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Abstract

To integrate renewable energy, converter-interfaced sources (CISs) keep penetrating into

power systems and degrade the grid frequency response. Control synthesis towards

guaranteed performance is a challenging task. Meanwhile, the potentials of highly

controllable converters are far from fully developed. With properly designed controllers the

CISs can not only eliminate the negative impacts on the grid, but also provide performance

guarantees.

First, the wind turbine generator (WTG) is chosen to represent the CISs. An augmented

system frequency response (ASFR) model is derived, including the system frequency response

model and a reduced-order model of the WTG representing the supportive active power due

to the supplementary inputs.

Second, the framework for safety verification is introduced. A new concept, region of

safety (ROS), is proposed, and the safe switching principle is provided. Two different

approaches are proposed to estimate the largest ROS, which can be solved using the sum of

squares programming.

Third, the critical switching instants for adequate frequency response are obtained

through the study of the ASFR model. A safe switching window is discovered, and a safe

speed recovery strategy is proposed to ensure the safety of the second frequency dip due to

the WTG speed recovery.

Fourth, an adaptive safety supervisory control (SSC) is proposed with a two-loop

configuration, where the supervisor is scheduled with respect to the varying renewable

penetration level. For small-scale system, a decentralized fashion of the SSC is proposed

under rational approximations and verified on the IEEE 39-bus system.
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Fifth, a two-level control diagram is proposed so that the frequency of a microgrid satisfies

the temporal logic specifications (TLSs). The controller is configured into a scheduling level

and a triggering level. The satisfaction of TLSs will be guaranteed by the scheduling level,

and triggering level will determine the activation instant.

Finally, a novel model reference control based synthetic inertia emulation strategy is

proposed. This novel control strategy ensures precise emulated inertia by the WTGs as

opposed to the trial and error procedure of conventional methods. Safety bounds can be

easily derived based on the reference model under the worst-case scenario.
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Chapter 1

Introduction

The work in this dissertation is inspired by complex behaviors introduced by the multi-

mode converter-interfaced devices (CIDs) in the time scale of seconds. As such devices keep

penetrating into the power networks, the induced complex behaviors have more significant

impact on power system dynamics, and particularly, the frequency response. Control

synthesis towards guaranteed performance is a challenging task. Meanwhile, the potentials of

highly controllable converters are far from fully developed under current control approaches.

With properly designed controllers, the CIDs can not only eliminate the negative impacts

on the grid, but also provide performance guarantees. This dissertation aims at establishing

systematic frameworks for controller synthesis towards guaranteed performance and focuses

on the frequency control problem.

This chapter first describes the background and motivation in Section 1.1 and 1.2,

respectively, followed by the outline of this dissertation in Section 1.3 and the main

contributions in Section 1.4.

1.1 Background

The power electronic converters have become a bridge between unified power systems

and diverse fashions of sources and loads. They are highly controllable because of the

fast regulating time and flexible programmability whereby desired functionalities can be

integrated. The converter-interfaced sources (CISs) like wind turbine and photovoltaic

1



generators are mostly controlled as current sources (also known as the grid-feeding mode) and

operate at the maximum power point tracking (MPPT) mode. They are required to switch

to the grid-supporting modes like the inertia emulation after major disturbances [65]. On

the other hand, a CIS can be controlled as a voltage source (also known as the grid-forming

mode) to provide frequency and voltage regulations in weak networks and microgrids [90].

Varieties of droop control modes [103] as well as the virtual synchronous generator (VSG)

mode [56] have been developed. In addition, the point of load converters (POLCs) in motor

drives, computer power supplies, and compact fluorescent lighting typically make the load

behaviors to be constant power, which contributes to the voltage instability. Compensation

topologies such as the power buffer [111] and the electric spring [95] have been integrated in

the POLCs to stabilize the grid during events and meet safe load operation requirements.

These multi-mode CIDs have altered the characteristics of traditional power systems, among

which the frequency response has changed dramatically.

1.1.1 Traditional Frequency Control and Response

Frequency of power systems represents the active power balance between generations and

loads, and is determined by the rotating speed of synchronous generators. Traditionally,

frequency regulations are accomplished purely by synchronous generators. A feedback loop is

built that uses the frequency measurement to adjust the output of the synchronous generator

so that the power balance can be met. In this case, the frequency response is mainly

determined by the parameters of the synchronous generators and their frequency control

loops. Based on time scales, frequency response can be categorized into three periods, i.e.,

inertial response, primary control response and secondary control response. The inertial and

primary control responses have a similar time scale of seconds, while the secondary control

response has a slower time scale, which is tens of seconds to minutes. Thus, the secondary

control response is out of scope of this dissertation and will not be discussed.

� Inertial response. When a power imbalance occurs, the kinetic energy stored in

synchronous generators or motor loads transfers automatically into electric power

due to the electromagnetic coupling. The transferred electric power is denoted as
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the inertial response. Physically, the combined moment of inertia of the synchronous

machine and turbine governs the energy transfer rate, and thus, mainly determines the

rate of change of frequency (ROCOF) after a disturbance. In power system analysis,

the inertia characteristics is represented by the inertia constant, defined as the kinetic

energy in watt-seconds at rated speed divided by the VA base, which mathematically

serves as the time constant of the swing equation. The inertial response occurs within

the very first few seconds following a change in the system frequency.

� Primary control response. The primary control is responsible for demand-supply

balance following a large disturbance and ensures the synchronous machines operate

at constant speed. It is denoted as electric power from all resources that eliminates the

imbalance. The primary response can be provided by governors within generators as

well as loads. A governor is a local feedback controller that senses the frequency and

acts on the prime mover of the generator. It receives the mechanical output reference

from a proportional feedback control, which defines the variation in power output

in steady state with respect to a variation in frequency and is known as the droop.

Interruptible load resources can improve the primary response by disconnecting from

the grid when the frequency reaches a pre-defined value [10]. The primary response

is mainly determined by the proportional gain and the dynamics of the governors and

turbines. It becomes increasingly dominant as the mechanical inputs increase.

1.1.2 Current Status Under Increasing Renewable Penetration

Inadequacy

As traditional plants have been partially replaced by wind, photovoltaic and other

alternative sources, frequency response has degraded, particularly in areas with high levels

of penetration. The response discussed here is specifically referred to the transient period,

that is, the period before frequency achieves steady state. In most CISs, the inherent

electromagnetic couplings are either fairly weak, such as the double fed induction machine

(DFIM)-based wind turbine generator (WTG) [67], or totally decoupled, like the full

converter-based WTG [58], which results in the reduction of the system inertia. For example,
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during the year 2012, several occasions took place in Germany where around 50% of overall

load demand was covered by wind and photovoltaic units for a few hours. The regional

inertia within the German power system dropped to dramatically lower levels than usual

due to the temporary lack of rotating masses connected to the system [106].

Decline in the primary control response has been observed in the Eastern Interconnection

of the United States. North American Electric Reliability Council (NERC) has defined the

primary control response (NERC Glossary 7) mathematically as the net change in a balancing

area’s net actual interchange for a change in interconnection frequency, denoted as β and

measured in MW/0.1Hz. Theoretically, it should be increasing with the increase of load and

generation. Since 1994, the Eastern Interconnection β has declined roughly 20 percent even

though it should have been increasing in proportion to a 20 percent increase in customer

demand [70]. It is partially due to the deployments of renewable sources as they normally

operate at the maximum or near-maximum output, which allows little or no headroom for

the under-frequency response.

Inadequacy of frequency response is mainly referred to noncompliance with minimum

ROCOF constraints associated with generators ROCOF relays (ROCOF inadequacy)

and instantaneous minimum frequency requirements associated with under-frequency load

shedding (UFLS) relays (nadir inadequacy) [16]. Currently, the latter one is of concerns as

larger excursions of frequency and tie-line power may trigger unnecessary relay actions, in

which case the system has adequate capacity to attain a safe steady state. This type of

actions is denoted as the transient relay action in [84] and becomes more of a threat for safe

and efficient operations in networks with high renewable penetration.

Variability

Intermittent outputs from renewable sources require the commitments of tradition plants

to be more frequent and variable. Therefore, the inertia in a connection will become

increasingly time-variant. In December 2012, based on the recorded power dispatch data

in Germany, the aggregated system inertia constant is estimated to be changing from 5.5 to

3 seconds [106]. Even at the same time, different locations could have different penetration

levels, and thus frequency dynamics become differently fast in individual areas. Time and
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space-variant system inertia will make the availability of frequency control services more

uncertain, increasing the risk of larger frequency deviations and even collapses. Contrary

to the unnecessary UFLS, a UFLS relay set for high inertia situation may not arrest the

decline when the current inertia is low. With continuous deployments of renewable sources,

larger inertia variations will take place in shorter time windows. Situational awareness and

adaptivity are of great importance for frequency control.

1.1.3 Frequency Control with Converter-Interfaced Sources

Currently, grid-supportive functions of the grid-feeding CISs to improve system frequency

have been under intensive studies. Among all CISs, WTGs are preferred to be integrated

with grid-supportive functions due to the large amount of available kinetic energy. Other

sources will have to operate at certain de-load conditions or integrate with energy storage

units. Bases on mechanisms, the existing methods can be divided into two categories, that

is, supplementary signal-based approaches [18, 46, 47, 50, 53, 65] and synchronization signal-

based approaches [30, 35, 120, 121].

The most common and representative method is to provide an additional signal associated

with the measured grid frequency deviation or its differential to the torque/power or speed

reference value to be tracked [35]. Then, the inertial response is associated with the ROCOF,

which can be generated by filtering the frequency through a washout filter [46], while the

synthetic primary control response corresponds to the frequency deviation. The obtained

responses, however, degrade from the desired ideal ones due to low-pass filters in the

loop, responding time to commands [17] and the WTG speed recovery effect [23]. Besides

emulating standard responses, any pre-defined signals can be sent whereby the amount of

supportive active power can be precisely controlled [47]. For off-shore wind farms connected

with high-voltage direct current (HVDC) transmission networks, the energy stored in the

DC-link can be combined with the kinetic energy to provide a longer support duration

[39, 53].

The other type of approaches is to mimic the power-angle relation of traditional

synchronous generators by means of modifying either the phase-lock loop (PLL) [30, 35]

or the active power controller [120, 121]. The angle used by the Park’s transformation for
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synchronization is no longer obtained through the vector alignment, but calculated using

the swing dynamics. Thus, inertia, load-damping effect and droop characteristics can be

provided [121]. The synthetic responses obtained using this type of methods are assessable

and programmable. However, since the controller has to operate at all time for CISs to

maintain synchronization, it will respond to any size of disturbances and de-load from the

MPPT mode.

1.2 Motivation and Objective

Although considerable numbers of approaches have been proposed, utilizing these functions

towards adequate frequency response, i.e., bounded within the defined safety 1 limits for a

given set of contingency events, is challenging. On the other hand, both academia [10, 84, 106]

and industry [14, 16] have proposed the adequacy of frequency response as a new task, which

is also the ultimate objective in this dissertation.

One of the most challenging aspects lies in the hybrid behaviors of CISs. Most CISs

operate at the MPPT mode during most times for efficient energy extraction, but switch to

grid-supportive modes in time during certain events to ensure response adequacy. Switchings

are supervised via deadbands and other thresholds. These deadbands prevent CISs to

respond to small frequency fluctuations in the grid and thus guarantee more power extraction.

However, a large deadband may limit the opportunity for CISs to provide timely sufficient

support during a disturbance. This is a crucial trade-off between economic and reliable

operations.

The aforementioned issue leads to the two following questions: Under a certain

disturbance, can the designed supportive modes preserve the desired frequency adequacy?

If so, what is the largest deadband that preserves the adequacy? These questions arise

from actual power system operations faced by transmission system operators (TSO) such

as, the Hydro-Québec [14]. However, as pointed out in [108], the available responding time

(equivalent to the deadband setting) for CISs to maintain bounded frequency response is

1The term safety is adopted from the control literature and in this context means a well-defined and
allowable operating region. A safe response means the trajectories of all concerned states stays within
defined safety limits.
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usually unclear as illustrated in Fig. 1.1. Few methods have been proposed to answer

the above questions beyond extensive simulations. On one hand, most deadband designs

are not associated with varying efforts of different grid-supportive modes. On the other

hand, fixed deadbands may not be able to handle a high penetration condition as the

commitments of synchronous generators could change dramatically over time due to the

stochastic characteristics of renewable sources. In this dissertation, reachability is introduced

and a systematic framework is established to analyze and synthesize the switchings.
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Figure 1.1: Challenges of synthesizing support modes in CIS as the switching instants
between modes to achieve an adequate frequency response are still unclear.

Another challenge is that the synthetic responses are not ideal and difficult to assess.

The main reason is the prime mover dynamics. Take inertia emulation using WTG as an

example. Frequency measurement should be sent to the scaled differentiator K d
dt

whereby

the ideal synthetic inertia constant will be K. However, since the transfer rate from kinetic

energy to electric power in WTG is not constant due to turbine dynamics, the real emulated

inertia constant degrades from K as illustrated in Fig. 1.2 and is time-varying [126]. In

addition, the level of degradation depends differently on variable sources. These uncertain

factors make the assessment of contribution from CIS difficult or even impossible, let alone

coordination to achieve response adequacy. It is also the case for most synchronization signal

based approaches as usually the prime mover dynamics are not considered [120, 121]. Thus,

the question would be is there a certain control configuration such that the emulated response
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can be ideal. In this dissertation, model matching techniques are proposed to address the

aforementioned issues.
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Figure 1.2: Real emulated inertial response degrades from the ideal one due to prime mover
dynamics.

From the control diagram perspective, the control synthesis problems are addressed by

two different means. The first one focuses on supervision or switching of a hybrid controller

with known structure, including control input, to satisfy the control specifications. The

second one is to design a structure, such as dynamic feedback loop, so that the generated

control input completes the objective. Thus, the control design part of this dissertation is

spitted into two parts: switching synthesis and input synthesis.

1.3 Dissertation Outline

This dissertation is organized in following chapters:

In Chapter 2, necessary models for frequency control are developed. The system

frequency response (SFR) model and the center of inertia (COI) frequency are discussed.

As a representative CIS, the WTG is selected as the actuator. An universal model

reduction technique called selective modal analysis (SMA)-based model reduction is applied

to the WTG. By combining the SFR model and the reduced-order model of the WTG, an

augmented SFR (ASFR) is obtained. The emulated inertial and primary control responses

are approximately evaluated as the corresponding coefficients in the swing equation for the

purpose of intuition.
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In Chapter 3, the approaches on safety verification and their applications in power

systems are discussed, particularly the so-called barrier certificate method. Then, algorithmic

solutions for the barrier certificate method are provided as the preliminaries.

In Chapter 4, a new concept region of safety (ROS) is proposed whereby the safe

switching principle is concluded. The largest ROS is interpreted in the sense of the backward

reachability. To estimate the largest ROS, an iterative algorithm and the occupation

measure-based optimization formulation are proposed, respectively. Geometry interpretation

of the occupation measure-based formulation is given. Both approaches as well as the

reviewed methods are validated on a numerical example. The pros and cons of the two

approaches are discussed. Based on the framework, first the switching instants (equivalent

to the thresholds) for multi-mode WTGs towards response adequacy are analyzed on a

single-area system. Secondly, an adaptive safety supervisory control (SSC) is proposed,

which allows to accommodate a scheduling loop for robustness against variations of the

system inertia. The proposed SSC is first verified on a microgrid in Simulink, and then

implemented on the IEEE 39-bus system in Transient Security Assessment Tool (TSAT).

Finally, the proposed controller is implemented on the Hardware Test Bed (HTB) at Center

for Ultra-Wide-Area Resilient Electric Energy Transmission Networks (CURENT).

In chapter 5, a two-level control diagram is proposed so that the frequency of a diesel-

wind mixed microgrid satisfies the temporal logic specifications (TLSs). The mixed integer

linear programming (MILP) based model checking method is introduced so that the control

problem with TLSs an be converted into a numerical optimal control (NOC) problem. The

controller is configured into a scheduling level and a triggering level. In the scheduling level,

a series of Boolean control signals are computed by solving the NOC problem, where the

frequency response predicted by the ASFR satisfies the defined specifications under a given

worse-case contingency. In addition, the scheduling level will constantly re-schedule the

signal based on the operating condition and varying specifications. The triggering level will

measure the frequency and detect whether a severe contingency close to the worst case is

happening. Once such a contingency is detected, the scheduled signals are applied to the

WTGs. Finally, the control performance is verified on the nonlinear 33-node based microgrid

in Simulink.
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In chapter 6, a novel model reference control (MRC) based synthetic inertia emulation

strategy is proposed. The reference model is designed to have a similar structure to the

frequency response model with desired inertia. Through active power measurement and

state feedback, the WTG generates additional active power to guarantee that the diesel

generator speed follows the frequency from the reference model. This novel control strategy

ensures precise emulated inertia by the WTG as opposed to the trial and error procedure

of conventional methods. This controller is also robust against parameter uncertainty. By

guaranteeing performance, safety bounds can be easily derived based on the reference model

under the worst-case scenario. Then, adequate response can be achieved by scheduling

the inertia according to the operating point of the network. Moreover, the capability of

coordinating multiple WTGs to provide required inertia under the proposed control is verified

on the nonlinear 33-node based microgrid in Simulink. Finally, the proposed controller is

implemented on the HTB at CURENT.

In chapter 7, the work in this dissertation is summarized and suggestions for future work

is provided.

1.4 Summary of Contributions

The contributions of this dissertation are summarized as follows:

� An ASFR model is derived, where a reduced-order model of the WTG representing

the supportive energy associated with the supplementary signals is incorporated. The

emulated inertial and primary control responses are approximately evaluated as the

corresponding coefficients in the swing equation. As a result, the equivalent inertia

and load-damping constants become time-varying.

� The set theory-based safety verification is introduced to provide guidelines for multi-

mode WTGs to maintain adequate frequency response. A new concept, ROS, is

proposed, and the safe switching principle is interpreted. The largest ROS is explained

in the sense of the backward reachability.
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� Two different schemes to estimate the largest ROS are proposed. First, an iterative

algorithm based on the barrier certificate theory is proposed. To further provide

convergence proof, a mathematically intuitive formulation based on the occupation

measure in the functional space is established. Geometry interpretation of this

formulation is given. Coincident results by both methods as well as the reviewed

approaches are obtained. Pros and cons of the two approaches are discussed.

� The switching instants for multi-mode WTGs to ensure adequate frequency response

are obtained through the study of the ASFR model of a single-area system. A safe

switching window is discovered and a safe speed recovery strategy is proposed to

guarantee the safety of the second frequency dip.

� An adaptive SSC is proposed with a two-loop configuration, where the supervisor is

scheduled with respect to the renewable penetration level. The SSC is enable to timely

switch the WTGs to emulate inertial response and provide the real-time margin to the

critical limit, that is, the remaining available time for a safe switching. The proposed

controller is first verified on a single-machine three-phase nonlinear microgrid model

in Simulink, and then implemented on the phasor domain IEEE 39-bus system with

more than 50% renewable penetration in TSAT in a decentralized fashion. Finally, the

controller is verified experimentally on the HTB at CURENT.

� The TLSs are considered in the frequency control problem. The mixed integer linear

programming (MILP) based model checking method is introduced so that the control

problem with TLSs is converted into a NOC problem. A two-level control diagram

is proposed to accommodate the NOC problem, which cannot be solved in real time

under occurrence of events. The configuration is verified on the nonlinear 33-node

based microgrid.

� A novel MRC based synthetic inertia emulation strategy is proposed. This novel control

strategy ensures precise emulated inertia by the WTG as opposed to the trial and error

procedure of conventional methods, and is also robust against parameter uncertainty.

Adequate response is achieved by scheduling the inertia according to the operating
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point of the network. Moreover, the capability of coordinating multiple WTGs to

provide required inertia under the proposed control is verified on the nonlinear 33-

node based microgrid in Simulink. Finally, the proposed controller is implemented on

the HTB at CURENT.
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Chapter 2

Power System Modeling for

Frequency Control

This chapter aims at establishing the mathematical models for frequency control problems.

To maintain feasible computation complexity, models that are most relevant to frequency

dynamics are extracted, which turn out to be the mechanical components and their

corresponding controllers. The traditional SFR is discussed in Section 2.1. The WTG model

and the SMA-based model reduction is presented in Section 2.2. The ASFR is derived in

Section 2.3 by closing the interacting loop between the SFR and WTG whereby the support

is quantified approximately. Part of the results in this chapter appeared in [126] and [110]

2.1 System Frequency Response

Frequency in power systems is governed by the rotating speed of all connected synchronous

generators. During a disturbance, individual machines are retarding or accelerating at

different rates. In this section, the frequency response of a single synchronous generator

is discussed first. Then, the regional or systemic frequency represented by individual or

group behaviors of synchronous generators are derived.
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2.1.1 Synchronous Generators

A synchronous generator consists of the prime mover, turbine, speed governor, exciter and

synchronous machine. In addition, it may be equipped with the automatic generation control

(AGC) and power system stabilizer (PSS). Among all components, the swing motion of the

electric machine, turbine and speed governor mainly determine the frequency response of a

synchronous generator. The associated dynamics can be expressed using a set of simplified

ordinary differential equations as follows [94]

∆ω̇ =
1

2H
(∆Pm −∆Pe)

∆Ṗm =
1

τch

(∆Pv −∆Pm)

∆Ṗv =
1

τgv

(−∆Pv −
1

R
∆ω)

(2.1)

where ω is the speed of the synchronous machine and H is the inertia constant of the

synchronous machine. R is the droop setting of the speed governor. τch and τgv is the time

constant of the turbine and governor, respectively. Pm, Pe and Pv are mechanical power,

electric power and valve position, respectively.

The mechanical part of a synchronous machine expressed in (2.1) can be denoted as

the frequency response model. The electric power variation ∆Pe reflects the demand and is

regarded as the disturbance input to the equations. The frequency responses of a synchronous

generator using nonlinear simulation in Transient Security Assessment Tool (TSAT) [82] and

its corresponding frequency response model in the form of (2.1) are compared in Fig. 2.1.

The response in blue is obtained by imposing the simulated ∆Pe on the frequency response

model. As shown, the mechanical components of a synchronous generator are sufficient to

represent its frequency characteristics.

In order to use the equations independent from algebraic constraints, a simplified net

power change equation in [91] is employed

∆Pe = ∆Pd +D∆ω (2.2)
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where ∆Pd is the non-frequency-sensitive demand change, and D∆ω is the frequency-

sensitive demand change. D is denoted as the load-damping effect and expressed as percent

change in load divided by percent change in frequency.
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Figure 2.1: Response comparison of the frequency response model and nonlinear simulation
in TSAT.

2.1.2 COI Frequency

Actually, the frequency either in a plant, a balancing authority or an interconnection is an

averaged behavior of groups of generators. Regional frequency can be obtained by vertically

averaging unit frequencies. This averaging eventually leads to the system frequency. During

the averaging, the MVA ratings or inertia can be used as the weighting factors, leading to

the MVA-weighted averaged frequency [63, 64] or the COI frequency [5, 104]. The COI

frequency, or frequency at the equivalent inertial center, can be described by the so-called

SFR models, which can be obtained by adding the power equations in (2.1) and (2.2) of all

synchronous generators

∑
i

2Hi∆ω̇i =
∑
i

∆Pm,i −
∑
i

∆Pd,i −
∑
i

Di∆ωi∑
i

τch,i∆Ṗm,i =
∑
i

∆Pv,i −
∑
i

∆Pm,i∑
i

τgv,i∆Ṗv,i = −
∑
i

∆Pv,i −
∑
i

1

Ri

∆ωi

(2.3)
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Define the following terms as

Hc =

∑
i

HiSi∑
i

Si
, ωc =

∑
i

Hiωi∑
i

Hi

∆PM =

∑
i ∆Pm,i∑
i

Si
, ∆PD =

∑
i ∆Pd,i∑
i

Si
, ∆PV =

∑
i ∆Pv,i∑
i

Si
,

(2.4)

where Si is the MVA rating of synchronous generator i. The terms Hc and ωc are denoted

as the COI and COI frequency, respectively. Then, Eq. (2.3) can be further simplified as

follows

2Hc∆ω̇c = ∆PM −∆PD −D∆ωc

τch∆ṖM = ∆PV −∆PM

τgv∆ṖV = −∆PV −
1

R
∆ωc

(2.5)

with unknown parameters D, R, τch and τgv, which can be calculated using the approach

in [6] or estimated using measurement data. In this dissertation proposal, we assume that

these parameters have been obtained. Eq. (2.5) is a typical SFR model, and can be regarded

analytically as the common mode of the system.

While being ignored by the SFR model, individual machines (areas) will actually oscillate

about the inertial center. The magnitude of deviation from the COI frequency is determined

by the electric distance to the inertial center, which is further determined by the line

impedance. Based on this fact, extra margins can be added to the safety limit to prevent

the frequency of individual machines (areas) from reaching the UFLS zone. Thus, in this

dissertation proposal the objective is to guarantee the adequacy of the COI frequency, which

is also the research target in most related works [25, 59, 63, 64].

2.2 WTG Modeling and Model Reduction

Among all CISs, the WTGs are preferred to be integrated with grid-supportive functions due

to the large amount of stored kinetic energy. Therefore, WTGs are chosen as the actuators.
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2.2.1 Wind Power and Wind Turbine

The power contained in the form of kinetic energy in the wind crossing at a speed vwind [m/s]

and surface Awt [m2] is expressed by [1]

Pwind =
1

2
ρ πR2

t︸︷︷︸
Awt

v3
wind [W] (2.6)

where ρ is the air density, Rt is the radius of the wind turbine in meter and Awt is the wind

turbine swept area. The power extracted by the wind turbine from Pwind can be expressed

as

PM =
1

2
ρ πR2

t︸︷︷︸
Awt

v3
windCP (λ, θt) [W] (2.7)

The term CP (λ, θt) is the power coefficient, which is a dimensionless parameter that expresses

the energy extraction efficiency of a wind turbine, and is often as a function of the tip speed

ratio λ and the pitch angle θt [degree].

Let ωT be the turbine speed, ωM and ωR be the rotor mechanical and electric speed of

the electric machine, respectively, all in rad/s. Let k be the gear ratio between the turbine

and the machine, p be the pole pair number of the electric machine. Then

ωR = p× ωM = p× k × ωT [rad/s] (2.8)

Note that the relation in (2.8) is also the same for their bases denoted by the overline

ωR = p× ωM = p× k × ωT [rad/s] (2.9)

Therefore, these speeds are the same in per unit (denoted as p.u. for short)

ωr = ωm = ωt [p.u.] (2.10)
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And the tip speed ratio is

λ =
vtip
vwind

=
RωT
vwind

=
RωR
pkvwind

=
RωrωR
pkvwind

(2.11)

A common used expression for the power coefficient is [86]

Cp =0.22

(
116

λi
− 0.4θt − 5

)
e
− 12.5

λi (2.12)

where

λi =

(
1

λ+ 0.08θt
− 0.035

θ3
t + 1

)−1

(2.13)

The theoretical maximum value of the power coefficient is 0.593, i.e., CP,max = 0.593, which

is the so-called Betz’s limit [1].

The mechanical torque input to the electric machine reads

TM =
PM
ωM

[Nm] (2.14)

The ratings of the WTG in this dissertation proposal is arranged as follows. For simplicity,

instead of aggregating hundreds of WTGs in a wind farm, we will use one electric machine

with the desired rating and scale the wind turbine up closely to this rating as shown in Fig.

2.2.

Wind Turbine 

Wind Turbine 

Wind Turbine 

Electric 

Machine

MP

ES

tN

Figure 2.2: Aggregating wind turbines to an electric machine with desired rating.

It is necessary to use the electric MVA base of the machine SE to define the torque base

since SE is the base of the swing equation where the mechanical torque in per unit appears.
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The torque base for the electric machine reads

T =
pSE
ωR

[Nm] (2.15)

and the mechanical torque input from the wind turbine with respect to the electric machine

base can be expressed as

Tm =
NtTM

T
=
NtPM
ωM

ωR

pSE
=
NtPM

SE

ωR
pωM

=
NtPM

SE

ωR
ωR

=
NtPM

SE

1

ωr
[p.u.] (2.16)

where Nt is the scaling parameter. In addition, we have

Tm =
Pm
ωr

, If SE = NtPM (2.17)

Tm =
Pm
ωr

NtPM

SE
, If SE 6= NtPM (2.18)

where PM is the base of a single wind turbine and usually takes the value of the nominal

mechanical power output.

2.2.2 WTG Modeling

In the time scale of inertial and primary control response, the most relevant dynamics in a

WTG are the induction machine and its speed regulator via the rotor-side converter (RSC).

The RSC controller regulates the power output and rotor speed of the WTG simultaneously

by adjusting the electromagnetic torque. Normally the frequency supportive functions are

integrated within this subsystem. The grid-side converter (GSC) simply feeds the power

from the RSC into the grid by regulating the DC-link voltage. The responding time of

the DC voltage regulation is usually much faster than that of the RSC current loop for

stability reasons. As a result, the GSC and its corresponding controller are less relevant

to the frequency supportive functions, and can be omitted for theoretical studies (not in

simulations) similarly in [51, 66]. In addition, the WTG can be assumed to operate at

partial loaded condition, and the pitch control can be omitted.
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Detailed procedures of modeling WTGs will not be described here. A fifth-order DFIM-

based WTG model with parameters is given in Appendix B.1. Meanwhile, a third-order

DFIM-based model adopted from [86] is used in some of the case studies, and thus given in

Appendix B.2.

2.2.3 Selective Modal Analysis based Model Reduction

To reinforce the analysis in the following chapters, a reduced-order model of the WTG is

derived. The SMA-based model reduction has proven to be successful in capturing the active

power dynamics of WTGs [86] and is chosen for our study. Different from [86], the reduced-

order model here aims at representing the effect of the supplementary control on the active

power variation of WTGs.

The supplementary input us is assumed to be made up of the ROCOF Kie∆ω̇, system

frequency deviation Kpc∆ω and flexible input uf , where Kie and Kpc are the controller gains.

The wind speed can be assumed as a fixed value during the time window of the transient

frequency response, and thus its variation ∆vwind is equal to zero. Given Q∗g, the differential-

algebraic model of the WTG in Appendix B.1 can be linearized about an equilibrium point

corresponding to a specific wind speed v∗wind and terminal voltage magnitude V ∗s (also given

in Appendix B.1) to obtain the linearized differential-algebraic model as follows

 ∆ẋ

0

 =

 As Bs

Cs Ds

 ∆x

∆y

+

 Ms1

Ns1

∆ω̇ +

 Ms2

Ns2

∆ω +

 Msf

Nsf

uf
∆Pg = [Es Fs]

 ∆x

∆y

 (2.19)

where

x = [ψqs, ψds, ψqr, ψdr, ωr, x1, x2, x3, x4]T (2.20)

y = [vqr, vdr, iqr, idr, Pg, Qg, ids, iqs]
T (2.21)
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Using Kron reduction on Eq. (2.19) yields the following state-space model

∆ẋ = Asys∆x+Bsys1∆ω̇ +Bsys2∆ω +Bsysfuf

∆Pg = Csys∆x+Dsys1∆ω̇ +Dsys2∆ω + +Dsysfuf

(2.22)

where

Asys = As −BsD
−1
s Cs Csys = Es − FsD−1

s Cs

Bsys1 = Ms1 −BsD
−1
s Ns1 Dsys1 = −FsD−1

s Ns1

Bsys2 = Ms2 −BsD
−1
s Ns2 Dsys2 = −FsD−1

s Ns2

Bsysf = Msf −BsD
−1
s Nsf Dsysf = −FsD−1

s Nsf

At the equilibrium point, the matrix of the participation factors, and eigenvalues of Asys are

shown in (2.23) and (2.24). The WTG rotor speed ∆ωr is closely related to its active power

output, and the mode where ∆ωr has the highest participation would capture the relevant

active power dynamics. As shown, ∆ωr has the highest participation at 85% in the mode
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λ8 = −0.26. Thus, this mode is selected as the most relevant mode as λr = λ8.

ψqs

ψds

ψqr

ψdr

ωr

ω∗f

x1

x2

x3

x4



0.0008 0.0188 0.4866 0.4866 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0181 0.0050 0.4894 0.4894 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

0.0013 0.9531 0.0133 0.0133 0.0003 0.0195 0.0000 0.0000 0.0000 0.0000

0.9698 0.0040 0.0099 0.0099 0.0113 0.0003 0.0011 0.0000 0.0000 0.0000

0.0000 0.0003 0.0000 0.0000 0.0000 0.0004 0.0001 0.8505 0.0038 0.1471

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0025 0.9961 0.0003

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1470 0.0001 0.8526

0.0012 0.0000 0.0000 0.0000 0.0038 0.0001 0.9973 0.0000 0.0000 0.0000

0.0000 0.0187 0.0005 0.0005 0.0183 0.9617 0.0000 0.0000 0.0000 0.0000

0.0088 0.0001 0.0003 0.0003 0.9662 0.0179 0.0015 0.0000 0.0000 0.0000


(2.23)

λ =
[
−1070 −691 −5.45± 397i −13.5 −13.6 −2.68 -0.26 −0.001 −0.05

]
(2.24)

Since only ∆ωr is considered as the most relevant state, the other states are less relevant

and denoted as z(t). Eq. (2.22) can be rearranged as

 ∆ω̇r

ż

 =

 A11 A12

A21 A22

 ∆ωr

z

+

 Br1

Bz1

∆ω̇ +

 Br2

Bz2

∆ω +

 Brf

Bzf

uf
∆Pg = [Cr Cz]

 ∆ωr

z

+Dsys1∆ω̇ +Dsys2∆ω +Dsysfuf

(2.25)

The less relevant dynamics are

ż = A22z + A21∆ωr +Bz1∆ω̇ +Bz2∆ω +Bzfuf (2.26)

And the most relevant dynamic is described by

∆ω̇r = A11∆ωr + A12z +Br1∆ω̇ +Br2∆ω +Brfuf (2.27)
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In (2.27), z can be expressed by the following expression

z(t) = eA22(t−t0)z(t0) +

∫ t

t0

eA22(t−τ)A21∆ωr(τ)dτ︸ ︷︷ ︸
response without control input

+

∫ t

t0

eA22(t−τ)Bzfuf (τ)dτ︸ ︷︷ ︸
response under flexible input

+

∫ t

t0

eA22(t−τ)Bz1∆ω̇(τ)dτ︸ ︷︷ ︸
response under inertia emulation

+

∫ t

t0

eA22(t−τ)Bz2∆ω(τ)dτ︸ ︷︷ ︸
response under primary frequency control

(2.28)

Using the most relevant mode λr, ∆ωr(τ) can be expressed as [86]

∆ωr(τ) = crvre
λrτ (2.29)

where λr is the relevant eigenvalue, vr is the corresponding eigenvector and cr is an arbitrary

constant. The accuracy of (2.29) is guaranteed by the dominant participation of ∆ωr in the

mode λr, which can be used in solving the first integral in (2.28). Since A22 is Hurwitz and

its largest eigenvalue is much smaller than λr, the natural response will decay faster and can

be omitted. The essential reason is that A22 represents electro-magnetic dynamics which are

faster than the electro-mechanical dynamics represented by λr. Then, the response without

the control inputs in (2.28) will approximately equal to the forced response represented as

follows

eA22(t−t0)z(t0) +

∫ t

t0

eA22(t−τ)A21∆ωr(τ)dτ︸ ︷︷ ︸
response without control input

≈ (λrI − A22)−1A21∆ωr (2.30)

The ROCOF ∆ω̇, the stabilized frequency deviation ∆ω are assumed to be fixed during the

time window of interests, then the corresponding integrals in (2.28) are easily calculated as

∫ t

t0

eA22(t−τ)Bz1∆ω̇(τ)dτ︸ ︷︷ ︸
response under inertia emulation

≈ (−A22)−1Bz1∆ω̇ (2.31)

∫ t

t0

eA22(t−τ)Bz2∆ω(τ)dτ︸ ︷︷ ︸
response under primary control

≈ (−A22)−1Bz2∆ω (2.32)
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Approximating the integral associated with uf in (2.28) as

∫ t

t0

eA22(t−τ)Bzfuf (τ)dτ︸ ︷︷ ︸
response under flexible input

≈ (−A22)−1Bzfuf + δfuf (2.33)

Eq. (2.33) is obtained by first assuming the flexible input uf as a constant and compensating

the induced error by a parameter uncertainty δf .

Finally, the reduced-order WTG model with the control inputs is

∆ω̇r = Ard∆ωr +Brd1∆ω̇ +Brd2∆ω + (Brdf + ∆f,B)uf

∆Pg = Crd∆ωr +Drd1∆ω̇ +Drd2∆ω + (Drdf + ∆f,D)uf

(2.34)

where

Ard = A11 + A12(λrI − A22)−1A21, Crd = Cr + Cz(λrI − A22)−1A21 (2.35)

Brd1 = Br1 + A12(−A22)−1Bz1, Drd1 = Dsys1 + Cz(−A22)−1Bz1 (2.36)

Brd2 = Br2 + A12(−A22)−1Bz2, Drd2 = Dsys2 + Cz(−A22)−1Bz2 (2.37)

Brdf = Brf + A12(−A22)−1Bzf , Drdf = Dsysf + Cz(−A22)−1Bzf (2.38)

∆f,B = A12δf , ∆f,D = Czδf (2.39)

Finally, one reduced-order model can be obtained as Ard = −0.27, Crd = 0.26. Note that

the mode λ8 = −0.26 is well preserved.

2.3 ASFR and Support Quantification

The SFR model in (2.5) can be regarded as the plant, while the reduced-order WTG model

expressed in (2.34) can be regarded as the controller. Let uf be zero for now. By closing the
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loop, the ASFR model can be expressed as

2Hc∆ω̇c = ∆PM + kscal∆PG −∆PD −D∆ωc

τch∆ṖM = ∆PV −∆PM

τgv∆ṖV = −∆PV −
1

R
∆ωc

∆ω̇r = Ard∆ωr +Brd1∆ω̇c +Brd2∆ωc

(2.40)

where kscal denotes a change of base if necessary and

∆PG = Crd∆ωr +Drd1∆ω̇c +Drd2∆ωc (2.41)

Having the ASFR model, it is easy to shown that the supportive power expressed in

(2.41) due to the signal ∆ω̇c and ∆ωc will influence the values of Hc and D independently.

To evaluate the emulated inertia, the terms Brd2 and Drd2 are set to zero. The explicit forced

output response of (2.41) due to ∆ω̇c is given by

∆PG(t) = Crd

∫ t

t0

eArd(t−τ)Brd1∆ω̇c(τ)dτ +Drd1∆ω̇c(t) (2.42)

During the time window of inertia response Th = {t : 0 ≤ t ≤ th}, the ROCOF is

approximately fixed. Then, ∆ω̇c can be pulled out of the integral. Integrating (2.42) with

t0 = 0 yields

∆PG(t) = (Drd1 − CrdA
−1
rd (I − eArdt)Brd1)∆ω̇c (2.43)

Substituting (2.43) back into the swing equation in (2.40) and rearranging the state yields

[2Hc + 2He(t)]∆ω̇c = ∆PM −∆PD −D∆ωc (2.44)

where

He(t) = 0.5[−Drd1 + CrdA
−1
rd (I − eArdt)Brd1] (2.45)
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To evaluate the emulated load-damping effect, the terms Brd1 and Drd1 are set to zero.

The explicit forced output response of (2.34) due to ∆ωc is given as

∆PG(t) = Crd

∫ t

t0

eArd(t−τ)Brd2∆ωc(τ)dτ +Drd2∆ωc(t) (2.46)

After the frequency is stabilized by the governor, i.e., t ∈ Tp = {t : tp ≤ t ≤ ts}, the term

∆ωc can be pulled out of the integral. Integrating (2.47) with t0 = tp yields

∆PG(t) = (Drd2 − CrdA
−1
rd (I − eArd(t−tp))Brd2)∆ω (2.47)

Substituting (2.47) into the swing equation in (2.40) yields

2Hc∆ω̇c = ∆PM −∆PD − [D +De(t)]∆ωc (2.48)

where

De(t) = −Drd2 + CrdA
−1
rd (I − eArd(t−tp))Brd2 (2.49)

Here based on the model and its operating condition in Appendix B.2, the reduced-order

WTG is obtained as Ard = −0.0723 and Crd = 0.0127. Brd1, Drd1 and Brd2, Drd2 with the

corresponding Kie and Kpc are listed in Table 4.1. The parameters of SFR model in (2.5) are

assumed to be estimated well and given in Appendix A.1. Then, the equivalent time-varying

inertia and load-damping effects are shown in Fig. 2.3.
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Figure 2.3: Time-varying emulated inertia and load-damping coefficient.
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Switching Analysis and Supervisory
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Chapter 3

Set Theoretic Approaches on Safety

Verification

The importance of safety verification increases tremendously for modern engineering systems

whose functions are safety-critical such as the transportation systems and power systems.

Safety verification is to secure the evolutions of system states. Thus, most approaches are

related to set theories and reachability. All set theoretic approaches can be categorized into

two main groups: set operation-based methods and passivity-based methods. On the other

hand, the verification can be cast either in the forward setting or the backward setting. This

chapter reviews approaches in safety verification and introduces some preliminaries that will

be used later.

This chapter is organized as follows. Section 3.1 reviews the set theoretic approaches

on safety verification, including a passivity-based verification method: the so-called barrier

certificate. Section 3.2 introduces the positivity certificates and computation techniques used

by the barrier certificate.

3.1 Safety Verification

Safety denotes the property that all system trajectories stay within given bounded regions,

thus, equipment damage or relay trigger can be avoided. Note this is similar, but not

identical, to what is called security in power industry but for purposes of this dissertation
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proposal we will assume satisfying safety conditions ensures secure operation. Consider the

dynamics of a power system governed by a set of ordinary differential equations (ODEs) as

ẋ(t) = f(x(t), d(t)), t ∈ [0, T ] (3.1)

where T > 0 is a terminal time, x(·) : [0, T ]→ Rn denotes the vector of state variables and

d(·) : [0, T ] → Rm denotes the vector of certain disturbances, such as, generation losses or

abrupt load changes. The vector fields f : Rn × Rm → Rn is such that for any d and initial

condition x0, the state equation (3.1) has a unique solution defined for all t ∈ [0, T ], denoted

by φ(t; d(t), x0) : [0, T ] → Rn. Note that we employ a semicolon to distinguish between the

arguments and the trajectory parameters.

For the verification tasks in power systems, the disturbances may be assumed to be

bounded in the set D ⊆ Rm, that is, d(·) : [0, T ] → D. Let X ⊆ Rn be the computational

domain of interests, XI ⊆ X be the initial set and XU ⊆ X be the unsafe set, then the

formal definition of the safety property is given as follows.

Definition 3.1 (Safety). Given (3.1), X, XI , XU and D, the safety property holds if there

exists no time instant T ≥ 0 and no piecewise continuous and bounded disturbance d :

[0, T ]→ D such that φ(t; d(t), x0) ∩XU 6= ∅ for all t ∈ [0, T ] and x0 ∈ XI .

Initial Point

Unsafe 

Set
Simulated 

Trajectory

Unsafe 

Set

Initial 

Set

Unsafe 

Set

Initial 

Set

(a) (b) (c)

Level Set of 

Passivity-Based 

Barrier 

 Moving  Set

Figure 3.1: Safety verification based on (a) simulation, (b) set operating and (c) passivity.

In other words, safety verification is to ensure there is no intersection between the possible

system trajectories and the given unsafe set. Three typical methods tackling this problem

are illustrated in Fig. 3.1 and will be briefly introduced in this section, the last of which,

the passivity-based methods, is the subject of this dissertation proposal.
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3.1.1 Simulations and Alternative Simulations

If the system is assured to be at a specific operating point x̃0 and subjected to a known

disturbance d̃, the safety can be verified by numerical integration of (3.1) to obtain the

trajectory as illustrated in Fig. 3.1 (a). In one hand, it is tremendous challenging to assure

the precise operating point and measure the exact disturbance. On the other hand, system

designs should aims at operations under multiple scenarios and unpredictable conditions.

These factors make this problem intractable. Nevertheless, the system is known to be

unsafe if one unsafe trajectory is found. Based on this observation, unsafe scenarios may

be discovered by exhaustive analysis. For example, in practical power system operations

exclusive simulations will be conducted in the control rooms known as the dynamic security

assessment [71]. Another solution is to try to generate a finite set of trajectories that will

exhibit all the behaviors of the system [28]. Rapidly-exploring random trees [13], sensitivity

analysis [12] and approximate bisimulation [27] are techniques to achieve this goal.

3.1.2 Set Operation-Based Verification

Set operation-based verification can be categorized in different ways. From execution point of

view, the set operation-based verification can be conducted using either the forward reachable

sets or backward reachable sets as illustrated in Fig. 3.2 [60]. In forward verification, the

reachable set of the initial set denoted by XF is computed under the system vector fields to

examine whether XF will intersect with XU . While, in backward verification, the reachable

set of the unsafe set denoted by XB is computed in reverse time and the intersecting condition

between XI and XB is examined.

From computation point of view, there are Lagrangian and Eulerian methods [60]. Both

types of methods can be executed in either forward or backward setting. Lagrangian methods

work with linear systems and seek efficient over-approximation of the reachable sets. Eulerian

method (also known as the level set method), which can deal with general dynamic systems, is

to calculate as closely as possible the true reachable set by computing a numerical solution

to the Hamilton-Jacobi partial differential equation (HJ PDE). Both methods are briefly

introduced in this subsection, respectively.
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Figure 3.2: Safety verification based on (a) forward reachable set, (b) backward reachable
set.

Lagrangian Methods

Lagrangian methods compute over-approximation of the reachable sets by propagating the

sets under the vector fields of linear systems in efficient manners. The efficiency relies on the

special representations of sets as boxes, ellipsoids, polytopes, support functions and so on.

Among all representations, the ellipsoids [49] and zonotopes [26], a sub-class of polytopes,

are widely-used. Applications of these techniques in power and energy systems are concluded

in Table 3.1. It is worth mentioning that nonlinear differential-algebraic systems have been

addressed in [3] by using the conservative linearization.

Table 3.1: Application of Lagrangian Methods in Power and Energy Systems

Reference Technique Topics

[36][119] Ellipsoid Uncertainty impact on power flow
[15] Ellipsoid Uncertainty impact on dynamic performance
[34] Ellipsoid Large-signal behavior of DC-DC converters
[115] Ellipsoid Locational impacts of virtual inertia on the frequency responses
[79] Zonotope Frequency dynamics with HVAC and HVDC transmission lines
[77][78] Zonotope Voltage ride-through capability of wind turbine generators
[37] Zonotope Uncertainty impact on power flow
[3][4][21] Zonotope Transient stability
[22] Zonotope Load-following capabilities maximization
[2] Zonotope Feasible ndal power injections estimation
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Eulerian Methods

Strictly speaking, the Eulerian method is known as the level set method. In this method,

the initial set at time t is implicitly represented by the zero sublevel sets of an appropriate

function denoted by φ(x, t) : Rn × R → R, where the surface of the initial set at time t is

expressed as φ(x, t) = 0. Consider a small variation along this surface, i.e., moving (x, t) to

a neighboring point (x+ dx, t+ dt) on the surface, the variation in φ will be zero

dφ = φ(x+ dx, t+ dt)− φ(x, t) = 0 (3.2)

which finally leads to the HJ PDE

∑
i

∂φ

∂xi

dx

dt
+
∂φ

∂t
= 0 (3.3)

The state evolution is governed by the ODE in (3.1). Thus Eq. (3.3) is cast as follows

∑
i

∂φ

∂xi
f(x, d) +

∂φ

∂t
= 0 (3.4)

This PDE describes the propagation of the reachable set boundary as a function of time under

the system vector field. By solving the PDE, precise reachable sets can be obtained, and

therefore this method is known as the convergent approximation [105]. Transient stability

[38][101] and voltage stability [100] are analyzed using this approach. However, to obtain

numerical solutions, one needs to discretize the state space, which leads to exponentially

increasing computational complexity and limits its application to systems with no more

than four continuous states [4].

Broadly speaking, the initial set at time t can be expressed by alternative manners, like

the occupation measure in [31]. Propagating such a measure (set-valued function) will lead

to the Liouville’s PDE. In spirit, the type of methods is closer to the level set method,

although may be in a different category from computation point of view.
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3.1.3 Passivity-Based Methods

Inspired by the Lyapunov function, a barrier certificate is proposed in [83] and formally

stated in the following theorem.

Theorem 3.2. Let the system ẋ = f(x, d), and the sets X ⊆ Rn, XI ⊆ X, XU ⊆ X and

D ∈ Rm be given, with f ∈ C(Rn+m,Rn). If there exists a differentiable function B : Rn → R

such that

B(x) ≤ 0 ∀x ∈ XI (3.5)

B(x) > 0 ∀x ∈ XU (3.6)

∂B(x)

∂x
f(x, d) < 0 ∀(x, d) ∈ X ×D (3.7)

then the safety of the system in the sense of Definition 3.1 is guaranteed.

The function B(x) satisfied the above theorem is called a barrier certificate. The zero

level set of B(x) defines an invariant set containing XI , that is, no trajectory starting in

XI can cross the boundary to reach the unsafe set. It is guaranteed by the negativity of

B(x) over XI and the decrease of B(x) along the system vector fields. Although conditions

in Theorem 3.2 is convex, it is rather conservative due to the satisfaction of (3.7) over the

whole state space. A non-convex but less conservative condition is also proposed in [83] as

follows.

Theorem 3.3. Let the system ẋ = f(x, d), and the sets X ⊆ Rn, XI ⊆ X, XU ⊆ X and

D ∈ Rm be given, with f ∈ C(Rn+m,Rm). If there exists a differentiable function B : Rn → R

such that

B(x) ≤ 0 ∀x ∈ XI (3.8)

B(x) > 0 ∀x ∈ XU (3.9)

∂B

∂x
f(x, d) < 0 ∀(x, d) ∈ X ×D s.t. B(x) = 0 (3.10)

then the safety of the system in the sense of Definition 3.1 is guaranteed.
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Eq. (3.10) reduces conservatism in the sense that the passivity condition only needs to

hold on the zero level set of B(x) instead of the whole state space. Compositional barrier

certificates are discussed in [99] and [98] for verification of the interconnected systems.

By using the barrier certificate, safety can be verified without explicitly computing

trajectories nor reachable sets. It has been employed in [52] and [114] to design the

safety supervisor to shutdown the wind turbines in emergent conditions. Voltage constraint

satisfaction with distributed generation and time-varying consumption is verified in [76].

3.2 Positivity for Barrier Certificates

The key property for the barrier certificates is to enforce positivity or non-negativity (also

denoted as semi-positivity) of functions over a given set K ⊆ Rn as

� p(x) is positive definite over a set K if and only if for any x ∈ K, p(x) > 0

� p(x) is positive semi-definite over a set K if and only if for any x ∈ K, p(x) ≥ 0

Any such description is called a positivstellensatz or nichtnegativstellensatz, which ends with

a combination of two German words stellen (places) and satz (theorem) [74]. This is a very

important problem, and a variety of efforts have been devoted to it. However, there is no

general solution to prove the above property. To tackle the problem algorithmically, the

classes of functions p(x) have to be further restricted. A good compromise is achieved by

considering the case of polynomial functions as every continuous function defined on a closed

interval [a, b] can be uniformly approximated as closely as desired by a polynomial function

based on the Weierstrass approximation theorem.

Once confined to polynomial data, that is, the function p(x) is polynomial and the set

K is defined by finitely many polynomial inequalities and equality constraints (denoted as

semi-algebraic sets), the problem is solvable under certain cases. In 1900, Hilbert posted a

list of 23 problems, the 17th of which was: Given a multivariate polynomial that takes only

non-negative values over the reals, can it be represented as a SOS of rational functions [89]?

The Hilbert’s 17th problem was answered by Artin in 1927 [9]. But generally the positivity of

polynomials is still under intensive studies, mainly being tackled from the algebraic geometry
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point of view [80]. From now on, we will use polynomials in this dissertation proposal to

represent sets and approximate continuous functions. In this section, two main computation

techniques are reviewed.

3.2.1 SOS Representations

Definition 3.4. A polynomial P (x) is a SOS if and only if there exist polynomials

p1(x), · · · , pk(x) over x such that P (x) can be written as

P (x) ≡ p2
1(x) + · · ·+ p2

k(x) (3.11)

We denote a SOS polynomial as p ∈ Σ2 [x]. Any SOS polynomial is positive semi-definite

over Rn, while not every positive semi-definite polynomial is a SOS. A counter-example was

provided by Motzkin known as the Motzkin polynomial shown as follows [89]

M(x1, x2, x3) = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
3 + x6

3 (3.12)

which is a non-negative degree 6 polynomial and is not a SOS.

In most cases, pi(x) for i = 1, · · · , k are constructed using the monomial basis under a

bounded degree. Searching for appropriate coefficients such that P (x) admits a sum of

squares decomposition is denoted as the SOS programming (SOSP) and can be solved by

relaxation to a semi-definite program (SDP) [74, 75]. Now Theorem 3.2 can be formally

solved by the following problem.

Problem 3.5. Let X = {x ∈ Rn : gX(x) ≥ 0}, XI = {x ∈ Rn : gI(x) ≥ 0}, XU =

{x ∈ Rn : gU(x) ≥ 0}, and D = {d ∈ Rm : gD(d) ≥ 0}, which are represented by the zero

superlevel sets of the polynomials gX(x), gI(x), gU(x), and gD(d), respectively, and some
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small positive number ε be given. Then

−B(x)− λI(x)gI(x) ∈ Σ2 [x] (3.13)

B(x)− ε− λU(x)gU(x) ∈ Σ2 [x] (3.14)

−∂B
∂x

(x)f(x, d)− λD(x, d)gD(d)− λX(x, d)gX(x) ∈ Σ2 [x] (3.15)

with multipliers λI(x), λU(x), λX(x, d) and λD(x, d) SOS polynomials.

The proof in [83] is briefly described here. Consider the formulation (3.13). Since it

is a SOS, −B(x) − λI(x)gI(x) is globally nonnegative. For x ∈ XI (gI(x) ≥ 0), we have

−B(x) ≥ λI(x)gI(x) ≥ 0. Thus, Eq. (3.5) holds. Similar arguments can be used for the

other conditions.

Conversion of Problem 3.5 to SDP has been implemented in solvers such as SOSTOOLS

[73] or the SOS module [55] in YALMIP [54]. Then, the powerful SDP solvers like MOSEK

can be employed [7].

3.2.2 Linear Representations

As an alternative to the SOS representation, another class of linear representations involves

the expression of the target polynomial to be proven non-negative over the set K as a linear

combination of polynomials that are known to be nonnegative over the set K. This approach

reduces the polynomial positivity problem to a linear program (LP) [40][9]. Then the so-

called Handelman representations are employed to ensure the non-negativity of a polynomial

form over a region. Let K be defined as a semi-algebraic set again: K = {x ∈ Rn : pj(x) ≥

0, j = 1, 2, · · · ,m}. Denote the set of polynomials P as {p1, p2, ..., pm}. This approach writes

the given polynomial p(x) as a conic combination of products of the constraints defining K,

i.e., p(x) = λff , where λf ∈ R+ are the coefficients, D is the bounded degree and f belongs

to the following set

f ∈ P(P,D) = {pn1
1 p

n2
2 · · · pnmm : nj ≤ D, j = 1, 2, · · · ,m} (3.16)
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If the semi-algebraic set reduces into a polyhedron, that is, pj(x) = ajx − bj, then the

following conclusion known as the Handelman’s Theorem provides a useful LP relaxation for

proving polynomial positivity [29].

Theorem 3.6 (Handelman). If p(x) is strictly positive over a compact polyhedron K, there

exists a degree bound D > 0 such that

p(x) =
∑

λff for λf ≥ 0 and f ∈ P(P,D) (3.17)

An example in [9] is presented here for better illustration. Consider the polynomial

p(x1, x2) = −2x3
1 +6x2

1x2 +7x2
1−6x1x

2
2−14x1x2 +2x3

2 +7x2
2−9 and the set K : (x1−x2−3 ≥

0 ∧ x2 − x1 − 1 ≥ 0). Then, the positivity of p over K can be proved by representing p as

follows

p(x1, x2) = λ1f
2
1 f2 + 3f1f2 (3.18)

where f1 = x1 − x2 − 3, f2 = x2 − x1 − 1 ≥ 0, λ1 = 2 and λ2 = 3.

The general procedure is described as follows [9]:

1. Choose a degree limit D and construct all terms in P(P,D), where P = {p1, p2, ..., pm}

are the lines defining polyhedron K.

2. Let p(x) =
∑

f∈P(P,D) λff for unknown multipliers λf ≥ 0.

3. Equate coefficients on both sides (the given polynomial and the Handelman represen-

tation) to obtain a set of linear inequality constraints involving λf .

4. Use a LP solver to solve these constraints. If feasible, the results yields a proof that

p(x) is positive semi-definite over K.

Remark 3.7. Handelman’s Theorem results in a LP, and thus reduces the computation

burden. However, since the multipliers λf are real numbers instead of SOS polynomials in

Putinar representation, it admits a less chance to find a Handelman representation, leaving

the problem inconclusive.
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An Illustrative Example

Nevertheless, we try to employ the Handelman representation to solve Theorem 3.2 as a

precursor. Similar attempt is made in [118] as well. Consider the example in [83] as follows

 ẋ1

ẋ2

 =

 x2

−x1 + 1
3
x3

1 − x2

 (3.19)

The original sets are defined as: X = R2, XI = {x ∈ R2 : (x1 − 1.5)2 + x2
2 ≤ 0.25},

XU = {x ∈ R2 : (x1 + 1)2 + (x2 + 1)2 ≤ 0.16}. To employ the Handelman’s Theorem, they

are modified to be polyhedrons as shown in Fig. 3.3. The barrier certificate computed using

the Handelman’s Theorem is plotted as the blue curve, while the one obtained by SOSP

is plotted as the dark curve. As seen, although the barrier certificates are different, both

approaches successfully verify the safety of the system.

-4 -3 -2 -1 0 1 2 3 4

x
1

-4

-3

-2

-1

0

1

2

3

4

x 2

Safe set
Unsafe set
Handelman's Theorem
Sum-of-square

Figure 3.3: Safety verification using the Handelman representation.
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Chapter 4

Hybrid Controller Synthesis

This chapter proposes the core principle and framework for switching synthesis, and at the

same time provides guidelines for hybrid controller synthesis in the WTG. In section 4.1, a

so-called ROS is proposed, whereby the safe switching principle is stated. In section 4.2, two

different approaches are proposed to estimate the largest ROS. Section 4.3 has dual roles,

which is to validate the proposed frameworks as well as to provide guidelines for hybrid

controller synthesis towards adequate frequency response. Section 4.4 proposes an online

safety supervisory control and is implemented on full-scale nonlinear models. Part of the

results in this chapter appeared in [126] and part of the results are prepared in [125].

4.1 ROS and Safety Switching Principle

Consider the ASFR model in (2.40) in the following form

∆ẋs = As∆xs +Bskscal∆PG −Bs∆PD (4.1)
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where

As =


− D

2Hc
1

2Hc
0

0 − 1
τch

1
τch

− 1
Rτgv

0 − 1
τgv

 , Bs =


1

2Hc

0

0


∆xs =

[
∆ωc,∆PM ,∆PV

]T
where kscal denotes a change of base if necessary. Introducing the hybrid behavior in the

reduced-order model of the WTG in (2.34) yields

∆ω̇r = Ard∆ωr + s(t− k)(Brd1∆ω̇ +Brd2∆ω)

∆PG = Crd∆ωr + s(t− k)(Drd1∆ω̇ +Drd2∆ω)
(4.2)

where s(t− k) is the unit step function to describe the switching behaviors.

s(t− k) =

0 if t < k

1 if t ≥ k

(4.3)

The physical component related to the switching is the deadband, the function of which is

to prevent the control from responding to small fluctuations [112]. The concepual model is

expressed in Fig. 4.1.

The control objective is described as follows. Consider a computation domain of interest

X ⊂ Rn within the state space, which can be associated with physical system limits. Assume

a power imbalance occurs at time t0. Given the IE mode with kie, the objective of the SSC is

to activate the WTG supportive mode at time t1 = t0 + tr so that the frequency response is

adequate, i.e., ω ∈ XS = {x|ω−lim ≤ ω ≤ ω+
lim}∩X. The set XS is usually denoted as the safe

set, and its complementary set is called the unsafe set XU = {x|ω > ω+
lim or ω < ω−lim} ∩X.

The frequency safety limits are usually defined for a set of contingencies, i.e., ∆Pd ∈ D =

{δ|δ−lim ≤ δ ≤ δ+
lim}. As seen, the most important task is to determine the reaction time tr

[109].
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System frequency response model

+

_

+

+

Support response model of wind 

turbine generator

Disturbance

Hybrid 

behavior

Figure 4.1: The hybrid system frequency response model incorporating the support
response model of WTG. The supportive mode is limited to the inertia emulation for
simplicity.

Let the hybrid closed-loop system of (4.1) and (4.2) be expressed in the compact form

ẋ = ftr(x, d) (4.4)

Then the ROS is defined as follows.

Definition 4.1 (Region of Safety). A set that only initializes trajectories with the property

in Definition 3.1 is called a region of safety.

The region of safety is named analogously to the region of attraction (ROA). Both sets

are collections of the initial conditions with certain properties, that is, the ROA generates

stable trajectories while the ROS generates safe trajectories.

Having defined the concepts, the switching synthesis principle via the ROS can be

interpreted in Fig. 4.2. Consider two extreme scenarios of the hybrid system in (4.4) when

tr = ∞ and tr = 0, respectively. The first one presents the vector field under the MPPT

mode f∞(x, d) and the latter one denotes the supportive mode without deadband f0(x, d).

Assume the ROSs under the different vector fields are calculated for d ∈ D and shown as

the green areas in Fig. 4.2. Due to the inertia emulation support, the corresponding ROS
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is larger. When the system undergoes a contingency, a switching that guarantees adequate

System vector field under inertia 

emulation

System vector field under 

no support

Vector field Switching

ROS Switching instant (late) Switching instant (in time) 

Unsafe trajectory (no switch) Unsafe trajectory (late switch)

Safe trajectory

Figure 4.2: Switching principle under the guidance of ROSs for safe trajectory. The boxes
are the safety limits. The green areas are the ROS of corresponding vector fields. The
solid black lines are safe trajectories while the solid red ones are unsafe. The dash lines are
trajectory projected onto the other vector field.

response can be committed as long as the trajectory is inside the ROS of f0(x, d). Since the

states cannot jump, the trajectory after switching will be initialized within the ROS and

according to Definition 4.1 it will be safe. It is worth distinguishing the ROS from the ROA

in the sense that a safe trajectory may cross the boundary of the ROS. The general principle

of safe switching synthesis is concluded in the following proposition [126].

Proposition 4.2. In a hybrid system with several modes, a safe switching to mode i is

guaranteed if the trajectory of the current mode belongs to the ROS of mode i. Moreover,

if the ROS is represented by some sublevel set of a continuous function in terms of system

states, then this function admits a safety supervisor.

Largest ROS

It is clear that the key to appropriately supervising the mode switchings is to estimate as

close as possible the largest ROS, denoted as X∗I . The largest ROS can be explained in

the sense of backward reachability. Consider the computation domain of interests X which

consists of the safe set XS and unsafe set XU illustrated in Fig. 4.3. The true and estimated
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invariant backward reachable set (BRS) of XU is denoted as X∗B and XB, respectively.

Every trajectory starts in X∗B will reach the unsafe set. Thus, the largest ROS is the relative

complement of X∗B with respect to XS, i.e., X∗I = XS \ X∗B. The BRS can be estimated

by using the techniques introduced in Section 3.1.2, that is, either solving the HJ PDE or

operating sets in the form of ellipsoids or zonotope. The two approaches will be used as

comparisons and validations for the methods introduced in the following section.

Unsafe set XU

Backward reachable 

set XB to XU

Largest region of 

safety XI

Safety limit

Figure 4.3: ROS interpretation in backward reachability sense.

4.2 Estimating Largest ROS

In Section 4.1, the ROS is defined and the largest ROS is interpreted from the backward

reachable set point of view. Here, based on the barrier certificate approach in Theorem 3.3,

we propose a conceptual optimization problem for the largest ROS as follows.

Problem 4.3. Let ẋ = fts(x, d), X, XU and D be given. The largest ROS X∗I under the

mode ts = 0 can be obtained by solving

max
XI ,B(x)

Volume(XI)

subject to

B(x) ≤ 0 ∀x ∈ XI

B(x) > 0 ∀x ∈ XU

∂B

∂x
f0(x, d) < 0 ∀(x, d) ∈ X ×D s.t. B(x) = 0
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However, since the initial set XI is a variable, Problem 4.3 becomes non-convex and

cannot be solved directly. In this section, two different approaches are proposed.

4.2.1 Iterative Algorithm

Since the non-convexity is introduced by making the initial set as a variable, an iterative

solution can be proposed starting by several guessed initial sets illustrated in Fig. 4.4. To

( ) 0Ug x 

a b

c

( ) 0Ug x 

a b

c

( ) 0Ug x 

a b

c

Figure 4.4: Demonstration of the iterative algorithm to estimate the largest ROS.

generate appropriate guesses, several safe trajectories can be first obtained using numerical

simulations. Then, small balls can be generated around the initial points which initialize

those safe trajectories. These balls can be employed as the initial sets to solve Theorem 3.3.

Once a barrier certificate is obtained, its zero sublevel sets can be used as the initial set for

the next iteration. Now let us introduce this algorithm formally to approximate the solution

of Problem 4.3.

Algorithm 4.4. Let X = {x ∈ Rn : gX(x) ≥ 0}, XU = {x ∈ Rn : gU(x) ≥ 0}, D =

{d ∈ Rm : gD(d) ≥ 0}, which are represented by the zero superlevel of the polynomials gX(x),

gU(x) and gD(d), respectively, some small positive number ε, initial order 2p and maximal

order 2pmax for barrier certificate computation be given.

� Initialization Let xi0 for i = 1, · · · , N be several initial points with safety verified,

and XI,i = {x ∈ Rn : gI,i(x) ≥ 0} represent a small ball centered at xi0. Choose

λB(x, d) equal to a sufficiently small positive real number r and solve the following
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SOS optimization for i = 1, · · · , N :

−B(0)(x)− λ(0)
I,i (x)gI,i(x) ∈ Σ2 [x]

B(0)(x)− ε− λ(0)
U (x)gU(x) ∈ Σ2 [x]

−∂B
(0)

∂x
(x)f(x, d)− λ(0)

D (x, d)gD(d)

−λ(0)
X (x, d)gX(x)− rB(0)(x) ∈ Σ2 [x]

� Iteration k

(a) Fix the barrier certificate B(k−1)(x) from k − 1 step, solve the SOS optimization

for multiplier λ
(ka)
B (x, d):

−∂B
(k−1)

∂x
(x)f(x, d)− λ(ka)

D (x, d)gD(d)

−λ(ka)
X (x, d)gX(x)− λ(ka)

B (x, d)B(k−1)(x) ∈ Σ2 [x]

(b) Fix the barrier certificate B(k−1)(x) from k−1 step, the multiplier λ
(ka)
B (x, d) from

k (a) step, solve the following SOS optimization for B(k)(x):

−B(k)(x)− λ(k)
I (x)B(k−1)(x) ∈ Σ2 [x]

B(k)(x)− ε− λ(k)
U (x)gU(x) ∈ Σ2 [x]

−∂B
(k)

∂x
(x)f(x, d)− λ(k)

D (x, d)gD(d)

−λ(k)
X (x, d)gX(x)− λ(ka)

B (x, d)B(k)(x) ∈ Σ2 [x]

(c) If step k (b) is feasible, then let k = k + 1. If infeasible, then increase the

polynomial order of B(k) by two, i.e., 2p = 2p + 2. If p = pmax but step k (b)

is still infeasible, then the algorithm stops and X∗I =
{
x : B(k−2)(x) ≤ 0

}
with

B(k−1)(x) the barrier.

The key idea of the proposed algorithm is to use the zero level set of a feasible barrier

certificate as an initial condition and to search for a larger invariant set. Once feasible, this

initial condition becomes a ROS due to the existence of the corresponding barrier certificate.
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A judicious choice of the initial points in the initialization step can reduce the number of

iterations, and also helps to have a precise estimate in certain sub-dimensions, if a full

dimensional estimate is hard due to computational complexity.

4.2.2 Occupation Measures

A recent novel approach proposed in [31, 48] uses the occupation measures to formulate the

BRS computation as an infinite-dimensional LP in the space of measures. Its dual problem is

formulated on the nonnegative continuous functions. Based on [31], we propose the following

optimization problem.

Problem 4.5. Let ẋ = ftr(x, d), X, XU and D be given. The largest ROS X∗I under the

mode tr = 0 can be obtained by solving

inf
B(x),Ω(x)

∫
X

Ω(x)dλ(x) (4.5a)

s.t. B(x) > 0 ∀x ∈ XU (4.5b)

∂B

∂x
f0(x, d) ≤ 0 ∀(x, d) ∈ X ×D (4.5c)

Ω(x) ≥ B(x) + 1 ∀x ∈ X (4.5d)

Ω(x) ≥ 0 ∀x ∈ X (4.5e)

where the infimum is over B ∈ C1(X) and Ω ∈ C(X). λ denotes the Lebesgue measure. If

the problem is feasible, the safety f0(x, d) with d ∈ D is preserved and the zero level set of

Ω(x)− 1 converges below to X∗I .

Strict mathematical proof can be found in [31] and is out of scope of this dissertation

proposal. Instead, a geometry interpretation is given. In essence, Problem 4.5 tries to

estimate the BRS in Fig. 4.3 to avoid the knowledge requirement of the initial set XI . Let

any trajectory eventually ending up in the set XU at certain time T denote as φ(T |x0).

Based on the conditions that B(φ(T |x0)) > 0 in (4.5b) and the passivity in (4.5c), one can

easily have B(x0) > 0. Thus, (4.5b) and (4.5c) ensure that B(x) > 0 for any x ∈ X∗B

illustrated as a one dimensional case in Fig. 4.5. However, the conservatism lies in the fact
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that B(x) > 0 for some x ∈ X∗I , which overestimates the BRS (i.e., X∗B ⊂ XB) and in turn

underestimates the ROS (i.e., X∗I ⊃ XI). Fortunately, this conservatism can be reduced by

introducing a positive slack function Ω(x) that is point-wise above the function B(x) + 1

over the computation domain X in (4.5c) and (4.5d), respectively. Assume the largest ROS

is represented by the indicator function δX∗
I
(x), i.e., a function is equal to one on X∗I and 0

elsewhere. The key idea of Problem 4.5 is by minimizing the area of function Ω(x) over the

computation domain X, the function B(x) + 1 will be forced to approach δX∗
I
(x) from above

as shown in Fig. 4.5. Thus, the zero sublevel set of Ω(x)−1 is an inner approximation of X∗I .

Essentially, Problem 4.5 is trying to approximate an indicator function using a continuous

function.

UX *

BX
UX*

BX

SX

*

( ) and ( ) 1

is ganranteed to be

positive on  andU

B

x B x

X

X

 

Estimated ROS: IX

*Real ROS: IX

Figure 4.5: Geometry interpretation of proposed optimization problem for estimating the
largest ROS.

Similarly, when equipped with polynomial data, the corresponding problem can be

converted into a SOSP as follows. Conservatism of the estimation is vanishing with the

increasing order of the polynomial.
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Problem 4.6. Let X = {x ∈ Rn : gX(x) ≥ 0}, XU = {x ∈ Rn : gU(x) ≥ 0}, and D =

{d ∈ Rm : gD(d) ≥ 0}, which are represented by the zero superlevel set of the polynomials

gX(x), gI(x), gU(x), and gD(d), respectively, and some small positive number ε be given.

Functions B(x) and Ω(x) are polynomials with fixed highest degree. Multipliers σi(x) for

i = 1, · · · , 6 are SOS polynomials with fixed highest degree. Then the largest ROS can be

obtained by solving the following SOS program

inf
B(x),Ω(x)

ω′l (4.6a)

B(x)− ε− σ1(x)gU(x) ∈ Σ2 [x] (4.6b)

−∂B
∂x

(x)f0(x, d)− σ2(x, d)gD(d)− σ3(x, d)gX(x) ∈ Σ2 [x] (4.6c)

Ω(x)−B(x)− 1− σ4(x)gX(x) ∈ Σ2 [x] (4.6d)

Ω(x)− σ5(x)gX(x) ∈ Σ2 [x] (4.6e)

where l is the vector of the moments of the Lebesgue measure over X indexed in the same

basis in which the polynomial Ω(x) with coefficients ω is expressed.

For example, for a two-dimensional case, ifΩ(x) = c1x
2
1+c2x1x2+c3x

2
2, then ω = [c1, c2, c3]

and l =
∫
X

[x2
1, x1x2, x

2
2]dx1dx2.

4.2.3 Illustrations and Discussions

To further demonstrate the approaches, a simple example is illustrated. The set operation-

based approaches introduced in Section 3.1.2 will be used for comparison and verification.

Consider the single-machine infinite-bus system as follows

δ̇ =
377

ω
ω

ω̇ =
ω

2H
(Pm − Pmax sin δ − D

ω
ω)

(4.7)

where ω is the speed base of the synchronous machine, H is the inertia constant, D is the

load-damping effect, Pmax is the maximum power transfer capacity, Pm is the mechanical

input. The parameters are given as: ωs=60 [Hz], H = 3.5 [s], D=1, Pmax = 1.23 [p.u.].
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Linearizing the system about the equilibrium point of Pm = 1 yields the state-space model ∆δ̇

∆ω̇

 =

 0 6.2833

−6.2696 −0.1429

 ∆δ

∆ω

 (4.8)

Define the safety specification as XU = {[δ, ω]T : −0.5 ≤ ω ≤ 0.5}. First, the zonotope-based

set operating method is applied in backward to find the largest backward reachable set of the

unsafe set. Define an unsafe set as the red box shown in Fig. 4.6 and propagate this set in

reverse time. If the computation is long enough, then an invariant set in the middle of the
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0
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(b)

Figure 4.6: Backward reachable set computation using zonotopes. (a) Compute for 0.05
s in reverse time. (b) Compute for 1 s in reverse time. x1 is the rotor angle and x2 is the
machine speed.

BRS of the unsafe set is obtained, which is actually the ROS based on the interpretation of

Fig. 4.3. The ROSs computed by the level set method and Algorithm 4.4 are shown in Fig.

4.7 together with the BRS via the zonotope method. The three results are in accordance

with each other, and the backward reachability interpretation of the largest ROS is verified.

The results obtained by Algorithm 4.4 and Problem 4.6 are compared in Fig. 4.8. In this

simple case, the two results are consistent. The zero level set of B(x) solved by Problem 4.6

is enlarged by Ω(x)−1 as much as possible to the largest ROS under the fixed highest degree.

With increasing dimensions of the system, higher degrees may need to obtain a convergent

result from Problem 4.6. Limited by the computation complexity, Problem 4.6 sometimes
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Figure 4.7: ROS computed by the level set method and Algorithm 4.4 and compared with
the BRS of the unsafe set using zonotope representations.
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Figure 4.8: ROS computed by Algorithm 4.4 and Problem 4.6.

fails to converge. Algorithm 4.4 can always provide certain results, however, with unknown

conservatism.
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4.3 Supportive Modes Synthesis for WTGs

In this section, the multiple grid-supportive modes of a WTG will be synthesized. To be

specific, the deadbands and other thresholds in the supplementary loop of a WTG shown

in Fig. 4.9 are to be validated for adequate frequency response in a single-area system.

The inertia emulation (IE) and primary frequency control (PFC) with different gains will be

considered. The study in this section employs the third-order DFIM-based WTG model in

Appendix B.2. All ROS computations in this section are performed using Algorithm 4.4.

r

refP

r refP

(Optimal Tracking)

d

dt ieK


pcK

, , ,m v rP P    

Support

Deactivation

Figure 4.9: Active power control of wind turbine generator with inertia emulation and
primary frequency control.

Consider the four-bus system in Fig. 4.10. Assume that the synchronous generator is a

600 MW thermal plant made up of four identical units, the frequency dynamics of which can

be represented using (2.5). The parameters of (2.5) are assumed to be estimated well and

given in Appendix A.1. The wind farm is assumed to be an aggregation of 200 individual

Figure 4.10: Four-bus single-area system.
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GE 1.5 MW WTGs with rated speed of 450 rad/s (or 72 Hz) and rated output of 300 MW.

The active power variations of the WTG due to the supportive signals can be expressed

using (2.34). Under the operating condition given in Appendix B.2, the reduced-order WTG

model can be obtained with Ard = −0.0723 and Crd = 0.0127. Brd1, Drd1 and Brd2, Drd2

with the corresponding Kie and Kpc are listed in Table 4.1.

Table 4.1: Gain of Frequency Support Mode and Corresponding Matrix Value

Mode Number Kie Brd1 Drd1 Kpc Brd2 Drd2

MPPT 1 0 0 0 0 0 0
IE 2 -0.10 0.6246 -0.10 0 0 0
IE 3 -0.20 1.2492 -0.20 0 0 0
IEPFC 4 -0.10 0.6246 -0.10 -0.03 0.1874 -0.03
IEPFC 5 -0.20 1.2492 -0.20 -0.06 0.3748 -0.06

The worst-case scenario is assumed to be the loss of one unit (150 MW), which occurs

at 1 s. The safety limit is set to be a 0.5 Hz deviation to avoid triggering load shedding [69].

The frequency responses of all modes under this scenario are given in Fig. 4.11. The inertia

emulation effect can be observed as the ROCOF becomes slower from the responses of Modes

1-3. The ROSs are calculated using the reduced-order model in Eq. (2.40), but the full-order

linearized model in Appendix B.2 is used for verification. Denote xrd = [∆ω,∆Pm,∆Pv,∆ωr]

and x =
[
∆ω,∆Pm,∆Pv,∆E

′
qD,∆E

′
dD,∆ωr,∆x1,∆x2,∆x3,∆x4

]
for theoretical analysis

and simulation verification, respectively.

4.3.1 Model and Algorithm Validation

To validate the reduced-order model, consider the worst-case scenario above. The four state

variables ∆ω, ∆Pm, ∆Pv, ∆ωr between reduced-order and full-order model of Mode 2-5 in

Table 4.1 are compared in Fig. 4.12 and Fig. 4.13. The excellent agreements ensure that

the reduced-order model based ROS should be sufficient to find the switching instants for

the full-order dynamics.

With the given safety limit, the ROS for Mode 1 under no disturbance can be projected

onto the plane ∆ω-∆Pm as illustrated in Fig. 4.14 with two different initializations. The

iteration sequences indicate that if more initial guess points are used, the fewer iterations
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Figure 4.11: Frequency response of different modes under the worst-case scenario: 150
MW generation loss.
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Figure 4.12: Dynamics between full-order and reduced-order model under different modes:
(a) Frequency deviation; (b) WTG rotor speed.

are needed and a better estimation can be achieved (as shown in the blue case). The final

result is shown in Fig. 4.15. The green region is the ROS obtained by extensive simulations

and can be regarded as the largest ROS. The comparison shows that the proposed algorithm

successfully reduces conservatism in the estimate of the largest ROS.
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Figure 4.13: Dynamics between full-order and reduced-order model: (a) Turbine-governor
mechanical power; (b) Turbine-governor valve position.
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4.3.2 IE Mode Only

The ROSs under the worst-case scenario of Modes 1-3 are calculated with representation of

polynomials in terms of xrd up to degree 8. Denote these regions as

Worst-case ROS 1: Sd1 = {xrd : Bd1(xrd) ≤ 0}

Worst-case ROS 2: Sd2 = {xrd : Bd2(xrd) ≤ 0}

Worst-case ROS 3: Sd3 = {xrd : Bd3(xrd) ≤ 0}
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Figure 4.15: ROS of Mode 1 under normal condition obtained by proposed Algorithm 8
and extensive simulations.

where Bd1(xrd), Bd2(xrd) and Bd3(xrd) serve as the safety switching guards.

To determine if the safety can be preserved under Mode 1, one needs to check whether

the intersection between Sd1 and the pre-disturbed operating point x0 is empty. In our case,

the fact that Sd1∩{x0} = ∅ is graphically shown in Fig. 4.19 and mathematically verified by

Bd1(x0) > 0. According to Proposition 4.2, the safety cannot be preserved without switching

to grid-supportive modes as shown in Fig 4.11.

To verify the largest deadband or equivalently the critical switching instant from Mode 1

to Mode 2 or 3, the values of Bd2(xrd) and Bd3(xrd) with respect to the disturbed trajectory of

Mode 1, denoted as Xd1 (dash line in Fig. 4.16), is calculated. Note that Xd1 is from the full-

order model and only relevant states X̄d1 = [Xd1(1), Xd1(2), Xd1(3), Xd1(6)] are substituted

into the guards. The zero-crossing point from negative to positive values denotes the critical

switching instant tcr, or equivalently the largest deadband with the value ∆ω(tcr). As shown

in Fig. 4.17, the largest deadband (critical switching instant) is 0.30 Hz (1.29 s) if Mode

2 is used, and 0.42 Hz (1.44 s) if Mode 3 is used. Simulations of each scenario with the

suggested largest deadband as well as the recommended value from GE (0.15 Hz) are carried

out and shown in Fig. 4.18. As seen the system safety is preserved under all cases, but the

recommended values are conservative especially when Mode 3 is activated. On the other

hand, the fact that the frequency nadir is extremely close to the limit indicates that the

estimated ROS is not overly conservative.
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Figure 4.16: ROS of Mode 2 and 3 under given scenario.
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Figure 4.17: Value of Bd2(x) (upper) and Bd3(x) (lower) w.r.t the disturbed trajectory Xd1

Beyond safety, the earliest support deactivation (earliest switching instant) is established

so that the emulated inertia can be shed to obtain faster frequency restoration. Let the

trajectories in Fig. 4.18 be denoted as Xd12 (left) and Xd13 (right) and substituted into

Bd1(xrd) to find the zero-crossing point from positive to negative, which occurs approximately

at 2 s for both cases. Negativity of the safety switching guard Bd1(X̄d1i) guarantees a safe

switching from Mode i to Mode 1. Earlier switchings when Bd1(X̄d1i) > 0 will lead to an

unsafe trajectory. Both cases are shown in Fig. 4.21.
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Figure 4.18: Frequency dynamics of full-order model under calculated critical deadband.

Figure 4.19: ROS of Mode 1 under the given scenario.

4.3.3 IEPFC Mode and Safety Recovery

The PFC loop will artificially create additional load-frequency sensitivity and the maximum

frequency excursion will be decreased. The deadband analysis procedure is similar and will

not be repeated. However, when it comes to the support deactivation, due to the additional

constant frequency deviation signal, a safe switching time window appears. Thus, the PFC

mode needs to be deactivated before a critical time. The mechanism is illustrated in Fig.

4.22. The WTG attempts to draw the total energy that has been pulled out during the grid

supporting to restore the rotor speed. So the upper area and lower area with respect to the

original operating point have to be equal. When the PFC is deactivated, the supportive

power decreases below the original operating point to satisfy this equal-area criterion. This
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Figure 4.20: Value of Bd1(x) w.r.t. the disturbed trajectories Xd12 (upper) and Xd13

(lower).
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Figure 4.21: Frequency dynamics under critical deadband and threshold.

sudden shortage of active power, if large enough, will lead to an unsafe trajectory. Let Mode

5 be designed with a deadband of 0.3 Hz and substitute the disturbed trajectory X̄d15 into

Bd1(xrd), then the critical switching window can be observed as shown in the upper plot

of Fig. 4.23, where the critical deactivating instant suggested by the guard is 15.2 s. A

deactivation at 22 s leads to an unsafe trajectory. Frequency dynamics of both cases are

shown in the upper plot of Fig. 4.24.

To extend the safe switching window, we propose a safety recovery procedure illustrated

by Fig. 4.25. When the PFC mode is deactivated, the corresponding IE mode is kept to

address the sudden shortage of active power. By checking the value of Bd3(xrd) with respect

to the trajectory X̄d15 (lower plot of Fig. 4.23), it indicates that this procedure postpones
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the critical deactivating instant by 15 s. The original unsafe switching from Mode 5 directly

to Mode 1 at 22 s is now safely switched to Mode 3 as shown in the lower plot of Fig. 4.24.

The critical switching instant from Mode 5 to 3 is suggested to be 30.21 s by the guard in

Fig. 4.23 and verified by simulation in Fig. 4.24.
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Figure 4.23: Upper: Value of Bd1(x) and Bd3(x) w.r.t. the disturbed trajectory Xd15.

4.4 Safety Supervisory Control for WTGs

Under high levels of renewables, a fixed deadband may not be sufficient as the commitments

of synchronous generators could change dramatically over time due to the stochastic output

characteristics of renewable sources [106]. In this section, the ROS is employed online to

be a safety supervisor. The ASFR model will be used as the state observer to provide
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Figure 4.24: Frequency dynamics under 0.3 Hz deadband and critical deactivation: normal
sequence Mode 1-5-1 (Upper) and safe recovery sequence Mode 1-5-3-1 (lower)
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Figure 4.25: Modelling deadband as a hybrid transition system.

the grid awareness capability. The state observer and safety supervisor compose the safety

supervisory control (SSC), which is able to switch the modes of WTGs to ensure adequate

frequency response in the grid under disturbances as well as provide the real-time margin

to the critical limits, that is, the remaining available time for a safe switching. Meanwhile,

the SSC constantly updates its boundary with respect to different renewable penetration

levels and commitments of synchronous generators so that it is robust against the stochastic

renewable outputs.

In this section, full-scale nonlinear simulations and experimental verification will be

performed. Section 4.4.1 demonstrates the design procedure of the SSC using a single-

machine three-phase nonlinear microgrid model in Simulink. In Section 4.4.2, the SSC will

be implemented with a decentralized fashion in the IEEE 39-bus system in DSATools. In
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Section 4.4.3, the SSC is experimentally implemented in the HTB at CURENT. All ROS

computations in this section are performed using the formulation in Problem 4.6.

4.4.1 SSC for a Single-Area System

To illustrate the SSC design using the proposed framework, the lumped diesel-wind fed

microgrid in [122] is employed. Assume that the parameters of the ASFR in the form of (??)

have been estimated. The parameters are given as follows

Hc = 2, R
−1

= 30, τ gv = 0.1, τ ch = 0.5, kscal = 0.15, Kie = 0.2,∆PD ∈ D = {d : 0 ≤ d ≤ 0.32}

Ard = −0.3914, Crd = 1.37, Brd1 = −0.3121, Drd1 = 1, Brd2 = 0, Drd2 = 0

The safety limit is set as ω−lim = 58.5 Hz, intentionally leaving no extra margin. With all the

given conditions, Problem (4.6) is formulated in Yalmip [54] and solved by Mosek [7]. The

ROS is represented by the zero sublevel set of B(x) and its projection on the phase plane

of the frequency and mechanical power is shown in Fig. 4.26. The green region is the ROS
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Figure 4.26: Comparison of ROS (projected onto ∆ω −∆Pm plane) between the subzero
level set of B(x) (blue dash) and exhaustive simulations (blue).

obtained by massive simulations and can be considered very close to the largest one. As

shown by minimizing the area under the slack function Ω(x), the zero level set of B(x) is

expanded by Ω(x)−1 as much as possible to the largest ROS under the fixed highest degree.
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Figure 4.27: Safety supervisory control (SSC) integrated in WTGs, which enables the
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20 20.5 21 21.5 22

Tims (s)

58

58.5

59

59.5

60

F
re

qu
en

cy
 (

H
z)

(a)

IE disenabled
IE activated via SSC

20 20.2 20.4

Time (s)

-2

-1

0

1

2

3

4
S

af
et

y 
S

up
er

vi
so

r 
V

al
ue

(b)

IE disenabled
IE activated via SSC

Figure 4.28: Frequency response under no inertia emulation and inertia emulation activated
via safety supervisory control (SSC), (a) frequency response, (b) value of safety supervisor.

Once B(x) is obtained, it can be deployed online in the configuration shown in Fig. 4.27.

The speeds of diesel and wind turbine generators are measurable. The estimated frequency

response model used in the ROS computation is now employed as the state observer for ∆Pm

and ∆Pv. The SSC integrated into the WTG not only enables the grid awareness capability,

but also provides the remaining available time for adequate frequency response.
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As for simulation, the full-order nonlinear model of the synchronous generator is employed

and scaled down to the microgrid level. A type-4 wind turbine with the averaged converter

model is used as well. Detailed descriptions of models used in simulation can be found in

[122]. The system is imposed on the worse-case disturbance. The frequency response and

the value of the safety supervisor are shown in Fig. 4.28. The IE is activated when the

supervisor’s value is crossing zero. As seen the nadir of the frequency response from SSC is

exactly on the safety limits, indicating the estimated ROS is not conservative at all.

4.4.2 Decentralized SSC for Multi-Machine Systems

Center of Inertia Frequency

As mentioned in Section 2.1.2, we aim at the adequacy of the COI frequency. On one hand,

the COI frequency filters out the local swings to gives a clearer measure of the systemic

performance of concern [64], and thus becomes the target in many related works [25, 59,

63, 64]. On the other hand, due to the increasing computation complexity of the SOS

decomposition with respect to system dimensions, addressing every individual machines will

make the problem intractable. Considering the fact that the frequency deviation of single

machine (area) from the COI frequency is determined by the electric distance to the inertial

center, which is further determined by the line impedance [5], extra margins can be added

to the safety limit to prevent the frequency of single machine (area) from reaching the UFLS

zone.

Let S denote the index set of synchronous generators. Let W denote the index set of

WTGs that have been selected as actuators of the SSC. Ns and Nw denote the total number

of generators in each set, respectively. The model in (2.5) will serves as the COI frequency

response model, where the COI inertia constant Hc is calculated as

Hc =

∑Ns
i∈S SiHi

Ssg

, Ssg =
Ns∑
i∈S

Si (4.9)
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where Si, Hi are the base and inertia constant of synchronous generator i. The governor

and turbine models represent the averaged mechanical behavior of the overall system. It is

assumed that the corresponding time constants have been estimated.

To use the Transient Security Assessment Tool (TSAT) [82], the western electricity

coordinating council (WECC) generic type-3 WTG model and its corresponding control

presented in [32] is employed. The active power control loop is shown in Fig. 4.29. The

low-pass filter G1(s) aims to filter out the fluctuation from the MPPT signal, where its time

constant Tsp is usually in the time frame of tens of seconds [17]. So during the inertial and

primary frequency response, the reference signal ωref can be assumed as a constant. The

transfer function G3(s) is to model the inner current loop dynamics in converter controllers.

As the current regulation is in the time frame of milliseconds, this part is omitted [97].

Similarly like the frequency response model of synchronous generators, an aggregated model

1( )G s 3( )G s

ieu

Figure 4.29: Widely used active power control loop for the WECC generic type-3 wind
turbine generator model [32, 17, 81].

is employed to represent the overall behavior of WTGs that have been selected as the

actuators of SSC. Based on the above simplifications, the synthetic inertial response model

reads

ẋ = K itrq(ωr − ωref + uie)

ω̇r =
1

2Hwωr
(Pm,w − ωry)

(4.10)
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where

y = x+Kptrq(ωr − ωref + uie)

PG = ωry
(4.11)

And the averaged inertia constant of WTGs is calculated as

Hw =

∑Nw
i∈W SiHi

Swt

, Swt =
Nw∑
i∈W

Si (4.12)

In (4.10), uie generated from the COI frequency is the input and the power variation PG

with the base of Swt is the output. The aerodynamic model in [81] is employed, where Pm,w

is a function of ωr, wind speed and pitch angle. Under the time snapshot of inertial and

primary response, wind speed, pitch angle and ωref are assumed to be fixed. As shown in

[126], linearized models are able to capture the input-output relation from the ROCOF to

the supportive power variations of WTGs. Linearizing (4.10) and applying a change of base

as kscal = Swt/Ssg yields the following state-space model of the WTG

ẋw = Awxw +Bwuie

∆PG = Cwxw +Dwuie

(4.13)

where

∆xw =
[

∆x ∆ωr

]
(4.14)

By combining (4.13) with (4.1) one can obtain the ASFR for the ROS computation. On the

other hand, the state observer from uie to x is defined as

ẋw = Awxw +Bwuie

y =

 1 0

0 1

∆xw
(4.15)
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Decentralized Communication for Small-Scale Systems

Based on the previously developed response model, a centralized communication link shown

in Fig. 4.30 (a) is needed for the SSC. The speed of each synchronous generator (area) is

measured and transmitted to the central controller to calculated the COI frequency. Then,

the COI frequency is sent to the state observers to estimate states ∆Pm, ∆P v, ∆x and

∆ωr. Finally, all the states are substituted into the safety supervisor for making a switching

decision. This switching signal will need to be transmitted to each WTG to activate the

inertia emulation. Although such a communication fashion will theoretically ensure the safe

response of the COI frequency, it will introduce delay and complexity, reduce reliability and

require extra cost of communication infrastructure.
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Figure 4.30: Centralized and decentralized Communication fashions in SSC. The decision
results will be equivalent in a small scale system.

Essentially all WTGs will only need the switching signal, which is determined by

predicting the overall system behavior. Since frequency is a global feature, the system

awareness capability can be integrated locally in each WTG using the same state observer.

Then, as long as the input is the COI frequency, the result will be the same. In order to

further reduce the communication links, measuring local frequency is desired. It is known

that the local frequency will deviate from the COI frequency during the transient period.

But for a small-scale system, such deviations are sufficiently small. Thus, it is reasonable

to assume that the frequency of single machine (area) is approximately equal to the COI

frequency, i.e., ωi ≈ ω. Therefore, the centralized SSC can be replaced approximately by the
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decentralized SSC shown in Fig. 4.30 (b). The decentralized SSC is completely integrated in

a single WTG, and only local frequency measure is needed. However, it is worth mentioning

that such a communication reduction is only equivalent when the system is small.

Simulation Setup and Dynamic Performance Verification

In this subsection, the modified New England IEEE 39-bus system with more than 50% wind

penetration is employed to demonstrate the SSC. Two scenarios with different numbers of

WTGs as the actuators are illustrated.

The modified generator data of the system is listed in Tab. 4.2. All other parameters are

the same with the standard ones in [86]. The bold inertia constants indicate that they are

visible to the grid. The synchronous generators are round rotor models equipped with the

Table 4.2: Generator Data of Modified New England 39-bus System

# Bus Type Output (MW) Base (MVA) Inertia (s)

1 30 WTG 550 S1 = 670 H1 = 8.00
2 31 WTG 572 S2 = 670 H2 = 8.00
3 32 WTG 650 S3 = 670 H3 = 8.00
4 33 SG 632 S4 = 1000 H4 = 2.86
5 34 WTG 508 S5 = 670 H5 = 8.00
6 35 WTG 650 S6 = 670 H6 = 8.00
7 36 SG 400 S7 = 1000 H7 = 2.64
8 37 WTG 540 S8 = 670 H8 = 8.00
9 38 SG 830 S9 = 1000 H9 = 3.45
10 39 SG 859 S10 = 1000 H10 = 5.00

1992 IEEE type DC1A excitation system model (ESDC1A) and the steam turbine-governor

model (TGOV1) [96]. The WECC generic type-3 WTG model with built-in controls in

[81] is implemented as a user-defined model (UDM). The corresponding parameters are

given in Appendix B.3. The SSC is realized by using the dynamically linked blocks (DLBs)

and implemented using C/C++, which is proved to be effect for advanced control design

realization [88]. The overall dynamic simulations are performed in TSAT [82].

The traditional plant pool is S = {4, 7, 9, 10}. The worse-case contingency is the loss of

entire traditional plant 7, which is a 400 MW generation loss. The safety limit is set to be

59 Hz. In the New England system, synchronous machines’ frequency are close to the COI
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frequency. Considering the fact that the UFLS rely allow frequency stay in triggering zone

for several cycles, it is sufficient to ensure the exact safety of the COI frequency response.

This is also for the purpose of demonstrating the precision of the proposed framework.

In the first scenario, only WTG 5 is selected as the actuator equipped with Kie = 0.2. The

power and current limits are modified to assume an over-size design of converters. Under the

worst-case contingency, the COI frequencies of no switching case and supervised switching

one are compared in Fig. 4.31 (a). As seen, the supervisory control timely activates the

IE function of WTG 5 based on the supervisor value (shown in Fig. 4.31 (b)) so that

the COI frequency stays within the specified safety limit. Since the IE gain is large, there

is approximately one second reaction time for WTG 5 to respond. Individual speeds of

synchronous generators are also plotted. As seen, they are close to the COI frequency. So

ensuring safe COI frequency response could greatly reduce the possibility of the unnecessary

frequency relay actions.
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Figure 4.31: Frequency response under no inertia emulation and inertia emulation activated
via safety supervisory control (SSC), (a) frequency response, (b) value of safety supervisor.
The reaction time is around one second in this scenario.

In the second scenario, three WTGs are chosen to be the actuators, i.e., W = {1, 2, 5},

with a smaller gain of Kie = 0.03 so that each WTG will not reach its normal designed

limit. The same contingency is applied. The COI frequency and individual frequencies of

synchronous generators are plotted in Fig. 4.32 (a). Fig. 4.32 (b) indicates that the IE
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function is activated in slightly different times, from 0.4 to 0.6 s in different WTGs. This

is because the slight differences between local frequencies. The power outputs of WTG 1, 2

and 5 are shown in Fig. 4.33. Each of them contributed less than 0.1 per unit supportive

power from their operating points, while WTG 5 in the previous scenario contributed more

than 0.15 per unit. It is always preferred to coordinate more actuators to reduce the required

contribution from each one.
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Figure 4.32: Frequency response under no inertia emulation and inertia emulation activated
via safety supervisory control (SSC), (a) frequency response, (b) value of safety supervisor.
The reaction time is from 0.4 to 0.6 second in different WTGs in this scenario.

Adaptive SSC Against Varying Renewable Penetration

Due to the stochastic and intermittent nature of renewable resources, the commitment of

traditional plants can change dramatically over time, which could significantly change the

system frequency response characteristics. This time-varying feature requires a SSC to be

adaptive to the system operating condition. This adaptivity can be implemented by adding a

scheduling loop overseeing the triggering loop as shown in Fig. 4.34. The triggering loop will

receive local measurements and make a decision based on the up-to-date supervisor. On the

other hand, the scheduling loop will receive global information, such as, unit commitment

and WTG outputs, and then recalculate settings for the safety supervisor. When choosing

actuators, those with larger available capacity will be selected first. The SFR model will be
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Figure 4.33: Active power variation of WTGs in different scenarios.

updated and the supervisor will be re-calculated. If the SOS program is not feasible, more

WTGs are incorporated and the IE gain will be adjusted.
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Figure 4.34: Two-loop SSC with adaptivity and robust to the change of system operating
point.
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The scheduling loop will need a centralized communication link. But the two loops are

in different time scales. When a disturbance takes place, the SSC uses the latest received

ROS as the threshold function to determine the activation of the IE mode. Therefore, the

triggering level stays in a decentralized fashion. This is importance since the time scale

of this level is in terms of seconds. The scheduling level will be in the same time scale of

economic dispatch, and can be regarded as an enhanced functionality of energy management

system.

The demonstration here is based on the setup of Scenario 1, that is, W = 5 and

kie = 0.2. The worst-case disturbance and safety limit are also the same. In New England

system, SG 10 is to equivalently model the rest of the Eastern Interconnections. Assume a

scenario where the level of renewable penetrations in the Eastern Interconnections increases

significantly within a time. This change can be equivalently represented by decreasing the

inertia constant of SG 10. Here, three different constants, that is, 10, 5 and 1, are used

to represent different unit commitment scenarios at certain time snapshots. Based on the

information, the scheduling loop will update the SFR model and re-calculate the ROS. Thus,

three different ROSs will be obtained with respect to the three inertia constants of SG 10

shown in Fig. 4.35 (a). The ROS shrinks with the increase level of renewable penetration.

Now assume the worse-case disturbance happens when H10 = 1. Based on up-to-date ROS 1,

which corresponds to the scenario of H10 = 1, the adequate reaction time should be around

0.2 s as shown in Fig. 4.35 (b), and the safety of COI frequency can be ensured shown in

Fig. 4.36 (a). If not updated in time, that is, either ROS 2 or 3 is online, the IE will not be

activated in time, and the corresponding COI frequencies are not safe also depicted in Fig.

4.36 (a). The speeds and outputs of WTGs under up-to-date and out-of-date SSCs are also

plotted in 4.36 (b) and (c), respectively.

Based on the setting of Scenario 1, the inertia constant of SG 10 is changed from 1 to

10 s to represent the operation change of the rest eastern interconnection. Using the same

safety setting, the ROSs under different operating conditions are computed and plotted in

Fig. 4.35 (a). The same disturbance is applied when H10 = 1 s and the trajectory is plotted

in Fig. 4.35 (a) as well. The values of different supervisors with respect to this trajectory

are shown in Fig. 4.35 (b). The adequate reaction time should be around 0.2 s based on the

72



corresponding supervisor (blue), but other supervisors provide larger times, which will lead

to inadequate responses.

-1 -0.5 0 0.5 1

Frequency Deviation (Hz)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
ec

ha
ni

ca
l P

ow
er

 D
ev

ia
tio

n 
(P

U
)

(a)

ROS 1: H
10

=1

ROS 2: H
10

=5

ROS 3: H
10

=10

Disturbed trajectory when H
10

=1

0 0.2 0.4 0.6

Time (s)

-15

-10

-5

0

5

10

S
af

et
y 

S
up

er
vi

so
r 

V
al

ue

(b)

ROS 1
ROS 2
ROS 3

Figure 4.35: (a) ROSs under different operating conditions. (b) Values of different
supervisors with respect to the disturbed trajectory when H10 = 1 s.

Figure 4.36: (a) COI Frequencies under different SSCs. (b) WTG Speeds under different
SSCs. (c) Active power variation of WTGs under different SSCs.
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4.4.3 Experimental Implementation in HTB

The proposed control is implemented on an aggregated WECC system modeled in the HTB

of CURENT. The WECC system is divided into four areas as shown in Fig. 4.37 (a). In

addition, Area 1, 2 and 3 are divided into two regions. Thus, the total number of regions

in the system are equal to seven. All generators of every region are aggregated into one

generator using DYNRED software, then loads and branches are manually combined to

obtain the system shown in Fig. 4.37 (b).
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Figure 4.37: WECC system in HTB. (a) WECC 179-bus system divided into four areas.
(b) WECC four-area system emulated in HTB.

The generators at Colstrip (Bus 3) and Four Corners (Bus 4) are WTGs controlled as the

virtual synchronous generators (VSGs). The VSG control design in the HTB is presented in

[57] and shown in Fig. 4.38. Thus, they can provide programmable synthetic inertia via the

kinetic energy and energy storage units. The SSC is integrated in the mechanical model. In

the WECC system, the SSC cannot be designed in the decentralized manner. The wide-area

measurement signals are needed. The generator speeds are transmitted to WTG 3 and 4 to

calculate the COI frequency, whereby the triggering signal can be generated. This wide-area

SSC diagram is shown in Fig. 7. In normal conditions, WTG 3 and 4 operate under low-

inertia mode to avoid using energy storage units frequently. Once the SSC is activated, the
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controller will switch to a remedial mode with high inertia to release the storage energy as

shown in Fig. 4.39.

Safety 

Supervisory 

Control

Figure 4.38: GSC control to mimic SG behavior in power system, (a) overall control
diagram. (b) electrical model. (c) mechanical model [57].
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Figure 4.39: Wide-area SSC in the VSG mode-based WTG.

In the experimental demonstration, a 0.5 p.u generation loss is applied at Palo Verde

(Bus 5), and the experiment results are shown in Fig. 4.40. The red curve indicates that

the remedial mode with the supervisor is correctly scheduled and triggered to limit the COI
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Figure 4.40: COI frequencies under different cases.

frequency within the desired bounds. The blue curve is the COI frequency response when

the controller is dis-enabled, the performance metric of which is not satisfied. In addition,

by comparing the results, half a second communication delay in the HTB can be observed.

4.5 Summary

This chapter first states the mode synthesis principle for safe response and the concept of

ROS. Then, a mathematical optimization problem in functional space is proposed to estimate

the backward reachable set of the unsafe set, the complementary of which is the ROS. The

optimization problem is interpreted from a geometry point of view, and then converted into

a SOS program by using polynomial functions and semi-algebraic sets. A feasible result

of the SOS program will generate a barrier certificate. The superlevel set of the barrier

certificate over-approximates the backward reachable set of the unsafe set and the sublevel

set of it under-approximate the ROS. This barrier certificate is employed as the safety

supervisor for hybrid supportive mode synthesis of WTGs. The proposed controller is first

verified on a single-machine three-phase nonlinear microgrid model in Simulink. For multi-

machine systems, a decentralized SSC is designed particularly for small-scale systems and

implemented in IEEE 39-bus system with high renewable penetration modeled in DSATools.

Both results indicate that the proposed framework and control configuration can guarantee
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adequate response and not conservative at all. In addition, a scheduling loop is proposed

so that the supervisor updates its margin with respect to the renewable penetration level in

order to be robust to variations in system inertia. The shape change of ROSs with respect

to renewable penetration level is demonstrated as well. Finally, the proposed controller is

verified in the HTB at CURENT.
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Part II

Novel Control Designs and Synthesis
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Chapter 5

Frequency Control with Temporal

Logic Specifications

In the previous chapters, efforts are devoted into switching behavior synthesis given control

input signals. Beginning from this chapter, we search over the space of input signals to

obtain trajectories that satisfy certain control specifications by using open-loop numerical

optimal control methods as well as closed-loop feedback design.

Till now, performance specifications are only state-dependent. But the protection replays

of power system in real industry are designed based on states and dwell time simultaneously.

Most of the grid codes also allow states to enter certain restricted regions, but the dwell

time should not be larger than a specified value. So, it is natural to seek a tool that

can specify both time and region requirements in control designs. The temporal logic

specifications (TLSs) allow richer descriptions of specifications including set, logic and time-

related properties. For example, to guarantee the proper operation of microgrids, the speed

deviation of the synchronous generator should not exceed ±1.5 Hz for 0.1 second [117].

The pioneering work in [116] introduces the TLSs for controller synthesis of energy storage

systems, where the frequency is required to restore back to 60 ± 0.2 Hz within 2 seconds.

Inspired by both [126] and [11] and motived by the introduction of TLSs [116], this chapter

probes into certain technical methods of control design for frequency to satisfy the TLSs, and

proposes a numerical optimal control (NOC)-based synthesis methodology. The reminder of

the chapter is organized as follows. Section 5.1 introduces preliminary knowledge about
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TLSs. Section 5.2 introduces the NOC-based control synthesis methodology, including

the overall configuration, problem formulation, and the results with nonlinear simulation

verifications. Conclusions are expressed in Section 5.3. Part of the results in this chapter

appeared in [124].

5.1 Preliminaries on Temporal Logic Specification

A temporal logic specification is built by combining the atomic propositions (APs), or

predicates, using logical and temporal operators. An AP is a statement on the system

variables that is either true or false for some given value of the systems variables [44]. For

example, the statement “the grid frequency deviation should never exceed 0.5 Hz” is an

AP, formally expressed as µ(•) = (| • | ≤ 0.5). The commonly used logical operators are

conjunction (∧), disjunction (∨), negation (¬), implication (→), and equivalence (↔). The

temporal operators include eventually (♦), always (�), and until (U). The TLSs can be

categorized into two groups, that is, discrete-time and continuous-time TLSs. For a discrete-

time TLS, timing intervals cannot be added with the temporal operators. For example,

♦p for p = (y < 5) states the y will be eventually less than five without specifying when

the condition will be fulfilled. Obviously, discrete-time TLS can not be used for reasoning

about quantitative properties of time. As a supplementary, a continuous-time TLS can add

the timing intervals like ♦[2,+]p for p = (y < 5), which states the y will be eventually less

than five after two seconds. For frequency control problem, the continuous-time TLSs are

employed.
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The validity of a formula ϕ with respect to a signal or state of a system, denoted by x,

at time t is defined inductively as follows [87]

(x, t) |= µ ⇔ µ(x(t)) > 0 (5.1)

(x, t) |= ¬µ ⇔ ¬((x, t) |= µ) (5.2)

(x, t) |= ψ ∧ ϕ ⇔ (x, t) |= ψ ∧ (x, t) |= ϕ (5.3)

(x, t) |= ψ ∨ ϕ ⇔ (x, t) |= ψ ∨ (x, t) |= ϕ (5.4)

(x, t) |= �[a,b]ϕ ⇔ ∀τ ∈ [t+ a, t+ b], (x, τ) |= ϕ (5.5)

(x, t) |= ♦[a,b]ϕ ⇔ ∃τ ∈ [t+ a, t+ b], (x, τ) |= ϕ (5.6)

Considerable efforts have been devoted to control synthesis for continuous-time TLSs.

On the one hand, in [116, 113], the temporal logic constraints are substituted into the

optimization objectives, leading to a unconstrained problem that can be solved by some

functional gradient descent algorithms. On the other hand, the authors in [87] introduce an

approach using mixed-integer convex optimization to encode the TLSs as constraints. First,

the safe or unsafe sets are represented as polyhedrons (by finite many hyperplanes). An

AP like x ∈ P can be formulated as a linear program. Second, some integer variables are

introduced to indicate whether the condition holds or not. The if and else condition can be

formulated in the linear program using the big-M technique. Finally, the overall problem

becomes a mixed integer linear program (MILP). In [92], a heuristic algorithm is proposed.

By adding constraints to satisfy the TLS formula only when necessary, the exponential

complexity of solving MILP problems is avoided.

5.1.1 Model Checking via Mixed Integer Linear Programming

Model checking or property checking refers to the following problem: Given a model of a

system, exhaustively and automatically check whether this model meets a given specification.

In order to solve such a problem algorithmically, both the model of the system and

the specification are formulated in some precise mathematical language. MILP has been

successfully applied to the satisfiability problem for propositional logic in [33], where the
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linear temporal logic is converted into mixed integer linear constraints. In addition, this

technique has been successfully applied into optimal control problems of mixed logical

dynamical systems [45], and the vehicle routing problem with linear temporal logic [41, 42]

as well as metric temporal logic [43]. The MILP encoding procedure has been implemented

in the Matlab toolbox BluSTL [20], and employed for model predictive control in [87]. In

this study, the formulation technique for continuous-time temporal logic in [87] is employed

and briefly introduced here.

Atomic Propositions

APs are the elementary units building the TLSs. The encoding procedure starts with

translating APs in Eq. (5.1) into linear constraints. To do this, arbitrary sets in APs are

approximately represented by polyhedrons, that is, by finite many hyperplanes. Formally,

an AP is denoted as µ = (Ax > b). To indicate (for verification) or enforce (for synthesis)

the satisfaction of an AP with respect to the signal or state of a system x at time t, denoted

as xt for short, binary variables zµt for AP µ at time t = 0, 1, · · · , N are introduced, and the

big-M technique is employed as follows

µ(xt) ≤Mzµt − ε

− µ(xt) ≤M(1− zµt )− ε
(5.7)

where M are sufficiently large positive numbers, and ε are sufficiently small positive numbers

that prevent µ(xt) from equaling to zero. Obviously, zµt = 1 indicates or enforces the

satisfaction of µ.

Logic Operators

Using the binary indicators, Eq. (5.2) can be formulated as

z¬µt = 1− zµt (5.8)
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For the conjunction operator ϕ = µ1 ∧ µ2 ∧ · · · ∧ µm, the MILP formulation is expressed as

follows

zϕt ≤ zµit , i = 1, · · · ,m

zϕt ≥ 1−m+
m∑
i

zµit
(5.9)

For the disjunction operator ϕ = µ1 ∨ µ2 ∨ · · · ∨ µm, the MILP formulation is expressed as

follows

zϕt ≥ zµit , i = 1, · · · ,m

zϕt ≤
m∑
i

zµit
(5.10)

The implication operator ϕ = µ1 ⇒ µ2 is logically equivalent to ϕ = (¬µ1) ∨ µ2. The

equivalence operator ϕ = µ1 ⇔ µ2 is logically equivalent to ϕ = (µ1 ⇒ µ2) ∧ (µ2 ⇒ µ1).

Thus, the formulations in Eqs. (5.8)-(5.10) can be used.

Temporal Operator

To achieve algorithmic solutions, the discretized time and state spaces are considered. In

addition, finite-time horizon from 1 to N is considered. The most general expressions of

the temporal operators for an AP µ are �[t+a,t+b]µ and ♦[t+a,t+b]µ, where b > a and t ∈

[1, N − (b− a)]. In other words, the duration that the property is satisfied over is given, but

the instant is unknown, which probably depends on other variables like control inputs. In

this case, all possible scenarios should be considered with the constraint that only one will

become true.

For example, we would like to encode the formula ϕ = �[τ+a,τ+b]µ and µ = (y < 1),

where the duration is assumed to be 4 without loss of generality, and y is the output of a

system. The formula ϕ could be true any time once on a finite-time interval [1, N ]. The

instant of event τ is to be determined by other factors such as the dynamics of the system

and control input. The encoding objective is to define a binary indicator for formula ϕ.

First, let zµt be the indicator of µ at time t, and zϕt be the indicator of the scenario that ϕ

becomes true at time t. Second, generate all possible scenarios for ϕ in the time interval

[1, N ] as illustrated in Fig. 5.1. Third, based on Eqs. (5.5) and (5.6) and duration, create
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logic constraints inductively between zµt and zϕt , which is also shown in Fig. 5.1. Finally,

enforce the following constraint so that ϕ could only become true once

zϕ =

N−(b−a)∑
t=1

zϕt = 1 (5.11)

where zϕ is the indicator of ϕ on the time interval [1, N ]. If ϕ is enforced to be true starting

at a specific instant k, then the corresponding indicator zϕk can be used directly.

N

(a) (b)

1 2 3 N1 2 3
Scenario 1

Scenario 2

Scenario 3

Scenario 

N-3

al

1 2 3 4 1and( , , , )u u u uz z z z z→

al

2 3 4 5 2and( , , , )u u u uz z z z z→

al

3 2 1 3and( , , , )u u u u

N N N N Nz z z z z− − − −→

al

3 4 5 6 3and( , , , )u u u uz z z z z→

ev

1 2 3 4 1or( , , , )u u u uz z z z z→

ev

2 3 4 5 2or( , , , )u u u uz z z z z→

ev

3 4 5 6 3or( , , , )u u u uz z z z z→

ev

3 2 1 3or( , , , )u u u u

N N N N Nz z z z z− − − −→

Figure 5.1: Illustration of encoding temporal operators into MILP. (a) Temporal operator:
always. (b) Temporal operator: eventually.

5.2 NOC-based Control Synthesis with Temporal Logic

Specifications

5.2.1 Overall Configuration

The overall configuration of the proposed control is illustrated in Fig. 5.2. The controller

is configured into two levels, that is, the scheduling level and the triggering level. In the

scheduling level, the grid operating status is acquired to update the parameters of the ASFR

model. The required performance specifications and up-to-date models are sent to the NOC-

based signal scheduling program. The signals are Boolean with pre-specified magnitude. The

signal scheduling problem is formulated as a MILP. Then, the supportive signals for WTGs

can be pre-calculated under a worst-credit contingency.
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The scheduled signals are sent to the triggering level, where the frequency is measured

and compared to a pre-defined threshold to detect whether a severe contingency close to the

worst-case one is happening. Once the supportive function is determined to be activated,

a local clock is activated so that the scheduled signals are synchronized with the real time.

And the synchronized signals are applied to the supplementary loop of the WTGs. It is

worth mentioning that the initial condition in the NOC scheduling should be aligned with

the threshold setting. The overall configuration is analogous to the adaptive remedial action

scheme in [61].

Numerical optimal 

control-based signal 

schedule

(Mixed integer linear 

program)

Model 

parameter 

update

Grid operating 

status 

Frequency 

Measurement

Performance 

specification

Threshold

rotor
refP

MPPTMPPT

suppu

t

Local clock

Triggering Level

Scheduling Level

Hold

Figure 5.2: Overall configuration of synthesizing performance guaranteed controller.

5.2.2 Test System 33-Node Based Microgrid

Consider a diesel-wind mixed microgrid in Fig. 5.3. The ASFR model in 2.40 can be adopted

with modifications as follows
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Figure 5.3: Diesel-wind fed 33-node based microgrid.

2Hd∆ω̇d = f(∆Pm − kd∆Pd + kdw1∆Pg1 + kdw2∆Pg2)

τd∆Ṗm = −∆Pm + ∆Pv

τg∆Ṗv = −∆Pv −∆ωd/(fRD)

∆ω̇r1 = Ard1∆ωr1 +Brd1us1

∆ω̇r2 = Ard2∆ωr2 +Brd2us2

(5.12)

where

∆Pg1 = Crd1∆ωr1 +Drd1us1

∆Pg2 = Crd2∆ωr2 +Drd2us2

(5.13)

Let Sd, Sw1 and Sw2 be the base of DG and WTG 1 and 2, respectively. Then, kd = 1/Sd,

kdw1 = Sw1/Sd, and kdw2 = Sw2/Sd. The term ∆Pd is the worst-case contingency.

5.2.3 NOC Formulation for Scheduling Level

Define the state and input vectors as

x = [∆ωd,∆Pm,∆Pv,∆ωr1,∆ωr2]T

u = [us1, us2]T
(5.14)
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Then, the analytical model in (5.12) is discretized at a sample time of ts and expressed

compactly as follows

x(k + 1) = Adx(k) +Bd1u(k) +Bd2kd∆Pd (5.15)

Let the scheduling horizon be denoted as k ∈ T = [1, · · · , T ]. First, the frequency deviation

should not exceed a certain limit in any time, that is,

|x1(k)| ≤ ∆fd,lim ∀k ∈ T (5.16)

Since the kinetic energy of WTGs will be transferred to active power to support the grid,

the speed of WTGs will decrease from nominal values. This deviation is also desired to be

limited for both WTGs

|xi(k)| ≤ ∆fw,lim ∀k ∈ T , i = 4, 5 (5.17)

The Boolean control signals for both WTGs can be presented using the following constraints

usi(k) = bi(k)uC ∀k ∈ T , i = 1, 2 (5.18)

where bi is a binary variable indicating the status of the GS mode of WTG i, and uC is the

fixed magnitude of the inputs. Finally, the frequency is required to satisfy the following TLS

ϕ to enhance the performance

x1(k) � ϕ ∀k ∈ T (5.19)

where

ϕ = �[(|x1(k)| ≥ ∆fc)→ ♦[0,ta]�(|x1(k)| ≤ ∆fc)] (5.20)

The above TLS states that whenever the frequency deviation is larger than ∆fc, then it

should become less than ∆fc within ta seconds.
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The first objective is to minimize the control efforts. The total control effort can be

represented as the summation of all binary variables as

CU =
2∑
i=1

T∑
k=1

bi(k) (5.21)

In addition, the switching between on and off of the supportive modes should not be too

frequent. Thus, a start-up cost is added as follows

CSU =
2∑
i=1

T−1∑
k=2

bi(k)[1− bi(k − 1)] (5.22)

This nonlinear objective can be converted into a linear objective with constraints by

introducing slack binary variable z as follows

C ′SU =
2∑
i=1

T−1∑
k=2

(bi(k)− zi(k)) (5.23)

and

zi(k) ≤ bi(k), zi(k) ≤ bi(k − 1)

zi(k) ≥ bi(k) + bi(k − 1)− 1 ∀k ∈ T , i = 1, 2
(5.24)

88



The scheduling problem can be summarized as follows

min w1CU + w2C
′
SU

s.t. ∀k ∈ T

x(k + 1) = Adx(k) +Bd1u(k) +Bd2kd∆Pd

|x1(k)| ≤ ∆fd,lim

|xi(k)| ≤ ∆fw,lim i = 4, 5

ui(k) = bi(k)uC i = 1, 2

zi(k) ≤ bi(k), zi(k) ≤ bi(k − 1) i = 1, 2

zi(k) ≥ bi(k) + bi(k − 1)− 1 i = 1, 2

x1(k) � ϕ

ϕ = �[(|x1(k)| ≥ ∆fc)→ ♦[0,ta]�(|x1(k)| ≤ ∆fc)]

(5.25)

where w1 and w2 are positive weighing factors. The TLS can be encoded into a MILP using

the toolbox BluSTL [20]. Then, the overall problem is converted into a MILP, written in

the format of Yalmip [54] and solved by efficient solvers Mosek [7] and Gurobi.

5.2.4 Results and Simulation Verification

The rated powers of DG and WTG are assumed to be 2 MW and 1 MW, respectively. The

operating conditions of the WTGs and their corresponding first-order model are given as

follows

vwind = 10 [m/s], Pgi = 0.8, Qgi = 0, vdsi = 0, vqsi = 1

Ardi = −0.2771, Brdi = 2.5741, Crdi = 0.2550, Drdi = −2.3343

for i = 1, 2. The parameters associated with the DG are given as follows

Hd = 4, τd = 0.1, τg = 0.5
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The base and scaling factors are

Sd = 5 [MVA], Sw = 1.11 [MVA], kd = 0.2, kwd = 0.22

The parameters in the MILP are given as follows

ts = 0.02 [s], T = 4 [s], Pd = 0.7 [MW], w1 = 1, w2 = 10

∆fd,lim = 0.5 [Hz],∆fw,lim = 2 [Hz], uC = −0.05

fc = 0.45 + ε [Hz], ta = 1 [s]

Based on the given parameters, it is required that the frequency deviation to be limited

within 0.5 Hz. Moreover, whenever the frequency deviation is larger than 0.45 Hz, it should

be restored back to 0.45 Hz within one second. Since there exists certain mismatches between

the ASFR and the full nonlinear model, the term ε is introduced to tighten the specification

such that the nonlinear response can satisfy the original specification as well.

Three cases are considered. In the first case, the TLS is removed. In the second case, the

TLS is considered with the compensating factor ε = 0. In the third case, the compensating

factor ε is set to be −0.015 Hz. The scheduled inputs of these three cases are plotted in Fig.

5.4. The DG frequencies under these cases from the AFR are shown in Fig. 5.5. As shown,

with more constraints, the WTGs are required to operate at the GS mode for larger time

durations. The responses from the AFR model strictly satisfy all control specifications with

minimum control efforts required.

The scheduled inputs of Case 2 and 3 are applied to the nonlinear model. The

corresponding frequencies of DG are shown in Fig. 5.6. The DG frequency in Case 2

does not satisfy the TLS. This is because of the error induced by the model reduction of

WTGs. The active power variations associated with the support signals in Case 3 are shown

in Fig. 5.7. As shown, although the first-order models have successfully captured the active

power dynamics with good accuracy, there are still mismatches in the response. These tiny

mismatches, however, falsify the TLS, the satisfaction of which requires higher level precision.

Thus, the response mismatches need to be compensated. The most convenient approach is

to impose more strict specifications, that is, the introduction of the robust factor ε, such that
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Figure 5.4: Scheduled control signals for WTGs. (a) Without TLS. (b) With TLS. (c)
With TLS and a robust margin.
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Figure 5.5: Frequencies of DG under different cases simulated using the AFR model.

the output could satisfy the original specifications at the cost of introducing certain levels of

conservatism. The red dash plot in Fig. 5.6 indicates that this robust factor could generate

a stronger control effort so that the specifications are satisfied. It is also worth mentioning

that in the nonlinear verification, the TLS is a bit conservative because the ASFR model is

not able to capture the weak inertial responses from the DFIG-based WTGs.

5.3 Summary

In this chapter, a NOC-based control synthesis methodology is proposed that enables the

realization of the TLSs. The controller schedules ahead a series of Boolean control signals

to synthesize the GS mode of WTGs by solving the NOC problem, where the frequency

response predicted by the AFR model satisfies the defined specifications under a worst-case

contingency. The proposed control is verified on the full nonlinear model in Simulink. A

robust factor is introduced to compensate the model reduction error such that the nonlinear

response satisfies the TLS.
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Figure 5.6: Frequencies of DG under different cases simulated using the full nonlinear
model in Simulink.
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Figure 5.7: Active power variations from the first-order and full nonlinear model. (a) WTG
1. (b) WTG 2.
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Chapter 6

Model Reference Control-Based

Inertia Emulation

Classic inertia emulation approach feeds the ROCOF into the supplementary loop of a WTG

to couple the kinetic energy with the grid frequency events [65, 46]. However, it is difficult to

assess how much synthetic inertia can be provided through this loop during a disturbance.

There are a few works trying to approximate the inertia contribution [110, 62, 47, 126]. Refs.

[110] and [126] indicate that under current existing inertia control, the emulated inertia is

time-varying. Thus, emulating desired inertia over a time window is impossible using the

ROCOF as the control input. Under some specific control structures, such as, droop control

or virtual synchronous generators (VSG), the synthetic inertia can be estimated or controlled

[19], but this requires the WTG to operate as voltage sources and at the cost of de-loaded

operation.

Motivated by these issues, a novel inertia emulation strategy for current-mode WTGs

is proposed. The model reference control (MRC) concept [24] is employed to provide the

capability of precisely emulating inertia. A frequency response model is defined as the

reference model, where the desired inertia is parametrically defined. A measurement at a

specific location delivers the information about the disturbance acting on the diesel-wind

system to the reference model. Then, a static state feedback control law is designed to

ensure the frequency of the physical plant tracks the reference model so that the desired
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inertia is emulated. In spirit, this proposed control strategy is similar to the VSG approach

but instead uses WTGs and traditional generators together as actuators.

The rest of the chapter is organized as follows. Section 6.1 describes the challenges of

the proposed objective from the physical point of view in details. The MRC-based inertia

emulation strategy is presented in Section 6.2. Three-phase nonlinear simulation illustrates

performance in Section 6.3 followed by conclusions in Section 6.5. Part of the results in this

chapter appeared in [122] and [123].

6.1 Problem Statement

The natural inertial response (NIR) refers to the kinetic energy of electric machines that

transfers into electric power per unit time to overcome the immediate power imbalance. It

can be expressed mathematically by the swing equation

2Hs∆ω︸ ︷︷ ︸
NIR

= ∆P (6.1)

where s is the Laplace operator, H is the inertia constant, ∆ω is the frequency variation

and ∆P is the power imbalance. The left side of (6.1) can be regarded as the NIR. For a

WTG, the power imbalance is invisible to the electric machine as the electromagnetic torque

is controlled by the converter interface, and is a constant in most times. Inertia emulation

is to let the electric machine sense the power imbalance and release its kinetic energy in

proportion to the ROCOF as illustrated in Fig. 6.1 (a). The generated power due to this

effort, denoted by ∆Pie, is referred to as the virtual inertial response (VIR). This procedure

can be mathematically modeled in Fig. 6.1 (b), where Gw(s) represents the responding

dynamics of WTG to generate ∆Pw according to the inertia emulation (IE) command uie.

If the responding dynamics are infinitely fast, that is, Gw(s) = 1, then the supportive

power can be expressed as

∆Pw = uie = Kies∆ω (6.2)
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Figure 6.1: Inertia emulation using WTGs. (a) Control diagram. (b) Equivalent
mathematical model.

Subjected to this supportive power, Eq. (6.1) will become

2Hs∆ω = ∆P + ∆Pw (6.3)

Substituting ∆Pw with the right hand side of (6.2) will yield

2Hs∆ω︸ ︷︷ ︸
NIR

−Kies∆ω︸ ︷︷ ︸
VIR

= ∆P (6.4)

As shown, the WTG support can be equivalently regarded as a constant added to the inertia

constant. In this case, both sides of Eq. (6.2) are referred to as the ideal VIR.

However, Gw(s) cannot be infinitely fast. It can be further decomposed into the dynamics

of rotor and its regulator Gr(s), DC-link and its regulator Gd(s), and stator current regulator

Gs(s), the timescales of which are seconds, 100 ms, and 10 ms, respectively [102]. As seen in

Fig. 6.2, the upper bandwidth limit for ideal VIR is the stator current regulator. Thus, the

phrase ”near-ideal” is used to express this physical limit, although both Gd(s) and Gs(s) are

sufficiently fast to have sizable impacts on the frequency control problem. The lower limit,

on the other hand, is determined by the rotor and its regulator Gr(s), which has the most
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Figure 6.2: Decomposition of WTG responding model and their time scale. The upper
and lower bandwidth limits for ideal VIR are identified.

dominant impact on the non-ideal effect of VIR, and prohibits the WTG from providing

near-ideal VIR.

6.2 Model Reference Control-Based Inertia Emulation

6.2.1 Configuration Interpretation

Fig. 6.3 illustrates the MRC-based inertia emulation on a diesel-wind system. It consists

of a parameterized reference model and a physical plant. Although theoretically any model

can be chosen, a large difference between the reference model and the physical one will

lead to mathematical infeasibility when seeking feedback controllers. Therefore, a reference

model similar to Eq. (2.5) will be chosen with desired inertia Ĥ. The physical plant is the

diesel-wind unit.

The idea to achieve near-ideal synthetic inertial response of WTGs discussed in Section

6.1 can be recast as a tracking problem. As illustrated in Fig. 6.3, let 2Ĥs∆ω and 2HDs∆ωd

be the inertial response of the reference model and DSG, respectively, where Ĥ is the desired

inertia constant and Ĥ −HD = Hie > 0. Once subjected to a same disturbance ∆Ppom, the

power balance condition holds as

∆Ppom = 2Ĥs∆ω = 2HDs∆ωd + ∆Pg (6.5)
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Figure 6.3: Realization of MRC on one diesel-wind system. Power deviation at the point
of measure is measured and sent to the parameterized reference model. Four states from the
physical plant and three states from the reference model are measured for feedback control.

If the speed of DSG can track the speed of reference model with the support of WTG, that

is, ∆ω = ∆ωd, then the following relation holds

∆Pg = 2Ĥs∆ω − 2HDs∆ω = 2Hies∆ω (6.6)

Therefore, exact synthetic inertial response 2Hies∆ω is emulated by the WTG. Finally, the

MRC approach is employed to realize the tracking objective. This reference tracking can be

realized by means of feedback control, which will be designed in Section 6.2.2.

The key for successful performance guarantees is to impose the disturbance suffered by

the physical plant on the reference model. To do this, the power variations of all lines for

the diesel-wind unit that feed power into the network are measured and sent to the reference

model as disturbances. Due to the radial structure of most distribution networks, usually
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there is one such path as shown in Fig. 6.3. We denote the line where the measurement is

taken as the point of measurement (POM).

In spirit, this MRC-based inertia emulation is similar to the VSG control, where a

reference model is also needed and the POM is the converter terminal bus. The difference

is that in VSG the converter is controlled in voltage mode and does not need other voltage

sources nearby. The reference model in both control systems can be regarded as an observer

that provides the desired response. Note that the proposed configuration can also be used for

coordination of flexible numbers of diesel and WTGs by appropriately choosing the POM.

6.2.2 Feedback Controller Design For Reference Tracking

Although state feedback control is implemented in this paper, the reduced-order model

is employed to reduce the complexity of the communication link. Moreover, physically the

reduced-order model only contains the mechanical states which are easier to obtain by means

of state estimation. Taking this into account, the state measure procedure will be simplified

by considering a time delay.

To arrive at an aggregated model of DSG and WTG, the electric power in (2.5) is

substituted as

∆Pe = ∆Ppom −∆Pg (6.7)

where ∆Ppom is the measured power flow variation at the location illustrated in Fig. 6.3, and

is regarded as the disturbance. Then, combining (2.5), (2.34) and (6.7) yields the reduced-

order model of the physical plant

ẋp = Apxp +Bpup + Epwp

yp = Cpxp

(6.8)

where states, control input, disturbance and output measurement are defined as

xp = [∆ωd,∆Pm,∆Pv,∆ωr]
T

wp = ∆Ppom, up = uie, yp = ∆ωd

(6.9)
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and the matrices are

Ap =


0 f

2HD
0 fCrd

2HD

0 − 1
τd

1
τd

0

1
fτsmRD

0 − 1
τsm

0

0 0 0 Ard

 , Bp =


fDrd

2HD

0

0

Brd


Ep =

[
− f

2HD
0 0 0

]T
, Cp =

[
1 0 0 0

]
Note that the above definitions hold only when the power flow equation in (6.7) holds,

which means the power variation measured at POM has to come from the DSG and WTG

only. Fortunately, it is true for most cases as long as there is no fault through the path.

Similarly, the reference model is defined as

ẋ = Arxr + Erwr

yr = Crxr

(6.10)

where the states, disturbance and output measurement are given as

xr =
[
∆ω̂,∆P̂m,∆P̂v

]T
wr = ∆Ppom, yr = ∆ω̂

(6.11)

and the matrices are

Ar =


−fD̂

2Ĥ

f

2Ĥ
0

0 − 1
τ̂d

1
τ̂d

1

fτ̂smR̂
0 − 1

τ̂sm

Er =


− f

2Ĥ

0

0


Cr =

[
1 0 0

]
Assume that the controller admits the following form

up = Kpxp +Krxr (6.12)
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Then, the augmented closed-loop system is

ẋcl(t) = Āxcl(t) + B̄xcl(t− ν(t)) + Ēwcl(t)

e(t) = C̄xcl(t) + D̄xcl(t− ν(t))
(6.13)

where

xcl(t) = [xp(t), xr(t)]
T , wcl(t) = [wp(t), wr(t)]

T

e(t) = yp(t)− yr(t), C̄ = [Cp,−Cr], D̄ = [DpKp, DpKr]

Ā =

 Ap 0

0 Ar

 , Ē =

 Ep 0

0 Er


B̄ =

 BpKp BpKr

0 0


The time delay in Eq. (6.13) is bounded by ηm ≤ ν(t) ≤ κ.

The objective is to eliminate as much as possible the tracking error e(t) under any

disturbances wcl(t). To achieve a feasible solution, wcl(t) is assumed to be a L2 signal, that

is, has finite energy. Then the problem, in a sub-optimal sense, is equivalently expressed as

min ||Tew||∞ < γ for γ > 0 (6.14)

where Tew is the transfer function of (6.13) from the disturbances wcl(t) to the tracking error

e(t). This is equivalent to solving the following optimization problem.

Theorem 6.1. Consider the system in (6.13). If there exist scalar variables γ > 0, ka > 0,

kb > 0, matrix variables P̄ > 0, Q̄ > 0, M̄i > 0 ,Ūi ,V̄i ,i = 1, 2, and K̄ such that the
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following multi-objective optimization problem can be solved

min γ + ka + kb −kaI K̄

K̄ −I

 < 0,

 kbI I

I −P̄

 > 0
(6.15)



Θ11 −Ū1 + V̄ T
1 B̃K̄ Ū1 0 Ē P̄ C̄T P̄ ĀT P̄ ĀT

∗ Θ22 −Ū2 + V̄ T
2 V̄1 Ū2 0 0 0 0

∗ ∗ −V̄ T
2 − V̄2 0 V̄2 0 K̄DT

p K̄B̃T K̄B̃T

∗ ∗ ∗ −η−1
m Υ1 0 0 0 0 0

∗ ∗ ∗ ∗ −κ−1Υ2 0 0 0 0

∗ ∗ ∗ ∗ ∗ −γI 0 ĒT ĒT

∗ ∗ ∗ ∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −η−1
m M̄1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −κ−1M̄2



< 0

(6.16)

where

B̃ = [BT
p , 0]T

Θ11 = ĀP̄ + P̄ ĀT + Q̄+ Ū1
T

+ Ū1

Θ22 = −Q̄− V̄1
T − V̄1 + Ū2

T
+ Ū2

Υi = M̄i − 2P̄ , i = 1, 2

(6.17)

Then, the state feedback controller given in (6.18) can guarantee that the system in (6.13)

will attain output tracking performance
√
γ in the H∞ sense

K = [Kp, Kr] = K̄P̄−1 (6.18)

The linear matrix inequalities (LMIs) in (6.16) is derived based on Lyapunov–Krasovskii

functional with the performance guarantees ||e||2 <
√
γ||wcl||2 [24]. Eq. (6.15) is to limit the
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size of gain matrix K. Since K = K̄P̄−1, one can have

K̄T K̄ < kaI, P̄−1 < kbI (6.19)

for arbitrary scalars ka > 0 and kb > 0. Then, the gain matrix becomes

KTK = P̄−1K̄T K̄P̄−1 < kak
2
bI (6.20)

where (6.19) and (6.15) are equivalent.

6.2.3 Polytopic Parameter Uncertainty

In realistic cases, the parameters of the physical plant cannot be exactly determined but

generally reside in a given range. This is a polytopic type of uncertainty that can be

described by its vertices. Let the plant matrix Ap with Ka uncertain parameters be denoted

as Ap(θ1, · · · , θi, · · · , θKa) where θi ∈ [θ1
i , θ

2
i ] describes the absolute percentage variation of

parameter i from its nominal value and i = 1, · · · , Ka. Then, all vertices can be expressed

as Ap,ka = Ap(θ
j
i ) for j = 1, 2 and i = 1, · · · , N . Similarly, the vertices of matrix Bp, Ep, Cp

and Dp can be denoted as Bp,kb , Ep,ke , Cp,kc and Dp,kd . Since the LMI condition in (6.15) and

(6.16) is affine in the system matrices, Theorem 6.1 can be directly used for robust tracking

control as presented in the following corollary [24].

Corollary 6.2. The closed-loop system in (6.13) with the polytopic parameter uncertainty

described above will achieve H∞ output tracking performance
√
γ under the state feedback

controller (6.12) if there exists P̄ > 0, Q̄ > 0, M̄i > 0 ,Ūi ,V̄i, i = 1, 2, and K̄ such that

Theorem 6.1 is solved for all vertices Ap,ka, Bp,kb, Ep,ke, Cp,kc and Dp,kd.

Table 6.1: Scheduled Inertia in Reference Model and Other Parameters under Different
Configurations

Config.# OP Activated MRC System (Involved Physical Units) Ĥ R̂ HD,1 HD,2 RD,1 RD,2 Results

1 A Reference 1-1 (DSG 1, WTG 1) 3 5% 1 1 5% 5% Fig. 6.6
2 A Reference 1-1 (DSG 1, WTG 1), 1-2(DSG 2, WTG 2) 2, 2 5%, 5% 1 1 5% 5% Fig. 6.9
3 B Reference 2 (DSG 1, WTG 1 and 2) 5 3.5% 1 NA 3.5% NA Fig. 6.10
4 B Reference 3 (DSG 1, WTG 1, 2 and 3) 5 3.5% 1 NA 3.5% NA Fig. 6.10
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Figure 6.4: Model reference control configured on the 33-node based microgrid. (a) Two
separate MRC systems with bus 1 and 25 be the POM, respectively. (b) MRC system
incorporating DSG 1, WTG 1 and 3 with bus 2 be the POM. (c) MRC system incorporating
DSG 1 and all WTGs with bus 3 be the POM.
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6.3 Closed-loop Performance on 33-Node Based Mi-

crogrid

In this section, the proposed control will be tested on the 33-node based microgrid in the

Simulink environment. Two representative operating points of the system are considered:

� A (heavy loading): Pe,1 = Pe,2 = 1.2 MW, Pg,1 = Pg,2 = Pg,3 = 0.8 MW.

� B (light loading): Pe,1 = 1.5 MW, Pe,2 = 0 MW, Pg,1 = Pg,2 = Pg,3 = 0.8 MW.

Four different MRC-based inertia emulation controllers are configured with respect to these

operating points, which are illustrated in Fig. 6.4 and summarized in Table 6.1. The network

data is acquired from [8]. The WTG model is modified based on the averaged DFIG in the

Simulink demo library, where the aerodynamic model is changed to the one described in [86]

and the two-mass model is reduced to the swing equation with combined inertia of turbine

and generator. The two-axis synchronous machine model of the diesel generator is adopted

from [93]. All parameters are scaled to medium-voltage microgrid level based on [72]. For

all cases, the time constants of all reference models are set to be equal to those of the DSGs,

i.e., τ̂d = 0.2 s, τ̂sm = 0.1 s. Due to the capacity limits, load-damping effect, which represents

the frequency-sensitive loads, is not emulated, and thus D̂ = 0. Only inertia constants of

reference models Ĥ are scheduled. The power system stabilizers are turned on to damp the

oscillation. Other important parameters are given in Appendix A.2.

The responses of nonlinear, full linear, and first-order WTG model with δ = 0 are shown

under a step signal (Fig. 6.5 (a)), inertia emulation signal (Fig. 6.5 (b)), and using washout

filters (Fig. 6.5). As seen the selected mode successfully captures the active power related

dynamics of the full linear system, and the induced error by the SMA-based model reduction

is not significant. Based on this result, it is sufficient to consider δ = ±(−A22)−1Bz × 10%

for all cases.

6.3.1 Closed-loop Performance of Single Diesel-Wind System

Assume that the system operates under Condition A. The closed-loop performance of MRC

system 1-1 (Config. 1) in Fig. 6.4 is presented. The other units are operating under normal
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Figure 6.5: Response comparison of nonlinear, linear and SMA-based first-order WTG
model under step input and inertia emulation input. (a) Step input. (b) Inertia emulation
input via washout filter. (c) WTG speed variation under step input. (d) WTG speed
variation under inertia emulation input. (e) WTG active power variation under step input.
(f) WTG active power variation under inertia emulation input.

condition. The disturbance is a step load change at Bus 18. The inertia constant of DSG

1 is one second, i.e., HD,1 = 1 s, and the desired inertia set in the reference model is three

seconds, i.e., Ĥ1 = 3 s. By solving the LMIs, the feedback law is obtained and shown in

(6.21)

Kmrc =
[

158.37 −5.28 −3.18 −68.81 −157.02 5.79 3.50
]

(6.21)

The closed-loop frequency response is shown in Fig. 6.6 (a). As shown, the two second

synthetic inertia constant is precisely emulated. The responses under conventional inertia

emulation realized by a washout filter Kies/(0.01s + 1) with different gains, Kie = 0.03

and Kie = 0.1, are shown in Fig. 6.6 (a) for comparison. As Kw increases the response

approaches the one under the MRC-based inertia emulation. However, a trial and error

procedure is needed to reach the desired performance. The power output from WTG 1 is

shown in Fig. 6.6 (c). Note that there exists weak inertial response (Gray curve) for a
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field-oriented controlled DFIG-based WTG even without a supportive controller, and this

response is sensitive to the rotor current-controller bandwidth [68].
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Figure 6.6: Performance under conventional and MRC-based inertia emulation with Config.
1. (a) Speeds of DSG and reference model. (b) WTG speed. (c) WTG active power variation.
(d) Control input.

6.3.2 Parameter Uncertainty

Besides compensation of model reduction errors, parameter uncertainty of the physical plants

is considered. As model (2.5) dominates the frequency characteristics, it is sufficient to

consider only the parameter uncertainty within this model. Assume the inertia HD,1, time

constant τd and τsm of DSG 1 are the uncertain parameters and belong to the range defined

as: HD,1 ∈ HD,1[1 − θ1
1, 1 + θ2

1], τd ∈ τ d[1 − θ1
2, 1 + θ2

2], τsm ∈ τ sm[1 − θ1
3, 1 + θ2

3] where

HD,1 = 1 s, τ d = 0.2 s and τ sm = 0.1 s are the mean values. The reference model parameters

are set according to the mean values as: Ĥ1 = HD,1 + 2 s, τ̂d = τ d, τ̂sm = τ sm. Let θ1
1 =

θ2
1 = 50% and θ1

2 = θ2
2 = θ1

3 = θ2
3 = 90% when using Corollary 6.2 to design the controller.

Consider two sets of parameters as: {Scenario 1 | HD,1 = 0.5 s, τd = 0.38 s, τsm = 0.19 s}

and {Scenario 2 | HD,1 = 1.5 s, τd = 0.11 s, τsm = 0.05 s}. The response of Scenario 1 under
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the controller designed using Theorem 6.1 is shown in Fig. 6.7 (a), while the response under

controller designed using Corollary 6.2 is shown in Fig. 6.7 (c). As illustrated, by using

Corollary 6.2 the tracking performance is not impaired by parameter uncertainty. A similar

comparison of Scenario 2 is shown in Fig. 6.7 (b) and Fig. 6.7 (d), respectively.
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Figure 6.7: MRC-based IE under parameter uncertainty. (a) Response under parameters
of Scenario 1 using Thm. 6.1. (b) Response under parameters of Scenario 2 using Thm. 6.1.
(c) Response under parameters of Scenario 1 using Cor. 6.2. (d) Response under parameters
of Scenario 2 using Cor. 6.2.

6.3.3 Wind Speed Dependent Control Reconfiguration and Inertia

Scheduling

Due to the varying loading condition, different DSGs are needed to switch on and off

from time to time. So, the control system should have multiple configurations and switch

between them based on different scenarios. Three configurations are illustrated in Fig. 6.4.

The rectangles represent the MRC system formed by the included diesel and wind units.

Meanwhile, it is also desired to have the frequency deviation in all scenarios within 0.5

Hz under a worst-case disturbance so as to minimize the possibility of unnecessary load

shedding [85]. This objective in most cases is difficult to achieve but can be easily realized

109



with the proposed control. As physical plants are guaranteed to track the reference model,

the dynamics of the wind diesel mixed network are equivalent to the systems shown in Fig.

6.8. Thus, verifying the frequency response and scheduling the inertia of the reference model

will be sufficient to achieve the objective.

Under Condition A, one MRC system can be activated with larger synthetic inertia or

two MRC systems can be activated separately (Config. 2). The first case has been presented

in section 6.3.1. In the latter case, each of the reference models only needs to emulate one

more second inertia so that the frequency response under the given disturbance is above 59.5

Hz as shown in Fig. 6.9 (a). The corresponding power output is given in Fig. 6.9 (c). Under

Condition B, DSG 2 is chosen to be shut down and the total inertia decreases. The droop of

DSG 1 is adjusted so that the steady-state response meets the requirement. The inertia of

Reference Model 1 is set to be four seconds. The variational active power for three seconds

inertia cannot be achieved by one wind unit. Two different configurations are constructed

by incorporating different numbers of WTGs as shown in Fig. 6.4 (Config. 3 and 4). Their

frequency responses and power variations are illustrated in Fig. 6.10 (a) and Fig. 6.10 (c),

respectively. The capability of coordinating multiple DERs to provide the required inertia

under the proposed control is verified. The scheduled parameters are presented in Table 6.1.
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Figure 6.8: Equivalent networks under different configurations.

Since the control design is based on the terminal condition (6.7), any incident that violates

(6.7) impairs the function of MRC. One factor is to choose POMs correctly for varying

configurations. Buses 1 and 25 are the POMs for MRC system 1-1 and 1-2, respectively.

Bus 2 and 3 are the POMs for MRC system 2 and 3. If the POMs are not chosen correctly,

then the terminal power flow condition will not be satisfied and the plants are not able to
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Figure 6.9: Performance under conventional and MRC-based inertia emulation with Config.
2. (a) Speeds of DSG and reference model. (b) WTG speed. (c) WTG active power variation.
(d) Control input.

track the reference models. In Configurations 3 and 4, any disturbances between the POMs

and generators will change (6.7) and impact the function of MRC systems. Now, consider

the same disturbance applied to Bus 18 and Bus 3 at 1 s and 1.3 s, respectively. Since the

terminal condition for Config. 4 cannot hold, the plant fails to track the reference as shown

in Fig. 6.11, while Config. 3 is functioning well. Fortunately, these scenarios are rare due to

the radial structure of the distribution systems.

6.3.4 Discussion

Compared with the traditional inertia emulation approach, two more states from the DSG

(speed of DSG and frequency in the microgrid are assumed to be equivalent) are measured.

Although it requires inter-device communication, the value of this is two-fold. First, the

states provide information on the amount of inertial response generated by the DSG such

that the WTG can make up the rest to meet the requirement. Second, it provides robustness

against parameter uncertainty of DSGs.
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Figure 6.10: Performance under conventional and MRC-based inertia emulation with
Config. 3 and 4. (a) Speeds of DSG and reference model. (b) WTG speed. (c) WTG
active power variation. (d) Control input.

Note that even though type-3 WTGs are chosen to represent the renewable energy

sources, the proposed method is applicable on other types of WTGs as well as other

converter-interfaced sources, including but not limited to battery storages photovoltaics and

microturbines. One disadvantage is that at each time when the control is activated, the

WTG operates off of MPPT, which in long term will decrease the averaged efficiency of

energy harvesting.

6.4 Experimental Implementation in HTB

The proposed control is implemented on an aggregated WECC system modeled in the HTB

of CURENT. The emulated WECC model has been already introduced in chapter 4.4.3. It

is a four-area system with a multi-terminal HVDC overlay, the one-line diagram of which is

shown in Fig. 6.12. Area 2 is selected to configure the MRC structure. The experimental

implementation is illustrated in Fig. 6.13. The necessary states of BC Hydro (Bus 1), Grand
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Figure 6.11: DSG speed under MRC-based inertia emulation with two successive
disturbances at Bus 18 and Bus 3. Tracking in Config. 4 fails since disturbance at Bus
3 violates the terminal condition.

Coulee (Bus 2) and their terminal active power at POM are measured and passed to the

area controller in Labview. The deviation of these variables are calculated by subtracting

the current measurement from their averaged values over a period, which is considered as

the operating point. The terminal active power deviation is sent to the reference model

solved by an ODE solver. The obtained states together with the measured states are sent

to the feedback gain to obtain the enhanced inertia emulation signal for near-ideal inertial

response.

In the experimental demonstration, a 0.3 p.u generation loss is applied at Colstrip (Bus

3). The tracking performance of MRC is shown in 6.14. The frequency response at BC

Hydro (Bus 1) (red full line) tracks the frequency of the reference model (blue dash line)

driven by the active power variation at POM. The frequency responses with and without

MRC-based IE are compared in Fig. 6.15.

6.5 Summary

In this chapter, a novel MRC-based synthetic inertia emulation strategy is proposed. The

reference model is designed to have a similar structure to the frequency response model with

desired inertia. Through active power measurement and state feedback, the WTG generates
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Figure 6.12: One-line diagram of the aggregated WECC system modeled in the HTB of
CURENT, which is a four-area system with a multi-terminal HVDC overlay.

additional active power to guarantee that the diesel generator speed follows the frequency

from the reference model. This novel control strategy ensures precise emulated inertia by the

WTG as opposed to the trial and error procedure of conventional methods. This controller

is also robust against parameter uncertainty. By guaranteeing performance, safety bounds

can be easily derived based on the reference model under the worst-case scenario. Then,

adequate response can be achieved by scheduling the inertia according to the operating

point of the network. Moreover, the capability of coordinating multiple WTGs to provide

required inertia under the proposed control is verified. Finally, the proposed controller is

implemented in real-time experimental environment in HTB at CURENT.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

Nowadays, the increasing penetration of renewable sources has degraded the grid frequency

response. It is because most renewable sources are converter-interfaced and do not inherently

respond to frequency events. On the other hand, the potentials of such highly controllable

converters are far from fully developed under current control approaches. With properly

designed controls the CISs can not only eliminate the negative impacts on the grid, but also

provide performance guarantees, which becomes increasingly important for power system

operations under high renewable penetration.

Power system models for frequency control problem is derived in Chapter 2. To study

the systemic frequency response, the SFR model is discussed in Section 2.1. As a widely-

deployed CIS, the WTG is selected as a representative actuator. The WTG model is given in

Section 2.2, where the SMA-based model reduction technique is introduced to derive a first-

order model representing the supportive power variations associated with the supplementary

signals. Combining the interaction between these two models leads to the ASFR model

in Section 2.3. The emulated inertial and primary control responses are approximately

evaluated as the corresponding coefficients in the swing equation. As a result, the equivalent

inertia and load-damping constants become time-varying.

The set theoretic framework for formal safety verification is reviewed in Chapter 3. Three

different approaches for verification is described in Section 3.1. Among these approaches,
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the passivity-based method is employed. The different computation methods for positivity

are described and compared in Section 3.2.

The hybrid controller synthesis of the WTG is studied in Chapter 4. In Section 4.1,

a new concept, ROS, is proposed, and the safe switching principle is interpreted. Also

the largest ROS is explained in the sense of the backward reachable sets. In Section 4.2,

two methods are proposed to estimate the largest ROS. First, on the barrier certificate

theory an iterative algorithm is proposed. Second, a mathematically intuitive formulation

in the functional space is established, which can provide convergent information. Geometry

interpretation of this formulation is given. Two approaches are verified on a simple case and

compared with other formal verification methods. Pros and cons of the two approaches are

discussed. In Section 4.3, the critical switching instants or the largest equivalent deadbands

for adequate frequency response are obtained through the study of the ASFR model of a

single-area system. The simulation results indicate that the estimated largest ROSs are not

conservative. In addition, a safe switching window is discovered and a safe speed recovery

strategy is proposed, which successfully ensures the safety of the second frequency dip due

to the WTG speed recovery. In Section 4.4, an adaptive SSC is proposed with a two-loop

configuration, where the supervisor is scheduled with respect to the renewable penetration

level. The proposed controller can not only ensure the adequacy of the diesel generator

speed in a single-machine three-phase nonlinear microgrid, but also guarantee that of the

COI frequency in IEEE 39-bus system with varying renewable penetration. The scheduling

of the SSC under different penetration level is demonstrated as well. Finally, the controller

is experimentally implemented on an aggregated WECC system emulated by the HTB at

CURENT. In this case, the wide-area measurement signals are used to calculate the COI

frequency, which is the input of the state observer. The experiment was performed under

the real measurement and data acquisition. The adequacy of the COI frequency was ensured

by the proposed SSC.

A NOC-based control synthesis methodology is proposed in Chapter 4 that enables the

realization of the TLSs. The preliminaries on TLSs as well as its conversion to programming

methods are described in Section 5.1. The control diagram for control synthesis is introduced

in Section 5.2. The controller schedules ahead a series of Boolean control signals to synthesize
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the GS mode of WTGs by solving the NOC problem, where the frequency response predicted

by the AFR model satisfies the defined specifications under a worst-case contingency. The

proposed control is verified on the full nonlinear model in Simulink. A robust factor is

introduced to compensate the model reduction error such that the nonlinear response satisfies

the TLS.

A novel MRC-based synthetic inertia emulation strategy is proposed in Chapter 6. The

motivation and problem is stated in Section 6.1. The control configuration is introduced in

Section 6.2. The reference model is designed to have a similar structure to the frequency

response model with desired inertia. Through active power measurement and state feedback,

the WTG generates additional active power to guarantee that the diesel generator speed

follows the frequency from the reference model. This novel control strategy ensures precise

emulated inertia by the WTG as opposed to the trial and error procedure of conventional

methods. This controller is also robust against parameter uncertainty. By guaranteeing

performance, safety bounds can be easily derived based on the reference model under the

worst-case scenario. Then, adequate response can be achieved by scheduling the inertia

according to the operating point of the network. The control method is verified on 33-node

based microgrid in Section 6.3. The capability of coordinating multiple WTGs to provide

required inertia under the proposed control is illustrated. Finally, the proposed controller is

implemented in real-time experimental environment in HTB at CURENT in Section 6.4.

7.2 Future Work

Based on the work to date, continuing research in the following direction is needed.

� Alternative computation techniques for positivity certificate are pressing. The

computational complex of SOS decomposition is increasing exponentially with the

system dimension. To scale the technique to higher dimensional systems, alternative

representations should be applied.

� Heuristic encoding algorithms for TLSs are required. Model checking using the

approach presented in this dissertation will result in large-scale mixed integer

119



programming. It takes considerable time to solve the problem and prevents its online

deployment. The heuristic algorithm in [92] will be investigated so that the controller

can run in real time.

� Schedulable and decentralized MRC-based IE configuration will be designed. MRC-

based IE is configured in a centralized fashion. The advantages of it is the capability

to compensate parameter uncertainty of the synchronous generators. The cost is the

communication and its induced delay. A decentralized MRC-based IE only within

the WTG will be designed as well as a scheduling algorithm to ensure systemic

performance.
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A Summary of Parameters

A.1 SFR Model Parameters

Hc = 4 [s], τ ch = 0.3 [s], τ gv = 0.1 [s], D = 1, R = 0.05.

A.2 33-Node Based Microgrid

Variables are in per unit unless specified otherwise.

Base: Sbase = 1.1 MVA, Vbase = 575 V, ω = 377 rad/s.

Operating condition: Wind speed: 10 m/s. Pg = 0.8, Qg = 0, vds = 0, vqs = 1.

Equilibrium point of state variables: ψqs = 0.002, ψds = 1.015, ψqr = 0.223, ψdr = 1.041,

ωr = 1.150, x1 = −0.641, x2 = 0.261, x3 = 0.011, x4 = 0.005.

Equilibrium point of algebraic variables: iqs = −0.631, ids0.084, iqr = 0.671, idr = 0.261,

vqr = −0.196, vdr = 0.048.

Reduced-order model: Ard = −0.27, Brd = 2.52, Crd = 0.26, Drd = −2.41.

Diesel generator: Rated power: 2 [MW], HD,i = 1 [s], τd,i = 0.2 [s], τsm,i = 0.1 [s] for

i = 1, 2.

Wind turbine generator: Rated power: 1 [MW], HT,i = 4 [s], KT
P,i = 2, KT

I,i = 0.1,

KQ
P,i = 1, KQ

I,i = 5, KC
P,i = 0.6, KC

I,i = 8 for i = 1, 2, 3.

MRC system: τ̂d = 0.2 [s], τ̂sm = 0.1 [s], D̂ = 0, ηm = 0.05 [s], κ = 0.1 [s].
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B Wind Turbine Generators

B.1 Fifth-Order DFIM-Based WTG Data Set

Variables are in per unit unless specified otherwise.

� Rotor-side controller
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� Differential equations

ψ̇qs = ω(vqs −Rsiqs − ωsψds) (1)

ψ̇ds = ω(vds −Rsids + ωsψqs) (2)

ψ̇qr = ω[vqr −Rriqr − (ωs − ωr)ψdr] (3)

ψ̇dr = ω[vdr −Rridr + (ωs − ωr)ψqr] (4)

ω̇r = 1/(2HT )(Tm − Te) (5)

ω̇∗f = ωc(ω
∗
r − ω∗f ) (6)

ẋ1 = KT
I (ω∗f − ωr + uie) (7)

ẋ2 = KQ
I (Q∗g −Qg) (8)

ẋ3 = KC
I (i∗qr − iqr) (9)

ẋ4 = KC
I (i∗dr − idr) (10)

138



The terms ψds, ψqs (ψdr,ψqr) are the stator (rotor) flux linkages [p.u.] in d, q-axis,

respectively. vds, vqs (vdr, vqr) are the instantaneous stator (rotor) voltages [p.u.] in

d, q-axis, respectively. ids, iqs (idr, iqr) are the instantaneous stator (rotor) currents

[p.u.] in d, q-axis, respectively. Rs and Rr are the stator and rotor resistance [p.u.],

respectively. HT is the combined inertia constant [s] of the wind turbine and induction

machine. ωs and ω are the synchronous angular speed [p.u.] and speed base of the

WTG [rad/s], respectively.

� Algebraic equations

0 = −ψqs + Lsiqs + Lmiqr (11)

0 = −ψds + Lsids + Lmidr (12)

0 = −ψqr + Lriqr + Lmiqs (13)

0 = −ψdr + Lridr + Lmids (14)

0 = Pg + (vdsids + vqsiqs) + (vdridr + vqriqr) (15)

0 = Qg + (vqsids − vdsiqs) + (vqridr − vdriqr) (16)

0 = −vqr + x3 +KC
P (i∗qr − iqr)

+ (ωs − ωr)(σLridr +
ΨsLm
Ls

)
(17)

0 = −vdr + x4 +KC
P (i∗dr − idr)

− (ωs − ωr)σLriqr
(18)

where Lls and Llr are the stator and rotor leakage inductance [p.u.], Lm is the mutual

inductance [p.u.]., and Ls = Lls + Lm, Lr = Llr + Lm.

� Electromagnetic torque

Te =
Lm
Ls

(ψqsidr − ψdsiqr) (19)

� Optimal speed [107]

ω∗r = −0.67× (ηPg)
2 + 1.42× (ηPg) + 0.51 (20)
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for ωr ∈ [0.8, 1.2]. The variable η is the ratio between the base of the induction machine

and wind turbine.

� Converter regulation model vqr = v∗qr and vdr = v∗dr

� Other intermediate variables

i∗qr =
−LsT ∗e
LmΨs

=
−Ls
LmΨs

[x1 +KT
P (ω∗f − ωr + uie)]

i∗dr = x2 +KQ
P (Q∗g −Qg)

(21)

� Wind turbine parameters

p = 4, ρ = 1.225 [kg/m3], Rt = 38.5 [m], k = 1/45, θt = 0 [degree], PM = 1.5 [MVA].

� Induction machine and control parameters

Lm = 2.9, Lls = 0.18, Llr = 0.16, Rs = 0.023, Rr = 0.016, SE = 1.1 [MVA], Vbase = 575

[V], ω = 377 [rad/s], HT,i = 4 [s], KT
P = 2, KT

I = 0.1, KQ
P = 1, KQ

I = 5, KC
P = 0.6,

KC
I = 8

� Base: Sbase = 1.1 [MVA], .

� Operating condition: Wind speed: 10 m/s. Pg = 0.8, Qg = 0, vds = 0, vqs = 1.

� Equilibrium point of state variables: ψqs = 0.002, ψds = 1.015, ψqr = 0.223, ψdr =

1.041, ωr = 1.150, x1 = −0.641, x2 = 0.261, x3 = 0.011, x4 = 0.005.

� Equilibrium point of algebraic variables: iqs = −0.631, ids = 0.084, iqr = 0.671,

idr = 0.261, vqr = −0.196, vdr = 0.048.

B.2 Third-Order DFIM-Based WTG Data Set

This two-axis WTG model and is adopted from [86]. Variables are in per unit unless specified

otherwise.
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� Differential equations

Ė ′qD =− 1

T ′0
[E ′qD + (Xs −X ′s)Ids] + ωs

Xm

Xr

Vdr − (ωs − ωr)E ′dD

Ė ′dD =− 1

T ′0
[E ′dD + (Xs −X ′s)Iqs] + ωs

Xm

Xr

Vqr − (ωs − ωr)E ′qD

ω̇r =
ωs

2HD

(Tm − E ′dDIds − E ′qDIqs)

ẋ1 =KI1(Pref − Pgen)

ẋ2 =KI2[KP1(Pref − Pgen) + x1 − Iqr]

ẋ3 =KI3(Qref −Qgen)

ẋ4 =KI4[KP3(Qref −Qgen) + x3 − Idr]

(22)

where E ′dD, E ′qD and ωr are the d and q axis voltage and rotor speed of the WTG,

respectively. x1 to x4 are proportional-integral regulator induced states. And Pref =

Coptω
3
r , Qref = Qset, T

′
0 = Xr

ωsRr
and X ′s = Xs − X2

m

Xr
.

� Algebraic equations

0 =KP2[KP1(Pref − Pgen) + x1 − Iqr] + x2 − Vqr

0 =KP4[KP3(Qref −Qgen) + x3 − Idr] + x4 − Vdr

0 =− Pgen + E ′dDIds + E ′qDIqs −Rs(I
2
ds + I2

qs)− (VqrIqr + VdrIdr)

0 =−Qgen + E ′qDIds + E ′dDIqs −X ′s(I2
ds + I2

qs)

0 =− Idr +
E ′qD
Xm

+
Xm

Xr

Ids

0 =− Iqr −
E ′dD
Xm

+
Xm

Xr

Iqs

(23)

where Vdr, Vqr, Idr, Iqr are rotor d q axis voltage and current, respectively. Vds, Vqs,

Ids, Iqs are stator d q axis voltage and current. Pgen and Qgen are WTG active and

reactive power output. VD and θD are voltage magnitude and angle of the bus which

WTGs are connected to.
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� Network algebraic equations

E ′qD − jE ′dD = (Rs + jX ′s)(Iqs − jIds) + VD (24a)

VDe
jθD = jXt(Iqs − jIds − IGC)ejθD + V ejθ (24b)

where

IGC =
VdrIqr + VdrIdr

VD

� Wind turbine parameters

p = 4, ρ = 1.225 [kg/m3], Rt = 38.5 [m], k = 1/45, θt = 0 [degree], PM = 1.5 [MVA].

� Induction machine and control parameters

Xm = 3.5092, Xs = 3.5547, Xr = 3.5859, Rs = 0.01015, Rr = 0.0088, HD = 4 [s],

SE = 1000 [MVA], KP1 = KP2 = KP3 = KP4 = 1, KI1 = KI2 = KI3 = KI4 = 5,

Copt = 3.2397× 10−7 [s3/Hz3].

� Network parameters and operating condition

Xt = 0.07, V̄ = 1, θ̄ = 0 [rad], θ̄t = 0 [rad], v̄wind = 12 [m/s], ω̄r = 72 [Hz], P̄gen = 0.3,

Nt = 200, Q̄set = 0, Sb = 1000 [MVA].

B.3 WECC Generic WTG Data Set

� Wind turbine parameters

Given in Page 213-214 in [81].

� WTG parameters

Tsp=60 [s], Tpc=0.05 [s], Kptrq=3, Kitrq=0.6
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� Linearized WTG at the rated operating condition

Model for SSC design ∆ẋ

∆ω̇r

 =

 0 0.600

−0.125 −0.435

 ∆x

∆ωr

+

 0.600

−0.375

uie

∆PG = [1.056 3.644]

 ∆x

∆ωr

+ 3.167uie

(25)

Model for observer ∆ẋ

∆ω̇r

 =

 0 0.600

−0.125 −0.435

 ∆x

∆ωr

+

 0.600

−0.375

uie

y =

 1 0

0 1

 ∆x

∆ωr

 (26)

143



Vita

Yichen Zhang received B.S. degree from Northwestern Polytechnical University, Xi’an,

China, in 2010, and M.S. degree from Xi’an Jiaotong University, Xi’an, China, in 2012.

Now he is currently pursuing the Ph.D. degree in the Department of Electrical Engineering

and Computer Science (EECS) at the University of Tennessee, Knoxville, TN, USA.

His main research interests include power system dynamics and control, power electronics

applications in power systems, renewable energy, formal verifications of cyber-physical

systems and their applications into power systems.

144


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2018

	Utilizing Converter-Interfaced Sources for Frequency Control with Guaranteed Performance in Power Systems
	Yichen Zhang
	Recommended Citation


	Front Matter
	Title
	Dedication
	Acknowledgments
	Quotes
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	1.1 Background
	1.1.1 Traditional Frequency Control and Response
	1.1.2 Current Status Under Increasing Renewable Penetration
	1.1.3 Frequency Control with Converter-Interfaced Sources

	1.2 Motivation and Objective
	1.3 Dissertation Outline
	1.4 Summary of Contributions

	2 Power System Modeling for Frequency Control
	2.1 System Frequency Response
	2.1.1 Synchronous Generators
	2.1.2 COI Frequency

	2.2 WTG Modeling and Model Reduction
	2.2.1 Wind Power and Wind Turbine
	2.2.2 WTG Modeling
	2.2.3 Selective Modal Analysis based Model Reduction

	2.3 ASFR and Support Quantification

	I Switching Analysis and Supervisory Control
	3 Set Theoretic Approaches on Safety Verification
	3.1 Safety Verification
	3.1.1 Simulations and Alternative Simulations
	3.1.2 Set Operation-Based Verification
	3.1.3 Passivity-Based Methods

	3.2 Positivity for Barrier Certificates
	3.2.1 SOS Representations
	3.2.2 Linear Representations


	4 Hybrid Controller Synthesis
	4.1 ROS and Safety Switching Principle
	4.2 Estimating Largest ROS
	4.2.1 Iterative Algorithm
	4.2.2 Occupation Measures
	4.2.3 Illustrations and Discussions

	4.3 Supportive Modes Synthesis for WTGs
	4.3.1 Model and Algorithm Validation
	4.3.2 IE Mode Only
	4.3.3 IEPFC Mode and Safety Recovery

	4.4 Safety Supervisory Control for WTGs
	4.4.1 SSC for a Single-Area System
	4.4.2 Decentralized SSC for Multi-Machine Systems
	4.4.3 Experimental Implementation in HTB

	4.5 Summary


	II Novel Control Designs and Synthesis
	5 Frequency Control with Temporal Logic Specifications
	5.1 Preliminaries on Temporal Logic Specification
	5.1.1 Model Checking via Mixed Integer Linear Programming

	5.2 NOC-based Control Synthesis with Temporal Logic Specifications
	5.2.1 Overall Configuration
	5.2.2 Test System 33-Node Based Microgrid
	5.2.3 NOC Formulation for Scheduling Level
	5.2.4 Results and Simulation Verification

	5.3 Summary

	6 Model Reference Control-Based Inertia Emulation
	6.1 Problem Statement
	6.2 Model Reference Control-Based Inertia Emulation
	6.2.1 Configuration Interpretation
	6.2.2 Feedback Controller Design For Reference Tracking
	6.2.3 Polytopic Parameter Uncertainty

	6.3 Closed-loop Performance on 33-Node Based Microgrid
	6.3.1 Closed-loop Performance of Single Diesel-Wind System
	6.3.2 Parameter Uncertainty
	6.3.3 Wind Speed Dependent Control Reconfiguration and Inertia Scheduling
	6.3.4 Discussion

	6.4 Experimental Implementation in HTB
	6.5 Summary


	7 Conclusions and Future Works
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Appendices
	A Summary of Parameters
	A.1 SFR Model Parameters
	A.2 33-Node Based Microgrid

	B Wind Turbine Generators
	B.1 Fifth-Order DFIM-Based WTG Data Set
	B.2 Third-Order DFIM-Based WTG Data Set
	B.3 WECC Generic WTG Data Set


	Vita

