

8.2 Wafer scanning principles

8.2.1 Scanning procedure and setpoint definition

The case-study considered in this chapter is an industrial wafer scanner, of which
an artist impression and schematics are provided in Figure 8.1.

wafer stage

reticle stage

light beam

optics

Figure 8.1. Left: artist impression of an industrial wafer scanner. Right:
simplified visualization of an exposure process showing from top to bottom a
reticle atop a reticle stage, an optics column, and a wafer atop a wafer stage
(images acquired from https://www.asml.com and Oomen et al., 2012).
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Many wafer scanners exploit the lithographic principle in which deep or ex-
treme ultraviolet (DUV/EUV) light emitted by a source falls onto a reticle (or
mask), being a quartz plate which contains a blueprint of the integrated circuit
to be processed. After passing through the reticle, the light travels through an
optical column which scales down the image of the circuit topology by a fac-
tor of four, and projects it onto the photosensitive layers of a silicon wafer. A
schematic illustration of the exposure process is shown in Figure 8.1. Both reticle
and wafer are part of separate motion systems: the reticle stage and the wafer
stage. Each of these stages employs a dual-stroke strategy. A long-stroke stage
is used for coarse positioning with accuracy at the micrometer level, whereas a
short-stroke stage is used for fine positioning with accuracy at the nanometer
level. For realizing accurate and fast projection of the circuit topology onto the
wafer, both reticle- and wafer stage perform a synchronized meandering motion
in which exposure by the light beam takes place during repeated intervals of zero
and constant velocity in x- and y-direction, respectively. A typical meandering
profile for the wafer stage is shown in Figure 8.2. The scanning phases, indi-
cated in the figure by the solid arrows, are alternated with preparation phases:
intervals with non-zero acceleration in both directions, allowing the system to
reach the next exposure area, the latter also referred to as die. In order for
setpoint-induced transients to sufficiently die out before starting a new scan,
an additional (zero-acceleration) settling phase can be introduced. In the z-
direction, the wafer-stage generally tracks a non-zero reference, reflecting the
measured wafer topology.

y

x

Figure 8.2. Top view of a meandering profile for the wafer stage system. The
scanning phases, indicated by the solid arrows, are alternated with preparation
phases, indicated by the dashed lines (Butler, 2011).

For the wafer stage application considered in this chapter, a third-order mo-
tion profile is considered in x- and y-direction. Third order refers to the fact
that the position, velocity, and acceleration profiles are smooth, and only the jerk
profile (third derivative) is non-smooth and contains discontinuities. This results
in generation of less high-frequency input content as compared to lower-order
setpoints. Since the setpoint/reference profile can be seen as a key determinis-
tic input affecting the closed-loop system, this results in a tracking error that
is generally less affected by high-frequency signals, and thus benefits scanning
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performance. Some representative parameters used for generating the third-
order setpoint profile in scanning y-direction are listed in Table 8.1, and the
corresponding time-domain profiles are depicted in Figure 8.3. For this setpoint
profile the settling time is set to zero seconds such that exposure starts directly
after the acceleration phase. It should be mentioned that for the application
considered, this setpoint profile is considered rather aggressive (high jerk), but
allows for a significant increase in wafer throughput.

Table 8.1. Third-order setpoint parameters.

Limit Value

Maximum scanning velocity 0.8 m/s

Maximum acceleration 30 m/s2

Maximum jerk 6600 m/s3

Acceleration/velocity ratio 37.5 Hz

Jerk/acceleration ratio 220 Hz

Settling time 0 s

The acceleration/velocity and jerk/acceleration ratios listed in Table 8.1 are
of special interest for the true system, as these determine the location of zeros
in the frequency spectrum of the setpoint profile. This is immediate by studying
the Fourier transform of the reference position r(t), which, given the typical
block-shaped profile of the jerk signal as depicted in the lower plot in Figure 8.3,
can be derived analytically as (see Butler, 2011 for further details)

F {r(t)} = 4 · jmax

ω4
· e−j ωτv2 · sin

(ωτa
2

)
sin
(ωτj

2

)
, (8.1)

with time-constants τa = vmax/jmax, τj = amax/jmax and τv = τa + τj . By
appropriate tuning of the acceleration/velocity and acceleration/jerk ratios, the
zeros in the input spectrum can be set to match the frequencies where in the
physical plant a saddle and/or torsion mode are present, as to minimize excita-
tion of these modes. Moreover, in the HIGS-based feedback control context as
considered in this chapter, different setpoint characteristics may affect switch-
ing of the HIGS elements, and thus effectiveness of the overall controller. The
frequency spectrum of the considered setpoint profile in scanning y-direction is
depicted in Figure 8.4. Note the 80 dB amplitude decrease per decade at higher
frequencies, which is a typical feature for the third-order setpoint profile that
readily follows from (8.1).
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Figure 8.3. Time-domain characteristics of the third-order setpoint in scan-
ning y-direction. From top to bottom: position, velocity, acceleration, and jerk.
The scanning intervals are indicated in grey.

Figure 8.4. Amplitude spectrum of the third-order position setpoint profile in
scanning y-direction, as provided in (8.1).
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8.2.2 Scanning performance measures

Performance of wafer scanners is driven by three measures: overlay, imaging,
and throughput. Overlay refers to the ability to expose two layers on top of
each other, imaging generally refers to image quality in terms of uniformity, and
throughput refers to the number of processed wafers per hour. Throughput is
mainly related to the settling phase prior to scanning, whereas overlay and imag-
ing relate to the scanning interval in which exposure takes place, and translate
into measurable (servo specific) functions as follows.

The actual position of the stage during exposure determines the location to
which the circuit topology is transferred onto the wafer, and thus is critical for
overlay, i.e., layer-to-layer accuracy. This low-frequency effect directly translates
to the moving average (MA) of the positioning error e(t) = r(t)−y(t), being the
difference between the reference r and the actual position y, which is defined as

MA(t) :=
1

Te

∫ t+Te/2

t−Te/2
e(τ)dτ. (8.2)

Here, Te is the exposure time, i.e., the time it takes for a single point on the
wafer to receive a full dose of the DUV/EUV light emitted by the source. The
quality of a single layer, on the other hand, is affected by stage-positioning
accuracy, since positioning errors reduce contrast (Butler, 2011). Even when the
average position is correct, high-frequency vibrations of the stage result in the
projection of a blurry image onto the wafer, and thus deteriorate the imaging
quality. This high-frequency effect is quantified through the moving standard
deviation (MSD) of the positioning error e(t), which is computed by

MSD(t) :=

√
1

Te

∫ t+Te/2

t−Te/2
(e(τ)−MA(t))

2
dτ. (8.3)

Note that the MA and MSD values in (8.2) and (8.3) are computed over an
exposure window of length Te seconds. Hence, the computation of MA and
MSD values requires the positioning error in the exposure window to be known
upfront, which makes (8.2) and (8.3) non-causal operations that can only be
performed off-line (after exposure has taken place).

8.3 Wafer-stage dynamics and control

The process of wafer scanning requires accurate and fast positioning of the wafer-
stage system in six degrees-of-freedom (DOF): three planar DOF’s (x, y, z),
and three rotational DOF’s (rx, ry, rz). Through an appropriate (position-
dependent) decoupling strategy, the to-be-controlled system becomes diagonally
dominant such that multivariable control design aspects are reduced to a multi-
loop single-input single-output (SISO) design. This section reviews SISO strate-
gies that are currently used for wafer-stage control.
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8.3.1 Control problem formulation

For stage control, one basically distinguishes between two problems: i) the servo
(tracking) problem in which the output y of the stage should track the set-
point profile r, and ii) the disturbance rejection (regulator) problem in which
the tracking error e = r − y should be brought close to zero in the presence of
external disturbances d, the latter which are assumed to be uncorrelated with r
(Trentelman et al., 2001). The servo problem can largely be solved by an LTI
feedforward controller F (s), whereas the remaining disturbance rejection prob-
lem is dealt with by an LTI feedback controller C(s) as illustrated in Figure 8.5.

Σ C Σ P Σ
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d

uff

r

−

Figure 8.5. Simplified wafer stage control architecture.

In this figure, P represents the wafer stage dynamics in one DOF. Typical
frequency-response function (FRF) characteristics of the stage in scanning y-
direction, measured at different positions on the wafer are shown in Figure 8.6.

Figure 8.6 indicates that up to a frequency of 500 Hz, the stage mainly
behaves as a floating mass system, i.e., a double integrator characterized by a 40
dB/decade amplitude decay combined with 180 degrees phase lag. Beyond 500
Hz, the rigid body assumption is no longer valid as several resonances appear that
associate with non-rigid body dynamics of the stage. Notice the additional phase
lag due to the sampling rate of 5 kHz which is observed at higher frequencies. To
provide some further intuition for the system dynamics at hand, a parametric
model of the plant with delay is given by

P (s) =
bs+ k

m1m2s4 + (m1 +m2)bs3 + (m1 +m2)ks2
· e−Tss. (8.4)

Here, m1 = 5 kg represents the mass of the motor yoke driving the stage,
m2 = 17.7 kg represents mainly the mass of the mirror block carrying the wafer,
and m = m1 +m2 is the total mass. The stiffness coefficient k = 1.186 ·108 N/m
and damping coefficient b = 193.6 Nm/s represent properties of the coupling
interface between motor and stage, whereas Ts = 2 ·10−4 seconds is the sampling
time. The model characteristics are depicted in Figure 8.6 in black.

Given the LTI context of Figure 8.5, the servo error signal e := r − (y + d)
satisfies (in the Laplace domain)

e(s) = S(s)(1− P (s)F (s))r(s)− S(s)d(s), (8.5)
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Figure 8.6. Measured FRF characteristics of the wafer-stage in scanning y-
direction (grey) and parametric model (black).

where S(s) = (1 + P (s)C(s))−1 is the closed-loop sensitivity function. In view
of minimizing the error contribution in (8.5), three main directions are taken: i)
input shaping in which the setpoint r is designed to minimize the excitation of
higher-order dynamics (recall Section 8.2.1, and see, e.g., Boettcher et al., 2012;
Cutforth and Pao, 2004), ii) feedforward control design as to achieve F = P−1,
and iii) feedback control design to minimize S. Wafer stage feedforward and
feedback control design is discussed in more detail next.

8.3.2 Feedforward control

As mentioned before, for solving the servo problem, it readily follows from (8.5)
that F ideally should match the inverse of the plant, i.e., F = P−1. How-
ever, in practice there are numerous reasons for why an exact inverse cannot be
fully realized, thereby implying that P−1 may only be approximated. In this
regard, the dominant double integrator characteristics appearing in Figure 8.6
and (8.4) motivate the use of acceleration feedforward control (Boerlage et al.,
2004; Butler, 2011), resulting in

F (s) = ms2. (8.6)

Atop the feedforward structure in (8.6) typical advancements found in wafer
scanners include jerk derivative (snap) feedforward control (Boerlage et al.,
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2004), finite impulse response (FIR) feedforward control (Heertjes et al., 2010;
Potsaid and Wen, 2004), adaptive feedforward control (Butler, 2013), and com-
pliance compensation techniques (Kontaras et al., 2016).

It is interesting to observe that during the acceleration phase, at least 99.9%
of the performance is achieved through acceleration feedforward control. To give
an example, for the performance in scanning y-direction, a mass of around m =
20 kg is accelerated with a maximum acceleration of 30 m/s2, which accounts for
an actuator force of 600 N. The error is typically in the order of e ≈ 10 nm, and
the feedback controller gains are in the order of 2·107 N/m, leading to a feedback
actuator force of 0.2 N. In comparison to the feedforward force of 600 N, this
provides only 0.033% of the total control output. Note that while feedforward
control is crucial during the acceleration phase for tracking the setpoint profiles,
during the scanning phase feedback control becomes essential for suppressing
unknown disturbances that cannot be compensated for by feedforward control,
as well as uncertainty in the plant that through a mismatch in feedforward
signals results in an error residue that is left to the feedback controller. In the
remainder of this chapter, availability of a well-designed (advanced) feedforward
controller is assumed.

8.3.3 Feedback control

Concerning (8.5), the LTI feedback controller C should be designed so that the
magnitude of the sensitivity function S is as small as possible, at least in a
frequency range of interest. For achieving this, the structure that is commonly
used in wafer-stage control is a PID-based feedback controller of the form:

C(s) = Cpid(s)Clp(s)

n∏
i=1

Cn,i(s), (8.7)

in which

Cpid(s) = kp

(
1 +

ωi
s

+
s

ωd

)
, (8.8a)

is a PID filter with proportional gain kp ∈ R>0, integrator frequency ωi ∈ R>0,
and differentiator frquency ωd ∈ R>0,

Clp(s) =
ω2
lp

s2 + 2βlpωlp + ω2
lp

, (8.8b)

is a second-order low-pass filter with cut-off frequency ωlp ∈ R>0 and dimen-
sionless damping coefficient βlp ∈ R, and where

Cn,i(s) =
s2 + 2βz,iωz,i + ω2

z,i

s2 + 2βp,iωp,i + ω2
p,i

, (8.8c)
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is a notch filter with zero and pole frequencies ωz,i, ωp,i ∈ R>0, and dimen-
sionless damping coefficients βz,i, βp,i ∈ R. The PID filter Cpid aims at low
frequency/constant disturbance suppression coming from the integrator, and ro-
bust stability provided by the differentiator. The second-order low-pass filter Clp
is used to avoid high-frequency noise amplification. Several notch filters Cn,i are
added to account for performance limiting resonances in the plant.

In tuning the controller in (8.7), it is strived to maximize the controller band-
width, defined as the frequency where the open-loop system L(s) = P (s)C(s)
crosses zero dB for the first time, while simultaneously satisfying a peaking
constraint on the closed-loop sensitivity function S(s). In this way, the region
where low-frequency disturbance suppression is achieved is maximized, while the
high-frequency noise response is kept small. Recall from Section 8.2 that low-
frequency error content directly affects MA values and thus overlay, hence the
need for good low-frequency disturbance suppression. High-frequency content
affects MSD values and the related imaging quality, thereby requiring limited
noise amplification. Although crucial in the controller design, the use of an inte-
grator as well as a low-pass filter in (8.7) leads to the introduction of phase lag in
the feedback loop as an inevitable consequence of Bode’s gain-phase relationship
(Seron et al., 1997; Skogestad and Postlethwaite, 2010). This leads to inherent
trade-offs between, e.g., i) enhanced low-frequency disturbance rejection by in-
creasing the bandwidth, ii) robust stability properties, and ii) transient response
such as overshoot and settling time.

8.4 HIGS in a PID architecture

To allow more design freedom, and potentially balance between the aforemen-
tioned trade-offs in a more desirable manner, this section discusses the use of
integrators and low-pass filters along with their HIGS-based counterparts into
the PID structure of (8.7).

8.4.1 HIGS-based integrator and low-pass filter design

Consider the generic interconnection as depicted in Figure 8.7 where HIGS is
augmented with LTI filters W (s), V (s), s ∈ C.

W H W−1 V
ẑ z u û v

Figure 8.7. Generic HIGS-based filter design with weighting filter W (s) and
loop-shaping filter V (s).

In Figure 8.7, one may recognize the pre- and post-filtering strategy as dis-
cussed in Chapter 7 for modulating the switching characteristics of HIGS. The
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LTI filter V is added for the specific purpose of shaping the overall describing
function of the interconnection to achieve desirable magnitude and phase char-
acteristics. In this context, this filter can be regarded as a “loop-shaping” filter.
Through linear reasoning, the describing function characteristics of the nonlinear
filter in Figure 8.7 read

D∗(jω) = D(jω)V (jω), (8.9)

where D(jω) is the describing function of HIGS, derived in Chapter 2 as

D(jω) =
ωh
jω

(
γ

π
+ j

e−2jγ − 4e−jγ + 3

2π

)
+ kh

(
π − γ
π

+ j
e−2jγ − 1

2π

)
, (8.10)

with γ(ω) = 2 arctan (khω/ωh), and V is chosen as

V (s) = H−1(s)C∗(s), with H(s) = kh

(
ωc

s+ ωc

)
, (8.11)

where ωc = ωh
kh
|1 + 4j

π | rad/s, and in which C∗(s) ∈ C is an arbitrary LTI filter.

Recall that the describing function D(jω) in (8.10) resembles first-order low-
pass characteristics with low-frequency (DC) gain kh, cross-over frequency ωc
rad/s, and a phase lag that does not exceed 38.15 degrees. The filter H(s) in
(8.11) then provides an approximation of D(jω) in terms of its magnitude. As
such, the non-realizable filter H−1(s) “inverts” the magnitude characteristics of
D(jω), and provides additional phase lead up to 90 degrees. Hence, for all ω ∈ R
one achieves

‖D∗(jω)‖ ≈ ‖C∗(jω)‖, and arg(D∗(jω)) = arg(C∗(jω)) + ϕ(ω),

with ϕ(ω) = arg(H−1(jω)) + arg(D(jω)) ∈ (0, 58.85) degrees. In other words,
the describing function D∗(jω) in (8.9) possesses similar magnitude characteris-
tics as the LTI filter C∗(s), but with a phase lag reduction up to 58.85 degrees.
Comparable strategies that combine linear and nonlinear filters into linear-like
elements with improved phase properties as observed from their describing func-
tion can be found in, e.g., Cai et al., 2020; Guo et al., 2009; Karybakas, 1977;
Li et al., 2011; Saikumar et al., 2019. By selecting C∗(s) = Ci(s) = ωi/s
or C∗(s) = Clp(s) with Clp in (8.8b) one obtains, respectively, a HIGS-based
integrator or HIGS-based low-pass filter for which the describing function char-
acteristics are depicted in Figure 8.8 in black. Note that the filter C∗(s)H−1(s)
is realizable. The characteristics of the corresponding linear filters are shown in
grey. It can be seen that the nonlinear filters demonstrate a significant phase
advantage over their linear counterparts.

Remark 8.4.1. Regarding the above design philosophy, it is important to point
out that the freedom in designing the magnitude characteristics of D∗(jω) is com-
pletely determined by the parameters associated with C∗(s), whereas the freedom
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in designing the phase is determined by both the parameters of C∗(s) and those
related to ϕ(ω). As the only parameters that appear in ϕ(ω) are ωh and kh as-
sociated with HIGS, magnitude and phase are no longer uniquely related, but, to
some extent, can be designed separately.

Figure 8.8. Describing function of an LTI integrator and its HIGS-equivalent
design (left), and an LTI low-pass filter and its HIGS-equivalent design (right).

Remark 8.4.2. It should be mentioned that in practice both time- and frequency-
domain properties of the linear equivalent filter C∗ can be recovered by selecting
ωh → ∞. Indeed, in frequency-domain this choice yields H−1(jω)D(jω) → 1
such that D∗(jω) → C∗(jω) for all ω ∈ R. In time-domain, it can be argued
that for ωh →∞ the integrator-mode in HIGS is simply too fast, such that HIGS
effectively reduces to a linear gain kh. Together with the previous observations
this implies that the input-output signals of the filter in Figure 8.7 satisfy v →
C∗ẑ, i.e., the linear filter operation is approximated.

8.4.2 HIGS-based PID scheme

A configuration that adopts both a HIGS-based integrator, denoted by Ci {H},
and a HIGS-based low-pass filter, denoted by Clp {H} within the PID structure
of (8.7) is depicted in Figure 8.9.

Different from the LTI setting, the sequence in which linear and nonlinear
filters appear with respect to each other affects the input-output characteristics



8.4 HIGS in a PID architecture 221

Clp {H} kp Σ

1 + 1
ωd

d
dt

Ci {H}

Cn
e ufb

PID filter

low-pass filter notch filters

Figure 8.9. Structure of a HIGS-based PID controller C {H} with HIGS-based
integrator Ci {H} and HIGS-based low-pass filter Clp {H}.

of the controller, see also Chapter 3 and Chapter 7. The specific choice for placing
the integrator branch Ci {H} after the low-pass filter Clp {H} in Figure 8.9 is
motivated by the consideration that filters sustaining a constant output should
be placed after HIGS as to avoid asymmetric switching or no switching at all
due to an input signal with an offset. It is furthermore required that the linear
characteristics W−1

lp VlpWi separating each HIGS element have a relative degree
of at least one for ensuring the input signal to HIGS associated with Ci {H} to
be C1-differentiable. This can be realized by choosing Vlp(s) = H−1

lp (s)Clp(s)
and restricting the weighting filters Wlp and Wi to be proper filters.

Remark 8.4.3. Currently, well-posedness of generic interconnections contain-
ing multiple HIGS elements is still an open issue. For guaranteeing global ex-
istence of solutions for the interconnection in Figure 8.5, in which C = C {H}
is a HIGS-based PID controller as depicted in Figure 8.9, however, the results
in Deenen et al., 2021; Sharif et al., 2019 can directly be extended provided the
inputs belong to the class of piecewise Bohl functions, and the HIGS elements
are separated by an LTI filter having a relative degree of at least one.

The engineering heuristic underlying the use of two HIGS-based filters in
the configuration of Figure 8.9 is explained as follows. As argued in Chapter 7,
HIGS relies on the spectral content of its input for generating effective outputs
with anticipated gain and phase characteristics. Phase advantages for an inte-
grator should be accessed in the low-frequency range, thereby allowing for larger
integrator gains and increased low-frequency disturbance rejection. The func-
tionality of HIGS in the integrator is therefore purely performance based. On the
other hand, for the low-pass filter phase advantages are to be accessed around
the system bandwidth to increase robust stability margins. A clear distinction
can be made in frequency content on the basis of which HIGS should primar-
ily switch. Due to the lack of superposition, however, HIGS can only generate
outputs that are effective in one region, thereby compromising properties in the
other region. For example, choosing ωh,lp associated with HIGS in Clp {H} small
yields broad-banded phase advantages, but at the same time can result in low-
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frequency gain-loss (recall Chapter 7). Using both Ci {H} as well as Clp {H}
allows for separating the switching objectives such that HIGS associated with
each filter can be made effective in its respective frequency region by selecting
appropriate weighting filters.

8.4.3 Frequency-domain approximation

For tuning purposes, it is useful to have a describing function characterization
of the controller in Figure 8.9. The use of multiple nonlinearities, however, com-
plicates an analytical derivation. In Gelb and Vander Velde, 1968, Chapter 3,
Section 3.6, it is argued that replacing the nonlinearities with their respective
individual describing function is permitted if the LTI filters separating them
have sufficient low-pass filter characteristics, thereby filtering higher-order har-
monics generated by the preceding nonlinear element. In that case, one finds
the approximation

C(jω) ≈ Dpid(jω)Dlp(jω) = kp

(
1 +Di(jω) +

jω

ωd

)
Dlp(jω), (8.12)

in which Di(jω) and Dlp(jω) denote the describing function of Ci {H} and
Clp {H}, respectively. However, this filtering assumption may be limiting or
partially invalid. An alternative route for justifying the approximation in (8.12)
exploits the following frequency-domain separation principle:

• In PID tuning it approximately holds true that γωi < ωb < ωlp/γ, with
ωb the system bandwidth and γ > 1 (Steinbuch and Norg, 1998). Phase
benefits with Clp {H} are to be obtained around the bandwidth, such that
an appropriate tuning for the parameter ωh,lp associated with HIGS in
Clp {H} should roughly satisfy ωh,lp ≥ ωb.

• For sinusoidal inputs satisfying ω < ωb, HIGS associated with Clp {H}
is dominantly in gain-mode such that the input to Ci {H} is (nearly) si-
nusoidal, i.e., the nonlinear effect of Clp {H} is sufficiently contained for
low-frequency inputs as to avoid interference with Ci {H}. Hence, Di(jω)
plays the main role in the describing function of the controller.

• For inputs satisfying ω ≥ ωb, the proportional-derivative branch of the
PID part in Figure 8.9 largely dominates over the fundamental harmonic
in the response of Ci {H}, such that Dlp(jω) plays the main role in the
describing function of the controller.

Typical frequency-domain characteristics for both linear and HIGS-based
PID controllers are shown in Figure 8.10. The parameters are chosen to match
the magnitude characteristics of both designs. To indicate those regions where
phase benefits are to be expected from Ci {H} and Clp {H}, the asymptotic phase
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Figure 8.10. Frequency-domain characteristics of the linear and HIGS-based
PID controllers in (8.7) and (8.12), respectively. Asymptotic behaviour of the
latter is indicated by the thin grey lines. Phase benefits due to Ci {H} are mainly
obtained for all ω ∈ [ωh,i, ωi], whereas benefits due to Clp {H} are obtained for
ω ≥ ωh,lp. Note that both regions are sufficiently separated.

behaviour of C(jω) is shown by the thin dotted lines. Note the clear separation
of both regions for which phase advantages are obtained by the integrator and
low-pass filter, which results from the fact that ωh,lp is chosen sufficiently large.

8.5 Closed-loop design aspects

In this section, practically relevant aspects for tuning a HIGS-based PID con-
troller for an industrial wafer stage system are discussed in detail. The procedure
is based on the quasi-linear loop-shaping approach outlined in Chapter 7 and
involves modelling uncertainty and tuning of the weighting filters.

8.5.1 Modelling uncertainty

Characterizing modelling uncertainty in the describing function approximation
(8.12) requires approximate knowledge of the servo errors in terms of harmonic
content. Representative characteristics of a servo error signal e in scanning y-
direction when applying acceleration feedforward control and linear feedback
control are shown in Figure 8.11.
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Figure 8.11. Representative characteristics of a servo error signal e in both
time- and frequency-domain when applying linear PID control.

The main parts of the frequency content in the servo errors e are due to
the setpoint profile, despite the use of an appropriate feedforward controller.
It can be seen that harmonic content in the region 100 − 250 Hz dominates
the frequency spectrum, which can be linked to the 235 Hz bandwidth of the
closed-loop system. Also, in the range 600 − 800 Hz harmonic contributions
are present that result from structural dynamics of the plant. Given the high
reproducibility of the setpoint profiles, it is reasonable to expect that these
frequencies dominantly persist in the servo error when applying a HIGS-based
PID controller as well.

Remark 8.5.1. By virtue of the separation principle discussed in the previous
section, the main source of modelling error at high-frequencies may be identified
to result from the HIGS-based low-pass filter Clp {H}. Namely, as for higher
frequencies the output of the integrator is largely dominated by the proportional-
derivative branch in Figure 8.9, modelling uncertainty in the frequency-domain
approximation of Ci {H} at high frequencies is found to become insignificant as
compared to modelling uncertainty in Clp {H}. Although both uncertainties can
be taken into account, the latter will be of primary interest for subsequent robust
controller design and is therefore discussed next.

Based on the above observations, a meaningful test signal to approximate
the input to HIGS associated with Clp {H} may be of the form

ẑ(t) = sin(2πf1t) + α sin(2πf2t),

where f1 ∈ [100, 250] Hz, f2 ∈ [600, 800] Hz, and α ∈ (0, 1). Assuming f1 and f2

to be incommensurate, modelling uncertainty in the describing function approx-
imation of the HIGS-based low-pass filter can be characterized by ∆Ψ(jω, ẑ) =
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∆Ψ0(jω, ẑ)W∆(jω) with ‖∆Ψ0(jω, ẑ)‖∞ ≤ 1, and W∆(jω) = D(jωmin)−D(jω)
for all ω ≥ 600 ·2π rad/s, and zero otherwise, and ωmin = 100 ·2π rad/s. Further
specifics regarding this characterization can be found in Chapter 7.

To demonstrate the relevance of accounting for this modelling uncertainty in
the wafer stage control context, three HIGS-based PID controllers are designed
by solving the following optimization problem:

maximize
C

ωb,

subject to ‖WS(jω)S(jω)‖∞ + λ‖Wa(jω)S(jω)P (jω)‖∞ ≤ 1,

C stabilizes P,

(8.13)

where C is given in (8.12) and denotes the describing function approximation of
the HIGS-based PID controller in Figure 8.9, ωb denotes the open-loop band-
width, i.e., the frequency at which L(jω) = P (jω)C(jω) crosses the zero dB
line for the first time, S(jω) = (1 + L(jω))−1 is the quasi-linear sensitiv-
ity function, Wa(jω) = W∆(jω)Dpid(jω)Vlp(jω) represents the additive mod-
elling uncertainty in the controller due to the HIGS-based low-pass filter, and
WS(jω) = 1/

√
10 defines a 10 dB peaking constraint on the sensitivity. The

additional factor λ ∈ [0, 1] is used as a means to determine the degree to which
modelling uncertainty is taken into account. It is found in practice that the
choice λ = 1 often leads to overly restrictive designs. A balanced choice is left
to the control engineer and typically depends on the system and disturbances
at hand. Remark that for λ = 1 the constraint in (8.13) implies that the mag-
nitude of the worst-case sensitivity |S∆| = |S|/(1 − |WaSP |) does not exceed
10 dB. Note that P (jω) in (8.13) is the measured frequency-response-function
(FRF) of the stage, and the stability constraint can be verified on the basis of a
Nyquist-like test on the open-loop characteristics L(jω). The resulting nominal
and worst-case sensitivity characteristics for designs with λ = {0, 0.3, 0.6} are
shown in Figure 8.12, along with a linear design that is considered for reference.
Measurement results obtained from a wafer-stage are presented in Figure 8.13.

From the figures, a clear correlation can be seen between the worst-case pre-
dictions and the actual measurements in terms of increased error content around
700 Hz which translates to a deterioration of the MSD-values in Figure 8.13, es-
pecially in the scanning interval. By partly taking into account the modelling
uncertainty, this content can be significantly reduced, thereby demonstrating
the merit of the proposed approach. In fact, the design with λ = 0.6 is already
able to bring this content and the MSD values to about the same level as for the
linear case, despite 12 dB peaking of the worst-case quasi-linear sensitivity. In
addition to comparable MSD-values, the cumulative error representation in Fig-
ure 8.13 demonstrates improved low-frequency disturbance rejection properties
(translating to improved MA-values) as compared to the linear design. In the
comparison, the setpoint signal is highly reproducible and constitutes the main
part of the frequency contents in e. This is different for the exogenous input
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Figure 8.12. Nominal (black) and worst-case (red, grey) quasi-linear sen-
sitivities for three HIGS-PID designs with different levels of robustness (λ =
{0, 0.3, 0.6}). A nominal linear design (top left) is considered for reference.

that stems from multiple noise sources and that is generally non-reproducible.
Its contribution, however, constitutes a minor part of the frequency contents in
e. In this regard, taking into account the uncertainty with λ = 1 may be too
restrictive for the disturbances at hand.

8.5.2 Design and tuning of the pre- and post-filters

As shown in Chapter 7, high-frequency signal content may compromise antici-
pated gain and phase properties of the HIGS-based controller at low-frequencies.
Considering the content in Figure 8.11, the use of pre- and post-filters (recall
the structure in Figure 8.7) becomes particularly relevant for the HIGS-based
integrator Ci {H}. That is, as Ci {H} is intended to be effective at low frequen-
cies, typically below 100 Hz, dominating content beyond this frequency may
compromise switching of HIGS. Note that for the low-pass filter Clp {H}, HIGS
should typically switch at frequencies around the bandwidth, such that the use



8.5 Closed-loop design aspects 227

(a) Time-series measurements of the MSD-filtered servo errors.

(b) Cumulative root-mean-square representation of the servo errors.

Figure 8.13. Time- and frequency-domain representation of the measured
servo errors for three HIGS-based PID designs with λ = {0, 0.3, 0.6}. Measure-
ments with a linear design (black) are provided for reference.

of weighting filters in that case is of less significance.

To illustrate the need for a weighting filter design in the context of wafer-
stage feedback control, consider a HIGS-based PID controller that is tuned by
solving the same optimization problem as in (8.13). The resulting describing
function-based sensitivity characteristics are depicted in Figure 8.14 in grey.
For reference, a baseline linear design is provided in black.

When using no weighting filter in the integrator, i.e., Wi(s) = 1, the mea-
surement results in Figure 8.15 show inferior low-frequency disturbance rejection
properties for the current HIGS-based design (red curve) as compared to the
baseline linear design (black curve). This is not in accordance with the predic-
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Figure 8.14. Bode magnitude characteristics of the closed-loop sensitivity
functions with linear PID control (black) and HIGS-based PID control (grey).

tions in Figure 8.14. The discrepancy between linear PID and HIGS-based PID
performance without filtering is particularly visible for low frequencies. Note for
example the dominant 40 Hz component in the MA filtered error with HIGS-
based control, which for the linear design appears to be largely suppressed. From
the cumulative power spectrum significant gain-loss is found in the frequency
range below 100 Hz which is the result of frequency contributions above 100 Hz
that induce too-frequent switching of HIGS to gain-mode.

As a solution to performance loss in terms of deteriorated low-frequency
disturbance rejection, consider the HIGS-based integrator Ci {H} in which the
weighting filter Wi(s) is chosen as a skew notch filter of the form

Wi(s) =

(
ω2
pi

ω2
zi

)
· s

2 + 2βziωzis+ ω2
zi

s2 + 2βpiωpis+ ω2
pi

, (8.14)

with ωpi = 100 · 2π rad/s, ωzi = 1000 · 2π, βzi = βpi = 1. Note that (8.14)
is proper, and its exact inverse is realizable. The choice for (8.14) along with
the tuning of its parameters is motivated by the design argument to let Ci {H}
operate (and thus switch) on frequency content below 200 Hz. Of course, mit-
igation of the problem with Wi(s) is less effective should either the exogenous
inputs have more high-frequency components or the existing high-frequency com-
ponents become more dominant. Hence, the choice for Wi(s) depends on the
application at hand.

In Figure 8.15, also the measurement result of the HIGS-based PID controller
with weighting filter design as in (8.14) is shown through the grey curve. It can
be seen that the result is well in line with the expectations raised from the sensi-
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(a) Time-series measurements of the MA-filtered servo errors.

(b) Cumulative root-mean-square representation of the servo errors.

Figure 8.15. Time- and frequency-domain representation of the measured
servo errors with (grey) and without (red) weighting filter strategies. Measure-
ments with a linear design (black) are provided for reference.

tivity predictions in Figure 8.14, thereby demonstrating effectiveness of the pre-
and post-filtering approach. The describing function-based sensitivity function
for the considered wafer stage example appears to only provide a meaningful
frequency-domain reflection of performance for the design with weighting filters.

For a final observation, remark that the case without filtering also induces
increased sensitivity to frequencies around 800 Hz, which also affects the MA-
filtered response. This increased sensitivity is a consequence from the fact that
frequencies below the bandwidth (around 40 Hz) are significantly present in
the error, and thus also in the input to HIGS associated with Clp {H}, thereby
affecting switching in an undesirable manner.
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Remark 8.5.2. In the examples above, an approximate Nyquist-like check on
the quasi-linear open-loop characteristics L(jω) = P (jω)C(jω) is found to be
particularly useful for guiding a stable closed-loop controller design. Still, there
remains a need for a formal assessement of closed-loop stability. In principle,
the tools presented in Chapters 4 and 5 can be extended toward interconnections
of multiple HIGS elements. Preliminary results in this direction are presented
in van den Eijnden et al., 2020b. Note, however, that the complexity of the
conditions significantly increases with an increasing number of piecewise linear
subsystems. In this regard, a compositional approach as presented in Arcak et
al., 2016 may appear useful in order to derive more tractable conditions.

8.6 Comparative design and performance
evaluation

In this section, the obtained insights are combined into a HIGS-based PID design
that aims at performance improvements of the wafer stage system in scanning
y-direction. Performance is evaluated on the basis of measurement results, and
is compared to a baseline linear design that is tuned under identical constraints.

8.6.1 Design for performance

Consider a HIGS-based PID controller as depicted in Figure 8.9 that contains
three notch filters. Tuning for maximum bandwidth is done through an auto-
mated loop-shaping procedure formulated as the optimization problem in (8.13)
with λ = 0.4, and where WS(jω) defines a piecewise linear peaking constraint
on the quasi-linear sensitivity function. Note that in defining this constraint,
explicit knowledge regarding machine-to-machine variations is exploited. To ac-
count for position-dependent behaviour of the stage, five FRF’s, measured at
different (x, y)-locations on the wafer (see Figure 8.6) are used in the tuning
procedure. A linear PID controller with four notch filters is tuned under equiv-
alent design constraints.

The resulting set of controller parameters along with the obtained band-
widths are listed in Table 8.2. A Nyquist plot of the (quasi-)linear open-loop
characteristics and the corresponding closed-loop sensitivity characteristics are
shown in Figure 8.16. Table 8.2 shows a substantial increase in proportional gain
kp for the quasi-linear design as compared to the linear design. This increase in
gain translates into a 25% increase in bandwidth, and a 4−6 dB improvement in
low-frequency disturbance suppression as seen in the sensitivity characteristics
in Figure 8.16b.
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Table 8.2. Parameter values for the controllers in scanning y-direction.

linear design HIGS design

PID filter kp 2.67 · 107 3.38 · 107 N/m

ωi 100 · 2π 106 · 2π rad/s

ωd 127.5 · 2π 169.7 · 2π rad/s

HIGS (integrator) kh - 1 -

ωh - 146 · 2π rad/s

weighting filter (integrator) ωz - 104 · 2π rad/s

βz - 1 -

ωp - 2000 · 2π rad/s

βp - 1 -

low-pass filter ωlp 850.2 · 2π 907 · 2π rad/s

β 0.17 0.33 -

HIGS (low-pass filter) kh - 1 -

ωh - 544.2 · 2π rad/s

notch filter ωz 1034.63 · 2π 717 · 2π rad/s

βz 0.0092 0.119 -

ωp 1027.83 · 2π 766.6 · 2π rad/s

βz 0.0089 0.184 -

notch filter ωz 1109.43 · 2π 1020 · 2π rad/s

βz 0.0061 0.0053 -

ωp 1243.75 · 2π 1606.4 · 2π rad/s

βz 0.0028 0.1308 -

notch filter ωz 1005.6 · 2π 1745.2 · 2π rad/s

βz 0.068 0.1874 -

ωp 979.57 · 2π 1701 · 2π rad/s

βz 0.467 0.3696 -

notch filter ωz 709.91 · 2π - rad/s

βz 0.131 - -

ωp 840 · 2π - rad/s

βz 0.333 - -

bandwidth ωb 235 · 2π 293 · 2π rad/s
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(a) Nyquist plots of the open-loop characteristics.

(b) Closed-loop sensitivity characteristics.

Figure 8.16. Describing function-based Nyquist curves (top) and sensitiv-
ity characteristics (bottom) for the wafer-stage system with linear PID control
(black) and HIGS-based PID control (grey). In the latter figure, the perfor-
mance constraint defined by WS is shown by the thin black curve.
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8.6.2 Time-domain measurement results

The linear and HIGS controllers are applied for feedback control of the wafer-
stage in scanning y-direction. In the actual implementation, discrete-time ver-
sions of the controllers are used on the basis of a sampling frequency of 5 kHz. In
both configurations, the wafer stage is subject to the setpoint signals as depicted
in Figure 8.3, and an identical feedforward controller is applied.

The MA- and MSD-filtered servo errors measured at the center point of the
wafer (die one) and the top right corner of the wafer (die three) during four
consecutive scanning motions are shown in Figure 8.17. The first point on a die
is exposed in the interval from t = 0 seconds to t = Te seconds, with Te the
exposure time, meaning that the computation of MA- and MSD-values relevant
for scanning performance starts at 1

2Te = 3.8 milliseconds after the start of the
scan. This is indicated in Figure 8.17 by the dotted vertical line. The results
in Figure 8.17 show improvements in terms of MA- and MSD-values during the
relevant scanning interval. In particular, the peak values of the MA-filtered
error at die one and die three, occurring at t = 3.8 milliseconds decrease from
respectively 3.59 nm and 4.05 nm in the linear case to 1.56 nm and 2.37 nm in the
HIGS controlled case, thereby demonstrating a significant 40−55% improvement.
Note that there is a large transient effect present at the start of the scan which
results from a non-ideal feedforward controller in the absence of a settling phase.
It can be seen that the HIGS-based controller is able to better deal with these
transient effects in terms of reduced overshoot and settling times.

Improvements are also observed for the MSD-filtered error as the peak values
at die one and die three reduce from 8.05 nm, and 8.45 nm in the linear case to
5.66 nm and 5.41 nm in the HIGS controlled case. Note that simultaneous im-
provements in both MA and MSD is generally not trivial due to i) the waterbed
effect, and ii) the generation of non-smooth control signals which potentially
induce more high-frequency distortion.

The observed improvements in scanning performance are effectuated by well-
balanced switching between integrator-mode and gain-mode of both HIGS ele-
ments, which for one particular measurement is illustrated in Figure 8.18. The
switching sequences are depicted in grey: non-zero values correspond to HIGS
operating in gain-mode, whereas zero values correspond to HIGS operating in
integrator-mode. It can be seen that HIGS associated with Ci {H} roughly
switches on the basis of a dominating 100 Hz component, whereas HIGS asso-
ciated with Clp {H} roughly switches between 500− 600 Hz, thereby indicating
both elements to operate on the basis of appropriate spectral content in suffi-
ciently separated frequency intervals.

8.6.3 Frequency-domain measurement results

Harmonic contributions in the error response are studied in more detail through a
cumulative root-mean-square (RMS) representation of the measured servo error
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(a) Measurements at die one (center die).

(b) Measurements at die three (top right die).

Figure 8.17. Four consecutive time-series measurements of the MA- and MSD-
filtered servo errors in scanning y-direction at die one and die three obtained
with linear control (black) and HIGS-based control (red). The scanning phase
is indicated by the grey interval, and the acceleration profile (scaled) is shown
by the dashed black line. The start of relevant computations for scanning per-
formance is indicated by the dotted line.
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(a) Switching of HIGS in the integrator Ci {H}.

(b) Switching of HIGS in the low-pass filter Clp {H}.

Figure 8.18. Switching characteristics of HIGS associated with the integrator
Ci {H} (top figure) and low-pass filter Clp {H} (bottom figure). The switching
sequences are indicated in grey: non-zero values correspond to the gain-mode,
and zero values correspond to the integrator-mode.

signals as presented in Figure 8.19.
In Figure 8.19, the values of 3.2 nm and 4.2 nm provide a measure for the

total energy of the servo error signals in the scanning interval. The particular
values of 1.4 nm and 2.8 nm are associated with the critical frequency fc = 148
Hz, which is interpreted as the maximum frequency below which the linear
closed-loop system may benefit from feedback control, i.e., the point at which
disturbance suppression is obtained without inducing any amplifications. Since
the linear controller is designed for maximizing this point (through maximizing
the bandwidth ωb), it provides an objective measure for quantifying improve-
ments in low-frequency disturbance suppression with HIGS. It can be seen that
HIGS-based control is able to reduce the RMS value at the critical frequency by
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a factor of two, thereby demonstrating better low-frequency disturbance rejec-
tion properties. This factor is well in accordance with the expectations raised
by the sensitivity characteristics in Figure 8.16b. Note that more frequency con-
tributions are present in the nonlinear system for the range 400 − 900 Hz as
compared to the linear system. Within the range 400 − 700 Hz this is in line
with the expectations raised by the describing function-based sensitivity charac-
teristics in Figure 8.16b. For the range 700− 900 Hz, an increased content may
be the result from the generation of higher harmonics, as well as an increased
sensitivity to high frequencies that does not appear from the describing function
characteristics, but results from the switching behaviour of HIGS as discussed
previously in Section 8.5 (see also Chapter 7). Such increased sensitivity is em-
phasized by resonance frequencies in the plant, which for the stage in y-direction
occur around 700−900 Hz (recall the FRFs in Figure 8.6). The design is chosen
to be sufficiently robust against these effects in the sense that the influence on
performance (in terms of MA- and MSD-values) remains fairly small.

Figure 8.19. Cumulative root-mean-square (RMS) representation of the mea-
sured servo error. The critical frequency fc indicates the point below which the
linear system benefits from feedback control.

8.7 Summary

In this chapter, the performance improving potential of HIGS-based PID control
is demonstrated on a wafer stage system of a state-of-practice industrial wafer
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scanner. The reduced phase characteristics associated with this specific con-
troller structure are exploited in a robust quasi-linear loop-shaping procedure
to achieve increased bandwidths, enabling improved low-frequency disturbance
rejection properties when compared to a linear equivalent design. The proce-
dure is complemented with knowledge of relevant signal content that may affect
switching of HIGS, thereby leading to an effective closed-loop controller design
in practice. Measurement results with the HIGS-based controller obtained from
a wafer stage show a factor two improvement in disturbance rejection proper-
ties of the system as compared to the baseline linear design, without excessive
transmission of high-frequency content. These results support the potential of
HIGS-based control for high-precision motion systems.
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Chapter 9

Conclusions and
Recommendations

9.1 Conclusions

In this thesis, the so-called hybrid integrator-gain system (HIGS) has been con-
sidered as a possible means for dealing with the fundamental performance limi-
tations of linear time-invariant (LTI) control for LTI (motion) systems. In terms
of performance, HIGS can offer comparable benefits as other hybrid control con-
cepts such as reset controllers that originate from the Clegg integrator, however,
with the additional advantage of HIGS avoiding the need for hard state resets
and exploiting continuous control. The latter opens up new opportunities in both
application-based as well as system-theoretic directions. In view of the above,
the following research objective as stated in Section 1.4 has been addressed in
this thesis:

Explore the possibilities of HIGS as a viable hybrid control strategy for en-
abling performance improvements for continuous-time LTI motion systems,
and develop comprehensive and innovative tools for the design and analysis of
HIGS-controlled systems.

The results presented in this thesis, addressing the above objective, can be
categorized into three main parts. In the first part, the potential of HIGS for
overcoming fundamental performance limitations of LTI control for LTI plants
is considered. In the second part, novel tools for analysing stability and per-
formance of HIGS-controlled systems are developed. The third part addresses
the practical aspects of HIGS-based control in terms of performance-based de-
sign and experimental validation on industrial benchmark systems. The main
conclusions for each of these parts are presented below.
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9.1.1 Overcoming fundamental limitations of LTI control

The question whether nonlinear/hybrid control concepts can overcome funda-
mental limitations of LTI control for LTI plants is an essential one. In the first
part of this thesis this question was answered positively for HIGS. By means of a
numerical example it was shown in Chapter 3 that unavoidable overshoot in the
step-response of a closed-loop controlled single-input single-output (SISO) LTI
plant having a real unstable open-loop pole can be completely avoided with a
well-designed HIGS-based controller. Key in this design is the sequence in which
the linear filters appear with respect to HIGS. The results obtained in Chapter 3
provided valuable directions for controller design with HIGS and demonstrated
the possibility for enabling genuine performance advantages over LTI control.

9.1.2 Stability and performance analysis

In the second part of this thesis, continuous-time tools for stability and perfor-
mance analysis of HIGS-controlled systems are developed. Regarding tools for
stability analysis, two main directions are pursued. The first direction is pur-
sued in Chapter 4 and results in frequency-domain tools for stability analysis.
These tools allow for graphical verification of input-to-state stability (ISS) by
means of non-parametric models, and can be used for direct evaluation of robust
stability in the presence of plant uncertainty. The conditions strongly connect
to the industrial state-of-practice where non-parametric models are often easily
obtained with high-accuracy, and plant uncertainty resulting from machine-to-
machine variation is highly relevant. While the presented frequency-domain
conditions are less conservative than existing ones found in the literature, these
still introduce a certain amount of conservatism in the analysis which is mainly
attributed to the underlying use of a common quadratic Lyapunov function for
an essentially piecewise linear system.

To further reduce conservatism in the analysis, a second approach is pursued
in Chapter 5 that exploits piecewise quadratic (PWQ) functions to formulate
sufficient conditions for ISS in the form of linear matrix inequalities (LMIs).
The conditions are shown to successfully reduce conservatism in the analysis as
compared to, e.g., the frequency-domain conditions in Chapter 4. In fact, for
certain examples the conditions closely resemble what would be expected from
a necessary condition for closed-loop stability. Reduced conservatism, however,
may come at the cost of increased computational burden. The LMI conditions
are additionally extended toward performance analysis in terms of the L2-gain
and H2-norm, providing measures for both steady-state and transient perfor-
mance. To highlight the indispensable flexibility offered by PWQ functions and
guide further function refinements, necessary conditions for feasibility of the
LMIs have been provided.

The performance measures discussed in Chapter 5 are generic in the sense
that they quantify performance for a broad class of input signals, but may not
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always reflect the actual performance objective of the system under study, con-
cerning, e.g., specific (steady-state) response characteristics in the presence of
specific inputs. To accommodate performance analysis in such situations, in
Chapter 6 the notion of convergent systems is exploited, i.e., systems enjoy-
ing the property of having for each bounded (time-varying) input, a unique
and bounded steady-state response. While convergence is not easy to establish
for switched/hybrid systems in general, by partitioning the incremental input-
output space of HIGS, regional incremental passivity properties are identified
that can conveniently be exploited for deriving conditions for convergence. These
conditions are presented in terms of both LMIs and frequency-domain inequal-
ities, and are shown to be useful also for estimating steady-state performance
on the basis of the describing function with guaranteed error margins. It must
be mentioned, however, that at this point the presented conditions for conver-
gence are only applicable to “modified” HIGS elements for which the underlying
(integrator) dynamics possess strict passivity properties.

9.1.3 Design and experimental validation

In the third part of this thesis, in Chapter 7, two approaches toward closed-loop
controller design with HIGS are presented. The first approach presents a method
for robust controller synthesis by exploiting matrix inequalities that are derived
from the frequency-domain tools presented in Chapter 4. The corresponding
matrix inequalities allow for a direct translation toward appropriate synthesis
conditions that show a strong resemblance with conditions typically used in an
LTI setting. Although the approach returns a HIGS-based controller with rigor-
ous robust stability and performance guarantees, there is a lack of clear physical
insight regarding parameter tuning and robust controller re-design, something
which in an industrial setting may be experienced as less desirable.

As an alternative, an approach is presented that exploits the describing func-
tion of HIGS within a robust loop-shaping framework. Key in the approach is to
express the modelling error induced by the describing function as an uncertainty
in the controller, through which possible performance issues with a HIGS-based
controller design are revealed. In dealing with these issues, effective solutions
are proposed in the form of both time- and frequency-domain design guidelines.
Although the approach does not come with rigorous guarantees for stability and
performance, it still provides a practically useful and insightful design method
that interfaces well with the industrial (motion) control design practice.

In Chapter 8, a HIGS-based PID control strategy exploiting multiple HIGS
elements is applied for feedback control of a state-of-the-art industrial wafer-
stage system. Through several case studies it is shown that appropriate design
of a HIGS-based controller requires carefully addressing the interaction between
(the switching mechanism of) HIGS and the LTI parts of the system. This inter-
action is shown to be sufficiently addressed in practice by following the describ-
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ing function-based design guidelines presented in Chapter 7. Compared to the
state-of-practice linear PID control solution, the HIGS-based PID design enables
a substantial increase in bandwidth which is attributed to the “phase” advan-
tages offered by HIGS. Wafer stage measurement results demonstrate a factor
of two improvement in low-frequency disturbance rejection properties without
compromising high-frequency noise amplification, thereby supporting also the
potential of HIGS-based control for industrial high-precision systems.

9.2 Recommendations

The concept of hybrid integrator-gain systems (HIGS) is relatively new, and
there is still a broad range of interesting and important challenges to be ad-
dressed. Based on the results and conclusions presented in this thesis, several
recommendations for future research directions are formulated:

• As discussed in Chapter 2, HIGS exploits projection of the vector field to
keep its input-output trajectory within a sector, and can be represented
within the framework of extended projected dynamical systems (ePDS)
as introduced in Sharif et al., 2019. The framework of ePDS may al-
low for generalizing the “projection-based” philosophy of HIGS to include
higher-order (non)linear dynamics. It is interesting to further explore the
performance potential of projection-based control strategies.

• At this point, the question regarding existence and uniquess of solutions
is still widely open, except for the restricted set of piecewise Bohl inputs
and LTI plants for which the existence property was shown in Deenen
et al., 2021. The uniqueness question, however, is unanswered at present,
and also the use of more natural input functions, e.g., Lebesgue measurable
functions is open. Moreover, interconnections with multiple HIGS elements
and nonlinear plants is completely untouched.

• The new frequency-domain conditions for stability as presented in Chap-
ter 4 have so far been shown to be sufficient conditions for feasibility of
the set of LMIs in (4.10). It would be interesting to study whether these
conditions are also necessary, as suggested by the numerical example in
Chapter 4. One possible starting point in this direction is to explore the
approach undertaken in King et al., 2011 that proves the equivalence be-
tween specific LMIs and frequency-domain inequalities. In turn, this may
provide a way for unifying the now seemingly different frequency conditions
presented in Theorem 4.3.1–4.3.3 into a single condition.

• Compared to the conditions in Chapter 4, the LMI conditions presented
in Chapter 5 provide less conservative conditions for stability. Two sug-
gestions regarding these conditions are given now. First, it would be in-
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teresting to study how restrictive this approach is, compared to the use
of arbitrary continuous Lyapunov functions. That is, it would be useful
to provide a converse result showing that, whenever a Lyapunov func-
tion exists, it can be approximated arbitrarily close by a PWQ function
and thus a solution to the LMIs exists. Such a result is known to hold
for smooth nonlinear systems (Rantzer and Johansson, 2000, Theorem 5),
and is also suggested by the numerical examples presented in Chapter 5.
Second, in view of the practical benefits associated with frequency-domain
conditions for stability as advocated in Chapter 4, and the potential for
extending the conditions toward controller synthesis as exploited in Chap-
ter 7, it may be useful to translate the LMI conditions in Chapter 5 into
frequency-domain conditions. A key step for obtaining such a translation
may come from combining the results in Chapter 4 with the results and
ideas from Skorodinskii, 1981, Theorem 1 in order to reduce a number of
LMIs into a single LMI. The latter may be transformed into an equivalent
frequency-domain inequality by means of the Kalman-Yakubovich-Popov
lemma (Khalil, 2002). Besides, in view of the PID design in Chapter 8 it is
of interest to extend the time- and frequency-domain tools for stability and
performance toward systems containing multiple HIGS elements. In this
regard, the multi-input multi-output (MIMO) circle criterion (Lipkovich
and Fradkov, 2016) and a compositional approach (Arcak et al., 2016) may
appear useful.

• Besides the Lyapunov-based approaches as considered in Chapters 4 and 5,
it is expected that alternative, input-output concepts such as integral
quadratic constraints (IQCs) (Megretski and Rantzer, 1997) and scaled
relative graphs (SRGs) (Chaffey et al., 2021) can provide useful and in-
teresting new directions for robust stability analysis of HIGS-controlled
systems that may aid further development of easy-to-use (graphical) tools.
In the same spirit, rigorously studying applicability of the describing func-
tion as a tool for stability analysis is believed to be a highly beneficial
direction for further research, because it has been observed to provide sur-
prisingly accurate predictions in practice. The line of work in Bergen et al.,
1982; Mees, 1984 might be helpful in setting up such study.

• Besides the H2-norm studied in Chapter 5, another relevant measure for
transient performance is given by the L∞-norm (Scherer et al., 1997),
which can be used for quantifying, e.g., overshoot in a step-response. Ex-
tending the LMI conditions presented in Chapter 5 toward computation of
the L∞-norm may be particularly useful in the context of HIGS-controlled
systems. To potentially reduce conservatism, one can apply the ideas pre-
sented in Thibodeau et al., 2009, where additional relaxation terms ex-
ploiting knowledge of local extrema in the response are included.

• The conditions for incremental stability and convergence as presented in
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Chapter 6 may be conservative. Part of this conservatism possibly comes
from the fact that some of the conditions only exploit static input-output
properties of HIGS, rather than taking into account the full incremental
closed-loop system dynamics. To improve upon this aspect, it may be
fruitful to combine the approach pursued in Chapter 6 with the ideas
and results outlined in Waitman et al., 2016 and Waitman et al., 2019.
Note that incremental stability/convergence analysis of switched/hybrid
systems in general is a relevant and challenging topic that received only
limited attention in the literature, but deserves further exploration.

• Regarding the matrix inequality-based synthesis approach discussed in
Chapter 7, some recommendations are given. First, it would be useful
to extend the matrix inequality-based synthesis procedure toward more
general settings, and avoid the need for partly fixing the linear portion of
the controller a priori. In this way, the additional design freedom coming
from the sequence of linear and nonlinear filters with respect to each other
is directly taken into account in the synthesis procedure. Second, it would
be useful to reduce conservatism in the conditions coming from the use of a
quadratic Lyapunov function by considering the use of piecewise quadratic
functions, see, e.g., the approach in Ban and Kim, 2019.

• A recommendation regarding the performance-based loop-shaping design
approach considered in Chapter 7 is to further (rigorously) characterize the
modelling error ∆Ψ, for example for periodic signals in which content is
present at harmonically related input frequencies. In addition, it would be
useful to extend the frequency-domain design approach with time-domain
performance objectives, for instance, maximizing the bandwidth while min-
imizing overshoot and settling-time.

• In Chapter 8, a continuous-time multi-loop SISO approach was pursued for
the design of a HIGS-based controller for a wafer stage system. Although
this approach was motivated by the high sampling rate and largely decou-
pled wafer stage dynamics, discrete-time and multivariable design aspects
of HIGS-based control systems are important and largely untouched so far.
Particularly for high-precision applications these aspects will be essential,
and therefore provide relevant directions for future research.

9.3 Final thoughts

The development of hybrid control strategies is largely driven by the needs from
industry to realize performance beyond what is possible with linear control. De-
spite their promising potential, it is surprising to see that hybrid controllers are
still far from being completely adopted in industrial applications. This seems



9.3 Final thoughts 247

attributed to the fact that hybrid controllers are generally more difficult to anal-
yse and design for stability and performance than their linear counterparts, and
require advanced training of control engineers. Broader acceptance in industry
can be accelerated by focusing on the development of accessible, intuitive, and
systematic tools for analysis and design, and by providing experimental proof-of-
concepts. This thesis contributed to these important areas for a hybrid control
strategy known as HIGS. With a suitable design, HIGS-based controllers have
the ability to outperform linear controllers, thereby opening up new possibilities
to further push the performance of linear systems. It was shown that such pos-
sibilities not only exist on paper, but can be realized in practical applications
as well. This thesis closes with the hope that its findings merit further develop-
ments in the appealing and challenging area of nonlinear and hybrid control.
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Arcak, M., Larsen, M., and Kokotović, P. (2003). Circle and Popov criteria as
tools for nonlinear feedback design. Automatica, 39(4):643–650.

Arcak, M., Meissen, C., and Packard, A. (2016). Networks of Dissipative Systems.
Springer International Publishing.

Armstrong, B., McPherson, J., and Li, Y. (1996). A Lyapunov stability proof for
nonlinear-stiffness PD control. In Proceedings of IEEE International Confer-
ence on Robotics and Automation. Volume 1, pages 945–950.

Armstrong, B., Gutierrez, J., Wade, B., and Joseph, R. (2006). Stability of
Phase-Based Gain Modulation with Designer-Chosen Switch Functions. In-
ternational Journal of Robotics Research, 25:781–796.

Ascher, U., Mattheij, R., and Russell, R. (1988). Numerical solution of boundary
value problems for ordinary differential equations. English. 1st ed. edition.
Prentice-Hall series in computational mathematics. Prentice-Hall.

Åström, K. (2000). Limitations on Control System Performance. European Jour-
nal of Control, 6(1):2–20.
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Löfberg, J. (2004). YALMIP : a toolbox for modeling and optimization in MAT-
LAB. In 2004 IEEE International Conference on Robotics and Automation,
pages 284–289.

Lohmiller, W. and Slotine, J.-J. E. (1998). On Contraction Analysis for Non-
linear Systems. Automatica, 34(6):683–696.
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Geertje en Nancy, bedankt voor alle onmisbare hulp die ik van jullie heb
ontvangen de afgelopen jaren. Jullie inzet voor het creëren van een fijne werksfeer
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Stellingen behorende bij het proefschrift

Hybrid Integrator-Gain Systems
Analysis, Design, and Applications

1. Het feit dat sommige niet-lineaire regelaars prestatie beperkingen
van lineaire regelaars kunnen omzeilen, toont slechts aan dat niet-
lineaire regelaars een andere - mogelijk kleinere - set van prestatie
beperkingen hebben (dit proefschrift).

2. Stabiliteitscriteria voor lineaire systemen op basis van tijddomein
(matrix) ongelijkheden laten zich wiskundig vertalen naar frequen-
tiedomein gebaseerde (matrix) ongelijkheden, maar numeriek zijn
deze twee sets van ongelijkheden niet eenvoudig in elkaar om te
zetten. Eenzelfde bewering is ook van toepassing op sommige lin-
eaire systemen met een uitgangsgebaseerde niet-lineaire terugkop-
peling (dit proefschrift).

3. Frequentie-domein technieken zijn waardevol voor de analyse en het
ontwerp van niet-lineaire en hybride regelsystemen (dit proefschrift).

4. Veel schakelende regelaars zouden beter presteren wanneer de in-
teractie tussen het schakelmechanisme en de overige systeemcom-
ponenten tijdens de ontwerpfase expliciet meegenomen wordt (dit
proefschrift).

5. Omdat de sampled-data implementatie van hybride regelaars een
natuurlijke vorm van tijdsregularisatie bewerkstelligt, zal Zeno-achtig
gedrag in een hybride regelsysteem nooit optreden in de praktijk.

6. Een regeltechnicus zou enige ervaring moeten hebben met het tunen
van niet-lineaire regelaars voor lineaire systemen.

7. Regeltechniek is bedoeld om toegepast te worden in de praktijk.

8. Regeltechniek kan niet altijd toegepast worden in de praktijk.

9. In de huidige maakindustrie moet niet de vraag óf iets gemaakt kan
worden, maar de vraag of iets klimaatneutraal gemaakt kan worden
centraal staan.

10. Een overdaad aan wedstrijdcategorieën in powerlifting vergroot de
kans op prestige-inflatie.



Propositions accompanying the thesis

Hybrid Integrator-Gain Systems
Analysis, Design, and Applications

1. The fact that some nonlinear controllers can circumvent perfor-
mance limitations of linear controllers, only demonstrates that non-
linear controllers possess a different - possibly smaller - set of per-
formance limitations (this thesis).

2. Stability criteria for linear systems based on time-domain (matrix)
inequalities can be mathematically translated into frequency-domain
based (matrix) inequalities, but numerically these sets can not easily
be converted into each other. A similar statement applies to some
linear systems with output-based nonlinear feedback (this thesis).

3. Frequency-domain techniques are valuable for the analysis and de-
sign of nonlinear and hybrid control systems (this thesis).

4. Many switching controllers would perform better if the interaction
between the switching mechanism and the remaining system compo-
nents is taken into account explicitly during the design phase (this
thesis).

5. Since a sampled-data implementation of hybrid controllers naturally
enforces some form of time-regularization, Zeno-like behaviour in
hybrid control systems will never occur in practice.

6. A control engineer should have some experience in tuning nonlinear
controllers for linear systems.

7. Control engineering is meant to be applied in practice.

8. Control engineering can not always be applied in practice.

9. In the current manufacturing industry not the question whether
something can be made, but the question whether something can
be made in a climate-neutral manner should be central.

10. An excess of categories in powerlifting competitions increases the
risk of prestige-inflation.
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