462 research outputs found

    Machine learning techniques implementation in power optimization, data processing, and bio-medical applications

    Get PDF
    The rapid progress and development in machine-learning algorithms becomes a key factor in determining the future of humanity. These algorithms and techniques were utilized to solve a wide spectrum of problems extended from data mining and knowledge discovery to unsupervised learning and optimization. This dissertation consists of two study areas. The first area investigates the use of reinforcement learning and adaptive critic design algorithms in the field of power grid control. The second area in this dissertation, consisting of three papers, focuses on developing and applying clustering algorithms on biomedical data. The first paper presents a novel modelling approach for demand side management of electric water heaters using Q-learning and action-dependent heuristic dynamic programming. The implemented approaches provide an efficient load management mechanism that reduces the overall power cost and smooths grid load profile. The second paper implements an ensemble statistical and subspace-clustering model for analyzing the heterogeneous data of the autism spectrum disorder. The paper implements a novel k-dimensional algorithm that shows efficiency in handling heterogeneous dataset. The third paper provides a unified learning model for clustering neuroimaging data to identify the potential risk factors for suboptimal brain aging. In the last paper, clustering and clustering validation indices are utilized to identify the groups of compounds that are responsible for plant uptake and contaminant transportation from roots to plants edible parts --Abstract, page iv

    Analysis of High Frequency Smart Meter Energy Consumption Data

    Get PDF

    Game-Theoretic and Machine-Learning Techniques for Cyber-Physical Security and Resilience in Smart Grid

    Get PDF
    The smart grid is the next-generation electrical infrastructure utilizing Information and Communication Technologies (ICTs), whose architecture is evolving from a utility-centric structure to a distributed Cyber-Physical System (CPS) integrated with a large-scale of renewable energy resources. However, meeting reliability objectives in the smart grid becomes increasingly challenging owing to the high penetration of renewable resources and changing weather conditions. Moreover, the cyber-physical attack targeted at the smart grid has become a major threat because millions of electronic devices interconnected via communication networks expose unprecedented vulnerabilities, thereby increasing the potential attack surface. This dissertation is aimed at developing novel game-theoretic and machine-learning techniques for addressing the reliability and security issues residing at multiple layers of the smart grid, including power distribution system reliability forecasting, risk assessment of cyber-physical attacks targeted at the grid, and cyber attack detection in the Advanced Metering Infrastructure (AMI) and renewable resources. This dissertation first comprehensively investigates the combined effect of various weather parameters on the reliability performance of the smart grid, and proposes a multilayer perceptron (MLP)-based framework to forecast the daily number of power interruptions in the distribution system using time series of common weather data. Regarding evaluating the risk of cyber-physical attacks faced by the smart grid, a stochastic budget allocation game is proposed to analyze the strategic interactions between a malicious attacker and the grid defender. A reinforcement learning algorithm is developed to enable the two players to reach a game equilibrium, where the optimal budget allocation strategies of the two players, in terms of attacking/protecting the critical elements of the grid, can be obtained. In addition, the risk of the cyber-physical attack can be derived based on the successful attack probability to various grid elements. Furthermore, this dissertation develops a multimodal data-driven framework for the cyber attack detection in the power distribution system integrated with renewable resources. This approach introduces the spare feature learning into an ensemble classifier for improving the detection efficiency, and implements the spatiotemporal correlation analysis for differentiating the attacked renewable energy measurements from fault scenarios. Numerical results based on the IEEE 34-bus system show that the proposed framework achieves the most accurate detection of cyber attacks reported in the literature. To address the electricity theft in the AMI, a Distributed Intelligent Framework for Electricity Theft Detection (DIFETD) is proposed, which is equipped with Benford’s analysis for initial diagnostics on large smart meter data. A Stackelberg game between utility and multiple electricity thieves is then formulated to model the electricity theft actions. Finally, a Likelihood Ratio Test (LRT) is utilized to detect potentially fraudulent meters

    Improving Electricity Distribution System State Estimation with AMR-Based Load Profiles

    Get PDF
    The ongoing battle against global warming is rapidly increasing the amount of renewable power generation, and smart solutions are needed to integrate these new generation units into the existing distribution systems. Smart grids answer this call by introducing intelligent ways of controlling the network and active resources connected to it. However, before the network can be controlled, the automation system must know what the node voltages and line currents defining the network state are.Distribution system state estimation (DSSE) is needed to find the most likely state of the network when the number and accuracy of measurements are limited. Typically, two types of measurements are used in DSSE: real-time measurements and pseudomeasurements. In recent years, finding cost-efficient ways to improve the DSSE accuracy has been a popular subject in the literature. While others have focused on optimizing the type, amount and location of real-time measurements, the main hypothesis of this thesis is that it is possible to enhance the DSSE accuracy by using interval measurements collected with automatic meter reading (AMR) to improve the load profiles used as pseudo-measurements.The work done in this thesis can be divided into three stages. In the first stage, methods for creating new AMR-based load profiles are studied. AMR measurements from thousands of customers are used to test and compare the different options for improving the load profiling accuracy. Different clustering algorithms are tested and a novel twostage clustering method for load profiling is developed. In the second stage, a DSSE algorithm suited for smart grid environment is developed. Simulations and real-life demonstrations are conducted to verify the accuracy and applicability of the developed state estimator. In the third and final stage, the AMR-based load profiling and DSSE are combined. Matlab simulations with real AMR data and a real distribution network model are made and the developed load profiles are compared with other commonly used pseudo-measurements.The results indicate that clustering is an efficient way to improve the load profiling accuracy. With the help of clustering, both the customer classification and customer class load profiles can be updated simultaneously. Several of the tested clustering algorithms were suited for clustering electricity customers, but the best results were achieved with a modified k-means algorithm. Results from the third stage simulations supported the main hypothesis that the new AMR-based load profiles improve the DSSE accuracy.The results presented in this thesis should motivate distribution system operators and other actors in the field of electricity distribution to utilize AMR data and clustering algorithms in load profiling. It improves not only the DSSE accuracy but also many other functions that rely on load flow calculation and need accurate load estimates or forecasts

    Data analytics for profiling low‐voltage customers with smart meter readings

    Get PDF
    The energy transition for decarbonization requires consumers’ and producers’ active par-ticipation to give the power system the necessary flexibility to manage intermittency and non‐pro-grammability of renewable energy sources. The accurate knowledge of the energy demand of every single customer is crucial for accurately assessing their potential as flexibility providers. This topic gained terrific input from the widespread deployment of smart meters and the continuous development of data analytics and artificial intelligence. The paper proposes a new technique based on advanced data analytics to analyze the data registered by smart meters to associate to each customer a typical load profile (LP). Different LPs are assigned to low voltage (LV) customers belonging to nominal homogeneous category for overcoming the inaccuracy due to non‐existent coincident peaks, arising by the common use of a unique LP per category. The proposed methodology, starting from two large databases, constituted by tens of thousands of customers of different categories, clusters their consumption profiles to define new representative LPs, without a priori preferring a specific clustering technique but using that one that provides better results. The paper also proposes a method for associating the proper LP to new or not monitored customers, considering only few features easily available for the distribution systems operator (DSO)

    Dynamic segmentation techniques applied to load profiles of electric energy consumption from domestic users

    Full text link
    [EN] The electricity sector is currently undergoing a process of liberalization and separation of roles, which is being implemented under the regulatory auspices of each Member State of the European Union and, therefore, with different speeds, perspectives and objectives that must converge on a common horizon, where Europe will benefit from an interconnected energy market in which producers and consumers can participate in free competition. This process of liberalization and separation of roles involves two consequences or, viewed another way, entails a major consequence from which other immediate consequence, as a necessity, is derived. The main consequence is the increased complexity in the management and supervision of a system, the electrical, increasingly interconnected and participatory, with connection of distributed energy sources, much of them from renewable sources, at different voltage levels and with different generation capacity at any point in the network. From this situation the other consequence is derived, which is the need to communicate information between agents, reliably, safely and quickly, and that this information is analyzed in the most effective way possible, to form part of the processes of decision taking that improve the observability and controllability of a system which is increasing in complexity and number of agents involved. With the evolution of Information and Communication Technologies (ICT), and the investments both in improving existing measurement and communications infrastructure, and taking the measurement and actuation capacity to a greater number of points in medium and low voltage networks, the availability of data that informs of the state of the network is increasingly higher and more complete. All these systems are part of the so-called Smart Grids, or intelligent networks of the future, a future which is not so far. One such source of information comes from the energy consumption of customers, measured on a regular basis (every hour, half hour or quarter-hour) and sent to the Distribution System Operators from the Smart Meters making use of Advanced Metering Infrastructure (AMI). This way, there is an increasingly amount of information on the energy consumption of customers, being stored in Big Data systems. This growing source of information demands specialized techniques which can take benefit from it, extracting a useful and summarized knowledge from it. This thesis deals with the use of this information of energy consumption from Smart Meters, in particular on the application of data mining techniques to obtain temporal patterns that characterize the users of electrical energy, grouping them according to these patterns in a small number of groups or clusters, that allow evaluating how users consume energy, both during the day and during a sequence of days, allowing to assess trends and predict future scenarios. For this, the current techniques are studied and, proving that the current works do not cover this objective, clustering or dynamic segmentation techniques applied to load profiles of electric energy consumption from domestic users are developed. These techniques are tested and validated on a database of hourly energy consumption values for a sample of residential customers in Spain during years 2008 and 2009. The results allow to observe both the characterization in consumption patterns of the different types of residential energy consumers, and their evolution over time, and to assess, for example, how the regulatory changes that occurred in Spain in the electricity sector during those years influenced in the temporal patterns of energy consumption.[ES] El sector eléctrico se halla actualmente sometido a un proceso de liberalización y separación de roles, que está siendo aplicado bajo los auspicios regulatorios de cada Estado Miembro de la Unión Europea y, por tanto, con distintas velocidades, perspectivas y objetivos que deben confluir en un horizonte común, en donde Europa se beneficiará de un mercado energético interconectado, en el cual productores y consumidores podrán participar en libre competencia. Este proceso de liberalización y separación de roles conlleva dos consecuencias o, visto de otra manera, conlleva una consecuencia principal de la cual se deriva, como necesidad, otra consecuencia inmediata. La consecuencia principal es el aumento de la complejidad en la gestión y supervisión de un sistema, el eléctrico, cada vez más interconectado y participativo, con conexión de fuentes distribuidas de energía, muchas de ellas de origen renovable, a distintos niveles de tensión y con distinta capacidad de generación, en cualquier punto de la red. De esta situación se deriva la otra consecuencia, que es la necesidad de comunicar información entre los distintos agentes, de forma fiable, segura y rápida, y que esta información sea analizada de la forma más eficaz posible, para que forme parte de los procesos de toma de decisiones que mejoran la observabilidad y controlabilidad de un sistema cada vez más complejo y con más agentes involucrados. Con el avance de las Tecnologías de Información y Comunicaciones (TIC), y las inversiones tanto en mejora de la infraestructura existente de medida y comunicaciones, como en llevar la obtención de medidas y la capacidad de actuación a un mayor número de puntos en redes de media y baja tensión, la disponibilidad de datos sobre el estado de la red es cada vez mayor y más completa. Todos estos sistemas forman parte de las llamadas Smart Grids, o redes inteligentes del futuro, un futuro ya no tan lejano. Una de estas fuentes de información proviene de los consumos energéticos de los clientes, medidos de forma periódica (cada hora, media hora o cuarto de hora) y enviados hacia las Distribuidoras desde los contadores inteligentes o Smart Meters, mediante infraestructura avanzada de medida o Advanced Metering Infrastructure (AMI). De esta forma, cada vez se tiene una mayor cantidad de información sobre los consumos energéticos de los clientes, almacenada en sistemas de Big Data. Esta cada vez mayor fuente de información demanda técnicas especializadas que sepan aprovecharla, extrayendo un conocimiento útil y resumido de la misma. La presente Tesis doctoral versa sobre el uso de esta información de consumos energéticos de los contadores inteligentes, en concreto sobre la aplicación de técnicas de minería de datos (data mining) para obtener patrones temporales que caractericen a los usuarios de energía eléctrica, agrupándolos según estos mismos patrones en un número reducido de grupos o clusters, que permiten evaluar la forma en que los usuarios consumen la energía, tanto a lo largo del día como durante una secuencia de días, permitiendo evaluar tendencias y predecir escenarios futuros. Para ello se estudian las técnicas actuales y, comprobando que los trabajos actuales no cubren este objetivo, se desarrollan técnicas de clustering o segmentación dinámica aplicadas a curvas de carga de consumo eléctrico diario de clientes domésticos. Estas técnicas se prueban y validan sobre una base de datos de consumos energéticos horarios de una muestra de clientes residenciales en España durante los años 2008 y 2009. Los resultados permiten observar tanto la caracterización en consumos de los distintos tipos de consumidores energéticos residenciales, como su evolución en el tiempo, y permiten evaluar, por ejemplo, cómo influenciaron en los patrones temporales de consumos los cambios regulatorios que se produjeron en España en el sector eléctrico durante esos años.[CA] El sector elèctric es troba actualment sotmès a un procés de liberalització i separació de rols, que s'està aplicant davall els auspicis reguladors de cada estat membre de la Unió Europea i, per tant, amb distintes velocitats, perspectives i objectius que han de confluir en un horitzó comú, on Europa es beneficiarà d'un mercat energètic interconnectat, en el qual productors i consumidors podran participar en lliure competència. Aquest procés de liberalització i separació de rols comporta dues conseqüències o, vist d'una altra manera, comporta una conseqüència principal de la qual es deriva, com a necessitat, una altra conseqüència immediata. La conseqüència principal és l'augment de la complexitat en la gestió i supervisió d'un sistema, l'elèctric, cada vegada més interconnectat i participatiu, amb connexió de fonts distribuïdes d'energia, moltes d'aquestes d'origen renovable, a distints nivells de tensió i amb distinta capacitat de generació, en qualsevol punt de la xarxa. D'aquesta situació es deriva l'altra conseqüència, que és la necessitat de comunicar informació entre els distints agents, de forma fiable, segura i ràpida, i que aquesta informació siga analitzada de la manera més eficaç possible, perquè forme part dels processos de presa de decisions que milloren l'observabilitat i controlabilitat d'un sistema cada vegada més complex i amb més agents involucrats. Amb l'avanç de les tecnologies de la informació i les comunicacions (TIC), i les inversions, tant en la millora de la infraestructura existent de mesura i comunicacions, com en el trasllat de l'obtenció de mesures i capacitat d'actuació a un nombre més gran de punts en xarxes de mitjana i baixa tensió, la disponibilitat de dades sobre l'estat de la xarxa és cada vegada major i més completa. Tots aquests sistemes formen part de les denominades Smart Grids o xarxes intel·ligents del futur, un futur ja no tan llunyà. Una d'aquestes fonts d'informació prové dels consums energètics dels clients, mesurats de forma periòdica (cada hora, mitja hora o quart d'hora) i enviats cap a les distribuïdores des dels comptadors intel·ligents o Smart Meters, per mitjà d'infraestructura avançada de mesura o Advanced Metering Infrastructure (AMI). D'aquesta manera, cada vegada es té una major quantitat d'informació sobre els consums energètics dels clients, emmagatzemada en sistemes de Big Data. Aquesta cada vegada major font d'informació demanda tècniques especialitzades que sàpiguen aprofitar-la, extraient-ne un coneixement útil i resumit. La present tesi doctoral versa sobre l'ús d'aquesta informació de consums energètics dels comptadors intel·ligents, en concret sobre l'aplicació de tècniques de mineria de dades (data mining) per a obtenir patrons temporals que caracteritzen els usuaris d'energia elèctrica, agrupant-los segons aquests mateixos patrons en una quantitat reduïda de grups o clusters, que permeten avaluar la forma en què els usuaris consumeixen l'energia, tant al llarg del dia com durant una seqüència de dies, i que permetent avaluar tendències i predir escenaris futurs. Amb aquesta finalitat, s'estudien les tècniques actuals i, en comprovar que els treballs actuals no cobreixen aquest objectiu, es desenvolupen tècniques de clustering o segmentació dinàmica aplicades a corbes de càrrega de consum elèctric diari de clients domèstics. Aquestes tècniques es proven i validen sobre una base de dades de consums energètics horaris d'una mostra de clients residencials a Espanya durant els anys 2008 i 2009. Els resultats permeten observar tant la caracterització en consums dels distints tipus de consumidors energètics residencials, com la seua evolució en el temps, i permeten avaluar, per exemple, com van influenciar en els patrons temporals de consums els canvis reguladors que es van produir a Espanya en el sector elèctric durant aquests anys.Benítez Sánchez, IJ. (2015). Dynamic segmentation techniques applied to load profiles of electric energy consumption from domestic users [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59236TESI

    Comprehensive Survey and Taxonomies of False Injection Attacks in Smart Grid: Attack Models, Targets, and Impacts

    Full text link
    Smart Grid has rapidly transformed the centrally controlled power system into a massively interconnected cyber-physical system that benefits from the revolutions happening in the communications (e.g. 5G) and the growing proliferation of the Internet of Things devices (such as smart metres and intelligent electronic devices). While the convergence of a significant number of cyber-physical elements has enabled the Smart Grid to be far more efficient and competitive in addressing the growing global energy challenges, it has also introduced a large number of vulnerabilities culminating in violations of data availability, integrity, and confidentiality. Recently, false data injection (FDI) has become one of the most critical cyberattacks, and appears to be a focal point of interest for both research and industry. To this end, this paper presents a comprehensive review in the recent advances of the FDI attacks, with particular emphasis on 1) adversarial models, 2) attack targets, and 3) impacts in the Smart Grid infrastructure. This review paper aims to provide a thorough understanding of the incumbent threats affecting the entire spectrum of the Smart Grid. Related literature are analysed and compared in terms of their theoretical and practical implications to the Smart Grid cybersecurity. In conclusion, a range of technical limitations of existing false data attack research is identified, and a number of future research directions is recommended.Comment: Double-column of 24 pages, prepared based on IEEE Transaction articl
    corecore