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Abstract 

The ongoing battle against global warming is rapidly increasing the amount of renewable 

power generation, and smart solutions are needed to integrate these new generation units 

into the existing distribution systems. Smart grids answer this call by introducing 

intelligent ways of controlling the network and active resources connected to it. However, 

before the network can be controlled, the automation system must know what the node 

voltages and line currents defining the network state are.   

Distribution system state estimation (DSSE) is needed to find the most likely state of the 

network when the number and accuracy of measurements are limited. Typically, two 

types of measurements are used in DSSE: real-time measurements and pseudo-

measurements. In recent years, finding cost-efficient ways to improve the DSSE accuracy 

has been a popular subject in the literature. While others have focused on optimizing the 

type, amount and location of real-time measurements, the main hypothesis of this thesis 

is that it is possible to enhance the DSSE accuracy by using interval measurements 

collected with automatic meter reading (AMR) to improve the load profiles used as 

pseudo-measurements. 

The work done in this thesis can be divided into three stages. In the first stage, methods 

for creating new AMR-based load profiles are studied. AMR measurements from 

thousands of customers are used to test and compare the different options for improving 

the load profiling accuracy. Different clustering algorithms are tested and a novel two-

stage clustering method for load profiling is developed. In the second stage, a DSSE 

algorithm suited for smart grid environment is developed. Simulations and real-life 

demonstrations are conducted to verify the accuracy and applicability of the developed 

state estimator. In the third and final stage, the AMR-based load profiling and DSSE are 

combined. Matlab simulations with real AMR data and a real distribution network model 

are made and the developed load profiles are compared with other commonly used 

pseudo-measurements. 

The results indicate that clustering is an efficient way to improve the load profiling 

accuracy. With the help of clustering, both the customer classification and customer class 

load profiles can be updated simultaneously. Several of the tested clustering algorithms 

were suited for clustering electricity customers, but the best results were achieved with a 

modified k-means algorithm. Results from the third stage simulations supported the main 

hypothesis that the new AMR-based load profiles improve the DSSE accuracy. 

The results presented in this thesis should motivate distribution system operators and 

other actors in the field of electricity distribution to utilize AMR data and clustering 

algorithms in load profiling. It improves not only the DSSE accuracy but also many other 

functions that rely on load flow calculation and need accurate load estimates or forecasts. 
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1 Introduction 

Global warming is challenging humanity to co-operate and take actions to reduce 

greenhouse gas emissions. The fact that 191 independent states have signed and 87 have 

ratified the Paris agreement shows that there is a worldwide consensus that ambitious 

efforts are needed to limit global warming and its adverse effects (UNFCCC 2016). 

In the spirit of the Paris agreement, the European Union (EU) has drawn up a new 2030 

climate and energy framework which sets three key targets: at least a 40 % cut in 

greenhouse gas emissions (from 1990 levels), at least a 27 % share for renewable energy, 

and at least a 27 % improvement in energy efficiency (SN 79/14). The previous 2020 

climate and energy package and its 20-20-20 targets (406/2009/EC; 2009/28/EC) already 

caused a lot of movement in the energy sector. To meet these new targets, the share of 

renewable energy sources in electricity production needs to be substantially increased. 

The renewable energy sources are usually distributed over large geographical areas and 

this often leads to many relatively small production units which are connected to 

distribution networks. If the distributed generation (DG) is based on the wind or direct 

usage of solar irradiation, it is also highly intermittent. These properties cause problems 

as the existing distribution networks have not been designed to accommodate large 

amounts of DG and the power systems have limited ability to balance the demand and 

varying electricity production. 

The number one solution for the above-mentioned problems is the so-called smart grid. 

This much-hyped concept has many forms and countless different definitions. One of the 

most extensive and quoted definition has been given by the European Regulators Group 

for Electricity & Gas:  

A smart grid is an electricity network that can cost efficiently integrate the 

behaviour and actions of all users connected to it - generators, consumers and 

those that do both - in order to ensure economically efficient, sustainable power 

system with low losses and high levels of quality and security of supply and safety 

(ERGEG 2009, pp. 18–19).  

When compared with the preceding definitions, this emphasizes cost-efficiency instead 

of more obscure “intelligence”. In a truly smart grid, the use of modern technology and 

intelligence is a mean to achieve the desired targets, not an end in itself. While many of 

the challenges associated with the increasing DG installations could be solved with 

traditional network reinforcements (thicker cables, bigger transformers etc.), it is often 

more economical to use distribution network automation and functionalities such as 

coordinated voltage control, automatic network reconfiguration, demand response and 

production curtailment (Schiavo et al. 2015; Karali et al. 2015).  

1.1 Smart grid control and its challenges 
With automation, the distribution network utilization rates can be increased and the 

networks can host larger amounts of load and DG. This means that the networks are 
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operated closer to their limits and the safety margins are smaller than before. In order to 

avoid violating network operational limits (e.g. node voltage) or physical limits (e.g. line 

current), the automation system needs to monitor the state of the network more closely 

and take actions if the limits are approached.  

In smart grids, the number of real-time measurements is larger than in conventional 

distribution networks. However, it is still not economically viable to monitor every single 

network node – including low voltage network nodes – in real-time and this is why 

distribution system state estimation (DSSE) is needed. In DSSE, the main challenge is to 

find the most likely state of the network when there is a limited amount of information. 

At present, the DSSE relies mainly on real-time measurements available from the primary 

substations and the loads are modelled with load profiles, which are used as artificial 

measurement (a.k.a. pseudo-measurements). Although the introduction of smart grids and 

affordable current and voltage sensors will increase the number of real-time 

measurements, there will still be a need for load profiles, especially in low voltage (LV) 

network state estimation. DG and active network control are spreading also to the LV side 

(Repo et al. 2011) and this creates demand for LV network state estimation. 

In literature, it has been widely acknowledged that accurate DSSE is needed to enable 

active network control functions at the core of the smart grid concept. This has been 

addressed by developing countless new state estimation methods suitable for estimating 

distribution network states. Weighted least squares (WLS) approach is the most common 

method utilized in DSSE and it has many variations. Either node voltages or branch 

currents can be selected as state variables, network can be treated as a whole or divided 

into measurement areas, or machine learning algorithms can be combined with the WLS 

method, see for example (Baran & Kelley 1994; Baran & Kelley 1995; Džafić et al. 2013; 

Wu et al. 2013; Hayes et al. 2015). Also, the possibility to have more real-time 

measurements has been considered and the best locations for these additional 

measurements have been analysed, see for example (Baran et al. 1996; Shafiu et al. 2005; 

Nusrat et al. 2012; Abdel-Majeed et al. 2013; Damavandi et al. 2015; Vasudevan et al. 

2015; Xygkis et al. 2016). 

The fact that DSSE accuracy can be enhanced by improving the pseudo-measurements 

has been recognized (Cobelo et al. 2007), but the existing studies have concentrated either 

on replacing them with real-time smart meter measurements (Baran & McDermott 2009; 

Abdel-Majeed & Braun 2012; Jia et al. 2013; Alimardani et al. 2015) or using previous 

day smart meter measurements and short-term forecasting algorithms to supply new 

pseudo-measurements (Chen et al. 2014; Hayes et al. 2015). The possibility to use smart 

meter data and classical load research to improve the pseudo-measurements has been 

largely ignored in literature. This would be a more cost-efficient and practical solution as 

the real-time reading of smart meters has several challenges; the infrastructure for wide-

scale real-time reading does not exist yet, the reading intervals are relatively long, the 

delays in data transfer are long and unequal, and the reliability of the real-time data is 

sometimes poor. Also, this would be computationally less expensive than the forecasting 

based solutions where the forecasts are updated every time new AMR data arrives. 
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1.2 Smart meter rollout and the ensuing opportunities 
In Europe, smart metering is seen as an essential tool for market liberalization, smart grid 

development and energy saving. The European Parliament and Council directive 

(2012/27/EU) urges member states to implement remote reading, if the cost-benefit 

analysis is positive, and at least 14 countries are committed to installing remotely readable 

electricity meters by 2020. Several countries, including Finland, have already completed 

the smart meter rollout. It is estimated that in total almost 200 million smart meters will 

be installed in EU by 2020 (EC JRC 2016). In general, smart meters supply hourly or 

more frequent interval data on electricity consumption and are remotely readable. The 

same is true for the previous generation metering system we used to call automatic meter 

reading (AMR). Both AMR and smart metering systems can supply the interval data 

utilized in this thesis. Thus in this thesis, they are seen as interchangeable data sources 

(see Section 2.1 for detailed description of metering systems). 

Before AMR and smart meters, the collection of electricity consumption data was very 

laborious and often the most time consuming part of a load research project. Now, with 

the above-mentioned meters in place, we can say that “half of the work” has already been 

done and we are left with the task of analyzing the measurement data.  

The literature knows countless studies where AMR data has been used to calculate 

customer class load profiles. The classification of customers is often made with the help 

of a clustering algorithm, and many different algorithms have been used successfully, see 

for example (Chicco et al. 2005; Prahastono et al. 2007; Flath et al. 2012; Haben et al. 

2016; Li et al. 2016). The purpose of these studies has often been to produce load profiles 

for tariff design, market strategy planning and balance settlement purposes. In smart grids, 

better load profiles are needed also for distribution system state estimation, planning and 

load forecasting. These less studied applications are the focus in this thesis. Particularly 

the state estimation and how it can benefit from AMR-based load profiles. Figure 1.1 

summarizes the above discussed needs and possibilities, and positions this thesis. 

1.3 The evolution and scope of the thesis 
The work towards this thesis started in 2007 as a part of the “Methods for Active 

Distribution Management (ElDig2_VPP, 2006–2008)” project. At that time, active 

voltage control in distribution networks was studied in the Tampere University of 

Technology (Kulmala 2014), and it was recognized that an accurate distribution system 

state estimator is needed to complement the developed voltage control method. The 

author’s M.Sc. thesis (Mutanen 2008) studied the usage of remotely readable 

measurements in distribution system state estimation. During this research, the author 

observed that the DSSE accuracy could be improved by using new DSSE methods, by 

adding real-time measurements, by optimizing the real-time measurement locations, and 

by improving the pseudo-measurements with the help of AMR measurements. The latter 

approach was selected for further development because, at the time, AMR was a hot 

discussion topic in Finland. The first large-scale AMR implementations were under way 

and a majority of the distribution system operators (DSOs) had decided to invest in AMR 

(Kirjavainen & Seppälä 2007). The AMR-based load profiling was studied in the 
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“Interactive Customer Gateway for Electricity Distribution Management, Electricity
Market, and Services for Energy Efficiency (INCA, 2008–2010)” and “Smart Grids and
Energy Markets (SGEM, 2010–2016)” projects, while at the same time DSSE
development was continued in the “Active Distribution Network (ADINE, 2007–2010)”,
“Intelligent Electrical Grid Sensor Communications (INTEGRIS, 2010–2013)”, and
“Ideal Grid for All (IDE4L, 2013–2016)” projects.

Global
warming

Climate
politics &
regulation

Distributed
generation

Smart
grids

Active
network
control

Smart
meters

· Knowledge on load &
production management
potential and responses

· Better load models &
forecasts for network
planning and operation

· Accurate state estimation

Load
research

Demands

Enables

Focus of
the thesis

    Figure 1.1 The chain of demands leading to the field of this thesis.

The domestic INCA and SGEM projects were carried out in close co-operation with
electricity retailers, DSOs and industry operating in the field of electricity distribution. In
order to ensure fast and straightforward application of the developed load profiles, it was
decided that the basic structure of the existing Finish load profiles (which is described in
Subsection 2.2.1) would be kept unchanged and only the content of the load profiles
would be updated with the help of AMR measurements. This principle was followed
throughout this thesis, except in publication [P7], which was written during the authors’
research exchange visit and takes a British point of view to load profiling. The focus of
the EU funded ADINE, INTEGRIS, and IDE4L projects was on demonstrations and the
DSSE development done in these projects concentrated on fulfilling the needs of active
network control algorithms. Also, since the demonstrations were done in real distribution
networks, DSSE robustness and ability to estimate different types of networks with
different measurement configurations was emphasized.

As shown in Figure 1.1, this thesis focuses on load research and application of load
research results in distribution network analysis. The research questions this thesis aims
to answer can be summarized as follows:

· How AMR measurements can be used to improve the load profiles?
· How the customer classification can be improved and automated?
· How the new AMR-based load profiles improve distribution network analysis,

especially medium and low voltage network state estimation?

There are many different ways in which AMR measurements can be used to improve the
existing load profiling practices. These methods are discussed in Chapter 3. One of the
most interesting methods is the use of clustering algorithms in customer classification,
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which due to its importance and complexity has been separated as its own task and is 

discussed in Chapter 4. There are countless applications for the new AMR-based load 

profiles, as shown in Figure 1.2, but only a few of those are studied in this thesis. In [P6], 

the effect of new load profiles on distribution network peak load modelling is shown. In 

[P8], the new load profiles are used for load forecasting. In [P9], the new load profiles 

are used to improve the DSSE accuracy. The introductory part of this thesis emphasizes 

the latter application as improved distribution network load flow calculation and DSSE 

were the primary motives behind the load profiling efforts. Chapter 5 reviews the 

developed DSSE method and discusses the effect the new AMR-based load profiles have 

on the DSSE accuracy. 

New AMR-based 
load profiles

Scenarios
 Penetration of new 

technologies
         - Electric vehicles
         - Microgeneration
         - Heat pumps
 Load growth or decline

Scenario 
calculation

Short-term operational planning
 Congestion forecasting  Scheduling of 

demand response and other control actions
 Network reconfiguration (e.g. to minimize 

network losses)

 Preparation for planned outages 

Distribution network operation
 Real-time awareness of network loadings and 

voltages
 Keeping the network within its operating limits
 Optimal allocation of demand response and other 

control actions
 Management of post-fault supply restoration

 

Accurate pseudo-
measurements

State 
estimation 

Weather forecasts

Accurate short-term 
load forecasts

Other applications
 Tariff design
 Filling of gaps in AMR time series
 Planning of network loss energy 

purchase
 Targeting of sales efforts based on 

customers load profiles (e.g. peak 
load management services) 

 Adjustment of the electricity retail 
forecasts when new customers are 
contracted or old ones lost

State 
forecasting

Weather observations Distribution network planning
 New base profiles for probabilistic 

network planning
 Making sure that, during its 

expected life-time,  the network 
can cost-efficiently host all the 
foreseeable loads and generators.

 

Figure 1.2 Applications for the new AMR-based load profiles. 

In addition to work presented in this thesis, the author has also contributed to studies 

supporting the methods developed here. Demand response (DR), changes in customer 

behaviour, and technological development will change how electric loads behave and 

how they should be modelled. The author has supervised a M.Sc. thesis studying the 

effects of DR and microgeneration on load profiling (Grip 2013) and contributed to the 

following publication (Grip et al. 2014). The author has also supervised a M.Sc. thesis 

studying customer behaviour change detection based on AMR measurements (Chen 

2014) and contributed to the following publication (Chen et al. 2015). The research on 

DR modelling and AMR-based change detection are continued in the “Improved 

Modelling of Electric Loads for Enabling Demand Response by Applying Physical and 

Data-Driven Models (RESPONSE, 2015–2018)” project. The detailed results of these 
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studies have been excluded from this thesis in order to maintain a coherent and well-

outlined structure.   

The load research material used in this thesis consists mainly of hourly interval data 

measured from Finnish end users. In some other countries, half- or quarter-hourly interval 

data may be available but this does not change the principles or prevent the application 

of the developed load profiling methods. However, the differences in load profile formats 

must be taken into account. The Finnish load profiles cover the whole year, while in most 

other countries typical daily profiles (TDPs) are preferred. The usage of TDPs is studied 

in publication [P7]. In this thesis, Matlab is the primary tool used in load research and 

DSSE development and analysis. Matlab can easily handle AMR data sets containing 

thousands of customers and provides efficient matrix operations needed in DSSE 

calculation. The upper limit of the AMR data set size ranges from tens to hundreds of 

thousands customers depending on the size of the computer main memory, time series 

length, and interval length. The developed DSSE method was tested with Matlab and 

Real-Time Digital Simulator (RTDS) simulations, and with demonstrations done in real 

distribution networks. Especially the IDE4L project contained many real-life 

demonstrations, but the results of those are left to lesser attention in this thesis. In real-

life demonstrations, the number of available reference measurements is often low. 

Moreover, uncertainties in input parameters and measurements make identification of the 

error sources difficult in real-life demonstrations. 

1.4 Main contributions 
The main contributions of this thesis are: 

 The benefits of using AMR data in load profiling were shown by comparing new 

AMR-based load profiles with the existing customer class load profiles. AMR 

measurements were used for updating the existing customer class load profiles, 

customer reclassification, clustering, and individual load profiling. 

 A two-stage clustering method for clustering electricity customers was developed. 

The method starts from the raw AMR data and outputs cluster profiles, new 

customer classification, and individual load profiles for large and abnormally 

behaving customers. 

 The applicability of 15 clustering algorithms for electricity customer clustering 

was tested. The best algorithms were compared and sensitivity analyses were 

performed. 

 A DSSE algorithm for smart grid environment was developed and tested in real-

life demonstrations. The developed DSSE algorithm is able to use all types of 

conventional real-time measurements (phasor measurement units are excluded), 

calculate weakly meshed distribution networks, provide uncertainties for the 

estimated states, and operate in a decentralized manner.   

 It was proven, through simulations with real AMR data and a real distribution 

network model, that the developed AMR-based load profiles improve the DSSE 

accuracy. The simulations were performed with the DSSE algorithm developed in 
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this thesis but the simulation set-up was such that the results are generalizable to 

most WLS estimators. 

1.5 Publications and author’s contribution 
This thesis includes nine publications that represent original work in which the thesis 

author has been an essential contributor. Publications [P1]–[P3] discuss distribution 

system state estimation and publications [P4]–[P8] discuss AMR-based load profiling and 

forecasting. Finally, publication [P9] combines AMR-based load profiling and 

distribution system state estimation. Apart from publications [P7] and [P8], the thesis 

author has been the corresponding author and has been solely responsible for writing and 

editing the publications. Prof. Pertti Järventausta and Prof. Sami Repo have been the 

supervisors of this dissertation work and have contributed to the publications through 

guidance during the research work and by commenting on the publications prior to 

publishing. The roles and contributions of the other co-authors have been described in the 

list below.    

 Publication [P1] is based on the author’s M.Sc. thesis and discusses how all 

typically available real-time measurements could be utilized in distribution 

system state estimation. A WLS-based DSSE algorithm is proposed and 

simulation results using the IEEE 37-bus test feeder are presented. All the work 

presented in this publication has been done by the author. 

 In publication [P2], the author added dad data detection to the DSSE algorithm 

presented in [P1] and tested the revised algorithm in Matlab, real-time digital 

simulator (RTDS), and real distribution network. M.Sc. Antti Koto and 

Ph.D. (tech) Anna Kulmala participated in RTDS simulations and real-life 

demonstration. Antti Koto and was responsible for implementing the data transfer 

between Matlab, supervisory control and data acquisition (SCADA), and RSCAD. 

Anna Kulmala was responsible for implementing the coordinated voltage control 

(CVC) algorithm tested in conjunction with the DSSE algorithm, the results of 

which are presented in separate publications (Kulmala et al. 2010) and (Kulmala 

et al. 2012). Analysis of the results and writing was done solely by the author. 

 In publication [P3], the effect of input measurement reading frequency and 

averaging time on DSSE accuracy is tested with RTDS simulations. The 

simulation results in this publication are based on Atte Löf’s M.Sc. thesis where 

he tested the DSSE algorithm developed by the author. Prof. Sami Repo and the 

author defined the used accuracy metrics and outlined the simulation plan. The 

author supplemented M.Sc. Atte Löf’s analyses on the simulation results, added 

the parts relating to the real-life demonstration, and wrote the publication. Ph.D. 

Davide Della Giustina commented on the publication prior to publishing. 

 Publication [P4] presents and compares methods for utilizing AMR measurements 

in customer classification and load profiling. Customer reclassification, load 

profile updating, clustering and individual load profiling are studied and 

compared. All the work presented in this publication has been done by the author. 
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 Publication [P5] proposes a customer classification and load profiling method that 

includes load temperature dependency modelling, outlier filtering and a clustering 

algorithm that is based on iterative self-organizing data-analysis techniques 

(ISODATA). The method presented in this paper is in great measure based on the 

previously unpublished work of M.Sc. Maija Ruska. With permission and some 

help from Maija Ruska, the author recreated, tested and published the method she 

had initially developed when working at the VTT Technical Research Centre of 

Finland.   

 Publication [P6] shows how AMR-based load profiles improve traditional 

network analysis that utilizes confidence levels. The author developed a method 

for updating existing load profiles and for creating cluster profiles. The author 

then compared these new profiles with standard customer class load profiles. 

M.Sc.’s Matti Kärenlampi and Pentti Juuti from ABB (ASEA Brown Boveri) 

supplied the prototype version of MicroSCADA Pro DMS 600 distribution 

management system that the author used when demonstrating how cluster profiles 

can be used side by side with old and updated customer class load profiles. 

 In publication [P7], Gaussian mixtures and mixtures of factor analyzers are used 

to cluster and model residential customers. The identified load models are 

compared to standard load profiles and their benefits are demonstrated using 

statistical load flow. The author wrote this paper together with Ph.D. Bruce 

Stephen with fifty-fifty contribution. Bruce Stephen was the corresponding author 

and wrote the introduction, conclusions, and theoretical parts containing 

equations, while the author wrote the results chapter and parts describing the load 

profiling practices and status of the metering systems. The rest of the publication 

was written with mixed contributions. The author did also much of the practical 

work; coding, calculation of the results, and figure drawing. Ph.D. Stuart 

Galloway and Prof. Graeme Burt commented on the publication prior to 

publishing. 

 Publication [P8] assesses how AMR-based load profiles, neural networks (NN), 

and Kalman-filter based predictors with input nonlinearities are suited for short-

term load forecasting. This paper was written together with Ph.D. (tech) Pekka 

Koponen and Ph.D. Harri Niska with approximately equal contributions. Pekka 

Koponen was the corresponding author and made the Kalman filter based 

predictor. The author supplied the input data, made the AMR-based load profiles 

and wrote the accuracy calculation script. Harri Niska made the NN model. Each 

author contributed to writing by describing the forecasting method they had 

developed. Pekka Koponen compiled the texts and wrote the first draft, which the 

others then helped to finalize. 

 In publication [P9], different AMR-based load profiling methods are compared 

and their effect on the DSSE accuracy is evaluated. The accuracy evaluation is 

done through a case study where a real distribution system is simulated as 

accurately as possible using real network data and real measured loads. All the 

work presented in this publication has been done by the author. 
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2 Background to load profiling 

This chapter provides background information necessary for understanding the 

environment in which this thesis has been written. The purpose of this chapter is not to 

provide a comprehensive state-of-the-art literature review. Instead, literature reviews on 

individual research topics are presented in later chapters. 

2.1 Electricity meter reading  
Meter reading is an essential part of electricity distribution network and electricity retail 

businesses. Earlier, when only analog electricity meters were used, meter reading was 

very labor-intensive and was therefore done infrequently. Customers were regularly 

billed based on their estimated electricity consumption and balancing bills were sent when 

the meters were finally read. Also, the detection of low voltage network faults was slow 

as it relied heavily on customer complaints received via telephone.  

Nowadays, automatic meter reading systems collect consumption, diagnostic and status 

data from electronic energy meters and transfer this data automatically to a central 

database for billing, troubleshooting and analyzing. This new digital technology 

eliminates the need for on-site meter reading, reduces unnecessary visits to the metering 

site, and accelerates both electricity distribution and retail businesses.  

Meter reading systems have evolved over the years, and so have their names. As new 

functionalities have been added to the meter reading systems, the naming used in product 

brochures and scientific publications has changes from automatic meter reading to smart 

metering. In the introductory part of this thesis, the earlier term AMR is used. Although 

limited to one-way communication, the AMR system is able to provide all the 

measurement information used in this thesis. The attached publications also feature other 

terms such as smart metering and smart meters. Next, short descriptions for different 

metering systems are given. 

2.1.1 Automatic meter reading 
Automatic meter reading (AMR) system collects data from metering points (electricity, 

water or gas) via one-way communication. In some early implementations, this meant 

collection of monthly energies through short-range communication devises that required 

either an on-site visit or a drive-by. Nowadays it is common that the AMR system 

automatically transfers the data, which can contain also interval data on consumption, to 

a central database as often as once a day using either wireless (radio frequency, mobile 

phone network, wireless local area network etc.), wired (power-line communication, fiber 

optics, telephone cables etc.), or combination of wireless and wired communication 

technologies. The main advantage of AMR is that the on-site meter reading is not needed 

and billing can be based on actual rather than estimated consumption. The interval data 

collected with AMR can also be used in load research as has been done in this thesis. 

Compared with other more advanced metering techniques, the most defining character of 

the AMR systems is their mainly unidirectional flow of information. However, this does 
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not prevent AMR meters from sending locally initiated alarms such as power outage or 

bad power quality notifications.  

2.1.2 Advanced metering 
Advanced metering generally refers to the next generation metering solutions that allow 

bidirectional flow of information. When talking about advanced metering, terms such as 

advanced metering management (AMM), advanced metering infrastructure (AMI), smart 

metering infrastructure (SMI), and smart metering are often used interchangeably 

although one could argue that they have some differences. Some see that AMM includes 

all the traditional AMR features and adds new functionalities that utilize two-way 

communication to control the metering system and the distribution network, but excludes 

the hardware and software that is needed to implement the two-way communication. The 

AMM enabling infrastructure is thus considered separate and is termed either as AMI (PE 

EPS 2012) or SMI. Then again, there are also those who think that AMM is part of AMI 

(or SMI), which is used to describe the whole advanced metering system (Vayá et al. 

2016). Smart metering is an even more obscure term, but in general it appears to contain 

the same properties as AMM and is often used as a synonym for advanced metering and 

AMI (Koponen et al. 2008).  

In this thesis, AMI, SMI and smart metering are bundled together into a system that is 

assumed to also contain AMM. Figure 2.1 shows how these metering terms overlap. The 

boundaries between the terms are often fuzzy and there are some exceptions. For example 

in Finland, the MELKO system enabled bidirectional data transmission and load 

management, in addition to remote meter reading, already in the mid-1980s (Kosonen 

2008), long before the introduction of advanced metering. Moreover, the latest generation 

AMR solutions already included many of the functionalities nowadays associated with 

AMM, AMI, SMI and smart metering. Although the advanced metering systems include 

all the AMR functionalities—or better versions of them—the AMR systems do not 

include all the advanced metering functionalities. 

In some cases, the advanced metering systems can be configured so that the meters are 

read several times per hour (e.g. every 5–15 minutes). In this thesis, measurements with 

this kind of reading frequency are considered to be real-time measurements.  

2.2 History of load profiling 
Knowing the load magnitude and its temporal variation has always been vital for electric 

power industry. This need is not limited only to the total load, but also the sub-loads from 

which the total load is composed are important. In distribution network operation and 

planning, and electricity retail, load profiles describing the behavior of typical customers 

in different customer classes (e.g. industry, commerce, and housing) are needed. The 

forming of such profiles is called load profiling, which is an important sub-field in load 

research. 
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Figure 2.1 Metering scene and the authors view on metering system categorization.

The demand for load profiles shot up when the electricity supply markets were opened
for competition. In open electricity markets, retailers need to optimize their product
portfolios and minimize the risks stemming from the fluctuating electricity prices. In the
1990s, United Kingdom and the Nordic countries were in the forefront of the electricity
market liberalization (Kopsakangas-Savolainen 2002). At that time, very few customers
had remotely readable interval meters and customer class load profiles were needed for
tariff design, balance settlement, and targeting of sales efforts.

Customer class load profiles are also needed in load forecasting, distribution network load
flow analysis, and state estimation. These form a basis for network operation,
dimensioning and design. In recent years, the importance of these applications has
increased as smart grids have emerged. In smart grids, the above-mentioned tasks must
be done carefully and considering the expected loads, physical network limits and
capabilities of the active resources.

Before AMR, load profiling was done primarily by measuring a sample of end users,
categorizing them by the type of electricity use, and generalizing the achieved results to
cover other customers of the same type. In academic literature, other methods such as the
bottom-up approach are occasionally used (Bizzozero et al. 2016). The bottom-up
approach starts from the electric footprint of individual appliances and combines this with
information on appliance penetration statistics, typical appliance usage, the number of
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occupants (in residential buildings), and other available information. Actual consumption 

measurements can also be used in validation and tuning of the bottom-up models.  

Next, the history and present state of load profiling in Finland and some other countries 

is reviewed. In all the studied countries, the load profiles are based on measurement 

samples. 

2.2.1 History and present state of load profiling in Finland 
One of the earliest documented load research projects in Finland dates back to the 1950s 

when the Helsinki municipal electric utility studied how the total electric load is divided 

into sub-loads each with a distinct load profile (Puromäki 1959a & 1959b). Although the 

basics of load research had already been well understood, the studies were restricted by 

the technology of the time. In the absence of load recording devices, the hourly average 

loads had to be logged manually and this naturally limited the amount of data collected. 

Also, the calculation of load profiles was very laborious using only tabulating machines 

and mechanical desktop calculators (Puromäki 1959a). 

In 1983, Finnish electric utilities started a large-scale co-operation in load research. Over 

40 utilities joined the load research project coordinated by the Association of Finnish 

Electric Utilities (in Finnish: Sähkölaitosyhdistys, abbr. SLY, changed its name later to 

Sener and merged with Finnish Energy). During this project, hourly electricity 

consumption measurements from over 1000 customers were collected (Sener 1992). After 

the first measurement period (1983–1985), customer class load profiles for 18 customer 

classes where published (SLY 1986). The second measurement period (1986–1988) 

concentrated on   industry and service class customers and after the results had been 

analyzed, Sener was finally able to publish load profiles for 46 different customer classes 

(Sener 1992). These include customer class load profiles for housing, agriculture, 

industry, commerce and administration each divided into several sub-classes according 

to their electricity use pattern defining characters (building type, heating solution, field 

of business, number of work shifts etc.). Since publication, these load profiles have been 

widely used in Finnish distribution network load flow calculation, state estimation, 

network planning and tariff planning (Seppälä 1996). 

The customer class load profiles that resulted from the 1983–1994 load research study 

(from now on referred to as Sener profiles), are still the only comprehensive set of load 

profiles publicly available in Finland. After 1994, the responsibility for load research was 

given to VTT Technical Research Centre of Finland. VTT Technical Research Centre of 

Finland developed the load profiling methodology further, updated some load profiles 

and defined load profiles for two new customer classes; green houses and three-shift 

industry (Jalonen et al. 2003). However, these new load profiles are available only to 

those 15 companies that participated in this project. After this, load research efforts have 

been limited to company scale studies where they have defined new customer class load 

profiles for their own use. Some companies have also created individual load profiles for 

their largest customers. 
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Despite some deficiencies (q.v. Subsection 2.3.2), the structure and usage of the load 

profiles have not changed since the Sener profiles were introduced about 25 years ago. In 

Finnish DSOs, each individual customer is classified into one of the existing customer 

classes by using the information available in the customer information system (CIS). CISs 

contain information on each customer’s network connection, type and electricity 

consumption. Optionally, some of the largest customers can be modelled with their own 

individual profiles. All the customers are linked to the geographic network model in the 

network information system (NIS). This enables network calculations using the load 

profiles. 

The load profile structure used by most Finnish DSOs’ software applications represents 

the expected value and standard deviation for the customer’s hourly load as a linear 

function of the annual energy consumption. The load profiles can be represented either 

as topography or as index series. In topography, the expected value and standard deviation 

for hourly load are given for every hour of the year. Expected value and standard deviation 

are usually given for a base energy consumption of 10 MWh/year and when applied, the 

values are scaled so that the sum of the expected values correspond with customer’s 

annual energy. The index series model the yearly energy consumption pattern in a more 

compact form. The index series are composed of two parts; yearly indices and daily 

indices. The yearly indices model seasonal variation with 26 two-week indices and the 

daily indices model hourly variation during three different day types (working day, 

Saturday and Sunday) separately for each two-week period. The index series contain 

expected values for both yearly and daily indices but the standard deviations, which are 

given as a percentage of the expected value, are defined only for the daily indices. One 

index series thus contains 26+3×24×26=1898 parameters for load expected value and 

3×24×26=1872 parameters for load standard deviation. Topographies consider special 

holidays, but in the index series public holidays and eves are modelled as Sundays and 

Saturdays respectively. Both in topographies and in index series the hourly reactive 

powers are calculated using one customer class specific power factor. (Sener 1992; SLY 

1992) 

After market liberalization, load profiles were used also in balance settlement. Nowadays, 

the balance settlement is done mainly with AMR measurements (Finnish Energy 2016) 

and load profiles are used only for those few customers that are not within interval 

metering. The load profiles used in the balance settlement are different from the ones used 

in the network calculation. In the balance settlement, customers are divided into three 

customer classes and only three load profiles are used. The customer classes are: 

households with electricity consumption equal or less than 10 MWh/year, households 

with electricity consumption greater than 10 MWh/year, and others unmeasured 

customers. (REG 1.3.2009/66) 

2.2.2 History and present state of load profiling in some other 

countries 
Sweden has a long history in load research, dating all the way back to the 1940s when 

Sten Velander formulated the relationship between peak power and annual energy 
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consumption (Neimane 2001). Velander’s formula has since been widely used in 

distribution network dimensioning. Outside Scandinavia, this method for transforming 

annual energies into peak power is sometimes known as the Strand-Axelsson formula 

(Provoost 2011). When applied to a large homogeneous group of electricity users with 

correct parameters, Velander’s formula can be quite accurate. However, when calculating 

peak power for a group that contains customers from several customer groups, which do 

not peak at the same time, Velander’s formula can result in too high values (Neimane 

2001).  

To address the problems associated with Velander’s formula, Swedish Association of 

Electric Utilities (Svenska Elverksföreningen, nowadays part of Elforsk) conducted a 

study where they measured electricity consumption from 400 electricity customers with 

15-minute intervals for a period of one year. After analysis, typical daily profiles (TDPs) 

for roughly 40 customer groups were published in 1991. This set of profiles covers 

domestic, commercial and industrial customers. The format of load profiles is such that 

16 TDPs exist for each customer group. Separate profiles have been defined for working 

days and non-working days in three different seasons (winter, spring/autumn, and 

summer) and in different outdoor temperatures (three for winter and spring/autumn, and 

two for summer). Load standard deviation is also presented in the load profiles. (Engblom 

& Ueda 2008; Dahlström et. al. 2011; Hemmingson & Lexholm 2013) 

After 1991, several efforts have been made to increase the knowledge on electricity 

consumption temporal behavior and temperature dependency. Corfitz Norén and Jurek 

Pyrko have studied electricity consumption in schools, hotels, grocery stores and nursing 

homes (Norén 1997; Norén & Pyrko 1998a; Norén & Pyrko 1998b; Norén & Pyrko 1999). 

Elforsk has published studies on electricity consumption in very cold temperatures 

(Larsson et. al. 2006; Dahlström et. al. 2011). In these studies, TDPs for different types 

of residential customers were calculated in different outdoor temperatures. 

Despite the above-mentioned efforts to improve the load profiling accuracy, it is possible 

that the original load profiles from 1991 are still used in some electricity companies and 

commercial software. For example, Mälarenergi Elnät AB uses the load profile package 

Betty 1.2, which seems to coincide with the 1991 load profiles, in their NIS (Arvidsson 

2015). The Betty load profile package is also used in MarkedMath Europe AB’s Pluto 

pricing tool (MarketMath 2016). 

In United Kingdom (U.K.), coordinated load research has been practiced since the 1950s 

when the first Electricity Council load research program started. At the beginning, load 

profiles were needed mainly for designing and setting retail tariffs (Allera et. al. 1990). 

However, when the electricity supply markets were liberalized, a new need for load 

profiles arose. In liberalized energy markets, a distribution network can contain customers 

supplied by different electricity suppliers. In this case, there must be a way to quantify 

how much energy the customers of each supplier have used during each half hour interval 

(in U.K.). The amount of energy the electricity suppliers purchase and the amount of 

energy their customers consume should match in each half-hour period. The electricity 

settlement process enforces this and charges the suppliers for any imbalance. It was 
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decided that to avoid installation of new half-hourly meters, customers below 100 kW 

maximum demand would be settled using load profiles. (ELEXON 2013) 

Load profiles for eight different customer classes were defined. These customer classes 

cover domestic and non-domestic customers with and without time-of-use tariff and non-

domestic maximum demand customers with four different peak load factors. Typical 

daily profiles (TDPs) containing 48 half-hourly usage levels for three different day types 

(working day, Saturday, and Sunday) in five different seasons (winter, spring, summer, 

high summer, and autumn) were defined for each customer class. The TDPs are calculated 

from measurement samples collected all around the U.K. using multiple linear regression 

that takes into account weighted outdoor temperature from three previous days, sunset 

time, and day of the week. In their standard form, the TDPs are given in long-term average 

temperature but when the company currently responsible for management and 

development of TDPs (ELEXON Ltd.) sends the daily-calculated profiles to balance 

responsible suppliers, all the above-mentioned regressors are taken into account. 

(ELEXON 2013) 

In Germany, standard load profiles (SLPs) were introduced in the 1980s and have since 

been used in tariff planning, grid planning, and consumption forecasting. For example, 

the energy consumption forecasts of a DSO balancing group are usually made with SLPs. 

Standard load profiles for nine customer classes (1×domestic, 6×industrial and 

2×agricultural) have been defined by the Federal Association of Energy and Water 

Management (Bundesverband der Energie- und Wasserwirtschaft). Each SLP describes 

typical daily loading in three different day types (workday, Saturday and Sunday) and in 

three time intervals (winter, summer and a transition period containing both spring and 

autumn). Each daily profile contains 96 values. (Abdel-Majeed 2016) 

Customers with energy consumption larger than 100 MWh/year are metered remotely and 

the metered quarter-hourly consumption data is used in balance settlement. Smaller 

customers are settled with SLPs. In addition to the above presented nine basic SLPs, the 

German balance settlement practices allow the usage of DSO specific load profiles and 

many utilities have created additional profiles for telecommunication towers, street 

lighting, photovoltaic plants, storage heaters, heat pumps etc. Some of these additional 

profiles are temperature dependent and have been defined in different temperatures. 

2.3 Load profiles in distribution network calculation    
Load profiles are widely used in electric power industry. They are needed in network 

operation and planning, tariff design and production planning. They are essential in 

applications that require knowledge on the end user loads, for example in load flow 

calculation, which is one of the basic functions in distribution network analysis. Load 

flow calculation is necessary for determining the line current flows, node voltages and 

power losses. Load profiles are also needed in other applications such as distribution 

system state estimation and distribution transformer load management. The value and 

usability of the load profile derived calculation results increase if they are combined with 

geographical network information and are drawn over a background map. For example, 
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the network component loadings can be dawn with different colours so that the operator 

can see the overall loading situation at a glance.   

2.3.1 Distribution network calculation in Finland  
In Finland, distribution companies have long experience in using geographical network 

information systems and load profile based network calculation. The first network 

information systems were brought into use already in the 1980s and they included 

network documentation, map drawing, and applications for network planning and 

calculation (Järventausta et al. 2011). Both medium voltage (MV) and low voltage 

networks are modelled within NIS and all customers, even individual LV customers, are 

connected to the network model. Parallel with the Finnish load research project, 

applications for network load computation, network planning, and electricity pricing were 

developed and by the 1990s several Finnish software companies had produced 

commercial NIS and load flow calculation software products that utilize load profiles 

(Seppälä 1996). 

Nowadays, load flow calculation with load profiles is routine for DSOs. In the NIS, the 

calculation starts from individual customers and propagates upwards. First, yearly energy 

estimates are fetched from the CIS and the customer class load profiles are scaled to match 

each customer’s yearly energy. After this, estimates for load expected and standard 

deviation values for every hour of the year are known. When higher level loadings (for 

example trunk line or transformer power flows) are needed, the customer level loads are 

aggregated according to the probability theory. For simplicity, loads are assumed 

normally distributed and independent. In that case, the aggregated load expected values 

E[Pag(t)] and standard deviations sag(t) for n customers should be calculated with: 

 E[𝑃𝑎𝑔(𝑡)] =  E[𝑃1(𝑡)] + E[𝑃2(𝑡)] + ⋯+ E[𝑃𝑛(𝑡)] (1) 

 

 𝑠𝑎𝑔(𝑡) =  √𝑠1(𝑡)2 + 𝑠2(𝑡)2 +⋯+ 𝑠𝑛(𝑡)2, (2) 

where E[Pi(t)] is the expected value of customer i active power during time t and si(t) is 

the standard deviation of customer i (active power) during time t (Seppälä 1996). In 

practice, individual loads are not normally distributed. However, since sums of many 

individual loads are often needed in distribution network calculation, and since the central 

limit theorem states that the distribution of the sum of many independent random 

variables tends toward a normal distribution even if the underlying variables are not 

normally distributed, the assumption of load normality is reasonable. In addition, the 

assumption on the load independence can be strengthened by modelling the correlation-

causing factors, such as the load temperature dependency, separately. 

The stochastic nature of the loads is taken into account when calculating peak loads. Load 

values with different excess probability levels are used in distribution network 

calculation. The load Pp(t) having an excess probability of p % can be calculated with: 

 𝑃𝑝(𝑡) =  E[𝑃(𝑡)] + 𝑧𝑝 × 𝑠(𝑡), (3) 
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where zp is the Z-score corresponding to excess probability p. The load values with excess 

probability of around 10 % are relevant for voltage drop calculation, while smaller 

probabilities are used when studying loading limits. The load expected values (50 % 

excess probability) are used when calculating network losses. (Lakervi & Holmes 2003) 

The statistical properties of the load profiles can be utilized in probabilistic load flow 

calculation where the line current flows and voltage drops are determined with a certain 

excess probability. The probabilistic load flow can be based, for example, on the 

backward/forward sweep method illustrated in Figure 2.2. The steps in this figure are: 

1. Calculate Pp(t) for nodes C and D using (3). 

2. Calculate currents 𝐼𝐵𝐶(𝑡) and 𝐼𝐵𝐷(𝑡) with an equation 𝐼 ̅ = 𝑆̅∗ 𝑉̅∗⁄  derived from 

the basic power equation. Then, calculate the power losses 𝑆ℎ̅_𝐵𝐶(𝑡) and 𝑆ℎ̅_𝐵𝐷(𝑡) 

with an equation 𝑆ℎ̅ = |𝐼|̅2 × 𝑍̅ (reactive loads and reactive losses are ignored in 

this simple example, and therefore 𝑆̅ = 𝑃 and 𝑆ℎ̅ = 𝑃ℎ) 

3. Calculate Pp(t) for aggregated power in node B using (1), (2), and (3). Then, add 

to this aggregated power the power losses calculated in step 2.  

4. Calculate current 𝐼𝐴𝐵(𝑡) as in step 2 (note that the Kirchhoff’s current law does 

not apply in probabilistic load flow calculation). 

5. Assuming the node A voltage is known, calculate the node B voltage with an 

equation 𝑉̅𝐵 = 𝑉̅𝐴 − 𝐼𝐴̅𝐵 × 𝑍̅𝐴𝐵. 

6. Calculate node voltages 𝑉𝐶 and 𝑉𝐷 similarly as 𝑉̅𝐵 in step 5. 

In steps 2 and 4, the node voltages are not known and need to be replaced with network 

nominal voltages, which can later be replaced with the voltages calculated in steps 5 and 

6. The backward/forward sweep procedure is thus iterative and must be repeated until 

convergence is achieved. In real applications, reactive powers and line charging currents 

are naturally also taken into consideration. In practical MV network calculation, the LV 

network loads are often aggregated directly to the distribution transformer level and the 

LV network losses are approximated with a constant loss factor.   
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Figure 2.2 Backward/forward sweep method used in probabilistic load flow calculation. 

SCADA system provides real-time measurement and switching state information from 

the distribution network. This information is often limited to measurements and switches 

located in primary substations and load profiles are needed in DSSE to make the system 

observable. The real-time SCADA measurements tell how large the substation total load 
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and feeder loads are, but the load distribution at lower network levels is estimated based 

on load profiles. 

The DSOs have a practice of performing network wide monitoring calculations with load 

profiles. The purpose of these calculations is to make sure that the network can handle 

the present or simulated peak loads and find the network sections and components that 

need reinforcement. In addition to voltage drops and component loadings, also energy 

losses, interruption costs and short circuit currents are computed and used in investment 

planning (Lakervi & Holmes 2003). Monitoring that the past states of the network have 

been acceptable is one of the few applications where previous year AMR measurements 

could be used directly to replace the load profiles. Even then, the limitations of the directly 

used AMR data should be considered; the previous year may have been exceptionally 

warm or cold and subsequently the loads may have been lower or higher than in a normal 

year.  

2.3.2 Defects in the existing load profiles 
The above introduced and presently used load profiles have many defects, some more 

than others. Most of the shortcomings in the existing load profiles can be traced back to 

the pre-AMR era when load research was expensive and sampling was necessary in load 

profiling. One of the most prominent issues is the old age of the existing load profiles. 

For example, in Finland the Sener load profiles are based on measurements done 27–33 

years ago and electricity consumption habits have changed considerably over the last 

decades; heat pumps have become popular, lighting and refrigeration devices have 

become more energy efficient, the amount of computers and home electronics has 

skyrocketed, and car indoor heaters have become common (Sener 1992; Adato 2013). 

Consequently, the actual load profiles have drifted away from the Sener profiles. 

In sampling based load profiling, the accuracy of the profiles depends much on the sample 

sizes. In many earlier load research studies the sample sizes have been insufficient. For 

example, in Finland the Sener profiles were calculated based on 639 measured time series 

(many of the original 1000+ measurements were omitted from the final analysis) and the 

sample sizes varied between two and 65. In Sweden, the 1991 load research study used 

measurements from 400 electricity customers and divided them into 40 customer classes; 

this means that on average the sample size was only ten. The literature gives varying 

numbers for a sufficient sample size. Lakervi and Holmes (2003) recommend at least 100 

customers per customer class with consumption records taken over the last three years. 

Argonne National Laboratory (1980) derives the following formula for the minimum 

sample size: 

 
𝑛 = (

𝑠𝑧

𝑟𝑋̅
)
2

, (4) 

where s is the sample estimate of the population standard deviation, z is the Z-score 

determined by the chosen confidence level, r is the chosen reliability level, and X̅ is the 

sample mean. If we assume that standard deviation is 50 % of the sample mean and target 

90 % confidence with ±10 % reliability, (4) gives a minimum sample size of 68. Small 
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samples are also sensitive to classification errors. In a small sample, even one wrongly 

classified customer can be a source of significant sampling error.  

Another substantial error source is the classification of the electricity end-users. The type 

of customer is usually determined through a questionnaire when the network connection 

is contracted and is rarely updated afterwards. In reality, the customer type may change, 

for instance, because of a change in the heating solution, an addition of new type of 

electric load (such as an electric vehicle), or the change of customer activity. For example, 

in Finland the number of heat pumps has multiplied during the last decade and the number 

of farms is decreasing steadily (SULPU 2015; Luke 2016). Figure 2.3 shows how the 

number of installed heat pumps has grown in Finland. The majority of the installations 

are air-to-air heat pumps, which are typically used to supplement direct electric heating. 

This means that there are now many houses that are classified as direct electric heating 

customers but are actually using a hybrid of direct electric and heat pump heating. Figure 

2.4 shows how the number of farms has decreased during the years 1995–2015. This 

means that there are now many farmhouses that are classified as farms even though the 

farming activities have ended.  

The lack of or defects in the outdoor temperature dependency parameters are also major 

error sources in many load profiles. In Finland, temperature dependency parameters for 

Sener load profiles have been published only for January (Sener 1992) and even these are 

rarely used. Instead, the present industry standard is to use −4 %/°C temperature 

dependency for customers with electric heating and assume that other customers do not 

have any temperature dependency. This practise is used for example in Seppälä (2007). 

The above-described approach is of course very coarse and neglects the fact that also 

many other types of customers exhibit some degree of temperature dependency. 

Air-to-air 
heat pumps

Air-to-water 
heat pumps

Exhaust air 
heat pumps

Ground-source 
heat pumps

Number of heat pumps

 

Figure 2.3 Number of heat pumps in Finland. Adapted from (SULPU 2015). 
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Figure 2.4 Number of farms and agricultural enterprises in Finland. Based on data available in (Luke 

2016). 

Geographical generalization also causes errors in load profiling. The load profiles are 

often created to model the average national electricity consumption. They do not take into 

account the regional differences, which originate from different climate conditions, 

building stock, and socioeconomic factors. The need to divide a large country into smaller 

geographical areas when performing load profiling has been acknowledged for example 

in Dahlström et al. (2011).  

The number of customer classes is very low in some cases, for example in the U.K. where 

only eight customer classes are used, and this can impair the accuracy of load profiling. 

Outliers, i.e. customers who do not clearly belong to any customer class and whose 

electricity consumption profile differs from all other customers, are also troublesome for 

the existing load profiling methods. Especially large outliers are harmful because they 

can be a source of large (absolute) modelling errors. 

In Finland, many DSOs have detected that the existing load profiles are no longer accurate 

enough and are considering using AMR measurements instead. Some DSOs have already 

modelled large customers (fuse size ≥3×63 A) with previous year AMR measurements 

taking into account only the shift in day of the week rhythm. This is not a good approach 

either and reflects poor trust in the existing load profiles rather than a desirable direction 

for load profiling. When the previous year AMR measurements are used directly as load 

models, large errors ensue. The temperatures between years vary considerably and 

measurements cannot be used as load models without proper temperature correction. 

Moreover, the measurements do not include estimates for the load variability, which are 

needed in probabilistic distribution network calculation, or take into account the temporal 

location of special days.    

This thesis aims to fix all the above-mentioned shortcomings in the existing load profiling 

practices. Improvements and changes are presented in Chapters 3 and 4.  
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3 Methods for improving load 

profiling 

This chapter presents the author’s propositions for fixing the defects in the existing load 

profiles which were presented in Subsection 2.3.2. Electric load temperature dependency, 

profile drifts, errors in customer classification, large and exceptionally behaving 

customers and geographical load diversity are addressed and customer behavior change 

detection and other possible improvements, which could further increase the load 

profiling accuracy, are discussed. All the methods presented in this chapter assume that 

the AMR data has already gone through data validation, where gaps and other gross errors 

in the measurements have been addressed. Data validation is required from the DSOs and 

is included also in the upcoming national data hubs (Fingrid 2017a; Statnett 2014). 

3.1 Load temperature dependency calculation 
It is well known that the weather influences electricity demand in many ways. Outdoor 

temperature is clearly the most important weather factor, but also solar radiation (day 

length, time of day, and cloudiness), wind, and humidity affect electricity demand 

(Meldorf et al. 2007). In this thesis, only the load temperature dependency is taken into 

account. It has been shown that the outdoor temperature explains the majority of the 

weather-induced changes in electric load (Siirto 1989). Also, in the used load profile 

structure, the seasonal variations in day length and daily variations in solar radiation (day 

and night) are already modelled by the seasonally and hourly varying load expected 

values. Only the effect of cloudiness is left unmodelled and this defect is partly 

compensated by the correlation between cloudiness and outdoor temperature. Wind speed 

and direction can also have some effect on the individual customer’s electricity 

consumption but in general, this effect is very small. According to ASTA II study cited 

in Siirto (1989), wind increases building heating energy need only by 0.5 % on average. 

This thesis uses the following temperature dependency model: 

 ∆𝑃(𝑡) = 𝒂(𝑡) × (𝑇24(𝑡) − E[𝑇(𝑡)]), (5) 

where ΔP(t) is the outdoor temperature dependent part of the load P at time t, a(t) is the 

customer class specific load temperature dependency parameter (W/°C), T24(t) is the 

average outdoor temperature from the previous 24 hours, and E[T(t)] is the expected value 

of the outdoor temperature. The expected value E[T] is a vector containing twelve long 

term (30 years) monthly average temperatures for the studied location. The average 

outdoor temperature T24(t) is calculated as: 

 
𝑇24(𝑡) =

∑ 𝑇(𝑖)𝑡−1
𝑖=𝑡−24

24
, 

(6) 

where T is a time series containing hourly average temperatures. The temperature 

dependency parameter a is a vector containing six values defined separately for each two-
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month period starting from January. Also monthly and seasonal (four seasons of the year) 

temperature dependency parameters were experimented but the monthly parameters were 

too sensitive to small perturbations in identification data and the seasonal parameters 

could not model the yearly temperature dynamics as well as the parameters with higher 

resolution. The two-month division was found to be a good compromise. In the earlier 

Finnish load research studies, the temperature dependency was defined as a percentage 

of load change per Celsius degree (Sener 1992; Jalonen et al. 2003). This practice was 

abandoned in this thesis (although it was still used in [P5]), because it tends to distort the 

daily load profile shapes by allocating more absolute change to peak load hours than to 

valley hours. By using a temperature dependency defined as watts per Celsius degrees, 

the absolute change is the same during all hours of the day regardless of the differences 

in hourly loadings. This coincides with the way of thinking where heating forms a base 

load that is independent of the user activity induced load. 

The outdoor temperature does not influence the electric load directly but through a delay. 

Physically, this is caused by the heat stored in the buildings. The length of the delay was 

studied in Mutanen (2010). Correlations between hourly loads and delayed average 

temperatures were calculated for each hour of the day with averaging windows of 

different length. Mean correlation over all the hours of the day was calculated and the 

window length with the highest mean correlation was chosen as the optimum delay. It 

was observed that different customer classes have different delays ranging from one hour 

to over 48 hours. In addition, different hours of the day had different delays. Night hours 

had long delays and during daytime the delays were shorter. On average, the optimum 

delay was 24 hours and in the name of simplicity, it was decided that this value is used 

for all customer classes and all hours of the day. In this thesis, it is thus assumed that the 

hourly loads depend linearly on the average temperature of the preceding 24 hours. 

Strictly speaking, the load temperature dependency is not linear. For example, in 

summertime, the normally negative temperature dependency can change to positive when 

the temperature rises and cooling loads increase. In cold countries like Finland, this effect 

is barely noticeable but in warmer countries, this needs to be taken into account. However, 

also in Finland the temperature dependency levels off when the temperature rises and 

eventually ceases to exist. In this thesis, the cut-off temperature was determined 

experimentally and +19 °C was found to be a suitable limit. In some sources, it is said 

that in wintertime, the temperature dependency decreases in extremely cold temperature 

(i.e. below −25 °C) as the heating equipment reach their maximum output (Meldolf et al. 

2007). The author has not detected this phenomenon from the AMR data, even the coldest 

days in the research data reach an average temperature of −32 °C, and this non-linearity 

is thus not considered in this thesis. 

Changes in the load temperature dependency can be observed also when the temperature 

falls close to zero degrees. This behaviour can be explained with the deployment of 

additional heaters, for example car engine block and cabin heaters, and is clearly visible 

in Figure 3.1. This could be modelled by determining different temperature dependency 

values for different temperature ranges. However, in the chosen model structure, this was 

not necessary because the adopted two-month division means that the temperature ranges 
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are already limited by natural temperature variations within each two-month period. In
addition, dividing the two-month periods further into different temperature ranges would
reduce the size of samples used in temperature dependency determination too much.

Figure 3.1. Temperature dependency of the total electricity consumption in Finland (workdays only).
Based on national consumption data available in Fingrid (2017b).

There are also some specific customer types that have a non-linear temperature
dependency. Air-to-air heat pumps have non-linear coefficient of performance (COP) and
a minimum operating temperature, and ground-source heat pumps may have been
dimensioned to cover only part of the peak heating need. The temperature dependency of
a heat pump heated house may therefore be higher than normal in extremely low
temperatures. Another special case is houses with storage heaters. When the temperature
falls, the power of the storage heater remains constant but the time that the heater is on
increases. The modelling of houses with storage heaters has been addressed in literature
(Riihimäki & Koponen 2012; Koponen & Niska 2016). The temperature dependency
model presented in this thesis is thus not suitable for detailed modelling of all individual
customer groups but provides a simple general temperature dependency model for load
profiling.

3.1.1 Calculation of temperature dependency parameters
In this thesis, the temperature dependency parameters are determined with linear
regression analysis for each two-month period. The effects of daily and monthly
fluctuations in electricity demand are eliminated by choosing the dependent and
determining variables as follows:

· Dependent variable (regressand): difference between the daily energy
consumption and the average daily energy consumption on a similar day (same
day of the week and month).
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 Independent variable (regressor): difference between the daily average of 

effective temperatures and the average of effective temperatures on a similar day. 

Here the effective temperature means the average temperature of the 24 hours preceding 

each hour. When the average of effective temperatures over a period of one day is 

calculated, the result is a weighted average of the hourly temperatures of the previous day 

and the studied day (excluding the last hour). The hour immediately before the studied 

day has the highest weight because it affects all the hourly loads in the studied day. Other 

hours have smaller weights since they affect only some of the hourly loads.  

Sometimes the daily energies are so scattered that the temperature dependency parameters 

cannot be determined reliably. The significance of the relationship between the daily 

energy and outdoor temperature can be assessed with the correlation coefficient and the 

Student’s t-test. If the correlation is not significant, there is a chance that it is actually 

zero or opposite in sign than the obtained correlation. The correlation is significant if the 

value τ, calculated with (7), is larger than the value of τ picked from one tailed t-

distribution table with n−2 degrees of freedom and a chosen significance level (Lowry 

2017). 

 
𝜏 = 𝑅

√𝑛 − 2

√1 − 𝑅2
 , (7) 

where R is the Pearson product-moment correlation coefficient and n is the sample size. 

In this thesis, when calculating the customer class specific temperature dependency 

parameters, the significance level is set to 5 %, which is a commonly used limit in 

statistics. If the significance criterion is not met, a zero temperature dependency is 

assumed. 

3.2 Load profile updating 
The electricity consumption habits have evolved over the years and many of the existing 

customer class load profiles have become outdated. This problem can be corrected by 

using AMR measurements to update the customer class load profiles. The customer class 

information for each customer is usually available in NIS and the AMR measurements 

can be obtained from the meter data management system (MDMS). Now, the update 

requires only that the AMR measurements are grouped according to the customer 

classification, summed, and formed into a load profile. The forming should include the 

calculation of temperature dependency parameters, temperature normalization, calendar 

correction, and scaling, but overall this would be a rather straightforward process. 

In [P4], it was shown that the load profile updating, together with the correct usage of 

temperature dependency information, can improve the load profiling accuracy by 30 %. 

In this case, the load profiles were used to perform a day-ahead forecasting of hourly 

loads for a period of one year, which was not included in the model identification data, 

and the accuracy was defined as a square sum of the forecasting errors. The studies done 

in [P6] showed that in all customer classes, the updated load profiles differed clearly from 



25

the original load profiles. Figure 3.2 shows weekly load profiles for four of the most
radically changed load profiles. Figure 3.3 compares the measured and modelled loads.

From Figure 3.2 it can be seen that the intra-day load variation in many of the updated
load profiles is smaller than the intra-day variation in the original load profiles. While this
implies a changed customer behavior, it can also be caused by the deteriorated customer
classification. When a customer group becomes more heterogeneous, i.e. it contains
differently behaving customers, the overlapping of the load profiles tends to smooth out
the daily load profiles. The customer classification errors are addressed in the next
section.

Figure 3.2. Effects of load profile updating. Only a part of the yearly topography, second week of
February, is shown in this figure.

3.3 Customer reclassification
As discussed in Subsection 2.3.2, the present customer classification is not up-to-date and
classification errors are common. With AMR measurement, the customer classification
errors can be corrected. The AMR measurements can be used to determine which existing
customer class load profile is closest to each customer’s measured load. This can be done,
for example, by calculating the Euclidian distance (Han et al. 2012, p. 72) between the
measured load and all existing customer class load profiles. The customer class to which
the measured load has the smallest distance is then selected as an optimal customer class.
While this sounds simple, there are a few issues that need to be taken into account in this
comparison. Temperature normalization must be applied to the measured loads so that
they represent load at the same long-term average temperature as the load profiles. In
addition, calendar correction must be applied so that the days of the week and special
days match.
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According to the results presented in [P4], the customer reclassification alone improves
the load profiling accuracy by 7 %. Further improvements can be achieved if the customer
reclassification is combined with the load profile updating. Here lies a pitfall though; if
the customer reclassification is done after the load profile updating, the updated load
profiles no longer represent the typical behavior of customers classified into that group.
To correct this situation, one would need to update the load profiles again, using the new
customer classification but after that the customer classification would be again incorrect.
For final results, the customer reclassification and load profile updating would have to be
iterated until convergence is achieved. The procedure described here is a simple form of
clustering and this opens a whole new research topic; use of clustering algorithms in
electricity customer classification. Chapter 4 describes in detail how clustering algorithms
can be applied to do simultaneous load profile updating and customer reclassification.

Figure 3.3. Comparison of measured and modelled load during the second week of February 2011.

3.4 Individual load profiles
The previous year AMR measurements should not be used as individual load profiles as
such, because they do not take into account the temperature differences between the years
or changes in the calendar. Moreover, the measurements do not model the load stochastic
variation, which is essential in modern probabilistic distribution network calculation. In
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this thesis, a new method for forming individual load profiles is presented. The proposed 

load profiling method is composed of five steps: 

1. Calculation of individual temperature dependency parameters using the method 

described in Subsection 3.1.1. 

2. Temperature normalization so that the measurements correspond to the load in 

long-term monthly average temperatures. 

3. Calculation of type weeks, for both load expected and standard deviation values, 

during each month. 

4. Topography construction for the target year. This uses the above calculated type 

weeks and takes into account the target year calendar.  

5. Scaling to appropriate annual energy, for example to 10 MWh/year standard value 

or directly to the expected annual energy.   

When the individual load profiles are used, temperature correction is applied similarly as 

with the customer class load profiles. Depending on the application, the individual load 

profiles are corrected to match either the measured temperature, forecasted temperature, 

or assumed worst case scenario temperature. The above presented method has some 

limitations. When measurement data of only one year is available, the monthly type weeks 

are typically calculated from a sample of four weeks. From a statistical point of view, this 

is hardly sufficient but provides on average better results than individual load profiles 

without type weeks, and the results improve if data from several years is available. Figure 

3.4 shows how the length of the available AMR data set affects the accuracy of individual 

load profiles. Results with and without type weeks are also compared. The load 

temperature dependency and the target year calendar are taken into account in both cases. 

The only difference is that daily sub-profiles in the type week approach are calculated 

from a large pool of similar days, whereas in the other case every daily sub-profile has 

only one similar day per each preceding year.    

 
Figure 3.4. Square sum of errors when individual load profiles identified with 1–4 years of AMR data 

are used to model the consumption of the next year, given in relation to case with type weeks and 

only one year of identification data.  
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3.4.1 Comparison with other load profiling methods
In [P4], the individual load profiles were compared with other load profiling methods.
When studying small domestic customers, the individual load profiles were clearly better
than the existing customer class load profiles but provided only marginal improvement
when compared with cluster based load profiles which are later described in Chapter 4.
Together with the hugely increased model complexity (the number of load profiles), this
result implies that it is not worthwhile to use individual load profiles to model small
domestic customers. When larger non-residential customers were studied, the individual
load profiles were clearly better than either the existing or cluster based load profiles. The
benefit of individual load profiles is undoubtedly larger when they are applied to large
customers. Later in Subsection 4.5.2, a method for selecting the customers who benefit
the most from individual load profiles is presented.

3.4.2 Improvements to the type weeks
In [P4], each day of the week was modelled separately but in later studies it was
discovered that for domestic customers the division into three type days (weekdays,
Saturday, and Sunday) is often sufficient. In fact, using only one type day for all weekdays
can, in some cases, enhance the load profiling accuracy. This is probably because the
sample size increases and the type day for weekdays can be calculated more reliably than
the type days for individual weekdays. For large customers, a weekly model with seven
distinct type days is often better. Figure 3.5 shows how the electricity consumption of
large non-residential customers, which were studied in [P4], varies according to weekday.
These large customers exhibit similar behavior on Tuesdays, Wednesdays, and Thursdays
but have deviating behavior on Monday mornings and Friday evenings. Even though the
differences are small, they are significant because the load stochasticity is low on these
customers.

Figure 3.5. Average electricity consumption of large non-residential customers on different
weekdays.
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In general, small customers are better modelled with three day types and large customers 

with seven day types. However, this is not always the case and instead of relying on a 

simple size based division, the author aspired to develop a statistical method for detecting 

differences in weekday behavior. In [P6] and [P8], one-way analysis of variance 

(ANOVA) was used to determine if the yearly means of different weekdays are similar 

or not. One-way ANOVA tests the null hypothesis that the means of three or more 

independent samples are equal (Lowry 2017). Since the one-way ANOVA examines only 

one dependent variable, each hour of the day had to be analyzed separately. In this thesis, 

the weekdays were found to behave differently if the null hypothesis for any hour of the 

day was rejected. The experiments and visual inspections revealed that with typical excess 

probability values (e.g. p=0.05), many cases of dissimilar weekdays were left undetected. 

The excess probability had to be raised up to 35 % in order to detect all the visually 

identified cases with dissimilar weekdays. 

The drawback of using multiple ANOVAs is that it increases type I (false positive) errors. 

When all 24 hours of the day are analyzed, the probability that at least one null hypothesis 

is rejected by mere chance is considerably higher than the excess probability used for 

individual hours. In [P9], this issue was addressed using one-way multivariate analysis of 

variance (MANOVA). MANOVA is a generalization of ANOVA to a situation in which 

there are several dependent variables (Tabachnick & Fidell 2006). In this case, the 

dependent variables are the hourly loads during hours 1–24. When analyzing the 

differences between weekdays, MANOVA takes into account all hours of the day and 

their correlations. Matlab function manova1 (MathWorks 2017) was used to analyze if 

the yearly means of the weekdays are similar or not. With 5 % excess probability about 

30 % of all customers were found to have dissimilar weekdays. This is roughly the same 

percentage of customers that were found using ANOVA and 35 % excess probability. 

After the customers with dissimilar weekdays have been identified, the analysis can be 

continued with different post hoc procedures. Descriptive discriminant analysis (DDA) 

for example can be used to analyze which hours contributed the most to the detection of 

dissimilarity (Warne 2014). In this case, the dissimilarity was most often detected based 

on the evening hours (18.00–21.00) and Friday was most frequently the day that differed 

from the other weekdays. In this thesis, the detection of similar weekdays was utilized 

not only in individual load profiling but also in pattern vector formation, which is part of 

the developed clustering method presented in Section 4.5. 

3.5 Geographically bounded load profiles 
The present customer class load profiles usually model electricity consumption on a 

national level. With AMR measurements, load profiles for more strictly restricted 

geographical areas can be defined. This will reduce the load profiling errors as the 

differences in climatic zones, dwelling types, building parameters, and habits in different 

parts of the country will be taken into account. The differentiating habits can be related, 

for example, to firewood usage and to activities during the holiday seasons. Also, the 

sampling errors will vanish if all the customers are metered. 
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The author of this thesis proposes that each DSO should have their own customer class 

load profiles. In Finland, there are relatively many distribution network companies; 

seventy-seven according to Energy Authority (2017). Many of these companies are 

descendants of the old municipal electricity utilities and operate in only one homogeneous 

geographical area. In these cases, only one set of load profiles is needed. There are also 

some larger companies that span over a vast geographical area or own distribution 

networks in different parts of the country. In those cases, several sets of load profiles are 

needed to describe the load behavior in different areas. Also, if a company owns network 

in a large city and in a remote rural area, a distinction between these two areas could be 

made.  

3.6 Customer behavior change detection and other 

possible improvements 
Like the individual load profiles in Figure 3.4, the customer class load profiles become 

more accurate when they are calculated based on several years of AMR data. This of 

course applies only if the customer behavior remains constant and does not change over 

the years. If the customer behavior changes, for example due to heat pump installation or 

electric vehicle purchase, the pre-change measurements should be discarded and only the 

post-change data should be used in load profiling. Detecting the changes in customer 

behavior would facilitate the development of dynamic load profiles that can quickly adapt 

to changes in the customer behavior. The development of change detection methods is 

outside the scope of this thesis, but they have been studied by Chen (2014) and Chen et 

al. (2015).   

In this thesis, ANOVA and MANOVA were used to identify whether the weekdays 

should be modelled with one or five separate type days. The utilization of these methods 

could be extended to other days of the week, for example to comparisons between 

Saturdays and Sundays. Also, since weekday dissimilarity was often detected based on 

only one or two days, only these days could be separated from the other weekdays. 

The more detailed modelling of special days could also be one source of improvement. 

At the moment, the customers are assumed to behave on eves and public holidays 

similarly as in Saturdays and Sundays, respectively. In reality, the load profiles of certain 

special days (e.g. Christmas Eve) differs clearly from normal Saturdays and Sundays. 

Also, it was observed that the weekdays between Christmas and Epiphany differ from 

typical weekdays in December and January. Especially schools exhibit atypical behavior 

during this period. MANOVA could again be used to detect which customers behave 

abnormally during these days.   

In future, load profiling needs to take into account several new development trends 

affecting the electricity end use. These include the growing number of grid-connected 

microgeneration, introduction of demand response, novel tariff structures, battery energy 

storages, and smart home automation systems. The approach of this thesis has been to 

analyze existing AMR data and develop load profiles for the present loads, and therefore 

some emerging trends, which do not show in the data, have been left with lesser attention. 



31 

 

Depending on which of these trends become significant, they should be taken into account 

in load profiling. The future development needs of the presented load profiling method 

are discussed in Section 6.1. 
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4 Clustering of electricity 

customers 

Clustering is a data analysis technique aimed to determine how the data is organized. 

Clustering algorithms divide a set of observations into subsets (clusters) so that the 

observations in the same cluster are similar and the observations in different clusters are 

dissimilar. The similarity and dissimilarity are usually quantified with some measure of 

proximity. The outcome of cluster analysis is typically a partitioning where observation 

is assigned to a cluster. As a result, not only do we know which observations are similar 

but can also characterize members of each cluster with a cluster centroid. This enables 

data compression as multiple observations can be summarized with centroids.  

Cluster analysis is used in many fields of science, for example biology, medicine, 

computer science, marketing, finance, and engineering. In the field of electricity 

distribution, there is often a need to cluster electricity customers into similarly behaving 

groups. The clustering can be done based on the measured consumption profiles, or 

quantities calculated from the measurements, and there are many clustering algorithms to 

choose from.  

In this chapter, various ways to perform the electricity customer clustering are presented 

and discussed. As in earlier chapters, the focus is on electricity customers (i.e. electricity 

users that are metered and billed individually) but the same clustering methods could also 

be applied for larger electricity consumers consisting of multiple customers (e.g. blocks 

of flats). 

4.1 Clustering algorithms 
Thousands of clustering algorithms have been presented in the literature and new ones 

appear continuously (Jain 2010). For electricity customer clustering alone, dozens of 

different algorithms have been applied or proposed. For example; iterative refinement 

clustering (Batrinu et al. 2005), hierarchical clustering (Chicco et al. 2005), fuzzy c-

means clustering (Lo et al. 2005), modified follow-the-leader clustering (Carpaneto et al. 

2006), support vector clustering (Chicco & Ilie 2009), k-means clustering (Räsänen & 

Kolehmainen 2009), ant colony clustering (Chicco et al. 2013), subspace projection based 

clustering (Piao et al. 2014), multi-resolution clustering (Li et al. 2016), and spectral 

clustering (Vercamer et al. 2016). 

There are so many clustering algorithms that the literature has found it useful to categorize 

them. Han et al. (2012) classifies clustering algorithms into four main categories; 

partitioning methods, hierarchical methods, density-based methods, and grid-based 

methods. In this section, some clustering algorithms belonging to these main categories 

are presented. Many other classifications also exist, for example, classification to hard 

and soft (fuzzy) clustering methods. In hard clustering an object belongs to exactly one 

cluster, while in soft clustering the object belongs to each cluster with a certain degree of 

membership. Moreover, the categorization itself can sometimes be fuzzy. 
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4.1.1 Partitioning methods 
Given a set of n objects, the partitional clustering methods construct k partitions of the 

data, where each partition represents a cluster, k ≤ n, and each cluster contains at least one 

object. Most partitioning methods are distance-based. After the number of partitions (k) 

and the initial partitioning have been defined, iterative relocation technique is used to 

improve the partitioning by moving objects from one group to another. In general, the 

objects are assigned to the closest or the most similar cluster. Several different distance 

metrics can be used, although the Euclidean distance is the most common. When the 

Euclidian distance is used, the partitional methods find spherical clusters. (Jain 2010; Han 

et al. 2012) 

Achieving global optimality in partitioning-based clustering is often computationally 

prohibitive, potentially requiring an exhaustive search where all possible partitions are 

tested. To overcome this problem, greedy approaches are often used in practice. A prime 

example of a greedy approach is the k-means algorithm, which progressively improves 

the clustering solution and approaches a local optimum. (Han et al. 2012) 

K-means is still one of the most widely used clustering algorithms, even though it was 

first introduced over 60 years ago. Easy implementation, simplicity, efficiency, and 

empirical success are the main reasons for its popularity (Jain 2010). The credit for 

inventing the k-means algorithm is usually given either to Lloyd (proposed in 1957, 

published in 1982), Forgy (1965, cited in Bock 2007), or MacQueen (1967) who was the 

first to use the term “k-means”. However, algorithms with similar principles have been 

presented even earlier, for example by Steinhaus (1956, cited in Bock 2007). 

K-means is a centroid-based partitioning technique, meaning that the clusters are 

represented by central vectors called centroids. The centroids can be defined in various 

ways, such as by the mean or medoid of the objects assigned to the cluster. The goal of 

the k-means algorithm is to minimize the sum of squared distances between all objects 

and their assigned clusters. The objective function Jk to minimize is:  

 𝐽𝑘 =∑∑𝑑𝑖𝑠𝑡(𝒙, 𝒄𝑖)
2

𝒙∈𝐶𝑖

𝑘

𝑖=1

, (8) 

where x is the point in space representing a given object, ci is the centroid of the cluster 

Ci (both x and ci are multidimensional), k is the number of clusters, and dist is the chosen 

distance metric (usually the Euclidean distance). This objective function aims to make 

the clusters as compact and separate as possible. The k-means algorithm is summarized 

in Algorithm 4.1. The inputs to the k-means algorithm are the number of clusters (k) and 

a data set containing n objects. The outputs are partitioning of these n objects into k 

clusters and cluster centroids. (Han et al. 2012) 

One of the disadvantages of the k-means is that the number of clusters needs to be defined 

a priori. Selecting the right number of clusters is not a trivial task. In this thesis, the 

selection of the optimal number of clusters, from the load profiling point of view, is 

studied in Section 4.4. Another drawback of the k-means is that it converges only to local 

minima and different initializations can lead to different results. One way to mitigate this 
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issue is to run the k-means algorithm several times with different initial partitions and 

choose only the result that gives the smallest objective function value (8). Another way 

is to improve the initial partitioning, for example with sub-sample clustering. Several 

other methods for improving the initial partitioning have also been proposed in the 

literature, for example, the k-means++ (Arthur & Vassilvitskii 2007) and scalable k-

means++ (Bahmani et al. 2012) methods.  

Algorithm 4.1. The k-means procedure (Han et al. 2012). 
1:   Randomly choose k objects from the data set as the initial cluster centroids (output: C={c1,c2,…,ck}). 

2:   Set idx = 0;                                                                       #Initialize cluster indices 

3:   Set repeat = 1;                                                                  #Initialize loop condition 

4:   while repeat 

5:        (Re)assign each object to the cluster to whose centroid (ci) the object has the shortest  

           distance (output: idxnew) 

6:        Update the centroids (output: C) 

7:        if idxnew == idx 

8:            Set repeat = 0;                                                         #Terminate loop 

9:        end 

10:      Set idx = idxnew;                                                           #Update cluster indices 

11:  end 

ISODATA (iterative self-organizing data analysis technique) is another early clustering 

algorithm originally proposed by (Ball & Hall 1965). The basic principle of ISODATA 

is similar to that of k-means, but additional steps to split heterogeneous clusters and merge 

neighboring clusters have been added. The algorithm is described in detail in [P5] where 

it is used to cluster electricity customers. It is often claimed that the ISODATA algorithm 

can find the number of clusters automatically, but in reality a sensible initial guess kinitial 

is required and the final number of clusters is usually within range [kinitial/2, 2×kinitial]. 

Also, the user-given splitting and merging thresholds affect the final number of clusters 

as is shown in [P5].  

Fuzzy c-means is also very similar to the k-means. The main difference is that in the 

fuzzy c-means algorithm the objects are not forced to belong to only one cluster. Instead, 

they are assigned membership degrees between zero and one, which enables them to 

belong to several clusters. The fuzzy c-means algorithm was first proposed by Dunn 

(1973) and later improved by Bezdek (1981, cited in Jain 2010). The goal of the algorithm 

is to minimize the weighted sum of squared distances between all objects and their 

assigned clusters. The objective function Jc to be minimized is:  

 𝐽𝑐 =∑∑𝑾𝑖,𝑗
𝑚 × 𝑑𝑖𝑠𝑡(𝒙, 𝒄𝑖)

2

𝑛

𝑗=1

𝑘

𝑖=1

, (9) 

where W is a weight matrix and m is a parameter that determines the influence of the 

weights (Liao 2005). Similarly as the k-means, the fuzzy c-means procedure requires the 

number of clusters as an input and starts from a random partitioning. The initial 

partitioning is then improved iteratively. The cluster centroids are calculated as weighted 

means and the weight matrix is updated during every iteration. 

Gaussian mixture model (GMM) clustering is another soft clustering method closely 

related to the k-means method. In GMM clustering, the clusters are modelled with 
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Gaussian probability density functions (PDFs) and individual objects are allowed to have 

memberships to several clusters. The whole data set is therefore modelled by a mixture 

of Gaussian components. For a multivariate case, the joint PDF of the mixture model is: 

 𝑓(𝒙; 𝜽) =∑𝑤𝑖

𝑘

𝑖=1

𝑁(𝒙;𝝁𝑖, 𝜮𝑖), (10) 

where k is the number of mixture components (clusters), wi is the weight of the ith 

component, μi is the mean of the component, and Σi is the covariance matrix of the 

component (Singh et al. 2010). The goal of GMM is to define the set of parameters 𝜽 =

{𝑤𝑖, 𝝁𝑖, 𝜮𝑖}𝒊=𝟏
𝒌  so that the log-likelihood of (10) is maximized. This cannot be done 

analytically, and therefore the expectation-maximization (EM) algorithm is usually 

applied to find a local maximum (Ari et al. 2012). Like the k-means, the EM algorithm 

starts from a random initial estimate of parameters (θ) and improves this iteratively; E-

step computes the weights and M-step computes the Gaussian parameters.  Unlike in k-

means, in GMM the clusters can have non-spherical (elliptical) shapes. If hard 

memberships are used instead of soft memberships and identity covariance matrices are 

assumed, the GMM yields similar results as the k-means.  

Mixtures of factor analyzers (MFA) clustering reshapes GMM by applying factor 

analysis to reduce the number of parameters in the component-covariance matrix of (10). 

Factor analysis, which is a statistical method for modelling the covariance structure of 

high dimensional data using a small number of latent variables, is extended to a mixture 

model that allows different local factors in different regions of the input space. This 

results in a model which concurrently performs clustering and dimension reduction, and 

is essentially a reduced dimension mixture of Gaussians. The MFA model is given by 

(10), where the ith component-covariance matrix has the form: 

 𝜮𝑖 = 𝑩𝑖𝑩𝑖
𝑇 +𝑫𝑖 , (11) 

where Bi is a q×d matrix of factor loadings and Di is a diagonal matrix. Here, q is the 

dimensionality of the original data, and d is the number of subspace dimensions. The 

parameters Bi and Di, along with weights wi and means μi, can be determined using the 

EM algorithm or some variation of it. (Ghahramani & Hinton 1997; McLachlan et al. 

2003) 

4.1.2 Hierarchical methods 
By default, the hierarchical clustering methods do not provide a single partitioning of the 

data set. Instead, they give an extensive hierarchy of clusters that merge with each other 

at certain distances. The most natural way to represent this hierarchy is through a tree-

shaped structure called dendrogram. A hierarchical method can be classified as being 

either agglomerative or divisive, based on how the hierarchical decomposition is formed. 

The agglomerative approach, also called the bottom-up approach, starts with each object 

forming a separate group. It successively merges the objects or groups close to one 

another, until all the groups are merged into one, or a termination condition is reached. 

The divisive approach, also called the top-down approach, starts with all the objects in 
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the same cluster. In each successive iteration, a cluster is split into smaller clusters, until 

each object is in a cluster of its own, or a termination condition is reached. (Han et al. 

2012) 

Agglomerative methods are more popular than the divisive methods because splitting 

large clusters into smaller ones is more challenging than merging small clusters. There 

are 2n-1–1 possible ways to split a set of n objects into two subsets. If n is large, it is 

computationally prohibitive to examine all the possibilities and usually some type of 

heuristic method for splitting is used. Hierarchical methods suffer from the fact that once 

a step (merge or split) is done, it can never be undone. This leads to small computation 

costs but may cause inaccurate partitioning, since the erroneous decisions cannot be 

corrected. (Han et al. 2012) 

The properties of hierarchical clustering depend very much on the choice of the used 

distance function and the linkage criterion. The most common linkage criteria are: single 

linkage, complete linkage, average linkage, centroid method, and Ward’s method. An 

algorithm using single linkage measures the minimum distance between the clusters and 

is sometimes called a nearest-neighbor algorithm. A complete linkage algorithm 

measures the maximum distance between the clusters and is sometimes called a farthest-

neighbor algorithm. The average linkage is calculated as a mean over all pairwise object 

distances between two clusters and the centroid method calculates the distance between 

the cluster centroids. In Ward’s method, the distance between two clusters is defined as 

an increase in the total intra-cluster sum of squared errors when the clusters are merged. 

(Rencher 2002; Han et al. 2012) 

Single and complete linkage algorithms are sensitive to outliers and noisy data. The single 

linkage algorithm suffers also from the so-called chaining phenomenon, where 

consecutive merges can lead to a situation where clusters at the ends of the chain are very 

distant to each other. Complete linkage algorithm on the other hand favors equally sized 

clusters, which can be good or bad depending on the structure of the data. The use of 

average linkage and centroid method alleviates the outlier sensitivity problem and 

provides a compromise between minimum and maximum distances. (Han et al. 2012) 

Several variations of the basic algorithm have been proposed in the literature. For 

example, the BIRCH (balanced iterative reducing and clustering using hierarchies) 

algorithm proposed by Zhang et al. (1996), the Chameleon algorithm proposed by 

Karypis et al. (1999), and the CURE (clustering using representatives) algorithm 

proposed by Guha et al. (2001).       

4.1.3 Density-based methods 

Partitioning and hierarchical methods have difficulties in finding arbitrarily shaped 

clusters. To find arbitrarily shaped clusters, one can model clusters as dense regions in 

the data space, separated by sparse regions. This is the main idea behind density-based 

clustering methods. One of the most popular density based clustering methods is 

DBSCAN (density based spatial clustering of applications with noise). DBSCAN scans 

the data and finds core objects that have dense neighborhoods. A user-defined parameter 
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Eps is used to specify the radius of the neighborhood and the neighborhood is determined 

to be dense, if the number of objects within the neighborhood is greater than or equal to 

a user-specified parameter MinPts. A cluster is formed by a group of connected core 

objects and all other objects that are reachable (within Eps) from these core objects. (Ester 

et al. 1996; Han et al. 2012) 

As with many other clustering algorithms, the downside of DBSCAN is that it requires 

user-defined parameters which are often difficult to choose and tune. The later variants 

of DBSCAN have addressed this issue, for example, the DENCLUE (density based 

clustering) method proposed by Hinneburg and Keim (1998), and the OPTICS (ordering 

points to identify the clustering structure) method proposed by Ankerst et al. (1999). 

4.1.4 Grid-based methods 
Grid-based clustering methods quantize the object space into a finite number of cells that 

form a grid structure. The clustering is then performed on the grid, instead of the original 

object space. This reduces the processing time since the number of grid cells is typically 

smaller than the number of objects in the original space. The downside is that the 

clustering accuracy is limited by the granularity of the grid. (Han et al. 2012) 

The grid-based clustering algorithms are good in clustering very large data sets. STING 

(statistical information grid) and Wave Cluster algorithms, for example, can efficiently 

cluster large spatial data sets. Their computational complexity is linearly proportional to 

the number of cells at the lowest grid level (STING) or to the number of objects (Wave 

Cluster). CLIQUE (clustering in quest) and MAFIA (merging of adaptive intervals 

approach to spatial data mining) are examples of grid-based algorithms suitable for 

clustering numerical data. They scale well in relation to the number of objects, but their 

time complexity is exponential in the number of dimensions. (Ilango & Mohan 2010) 

4.2 Comparison of clustering methods 
Scientists often search for the best method for solving a certain problem, but finding it is 

not always possible. For example in this case, it is impossible to determine the best 

algorithm for electricity customer clustering. First of all, one lifetime is not enough to 

compare all the clustering algorithms. Countless, but not all, clustering algorithms are 

suited for electricity customer clustering. Some clustering algorithms do not work well 

with electricity consumption data due to the high dimensionality of the data. Secondly, 

since there is no universal definition for a cluster, the countless proposed cluster validity 

indices weight the cluster properties differently. This diversity of cluster validity indices 

is evident in Subsection 4.4.1 where several validity indices are used to determine the 

optimum number of clusters. Often in practice, researchers select a validity index that 

coincides with their subjective idea of a cluster, and thus human bias is incorporated into 

the results. In his position paper, Estivill-Castro (2002) wisely argues that clusters are in 

the eye of the beholder, and that is the reason why so many cluster validity indices and 

subsequently also clustering algorithms have been proposed.   

It is difficult, if not impossible, to find the best method for electricity customer clustering 

but this has not stopped the efforts. Gerbec et al. (2003a) compared hierarchical and fuzzy 
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c-means clustering in load profile classification and ended up recommending fuzzy c-

means over the hierarchical clustering. However, in their other paper Gerbec et al. 

(2003b), they only state that both the fuzzy c-means and the hierarchical clustering with 

Ward linkage criterion yield similar results. 

Chicco et al. (2005) compared k-means, fuzzy c-means, self-organizing map (SOM), 

modified follow-the-leader procedure, and agglomerative hierarchical clustering with 

both Ward and average linkage criteria. The hierarchical clustering run with the average 

linkage criterion and the modified follow-the-leader algorithm were found to be the two 

most effective algorithms for clustering daily load profiles. 

Tsekouras et al. (2007) compared modified k-means, fuzzy c-means, adaptive vector 

quantization, and hierarchical clustering with seven different linkage criteria. According 

to three cluster validity indices, the modified k-means was the best, according to two 

validity indices the adaptive vector quantization was the best, and according to one 

validity index the hierarchical clustering with Ward linkage criterion was the best. 

Kim et al. (2011) compared k-means, fuzzy c-means, and hierarchical clustering. The k-

means algorithm was found to be the most accurate one when clustering daily load 

profiles. 

Chicco et al. (2012) compared k-means, fuzzy c-means, follow-the-leader algorithm, and 

hierarchical clustering with six different linkage criteria. The result was that the k-means 

algorithm was the fastest but the hierarchical clustering with single linkage criterion was 

the best according to the cluster validity indices. However, the inspection of hierarchical 

clustering results revealed that the majority of the clusters were comprised of outliers and 

the bulk of daily load profiles was concentrated in only one cluster. The k-means 

algorithm, on the other hand, created many uniformly sized clusters; as is desirable. 

As this short literature review shows, there is no clear consensus which clustering method 

is the best for electricity customer clustering. Although it should be noted that the k-

means method won two out of the four comparisons it participated in and was, in this 

author’s opinion, a moral winner in the third even though the other methods achieved 

better cluster validity index values (q.v. previous paragraph). The k-means method should 

therefore provide a safe starting point for clustering electricity customers. It is also the 

default clustering method in the two-stage clustering method developed in this thesis. 

Several other clustering methods were also tested during the development and 

comparisons are presented in Subsection 4.5.3. 

4.3 Dimension reduction 
Electricity customer clustering is often done based on high-dimensional time series data. 

In literature, the most common approach is to cluster the customers based on daily 

consumption data that has 24, 48, or 96 dimensions, depending on whether the 

measurements are done hourly, half-hourly, or quarter-hourly. It is possible to perform 

the clustering based on this raw data but dimension reduction is often applied to speed up 

the clustering, reduce noise in the input data, and mitigate the effects of the curse of 

dimensionality. If the electricity consumption of an entire year is considered as a whole, 
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as is done in this thesis, the number of dimensions is measured in thousands. With this 

many dimensions, the need for dimension reduction becomes even more pronounced. 

There are several different dimension reduction methods and many of them have been 

applied to electricity customer clustering. Räsänen and Kolehmainen (2009) divided the 

hourly consumption data into weekly windows and extracted features describing the 

weekly mean, standard deviation, skewness, kurtosis, chaos, energy, and periodicity. The 

clustering was then done based on these feature vectors, which were considerably shorter 

than the original time series. Verdú et al. (2004) used nine features describing the shape 

of the daily load pattern, for example, the ration of average daytime load to maximum 

daytime load and the ratio of average daytime load to average night time load. Good 

results were achieved also when the 96 dimensional daily load patterns were transformed 

into 24 dimensional hourly load profiles. The feature extraction can also be done in the 

frequency domain, as has been done by Verdú et al. (2004) and Carpaneto et al. (2006). 

They have used discrete Fourier transform to compute the amplitude and phase of the 

harmonics present in the daily load patterns. In Mets et al. (2016), fast wavelet 

transformation was used to represent the 96 dimensional daily load patterns with only 

seven features. 

When clustering time series data longer than one day, representative load patterns (RLPs) 

are often used to reduce the input data dimensionality. The RLP can be either a single 

typical daily profile (TDP) or a vector of TDPs describing the average load on different 

days of the week and seasons or months. The vector approach is used for example by 

Dang-Ha et al. (2016). Although, a more popular approach is to use single TDPs and 

perform the clustering separately for each loading condition (day of the week and season) 

as has been proposed, for example, by Chicco et al. (2013). 

One of the most used dimension reduction techniques is the principal component analysis 

(PCA). In PCA, the goal is to reduce the dimensionality of the data set while retaining as 

much information as possible. In mathematical terms, PCA performs an orthogonal linear 

projection of high dimensional data onto a low dimensional subspace so that the variance 

of the projection is maximized. The greatest variance lies on the first subspace dimension 

(principal component) and each following dimension, which are orthogonal to the 

previous dimensions, explains as much as possible of the remaining variability. Usually, 

a significant amount of variance present in the data can be explained with a number of 

principal components that is only a fraction of the original number of dimensions. PCA 

has been used in numerous publications to reduce the dimensionality of the electricity 

consumption data prior to clustering (Cheng & Li 2009; Koivisto et al. 2013; Lu et al. 

2016).  

Self-organizing maps (a.k.a. Kohonen networks) are also used often in dimension 

reduction. SOM is a type of artificial neural network that is trained to project the input 

space into a reduced dimension space (usually into a two-dimensional hexagonal map), 

where the proximity properties of the input space are approximately preserved. In general, 

the SOM may be considered as a nonlinear generalization of PCA (Dang-Ha et al. 2016). 

There are many publications where SOM has been applied to electricity consumption data 
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(Figueiredo et al. 2005; Räsänen et al. 2010; Niska 2013). It is also possible to chain 

dimension reduction techniques, for example, load profile shape characterization can be 

followed by SOM. 

4.4 Selecting the optimal number of clusters 
A major challenge in cluster analysis is the selection of the “right” number of clusters. 

The number of clusters is a crucial input parameter in many clustering algorithms, such 

as k-means, fuzzy c-means and BIRCH. Hierarchical clustering methods do not require 

the number of clusters as inputs, but the operator must decide where to cut the hierarchical 

tree into clusters and this is an analogous problem to selecting the number of clusters. 

Some clustering algorithms, such as DBSCAN and OPTICS, determine the number of 

clusters automatically but they require other input parameters that are equally difficult to 

optimize. This section discusses how to find the optimal number of clusters for a k-means 

algorithm applied to electricity customer classification.    

4.4.1 Cluster validity indices 
In electricity customer classification, the true customer classes are unknown and therefore 

external evaluation cannot be used to assess the classification accuracy. Instead, internal 

evaluation based on the clustered data must be used. Internal evaluation methods usually 

give the best score to the algorithm that produces clusters with high intra-cluster similarity 

and low inter-cluster similarity. However, different cluster validity indices weight these 

attributes differently and the results vary. A clustering algorithm that aims to minimize a 

certain criterion and uses a certain distance metric, naturally gets a good score from an 

evaluation method that uses similar objective function and distance metric. For example, 

the k-means algorithm performs well when evaluated with the sum of squared errors 

(SSE) and compared to other clustering algorithms. 

The variability of the results is not limited to the selection of the best clustering method. 

Even if the clustering method has already been selected, the different cluster validity 

indices give different results for the optimal number of clusters. This is true even with 

relatively simple low-dimensional data sets as has been shown in (Baarsch & Celebi 

2012), (Wu & Yang 2005) and (Tibshirani et al. 2001). In this thesis, clustering is done 

on high-dimensional electricity consumption data and it is very unlikely that all the cluster 

validity indices perform well with this data set. However, reliable validity indices are 

needed when determining the optimal number of clusters. Next, nine different cluster 

validity indices are tested and analyzed, and the one most applicable to this problem is 

selected. The tested validity indices are: 

1) Davies–Bouldin index (DBI) (Davies & Bouldin 1979) 

2) Dunn index (Dunn 1973) 

3) Silhouette (Rousseeuw 1987) 

4) Mean index adequacy (MIA) (Chicco et al. 2003) 

5) Clustering dispersion indicator (CDI) (Chicco et al. 2003) 

6) Calinski–Harabasz Criterion (CH) (Kryszczuk & Hurley 2010) 

7) Bayesian information criterion (BIC) (Schwarz 1978) 
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8) Akaike information criterion (AIC) (Akaike 1974)
9) Sum of squared errors (SSE) (Duda et al. 2012, p. 542).

In this test case, the goal is to find an optimal number of clusters for a standard k-means
method which is used to cluster pattern vectors of 6425 electricity customers. In this case,
the pattern vectors consist of 864 values describing the average weekly consumption
(working day, Saturday, and Sunday) on 12 different months. The calculations are done
with random initialization, ten replicates and squared Euclidian distance as a distance
metric. Figure 4.1 shows the index values as a function of k and Table 4.1 displays the
optimal number of clusters. Only nine internal validity indices were compared here,
although tens of others also exist, for example scatter index (Pitt & Kirschen 1999), gap
statistics (Tibshirani et al. 2001), ration of within cluster sum of squares to between
cluster variation (Tsekouras et al. 2007), partition coefficient and exponential separation
index (Wu & Yang 2005), Bezdek’s partition coefficient (Wu & Yang 2005), Xie-Beni
index (Xie & Beni 1991), and WB-index (Zhao & Fränti 2009).

Figure 4.1. Cluster validity index values as a function of k.

From Figure 4.1 and Table 4.1 it can be seen that several of the tested cluster validity
indices do not provide usable results with the electricity usage pattern data. The Dunn
index is so volatile that it is useless. The Silhouette and CH reach their maximums when
k=2. This is clearly too small a value for this application. The MIA, CDI and DBI do not
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reach their minimum values with a reasonable number of clusters (minimums at k>1000).
Moreover, MIA, CDI, DBI, Dunn and Silhouette appear to be very sensitive to small
random changes in clustering, which happen every time the k-means algorithm is run.
Figure 4.2 shows how DBI and SSE vary when they are applied to results from different
k-means runs. The DBI values vary a lot and it is impossible to get reliable results with a
single run. SSE on the other hand provides consistent results on every run.

Table 4.1. Optimal number of clusters based on the studied cluster validity indices.

Optimal number
of clusters

Type of optimum
point

Clearness of the
plot

DBI >1000 Minimum Poor
Dunn 988 Maximum Useless
Silhouette 2 Maximum Poor
MIA >1000 Minimum Poor
CDI >1000 Minimum Poor
BIC 50–70* Minimum Good
AIC 200–400* Minimum Adequate
CH 2 Maximum Excellent
SSE 60–80* Knee Good

* Only approximate values are given due to the volatility of the curve or subjective nature
of the optimum point.

Figure 4.2. Comparison of cluster validity index volatility.

BIC and AIC provide minimum points where the optimum number of clusters should be.
However, the solutions provided by the BIC and AIC are very different. The different
results are caused by the different penalty terms used in BIC and AIC. BIC penalises
model complexity more than AIC (when sample size n>7). In the case of k-means
algorithm, the BIC and AIC are basically knee point detection methods where the knee
point is found from the location on SSE curve that has the same slope as the penalty term.
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It is possible to determine the optimal number of clusters directly from the SSE curve 

using also other knee point detection methods, which are studied in the next section. 

4.4.2 Knee point detection 
Locating the “knee” of an error curve in order to determine the optimal number of clusters 

is a well-known method. With human intuition it is easy to see the knee region in a figure. 

However, defining a universal application-independent knee point detection algorithm 

that works with all kinds of knee curves is not as easy as one might think. 

The knee of a curve is best defined as the point of maximum curvature. Curvature is a 

mathematical measure of how much a function differs from a straight line. As a result, 

maximum curvature captures the levelling off effect used to identify knees. For any 

continuous function f, there is a standard closed-form Kf    (x) that defines the curvature of f 

at any point as a function of its first and second derivatives (Satopää et al. 2006): 

 𝐾𝑓(𝑥) =
𝑓′′(𝑥)

(1 + 𝑓′(𝑥)2)
3
2⁄
 (12) 

While curvature is well-defined for continuous functions, it is not easy to apply for 

discrete data sets, such as the curves studied in this thesis. In a discrete case, it would be 

possible to determine the curvature by fitting a continuous function on the data. However, 

fitting a continuous function to a set of arbitrary data points is difficult, especially if the 

data is noisy. 

The other knee point detection methods presented in literature can be divided into local 

and global methods. Local methods are based on geometric features calculated using 

information from only a few neighboring points on a curve. Examples of such methods 

are the angle-based methods presented in (Dep & Gupta 2010) and (Branke et al. 2004), 

and the Menger curvature based method described in (Satopää et al. 2006). The local knee 

point detection methods do not work well with noisy data and are therefore not suitable 

for solving the knee point detection problem in this thesis. Although Figure 4.2 showed 

that SSE is a lot more stable index than DBI, there is still enough noise to render local 

knee point detection methods useless. The small variations present in the studied SSE 

curve are highlighted in Figure 4.3.  

Global knee point detection methods aim to take the overall trend of a curve into 

consideration when determining the knee point. The most well-known global method is 

the Normal-Boundary Intersection (NBI) method where a straight line is drawn from the 

first point of the curve to the last point of the curve and a knee point is declared at a point 

that is farthest from this line (Das 1999). Euclidian distance is usually used to determine 

the distance from the line but also vertical distance can be used, as has been done in the 

Kneedle algorithm (Satopää et al. 2006). The curve start and end points can also be used 

to define angles between lines going through each point of the curve and the 

aforementioned start and end points (Dep & Gupta 2011). The knee point is at the point 

that has the smallest (or largest, depends on the formulation) bend-angle. The L-method 

(Salvador & Chan 2004) fits straight lines to the left and right sides of each point and 

selects the point which has the smallest sum of weighted root mean squared errors of the 
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fitted lines. In situations where the curve has a long tail (more points after the knee than 

before it), the L-method tends to give too large values for the knee. Salvador and Chan 

(2004) have presented a modified L-method to suppress this problem. 

 

Figure 4.3. Small variation in SSE that render local knee point detection methods useless.  

The above-mentioned global knee point detection methods were applied to the previously 

calculated SSE curve. Table 4.2 shows the results. There are clear differences between 

the methods. Moreover, the results are affected by the range selected for inspection. If 

only one hundred first SSE values are studied, the knee point is found between 10 and 18 

clusters. If the whole range from one to 6425 is studied, the knee point is found between 

6 and 769 clusters. 

Table 4.2. The knee point location found with different knee point detection methods and with 

different input ranges. 

 Range 1–100 Range 1–1000 Range 1–6425 

Fitted function (𝒚 = 𝒂 ∙ 𝒙𝒃 + 𝒄) 

+ curvature calculation 
14 79 7 (bad fit) 

NBI 16 82 450 

Kneedle 16 82 450 

Bend-angle 16 54 140 

L-method 18 176 769 

Modified L-method 10 10 6 

Only NBI and Kneedle provided similar results with all the studied ranges. The bend-

angle method gave smaller values when the range was wide and the curvature calculation 

for full range was unreliable due to bad fit. The L-method gave very large values and the 

modified L-method gave very small values. Moreover, the disparity between the knee 
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point detection methods is not the only issue. If k-means clustering method is used, this 

kind of knee point detection requires that the clustering is repeated with all viable values 

of k and this is very compute-intensive. 

Since the knee point detection has turned out to be a challenging task and the optimum 

number of clusters cannot be determined unambiguously, in this thesis, the final number 

of clusters is selected based on other criteria such as the intelligibility of the model. 

Hundreds of clusters (i.e. customer classes) could be too much for the DSO staff to 

handle, and reducing the number of customer classes from the present level would feel 

like a step backward. In addition, new customer classes are needed to capture the effects 

of new emerging technologies, such as electric vehicles, home automation systems, and 

micro generation. From this perspective, a number moderately larger than the present 

number of customer classes would be ideal. In [P4], [P6], and [P9] the accuracy of cluster 

profiles was compared with Sener profiles and the number of clusters was chosen to be 

the same as the number of existing customer classes. This way, the effect of the number 

of the customer classes was eliminated from the comparison.    

4.5 The developed load profiling procedure 
The load profiling procedure developed in this thesis is shown in Figure 4.4. The 

procedure contains load profile updating, individual load profiling and a two-stage 

clustering method. The load profile updating is included in the load profiling procedure, 

because this research was started at a time when the AMR roll-out in Finland was not yet 

completed. The use of individual load profiles and cluster profiles requires that AMR 

measurements are available. If the AMR measurements are missing, the updated load 

profiles are used as a backup. Nowadays, the AMR systems cover almost 100 % of the 

customers, but there are still situations when individual or cluster profiles cannot be used. 

For example, when a new house is built and connected to the network, electricity 

consumption history does not exists and the individual load profile cannot be formed nor 

the customer can be classified based on the consumption history. 

It is rather straightforward to use updated load profiles, individual load profiles and 

cluster profiles side by side. This was demonstrated with a modified prototype version of 

the ABB MicroSCADA Pro DMS 600 –software. The DMS 600 is connected to a 

database that contains a customer information table. One column of this table contains 

the original customer classification information. The load profiles to which this 

classification refers to were updated and two additional columns were added to the 

customer information table; one column for the cluster information and one column for 

the individual load profile numbers. A minor modification was made to the DMS 600 so 

that the program reads first the column with individual load profile numbers, continues 

to read the cluster information only if the individual number is missing, and finally 

proceeds to read the original customer class if the cluster information is missing. In other 

words, the individual load profiles were prioritized over cluster profiles, which in turn 

were prioritized over the updated load profiles. For testing purposes, the DMS 600 

prototype allowed the user to choose whether or not the individual load profiles and the 

cluster profiles were used in the network calculation. 
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Read AMR measurements from the measurement database

Data pre-processing and validation 

Temperature normalization

2nd clustering stage

Classify outliers to the nearest cluster 

Calculate pattern vectors

1st clustering stage

Group pattern vectors according to the 

original customer classification

Separate the largest customers from the 

others and calculate individual load profiles 

for them

Calculate updated load profiles and 

temperature dependency parameters 

Outlier filtering and 2nd stage of the 

individual load profile selection

Calculate temperature dependency 

parameters and standard deviations for each 

load profile

Form new load profiles from 

the cluster centroids

Load profile updating

 Clustering and 

selection of 

individual load 

profiles

Calculate temperature dependency parameters

Pattern vector normalization

Calculate next year energy forecasts

 

Figure 4.4. Flow chart for load profile updating and clustering.  

The load profiling procedure shown in Figure 4.4 has been implemented as a Matlab 

program. It starts by importing the AMR and temperature measurements to Matlab and 

continues with data pre-processing and validation. Small gaps in the data are interpolated, 

exceptionally large or small values are labeled as bad data, and the data format is checked 

(e.g. the unit of the data, cumulative or non-cumulative time series). Then the temperature 

dependency parameters are calculated individually for each customer using the method 

presented in Subsection 3.1.1 and the time series are normalized to correspond to 

consumption in the long-term monthly average temperatures. This allows us to treat the 

measurements equally, even if they are originally from different years with different 

temperatures. 

The next year energy consumption forecasts for each customer are calculated based on 

the temperature normalized measurements. If measurement data is available from several 
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years and there is a statistically significant linear trend in customer level yearly energy 

consumption, linear extrapolation is used to forecast the next year’s energy consumption. 

The yearly energy forecasts are based on the temperature normalized measurement 

history and will therefore reflect the yearly energy consumed during a year with average 

monthly temperatures. Yearly energy forecasts are needed because in network calculation 

applications the load profiles are scaled to match the expected yearly energy consumption. 

In addition, the yearly energies are used later in the two-stage clustering procedure.  

Pattern vectors describing the average hourly consumption of each day of the week in 

each month are calculated from the temperature normalized electricity consumption time 

series. The statistical methods presented in Subsection 3.4.2 are then used to analyze 

whether or not the weekdays should be modelled separately or with a common weekday 

model. Either way, the resulting pattern vectors consist of 24×7×12=2016 elements. 

Some of the customers with similar weekdays could be modelled with pattern vectors 

consisting of 24×3×12=864 elements, but since we need to compare them with customers 

who have dissimilar weekdays, all pattern vectors must be of equal length. In case of 

similar weekdays, the identified weekday model is simply repeated five times. After this, 

either load profile updating or cluster analysis is performed. These separate procedures 

have been described in the next two subsections. 

4.5.1 Load profile updating 

The load profile updating is a simple process. First the pattern vectors are grouped 

according to the original customer classification, and then the averages of pattern vectors 

in each group are calculated. These averages are used to calculate the updated load 

profiles which are formed by extending the pattern vector averages to cover the whole 

target year and by normalizing the yearly energy consumptions to a standard value of 10 

MWh/year. Finally, the customer class temperature dependency parameters are 

determined using the temperature measurements and means of AMR measurements 

belonging to each customer class. In here, means are used instead of sums because they 

are less sensitive to missing data. For the same reason, the pattern vectors are used in load 

profile updating instead of the temperature normalized measurements. 

4.5.2 Two-stage clustering 
The proposed clustering procedure starts with the separation of large customers. The 

largest customers (measured by yearly energy) are separated from the others and assigned 

for individual load profiling. This is done so that the largest customers do not distort the 

first stage clustering results. In addition, these large customers would very likely be 

selected for individual load profiling in later stages anyway. Next, the pattern vectors are 

normalized so that all vectors have a mean value of one. The previously calculated yearly 

energies are later used as weights that offset the effect the normalization has on the cluster 

means. 

By default, the first clustering stage uses a weighted k-means algorithm developed by the 

author. In weighted k-means, the calculation of distances from cluster centroids is done 

as in k-means, but the normalized pattern vectors are weighted with the corresponding 
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yearly energies when the centroids are updated. The clustering is initialized with the
existing customer classification. Also other initialization and clustering methods could be
used. The effect of different initialization and clustering methods on the accuracy of the
developed clustering procedure has been analysed in Subsection 4.5.3.

After the first clustering stage, outlier filtering and the second stage of the individual load
profile selection are performed. The customers with the largest unweighted distances
from the cluster centroids are labelled as outliers and set aside. Empirically, it was
observed that removing approximately 10 % of the total population as outliers was
sufficient. The customers with the largest weighted distances from the nearest cluster
centroids are selected for individual profiling. Figure 4.5 shows the outlier filtering limit
and the large individuals that were selected already before the first clustering stage. Most
of the customers labelled as outliers have very small yearly energies. Figure 4.6 shows
the limit which is used to select the rest of the customers for individual load profiling.
Here, the customers with large weighted distances from the closest cluster centroid
(minD×E) are denoted as weighty individuals. Both the outlier percentage and the number
of individual load profiles are user-selectable parameters.

The second clustering stage repeats the weighted k-means clustering. This time without
the outliers and customers that have been selected for individual profiling. The first-stage
clustering results are used to initialize the second-stage clustering. After the two-stage
clustering, the previously removed outliers are classified to the nearest cluster. Only full
pattern vectors are used in the clustering and the incomplete pattern vector (i.e. vectors
with gaps) are classified in this stage to the cluster with the most similar load profile
shape.

Figure 4.5. Outlier filtering based on the minimum distance from the closest centroid (minD) and
selection of customer for individual load profiling based on the yearly energy consumption.
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Figure 4.6. Selection of customers for individual load profiling based on the largest weighted distance
from the closest cluster centroid. In this figure, E is the yearly energy in kilowatt-hours.

The final load profiles are formed from the cluster centroids by extending them to cover
the whole target year. Calendar information on the target year is needed in this step. The
temperature dependency parameters and standard deviations for each load profile are
calculated using the AMR measurements (temperature parameters), temperature
normalized AMR measurements (standard deviations), temperature measurements, and
classification obtained from the second clustering stage. Both the cluster and individual
profiles are made compatible with the existing load profile format where each hour of the
year has an expected value and a standard deviation.

4.5.3 Sensitivity to initialization and clustering method
The k-means clustering algorithm is very sensitive to initialization, i.e. the final accuracy
depends on the objects that are randomly selected as cluster centroids before the first
iteration round. The randomness in initialization explains why the k-means algorithm
often provides different results on different runs. The sensitivity of the proposed two-
stage clustering method is studied in Figure 4.7, which shows how the load profiling
performance changes when the k-means initialization method is varied. The figure is
based on the AMR data used in [P9] and the performance was measured by evaluating
how accurately the load profiles produced by the two-stage clustering method model the
aggregated load of 7532 customers. The model accuracy, on a separate verification year,
was measured with mean absolute percentage error (MAPE). In this study, the two-stage
clustering algorithm was run 100 times (when applicable), the number of customer classes
was set to 37, and individual load profiles were not used.

By default, the proposed two-stage clustering algorithm uses the original customer
classification available in CIS as a starting point and in this case the weighted k-means
algorithm always converges to the same result. With random initialization, the results
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were on average poorer but occasionally better results were achieved. The use of
subsample clustering did not improve the accuracy when compared with random
initialization.

Figure 4.7. The effect of initialization, k-means version, and normalization on the accuracy of the
developed two-stage clustering algorithm.

In this case, the initialization methods used in k-means++ and scalable k-means++
algorithms did not improve the results. In fact, they made the results worse. During the
initialization phase, these algorithms favor objects that are far away from the already
selected cluster centroids. When the data set contains outliers, the outliers are more likely
to be selected as initial cluster centroids, because they are far away from all other objects.
When using these algorithms, the outlier filtering should be done before the clustering.
These two algorithms are thus not suitable for being used with the proposed two-stage
clustering method.

In addition to the initialization method, the selected clustering algorithm and the data
normalization method also have an effect on the final accuracy. When the classical
k-means algorithm was used instead of the developed weighted k-means algorithm, the
accuracy was slightly poorer. However, it should be noted that weighted centroid update
must be performed after the classical k-means, otherwise the MAPE will be a whole one
percent unit higher. It is a common approach to perform standard score normalization
(a.k.a. z-normalization) on the data prior to clustering. However, in this case
normalization to zero mean and variance of one did not improve the results. On the
contrary, the results got worse.
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The possibility to replace the k-means algorithm with other clustering algorithms was also
studied. Figure 4.8 shows the resulting accuracy when the k-means algorithm in the
proposed two stage clustering method was replaced with different clustering algorithms.
The first four algorithms in Figure 4.8 were initialized with the original customer
classification. Where indicated, weighted versions of algorithms were used (i.e. the size
of the customer was taken into account as a weighting factor in cluster centroid
calculation). The last four algorithms used random initialization and the clustering was
run 100 times.

Figure 4.8. The effect of clustering algorithm choice on the accuracy of the developed two-stage
clustering method.

The best results were achieved with a combination of PCA and k-means. First the input
data (pattern vectors) dimension was reduced with PCA and then the weighted k-means
algorithm was used for clustering. This was repeated for both the first and second
clustering stage. The results shown here were attained by using the 100 first principal
components, which in this case explained 85 % of the pattern vector variance. The
differences in accuracy were negligible between the four best clustering algorithms but
this combination had the shortest overall execution time. The drawback of PCA is that it
requires more memory than k-means and this can become a limiting factor when
clustering very large datasets (>200 000 customers).

The second best results were achieved by using k-means in the first clustering stage and
ISODATA in the second clustering stage. However, when comparing with the algorithm
that uses k-means on both stages, the improvement was marginal and there was a 63-fold
increase in the second stage execution time. Average execution times for each tested
clustering algorithm are given in Table 4.3. The reported execution times were achieved
with a desktop computer with Intel Core i7-2600 processor and 16 GB of RAM memory.
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Table 4.3. Average execution times for algorithms shown in Figure 4.8 (sorted in ascending order 

according to total execution time). 

 Dimension reduction 

(1st+2nd stage) 

Clustering 

(1st+2nd stage) 

Total 

PCA and weighted k-means 8+7 23+30 68 

Weighted k-means - 87+29 116 

Weighted k-means and 

hierarchical clustering 
- 87+52 139 

SOM and k-means 95+89 2+2 188 

Weighted fuzzy c-means - 465+58 523 

MFA (12D) - 584+131 715 

GMM - 624+743 1367 

Weighted k-means and 

weighted ISODATA 
- 87+1827 1914 

Using k-means in the first clustering stage and hierarchical clustering (with Euclidian 

distance and Ward’s method) in the second clustering stage also provided good results. 

Hierarchical clustering could not be used in the first clustering stage because it yields 

poor results in the presence of outliers. The second tested dimension reduction method, 

SOM, did not perform as well as PCA. Both the final clustering accuracy and execution 

time were poorer. Different grid sizes were tested and the best results were achieved with 

a 15×15 hexagonal grid. 

In [P7], GMM and MFA were successfully used to cluster 48 dimensional daily load 

profiles. However, with the 2016 dimensional pattern vectors used here, the clustering 

accuracy and execution time were clearly inferior to the previously mentioned clustering 

methods. The fuzzy c-means algorithm also performed badly with the studied high 

dimensional data. With a typically used blending parameter (m=2), many of the cluster 

centroids coincided and the memberships became approximately equal. Acceptable 

results were achieved only with very small blending values. This is a well-known problem 

and several revised fuzzy c-means algorithms have been proposed in the literature, for 

example in (Di Nuovo & Catania 2008; Winkler et al. 2012). The results here were 

achieved with blending parameter m=1.05. 

Although not shown in the results, DBSCAN was also tested but it struggled to find 

enough clusters. It was able to separate only the most distinct customer types (street 

lighting, industrial customers, and others). If DBSCAN did find more clusters, they were 

typically very small and the majority of the customers were clustered into one big cluster. 
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5 Distribution system state 

estimation 

The purpose of distribution system state estimation (DSSE) is to obtain the best possible 

estimate of the network state by processing the available information. Usually, the 

network state means node voltages, line power flows and line current flows. The available 

information used in DSSE includes network topology, network configuration, line 

parameters, measurements and load profiles. Traditionally, DSSE relies mainly on 

primary substation measurements and load profiles. The substation measurements include 

real-time measurements of busbar voltages and feeder current or power flows. With these 

measurements, it is possible to estimate the feeder total loads accurately, but the load 

distributions inside the feeders remain uncertain. 

The advent of smart grids has changed the network operation principles and increased the 

amount of real-time measurements. New measurements are installed along the MV 

network, to secondary substations and to customer connection points. These 

measurements not only improve the MV network state estimation accuracy but also 

enable, for the first time, real-time LV network state estimation. The smart metering 

infrastructure can be used to improve the state estimation accuracy either by reading the 

meters in real-time or by using the data collected from customer level electricity usage to 

improve the load profiles that are commonly used as pseudo-measurements in state 

estimation. This chapter reviews the available state estimation methods, presents the 

developed state estimator, and combines the previously presented AMR-based load 

profiles with the DSSE. 

5.1 Literature review 
In order to utilise all the new measurements, new state estimation methods are needed. 

During the past 20 years, countless new DSSE methods have been proposed in the 

literature. Many of them are based on the weighted least squares (WLS) method but the 

selection of state variables varies. Some are using node voltages as state variables whereas 

others have chosen to use branch currents (q.v. Subsection 5.1.1). In addition, several 

other types of state estimators have been suggested. 

5.1.1 Weighted least squares estimation 
The objective of state estimation is to determine the most likely state of the system based 

on the quantities that are measured. One way to accomplish this is by the maximum 

likelihood estimation, a method widely used in statistics. If the measurement errors are 

assumed to be normally distributed, the likelihood maximization corresponds to 

minimizing the weighted sum of squares of the measurement residuals. The weighting of 

measurements depends on the measurement accuracy. Accurate measurements have large 

weights and inaccurate measurements have small weights. (Abur & Expósito 2004) 
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If the network topology and parameters are perfectly known, the network state can be 

defined, for example, with node voltage magnitudes and angles or with branch current 

magnitudes and angles. In state estimation, these variables are called state variables and 

all other measurable network variables: node voltages, loads, line power flows and line 

current flows can be defined as a function of these variables. In literature, the selection of 

state variables varies. Some are using node voltages whereas others have chosen to use 

branch currents. 

The basic WLS formulation is fixed regardless of the chosen state variables. The most 

likely network state is the one that minimizes the weighted differences between measured 

network variables and their estimated values. This can be expressed as a minimization 

problem: 

 min𝒚 𝐽(𝒚) = 𝑚𝑖𝑛𝒚∑
[𝑧𝑖 − ℎ𝑖(𝒚)]

2

𝜎𝑖
2

𝑁𝑚

𝑖=1

, (13) 

where 𝐽(𝒚) is the objective function to be minimized 

y is the state vector that contains all state variables 

 𝑧𝑖  is value of measurement i    

 ℎ𝑖(𝒚) is measured variable i  as a function of the state variables 

𝜎𝑖
2 is variance of measurement i  

𝑁𝑚 is number of measurements. 

If measurements and measurement functions are presented in a vector form and 

measurement variances are presented in a matrix form, (13) can be expressed as: 

 min𝒚 𝐽(𝒚) = [𝒛 − 𝒉(𝒚)]
𝑇𝑹−1[𝒛 − 𝒉(𝒚)], (14) 

where 𝒛 =  [

𝑧1
𝑧2
⋮
𝑧𝑁𝑚

]  (measurement vector) 

 𝒉(𝒚) =  
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ℎ2(𝒚)
⋮
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  (measurement functions) 

 𝑹 =
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𝜎1
2 0 ⋯ 0

0 𝜎2
2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎𝑁𝑚

2
]
 
 
 

  (covariance matrix). 

The minimum of cost function 𝐽(𝒚) can be found by differentiating it and searching for 

the zero point. The cost function derivative in respect to state vector  y is equal to its 

gradient. Therefore, the state vector minimizing the cost function forces the gradient to 

zero. The gradient of 𝐽(𝒚) is: 

∇𝐽(𝒚) = −2𝑯𝑇𝑹−1𝒛 + 2𝑯𝑇𝑹−1𝑯𝒚, (15) 
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where 𝑯 = [
𝜕𝒉(𝒚)

𝜕𝒚
]  (Jacobian matrix). 

When the gradient is zero, we can solve y from (15): 

𝒚 = (𝑯𝑇𝑹−1𝑯)−1𝑯𝑇𝑹−1𝒛 (16) 

Since (16) is non-linear, solving the state vector 𝒚 requires the use of iterative methods, 

such as the Newton-Raphson method. On every iteration round, a linearized 

approximation of the state vector change ∆𝒚, shown in (17), is added to the initial state 

vector value. The iteration is continued until ∆𝒚 is smaller than the predefined threshold. 

(Abur & Expósito 2004) 

∆𝒚 = (𝑯𝑇𝑹−1𝑯)−1𝑯𝑇𝑹−1[𝒛 − 𝒉(𝒚)] (17) 

Node voltage based estimation algorithms have been used in transmission system state 

estimation since the 1970s. To speed up the calculation, the traditional transmission 

system state estimators use fast decoupled state estimation where the dependencies 

between active power and voltage magnitude and reactive power and voltage angle have 

been eliminated. The fast decoupled method assumes that line resistances are 

substantially smaller than line reactances. This assumption is not valid for distribution 

networks and the decoupling cannot be used to speed up DSSE. (Abur & Expósito 2004) 

Another common assumption that is made to speed up the calculation is that the Jacobian 

matrix stays constant during the iteration. This assumption is invalid if the network 

contains current measurements that are very common in distribution networks. Moreover, 

current measurements can cause multiple possible solutions and slow down the 

convergence of the state estimation algorithm. In transmission networks, current 

measurements can be handled as supplementary measurements since the measurement 

redundancy is high and amount of current measurements is small. In distribution 

networks, measurement redundancy is low and it is important to fully utilize all available 

measurements, including the current measurements. 

Despite the above-mentioned problems, the transmission system state estimation 

principle has been successfully applied to distribution systems in many studies, for 

example in (Baran & Kelley 1994; Lu et al. 1995; Lin & Teng 1996; Wan & Miu 2003; 

Cobelo et al. 2007). Work has also been done to improve the current measurement 

handling capabilities and computational speed (Baran & Kelley 1994; Handschin et al. 

1995; Lu et al. 1995; Lin & Teng 1996). In distribution networks, there are many nodes 

with zero loads and zero production.  The load and production on these nodes can be 

forced to zero by using virtual measurements with very high weights. However, the 

combination of virtual measurements and pseudo-measurement, which have very low 

weights, can lead to ill-conditioning of the gain matrix. Equality constraints have been 

introduced to the WLS formulation to solve this problem (Lin & Teng 1996; Abur & 

Expósito 2004). 

Branch current based estimation algorithm was developed since the voltage based 

state estimators have problems with the current measurements needed in DSSE. 

Compared with the node voltage based methods, the branch current method has several 
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benefits: it is faster, it is not affected by the line R/X-ratio, current magnitude 

measurements are easier to use with it, and equations are simpler. Moreover, the new 

method handles power measurements efficiently. This is important since load pseudo-

measurements have a vital role in DSSE. (Baran & Kelley 1995; Lin et al. 2001; Teng 

2002) 

The original branch current based state estimation method developed by Baran and Kelley 

(1995) has some defects. It cannot handle voltage measurements and is able to calculate 

only weakly meshed networks. In later publications, the branch current method has been 

improved. The calculation speed has been further enhanced (Lin et al. 2001) and the 

ability to use voltage measurements has been added (Teng 2002; Wang & Schulz 2004). 

Additionally, it has been proposed that current magnitudes and angles could be used as 

state variables instead of real and imaginary current components (Wang & Schulz 2004). 

The benefit of using current magnitudes and angles is that there is no need to make an 

initial guess for the current angle, instead it is automatically estimated based on the 

(pseudo-)measurements. Also, current magnitude measurements correspond directly to 

state variables and this simplifies equations. Capability to utilize phasor measurement 

units (PMUs) is added to branch current based DSSE in (Pau et al. 2013). 

5.1.2 Other DSSE methods 
Several non-conventional methods have been proposed for solving the DSSE problem. 

The variety of the proposed methods is wide but they all aim to utilize the available 

information efficiently and address some of the shortcomings in the previously presented 

WLS methods.  

Fuzzy logic based DSSE algorithms have been developed in (Sarić & Ćirić 2003) and 

(Pereira et al. 2004). These state estimators incorporate information affected by 

uncertainty by using fuzzy set theory. For example, historical data can be used to derive 

typical load profiles defining a band of possible values. Using these typical load profiles, 

it is possible to obtain fuzzy assessments for active and reactive loads. Furthermore, one 

can obtain fuzzy assessments as a translation of natural language propositions from 

experienced operators. Typically, they have a lot of qualitative information expressed in 

a non-mathematical way. These expressions from human language are transformed into 

fuzzy numbers and used as fuzzy measurements. 

A hybrid particle swarm optimization for distribution system state estimation has been 

proposed in (Naka et al. 2003). Conventional WLS methods assume that the objective 

functions to be minimized are differentiable and continuous. However, certain equipment 

in distribution systems have non-linear characteristics and this causes non-linearity to the 

objective functions. Particle swarm optimization (PSO) can be applied to non-linear and 

non-continuous optimization problems. A hybrid PSO adds an evolutionary selection 

mechanism to PSO and can generate high-quality solutions. Another hybrid method based 

on the combination of Nelder-Mead simplex search and particle swarm optimization is 

proposed in (Niknam & Firouzi 2009). Although the hybrid PSO is shown to be more 

efficient than the other evolutionary optimization algorithms, the execution times 
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reported by Nanchian et al. (2017) indicate that it is not fast enough for real-time DSSE 

applications. 

The use of neural networks in DSSE was first proposed by Bernieri et al. (1996) and 

later several others have studied this approach (Ferdowsi et al. 2014; Barbeiro et al. 2015; 

Pertl et al. 2016). The NN-based DSSE methods have several benefits: the network state 

can be estimated even when the grid topology and parameters are unknown; they are 

robust (no convergence issues) and computationally light (after training) and thus suitable 

for real-time monitoring; and if only voltage estimates are needed, power injection 

measurements or models are not necessary. The downsides are that the NN training is 

computationally intense and requires historical measurements from all the desired NN 

outputs, the accuracy is compromised if the network state is outside the range covered in 

the training data, and the NN needs to be retrained if the network or the customer behavior 

changes.   

A probabilistic approach to DSSE is presented in (Ghosh et al. 1997). Ghosh points out 

that the WLS estimation methods incorrectly assume that all the measurement errors are 

normally distributed. Since load profiles are used as pseudo-measurements, this 

assumption implies that also loads are normally distributed. This is not true for 

distribution network loads. Distribution network loads are actually closer to beta or 

lognormal distributions than normal distributions. To address this issue, a probabilistic 

DSSE method that accounts for non-normally distributed loads and incorporates load 

correlations, is proposed. The method utilizes backward/forward sweep calculation and 

resembles more probabilistic load flow than state estimation. Although the voltage and 

current measurements are taken into account when calculating the corresponding 

probabilities, loads are not corrected to match with the line power or current flow 

measurements. 

In smart grid control, it is beneficial to know not only the estimated network states but 

also the confidence intervals of the estimated states. In recent years, there has therefore 

been a newfound interest in probabilistic DSSE. Střelec et al. (2015) have taken a similar 

backward/forward sweep based approach as Ghosh and calculate state estimate 

probabilities in a presence of photovoltaic energy sources. Brinkmann and Negnevisky 

(2016) have used the WLS method and extract the state variable variances directly from 

the inverted gain matrix.     

Interior point optimization has been applied to DSSE in (Džafić et al. 2011). This 

approach is a combination of load flow based scaling and interior point optimization. 

Interior point methods are known to be fast and scalable (Gondzio 2012) and Džafić 

shows that they can also be applied to the DSSE problem. However, execution times for 

the proposed DSSE method are not reported and the size of the optimization problem has 

been reduced by dividing the network into several measurement areas.    

Multi-area state estimation (MASE) has been studied extensively in the context of 

transmission systems (Gómez-Expósito et al. 2011) and several applications to DSSE has 

been proposed in recent years (Džafić et al. 2011; Džafić et al. 2013; Nusrat et al. 2015; 

Muscas et al. 2015; Muscas et al. 2016; Pau et al. 2017). A distribution network supplied 
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by one primary substation can contain thousands of MV nodes and tens of thousands of 

LV nodes. It is clear that these kinds of dimensions put a huge computational burden on 

the DSSE algorithms. The main purpose of MASE is to speed up the computation by 

dividing the estimation problem into several sub-problems. This is beneficial in many 

aspects. In WLS estimation, for example, the execution time of several computationally 

heavy processes (e.g. gain matrix inversion and Jacobian matrix calculation) depends 

exponentially on the size of the network. Assuming a constant sub-network size, the time 

spent on these processes can be linearized with MASE. It also enables parallel 

computation and distributed state estimation. The downside is that MASE usually leads 

to some degradation in the estimation accuracy, because all the available measurements 

are not processed simultaneously (Pau et al. 2017).    

5.2 The choice of state estimator 
When a DSSE algorithm is coded from scratch, subjected to comprehensive testing, and 

used in several simulated case studies and real-life smart grid demonstrations, some 

practical issues should be considered when selecting the underlying DSSE method. 

Firstly, the selected DSSE method should have a proven record of accomplishments, be 

easy to implement and understand, and be computationally efficient and robust. These 

requirements rule out most of the methods presented in Subsection 5.1.2. Many of these 

methods have been presented only in a few academic papers while the WLS methods 

presented in Subsection 5.1.1 have been applied in hundreds of different studies. In 

addition, the PSO-based DSSE methods are too slow for real-time applications and 

execution time for the interior point optimization based method is unknown. The NN-

based methods are robust but not intelligible enough due to their black-box nature. In 

certain situations, the WLS-methods are known to suffer from convergence issues but this 

can be alleviated by using robust DSSE as has been done, for example, in (Hayes et al. 

2015).  

Secondly, the selected DSSE method should be able to handle all measurement types and 

network configurations typically found in modern smart distribution grids. We have 

already deduced that a WLS-based DSSE method is the safest bet but we still need to 

make a choice between node voltage and branch current based DSSE algorithms. They 

both have their relative strengths. The node voltage method is more established, calculates 

strongly meshed networks, and handles voltage measurements efficiently. The branch 

current method has been designed specifically for distribution networks, is faster (Baran 

& Kelley 1995; Teng 2002; Abdel-Majeed 2016; Primadianto et al. 2016), calculates 

radial and weakly meshed networks, and handles current measurements efficiently. Both 

methods are applicable to calculating three-phase MV and LV networks and can handle 

all types of measurements. Ultimately, the branch current based method was selected due 

to its faster execution time. The branch currents can be expressed either in rectangular 

(Baran & Kelley 1995) or in polar form (Wang & Schulz 2004). The polar form was 

chosen, because then the current magnitude measurements have direct counterparts in the 

state vector. This not only simplifies current measurement handling but also enables the 

extraction of branch current magnitude variances directly from the inverted gain matrix.    
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While most of the other DSSE methods presented in Subsection 5.1.2 were rejected, the 

MASE approach was determined useful and will be used in this thesis whenever there are 

distribution networks with clear natural measurement areas, such as feeders with current 

or power flow measurements at the beginning of the feeder. However, feeders are not 

divided into further measurement areas, even if they have mid-feeder current or power 

flow measurements. Although a branch current based WLS algorithm was selected in this 

thesis, it should be noted that with a typical distribution network measurement setup and 

grid topology, the same state estimation accuracy could also have been achieved with the 

other WLS-based methods.  

5.3 The developed state estimator 
The DSSE algorithm development was started from the basic WLS formulation presented 

in Subsection 5.1.1. Measurement functions and Jacobian matrix entries, which are partial 

derivatives of the measurements functions with respect to the state variables, were 

constructed according to the example given in (Wang & Schulz 2004). In [P1], equality 

constraints were added so that the zero-injection measurements could be forced to zero 

without using very high measurement weights. The use of equality constraints improved 

the gain matrix condition number and made the algorithm more robust. 

In [P2], bad data detection based on the largest normalized residual 𝑟𝑚𝑎𝑥
𝑁  –test was added 

and tested both in RTDS simulation environment and in a real-life demonstration. The 

tests were done on a MV network with a typical measurement configuration, meaning 

that real-time measurements only from the substation and from the production unit were 

available and existing load profiles were used as pseudo-measurements for all the other 

nodes. Later in [P3], the same DSSE algorithm was applied for LV network state 

estimation and more RTDS tests were conducted. In these tests, it was assumed that all 

the consumption nodes are monitored in real-time and the measurement reading 

frequency and averaging time were varied to find out their effect on the estimation 

accuracy. 

Finally, publication [P9] combined the developed AMR-based load profiles and DSSE. 

State estimation simulations were done on a large distribution network containing both 

MV and LV networks and estimation accuracy with different types of pseudo-

measurements was studied. Furthermore, the developed state estimator was used in 

simulations and real-life demonstrations done during the INTEGRIS and IDE4L projects.  

This section presents the developed algorithm, adds some new properties needed in smart 

grid environment, shows how DSSE can be integrated into decentralized smart grid 

monitoring and control concept, and introduces the state forecaster concept. The detailed 

formulation of measurement equations and Jacobian matrices is omitted from this thesis, 

instead, the interested readers are referred to (Wang & Schulz 2004) and to IDE4L 

deliverable (Mutanen et al. 2015). The formulation for equality constrained WLS 

estimation and bad data detection can be found in [P1] and [P2]. 
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5.3.1 State estimate uncertainties 
In smart grid monitoring and control it is often useful to know the uncertainties for the 

estimated network states. The DSSE accuracy can vary, for example when real-time 

measurements go off-line due to communication failure or some other malfunction, and 

the control algorithms must adapt to these changes. Higher uncertainties in the estimated 

network states mean that safety margins in the network control must be increased.  

We have already learned that the state variable variances can be found in the diagonal of 

the inverted gain matrix. If variances for the other estimated states are needed, some 

additional work is required. A Jacobian matrix containing partial derivatives for all those 

states for which we wish to calculate variances must be formed. After the new Jacobian 

matrix has been formed, the variances can be calculated using (18) (Li 1996). This 

calculation needs to be done only once after the WLS estimation has converged.  

𝑣𝑎𝑟(𝒐(𝒚)) = 𝑑𝑖𝑎𝑔(𝑲𝑮−1𝑲𝑇), (18) 

where o(y) is a vector of network state functions 

 K is the Jacobian of o(y) 

 G is the gain matrix used in WLS estimation (𝑯𝑇𝑹−1𝑯). 

5.3.2 Estimation of weakly meshed networks 
Traditionally, distribution networks have been operated radially but meshed operation is 

expected to increase in future smart grids. The need to connect more DG to the existing 

networks is driving this development and the advances in protection and distribution 

automation enable it. In this environment, the state estimator must be able to handle 

meshed networks. Despite this development, the distribution networks are expected to 

remain weakly meshed, i.e. the number of meshes remains modest and they are mainly 

formed by two adjacent feeders operated in a ring. 

The branch current based WLS estimators can be modified to calculate weakly meshed 

networks (Baran & Kelley 1995; Lin et al. 2001; Pau et al. 2013). In a presence of a 

network loop, nodes can be fed from either direction and additional equations are needed 

to determine the current flow directions and magnitudes. Kirchhoff’s voltage law states 

that the directed sum of voltages around a closed loop must be zero. This constraint can 

be added to the WLS formulation either as a virtual measurement or as an equality 

constraint. The voltage around the loop consist of branch voltage losses, which can be 

expressed as a product of branch currents and impedances, and Kirchhoff’s voltage law 

can be formulated as: 

∑𝜆𝑗𝑍̅𝑗𝐼𝑗̅
𝑗∈Λ

= 0, (19) 

where Λ is the set of branches forming the loop, 𝑍̅𝑗 and 𝐼𝑗̅ are the impedance and current 

phasors of the jth branch, and 𝜆𝑗 is +1 or −1 depending on the loop reference direction 

and on which side of the loop break point the branch is (Pau et al. 2013). The use of 

λ-parameters is clarified in Figure 5.1. The virtual loop break point needs to be opened 

temporarily, when the forward sweep method is used to calculate the node voltages, but 
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the branch currents can be estimated while the loop is closed. The break point location 

and reference direction can be chosen freely. 

Reference 

direction

1

2






01 

13  14 

1
5






1

6






17  18 

1
9






Virtual loop 

break point

 
Figure 5.1. Example of a network loop, break point, reference direction and λ values. 

Equation (19) is complex and both the real and imaginary parts must be zero. Therefore, 

this constraint can be divided into two equations corresponding to the real (20) and 

imaginary (21) parts. 

𝑐𝑟 =∑𝜆𝑗|𝑍̅𝑗||𝐼𝑗̅|

𝑗∈Λ

cos(𝛼𝑗 + 𝛽𝑗) (20) 

 

𝑐𝑥 =∑𝜆𝑗|𝑍̅𝑗||𝐼𝑗̅| sin(𝛼𝑗 + 𝛽𝑗)
𝑗∈Λ

 (21) 

Here αj and βj are the current and impedance phasor angles for branch j. The 

corresponding Jacobian entries—partial derivatives with respect to the state variables—

are for (20):  

{
 
 

 
 
𝜕𝑐𝑟

𝜕|𝐼𝑗̅|
= 𝜆𝑗|𝑍̅𝑗| cos (𝛼𝑗 + 𝛽𝑗),                  if  𝑗 ∈ Λ

𝜕𝑐𝑟

𝜕|𝐼𝑗̅|
= 0,                                                     if  𝑗 ∉ Λ

 (22) 

 

{
 
 

 
 
𝜕𝑐𝑟
𝜕𝛼𝑗

= −𝜆𝑗|𝑍̅𝑗||𝐼 ̅𝑗| sin (𝛼𝑗 + 𝛽𝑗) ,          if  𝑗 ∈ Λ

𝜕𝑐𝑟
𝜕𝛼𝑗

= 0,                                                       if  𝑗 ∉ Λ

 (23) 

and for (21): 

{
 
 

 
 
𝜕𝑐𝑥

𝜕|𝐼𝑗̅|
= 𝜆𝑗|𝑍̅𝑗| sin (𝛼𝑗 + 𝛽𝑗),                  if  𝑗 ∈ Λ

𝜕𝑐𝑥

𝜕|𝐼𝑗̅|
= 0,                                                     if  𝑗 ∉ Λ

 (24) 
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{
 
 

 
 
𝜕𝑐𝑥
𝜕𝛼𝑗

= 𝜆𝑗|𝑍̅𝑗||𝐼 ̅𝑗| cos (𝛼𝑗 + 𝛽𝑗) ,            if  𝑗 ∈ Λ

𝜕𝑐𝑥
𝜕𝛼𝑗

= 0,                                                      if  𝑗 ∉ Λ

 (25) 

5.3.3 Algorithm implementation 
The developed state estimator was written into a Matlab program and the computer 

simulations and real-life demonstrations in [P1]–[P3], and [P9] were performed using 

Matlab. The tests and real-life demonstrations in the INTEGRIS and IDE4L projects were 

done using Octave. Octave is an open source Matlab clone and it can often run Matlab 

code without or with very little modifications. Matlab and Octave are easy to use and 

provide adequate performance for demonstration purposes (q.v. Section 5.4). 

Flow chart of the developed WLS estimator is shown in Figure 5.2. The WLS estimator 

has been implemented as a Matlab function and it has the following inputs: 

 Bus matrix, which contains the bus numbers, initial voltages, load and production 

measurements or pseudo-measurements and their variances 

 Line matrix, which contains start and end nodes, impedances, and capacitive 

susceptances for each line section 

 Power and current flow measurements, current injection measurements, node 

voltage measurements, and their locations and variances. 

The inputs are given in per units and consequently also the outputs are in per units. Most 

of the outputs are complex numbers, meaning that real and reactive powers can be 

discriminated and node voltage angles with respect to the slack bus voltage are estimated. 

The outputs are: 

 Node voltage estimates 

 Line current flow estimates 

 Line power flow estimates 

 Line power loss estimates 

 Power injection estimates (i.e. load and production estimates) 

 Variances for line current flow estimates 

 Variances for other selected variables (q.v. Subsection 5.3.1). 

The numbered steps in Figure 5.2 have been described below. 

1. Input validity check: Rough errors in the input measurements are filtered out using 

simple logical rules. For example, negative current magnitude measurements and 

node voltage measurements that are twice as large as the nominal voltage are 

labelled as bad data and are removed. 

2. Branch current calculation: Initial branch currents are calculated using the load 

and production values provided as inputs. Backward sweep algorithm is used to 

calculate the branch currents from the bottom up. The lines are modelled with π-

model and the algorithm gives separate values for currents at the beginning, 
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middle, and end of the line. If the network contains loops, virtual loop break points 

are added so that the network becomes radial and the backward/forward sweep 

algorithm can be used to calculate the initial branch currents and node voltages. 

3. Node voltage calculation: Node voltages are calculated from the top down using 

the forward sweep method. After this, if virtual loop break points have been 

added, small initial branch currents flowing from higher to lower potential are 

added to the lines containing the break points. Zero values on the break lines 

would later cause a singular gain matrix. 

4. Covariance matrix formation: The measurement covariance matrix is formed from 

the input measurement variances. The measurements are assumed to be 

uncorrelated. The covariance matrix is a diagonal matrix and the diagonal 

elements correspond to the accuracy of each measurement (pseudo-measurements 

included).   

5. Measurement vector formation: The provided measurements are collected into a 

measurement vector. 

6. State variable vector formation: The state variable vector is formed from the 

previously calculated branch current magnitudes and angles. The currents at the 

beginning of the line are selected as state variables. 

7. Jacobian matrix calculation: Jacobian matrices for measurements and equality 

constraints are calculated. In addition, the measurement function and equality 

constraint function values are calculated. 

8. Calculation of ∆y: Corrections to the state variable vector are calculated by using 

the Lagrange method presented in [P1].  

9. State variable vector update: The state variable vector is updated by adding the 

previously calculated corrections to it.  

10. Mid-line current calculation: Currents in the middle of each line are calculated by 

adding the appropriate charging currents to the currents presented by the state 

variables. 

11. Node voltage calculation: The node voltages are recalculated using the forward 

sweep. 

12. Bad data detection: Once the largest value in vector ∆y falls below the pre-set 

threshold ε, the algorithm exits from the first loop and starts the bad data detection. 

If bad data is detected, it is removed and the algorithm returns to step 4. If the WLS 

objective function J(y) does not decrease after four iterations, convergence is 

secured by removing all redundant measurements. The network is fully observable 

if all load and production nodes have measurements or pseudo-measurements. 

Since in this thesis all nodes are assumed to have at least pseudo-measurements, all 

the other measurements can be considered redundant and can be removed 

temporarily. The calculation returns to step 2 and after the convergence has been 

achieved the redundant measurements are restored and subjected to bad data 

detection. 

13. Output calculation: Variances for the estimated current magnitudes and other 

selected variables are calculated using the method described in Subsection 5.3.1. 

Also, the power flows, injections and losses are calculated. 
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1. Check input validity

2. Calculate branch currents

3. Calculate node voltages

4. Form covariance matrix R

5. Form measurement vector z

7. Calculate:

 Jacobian matrices, measurement 

function values, and

equality constraint values 

6.Form state variable vector y

8. Calculate correction ∆y using 

the Lagrange method
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11. Calculate node voltages
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10. Calculate currents in the 
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Bad data detected

NO

YES

Remove the 

measurement with 
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13. Calculate outputs
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Error

NO

YES

Redundant measurements

 have been removed

YES

YES

NO

NO

Restore redundant 
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Start

 

Figure 5.2. Flow chart for the developed WLS estimator. 
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Only the core of the developed DSSE algorithm is shown in Figure 5.2. In real-life 

implementations, this state estimator core needs to be supported by several additional 

functions that do the network topology import, real-time measurement reading, pseudo-

measurement reading, etc. In addition, the adequacy of the inputs needs to be checked. 

For example, we need to check that the received measurements are enough to gain full 

observability. In IDE4L project, the observability was ensured by using load profiles as 

back-up pseudo-measurements. 

Flow chart of the main script calling the state estimation core and the most important 

support functions is shown in Figure 5.3. In this simplified example, the state estimator 

reads all the input information from a database and writes all the state estimation results 

to the same database. Similar main script structure was used in the IDE4L project to 

implement both the MV and LV network state estimators. 

2. Read network topology

3. Read switch statuses

4. Topology information 

processing

 Is this
the first execution,
or has the network 

topology or switching 
status changed?

YES

NO

5. Read pseudo-

measurements

6. Read real-time 

measurements

7. WLS estimation

8. Write state estimation 

results to the database

Has the network 

topology information 

been changed?

YES

NO

Start

1. Connect to database

Wait for the next execution 

request or the next scheduled 

execution time
 

Figure 5.3. Flow chart for the main script calling the WLS estimator. 

In [P1], [P2] and [P9], the DSSE simulations were done assuming that all the loads are 

balanced and the state estimation calculation can be done using an equivalent single phase 

network model. In [P3] and in the INTEGRIS and IDE4L projects, the networks contained 

unbalanced loads and three-phase calculation was necessary. The calculation was done 

assuming that mutual impedances between the phases are zeros and the phases can thus 

be considered decoupled. It was recognized that this assumption brings some inaccuracy 
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to the calculation, but since the mutual impedances are much smaller than the self-

impedances, this error was assessed to be negligible. In addition, the line mutual 

impedances, line spacing, and line configuration in the demonstration networks were 

unknown and therefore an accurate three-phase calculation would not have been possible 

anyway. In LV networks, the lack of grounding impedance information added even more 

uncertainty to the calculations. The selection of load model type (constant power, constant 

impedance or constant current) can also have a significant effect on the power flow 

calculation results (Ciric et al. 2003). The load model optimization in this regard was 

outside the scope of this work and simple constant power loads were used throughout the 

thesis. 

5.3.4 Decentralized DSSE 
The INTEGRIS and IDE4L projects relied heavily on a decentralized control architecture 

(Repo et al. 2011), where many distribution network monitoring, control and 

communication functionalities are distributed to primary and secondary substations. The 

developed state estimator complies with this concept and can be operated in a 

decentralized manner. The state estimator benefits from this architecture so that 

individual networks remain small and they can be estimated quickly and the estimation 

can be parallelized. Another, perhaps even greater benefit, is that the decentralized system 

can handle more real-time measurements and, as we know, more real-time measurements 

lead to more accurate state estimates.    

In the decentralized control architecture, real-time measurements are sent to the closest 

substation automation unit where they are stored, analyzed, and used in local network 

monitoring and control. The secondary substation automation unit (SSAU) contains the 

LV network state estimator (LVSE), the load and production forecaster, the state 

forecaster, and the power controller that do the LV network monitoring and control on a 

local level. When the LV network monitoring and control are done locally, there is no 

need to send real-time smart meter measurements to the upper level controller. Only 

switch and breaker status information, aggregated loading estimates and forecasts, and 

problem indicators are sent to the higher level system, which in this case is the primary 

substation automation unit (PSAU). Again, only a fraction of the measured and analyzed 

data is transferred from PSAU to the next control level, which is at the control centre.  

In a decentralized control architecture, the real-time data collection can be based on local 

communication technologies (e.g. power line communication) and the meter reading 

frequencies can be high as the number of measurements received by a single substation 

automation unit is small compared to a situation where all measurements are sent to the 

control centre. More information on how the substation automation unit design and 

implementation was done in the IDE4L project is available in (Angioni et al. 2017). 

The coordination between LV and MV network state estimators is shown in Figure 5.4. 

The LV network state estimator (LVSE) outputs phase-wise power flows for the 

distribution transformer secondary side and a separate transformer model is used to 

calculate the phase-wise primary side power flows while taking into account the 

transformer winding configuration and other parameters. All the LVSE results are stored 
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to the SSAU database where they are available for the network control functions such as 

the power controller, which implements the coordinated power and voltage control. The 

SSAU sends the estimated power flows on the primary side of the distribution transformer 

to the PSAU where they are available for the MV network state estimator (MVSE). In a 

normal operation mode, state estimate information flows only from SSAU to PSAU but 

in case of measurement malfunctions, this flow can be reversed. For example, if the 

secondary substation voltage measurement is missing, the last voltage estimate from 

MVSE can be sent to SSAU and used in LVSE.  
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Figure 5.4. Data transfer between LV and MV network state estimators in normal operation mode. 

In the IDE4L project, a dedicated load and production forecaster was used to supply the 

state estimator with load and production pseudo-measurements (Mutanen et al. 2015). 

The forecaster was made by Daniel Olmeda and Ricardo Vázques in Charles III 

University of Madrid. Short-term (i.e. 24–48 hours ahead with one hour resolution) load 

and production forecasts were made using autoregressive models that take into account 

the measurements history and weather forecasts. Out of these forecasted load and 

production values, pseudo-measurements for the present moment could always be chosen. 
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Even if all the load and production points are measured in real-time, the pseudo-

measurements are needed as a backup. 

The AMR-based load profiles developed in Chapter 4 can also be used with the 

decentralized DSSE. The clustering and load profile formation are done in a centralized 

manner but once the load profiles have been uploaded to the substation automation units, 

they can be used independently. Compared with the load and production forecaster, this 

approach would have lower computation need as the load profile updating is done less 

frequently and the behavior of clusters is modelled instead of individual customers. On 

the down side, the proposed load profiling method would react slower to changes in load 

and production behavior. 

The decentralized control architecture is so light that the substation database and all the 

monitoring and control functions can be installed into a small industrial PC. Figure 5.5 

shows the SSAU used in Unareti S.p.A. demonstration in Italy. Open source software was 

used to demonstrate that also the software costs can be kept at a minimum. The substation 

automation units were running Ubuntu Linux operating systems and PostgreSQL 

databases. The monitoring and control functions were mostly implemented using Octave 

and Python. 

 

Figure 5.5. SSAU operating in the Unareti S.p.A demonstration network in Brescia, Italy. 

5.3.5 State forecasting 
In distribution network control, it is often beneficial to know the forthcoming network 

states. This can help the control system to solve the network congestions and voltage 

problems even before they happen. In addition, the control functions can better optimize 
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the use of available resources and unnecessary fluctuations, such as temporary changes 

in the primary transformer tap position, can be minimized. 

In the IDE4L project, a state forecaster was developed based on the above presented state 

estimator. The main difference between the state forecaster and the state estimator is that 

the state estimator uses both real-time measurements and forecasted load and productions 

values for the present time period as inputs, whereas the state forecaster uses only 

forecasted load and production values for the forthcoming time periods. The state 

forecaster is run less frequently (e.g. once per hour) but when it is run, it calculates state 

forecasts for the whole forecasting horizon using the supplied load and production 

forecast resolution. The load and production forecasts are provided by the load and 

production forecaster. As in the case of state estimation, AMR-based load profiles could 

have been used with the state forecasters. In [P8], it is shown that the developed AMR-

based load profiles are applicable to short-term load forecasting. 

The developed state forecaster uses the same WLS algorithm as the state estimator. The 

main script calls the WLS algorithm as many times as there are time periods in the load 

and production forecasts. Between the calls, the main script checks if there are any 

changes in the scheduled switch statuses and updates the network configuration if needed. 

In the IDE4L project, only the LV network state forecaster was implemented and the 

secondary substation voltages were forecasted locally in the SSAU. If also the MV 

network state forecaster exists, the forecasted secondary substation voltages are sent from 

PSAU to SSAU, similarly as in the case of state estimation and missing secondary 

substation voltage measurements. 

With the provided inputs, also an ordinary load flow calculation algorithm could have 

been used to calculate the state forecasts. Although the developed WLS algorithm is slow 

as a load flow calculation engine, it has some benefits. It can handle redundant (from the 

observability point of view) forecasts and it can supply variances for the forecasted 

network states. 

5.4 Review and discussion on the achieved results 
The basis of the proposed DSSE algorithm was developed in [P1] where Matlab 

simulations with different real-time measurement configurations were performed. The 

simulations showed that it is possible to halve the error in MV network state estimation 

by monitoring only a fraction of the load nodes. In addition, the simulations proved that 

the state estimation accuracy can be improved significantly by utilizing the voltage 

measurements. However, the simulations were done assuming a voltage measurement 

accuracy of ±0.2 %, and sensitivity studies revealed that the benefit of voltage 

measurements decreases rapidly as the voltage measurement accuracy decreases. This 

reduces the applicability of voltage measurements especially in LV networks where the 

less accurate smart meters are expected to supply the voltage measurements. 

It was also discovered that the pseudo-measurement accuracies have a big influence on 

the state estimation accuracy. This finding motivated the author to seek alternative ways 

to improve the state estimation accuracy. After all, real-time measurements are not cheap. 
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In addition to meter installations, a communication system capable of transmitting real-

time data to the state estimator must be built. If the non-real-time AMR measurements 

could be used to improve the pseudo-measurement, the state estimation accuracy could 

be improved without real-time measurement infrastructure. 

In [P2], bad data detection was added to the developed state estimator. The revised state 

estimator was tested with RTDS simulations and in a real-life demonstration. The bad 

data detection proved to be difficult because there is not enough measurement redundancy 

in the present distribution networks. With a typical measurement configuration, we can 

only detect that there is bad data somewhere but we cannot identify if it is in the feeder 

measurement or in the load (pseudo-)measurements. To solve this issue, we assumed that 

only the feeder measurements can have bad data and in case of failed convergence, 

calculated the normalized residuals based on the network states estimated solely based on 

the pseudo-measurements. In the real-life demonstration, the bad data detection failed 

because the existing pseudo-measurements could not model the loads accurately in the 

exceptionally warm weather that occurred during the demonstration. This again 

motivated the author to develop better load profiles, especially load profiles with better 

temperature dependency models.  

In [P3], the developed LV network state estimator and the needed data collection 

infrastructure were tested with RTDS simulations. The simulations prepared us for the 

following real-life demonstrations and showed that the meter reading frequency and 

length of the measurement averaging period have a big effect on the state estimation 

accuracy. Later in the IDE4L project, the decentralized DSSE was tested with RTDS 

simulations and the LV network state estimator was demonstrated in three real-life 

demonstrations in three different countries. The results of these simulations and 

demonstrations are reported in (Barbato et al. 2016).  

In the IDE4L project, the focus was on the demonstrations. A lot of coordination had to 

be done to ensure that the input data meets the DSSE needs and the outputs satisfy the 

needs of the control algorithms. Accuracy-wise, the evaluation of the DSSE performance 

was difficult in the demonstrations. The actual network states were unknown and there 

were many possible error sources besides the state estimator, for example, the network 

model and its parameters, the real-time measurements, and the pseudo-measurements. 

During laboratory simulations, the execution times for the LV network state estimator 

were 0.9 and 6.3 seconds for three-phase 15 and 271 bus networks, respectively (Angioni 

et al. 2017). With the selected open source programs (i.e. Octave and PostgreSQL), 

writing the results to the SSAU database was the slowest operation and took about 60 % 

of the total execution time. The actual WLS estimation took only 0.277 and 1.3 seconds 

for the above-mentioned 15 and 271 bus networks. During the demonstrations, where the 

networks had 36–271 three-phase buses, the total execution times varied between 20 and 

60 seconds, depending on the network size and the SSAU hardware. The SSAU 

computers used in the demonstrations had low power processors (e.g. Intel Atom) and 

they were running several functions simultaneously. The laboratory simulations were 

performed with mid-spec desktop computers.    
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Matlab and Octave are great environments for algorithm development and prototyping. 

They are easy to learn, contain extensive libraries of predefined functions and toolboxes, 

and included tools, such as the integrated editor/debugger, workspace browser, and online 

documentation, make the programming easy. Matlab and Octave programs do not need 

to be compiled separately. The possibility to execute code line by line, or in larger chunks, 

is especially useful when debugging. However, Matlab and Octave are not particularly 

efficient (excluding matrix operations and liner algebra) and the computation speed could 

be improved significantly by using lower level programming languages (Andrews 2012), 

such as Fortran, C or C++. 

Publications [P4]-[P8] concentrated on improving the load profiles by using AMR data. 

The emphasis was on load profiles that could be used in the distribution network 

calculation: state estimation, operation planning, and short term network planning. The 

results of this work have been reviewed in Chapter 4.  

Finally, in [P9] the developed AMR-based load profiles were combined with DSSE and 

the estimation accuracy with different types of pseudo-measurements was studied. As 

expected, the new AMR based load profiles provided better state estimation accuracy than 

the existing Sener profiles. Depending on the simulation case and estimated variables, the 

improvements in average estimation accuracy were between 20 and 49 %. Four 

alternative methods for creating AMR-based load profiles were compared: updated load 

profiles, cluster profiles, individual profiles, and transformer profiles. In MV network 

state estimation, the best results were achieved by combining cluster profiles and 

individual load profiles. In LV network state estimation, the best results were achieved 

with individual load profiles. However, taking into account the load model complexity 

and the small differences in accuracy, the combination of cluster profiles and individual 

profiles might be the best option also for LV networks. Surprisingly good results were 

achieved when the load allocation was done in relation to the previous year total energy. 

This approach outperformed both the previous year AMR measurements and the Sener 

profiles. Thus, an efficient solution was found also for those DSOs that do not have AMR 

meters. 
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6 Conclusions and future 

research 

This thesis studies load profiling and distribution system state estimation. At first glance 

these two topics may appear independent, but if one takes a closer look, the similarities 

and interconnections are easy to see. In both cases, the goal is to produce accurate load 

estimates by leveraging the available input data. In case of load profiling, the input data 

contains historical interval measurements and in the case of DSSE, the input data contains 

a network model, real-time measurements and pseudo-measurements. The difference is 

that the DSSE estimates also other variables, for example, line power and current flows 

and node voltages, which happen to depend on the network loading. The accuracy of the 

DSSE depends mainly on the quality, quantity, and location of the real-time 

measurements and on the quality of the pseudo-measurements. So, one way to enhance 

the DSSE accuracy is to improve the pseudo-measurements. And what are the pseudo-

measurements? They are initial load estimates based on load profiles or some other 

similar load models. Thereby, improving the load profiles, also improves the DSSE 

accuracy. 

This thesis uses AMR measurements (i.e. hourly or half-hourly interval measurements) 

to improve the load profiles. Early on it was observed that the load profiling accuracy can 

be improved by clustering customers into similarly behaving groups and by creating new 

cluster specific load profiles. Updating the existing customer class load profiles did not 

provide as good results as the cluster profiles, mainly because the existing customer 

classification was inaccurate and could not be trusted.  

A two-stage clustering method that includes temperature dependency calculation, 

normalization, dimension reduction, cluster weighting, outlier filtering, and selection of 

customers for individual load profiling was developed and many different clustering 

algorithms were tested. Good news for anyone following in my footsteps is that, in this 

application, the best results were achieved with a simple and well-known k-means 

algorithm. Many of the more advanced clustering algorithms failed to achieve similar 

accuracy or clustering speed. The bad news is that the number of clusters must be known 

a priori in k-means and, based on the accuracy index comparisons made in this thesis, it 

is not possible to determine the optimum number of clusters unambiguously. 

Most of the clustering studies in this thesis are done with an assumption that the customers 

are modelled with yearly load profiles that are compatible with the existing Finnish load 

profile format. This enables easy and fast implementation as the existing distribution 

system software can utilize the developed AMR-based load profiles with little or no 

changes. In many other countries, typical daily profiles are used instead of yearly load 

profiles. The load profiling procedure presented in Chapter 4 is not directly applicable in 

these countries, but several parts of the developed two-stage clustering method could also 

be used with typical daily profiles. Additional methods for constructing customer level 

load models from the resulting cluster models would be needed though. Some methods 
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for clustering daily profiles and for composing customer level load models are presented 

in [P7], but further research is undoubtedly needed. 

A distribution system state estimator was built during this thesis work and while many 

aspects of state estimation were studied, the most important goal was to prove that the 

new AMR-based load profiles improve the accuracy of DSSE. This goal was achieved by 

conducting comprehensive simulations with real AMR data and 10,433 bus distribution 

network. Depending on the studied case and used accuracy index, the developed AMR-

based load profiles improved the DSSE accuracy by 20–49 % compared with a situation 

where the presently available customer class load profiles were used.   

Given how significant efforts have been made in the literature to develop more accurate 

DSSE methods and to determine how many and what type of real-time measurements 

should be installed in what part of the network, it is amazing how little attention pseudo-

measurement development has received. Since the DSSE accuracy can be improved this 

much just by exploiting the existing AMR measurements, the use of AMR based load 

profiles should be at the top-end of a tool list in all DSOs that wish to improve the DSSE 

accuracy. Only the deployment of a state estimator and installation of real-time substation 

measurements should be higher in the priority list. If the desired estimation accuracy is 

not achieved with these and AMR-based load profiles, then the addition of other real-time 

measurements could be considered. The AMR measurements are basically free, since in 

many countries they are already collected for billing and other purposes, but the additional 

real-time measurement devices and the communication infrastructure they require are 

costly. The main cost component in AMR-based load profiling is the data analysis, which 

can be automated for the most part.    

Some argue that load profiles are obsolete and can be directly substituted with smart meter 

data. This is not true at all. The studies in this thesis have shown that historical data as 

such is not suited for forecasting. Data-based load models that take weather forecasts and 

other external variables into account are needed for accurate load forecasting. Presently, 

most of the AMR systems collect the interval data only once a day. This is not enough 

for real-time monitoring and load profiles are also needed in state estimation. 

The next big step in smart grid evolution might be the implementation of a decentralized 

control architecture. This new architecture would enable the real-time smart meter 

reading and use of local load and production forecasters. These forecasters might be more 

accurate than the AMR-based load profiles presented in this thesis, but at the expense of 

higher computational complexity. Even though the technological feasibility of the 

decentralized control architecture has already been demonstrated, it is to be seen when it 

becomes economically viable. Having participated in such a demonstration project, the 

author predicts that this will take many years and the load profiles are needed long in the 

foreseeable future.   

I hope this thesis convinces all the readers that it is beneficial to use clustering in load 

profiling and the AMR-based load profiles can significantly improve the DSSE accuracy.  
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6.1 Future research topics 
Much was done during this thesis work, but as always in research, new research topics 

emerged faster than the old ones could be completed. In addition to the time constraints, 

the lack of necessary measurement data impeded some research ideas. In the future, the 

developed load profiling and state estimation methods could be improved if the following 

topics were to be studied: 

 In the proposed load profiling method, each cluster can contain different types of 

customers that just happen to behave similarly. Moreover, in some clustering 

methods, the cluster numbers can vary randomly. From the usability point of view, 

it would therefore be good if descriptive names could be (automatically) defined 

for the clusters.   

 The change detection methods developed in (Chen 2014; Nurmiranta 2017) 

should be further developed and integrated with the proposed load profiling 

method. 

 More accurate load models for certain loads, such as storage heating, should be 

developed.  

 The effect of demand response on different types of customers should be studied 

and load response models should be developed. 

 The accuracy and applicability of the daily load profiles used in [P7] should be 

compared with the yearly load profiles used elsewhere in this thesis. Defining 

their relative strengths and weaknesses could help to improve both model types. 

 When measurements become available, reactive power profiles and phase-wise 

load profiles should be studied. 

 The accuracy of the proposed load profiling method should be compared with the 

load and production forecaster developed in the IDE4L project. More 

comparisons with other state-of-the-art forecasting methods found in the literature 

should also be made. These comparisons should be made on an individual 

customer level or with small aggregated customer groups. Large customer groups 

have already been studied in [P8]. 

 A truly three-phase DSSE algorithm that takes into account the line mutual 

impedances should be developed. 

 Voltage measurement based phase detection methods should be developed so that 

the phase-wise measurements and load models can be placed on the correct phase 

in DSSE. Furthermore, possibilities to use AMR measurements in line parameter 

estimation and even in network topology estimation could be studied. 
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Gerbec, C., Gašperič, S., Šmon, I. and Gubina, F. (2003a) ‘Consumers’ load profile 

determination based on different classification methods’, IEEE Power Engineering 

Society General Meeting, Toronto, Canada, pp. 990–995. 
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ABSTRACT

In the past few years, many distribution utilities have shown increasing interest towards
distribution automation with the hope that automation will ultimately lead to a more efficient
and economic operation of distribution networks. An important part of distribution
automation is the real-time monitoring and control of distribution networks. Distribution
automation functions such as network loading and voltage control, reactive power regulation,
control of distributed generation and demand side management require accurate real-time
estimates of network voltages and line flows. In this paper, the use of automatic meter reading
(AMR) to improve the accuracy of distribution network state estimation is proposed. The
efficient use of AMR measurements, especially the voltage measurements, is problematic in
present distribution network state estimation systems. To fully utilize AMR measurements a
new branch-current-based state estimation algorithm is introduced. Finally the benefits of
using AMR measurements in state estimation are verified with MATLAB simulations.

1. INTRODUCTION

The goal of distribution state estimation (DSE) is to obtain the best possible estimate of the
state of the network by processing the available information. Nowadays DSE relies mainly on
the substation measurements, network data and load curves. Substation measurements include
real time measurements from busbar voltages and feeder currents or powers. With these
measurements it is possible to adjust the feeder loads accurately, but the load distribution
inside the feeders remains uncertain. This uncertainty is mainly caused by inaccuracies in the
load curves. The statistical mean values given in the load curves can differ from the true
consumption. Since the load estimates are inaccurate also the line current and voltage level
estimates inside the feeders are inaccurate.

Requirements for DSE accuracy have grown tighter. Customers have started to
demand higher quality of supply and distribution utilities are adopting active network
management methods in order to minimize the network investment costs. Correct voltage
level is an integral part of electricity quality. The quality of supply is inadequate if the supply
voltage is not within a specific range around the nominal voltage. The standard EN 50160
defines acceptable limits to the supply voltage variations. Under normal conditions during
each period of one week 95 % of the 10 minute mean root-mean-square values of the supply
voltage must be within ±10 % of the nominal voltage [1]. However, this is only the minimum
requirement. In practice distribution companies often have more strict targets for the voltage
quality.

To effectively control the distribution network voltage level network operators or
automatic voltage control applications need accurate real-time estimates of network voltages.
Also other active distribution network management functions such as control of distributed
generation, reactive power regulation, feeder reconfiguration and restoration, and demand side
management require accurate real-time estimates of network voltages and line flows. [2]
Active network management is often used to increase the utilization degree of the existing
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networks.  Increasing the utilization degree helps to postpone network reinforcements but it
also reduces the margins for acceptable network operation states. Accurate state estimation
helps to monitor that the network operating state stays within these margins.

The simplest way to enhance DSE accuracy is to increase the number of real-time
measurements. Power, current and voltage measurements along medium voltage (MV)
feeders are an effective way to increase state estimation accuracy. Unfortunately, it is too
expensive to add MV measurements to distribution networks solely for state estimation
purposes. A perfect state estimate could be achieved by measuring all the loads, but practical
constraints make it difficult.  The investment costs often prevent distribution utilities from
installing meters on every secondary substation and the data transmission issues prevent the
real-time reading of all AMR meters. New methods are needed to minimize the amount and
cost of measurements needed to improve the DSE accuracy. Another problem is that present
DSE applications cannot use all available measurements. Especially the use of voltage
measurements to improve the load estimation is impossible in the present applications. This
paper solves these problems by using specially selected low voltage (LV) measurements and
introducing a new branch-current-based state estimation algorithm.

The novelty of this paper is that AMR meters are used to enhance the DSE accuracy in
a cost-effective way. AMR measurements are cheap to use since many distribution networks
already have vast numbers of AMR meters. AMR meters have been installed primarily for the
remote reading of electricity consumption, but their remote reading capabilities can also be
used in state estimation. AMR meters are capable of measuring active power and voltage in
real-time. Some meters can also measure reactive power and are capable of measuring power
flows in both directions. This paper describes how AMR meters can be used to enhance DSE
accuracy. First the new state estimation algorithm is presented and then the effect of AMR
measurements on state estimation accuracy is demonstrated with MATLAB simulations.

2. STATE ESTIMATION

2.1 Basic DSE

DSE is a multi-stage process that combines information from many different sources and uses
it to calculate the state of the network. Figure 1 presents the basic flow chart for DSE. State
estimation starts with load estimation. Finnish DSE applications use load curves to estimate
electricity consumption. The Finnish load research project has defined hourly load models for
46 different customer classes [3]. Each load curve gives the customer’s average hourly loads
and standard deviations for every hour of the year. The loads are given in active power but the
load curves also include customer class specific power factors. Furthermore, the load curves
define temperature correlation factors for each customer class so that the load estimates can
be adjusted with outdoor temperature measurements.

At the second stage of DSE previously estimated loads and network information are
used in load flow calculation. Present DSE programs use the backward/forward method to
calculate the distribution network load flow. The load flow is calculated only for medium
voltage network therefore the low voltage loads are summed to secondary substation
connection points. The network topology and the line parameters are attained from the
network information system. As a result of load flow calculation preliminary line flows and
node voltages are acquired. This result can be referred as a first level state estimate. At this
point the state estimate is still very inaccurate. The third stage employs distribution network
measurements to improve the state estimation accuracy.
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Load curves Temperature measurements

Load estimates Network data

Load flow calculation

1st level state estimate Measurements

Load correction and
load flow calculation

Final state estimate

Figure 1. Basic flow chart for distribution state estimation.

In present DSE methods feeder line flow measurements are used to correct the load
estimates so that the estimated line flows correspond to the measured line flows. The
difference between estimated and measured feeder power flow is distributed to the load
estimates in relation to their standard deviations. After the load estimates have been adjusted
to fit the line flow measurements the load flow is recalculated and the final state estimate is
acquired. This load correction method is simple and easy to implement. The downside is that
only power measurements can be used to adjust load estimates. Current measurements need to
be coupled with voltage measurements to produce power measurements. Independent voltage
measurements can be used only to set initial voltages in forward sweep part of the load flow
calculation. Use of the backward/forward method also limits the present DSE methods to the
estimation of radial networks.

2.2 New DSE methods

Requirements for more accurate state estimation and future needs to estimate meshed
distribution networks have led to the development of new DSE methods. The first new
generation DSE methods were presented almost 15 years ago and since then many new DSE
methods have been proposed. Most of these new methods are based on a weighted least
squares (WLS) approach. WLS estimation has been used in transmission state estimation
(TSE) since 1970s [4]. Applying TSE for distribution systems is a challenging task. The
limited number of real-time measurements, high resistance to reactance ratios and current
measurements cause problems for traditional TSE algorithms. Despite the difficulties, several
studies have successfully applied the basics of TSE methods in DSE [5–7].

For distribution networks Baran and Kelley have proposed a branch-current-based
DSE method [8]. It is also based on the WLS approach, but it uses branch currents as state
variables where as the traditional TSE methods use node voltages as state variables. In later
studies the branch-current-based method has been developed further. Its computation speed
has been improved [9], possibility to use voltage measurements has been added [10] and state
variables have been converted into a polar form [11].

When considering requirements for future DSE applications, the most important
features are the accuracy and possibility to use all kind of real-time measurements. The
effective use of real-time measurements requires that both current and voltage measurements
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can be used independently in DSE. In this paper, a branch-current-based DSE algorithm is
chosen to handle the AMR measurements. This choice helps to avoid the current
measurement problems associated with TSE-based algorithms. The branch-current-based
algorithms are also shown to be faster than the node-voltage-based algorithms [8;10].

3. PROPOSED STATE ESTIMATION ALGORITHM

3.1 Algorithm formulation

The state estimation algorithm used in this paper is based on the algorithm presented by Wang
and Schulz. A detailed description of the algorithm can be found in the paper [11]. The
algorithm uses the magnitudes and phase angles of the branch currents as state variables. The
benefit of using current magnitudes as state variables is that current magnitude measurements
correspond directly with state variables. The algorithm uses WLS estimation to determine the
most likely state of the network. In WLS estimation the goal is to minimize the weighted sum
of squared measurement residuals. Measurement residual is the difference between measured
and estimated value and each residual is weighted with the variance of the corresponding
measurement.

Some modifications were done to the original algorithm. The algorithm was altered to
use equivalent single phase circuits and equality constraints were added to handle the zero-
injection measurements. The use of equality constraints helped to avoid the ill-condition
problems arising from the combination of high and low weights associated to zero-injection
and pseudo load measurements. The equality constrained WLS problem can be solved by
using the method of Lagrange multipliers [12]. In the method of Lagrange multipliers the
constrained minimization problem is solved by minimizing the Lagrangian function

( ) =
1
2

[ ( )] [ ( )] ( )                         (1)

where is the state vector
is the Lagrange multiplier vector
is the measurement vector

( )  is the measurement function
is the covariance matrix ( = diag[ ] where  is
the variance of the measurement )

( )  is the zero-injection measurement function.

The minimization problem can be solved by differentiating ( ) partially with respect to
and and setting the differentials to zero. This yields the following equations:

( )
[ ( )] ( ) = 0                                (2)

( )
( ) = 0                                                                              (3)

where = and = are the Jacobian matrices.



5

Equations (2) and (3) form a system of equations which can be solved iteratively by the
Newton–Raphson method. At each iteration, the incremental change to the state vector ( ) is
calculated with equation

= ( )
( ) 0

[ ( )]
( ) .                      (4)

3.1 Algorithm steps

The proposed algorithm is composed of 7 basic steps seen in Figure 2. The algorithm
calculates state estimates for one feeder at a time. The first two steps retrieve the network data
and calculate the network load flow using the load estimates. The purpose of the load flow
calculation is to obtain initial values for the state variables and node voltages. Good initial
values improve the convergence characteristics of the Newton–Raphson algorithm. Substation
voltage measurement is used in the load flow calculation to fix the voltage at the beginning of
the feeder. Other real-time measurements are arranged into a measurement vector, which
contains all measurements values. Variances that describe the measurements accuracies are
gathered into the covariance matrix.

The iterative part of the algorithm starts with the calculation of the measurement
function, zero-injection measurement function and corresponding Jacobian matrices. Equation
(4) is used to calculate , which is then added to the state vector. Once the state vector has
been updated the network voltages are recalculated using the forward sweep method. If the
largest element of  is smaller than the convergence tolerance , then the state estimate is
ready. Otherwise, another iteration cycle is performed.

Figure 2. Basic steps for the proposed DSE algorithm.



6

4. SIMULATIONS

4.1. Test feeder

The above-presented algorithm was written into a MATLAB program, and its performance
and the effect of using AMR measurements were tested with MATLAB simulations. IEEE
37-bus radial test feeder [13] was used in the case studies. The following modifications were
made to the test feeder:

1) The voltage regulator was omitted.
2) The no-load transformer XFM-1 and the no-load node 775 were deleted.
3) All the loads were changed into constant PQ loads.
4) All the unsymmetrical loads were changed into symmetric three-phase loads and the

feeder was modeled with an equivalent single phase circuit.
5) The nodes were renumbered for clarity.

The one-line diagram of the modified test feeder is shown in Figure 3.

Figure 3. One-line diagram of the modified test feeder.

The test feeder was assumed to have a basic set of measurements: active and reactive
power measurements at the beginning of the feeder, a voltage measurement at the node
number 1 and pseudo measurements at all the load nodes. The power measurement accuracies
were ±1 % and the voltage measurement was assumed to be ideal. The test feeder was divided
into two areas where the pseudo MV load measurements had different accuracies. The pseudo
measurements had a relative standard deviation (RSD) of 50 % in the area 1 and 20 % in the
area 2. The above measurement configuration was referred as base case.

The simulations were performed first by varying the loads normally according to the
pseudo measurement standard deviations. Then the true state of the feeder was calculated
using the load flow program of Power System Toolbox [14]. The real-time measurements
were created from the true states by varying them normally according to the measurement
accuracy. Accuracy for the additional power measurements was ±1 % and ±0.2 % for the
voltage measurements (95 % confidence level). The DSE was calculated with different
measurement configurations and estimation errors were calculated for node voltages and
branch currents by comparing the estimates with the true values. This procedure was repeated
1000 times for every measurement configuration and average errors were calculated.
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4.2. Case 1: secondary substation measurements

In this case, secondary substation measurements were used to improve DSE accuracy. The
measurements were installed on the low voltage side of the distribution transformers. Placing
the measurements on the LV side of the distribution transformers is an economical solution
because the LV measurements are much cheaper than the MV measurements. Using low
voltage measurements requires modeling of the distribution transformers. In the test
simulations 4.8/0.208 kV distribution transformers were added to the feeder model when
necessary. The rating of the transformers was 200 kVA, except the one connected to the node
2, which was 1000 kVA. The transformers were presumed to have a relative short-circuit
resistance of 1.15 % and reactance of 3.8 %.

The simulations showed that secondary substation power measurements are an
effective way to enhance the DSE accuracy. For example, measuring the active and reactive
powers from the nodes 2, 11 and 32 halved the errors associated to the voltage estimates and
decreased the errors in the line current estimates by 34 %. The measurement location had a
significant effect on the DSE accuracy. The best locations were found on the load nodes that
had large standard deviations i.e. large loads that had inaccurate load estimates. It was also
beneficial for the loads to be located far from the substation. Figure 4 shows how the voltage
estimation errors decreased when the number of power measurements was increased. The
benefits of additional measurements diminished after the best measurement locations had
been occupied.

Figure 4. The effect of secondary substation measurements on the voltage estimation
accuracy.

Power measurements were effective and they can be used in present DSE systems.
Even better results were achieved by combining the power measurements with voltage
measurements and using the proposed DSE algorithm. The combined power and voltage
measurements allowed us to double the voltage estimation accuracy with only two
measurement points. The solid lines in Figure 4 show that the combined power and voltage
measurements were more accurate than the power measurements alone.

The voltage measurements can also be used separately from the power measurements.
With a low number of measurements, the voltage measurements were almost as accurate as
the combined power and voltage measurements. The dashed lines in Figure 4 show that the
best results were attained when the voltages were measured from the medium voltage side of
the distribution transformers. When the voltages were measured from the low voltage side,
the unknown voltage drop in the transformer reduced the state estimation accuracy.
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Case 2: AMR measurements in low voltage network

To fully utilize AMR measurements from low voltage networks, the LV networks need to be
modeled to the DSE system. The LV networks shown in Figures 5 a) and b) were added to the
test feeder model. In area 1 the LV loads consisted of four identical commercial loads and in
area 2 there were 25 identical residential loads. The load sizes were set so that the sum of the
LV loads matches with the corresponding MV loads. All the pseudo LV load measurements
had a RSD of 100 %. The commercial loads were connected to the distribution transformer
with an own LV feeder while in residential networks there were several loads connected along
the feeders. Each LV line section between the network nodes had a resistance of 8.2 m  and
reactance of 4.9 m .

Figure 5. The low voltage networks used in the simulations.

Small amount of power measurements from the LV loads can enhance the DSE
accuracy significantly only if the LV networks contain large loads. Figure 6 a) shows that
measuring the 10 largest LV loads from the area 1 increased the voltage estimation accuracy
by 50 %. The same measurements also improved the line current estimates by 34 %. If the LV
network contains only small loads, it is difficult to enhance the DSE accuracy with a
reasonable amount of power measurements. Measuring the 10 biggest residential loads from
the area 2 improved the voltage estimation accuracy only by 4 %.

Figure 6. The effect of AMR measurements on the voltage estimation accuracy.

Measuring power from a single residential customer had virtually no effect on the DSE
accuracy. As the secondary substation measurements also AMR meters can be utilized more
effectively if power measurements are coupled with voltage measurements. At best,
measuring power and voltage from a single residential customer in area 2 improved the MV
network voltage estimates 18 % and current estimates 10 %. When the amount of AMR

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Node

A
ve

ra
ge

 v
ol

ta
ge

 e
st

im
at

io
n 

er
ro

r (
%

)

a) Power measurements

Base case
10 AMR measurements

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Node

A
ve

ra
ge

 v
ol

ta
ge

 e
st

im
at

io
n 

er
ro

r (
%

)

b) Power and voltage measurements

Base case
3 AMR measurements



9

measurements was increased to three, the corresponding improvements were 38 % and 19 %.
Figure 6 b) shows the improvements in voltage estimates when one AMR measurement was
located in area 1 and two in area 2. Even the accuracy of the voltage measurements was
reduced by the unknown voltage drop in the distribution transformer and in LV line, the
combined power and voltage measurements provided superior results compared to the power
measurements alone.

The best locations for combined power and voltage measurements were at the end of
the MV feeder branches and behind lightly loaded distribution transformers. Inside the LV
network the ideal location was on a large customer connected to the distribution transformer
with an own LV feeder. Good results were achieved also by measuring the first customer on a
multi-customer feeder. Measuring the last customer provides little improvement to the MV
state estimates, but increases the estimation accuracy on the LV feeder.

5. DISCUSSION

Good measurement accuracy is important when voltage measurements are used to improve
DSE accuracy. Figure 7 a) shows how the estimation errors increased when the voltage
measurement accuracy was reduced. The figure is based on three voltage measurements from
MV network nodes 11, 30 and 36. Voltage sensors used in MV measurements usually achieve
a measurement accuracy of ±0.5–1.0 %. Better accuracy requires more expensive voltage
transformers. Residential AMR meters also have a voltage measurement accuracy of ±0.5–
1.0 %. Only some industrial AMR meters reach ±0.2 % measurement accuracy. The voltage
measurement accuracy must be improved to fully exploit the potential of the proposed DSE
method.

Figure 7. The DSE accuracy a) with different voltage measurement accuracies and b) with
improved pseudo measurement accuracies.

 The use of voltage measurements clearly reduced the number of measurements needed
to achieve substantial improvements. The test feeder contained some very large commercial
loads and therefore even a low number of power measurements provided good results. In a
purely residential network, the benefits of using combined power and voltage measurements
would have been even clearer.

Since it is not economically viable to read every single AMR meter in real-time, it is
important to achieve the desired level of estimation accuracy with a reasonable amount of
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measurements. The real-time reading of all AMR meters is expensive and requires a
considerable amount of data transmission capacity. Near real-time reading, for example once
every hour, requires less data transmission capacity, but the measurement delays decrease the
accuracy of the DSE.

Other possibilities to use AMR meters should also be studied. AMR meters are capable
of recording load profiles in short time intervals. These load profiles can be stored to the
meter and read during normal meter reading without increasing the meter reading frequency.
With the help of the load profile data, the classification of customers can be reviewed and
more specific customer classes or even individual load curves can be formed. Since the load
curves are used as pseudo measurements, improving the load curve accuracy affects the
estimation accuracy. Figure 7 b) shows how the voltage estimation accuracy would improve if
the pseudo measurement accuracy was increased 25 % or 50 %.

6. CONCLUSIONS

Voltage magnitude measurements contain a lot of information about the network states, but to
extract this information a new type of state estimation methods are needed. This paper
presented a branch-current-based DSE method that can use all available measurement types,
including voltage measurements, to enhance the accuracy of node voltage and line flow
estimates. The proposed method is based on a WLS approach and uses branch currents as
state variables.

Simulations with the proposed DSE method showed that the use of voltage
measurements can reduce the number of metering points needed to achieve accurate state
estimates. Especially the benefit of low voltage AMR measurements was increased
considerably. With the help of the new DSE method and AMR measurements, the future DSE
accuracy requirements can be satisfied cost-effectively.
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Abstract- The recent increase of distributed generation has 

forced many distribution network operators to develop 
distribution automation and active network management. Many 
active distribution network management functions need 
accurate real-time estimates of the network state. In this paper, 
a distribution network state estimation algorithm is developed 
and used in conjunction with coordinated voltage control. The 
state estimator utilizes equality constrained weighted least 
squares optimization and includes bad data detection. The state 
estimator is tested with MATLAB simulations, real-time digital 
simulator and in a real distribution network. 

Index Terms -- Bad data detection, distribution system state 
estimation, equality constraints, testing, weighted least squares. 

I. INTRODUCTION 

The purpose of distribution system state estimation (DSSE) 
is to obtain the best possible estimate of the network state by 
processing available information. Nowadays DSSE relies 
mainly on substation measurements, network data and load 
profiles. The substation measurements include real-time 
measurements of busbar voltages and feeder current or power 
flows. With these measurements it is possible to adjust the 
feeder loads accurately, but the load distribution inside the 
feeders remains uncertain. 

There is a need for more accurate DSSE because the 
amount of distribution automation and active control is 
constantly increasing. Active distribution network 
management functions such as voltage level management, 
control of distributed generation, reactive power regulation, 
feeder reconfiguration and restoration, and demand side 
management require accurate real-time estimates of network 
voltages and line flows. Especially the increase of distributed 
generation is an important driver for state estimation 
development [1]. 

DSSE can be made more accurate by adding measurements 
to the distribution network and using advanced state 
estimation methods. In the last 15 years, several new DSSE 
methods have been proposed in the literature [1]–[4]. Many 
of them are based on the weighted least squares method, but 
the selection of state variables varies. Some are using node 
voltages [1], [2] as state variables whereas others have chosen 
to use branch currents [3], [4]. 

In order to make DSSE more accurate, we developed a 
branch current based distribution system state estimator 
exploiting equality constrained weighted least squares 
optimization [5]. The state estimator was formulated to utilize 

all real-time current, power and voltage measurements 
available in a distribution network. The developed state 
estimator was written into a MATLAB program, and its 
performance and the effect of the additional current, power 
and voltage measurements were tested with MATLAB 
simulations.  

In this paper, the state estimator is further developed by 
adding bad data detection using state estimation residuals. 
Furthermore, the state estimator is coupled with a coordinated 
voltage control algorithm [6] and tested in a Real-Time 
Digital Simulator (RTDS) and in a real distribution network.   

This paper will first revise the formulation of the developed 
DSSE method and introduce the used bad data detection 
method. Thereafter, test results from MATLAB and RTDS 
simulation and real-life demonstration are presented. The test 
results are discussed and conclusions are given at the end. 

II. FORMULATION 

A. Main algorithm 
The state estimation algorithm in this paper is based on the 

method presented by Wang and Schulz [4]. The algorithm 
uses the magnitudes and phase angles of branch currents as 
state variables. The benefit of using current magnitudes as 
state variables is that current magnitude measurements, which 
are the dominating measurement types in distribution 
systems, correspond directly with state variables. The 
algorithm uses weighted least squares (WLS) estimation to 
determine the most likely state of the network. In WLS 
estimation the goal is to minimize the weighted sum of 
squared measurement residuals. Measurement residual is the 
difference between measured and estimated value and each 
residual is weighted with the variance (accuracy) of the 
corresponding measurement. 

Some modifications were done to the original algorithm. 
The algorithm was altered to use equivalent single phase 
circuits and equality constraints were added to handle the 
zero-injection measurements. The use of equality constraints 
helped to avoid the ill-condition problems arising from the 
combination of high and low weights associated to zero-
injection and pseudo load measurements. The equality 
constrained WLS problem can be solved by using the method 
of Lagrange multipliers [7]. In the method of Lagrange 
multipliers the constrained minimization problem is solved by 
minimizing the Lagrangian function 
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where ࢞  is the state vector 
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The minimization problem can be solved by differentiating 
,࢞ሺܮ  and setting the ࣅ and ࢞ ሻ partially with respect toࣅ
differentials to zero. This yields the following equations: 
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  are the Jacobian matrices. 

 
Equations (2) and (3) form a system of equations which can 
be solved iteratively by the Newton–Raphson method. At 
each iteration, the incremental change to the state vector (Δ࢞) 
is calculated with equation 
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Once the calculation has converged, the node voltages can be 
determined with a forward sweep calculation. 

B. Bad data detection 
Bad data detection is an essential part of any state 

estimator. State estimators must be able to detect, identify and 
remove bad data from the measurement set. Measurements 
may contain errors due to various reasons. Meters can have 
biases, drifts or wrong connections. Telecommunication 
system failures can also lead to large deviations in recorded 
measurements. 

Some measurement errors are easy to detect with simple 
logical rules. For example, negative voltage and current 
magnitudes and measurements, which are several orders of 
magnitude larger or smaller than expected, are easily 
recognized as bad data. Unfortunately, not all types of bad 
data are detected that easily. However, in more indistinct 
cases, other detection methods can be utilized. 

In WLS state estimation, the bad data detection can be 
made by examining the measurement residuals. This has to be 
done after the estimation process. The bad data detection is 
essentially based on the statistical properties of the residuals. 
One of the most used bad data detection methods is the 

Largest Normalized Residual ݎ௠௔௫ே  -test. This test is 
composed of the following steps [8]: 

1. Solve the WLS estimation and obtain the elements of 
the measurement residual vector (࢘): 
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2. Compute the normalized residuals (࢘ே): 
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where ષܑܑ is ݀݅ܽ݃ሺષሻ 
 ષ  is ݒ݋ܥሺ࢘ሻ. 

 
3. Find the largest normalized residual ሺ࢘௠௔௫

ࡺ ሻ. 
4. If ࢘௠௔௫ே ൐ ܿ, then the corresponding measurement is 

erroneous. Here, c is a chosen detection threshold, for 
instance 3.0. 

5. If bad data is detected, eliminate the faulty measurement 
from the measurement set and go back to step 1. 

The faulty measurements are eliminated one by one. After 
each elimination, WLS state estimation procedure is repeated. 

The largest normalized residual test can detect bad data if 
the removal of the corresponding measurement does not 
render the system unobservable. It is possible to identify all 
cases of single bad data where the faulty measurements are 
not critical or belong to a critical pair or critical k-tuple. 
Critical measurements are those measurements whose 
removal would cause the system to become unobservable. A 
critical pair and k-tuple contain two or more measurements, 
respectively, whose simultaneous removal would make the 
system unobservable. 

In the case of multiple bad data, only part of the 
measurements errors can be identified. Faulty measurements 
with weakly correlated measurement residuals can be 
identified. If the measurement residuals are strongly 
correlated, the bad data can be identified only in the case of 
non-conforming bad data. If the identification of faulty 
measurement fails, the largest normalized residual test can 
incorrectly remove a faultless measurement. 

Because our state estimator is based on equality 
constrained WLS estimation, the measurement residual 
covariance matrix can not be solved as usual. Solution for this 
problem can be found from [7]. In equality constrained state 
estimation the measurement residual covariance matrix ષ is 
equal to 
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where ࡱ૚ is the upper left corner of the inverse of ࡲ.  
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where ࡯ሺ࢞ሻ is the Jacobian matrix of the equality constraint 
function. 

The problem with measurement residual based bad data 
detection is that it requires a certain amount of redundancy 
from the measurement configuration. In distribution 
networks, the number of measurements and thus also the 
redundancy level is very limited. In this paper, load models 
are used as load pseudo-measurements. With these artificial 
measurements it is possible to detect and identify rough errors 
in real measurements. 

III. TESTING 

A. MATLAB simulations 
The above-presented algorithm was written into a 

MATLAB program, and its performance was tested with 
MATLAB simulations. IEEE 37-bus radial test feeder [9] was 
used in the simulations. The following modifications were 
made to the test feeder: 

1) The voltage regulator was omitted. 
2) All the loads were changed into constant PQ loads. 
3) All the unsymmetrical loads were changed into 

symmetric three-phase loads and the feeder was 
modelled with an equivalent single phase circuit. 
This is a common simplification in Finnish 
distribution network calculation. 

4) The nodes were renumbered for clarity. 
The one-line diagram of the modified test feeder is shown in 
Fig 1. 

The test feeder was assumed to have a basic set of 
measurements: active and reactive power flow measurements 
at the beginning of the feeder, a voltage measurement at the 
node 1 and pseudo-measurements at the load nodes. The 
measurement accuracies were set to ±1 % for the power flow 
measurements and ±0.2 % for the voltage measurement (with 
a 95 % confidence level). The pseudo-measurements were 
given a relative standard deviation of 50 % in the area 1 and 
20 % in the area 2. 

Simulations comparing the proposed and existing Finnish 
DSSE methods were conducted. In the existing DSSE 
methods [10] only feeder line flow measurements are used to 
correct the load estimates and the difference between the 
estimated and the measured feeder power flow is distributed 
to the load estimates in relation to their standard deviations. 
The existing DSSE method was also modelled into the 
MATLAB. 

The simulations were performed by first varying the loads 
normally according to the pseudo-measurement standard 
deviations. Then the true state of the feeder was calculated 
using a load flow program. The power flow and voltage 
measurements were created from the true states by varying 
them normally according to the corresponding measurement 
accuracy. Finally, the state estimates were computed and the 
estimation errors were calculated for node voltages by 
comparing the estimates with the true values. This procedure 
was repeated 10000 times and average errors were calculated.  

Fig. 1.  One-line diagram of the modified test feeder. 
 

Fig. 2.  Estimation accuracy comparison. 
 

The proposed state estimation method provided 24 % smaller 
average voltage estimation error. The difference is shown in 
Fig. 2. Simulations were also done with additional power, 
current and voltage measurements to study their effects on the 
state estimation accuracy. Some of these results are published 
in [5]. 

B. RTDS simulations 
In the next testing phase, the state estimation algorithm was 

coupled with a coordinated voltage control algorithm [6] and 
the resulting MATLAB prototype software was tested in 
RTDS environment. The purpose of RTDS simulations was to 
verify the correct operation of the prototype software before it 
is demonstrated in a real distribution network. 

The coordinated voltage control algorithm aims to keep the 
network voltages between acceptable limits by controlling 
available active resources. In these simulations, it controls 
substation voltage and DG reactive power by changing the set 
points of substation automatic voltage control relay and DG 
automatic voltage regulator. The coordinated voltage control 
algorithm uses the results of the state estimation as inputs. In 
this paper, we concentrate on the state estimation part of the 
RTDS simulations. Simulation results from the coordinated 
voltage control point of view can be found in [11]. 

The simulation arrangement 
In these simulations, RTDS is used to emulate a real 

distribution network. The simulation arrangement is depicted 
in Fig. 3. RTDS consists of hardware and software. The 
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Fig. 3.  RTDS simulation arrangement. 
 
hardware is used to solve power system equations in real-time 
and is installed in a rack. The RSCAD software is run on an 
external computer and is used to construct the power system 
models and to control the simulations. The simulated network 
is controlled using commercial SCADA software (ABB 
MicroSCADA Pro SYS 600) and the prototype software 
containing both state estimation and coordinated voltage 
control algorithms. Measurement signals from the simulated 
network are transferred to SCADA. Data transfer between 
RSCAD and SCADA is realized using shared files. 

The simulation network 
The simulation network is constructed to correspond to the 

network in the forthcoming real-life demonstration. The 
network consists of two medium voltage feeders and contains 
one relatively large hydro power plant. The RTDS 
simulations are done with a three-phase network model. A 
reduced version of the real network model is used because of 
RTDS limitations. A single-phase representation of the 
simulation network is shown in Fig. 4. 

The simulation network includes active and reactive power 
flow measurements at the beginning of each feeder and at the 
hydro power plant. Voltages are measured from the substation 
and from the power plant. The power plant breaker status is 
also monitored. Loads are modelled as symmetrical static 
constant power loads. In state estimation, the load pseudo-
measurements are given a 10 % relative standard deviation. 
The distribution lines are modelled in both RSCAD and in the 
state estimator using a nominal π-model. 

Simulation results 
First, the state estimation results where compared to the 

monitored values in RSCAD to verify the accuracy of load 
flow calculation embedded in to the state estimator. When 
given ideal error-free measurements as inputs, the differences   

 

Fig. 4.  RTDS simulation network. 
 
in estimated and monitored node voltages were smaller than 
0.01 %.  

During the first set of RTDS simulation we noticed that the 
state estimation did not always converge when given highly 
conflicting inputs. Conflicting inputs can be caused, for 
example, by input synchronization errors. Synchronization 
errors were detected also in the RTDS simulations. 
Sometimes, when the power plant was disconnected from the 
network by opening the power plant breaker, the changed 
breaker status information reached the state estimator before 
the feeder power flow measurements had changed to 
correspond to the new topology. Bad data detection was 
added to the state estimator to tackle this problem.  

The simulation network has a very low measurement 
redundancy, therefore detecting bad data is difficult. Only 
errors in power plant voltage measurement can be detected 
and identified directly from the measurement residuals. The 
feeder power flow measurements form critical pairs with the 
feeder load pseudo-measurements and with power plant 
power flow measurements. These groups of critical pairs are 
denoted here as critical groups. Removal of any measurement 
in a critical group would make the rest of the measurements 
critical. All the measurements in a critical group have equal 
normalized residuals, hence the erroneous measurement can 
not be identified. In order to identify faulty feeder power flow 
measurements we have to assume that the measurement errors 
can not be located in the load pseudo-measurements or power 
plant power flow measurements. 

For example, if the load feeder reactive power flow 
measurement (Q27) is erroneous, then that measurement and 
all reactive load pseudo-measurement on the same feeder 
(Q7–Q10) have identical normalized residuals. This is shown 
in Table 1. In order to identify the bad data, we have to 
assume that only the highlighted measurements in Table I can 
contain errors. 

In RTDS simulations, the bad data detection threshold was 
set to 3.0, which is a typical bad data detection threshold in 
transmission system state estimation. With this threshold 



 
 
value, the measurement Q27 can vary between 2.32 and 3.39 
p.u. without being suspected as bad data. In Table I, the 
measurement Q27 is outside this range, its normalized residual 
is larger than 3.0 and it is identified as bad data. 

In the case of the previously mentioned input 
synchronization error, the bad data detection fails because the 
state estimation does not converge. This problem was solved 
by first detecting the existence of bad data from the non-
convergence and then running the state estimation again 
without the feeder power flow measurements. After the new 
pseudo-measurement based state estimate was calculated, the 
normalized residuals were calculated for the feeder power 
flow measurements. Measurement with the largest normalized 
residual was identified as bad data and removed from the 
measurement set. Then the state estimation was run again. 
This procedure was repeated until the state estimator 
converged and all erroneous measurements were removed. 
The power plant power flow and voltage measurements were 
removed from the measurements set based on the power plant 
breaker status. Table I shows the normalized measurement 
residuals in the case of the input synchronization error. 

After adding the bad data detection, no further problems 
were encountered in RTDS simulations. The state estimator 
worked as planned supplying correct state estimates to the 
coordinated voltage control algorithm. 

 
TABLE I 

EXAMPLES OF NORMALIZED MEASUREMENT RESIDUALS DURING BAD DATA 
DETECTION 

Mea- 
sure- 
ment 

Erroneous 
Q27 

Input synchronization 
error 

 ே࢘ ࢠ ࢒ࢇࢋ࢘ࢠ ே࢘ ࢠ ࢒ࢇࢋ࢘ࢠ
P23 –1.35 –1.35 0.00 8.56 –1.35 14.29 
P27 11.26 11.26 0.17 11.26 11.26 0 
Q23 4.17 4.17 0.00 2.09 4.17 10.89 
Q27 2.85 3.85 5.54 2.85 2.85 0 
V6 1.05 1.05 0.00 - - - 
P2 0 0 0 0 0 0.00 
P3 6.80 6.80 0.00 6.80 6.80 0.00 
P4 1.15 1.15 0.00 1.15 1.15 0.00 
P5 0.60 0.60 0.00 0.60 0.60 0.00 
P6 –10.00 –10.00 0.00 0 0 0.00 
P7 3.06 3.06 0.07 3.06 3.06 0.00 
P8 4.93 4.93 0.00 4.93 4.93 0.00 
P9 1.94 1.94 0.00 1.94 1.94 0.00 
P10 1.12 1.12 0.01 1.12 1.12 0.00 
Q2 0 0 0 0 0 0.00 
Q3 1.89 1.89 0.00 1.89 1.89 0.00 
Q4 0.33 0.33 0.00 0.33 0.33 0.00 
Q5 0.17 0.17 0.00 0.17 0.17 0.00 
Q6 2.00 2.00 0.00 0 0 0.00 
Q7 0.88 0.88 5.54 0.88 0.88 0.00 
Q8 1.41 1.41 5.54 1.41 1.41 0.00 
Q9 0.55 0.55 5.54 0.55 0.55 0.01 
Q10 0.32 0.32 5.54 0.32 0.32 0.04 

 

C. Real-life demonstrations 
The operation of the previously presented prototype 

software was demonstrated in a real Finnish distribution 
network in May 2010. The demonstration arrangement was 
somewhat similar to the one shown in Fig. 3. The parts inside 
the dashed line were replaced by the real distribution network 
and the prototype software was run on a PC separate to the 
network management PC running SCADA and DMS. As a 
safety feature, the operator executed the control commands 
from the coordinated voltage algorithm manually. As in the 
Fig. 4, the demonstration network consisted of two medium 
voltage feeders and one power plant. Instead of the power 
flow measurements, only current flow measurements were 
available from the beginning of the feeders. The network and 
loads were modelled into the MATLAB with the same detail 
as in the network information system. The load models 
included hourly load estimates and their standard deviations 
for each distribution transformer. 

During the demonstration of the coordinated voltage 
control algorithm, some problems were detected in the state 
estimation. The bad data detection identified the feeder 
current flow measurements incorrectly as bad data. This was 
caused by the exceptionally warm weather during the 
demonstration. The average daily temperature was over 10 °C 
higher than normally in May. The probability of such weather 
occurring in May is less than 3 %. High temperature caused a 
radical drop in heating loads and the bad data detection 
interpreted low feeder current flows as faulty measurements. 
This problem could have been avoided if the load temperature 
dependencies had been taken into account. The state estimator 
included a load temperature correction feature, but no 
temperature dependencies were available for the used load 
models. The bad data detection had to be turned off. Further 
problems were experienced because of an inaccurate 
substation voltage measurement. The used voltage 
measurement had a measurement resolution of 1 % (0.2 kV). 
This reduced the voltage estimation accuracy significantly. 
Despite these problems, the coordinated voltage control 
demonstration was completed successfully [12].  

Next, we aimed to verify the results in Fig. 2 by comparing 
the developed state estimator and the state estimator in a real 
distribution management system (ABB MicroSCADA Pro 
DMS 600). Inputs and outputs from the DMS state estimator 
were saved for later off-line comparison. This required some 
special arrangements because the DMS 600 does not 
normally save the state estimates. The DMS 600 source code 
was edited to save the state estimation results into a database. 
The state estimation results were then read to the MATLAB 
through ODBC interface. Finally, the state estimation results 
and inputs; feeder current flows and substation voltage 
measurements, were written into a text file. The state 
estimation was run once an hour and the results were saved 
for a period of one week. Data was collected from one 
medium voltage feeder. To find out the true voltages, two 
voltage measurements were added to distribution 



 
 
transformers at branch ends of the studied feeder. These 
measurements were done with AMR meters with power 
quality monitoring functions. 

After one week, the data collection PC was retrieved from 
the distribution network operator’s control room and the 
results were analyzed. We noticed that the DMS state 
estimator had not corrected the loads to match the feeder 
current flows. This was caused by human error; the current 
measurements were not connected to the network model in 
NIS. Secondly, we discovered that the DMS state estimator 
had used a different substation voltage measurement than 
assumed. Thereby, the results of the developed state estimator 
and DMS state estimator were not comparable. 

Even without the above mentioned mistakes, the 
comparison of state estimators would have been difficult. The 
demonstration network was lightly loaded during the 
demonstration and the voltage drops were very small. The 
differences between estimated and measured node voltages 
would have been close to the voltage measurement accuracy. 
The state estimation accuracy could have been verified also 
by comparing the estimated and measured loads in the 
distribution transformers. Unfortunately, measurement of the 
transformer loads was not possible. 

IV. DISCUSSION AND CONCLUSIONS 

The branch current based distribution system state 
estimator was further developed by adding bad data detection. 
Distribution networks have a very low measurement 
redundancy, thereby detecting bad data is difficult. In many 
cases, the only way to identify faulty measurements is to use 
pseudo-measurements in the bad data detection process. The 
real-life demonstration of the developed DSSE method 
proved that the commonly used 3σ bad data detection 
threshold is inadequate when using load profile data to detect 
errors in feeder line flow measurements. The bad data 
detection threshold should be raised and more accurate load 
models with temperature dependency correction should be 
used. Further research is needed to find out if these actions 
are enough to make the bad data detection work. Next, we are 
going to use AMR measurements to improve the accuracy of 
load models. After this we can retest the state estimation 
algorithm. 

MATLAB simulations proved that the developed DSSE 
method is more accurate than the existing Finnish state 
estimation method. Demonstrating this improvement in a real 
distribution network is difficult. To see the differences in the 
voltage estimates, the demonstration network should have big 
stochastic loads, large voltage drops and very accurate 
voltage measurements. 
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Abstract— The low voltage network operating environment is 

going through changes. The simultaneous introduction of 

intermittent renewable energy production and customer 

requirements for increased power quality and supply reliability 

are forcing utilities to rethink the role of low voltage networks. 

With recent advances in smart grid technology, low voltage 

network automation is emerging as a viable option to traditional 

network investments. Congestion management and demand 

response, for example, can be used to keep the network currents 

and voltages within acceptable limits. In order to control the 

network, we must first have a comprehensive view on the state 

of the network. In this paper, the low voltage network 

monitoring concept proposed by the FP7 European project 

INTEGRIS is tested. Real-Time Digital Simulator (RTDS) is 

used to test how well the measurements from secondary 

substations and smart meters can be combined in a state 

estimator to get a real-time view of the network state. 

Index Terms—state estimation, low voltage, RTDS, smart grids     

I. INTRODUCTION  

With the advent of smart grids, the ways of operating 
distribution networks are changing. The amount of distributed 
generation (DG) is increasing and in order to accommodate 
the intermittent DG with reasonable network investments, the 
automatic control of networks is increased. For example, 
demand response is introduced to keep the currents and 
voltages within acceptable limits. This is true for both medium 
voltage (MV) and low voltage (LV) networks. In LV 
networks, requirements for better power quality and 
distribution reliability and simultaneous increase in customer 
level DG are calling for novel automation solutions. 
Secondary substation automation, smart meters, demand 
response and home automation have been proposed as a 
solution. In INTEGRIS project, the above mentioned 
technologies are combined in order to fulfill the first 
mentioned requirements. The INTEGRIS project is part of the 
EU 7th Framework Program. The INTEGRIS project proposes 
a decentralized distribution network automation concept that 
can completely and efficiently fulfill the requirements of the 
smart grid networks of the future. The INTERIS concept 
includes both MV and LV levels. In this paper, only LV level 
is considered. 

Important part of the INTEGRIS project is the efficient 
utilization of measurement devices. Information from smart 
meters and secondary substations can be utilized in power 
quality management, fault management, monitoring and 
control of the network. The aim of this paper is to study how 
measurements from smart meters and secondary substations 
can be utilized in LV network monitoring. In this paper, these 
measurements are combined in a state estimator in order to get 
the best possible view of the LV network state. The proposed 
LV network monitoring concept is presented and tested in a 
Real-Time Digital Simulator (RTDS). The power quality 
aspect of INTEGRIS concept is studied in [1]. 

In order to control the distribution network, it is essential 
to know the state of the network i.e. node voltage and line 
current magnitudes. Voltage information is needed for 
example in network voltage/VAR control and current 
information in network congestion management. Accurate 
state estimation enables the automation of distribution 
network control. In this paper, the accuracy of LV network 
state estimation is evaluated with different measurement 
configurations, meter reading frequencies and measurement 
averaging times. Furthermore, the effect of load profiles on the 
state estimation accuracy is discussed and load profiling 
results from the INTEGRIS demonstration in Italy are shown.  

II. LV NETWORK MONITORING CONCEPT AND RTDS 

LABORATORY SETUP 

In INTEGRIS concept, distribution network automation is 
based on decentralized intelligence. Low voltage network 
monitoring and management is done on secondary substation 
(SS) level. Measurements from remote terminal units (RTUs), 
smart meters and home energy management systems (HEMSs) 
are collected, stored and analyzed in a single device called 
INTEGRIS Device (I-Dev) located at the SS. LV network 
state estimation is performed in I-Dev based on the available 
measurements and LV network model. If the state of the 
network is not acceptable, control commands are sent to smart 
meters and HEMSs. Customer level automation then decides 
how to control distributed energy recourses and controllable 
loads. Only processed information such as alarms, requests 
and aggregated data are sent to the higher level automation 
systems located in primary substations and control centre. [2] 

This research was funded by the EU 7th Framework Program project 

INTEGRIS. 



Testing was made with RTDS equipment designed to 
simulate electrical power systems and test physical equipment 
in real-time. RTDS hardware is used in conjunction with 
RSCAD software that contains the network model. Single-
phase presentation of the LV network modelled in RSCAD is 
shown in Fig 1. The test network is relatively small due to 
RTDS node limit. Still, the model is realistic as the test 
network is part of a real three-phase LV network in Finland. 
Although not shown in Fig. 1, the simulation model included 
also models for supplying network (voltage source and 
impedance) and secondary transformer. The test network 
contained seven three-phase residential customers, located at 
nodes 3, 5, 7, 9, 10, 12 and 13. The load on each customer 
node was based on real load measured from corresponding 
residential customer nodes. The load in node 13 was based on 
a measurement done with one second measurement interval 
while the other loads were based on ten minute measurement 
interval. These measurements were averaged or interpolated to 
corresponding ten second values and were updated into the 
RSCAD every tenth second. Shorter updating interval was not 
possible since changing all the load values in RSCAD took 
approximately seven seconds. 
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Figure 1.  Single-phase presentation of the LV network used in the 

     RTDS-simulations. 

Schneider Electric’s Easergy Flair 200C substation 
monitoring unit served as a RTU monitoring device and was 
set to measure current at the beginning of the LV feeder and 
voltage on the secondary substation LV busbar. The currents 
were measured using wireless sensors that used ZigBee 
communication protocol. Easergy Flair 200C measures 
voltage with ±1 % accuracy. Kamstrup 382L and Indra Emiel 
EBM-M65A smart meters were used to measure load on the 
customer nodes. These meters have class B and A (by EN 
50470) energy measurement accuracies, respectively.  The 
three-phase voltage and current values from RTDS were sent 
to RTU and smart meters via amplifiers that boosted the 
voltage and current signals to level which correspond the real 
values. With only two amplifiers available, each simulation 
had to be repeated several times in order to get measurement 
values from every customer.  

Fig. 2 shows how the devices and components relevant to 
this state estimation study connect to the RTDS. In addition to 
these devices, Theregate home energy management device and 
MX Electrix power quality monitoring unit were also 

connected to the RTDS. According to the INTEGRIS 
communication concept [2], the measurements were relayed to 
SS I-Dev by using the IEC 61850 protocol. A protocol 
gateway was used to translate the RTU communication into 
IEC 61850 compliant format. The smart meters used DLMS 
(Device Language Message Specification) protocol to 
communicate with the meter data concentrator. State 
estimation results, measurements and alarms were saved on 
SS I-Dev database and from there the network state 
information was sent to iGrid’s iControl SCADA. 

 
Figure 2.  Connections in RTDS 

III. STATE ESTIMATION 

The goal of distribution network state estimation is to 
obtain the best possible estimate of the state of the network by 
processing the available information. In this case, the available 
information is network topology, line parameters, RTU and 
smart meter measurements and load profiles which are used as 
pseudo measurements. The state of the network is described 
by the node voltages or line currents. Transmission network 
state estimation has been studied since the 1970’s and is now 
considered a routine task [3]. Though the technology for 
transmission system state estimation is mature, there have 
been only a few papers in literature addressing the problem of 
LV network state estimation [4], [5]. However, there are 
countless papers on MV network state estimation [6]–[10]. 
The problems of LV and MV network state estimation are 
closely related. Both, when compared with traditional 
transmission network state estimation, exhibit similar 
characteristics: 

 radial topology 

 high R/X ratio 

 asymmetric loads 

 low measurement redundancy 

 current measurements. 
In LV networks, the high variability of the loads makes the 
state estimation task even more challenging. Since the number 
of measurements in distribution networks is low, it is 
important to place these few measurements correctly. The 
meter placement problem has been studied in many papers 
[5]–[7]. In this paper, we have also studied how the meter 
reading frequencies and measurement averaging times affect 
on the state estimation accuracy. 



State estimation is commonly based on the weighted least 
squares (WLS) method [4]. In WLS estimation the goal is to 
minimize the weighted sum of squared measurement residuals. 
Measurement residual is the difference between measured and 
estimated value and each residual is weighted with the 
variance (accuracy) of the corresponding measurement. The 
state of the network can be defined either with node voltage 
magnitudes and their phase angles or with line current 
magnitudes and their phase angles. The traditional 
transmission system state estimation uses node voltages as 
state variables. The node voltage based state estimation has 
been successfully applied to LV networks [4], [5] but the 
branch current based state estimation has been developed 
specifically for distribution networks. In this paper, we have 
used a three-phase branch current based state estimator 
exploiting equality constrained WLS optimization. The use of 
equality constraints helps to avoid the ill-condition problems 
arising from the combination of high and low weights 
associated to zero-injection and pseudo load measurements. 
For mathematical details, the reader is referred to [3] and [8]. 

 The distribution network is not observable unless we have 
measurements from every customer node. It is not always 
possible to measure every customer point (or communicate to 
every meter). Therefore, we have used customer class load 
profiles as pseudo measurements. A customer class load 
profile contains load expectation and standard deviation 
values for every hour of the year for certain type of a 
customer. In this study, the most descriptive load profile for 
each customer was selected from a set of 46 customer class 
load profiles. 

IV. RTDS-SIMULATION RESULTS 

A. Communication Delays 

The RTDS environment was used to test the 
communication delays of the proposed INTEGRIS 
communication architecture. The average time delay to get 
measurements from RTU unit was 1.8 seconds. The delay was 
calculated from the time when the request to get the 
measurements from RTU was send to the time when the 
measurements were received to the I-Dev database. The 
average time delay to get measurements from Indra’s smart 
meter depends on the number of the modules installed. In this 
case, with three modules, the average time delay was 2 
minutes and 20 seconds. 

B. Accuracy Metrics for Monitoring and State Estimation 

RTDS-simulations were run for a testing period of one 

day and average root mean square errors (ARMSE) were 

calculated for the monitored and estimated quantities using (1). 

𝐴𝑅𝑀𝑆𝐸 =
1

𝑚
∑ √1

𝑇
∑ (𝑞𝑚𝑜𝑛/𝑒𝑠𝑡(𝑡) − 𝑞𝑟𝑒𝑎𝑙(𝑡))

2
𝑇
𝑡=1

𝑚
𝑖=1  

where  𝑞𝑚𝑜𝑛/𝑒𝑠𝑡  is the monitored or estimated quantity 

 𝑞𝑟𝑒𝑎𝑙   is the real instantaneous value from RSCAD 

 𝑇  is the testing period 

 𝑚  is the number of points of interest. 

Only customer connection point voltage and current 

magnitudes were used in (1) when studying voltage and 

current monitoring and state estimation accuracies. 

C. LV Network monitoring 

The effects of meter reading frequency and averaging 

time (measurement averaging window) on the LV network 

monitoring accuracy were tested by comparing the real 

network states with the measured values available in I-Dev 

database. Fig. 3 shows how these two factors affect the 

average RMS error of the monitored current values, when 

real and reactive powers from all customers are measured. As 

expected, the average RMS error is lower when the reading 

frequency is higher and when the averaging time is shorter. 

State estimation was not used at this point. Therefore, Fig. 3 

shows how accurately the state of the network can be 

monitored in the INTEGRIS concept without state estimation. 

 
Figure 3.  Average RMS error of monitored current values. 

D. LV Network State Estimation   

When state estimation was tested, the state estimator was 
given the following three-phase measurements as inputs: 

 distribution substation LV busbar voltage 

 LV feeder current 

 real and reactive power measurements from all 
customer nodes. 

The same meter reading frequencies and averaging times were 
used for both RTU and smart meter measurements. Fig. 4 and 
5 show how the meter reading frequency and averaging times 
affect on the state estimation accuracy. 10 minute averaging 
time was used in Fig. 4 and one minute meter reading 
frequency was used in Fig. 5. The y-axis unit is either volt [V] 
or ampere [A] depending on the variable. Examining these 
figures, we can conclude that good state estimation accuracy is 
achieved only with high meter reading frequency and with 
short measurements averaging time. In practice, the 
optimization starts with the meter reading frequency, which is 
chosen as high as possible taking technical and economic 
constraints into account, then the measurement averaging time 
is set to the same value. If the measurement averaging time is 
set lower than the meter reading frequency, some of the 
measurement information will be lost. From Fig. 3–5 we can 
see that the estimated values are more accurate than the values 
monitored with smart meters only. By combining the low 
latency RTU measurements with the smart meter 
measurements, the state estimator is able to improve the 
customer node monitoring accuracy.   
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Figure 4.  Average RMS error of estimated quantities when meter reading 

frequency is varied. 

 

Figure 5.  Average RMS error of estimated quantities when measurement 

averaging time is varied. 

In smart grids, distribution network overloading situations 
can be avoided with automatic congestion management. When 
congestion management is applied, it is essential to estimate 
the network peak loads accurately. The peak load estimation 
accuracy depends largely on the measurement averaging time. 
Fig. 6 shows how accurately peak current on customer 10 is 
estimated when 10 and 30 minute averaging times are used. 
Clearly, the 30 minute averaging time is too long for 
accurately estimating the magnitude of current peaks. With 30 
minute averaging time, the estimated peak current is over 20 
% lower than the actual peak current. If the measurement 
averaging time is constant and the meter reading frequency is 
varied, the meter reading frequency will not have effect on the 
magnitude of estimated peak current, but it will affect how 
quickly the peak current is observed. The peak current study 
confirms that the meter reading interval and measurement 
averaging time should be selected equal and as short as 
possible. In a decentralized automation system, like the 
INTEGRIS concept, it is possible to set these parameters 
smaller than in traditional centralized automation. Within the 
LV network, the data transfer distances are short and the 
communication between smart meters and SS I-Dev can be 
implemented with broadband power line communication 
(BPL) without an external telecommunication company.   

 

Figure 6.  Estimated currents with 10 and 30 minute averaging times. 

In previous simulations, it was assumed that all smart 
meters are available. However, sometimes there may be 
communication problems or meter malfunctions so that some 
or all smart meters are unavailable. Fig. 7 shows how the state 
estimation accuracy depends on the available smart meter 
configuration. Fig. 7 is based on simulations done with ideal 
smart meter data (real time measurements with zero delay) 
and is intended only for comparing different smart meter 
configurations. The best and the worst meter configurations 
are shown for cases; only one available smart meter, two 
available smart meters and one unavailable smart meter. The 
results show that the state estimation accuracy remains good 
even if one smart meter is offline but in the case of several 
unavailable smart meters the accuracy deteriorates 
significantly. When only a few smart meters were available, 
the best results were achieved when they were located on 
customers with high loads. In the case of few available smart 
meters, the state estimation accuracy could have been 
improved by utilizing customer node voltage measurements 
[5], [7]. 

 
Figure 7.  Average RMS error of estimated quantities when smart meter 

configuration is varied. 

With a small number of available smart meters, the state 
estimation accuracy depends largely on the load pseudo 
measurement (load profile) accuracy. In this study, the load 
profiles assumed the loads to be symmetric even though the 
actual three-phase loads can be asymmetric. Fig. 8 shows an 
example of load asymmetry. Phase specific load profiles could 
be one way to improve the load profiling accuracy. 

 
Figure 8.  An example of load asymmetry. 

0

0,5

1

1,5

2

1min freq 5min freq 10min freq
Voltage (V) Current (A)

0
0,5

1

1,5

2

2,5

3

1min avg 5min avg 10min avg 20min avg 30min avg 60min avg

Voltage (V) Current (A)

0 0,5 1 1,5 2 2,5 3 3,5

All customers

Customers 3,5,9,10,12,13

Customers 3,5,7,9,10,12

Customers 10 & 13

Customers 9 & 12

Customer 13

Customer 12

No smart meter data

Total current error (A) Total voltage error (V)



V. DISCUSSION 

The analyses on the state estimation accuracy were done 
based on the RTDS simulations although the proposed LV 
network monitoring concept was tested also in a real 
distribution network. In a real distribution network, the true 
state of the network is unknown and it is impossible to 
compare the estimated and the true values with the same 
accuracy as in RTDS simulations. There may also be other 
problems, such as inaccurate measurements and uncertainty 
about the network configuration. This is why simulations, as 
the ones done in this study, are a valuable help in state 
estimation research. The RTDS simulations were also vital 
for testing measurement devices, communication architecture 
and SS I-Dev software before the actual field test. 

The real life tests were made in Italy in a LV network that 
contained single-phase customers and a significant amount of 
photovoltaic (PV) generation. The single-phase customers 
and PV generation were taken into account by making single-
phase daily load profiles for customers with and without PV 
panels using smart meter measurements from the previous 
seven days. The short averaging window allowed the load 
profiles to follow the constantly changing PV production. PV 
production can change quickly as the solar irradiation 
increases during the spring and decreases during the autumn. 
Fig. 9 shows how the load profile for a single-phase customer 
with PV production changed at the beginning of February. 
The effect of increasing solar irradiation can be seen clearly 
even the study period is shorter than two weeks. 

 
Figure 9.  Load profile evolution during the beginnig of February. 

In this case, it was easy to calculate the customer class load 
profile for a customer with PV production since all the 
customers belonged to the same customer class and had 
similar PV systems. If there had been different types of 
customers and PV systems of different sizes, the modelling 
task would have been more challenging. It would not be 
viable to model all possible load and PV production 
combinations, but we would have to model the load and PV 
production separately. For that, we would need a method for 
separating load and PV production from their sum 
measurement. If the load and PV production were modelled 
separately, it would be easy to scale the PV model according 
to the nominal PV system size and make short term PV 
production forecasts based on the solar irradiation forecasts.  

VI. CONCLUSIONS 

  Load profiles, smart meter measurements and secondary 
substation measurements can be combined in a distribution 
network state estimator. The RTDS simulations described in 
this paper show that this improves the accuracy of low voltage 
network monitoring. Simulations also show that the state 
estimation accuracy increases if the meter reading frequency is 
increased and measurement averaging times are kept short. 
The decentralized distribution network management system 
proposed in INTEGRIS project enables fast and frequent 
communication between the state estimator and metering 
devices. When the state estimator provides accurate and 
almost real-time information on the low voltage network state, 
the automation level in the low voltage network can be 
increased. For example, unwanted loading situations could be 
avoided with the help of automatic congestion management, 
which would increase the lifetime and utilization rate of the 
low voltage networks. 
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ABSTRACT 

Customer class load profiles are widely used in 

distribution network analysis. They are used, for 

example, in distribution network load flow calculation, 

state estimation, planning calculation and tariff planning. 

Previously, load profiling required expensive and time-

consuming load research projects, but now automatic 

meter reading is providing huge amounts of information 

on electricity consumption. This paper presents different 

possibilities for utilizing AMR data on customer 

classification and load profiling. The customer 

classification and load profiling can be made separately 

or they can be combined by using clustering algorithms. 

Individual load profiles can also be formulated from the 

AMR measurements. 

INTRODUCTION 

Automatic meter reading (AMR) is becoming common in 

many European countries. In Finland, for example, 

distribution network operators (DNOs) are required to 

install AMR meters to at least 80 % of their consumption 

sites in their distribution networks by the end of 2013. 

Many DNOs plan to install AMR meters to all customers. 

AMR provides DNOs with accurate and up-to-date 

electricity consumption data. In addition to other 

functions, this data can be used to update load profiles 

and classify customers. The availability of AMR data 

also enables new and more accurate methods of modeling 

distribution network loads. Accurate load profiles are 

needed in daily used distribution network calculation, for 

example in load flow calculation, state estimation, 

planning calculation and tariff planning. 

Distribution network customers are commonly classified 

to predefined customer classes, and the load of each 

customer is then estimated with customer class specific 

hourly load profiles. Currently, this method involves 

several error sources. 

1) Sampling error. Parameters in the existing customer 

class load profiles can be based on measurements, 

which are misclassified or comprise an insufficient 

number of measurement points. 

2) Geographical generalization. Load profiles are 

typically defined in national load research projects. 

Some of the accuracy is lost due to geographical 

generalization and within-country differences in 

electricity consumption are left unmodeled.  

3) Profile drift. Electricity consumption is constantly 

changing but the load profiles are rarely updated. 

4) Customer classification. DNOs have limited 

information on the type of the customers. The type 

of the customer is usually determined through a 

questionnaire when the electricity connection is 

contracted. However, the customer type may later 

change for instance because of a change in the 

heating solution. 

5) Outliers. Some customers may have such an 

exceptional behaviour that they do not fit in any of 

the predefined customer class load profiles. 

The above mentioned problems could be solved with the 

help of AMR measurements. The customer classification 

and load profiling could be done according to actual 

consumption data. Since AMR data is collected 

continuously, the classification and load profiles would 

remain up-to-date at all times. The classification and 

accuracy of the load profiles could be checked 

automatically for instance once a year. The load profiles 

could also be calculated separately for each DNO or 

region, thus avoiding the errors caused by geographical 

generalization. Outliers could be detected and individual 

load profiles could be formed for the outliers. Individual 

load profiles could also be calculated for some of the 

largest customers to improve the load estimation 

accuracy. 

In this paper, we use real AMR data to update customer 

class load profiles and reclassify customers. Different 

classification methods, from simple reclassification to 

existing customer classes to K-means and ISODATA 

clustering (Iterative Self-Organising Data Analysis 

Technique), are tested. The results are compared with the 

original customer classification and load profiles. This 

paper shows that updated DNO specific customer class 

load profiles have a big effect on the accuracy of the load 

estimates. Furthermore, a method for forming individual 

load profiles for outliers or large customers is presented.  

BACKGROUND AMR DATA 

Two different measurement sets from two Finnish 

distribution companies are used to study the different 

possibilities for utilizing AMR data on customer 

classification and load profiling. The first measurement 

set contains AMR measurements from 127 residential 

customers. These measurements cover the years 2006–

2007. The second measurement set contains interval 
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measurements from 660 customers. All of these interval 

metered customers have annual energy consumption 

larger than 100 MWh/year. The measurement period for 

the interval metered customers was from 18 August 2008 

to 31 December 2009. Both measurement sets have one 

hour measurement interval. 

Here, the first year of measurement data is used for 

customer classification and load profiling and the rest of 

the data is used for the verification of the results. The 

residential measurements are used for load profile 

updating, reclassification, clustering and individual load 

profiling. The interval measurements are used for 

studying clustering and individual load profiles. 

One year of measurement data is the minimum 

requirement for customer classification and load 

profiling. Better results are achieved if more data is 

available. However, if a lot of data is available, the 

possible changes in electricity consumption should be 

taken into account by weighting the most resent years or 

detecting change points. 

CUSTOMER CLASSIFICATION 

Distribution system loads are commonly estimated with 

customer class load profiles. Each customer is linked to 

one of the predefined customer classes, and the load of 

each customer is then estimated with the customer class 

specific hourly load profile [1]. This method assumes that 

the distribution system operator knows which customer 

belongs to which customer class. In practice, 

classification errors are common. 

AMR measurements can be used to improve the customer 

classification accuracy. Every customer with AMR can 

be classified according to its actual consumption by 

comparing the measured electricity consumption with the 

customer class load profiles or other customers. The 

customer classification can be made in many ways. The 

customers can be simply reclassified to the nearest 

existing customer class load profiles or new customer 

classes can be formed by grouping customers with similar 

behaviour. A simple reclassification procedure is defined 

and studied. Some test results are described in the 

following. 

Case 1: Customer reclassification 

In customer reclassification, AMR measurements are 

used to determine which existing customer class load 

profile is closest to customer’s true load pattern. Then the 

customer is reassigned to this customer class. The 127 

residential customers studied in this paper are reclassified 

according to AMR measurements from the year 2006. 

Euclidian distance between the measurement and 

customer class load profile is used as a distance measure. 

The studied customers were originally divided into six 

customer classes. They belonged to a network company 

which uses 38 customer classes. Table 1 shows how the 

customers were divided into the existing customer classes 

before and after customer reclassification. 

After customer reclassification, the studied customers 

were scattered to 14 different customer classes. The 

accuracy of the customer classification was measured by 

using the customer class load profiles to make next day 

electricity consumption forecasts for the year 2007. 

Square sum of the forecast error was calculated for both 

original and new customer classification. Compared to 

the initial situation, the customer reclassification reduced 

the square sum of forecast errors by 7 %. The results can 

also be seen in Figure 1. 

Here, as in the following cases, the outdoor temperature 

was taken into account with four season specific 

temperature dependency factors. The load profiles model 

the load in long-term average temperature. When making 

the next day load forecasts, the load was corrected 

according to the next day average temperature (forecast, 

in real applications). 

LOAD PROFILE UPDATING 

Previously, load profiling required expensive and time-

consuming load research projects and therefore the load 

profiles were rarely updated. Old load profiles and the 

constant change in electricity consumption habits have 

caused significant profile drift to the customer class load 

profiles. During the last decade the use of entertainment 

electronics has increased, heat pumps and air conditioners 

have become more common and lighting efficiency has 

increased, just to name a few changes.  

AMR measurements could be used to update customer 

class load profiles. This would have several benefits. 

Regularly, for instance once a year, done load profile 

update would keep the load profiles up-to-date at all 

times. This would ensure that the load profiles keep up 

with the changing electricity consumption habits. Also, 

errors that are associated with sampling and geographical 

generalization would decrease. The sampling errors 

decrease when measurements from all or almost all 

customers are used in the load profile calculation. The 

geographical generalization could be avoided by 

calculating the load profiles separately for each 

distribution network area or region. 

Case 2:_Load profile update 

Load profile updating was studied here as an alternative 

to the customer reclassification. Six updated customer 

class load profiles were calculated for the 127 residential 

customers previously studied in case 1. 

 

Table 1. Customer classification before and after customer reclassification. 

Customers per customer class 1 2 3 4 5 6 7 8 10 11 15 26 28 30 31 38 

Original classification 30 41 43 3 - - 7 - - - - - 3 - - - 

Updated classification 3 37 14 12 4 3 - 1 22 8 4 3 - 14 1 1 
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The load profile update was done with measurement data 

from the year 2006 using the original customer 

classification. As shown in Figure 1, the load profile 

update provided a 30 % reduction to the overall square 

sum of the forecast error. 

The load profile update had a bigger effect on the load 

forecasting accuracy than the customer reclassification. 

The load profile update and the customer reclassification 

should of course be combined to achieve the best result. 

However, if the load profile update is done after the 

customer reclassification, the updated customer class load 

profile is no longer the nearest load profile for all 

customers. The customer class reassignment and load 

profile update should be done again and again until none 

of the customers change customer class during the 

reclassification process. Basically, this is a clustering 

problem. Clustering is studied in the next chapter. 

CLUSTERING 

Clustering is an efficient technique for finding customers 

with similar behaviour. In literature, several different 

clustering methods have been applied to electricity 

customer classification [2], [3]. In this study, K-means 

and ISODATA clustering algorithms are used to solve the 

customer classification problem.  

The clustering is done based on the AMR measurements, 

but since the hourly measurement data has a very high 

dimensionality, some kind of a dimension reduction is 

needed to speed up the computation and to get feasible 

results. There are many techniques for dimension 

reduction, for example principal component analysis, 

Sammon map and curvilinear component analysis [2]. 

Here, a pattern vector approach is used. The whole year’s 

electricity consumption is described in a pattern vector 

containing average weekly loads for each calendar 

month. The pattern vector describes daily, weekly and 

monthly load variations on an hourly basis. In addition to 

2016 hourly load values, the pattern vectors also include 

four customer specific temperature dependency 

parameters.  

More information on the pattern vector formation and 

used ISODATA algorithm can be found in reference [4]. 

Case 3: Clustering residential customers 

Both K-means and ISODATA clustering algorithms were 

used to cluster the studied 127 residential customers into 

six customer groups. After clustering, new updated 

customer class load profiles were calculated for each 

customer class. Square sums of the forecast errors were 

calculated as before and the results were compared. K-

means and ISODATA algorithms provided very similar 

customer classification accuracy. Figure 1 shows that 

both of these clustering methods reduced the square sum 

of errors by 36 % compared to the initial situation. 

Classification accuracy was similar, but the K-means 

clustering was found out to be a lot simpler to execute 

than the ISODATA clustering.  

Case 4: Clustering non-residential customers 

660 interval metered customers were used to demonstrate 

the clustering of non-residential customers. Before 

clustering the outliers were filtered from the data set. 

There is no point in trying to cluster customers whose 

electricity usage differs significantly from the other 

customers. Instead, individual load profiles can be 

formed for the outliers. Two stage statistical filtering was 

applied. The filtering was done based on monthly energy 

consumptions and Euclidian distances between pattern 

vectors. 92 customers were classified as outliers. More 

information on the used outlier filtering procedure can be 

found in reference [4]. No outlier filtering was done in 

Case 3 to keep the results comparable with Case 2. 

The pattern vectors used in clustering were formed from 

measurements between 18 August 2008 and 17 July 2009.

 

 
Figure 1. Square sum of the forecasting errors for 127 residential customers, in relation to the original situation.
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The 568 customers who passed the outlier filtering were 

clustered into 30 clusters and customer class load profiles 

were calculated for each cluster. Next day electricity 

consumption forecasts were made for the time period 18 

August to 31 December 2009. The forecasting accuracy 

is later compared with the forecasting accuracy of 

individual load profiles in Figure 2. 

INDIVIDUAL LOAD PROFILES 

Now that AMR measurements are commonly available, 

many DNOs are thinking of replacing the customer class 

load profiles with previous year’s AMR measurements. 

In fact, the DNO that supplied the interval measurements 

for this study is already modeling interval metered 

customers that way. Previous year’s measurements 

without temperature or special day correction are used as 

reference models in Figure 2. 

 When using measurements to model individual loads, we 

should take into account the facts that even consecutive 

years are not identical and individual loads are highly 

stochastic in nature. If the measurements are used for 

making load forecasts, the random variations in the 

weather and customers’ hourly electricity consumption 

should be taken into account. The outdoor temperature 

can be taken into account with customer specific 

temperature dependency factors. In short-term forecasting 

the temperature forecasts can be used to adjust the load 

level and average temperatures can be used in long-term 

forecasts. 

In current (Finnish) customer class load profiles the 

profiling errors and stochastic variations in hourly loads 

are described with standard deviation. The same approach 

should be applied also to the AMR measurement based 

individual load profiles.  

In this study, individual load profiles are formed from 

measurements by calculating representative type weeks 

for each month. This method smoothes out the stochastic 

variations on hourly loads and enables the calculation of 

standard deviations. In type week, each day of the week 

is modeled separately. Holidays are modeled as Sundays. 

Case 5: Residential customers 

Individual load profiles were formed for the 127 

residential customers previously studied in Cases 1–3. As 

depicted in Figure 1, the forecasting accuracy of 

individual load profiles was only marginally better than 

the accuracy achieved with clustering and customer class 

load profiles.   

Case 6: Non-residential customers 

With non-residential customers, the individual load 

profiles provided better results. The square sum of the 

forecasting errors decreased about 17 % compared to the 

clustering methods in Case 4. The type week based 

individual load profiles were 21 % more accurate than the 

load models based directly on the previous year’s 

measurements. The results are also shown in Figure 2. 

 
Figure 2. Relative square sum of the forecasting errors 

for 568 interval metered customers. 

CONCLUSIONS 

This paper compared different methods for utilizing 

AMR data on customer classification and load profiling. 

The simple customer reclassification to existing customer 

classes provided little improvement to the load profiling 

accuracy. Calculating updated DNO specific customer 

class load profiles was a much more efficient method to 

improve the load profiling accuracy. However, even 

better results were achieved by combining the customer 

reclassification and load profile updating with clustering 

methods. 

The use of individual load profiles was also studied. 

When studying small residential customers, the 

individual load profiling improved the load profiling 

accuracy only marginally compared with the clustering 

methods. Only in the case of large non-residential 

customers, the accuracy improvement was large enough 

to make individual load profiling a viable option.  
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 

Abstract—In Finland, customer class load profiles are used 

extensively in distribution network calculation. State estimation 

systems, for example, use the load profiles to estimate the state of 

the network. Load profiles are also needed to predict future loads 

in distribution network planning. In general, customer class load 

profiles are obtained through sampling in load research projects. 

Currently in Finland, customer classification is based on the 

uncertain customer information found in the customer 

information system. Customer information, such as customer 

type, heating solution and tariff, is used to connect the customers 

with corresponding customer class load profiles. Now that the 

automatic meter reading systems are becoming more common, 

customer classification and load profiling could be done according 

to actual consumption data. This paper proposes the use of the 

ISODATA algorithm for customer classification. The proposed 

customer classification and load profiling method also includes 

temperature dependency correction and outlier filtering. The 

method is demonstrated in this paper by studying a set of 660 

hourly metered customers. 

 
Index Terms—Clustering, ISODATA, K-means, load profiles, 

load research.  

 

I. INTRODUCTION 

N Finland, distribution system loads are commonly 

estimated with load profiles. Each customer is linked to one 

of the predefined customer classes, and the load of each 

customer is then estimated with customer class-specific hourly 

load profiles. The method involves several error sources and 

presents significant uncertainties in load estimation. 

Classification errors are common, because customer 

classification is based on uncertain customer information. The 

type of the customer is usually determined through a 

questionnaire when the electricity connection is contracted. 

Once the customer type has been determined, it is hardly ever 

updated. In reality, the customer type may change, for 

instance, because of a change in the heating solution or an 

addition of new devices, such as air conditioning. It is a 

difficult and sometimes impossible task for the system 

operator to detect the change in customer type only based on 
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Moreover, the parameters in existing customer class load 

profiles can be based on measurements, which are old, 

misclassified or comprise an insufficient number of 

measurement points. This is also a significant error source. 

Even if the customer information needed in the 

classification is correct, some of the customers can simply 

have such an irregular behaviour pattern that they do not fit in 

any of the predefined customer class load profiles. The 

predefined customer class load profiles also include some 

inaccuracy due to geographical generalization. The most 

widespread customer class load profiles are created to model 

the average Finnish electricity consumption. They do not take 

into account the regional differences in electricity 

consumption, which originate from different climate 

conditions and socioeconomic factors. 

Automatic meter reading (AMR) is becoming common in 

many European countries. AMR provides distribution system 

operators (DSOs) with accurate and up-to-date electricity 

consumption data. These data can be used to classify and 

model distribution network loads. The amount of load data 

will be enormous when all or almost all of the customers have 

hourly metering. Since one DSO can have several hundreds of 

thousands of customers, some kind of automatic data analysis 

and clustering method should be used.  

This paper proposes a pattern recognition method for 

customer data classification. The method classifies customers 

into clusters, for which load profiles can be calculated. These 

profiles are then used to model customer loads in the 

distribution system. The method involves temperature 

dependency correction and outlier filtering. 

Different types of clustering techniques have been proposed 

in the literature for customer classification and load profiling. 

For example, classical clustering and statistical techniques [1]–

[6]; data mining [7], [8]; self-organizing maps [1], [2], [4], [9]; 

neural networks [10], [11]; and fuzzy logic [4], [5], [10]–[12] 

have all been applied before.  

In the previous studies, the customer classification has 

typically been made according to daily load profiles or load 

shape factors. Here, the classification is made according to 

pattern vectors which include daily, weekly, monthly, and 

seasonal load variations. Also the motive for customer 

classification is different. Previously, classification has been 

studied for the purpose of tariff formulation or marketing 
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strategy planning. Here the main incentive has been the need 

for more accurate network calculation: distribution network 

state-estimation [13] and network planning calculation. 

The current trend in electricity distribution is to maximize 

the quality of supply and utilization degree of the existing 

networks with the help of active network management. 

Advanced distribution automation functions, such as 

coordinated voltage and reactive power control, automatic 

feeder reconfiguration and load control, require accurate 

voltage and power flow estimates. Load model accuracy has a 

big effect on the distribution network state estimation accuracy 

[13]. 

The presented classification method was developed at the 

VTT Technical Research Centre of Finland. VTT has also 

developed an application utilizing the presented classification 

and load profiling method. The LoadModellerPRO program 

composes load profiles automatically from AMR data and is 

used by several Finnish distribution system operators. In this 

paper, the classification and load profiling method is 

transferred to the MATLAB environment and its classification 

accuracy is reviewed by comparing it to alternative 

classification methods.  

The presented classification method is universal and can be 

applied wherever there is sufficient AMR data available. Only 

the load profiling method needs to be modified to suit local 

needs and practices. A Finnish case study is presented here. 

The Finnish distribution system environment provides an 

excellent platform for the presented method. The hourly load 

profiles have been in use for a long time and the AMR 

installations are increasing rapidly. Finnish DSOs are required 

to equip at least 80 % of the customers with AMR by the end 

of the year 2013. Section II describes the current Finnish 

customer classification and load modeling practices. The 

developed classification method is presented in Section III. 

Section IV presents some results and Section V discusses the 

use of the presented classification method. Finally, conclusions 

are given in Section VI.  

II. LOAD MODELING METHOD 

Finnish load research tradition dates back to the 1980s, 

when DSOs started to cooperate in load research. The 

structure of the load model was developed more than 20 years 

ago. A short description of the Finnish load modeling method 

is given in Sections II-A, II-B and II-C. In-depth information 

can be found in [3].  

DSOs have customer information systems (CISs), which 

store all the available information of each customer’s electrical 

connection, type and electricity consumption. The customer 

data usually include: 

 Electricity connection information: customer location, 

supply voltage, fuse size, number of phases; 

 Customer class: residential, agriculture, public, service, 

industry (NACE code or some other similar code 

indicating the line of business); 

 Consumption: annual electricity consumption, high and 

low tariff electricity consumption (if dual time tariff);  

 Additional information: heating system (in the case of 

electric heating: type of electric heating), type of domestic 

hot water heating system, existence of electric sauna 

stove. 

Traditionally, distribution system estimation uses customer 

class load profiles for load modeling. Using the information 

from CIS, each individual customer is linked to one predefined 

customer class load profile. Finnish DSOs usually use 

approximately 20–50 customer classes. In addition, some of 

the largest customers are often modelled with their own 

models. The customers are also linked to the geographic 

network model in the network information system (NIS). This 

enables network calculations using the load profiles. 

A. Model Structure 

The load model used nowadays by most Finnish DSOs’ 

software applications represents the expectation value E[P(t)] 

and standard deviation sP(t) for the customer’s hourly load as a 

linear function of the annual energy consumption Wa. The load 

model can be represented either as topography or as an index 

series. In topography, the expectation value and standard 

deviation for hourly load are given for every hour of the year. 

The expectation value Ltopo and standard deviation stopo are 

usually given for a base energy consumption of 10 MWh/year 

(Wbase).  

In index series, the load parameters are given in a relative 

form. The index Q(t) models seasonal variation with 26 two-

week indices. The index q(t) models hourly variation for three 

different day types (working day, Saturday, and Sunday). Each 

two-week period is modelled separately in index q(t), which 

thereby consists of 26*3*24=1872 indices. Overall, the load 

expectation values for the whole year are modelled with 

1872+26=1898 parameters. The hourly standard deviations for 

the three day types are given as a percentage of the average 

load in the index s%(t). 

Formulas for calculating the hourly load parameters 

(expectation values and standard deviations) with topographies 

(1) and index series (2) are given below. 
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Topographies take special holidays into account, but in the 

index series, public holidays and eves are modelled as Sundays 

and Saturdays, respectively. Both in topographies and in index 

series, the reactive power is calculated using one customer 

class-specific power factor for every hour of the year. In some 

distribution companies, the reactive power is modeled like the 

active power with topographies or index series. 
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B. Utilization of Load Models 

In Finland, loads are modeled down to the individual 

customer level. Every customer is connected into the network 

data even at the low-voltage (400 V) level. In distribution 

network calculation, the customer-level loads are aggregated 

into higher level loads according to probability theory. For 

simplicity, loads are assumed normally distributed and 

independent. In that case, the aggregated load expectation 

values E[Pag(t)] and standard deviations sag(t) for n customers 

can be calculated with (3) and (4) [3]. 

 

            tPtPtPtP nag E...EEE 21   (3) 
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The stochastic nature of the loads is taken into account 

when calculating peak loads. Load values with different excess 

probability levels are used in distribution network calculation. 

The load Pp(t) having an excess probability of p % can be 

calculated with (5). 

 

    tsztPtP Ppp  )]([E , (5) 

 

where zp is the standard normal deviate corresponding to 

excess probability p. The load values with excess probability 

around 10 % are relevant for voltage-drop calculation, while 

smaller probabilities are used when studying loading limits. 

The load expectation values are used when calculating losses. 

[14] 

C. Weather Dependency 

The influence of weather on electricity demand is a widely 

studied phenomenon [15]. Outdoor temperature is usually the 

single most important factor, but also wind and cloudiness 

affect electricity demand. In distribution network calculation, a 

simple weather dependency model is adopted, and only the 

outdoor temperature dependency is taken into account. In 

Finland, different electric heating options are widespread, and 

this, combined with large temperature variations, renders the 

modeling of the temperature dependency essential in the 

statistical analysis of customer loads.  

As individual loads are metered in different time and 

location, the effect of temperature variation on a load should 

be screened out of the data before customer classification. In 

Finland, a simple and robust model for temperature 

dependency has been adopted. The temperature-dependent part 

of the load is modelled as  

 

    )(E))(E()( tPtTTtP ave   , (6) 

 

where ΔP(t) is the outdoor temperature dependent part of 

the load P at time t; 

Tave is the average temperature of the previous 

day; 

E[T(t)] is the expectation value of the outdoor 

temperature at time t (long-term daily 

average temperature); 

α  is the seasonal temperature dependency 

parameter [%/°C]; 

E[P(t)]  is the expectation value of the load at time t.  

 

In this paper, the parameter α is calculated with linear 

regression analysis for every four seasons separately. Daily 

energy consumptions and daily average temperatures are used 

in the analysis. The effects of daily and monthly fluctuations in 

electricity demand are eliminated by choosing the regressand 

and regressor as follows:   

 Regressand: the percent error between the daily energy 

consumption and the average daily energy consumption 

on a similar day (same weekday and month). 

 Regressor: difference between the daily average 

temperature and the average temperature on a similar day. 

A one day delay was added to the daily average 

temperatures to account for the delay in temperature 

dependency [15]. 

III. CLUSTERING METHOD 

As the classes and the number of classes are not known 

beforehand, an unsupervised classification method should be 

used. In this paper, iterative self-organising data analysis 

technique (ISODATA) algorithm is used. The algorithm 

allows the number of clusters to be automatically adjusted, if 

needed. 

A. Pattern Vectors 

Before the clustering algorithm is applied, each customer’s 

metered load is transformed to a pattern vector. The vector 

consists of four temperature dependency parameters and 2016 

hourly load values. The seasonal temperature dependency 

parameters are calculated individually for each customer. The 

achieved parameters are used to normalize the metered load to 

long-term average temperature. The load values contain 

weekly average loads calculated for each calendar month.  

The annual energies of different customers can vary greatly. 

The load values in pattern vectors are normalized by dividing 

each load element by the vector’s average load.  

B. Outliers 

At this stage, outliers are distinguished from other data. 

Outliers can be failed measurements or customers who use 

electricity in a very different way from average customers. 

Two main types of the outliers are: 

1) Customers whose electricity use varies significantly 

during some months. These are detected by comparing 

each individual customer’s monthly energies to the all 

customers’ average monthly energy. If a customer’s 

monthly energy differs from the average more than is 

probable with probability p from the normal distribution, 

the customer is an outlier. Probabilities between 80% 

and 99.99% can be applied for this calculation. 
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2) Customers whose intra-day load variation is very high 

compared to other customers. These customers are 

filtered out with the help of Euclidean distance measure. 

The calculation of the Euclidean distance of a pattern 

vector is described later in Section III-C. If individual 

customer’s Euclidean distance from all customers’ 

average vector is larger than what is probable with 

probability p from the normal distribution, the customer 

is classified as an outlier. Probabilities between 80% and 

99.99% can be applied for this calculation. 

C. Clustering Algorithm 

Euclidean distance (7) is chosen for the similarity measure 

used in the clustering algorithm. The Euclidean distance 

between two n-dimensional vectors x and y is  
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The first four parameters in the pattern vector are 

temperature dependency parameters. These parameters are 

weighted in the analysis. Suitable weights are found 

experimentally. The weight of the temperature dependency 

parameters is defined as 5 % and the weight of the actual load 

measurements is defined as 95 %. 

The pattern vectors are clustered using the ISODATA 

algorithm. The method includes heuristic provisions for 

splitting an existing cluster into two and for merging two 

existing clusters into a single cluster. The method is 

unsupervised—the user need not to know the exact number of 

classes before clustering is completed. 

The main procedure of the algorithm is (see for example 

[16] or [17]):  

1)  Cluster the existing data into c classes but eliminate any 

data and classes with fewer than T members and decrease 

c accordingly (Procedure 1). Exit when classification of 

the samples has not changed.  

2)  If c  cd/2 or c  2cd and iteration odd, then  

a) Split any clusters whose samples form sufficiently 

disjoint groups and increase c accordingly 

(Procedure 2). 

b) If any clusters have been split, go to step 1. 

3)  Merge any pair of clusters whose samples are sufficiently 

close and/or overlapping and decrease c accordingly 

(Procedure 3).   

4) Go to step 1.  

Here, c is the number of clusters, cd  is the desired number of 

clusters, and T is the minimum number of samples in a cluster. 

Procedure 1 is a variant of the K-means procedure [18]. A 

flowchart is shown in Fig. 1. 
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Fig. 1.  A flowchart for Procedure 1. 

 

Procedure 2 for splitting is somewhat heuristic. The 

flowchart is given later in Fig. 2.  ISODATA replaces the 

original cluster centre with two centres displaced slightly in 

opposite directions along the axis of largest variance.  

The splitting procedure is always performed when the 

number of clusters is smaller than half the desired number of 

clusters. Splitting is not performed if the number of clusters is 

at least twice the desired number of clusters. When the number 

of clusters is within range (cd/2, 2cd), splitting is performed 

every second round. The desired number of clusters is given 

by the user and it defines the approximate number of clusters 

wanted. The final number of clusters also depends on the other 

user given parameters and the natural number of clusters in the 

data. 

Two different measures dk and Sk are used to evaluate the 

uniformity of the clusters. The quantity dk is the average 

distance of samples from the mean of the kth cluster and the Sk 

is the sum of the largest squared distances from the mean along 

the coordinate axes. Note that here the latter uniformity 

measure differs from the original (presented in [16] or [17]). 

Originally, this uniformity was described with a value 

calculated from only one coordinate axis. In customer load 

data classification, the uniformity of clusters is better 

described with information from all coordinate axes. 
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where Nk   is the number of samples in cluster k, 

χk  is the set of vectors belonging to cluster k, 
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mk  is the average vector of cluster k, 

dE(x, mk) is the distance of vector x from cluster k’s 

 average vector, 

n  is the number of elements in pattern 

 vector, 

xi
(j)  is the ith element of pattern vector x(j) 

 belonging to cluster k    (j=1,2,…,Nk), 

mki  is the ith element of mk. 

 

The overall average distance of samples d is defined by 
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The cluster is split, if the sum of largest squared distances 

from the mean of the cluster k (Sk) is larger than the user 

defined threshold value Ss (Sk > Ss) and 
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Fig. 2. A flowchart for Procedure 2 (splitting). 

 

Procedure 3 for merging is performed only if splitting is not 

executed. Procedure 3 for merging is shown in Fig. 3. At first, 

all pairwise distances between cluster centers dij are calculated 

and compared to the threshold value D. Those pairs of clusters 

corresponding to distances that are less than the threshold 

value D are arranged in a list from the smallest distance to the 

largest. The clusters are then merged according to the list’s 

order. Merging continues as long as the total number of 

merges does not exceed the maximum limit (input parameter 

Mmax). 

 

 
Fig. 3. A flowchart for procedure 3 (merging). 

 

IV. RESULTS 

The algorithm shown before was written into a MATLAB 

program, and its performance is studied here using a set of 

measurements from 660 hourly measured customers. The 

measurements have been acquired from a distribution network 

company in Western Finland. The measurement period used in 

customer classification and load profiling is from August 18, 

2008 to August 17, 2009. The available hourly electricity 

consumption data had 1-kWh/h measurement resolution. 

Therefore, only large customers with annual energy 

consumption larger than 100 MWh/year are studied. Hourly 

temperature measurements were also available for the studied 

network area. 

A. Measurement Pre-Processing and Outlier Filtering 

The measured electricity consumption data can contain 

errors due to faults in metering or communication. Also, data 

format changes can cause errors. Typically, these errors are 

seen as missing values or as errors in the order of magnitude. 

In this study, the following pre-processing rules were 

applied: if the measurement contained a missing data interval 

longer than five hours or the number of the missing data 

intervals was larger than five the measurement was omitted 

from the data set. Missing parts of the data were estimated 

using linear interpolation. If the measured hourly value was 

clearly of wrong magnitude, the right order of magnitude was 

estimated by comparing it with the magnitude of the previous 

hourly value. 

Next, the pre-processed measurements were normalized to 
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long-term (30 years) average temperature, and the individual 

pattern vectors were formed. Then, the measurements were 

grouped into six different main customer classes according to 

the customer class information found in CIS. The selected 

main customer classes were: residential customers (private 

apartments and housing corporations combined), agricultural 

customers, industrial customers, public administration, 

commercial customers, and other customers (combination of 

construction, traffic, lighting, and community management). 

The outlier filtering was accomplished according to the 

method presented in Section III-B. A 99% probability level 

was used to detect abnormalities in monthly energy 

consumption and a 95% probability level was used to detect 

abnormal intra-day load variations. Examples of the filtered 

pattern vectors can be seen in Figs. 4 and 5. Note that even if a 

pattern vector gets filtered, it does not necessarily mean that 

the corresponding measurement is erroneous; the customer 

may simply have an extraordinary load pattern. 
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Fig. 4. Pattern vector for a customer with exceptionally large monthly energy 

consumption in August and September (only the load part of the pattern 

vector is shown). 
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Fig. 5. Pattern vector for a customer with abnormal intra-day behaviour (only 

the load part of the pattern vector is shown). 

 

The outlier filtering procedure classified 92 out of 660 pattern 

vectors as outliers. 

B. Clustering 

The clustering algorithm introduced in Section III-C was 

used to cluster the remaining 568 pattern vectors. The 

clustering procedure was carried out separately for each main 

customer class. Fig. 6 presents the clustering results for the 

public administration main customer class. For clarity, only the 

week corresponding consumption in January is presented. The 

cluster centres are marked with bold black lines and the 

individual pattern vectors are marked with gray lines. The 

following parameters were used when clustering public 

administration customers: cd=4, T=1, Ss=30, D=11, and 

Mmax=5. 

The clustering algorithm divided the 127 pattern vectors in 

the public administration main customer class into five distinct 

clusters. The number of pattern vectors (nk) in each cluster 

varied between 9 and 50. The public administration main 

customer class contained a total of 151 customers, 24 of them 

were classified as outliers in the previous step.   

Once the classification of the customers is completed, the 

customer class load profiles can be calculated. The hourly load 

profiles can be calculated from the original temperature-

normalized measurements. The load profiles can be expressed 

either as topographies or as index series.  

Individual load profiles should be used for the outliers. We 

recommend that the individual load profiles are formed with 

the same principle as the pattern vectors. That is, the day-type-

specific monthly averages are used as expectation values. The 

use of monthly averages helps to smooth out the effect of 

stochastic variation in the load expectation values. Also, the 

standard deviations can be calculated when each value is a 

mean of approximately four hourly values. 

The standard deviation calculation is not really reliable if 

the sample only consists of four hourly values. However, if 

measurement data are available only from a period of one year, 

this is a simple way to produce a rough estimate for the 

standard deviation. After the standard deviations have been 

calculated, the individual load profiles can be expressed as 

topographies or index series. In topographies, the average load 

profile describing one week’s consumption is simply 

duplicated to cover the whole month. 
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Fig. 6. Results of ISODATA clustering for the public administration main customer class. Horizontal axis: time (h); vertical axis: normalized load.

The accuracy of load profiles could be increased by
increasing the number of customer classes. However, in
practice a compromise between accuracy and number of
customer classes has to be made. Here the desired number of
clusters cd was selected on the basis of the knee point criterion
[1]. The knee point criterion helps to find the optimal number
of clusters. Fig. 7 shows how the public administration load
profile square sum of errors (SSE) between the cluster centres
and the measurements depends on the number of the clusters.
The knee point is roughly in four clusters. The SSE values in
Fig. 7 are calculated similarly as in Section IV-C. For
simplicity, the K-means clustering algorithm was used instead
of ISODATA when searching for the knee points. In practice,
the operator selects the desired number of clusters empirically.

The other user given parameters also affect the number of
clusters. The thresholds for splitting and merging (Ss and D)
define how many times the clusters are split and merged.
Choosing the right threshold values requires advance
information on the type of the customers or use of trial-and-
error technique. High threshold values are chosen when
clustering customers with high stochasticity and low
thresholds are chosen when clustering customers with low
stochasticity. Also the number of customers affects the
threshold values. Table I shows the consequences of choosing
too small or too large threshold values.  The clustering method
is less sensitive to the parameters defining the minimum
cluster size (T) and the maximum number of merges (Mmax). In
this study, they were kept in constant values.

TABLE I
EFFECT OF THRESHOLD PARAMETERS

parameter number of actions consequenceSs D split merge
small small high low large number of clusters
small large low low bad classification accuracy
large small high high long computation time
large large low high small number of clusters
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Fig. 7. Public administration load profile SSE as a function of number of
clusters.

C. Accuracy Comparison
To verify the accuracy of the ISODATA clustering method,

comparisons were made to alternative classification methods.
Classification according to CIS customer class information and
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allocation to the nearest existing customer class profile were 

selected as alternative classification methods. The accuracy of 

the individual load profiles was also verified. The forecasting 

capability of the load profiles was tested by comparing them 

with the actual measurements from the time period August 18, 

2009 to December 31, 2009. Both expectation and standard 

deviation values were calculated for the load profiles, but only 

the load expectation values are studied in these comparisons. 

1) Classification Method Comparison: The classification 

method comparison was made between five different methods: 

Previously presented ISODATA clustering, allocation to the 

nearest existing customer class profile and classification in 

three different accuracy levels according to the CIS customer 

class information. In this case, the customer class information 

in CIS is given with a three-digit number. The first number 

defines the customer’s main customer class (e.g. industry), the 

second specifies classification further (e.g. metal industry), and 

the third gives the final customer class (e.g. manufacture of 

metal products). In the level 1 classification, only the first 

number was used and in levels 2 and 3 also, the second and 

third numbers were taken into account, respectively. After the 

classification, CIS-based customer class load profiles were 

calculated in the same way as the ISODATA-based customer 

class load profiles. The existing customer class profiles were 

provided by the Finnish Electricity Association (Sener) [3]. 

Fig. 8 presents the results for the accuracy comparison. It 

can be seen that the ISODATA clusters clearly have a smaller 

square sum of errors than the alternative classification 

methods, even though some of them had a larger number of 

customer classes (c). In Figs. 8 and 9, the average SSE is given 

to measurements normalized to 10 MWh/year energy 

consumption level. 

 

 
Fig. 8. Comparison of the classification methods. 

 

2) Individual Load Profile Comparison: Here, the 

individual load profiles were formed based on the pattern 

vectors. In addition to previous calculations, standard 

deviations were also calculated for the pattern vector. The 

original temperature normalized measurements data was used 

in standard deviation calculation. Finally, the load profiles 

were formed by expanding each section in the pattern vector 

describing one week’s consumption to cover the whole month. 

The accuracy of the pattern vector based individual load 

profiles was compared to the accuracy of measurement based 

individual load profiles. The measurement based individual 

load profiles were formed directly from the previous year’s 

measurements corresponding to the studied time period. In 

individual load profiling, the current practice in distribution 

companies is to use the previous year’s measurements to 

model the electricity consumption in the current year.  

Fig. 9 shows that pattern vector based load profiles produce 

better load forecasts than the load profiles formed directly 

from measurements. Holidays and the temperature dependency 

were taken into account in both studied load profiling 

methods. Fig. 9 also shows that load forecasts for the 92 

outliers detected in Section IV-A are less accurate than load 

forecasts for the non-outliers.  

 

 
Fig. 9. Individual load profile accuracy comparison. 

 

V. DISCUSSION 

The temperature dependency calculation, outlier filtering, 

clustering and load profile formation for all the 660 customers 

required approximately 60 seconds of CPU time (with 2.8 

GHz Pentium 4 processor), not including the time used for the 

knee point search. In this paper, all the customers that passed 

the outlier filtering were subjected to clustering. In practice, 

the measurements can be compared with the existing customer 

class load profiles and only those customers that do not fit the 

existing load profiles can be subjected to clustering. This can 

reduce the computation time significantly.  

It should be noted, that not all the customers should be 

clustered at the same time. For example, small residential 

customers should not be clustered simultaneously with large 

industrial customers. The clustering procedure is based only 

on expected load values and different sized customers have 

different standard deviations. Also, the load model accuracy 

requirements can be different. Large customers usually have 

lower stochasticity and thus better accuracy can be expected 

from their load models. Here this problem was solved by 

dividing the customers into six main customer classes. 

However, using the CIS information to divide the customers 
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into the main customer classes can cause new problems. 

Although rare, it is possible that some customers do not belong 

to the main customer class specified in CIS. Eliminating this 

problem would require an additional classification round 

where the classification of each customer is re-evaluated.   

The final number of customer classes depends on how many 

sub-tasks the clustering is divided into and what is the desired 

number of clusters in each sub-task. Ultimately, the operator 

decides whether he wants to emphasize classification accuracy 

or to keep the number of customer classes easily manageable. 

In the study above, only active power measurements were 

used. If reactive power measurements are available, the power 

factors can be taken into account in customer classification and 

load profiling. 

Only customers with a limited amount of missing 

measurements were used in the clustering. The original 

measurement set also included measurements with long or 

frequent periods of missing data. Although the outlier filtering 

can be used to exclude these failed measurements from 

clustering, the missing data must be taken into account when 

forming individual load profiles for outliers. Handling these 

imperfect measurement series is a challenging task and should 

be a subject of further research. Also, possibilities to decrease 

the operator’s role in customer classification should be 

studied. 

VI. CONCLUSIONS 

This paper presents an efficient method for the classification 

and load profiling of distribution network customers. The 

classification method utilizes AMR data, is based on 

ISODATA algorithm and involves temperature dependency 

correction and outlier filtering. The proposed method was 

implemented as a MATLAB program and tested with real 

measurement data. The results showed that the ISODATA 

algorithm can classify customers into well-separated clusters 

according to their electricity consumption data. It was also 

proven that the resulting customer classification is more 

accurate than the alternative classification methods: 

classification according to customer class information found in 

CIS and allocation to the nearest existing customer class 

profile. 
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ABSTRACT 
Automatic meter reading (AMR) is becoming common in 
many European countries. This paper shows how AMR 
measurements can be used to create new load profiles 
and how these new load profiles can be applied to 
improve distribution network analysis accuracy. In this 
paper, hourly electricity consumption data is used to 
update existing load profiles, cluster customers and 
create new cluster profiles, and specify individual 
profiles for selected customers, all of which are then used 
in distribution network analysis. The results between 
existing and new load profiling methods are compared. 
Comparisons are also made between different methods of 
AMR-based load profiling. 

INTRODUCTION 
With the advent of smart grids, the ways of operating 
distribution networks are changing. The amount of 
distributed generation (DG) is increasing and in order to 
accommodate the intermittent DG with reasonable 
network investments, automatic control of networks is 
increased. For example, demand response and 
coordinated voltage control are developed to keep the line 
flows and voltages within acceptable limits. All this 
tightens the requirements set for distribution network 
analysis. In smart grids, network planning and operation 
must be made more carefully in order to keep distribution 
networks within reduced operating margins. This applies 
not only to medium voltage (MV) but also to low voltage 
(LV) networks. Distributed generation and active 
network control are spreading also to LV side [1]. 

The timely and spatially correct commitment of the 
demand response and coordinated voltage control require 
accurate information about the state of the network [2]-
[3]. It has been shown that load profiles have a big effect 
on the accuracy of distribution network state estimation 
[3], [4]. When forecasting the future states of the 
network, the load profiles have an even bigger role. State 
estimates and forecasts have a crucial role in network 
operation, especially in smart grids, and more accurate 
load models are needed to improve them. 

Making customer level load models used to be expensive 
and time consuming, but now that automatic meter 
reading is quickly becoming common in many European 
countries, the effort required for load research has 

decreased considerably. Modern AMR systems provide 
abundant amounts of information on customer level 
electricity usage. This, along with the defects in existing 
load profiles [5], has motivated us to improve load 
profiling accuracy with AMR-based load profiles. 

In Finland, distribution network customers are commonly 
classified to predefined customer classes, and the load of 
each customer is then estimated with customer class 
specific hourly load profiles. In an earlier publication [5] 
it was proven that in this environment a simple yet 
efficient method for improving load profiling accuracy is 
to update the existing load profiles with the help of AMR 
measurements. Even better results can be achieved if the 
load profile updating and customer reclassification are 
combined with the help of clustering methods. Also, 
creating individual load profiles can be beneficial, 
especially for the largest customers. 

In this paper, we will present a revised version of the 
AMR-based load profiling method introduced in [5]. The 
load profiles calculated with this method will be 
compared with existing load profiles and measurements.   

MATERIAL AND METHODS 
In this study, we used hourly AMR measurements from 
two Finnish distribution companies; Koillis-Satakunnan 
Sähkö (Case 1) and Elenia Networks (Case 2). The 
measurements from Koillis-Satakunnan Sähkö were 
made between the 4th of December 2007 and the 3rd of 
March 2011. The starting time of each measurement 
varied and only those customers who had been measured 
for at least 13 months were selected for further analysis. 
5343 such customers were found from the measurement 
database. The developed load profiling method requires 
measurement data from at least one year. The last month 
from the measurement data was reserved for the 
verification of results. From Elenia Networks, we had 
7558 measurements done between the 10th of June 2010 
and the 31st of October 2012. The last year from the 
measurement data was reserved for the verification of 
results. 

Both measurement sets came from small towns and rural 
areas surrounding the towns. These measurements 
covered a wide variety of customer types ranging from 
small summer cabins to large industrial customers. In 
Case 1, the measurements were scattered across the 
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network operator’s supply area in several municipalities. 
In Case 2, the measurements covered all the customers 
supplied by a substation feeding the town of Orivesi. For 
both cases, we had hourly temperature measurements and 
basic customer information. The original customer 
classification was known and network information 
enabled load flow calculations with original and new load 
profiles. 

Figure 1 presents flow charts for the load profile updating 
and clustering methods used in this paper. After the 
measurements had been read and pre-processed, seasonal 
temperature dependency parameters were calculated for 
each customer using the method presented in [6]. The 
temperature dependency parameters were then used to 
normalize the measurements in to the long time average 
monthly temperatures. The temperature normalization 
was made so that measurements from several different 
years could be treated equally. Also, the normalized 
measurements were needed when the next year energy 
forecasts were made. If measurement data was available 
from several years, simple linear regression was used to 
forecast the next year’s energy consumption. 

Pattern vectors describing the consumption of each 
customer were calculated from the normalized 
measurements. The pattern vectors consisted of 2016 
values (12 months × 7 days × 24 hours = 2016) 
describing the average hourly consumption. Analysis of 
variance (ANOVA) was applied to determine if intraday 
behaviour on different weekdays was significantly 
different. If it was, then each weekday was modelled 
separately. If it was not, then all weekdays were modelled 
with a common weekday model.  

At the beginning of the clustering procedure, the largest 
customers were separated from the others and individual 
load profiles were calculated for them. Then the pattern 
vectors were grouped into groups that behave similarly 
with the help of k-means clustering method. The original 
customer classification was used as a starting point for 
the clustering and pattern vectors were weighted 
according to the corresponding customer size (yearly 
energy). After this initial clustering, outliers were 
removed from the data. The customers with largest 
weighted distance from the cluster centres were selected 
for individual profiling and the customers with largest un-
weighted distance were labelled as outliers and set aside 
(5 % of the total population). The clustering was redone 
and temperature dependency parameters for each cluster 
were calculated. Then the previously removed outliers 
were assigned to the nearest cluster and load profiles 
were formed from the cluster centres. Both the updated 
load profiles and cluster profiles were made compatible 
with the existing load profile format where each hour of 
the year has an expectation value and a standard 
deviation.  

RESULTS 

Case 1: Koillis-Satakunnan Sähkö 
With the available AMR measurements, we were able to 
update 23 out of 38 customer class load profiles currently 
used in Koillis-Satakunnan Sähkö. Clear changes were 
observed in all the updated load profiles. Figures 2 and 3 
show how the load profile for customer class 1 (housing) 
changed. From Figure 3, we can see that when the 
outdoor temperature is close to the average monthly 
temperature, the customer class sum load forecasted with 
the updated load profile matches to the measured sum 
load but when the temperature drops, the measured load 
exceeds the forecasted load. This is why we calculated 
temperature dependency parameters for each updated 
customer class. Temperature dependency information is 
especially useful when one is making short term load 
forecasts and temperature forecasts are available.   
In distribution network analysis, one of the most 
important tasks is the forecasting of next year’s peak 
loads. Temperature dependency information can help in 
this task; even it is not possible to make temperature 
forecasts so far ahead. Based on historical weather 
information, it is possible to determine a probable 

 
Figure 1. Clustering and load profile updating methods. 
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minimum temperature for a certain area to make “worst 
case” simulations. For areas studied in this paper, 25 °C 
was a good estimate for minimum daily temperature. 

During the clustering phase, the customers were clustered 
in to 27 clusters and 100 individual load profiles were 
formed for large and abnormally behaving customers. 
The original customer classification was used as a 
starting point of the clustering but the final customer 
classification had little to do with the original customer 
classification. Only 15 % of the customers stayed in their 
original customer classes. 

Since all customers are not (yet) measured with AMR 
and optimal clusters can be determined only for measured 
customers, the old and updated load profiles have to be 
used side by side with the cluster and individual profiles 
in network calculation. During this study, a modified 
prototype version of ABB MicroSCADA Pro DMS 600 -
software was made to test this concept. The prototype 
software used all the aforementioned load profile types 
together. Old and updated load profiles were used for the 
unmeasured customers and cluster and individual profiles 
were used for the measured customers. Also, the operator 
could choose which load profiles to use. The prototype 
software was used first for LV network minimum voltage 
analysis but no clear differences between the load 
profiling methods were detected due to the stochastic 
nature of LV loads. The differences can be seen only 
when studying aggregated loads or when the sample size 
is large enough. 

Table I shows average peak loads for all 5343 studied 

customers. When using 95 % confidence level, which is a 
typical confidence level when calculating peak loads, the 
original load profiles give too high peak load estimates 
but the updated load profiles and cluster profiles give 
good results when 25 °C minimum temperature is 
assumed (minimum temperature during the verification 
period was 26 °C).   

Case 2: Elenia Networks 
In Case 2, updated load profiles were calculated for 30 
customer classes. As in Case 1, the updated load profiles 
gave significantly lower peak load forecasts than the 
original load profiles but when scaled to estimated yearly 
minimum temperature of 25 °C, the peak load 
forecasting accuracy improved. 

In the clustering phase, the customers were clustered in to 
30 clusters and 200 individual load profiles were formed 
for large and abnormally behaving customers. With the 
updated load profiles, the verification period square sum 
of forecasting errors decreased 38 % when compared 
with the original load profiles. With the cluster profiles 
this value was 57 %.  

Tables II and III show verification period peak load 
forecasts calculated on a distribution transformer level 
(i.e. sum of all the customers supplied by the specific 
transformer) and on a substation level. On average, the 
best distribution transformer level peak load forecasts 

Figure 2. Comparison of weekly energies in original and 
updated load profile. 

Figure 3. Customer class 1 sum power for 2nd week of 
February. 
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Table I. Comparison of peak load estimates on a 
customer level. 

Method 
Average peak load (kW) 

confidence level 
50 % 90 % 95 % 

Original load profiles 4.2 7.0 7.8 
Updated load profiles 3.5 5.9 6.6 
Updated load profiles  -25 °C 4.1 6.4 7.1 
Cluster profiles 3.8 5.8 6.4 
Cluster profiles -25 °C 4.4 6.4 7.0 
Peak load on a previous year 7.0 
Measured peak load on the 
verification period 7.17 

 

Table II. Comparison of peak load estimates on a 
distribution transformer level. 

Method 
Average peak load (kW) 

confidence level 
50 % 90 % 95 % 

Original load profiles 44.7 57.9 62.0 
Updated load profiles 36.6 44.9 47.5 
Updated load profiles  -25 °C 47.8 55.9 58.4 
Cluster profiles 39.1 46.2 48.6 
Cluster profiles -25 °C 50.5 57.4 59.7 
Peak load on a previous year 56.8 
Measured peak load on the 
verification period 53.7 
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were achieved using updated load profiles and 90 % 
confidence level. Also, the original and cluster profiles 
provided good results with 90 % confidence level. The 
selection of the best confidence level proved to be 
difficult since for small distribution transformers with 
few customers the 95 % confidence level provided the 
best results but for large distribution transformers with 
many customers the 50 % confidence level was the best. 
On the substation level peak load forecasts the effect of 
used confidence level was small and the selected 
minimum temperature dictated the peak load forecast 
magnitudes. In Case 2, the forecasted peak loads were 
systematically higher than the actual measured peak loads 
since there was a 6.8 % drop in the electricity 
consumption between the load profile identification and 
verification years. This drop could not be explained 
entirely with load temperature dependency and was 
probably caused by economic factors which were not 
taken into account in this study.  

CONCLUSIONS 
This paper presented two alternative methods for 
calculating AMR based load profiles. The first method 
used AMR measurements to update the existing customer 
class load profiles but kept the customer classification 
unchanged, while the second method used k-means 
clustering to update both the load profiles and customer 
classification. Also, individual load profiles were formed 
for large and abnormally behaving customers. Both the 
presented load profiling methods modelled the load 
temperature dependency and random variation separately. 

Load temperature dependency information is especially 
useful when one is making short term load forecasts but it 
can be used to improve next year peak load forecasts as 
well. In cold countries, the peak loads occur during the 
coldest days of the year and it is quite easy to determine a 
suitable peak load calculation temperature from the 
historical temperature information. 

 

 

The new AMR based load profiles were clearly better 
than the original load profiles. When forecasting future 
loads, the cluster profiles had the best average fit but no 
significant improvement in peak load forecasting 
capability was detected when compared with the updated 
load profiles. 

Although the results were better than with the original 
load profiles, the customer and distribution transformer 
level peak load forecasting proved to be a challenging 
task even for the new AMR based load profiles. Since the 
previous year’s peak load seems to give a good indication 
for future peak loads, the direct usage of AMR 
measurements in distribution network peak load 
calculation should be studied. Also, the possibility of 
using distribution transformer level load models, instead 
of aggregated customer level load models, in MV 
network calculation could be studied. 
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Table IV. Comparison of peak load estimates on a 
substation level. 

Method 
Peak load (MW) 
confidence level 

50 % 90 % 95 % 
Original load profiles 17.3 17.8 17.9 
Updated load profiles 15.1 15.3 15.4 
Updated load profiles  -25 °C 19.8 20.0 20.1 
Cluster profiles 15.0 15.2 15.2 
Cluster profiles -25 °C 19.8 19.9 20.0 
Peak load on a previous year 19.9 
Measured peak load on the 
verification period 19.3 
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 

Abstract— Anticipating load characteristics on low voltage 

circuits is an area of increased concern for Distribution Network 

Operators with uncertainty stemming primarily from the validity 

of domestic load profiles. Identifying customer behavior makeup 

on a LV feeder ascertains the thermal and voltage constraints 

imposed on the network infrastructure; modeling this highly 

dynamic behavior requires a means of accommodating noise 

incurred through variations in lifestyle and meteorological 

conditions. Increased penetration of distributed generation may 

further worsen this situation with the risk of reversed power 

flows on a network with no transformer automation. Smart Meter 

roll-out is opening up the previously obscured view of domestic 

electricity use by providing high resolution advance data; while in 

most cases this is provided historically, rather than real-time, it 

permits a level of detail that could not have previously been 

achieved. Generating a data driven profile of domestic energy use 

would add to the accuracy of the monitoring and configuration 

activities undertaken by DNOs at LV level and higher which 

would afford greater realism than static load profiles that are in 

existing use. In this paper, a linear Gaussian load profile is 

developed that allows stratification to a finer level of detail while 

preserving a deterministic representation. 

 
Index Terms— Automatic meter reading (AMR), domestic load 

profiling, energy demand, low-voltage (LV) networks. 

I. INTRODUCTION 

HE low-voltage (LV) network and the consumers on it has 

been a relative unknown quantity in power system design 

and operation with highly generalized profiles of domestic 

households being used to make decisions in all but a few 

exceptional cases [1]. The advent of smart metering has the 

potential to change much of that but with the increased 

volumes of household energy use data comes questions on how 

best to employ it and prior to that how to understand it in the 
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first place. It has been postulated in smaller scale studies that 

domestic customers can be profiled according to energy usage 

time and magnitude. How these profiles aggregate together on 

a low voltage feeder is of interest to distribution network 

operators (DNOs) who traditionally would assume load was 

merely a multiple of a single homogenous domestic profile – 

Fig. 1 shows how this is not necessarily the case. Even on 

similar dwellings the customer behavior can be very diverse. 

As some of the key technologies of smart grids are realized, 

the concerns regarding legacy infrastructure become more 

apparent. Increasing penetrations of micro-generation are 

challenging the usefulness of this assumption as excess 

domestic generation tips residential feeders into reverse power 

flows. While generation such as photovoltaic can be predicted 

to some degree of accuracy, there needs to be further work on 

modeling the loads that absorb them. Behavioral factors are 

identified in [2] that influence the load profile breaking energy 

demand into 2 root causes: behavioral determinants – habit 

driven, relatively flexible; and physical determinants – driven 

by environmental factors and building design. Behavioral 

drivers are the one which invoke most variability, [3] noted in 

an overview of advanced tariffs (e.g. real time pricing) that not 

all customers could be suited to these; demographics such as 

young families – no flexibility, constant temperature and the 

elderly who also require constant temperature. Then there are 

those who maintain a constant load already with the only 

losses stemming from dwelling disrepair/insulation 

shortcomings (cf. the “physical determinants” of [2]). 
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Figure 1. The 30-min resolution residential loads over a single week from 

similar dwellings. 
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With consumer technology acquisition at its highest ever 

level, and expected to continue to grow, such profiles can only 

become invalid quicker thus reinforcing the case for data 

driven methodologies to be used. In this paper, an alternative 

representation of domestic load is considered, that of a 

composition of usage levels strata generated dynamically from 

Smart Meter data. Embedding this representation in a 

probabilistic model allows a quantifiable comparison to be 

made between profiles generated by different dwellings and 

how these can change. This paper will present a framework for 

analyzing the consumption habits of domestic energy 

customers which will be illustrated through the application to 

actual half hourly metered properties. 

II. RESIDENTIAL LOADS 

The absence of low voltage metering means that until 

recently very little knowledge exists on the low voltage 

customer’s true load profile. This section reviews some of the 

current practices and looks at how larger loads are dealt with 

on the medium voltage (MV) network. 

A. Current Profiling Practice 

The current practices tend to involve metering relatively 

small samples of households and then averaging over these. 

The following outlines examples from the U.K. and Finland.  

 1) United Kingdom: For the U.K., it was decided in the mid-

1990’s that to facilitate market operation, 8 load profiles 

would be used to represent the types of customers on the 

network. Of these profiles, Profile Class 1 [4] is the only one 

that represents the residential customer unconstrained by usage 

times. The form of the profile is 48 half-hourly usage levels 

that correspond to the market settlement periods for every 

settlement day in a year. These are developed from recruited 

sample households with hi-resolution meters; homes in the 

samples for the 14 U.K. grid supply points are selected from 

rule-based stratifications (high medium low) of annual 

consumption obtained from retail billing. Averages of the half-

hourly data are weighted by the proportions of the population 

at a given grid supply point in a given strata, yielding a load 

profile that takes the form of a 48×365 matrix.  

2) Finland: Finnish electric utilities started to co-operate in 

load research in the 1980’s and in 1992 Finnish Electricity 

Association (FEA) published customer class load profiles for 

46 different customer classes, 18 of which are for housing and 

the rest for agriculture, industry and services. The housing 

profiles are further divided by dwelling-type, heating solution 

and major appliances. Each load profile contains expectation 

and standard deviation values for every hour of the year [5]. 

Although old, the FEA load profiles are still the only publicly 

available load profiles. The most prominent shortcoming of 

these profiles is their age; during the past 20 years electricity 

consumption has experienced significant changes, the amount 

of heat pumps and air-conditioners has multiplied, the use of 

entertainment electronics has increased and electricity 

consumption in recreational dwellings has changed [6]. 

Furthermore, in the future, the changes will be even bigger if 

plug-in hybrids, customer-specific distributed generation and 

demand response activities become popular. The load profiles 

also suffer from small sample sizes, short measurement periods 

and errors caused by geographical generalization. The load 

profiles are created to model the average Finnish electricity 

consumption. They do not take into account the regional 

differences in electricity consumption, which originate from 

different climate conditions and socioeconomic factors. 

Consequently, the strategies used are error prone: the type of 

the customer is usually determined through a questionnaire 

when the electricity connection is contracted and then rarely 

updated. In reality, the customer type may change, for 

instance, because of a change in the heating solution, an 

addition of new devices, such as air conditioning or the change 

of customer activity (e.g. from agriculture to pure housing). 

B. Related Load Profiling on MV Network 

In [7], Probabilistic neural networks (PNNs) were used to 

assign consumers to load profiles – these are closely related to 

a Parzen Window and essentially smooth input data into a 

probability density function (PDF) of observations. 10 load 

profiles resulted but different cluster validity measures resulted 

in conflicting optimal number of clusters. An assortment of 

clustering techniques are used in [8] on 234 non-residential 

customers metered on the MV network at 15-min intervals 

with the objective of grouping them into a small number of 

classes for tariff formulation. Reference [8] noted that 

theoretically robust means of choosing the number of clusters 

would be required as conflicts between cluster validity criteria 

could arise [7]. Techniques used include hierarchical 

clustering (with Euclidean distance), self-organizing maps, K-

Means and Fuzzy K-Means. Dimensionality reduction of the 

96-dimensional space into a more manageable subspace was 

also performed allowing the ‘informative’ hours/periods to be 

identified. ISODATA (Iterative Self Organizing Data Analysis 

Technique) was used in [9] to cluster industrial customers into 

load profile classes; outliers in training data were defined as 

customers with high intra-day variation and customers with 

high monthly variation were discarded. 

Although load profiling on the MV network has received 

attention, the criteria associated with it are not the same; it was 

noted in [9] that large customers tend to have a small standard 

deviation in their load and hence produce a more accurate load 

profile lessening the need to encode variability in the profile 

representation thus emphasizing the need to encode variability 

in the smaller residential customer profiles as outlined in [10].  

III. AMI/AMR STATUS 

A number of countries are committed to upgrading their 

housing stock to AMR systems or smart meters. In the U.K. 

and Finland, large electricity customers are already metered on 

half hour or hourly basis but the state of domestic smart 

metering is different [11]. 

In Finland, full smart meter roll-out is currently underway 

and a significant number of meters have already been installed 

[11]. Legislation requires electricity distribution network 

operators to equip at least 80 % of their customers with hourly 
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metering by the end of the year 2013. Daily meter reading,
support to demand response, and outage registration are also
required [12]. One novel feature in Finnish AMR installations
has been to integrate AMR system with control center
applications of SCADA and distribution management system
(DMS) in order to use AMR meters in real-time low-voltage
network management and fault indication [13].

For the U.K., AMR will provide advance data at a 30-min
resolution, most likely communicated at the end of a 24-h
period. Full scale roll-out is scheduled to begin in 2014 and
finish in 2019 although some crucial parts of the program,
such as details concerning national data and
telecommunication services, are yet to be decided [14].

IV. RESIDENTIAL PROFILING REQUIREMENTS

Reference [15] identifies that “individual consumer behavior
and their everyday practices accounts for a substantial
proportion of household energy consumption”. In identical
houses, it was noted that this can vary by up to 300–400% as a
result. The drivers for variability are multi-factorial: [16]
identifies that different socio-economic types will contribute
different amounts to energy demand using the local area
resource access model (LARA) – high levels of
socioeconomic and geographical disaggregation were noted in
the U.K. Although the credit rating agency groups were noted,
[16] uses U.K. output area classification (OAC) to segment
U.K. households into seven groups with different socio-
demographic characteristics with largely self explanatory
labels (e.g. “Blue Collar communities”, “City Living”,
“Countryside”, “Prospering suburbs”. A “Culture based
approach to behavior” is explored in [17] by identifying
energy usage behaviors as a means of finding opportunities to
invoke changes in behavior. In [17], the “Energy Cultures”
framework was proposed to explain different causal facets of
energy use which can be summarized as: Material Culture
which is characterized by: insulation, heating devices and
influenced by: Regulation, income, available technology;
Cognitive norms which are characterized by: social aspiration,
tradition, environmental concern and influenced by:
Education, upbringing, demographics; Energy Practices which
are characterized by: Number of rooms, Maintenance of
technology and influenced by: Social Marketing, Energy Price
Structure. As discussed, load profiles for the residential
customer have been largely homogenous arrangements that
were calendar based rather than behavior driven. With
AMI/AMR/Smart Metering measurements providing
extensive and detailed load and resulting variability, a
representation is needed to capitalize on this and provide
utility stakeholders with the information they require to
increase reliability and efficiency. Regarding actual behavior,
it is highly unlikely that all residential customers behave the
same, so the representation must be able to accommodate a
finite number of heterogeneous behaviors and do so in a
compact manner thus enabling the representation to be utilized
without unfeasibly large computing resources. For each
heterogeneous behavior encountered, the traditional quantity
of interest is the expected value of load; time of use is the
other traditional concern so what is really required is a

coupling of time of use with load magnitude. AMI in the U.K.
and Finland provides data with half hour or 1-h resolution
allowing this quantity to be represented as a discrete vector
rather than a functional approximation. Where curve fitting or
regressive approaches may not suffice is in the provision for
capturing load variability – the confidence with which a given
load’s expected value is expressed is also necessary. For
forecasting purposes, which may arise in highly localized
power systems, the relation between time of day loads can
inform a short term forecast (weather related behavior
change). Detection of anomalous behavior is another
requirement that would provide indication of fault condition
or, over longer terms, new classes of customer emerging (e.g.
greatly reduced loads through adoption of storage or uptake of
more efficient appliances). Additionally, the capture of
changes in behavior should be allowed through the
representation.

V. LOAD MODEL DESIGN

A. Load Probability Distributions
In load research, electric loads are often assumed to have a
Gaussian distribution even though this is not the case.
Previous studies [18]–[20] have tried to find the best
probability distribution to model electric load behavior. In
these studies, beta, gamma, and log-normal distributions have
been found to model electrical loads better than Gaussian
distribution. Fig. 2 shows that, when scored with Bayesian
Information Criterion (BIC) [21], the log-normal distribution
best describes U.K. residential loads out of several candidate
probability distributions and is significantly better than the
normal distribution. Also, by log-normalizing the data, it can
be transformed to behave like a Gaussian distribution, which,
in turn, enables the use of algorithms designed for the more
tractable Gaussian distribution.

B. Expressing Uncertainty Through Probabilistic Models
The general form of models proposed in this paper is one of a
non-stationary multivariate Gaussian distribution over 48 half-
hourly advance periods. In [20], it was noted that variability of
even a single customer is such that an individual load pattern

Figure 2: Histogram and fitted distributions for half-hour period 15:00-15:30 in
January (weekdays only).
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cannot be obtained – thus the importance of modeling the 

distribution rather than (just) the expected value. This section 

discusses several model families that may be used to express 

multimodality and dependence and in such a way that the 

representation maintains its compactness. 

1) Mixture Models: A finite mixture model permits an 

arbitrary probability distribution to be approximated by a 

linear combination of weighted likelihoods drawn from a set of 

simple parametric distributions:  

   



M

i

ii xPxP
1

;  (1) 

If this were a Gaussian mixture model, then the components 

would be Gaussian parameterized as follows: 

   



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iii xPxP
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2,;   (2) 

where x is the observation variable, θi is the parameter vector 

for the ith distribution, π is the vector of mixing weights and M 

is the number of distributions used to approximate the implied 

observation distribution.  

2) Factor Analysis: As daily meter advances are represented 

as a 48 dimensional vector here, it is difficult to assess which 

times of use influence each other and how. Multivariate data 

can sometimes contain correlation between variables that are 

so strong, these can be amalgamated allowing only the most 

informative or uncorrelated variables to be represented in a 

space of reduced dimensionality. Two examples of models 

which can reduce the dimension of an observation space and 

thus discard uninformative variables and reveal dependency 

structure are Principal Component Analysis (PCA) [22] and 

Factor Analysis [23]. PCA is based around the eigenvectors 

that correspond to the eigenvalues of the covariance matrix of 

a multivariate observation. Factor Analysis assumes a linear 

mapping between such an observation space x and its lower 

dimensional representation z: 

uzx    (3) 

where Λ is the factor loading matrix that transforms 

observation x into a lower dimensional representation z. µ is 

the mean of the observation variable. Ψ is a diagonal 

covariance matrix attached to the zero mean distribution from 

which Gaussian noise u is drawn. 

 ,0~ Nu  (4) 

Factor Analysis does not impose the constraint of a common 

variance for all features and furthermore has a probabilistic 

model associated with it in the form of a multivariate Gaussian 

    TNzP ,0  (5) 

Owing to the linear Gaussian semantics of the model, the 

observation space is also assumed to be Gaussian 

    ,zNzxP   (6) 

where Λ is of particular use as interpretation of its 

rows/columns reveals the relations between variables in the 

observation space. 

3) Mixtures of Factor Analyzers: For the situation where 

sub-populations exist in the observed data and multivariate 

dependency is non-homogeneous, the factor analysis model 

may be embedded in a mixture model [24]. 
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Extending the mixture model to factor analysis, allows 

multiple sub-populations in a sub-space to be captured. The 

mixture of factor analyzers (MFA) model is particularly 

appealing to the load profiling application as it encodes not 

only the broad customer behaviors in the form of the model 

means but also expresses the variability over a day in a 

compact parameter set which also relates the advance times in 

terms of their variability. 

C. Parameter Estimation and Model Order Selection 

Beginning with a set of smart meter data there are two 

stages to go through before a model can be obtained: model 

selection and parameter estimation. Model selection decides 

on the cardinality of the model, the number of mixture 

components and the number of factors in the case of the 

Gaussian Mixture and MFA models previously discussed. 

Optimization techniques that estimate the parameters of 

statistical models from exemplar data are often based around 

maximum likelihood estimation (MLE). Model order selection 

techniques often require parameters for a set of models to be 

learned then the optimal one chosen using some likelihood-

based measure such as BIC or Akaike information criterion 

(AIC): 

    MxPNXAIC
N

n

n 2log2,
1

 


  (8) 

These select the most likely number of parameters M while 

penalizing overly complex models of a data population of size 

N. Model complexity can harm the generalization capabilities 

of a model by encoding too many specific eventualities in it. 

While more complex parameter estimation techniques exist 

such as Monte Carlo-based methods and variational inference, 

for illustrative purposes, the simpler maximum likelihood 

estimate-based formulation of the Expectation Maximization 

algorithm [25] can be used on both the mixture models and the 

factor analyzers. 

VI. LEARNED RESIDENTIAL LOAD PROFILES 

To illustrate the models proposed in this paper, load models 

are learned for a group of 32 residential customers. Since load 

behavior is seasonal, separate load models are formed for each 

month. In the following examples, only January’s load models 

are shown. 

A. Gaussian Mixture Load Model 

Using the January meter data for 32 residential properties, 

50 Gaussian Mixture Models (GMM) were learned using 

maximum likelihood EM; from these 50 the optimal number of 
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mixtures was selected using BIC, the results of which are 

shown in fig. 3. Fig. 3 demonstrates a pronounced minimum at 

16 components but also reveals some important features of the 

data; the asymptotic behavior of the left-most extreme 

indicates that a single Gaussian distribution provides the 

poorest fit to the data which reinforces the need to provide for 

multimodal behaviour. Furthermore, a large number of 

behaviours does not adequately represent the behaviour of 

residential customers either – domestic loads would appear to 

have, as far as a Gaussian representation is concerned, a 

relatively small number of plausible forms, although as stated 

in the outset, not a single one. 

One advantage of the mixture model over say a neural 

network-based clustering approach such as a self organizing 

map is that an element of determinism can be obtained through 

inspection of the parameters. Fig. 4 shows the component 

means for the optimal parameterized GMM load model. This 

demonstrates the recurring load profile forms found in the 32 

residential properties over the January period. One limitation 

of the Gaussian Mixture Model load profile is that owing to 

the high dimensionality of the data, it has difficulty expressing 

the dependence between advance times present in residential 

loads. 

B. Mixture of Factor Analyzers Load Model 

For an MFA mixture, an additional consideration is added 

to the model selection process in that one can trade off 

between mixtures (which accommodate various expected load 

profiles) and subspace dimensions (which capture the drivers 

of the correlation and variance structure).The MFA models 

offer even further insight into the nature of the load profiles 

discovered. Full covariance structure can be obtained for all 

mixture components regardless of the dimensionality of the 

data or the sparseness of the subpopulation that forms a 

mixture component. A covariance matrix can be reconstituted 

from the factor loading matrix as shown in (5), an example of 

such a covariance matrix is shown in Fig. 5 as a heatmap 

representation: this shows how meter advances across the 48 

daily intervals influence each other for a given load profile. 

Dark red areas are strong positive correlations i.e., when a 

given (row) advance increases, the corresponding (column) 

advance increases. Blue areas show negative correlation – 

increases in (row) advance size result in decreases in 

corresponding (column) advance. The 48 dimensional 

representation can pose difficulties in articulating in the 

relationships between advances due to the high dimensionality 

of the data [26]. The additional advantage of the MFA model 

is that the factor loading matrix yields a representation of 

dependence between dimensions as a vector plot in the low 

dimension subspace. Fig. 6 shows one example of this from a 

single component. The vectors that correspond to each 

advance can be interpreted as follows [27]: The arrows are the 

eigenvectors of a covariance matrix with relative directions 

representing their implied linear dependence: alignment is high 

correlation while opposition is high negative correlation. Right 

angles imply linear independence. It should be noted here that 

correlation i.e., linear dependence is being modeled, this does 

not necessarily indicate the presence or absence of non-linear 

dependence – the MFA model approximates non-linear 

dependencies with piecewise linearity. In the example in Fig. 

6, advances at time periods 45–47 (10 P.M. to 11:30 P.M.) 

show a strong correlation reflecting late evening habits with 
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Figure 5: Example covariance matrix from one component of a GMM. Note 

the very strong correlations for the advances in the early hours of the morning. 

 
Figure 4: The 16 profile means found by the Gaussian Mixture. 

 
Figure 3: Selection of the optimal number of customer profiles a GMM load 

model should represent. 



 

 

6 

little temporal variation and duration in the order of hours. 

Similar dependence structures are exhibited during the early 

hours of the morning as Fig. 5 demonstrates. 

VII. RESULTS AND PRACTICAL CONSIDERATIONS 

This chapter shows how the above presented load models 

could be used in practice and compares their performance to 

existing load models. 

A. Load Model Allocation 

Before the learned load models can be used, they must be 

compiled into customer specific monthly load profiles. 

January’s load profile for all 32 customers can be compiled 

from the 16 previously learned day models, all we need to do 

is to find out which models best describe the customer’s 

behavior on each day of the week. As an example, Fig. 6 

shows how the Gaussian mixture load models are allocated for 

4 different residential customers. Customer 17 shows 

remarkably consistent behavior, exhibiting the same profile for 

both weekday and weekend usage. Customer 29 switches 

between multiple profiles although does sometimes remain in 

the same one for more than one day. Customer 5 exhibits a 

near perfect separation in weekday/weekend electricity usage 

while Customer 31 switches between 3 profiles, always 

exhibiting the same energy usage characteristics on a Sunday. 

A single Gaussian distribution is not enough to describe a 

customer’s behavior on each day of the week, so the final load 

model is constructed as a weighted average over all the 

mixtures in the model. This weighting is performed according 

to the occurrence counts of particular mixtures/profiles seen 

for a given customer during the period over which the training 

data was collected. 

B. Comparison to Existing Load Models 

In order to verify the accuracy of the proposed load modeling 

methodology, a comparison is made between the current 

British load modeling method (standard load profile), GMM 

and MFA. February’s load forecasts are created using these 

methods and the forecasts are then compared to the real 

measured values. Since we have measurement data from only 

one year, the GMM and MFA model parameters are learned 

from January’s data while February’s measurements are 

reserved for verification. The selected Standard Load Profile 

(SLP) corresponds to the geographical location and type of the 

studied loads (domestic unrestricted customers). Both the 

GMM and MFA models are constructed using 16 mixtures. 

With 16 mixtures, the AIC for MFA model is lowest with ten 

subspace dimensions. For comparison, a MFA model with two 

dimensions is also built. The load forecasts were scaled to 

match the estimated energy consumption in February. 

C. Load-Flow Calculation   

In practical applications, it is often important to estimate 

maximum (peak) or minimum (valley) loads. This is where the 

models of load variability are needed. When we know the load 

variability, we can calculate peak or valley loads with different 

confidence levels. In Finnish network calculation, 95% 

confidence is typically used when calculating maximum line 

flows [28]. 

1) Simulation Network: The simulation network is based on 

a test network presented in [29]. Only the LV part of the test 

network is modeled in this study. The feeding MV network is 

modeled with a voltage source with 90 MVA short circuit 

power. The model incorporates a 500 kVA, 11 kV/433V 

ground mounted distribution transformer and four LV feeders 

each supplying 96 domestic customers. One LV feeder is 

modeled in detail and the other three are modeled as lumped 

loads, as shown in Fig. 7. The LV feeder is 300 meters long, it 

comprises two segments of cable, 150 m of 185 mm2 and 150 

m of 95 mm2 cable. Single-phase customer connections are 

distributed evenly along the feeder and are connected to the 

main feeder with 30 m long 35 mm2 service cables. Load 

points of phase L1 are populated with real metered data. 

2) Simulation Results: Statistical load flow was performed 

on the simulation network. Since there is no explicit method 

for summing log-normally distributed variables, the following 

simplification was made when summing loads during the load 

flow calculation: Expectation values and variances were 

calculated for the log-normally distributed loads, expectation 

values and variances were then summed and log-normal 

distribution parameters were recalculated as in [30]. Load flow 

was calculated for every half hour of February using three 

different load profiles: SLP, GMM and MFA based load 

profiles. With GMM and MFA models, 95% confidence level 

was used. Maximum line currents and minimum node voltages 

were calculated and compared with the values calculated with 

real measured loads. Fig. 8 shows the estimated and 

“measured” maximum currents and minimum voltages on the 

phase L1 of the simulation network main feeder. The current 

and voltage values achieved with GMM and MFA models are 

very close to the real maximum and minimum values. 

Designing or operating the LV network based on Standard 

Load Profiles would be difficult since they do not take the 

peak or valley load situations into account correctly. GMM 

and MFA models were superior compared to SLP model even 

though January’s load models were used to forecast February’s 

load. More accurate models could have been created if 

measurements from the previous February had been available. 
 

Figure 6: Demonstration of the daily variability of four residential customers 

with respect to day of the week. 
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Euclidean distance, Peak & Valley estimates and Peak & 

Valley estimates with 95% confidence, were calculated for 

both aggregated load estimates and their corresponding actual 

values; this comparison is shown in Table I. With GMM and 

MFA (2D) models, the smaller Euclidean distance 

demonstrates they track aggregated load significantly better 

than the ones calculated with SLP. The MFA (10D) had a poor 

fit when evaluating performance with Euclidean distance, 

which may be down to overfitting of the covariance matrices in 

the higher dimensional space. 

   

VIII. CONCLUSIONS 

This paper has presented several linear Gaussian model-based 

load profiling techniques that compactly capture multiple 

behaviors exhibited by residential customers who have 

traditionally been assumed to be homogenous. The 

combination of the modeling strategy and the smart meter 

advance data has permitted a representation that expresses not 

only load magnitudes at given times of day but also their 

variability and how these variabilities influence other times of 

use. The mixture model framework in which this is embedded 

allows multiple behaviors to be assumed with the statistically 

most likely one being used to categorize a given residential 

customer on a given day. In this way, dynamic customer 

behavior changes can be captured as they evolve with season 

or changes in routine. Such models have theoretical properties 

that permit ready use of sampling techniques that have been 

used to demonstrate gains in accuracy over existing load 

profile techniques. Such improvements are essential in the 

management of smaller and islanded power systems. Loss of 

performance in the MFA model may have stemmed from 

overfitting the covariance matrices. In further work, this could 

be prevented by considering a Bayesian formulation of MFA 

such as that proposed by [31], which has been shown to 

provide a more reliable estimate of optimal subspace 

dimensions. Attention should also now be turned to employing 

the computationally tractable Gaussian models in temporal and 

spatial models that could augment emerging state estimation 

tools [32] and models of regional energy density [33]. Both 

applications are increasingly important on LV networks as 

emerging services, such as storage, distributed generation, and 

demand response measures reach ever-higher penetration 

levels. 
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Corrigendum,                                                                    7.9.2017 

in respect of [P7], Section VI-B, reference to Fig. 6. 

The reference to Fig. 6 in Section VI-B refers to a missing figure, not to the Fig. 6 

located on page six. The reference to this missing figure was left to the paper 

accidentally after the figure had been removed to shorten the paper. The removed 

figure is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

Later in Section VII-A, the Fig. 6 located on page six is referred to correctly. 

   

 

    

 

 

 

Figure 6: Vector plot representation of a factor analyzer loading matrix. 
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Abstract— Accurate forecasting of loads is essential for smart
grids and energy markets. This paper compares the
performance of the following models in short-term load
forecasting: 1) smart metering data based profile models, 2) a
neural network (NN) model, and 3) a Kalman-filter based
predictor with input nonlinearities and a physically based main
structure. The comparison helps method selection for the
development of hybrid models for forecasting the load control
responses. According to the results all these three modeling
approaches show much better performance than 4) the
traditional load profiles and 5) a static outdoor temperature
dependency model applied with a lag.  The neural network
model was the most accurate in the comparison, but the
differences of the three methods developed were rather small
and also other aspects and other methods must be considered
and compared when selecting the method for a specific purpose.

Index Terms-- power demand, demand forecasting, load
modeling, prediction algorithms, artificial neural networks.

I. INTRODUCTION

Accurate estimation and forecasting of loads is a necessary
enabler for the development of smart grids, energy markets
and customer engagement. Starting from 2014 hourly interval
metered consumption data of almost every consumer are
recorded in Finland. With it the accuracy of load models and
forecasts can be much improved and different methods are
being developed for the purpose.

In the literature there are many papers that describe
various approaches to short-term load forecasting. Load
forecasting methods are reviewed in [1] except physically
based load response models that are initially reviewed in [2].
There are also papers on merging different approaches, e.g.
[3,4]. In 1989 a comparison of five short-term load forecasting
methods was published [5]. It included a state space method
with Kalman-filter, but without any physically based structure
or nonlinearities.

In this paper the focus is on short-term forecasting of the
total power of a large group of residential customers. It
compares the performance of three different approaches: 1)
load profiling method based on smart metering data and

clustering, 2) partly physically based model comprising a
physically based main structure and a Kalman-filter based
predictor with input nonlinearities, and 3) a Multi-Layer
Perceptron (MLP) neural network. For comparison, standard
customer class load profiles and a static polynomial fit with a
lag were also included in this study, because some similar load
forecasting approaches are still applied in the industry.
Results are summarized with tables using performance indices
Sum of Squared Errors (SSE), Root Mean Square Error
(RMSE), Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE), etc.

II. DEFINITION OF THE PROBLEM

A.  The Forecasting Task
The prediction task studied was at 9 a.m. to predict as

accurately as possible the next day total consumption of a
large group of small houses and apartments. It includes
forecasting both the hourly power and the daily energy.

B. Objectives of the Method Comparison
The objectives of the comparison included
• screening of methods for further development,
• learning about the relative merits and improvement

potential of the methods, and
• comparing the performance with some approaches

known to be applied in the industry.

C. The Data
The data set used in this study comprised two years (2009-

2010) of
• hourly interval measured consumption of  3516

individual small customers i.e. electricity consumers,
• measured outdoor temperature representative to the

studied power distribution area, and
• local outdoor temperature forecast available each day

at 9 a.m. for each hour in the load forecasting
horizon.

Only consumers with measured hourly power always under
50kW were included in the data set.  The data of the year 2009
were used in load model identification and the year 2010 data
were reserved exclusively for verification. The data are shown

This research was financially supported by the Finnish Smart Grids and
Energy Markets (SGEM) research program 2009-2014 of the Cluster for
Energy and Environment (CLEEN). The measurement data were provided by
the distribution operator KSS (Koillis-Satakunnan Sähkö Oy).



in Figures 1 and 2. In the temperature measurement of 2010
there are two gaps. In model verification those gaps were
filled with the latest temperature forecasts. In the model
identification and verification data the temperature ranges
were from -24.7 to 27.6 degrees C and from -29.5 to 32.8
degrees C respectively. Thus we can compare the performance
of the models also outside the identification range.

Figure 1. The data used for model identification (2009).

Figure 2. The data used for model verification (2010).

III. THE METHODS COMPARED

The following approaches or load models were compared.

A. Load Profiles
Customer class load profiles are widely used in

distribution network analysis, and in electricity retail risk
management and sales. The purpose of customer class load
profiles is to give estimates for the customer level loads and
their variability which can then be aggregated to higher level
estimates. In network planning and operation, the load profiles
are often used to predict future network loadings

1) Standard Customer Class Load Profiles

Finnish Electricity Association Sener (which later merged
to Finnish Energy Industries) has defined standard customer
class load profiles for 46 different customer groups. Their
usage is described in detail in [6].

The customer classification is usually stored in the electric
utility customer information system (CIS). In this case, the
studied customer group contained customers from 25 different
customer groups. A sum load profile was calculated for the
studied group of customers using these 25 standard customer
class load profiles and annual energies measured during the
identification year.

The advantage of using standard customer class load
profiles is that all the necessary information needed for
calculating load forecasts is already available in the existing
distribution management systems. The downside is that the
forecasting accuracy is hindered by the following factors:

• The electricity consumption habits are constantly
changing but the load profiles and customer
classification are rarely updated.

• The load profiles lack models for responses to
outdoor temperature and dynamic load control
actions that are applied based on market or network.

• Exceptionally behaving customers cannot be
modeled with the standard customer class load
profiles.

• Geographical differences in electricity consumption
are not modeled since the standard customer class
load profiles are used nationwide.

2) Cluster Load Profiles
In order to address shortcomings of the standard profiles,

we have developed a load profiling method that utilizes hourly
consumption measurements from previous year(s) and updates
both the customer class load profiles and customer
classifications [7]. The customers are grouped into similarly
behaving groups with the help of a K-means clustering
algorithm and cluster load profiles are calculated for each
cluster. In this paper, the original customer classification was
used as a starting point for the clustering and exceptionally
behaving customers were separated for individual load
profiling. This resulted in 25 cluster load profiles and 34
individual load profiles. Similarly to the standard customer
class load profiles, these profiles contained expectation and
standard deviation values for each hour of the year.

  Seasonal temperature dependency parameters (%/°C)
were calculated for each cluster using the method presented in
[8]. Temperature dependency parameters together with
measured (when applicable) and forecasted outdoor
temperatures from 24 previous hours were used to adjust the
hourly load forecasts.

When combined with temperature measurements and
forecasts, the smart metering based cluster load profiles
provide much better forecasts than the standard customer class
load profiles. The forecasting accuracy of the cluster profiles
still falls behind the best online forecasting methods but it has
other beneficial properties. The cluster load profile method
does not require continuous access to smart meter data. Delays
or interruptions in smart meter reading do not matter and the
measurement database needs to be accessed only once a year



when the cluster load profiles are updated. Only the outdoor
temperature measurements and forecasts need to be available
when the next day forecasts are made. The cluster load
profiles can also be used in the existing network calculation
software with very little changes.

The sum load could also be modelled with a separate sum
load profile similar to the individual load profiles. However, in
this case the aggregated cluster profiles performed better.
MAPE for the sum load profile was 4.38 % while the MAPE
for the aggregated cluster profiles was 4.09 %.

B. Neural Network Model
The advantage of neural network (NN) models compared

to other statistical methods is that they are able to learn
complex, nonlinear, and a priori unknown relationships
between input and output variables from the training data [9].
On the other hand, NN models are often difficult to interpret,
highly complex and not transparent.

Regarding the NN model we used the feed-forward Multi-
Layer Perceptron (MLP) network. The choice was based on its
simplicity and accuracy shown in previous studies [1]. MLP
consists of a network of simple processing elements (neurons)
and connections. Neurons are arranged in layers, namely the
input layer, the hidden layers, and the output layer. Each
neuron computes a weighted sum of the inputs, processes this
using a neuron transfer function (called also as activation
function; it should not be confused with a transfer function for
a linear dynamical system) and distributes the result to the
subsequent layer. The output signal of a single neuron can be
expressed as:

Where f denotes the neuron transfer function, j is the index of
the neuron, n is the number of neurons in input layer, xi is the
input from ith input neuron, wij is the weight between ith input
neuron and jth hidden neuron and bj is the bias of the neuron.

Training of the MLP network is performed using the Back-
Propagation (BP) algorithm, which adjusts iteratively the
weights of the network to minimize the error function, namely
the squared errors calculated between actual and desired
outputs. Regularization, such as so called early stopping, is
adopted to control over-fitting.

In this study, the standard MLP network with one hidden
layer was employed to learn a functional (non-linear)
relationship between input and output variables in order to
perform predictions.  In the model set-up, the output variable
consisted of the hourly power at time to be forecasted. The
input variables comprised well-known predictor variables, i.e.
timing variables (day of year, day of week, hour of day; all of
them transformed into continuous form) at time to be
forecasted, the length of day at time to be forecasted, as well
as lagged ambient temperature values (either forecasted or
measured) available at time when forecasting occurs i.e. at 9
a.m. previous day. Time-lags of ambient temperature were

determined empirically between 5 and 40 hours, finally with 5
hours interval. In general, the selected input variables aim at
describing temporal rhythm, light and temperature
dependence, as well as temperature delay of hourly electric
loads of a customer group.

The proposed MLP network model was trained using
Levenberg-Marquardt (LM) algorithm through 3000 training
epochs. For controlling the over-fitting, the standard early-
stopping strategy was adopted by stopping the training when
the internal error of the network calculated from the
identification/training data increased for 25 iterations. The
selection of feasible architecture of the network was based on
experimental tests, which showed that one hidden layer with
15 hidden nodes, sigmoid transfer functions for hidden units,
and linear transfer function for output are sufficient.

C. Kalman-filter Based Predictor with Input Nonlinearities
For this method comparison, the physically based model

main structure approach described in [10] was applied to the
data of this comparison. The model was built for the
aggregated sum of all the customers. Possible improvement of
the forecasting accuracy by clustering was not yet studied. The
structuring of the model into parallel linear model components
and their input nonlinearities was designed based on physical
information of the main load types. The submodels included in
the main structure are:

• electrical heating (transfer function model)
• electrical cooling (transfer function model)
• day length dependent lighting
• constant load component (constant)
• weekly rhythm for the year (a week long time series).

Adding some other submodels, such as an air-to-air heat
pump model, were also tested, but abandoned in this case,
because they did not improve the identification accuracy
adequately.

 Two of the included submodels (heating and cooling)
have outdoor temperature as an input variable and consist of
input saturation and a transfer function for a linear dynamical
system. The model structure allows adding more complex
static monotonic input nonlinearities that may still improve the
performance. Now this possibility was not even tried, because
it was considered better to keep model identification and
comparison as simple and clear as possible.

The linear dynamics are described by transfer functions of
the form

Gi(s) = yi(s)/ui(s)

Where s = j  and ui(s) and yi(s) are polynomials of s for the
input and output respectively for the submodel i. Each
submodel i has also a static input nonlinearity defined by
function fi(u), where u is the input signal to the whole model,

ui(t )= fi(u)

The model output y is the sum of the submodel outputs yi



where N is the number of submodels.

The submodels were identified one by one and the output
of the earlier identified submodels was subtracted from the
output y(t). Minimizing SSE was the objective of the
identification. The transfer functions were converted and
combined to state space form and a Kalman-filter based
predictor [10, 11] was designed using the Matlab® function
kalmd. The covariance matrices for the process noise and the
measurement noise were identified based on the identification
data and not updated during the verification phase. Thus
constant Kalman gain is applied during the forecasting, which
improves the robustness but may also reduce the accuracy.

D. Static polynomial fit with a lag
Static polynomial of order 4 and best lag was fitted and

applied for the yearly load dependency on outdoor
temperature. 8 hours lag gave the best fit. Submodels for
annually identified weekly rhythm and day length dependent
lighting load were included. Using seasonal weekly rhythm
models did not improve forecasting accuracy of the static
polynomial fit method nor the Kalman-filter based predictor.

In extreme temperatures the polynomial causes big errors
with the verification data. Applying temperature saturation to
the curve slightly improves the forecasting performance and
robustness, but it is not obvious how the saturation limits
should be defined. Thus we did not apply saturation limits in
the comparison.

E. Summary of the methods compared
The methods included in the comparison are recapped and

abbreviated in Table I. It was found out that the weather
forecast improves the performance of all the methods
substantially. For example, for the partly physically based
method it improved the MAPE of hourly power forecasts from
7.37 % to 4.57 %.  Thus only the results with the weather
forecasts are shown in the following. Possible reporting and
discussing the impacts of the accuracy of weather forecasts on
load forecasting performance is left to a future study.

TABLE I. THE METHODS COMPARED

Method Short Name
Standard customer class load profiles
(by SENER)

SENER load profiles

Best lag (8h lag) static temperature
dependency fit with 4th order
polynomial.

Static polynomial & lag

Cluster load profiles with seasonal
temperature dependency for daily
energy (Collection of linear models)

Cluster load profiles

Kalman-filter predictor in a physically
based component model structure
(linear submodel dynamics with input
saturations)

Partly physically based

 Neural network model with time-
lagged temperature values

Neural network model

IV. COMPARISON OF PERFORMANCE

A. Verification of performance indices
The external forecasting performance of the methods was

measured by comparing the forecasts and actual
measurements during the verification year. The forecasts
were normalized so that value 1 represents the time average
of the observed total load of the test group. Then the
following performance indices were calculated:

Sum of squared error of prediction (SSE) also
known as the sum of squared residuals
Root Mean Square Error (RMSE) =  root(mean(et

2))
Mean Absolute Error (MAE) = mean (|et|)
Mean Absolute Percentage Error (MAPE) that is the
mean of absolute errors divided by the observed
values (= mean(|pt|), where pt= 100 et /yt  ,where yt is
the observation at time t).

Here et is the forecasting error at time t. For more information
on measures of forecast accuracy read [12].

B. The results of the comparison
     Table II compares the verification results of the methods
in forecasting hourly energy and daily energy. The
performance index value differences between the cluster load
profiles and the partly physically based model do not exceed
90% confidence interval estimates. All the others do.

TABLE II. PERFORMANCE IN FORECASTING

Short name SSE RMSE MAE MAPE % Std
SENER load profiles 7.957 0.1477 0.1046 10.07 0.137
Static polynomial & lag 2.016 0.0743 0.0568 5.70 0.076
Cluster load profiles 1 0.874 0.0489 0.0335 3.09 0.047
Partly physically based 0.804 0.0469 0.0322 3.07 0.047
Neural network model 0.619 0.0412 0.0277 2.59 0.041

Short name SSE RMSE MAE MAPE %
SENER load profiles 275.8 0.1774 0.1345 0.00 -5.45
Static polynomial & lag 89.8 0.1012 0.0807 0.00 -0.53
Cluster load profiles 33.6 0.0620 0.0428 0.00 -1.19
Partly physically based 34.0 0.0623 0.0454 0.00 -0.07
Neural network model 27.8 0.0564 0.0393 0.00 -0.64

hourly energy forecast, normalised annual
energy

error %

daily energy forecast, normalised

C. Time series of forecasting errors
Figure 3 compares the time behavior of the forecasting

errors of the methods (error = forecast - measured). Due to the
limited resolution of the figures the envelope is seen rather
than the individual values of the forecasts. In summer the
relative differences in forecasting performance are clearly
visible, while in the middle of winter the neural network does
not seem to perform much better than the other methods.

D. Errors as a function of power
It was also analyzed how the size of errors depends on the

power at the same  moment.   For  all  the  methods  the  errors



Figure 3. Time series behavior of forecasting errors of the five methods.

grow as the power increases and the mutual differences in this
behavior are small and maybe insignificant, see Figure 4. The
cluster load profile method has some large  negative  errors
during high power situations but otherwise its errors roughly
equal the errors of the neural network method. See also Figure
5. The partly physically based method had slightly smaller
errors than the other methods in high power situations but in
all other situations slightly bigger errors.

Figure 4. The dependence of forecasting errors on power.

Figure 5. The biggest negative and positive forecasting errors, when the x
axis is sample hours ordered.

Figure 6 shows time series of the biggest forecasting errors
for 1) partly physically based, 2) cluster load profiles, and 3)
neural network methods respectively. It also gives the load to
be forecasted and the ambient temperature. All the models
have their biggest errors during the same special days at
Christmas time, when it was also cold.

Figure 6. The biggest forecasting errors for 2010 are on 22-24 December
when ambient temperature is low and the load high.



E. Assessment of the comparison and further steps
    It may is useful to develop new performance indices that
better take into account the real needs of the specific real
situation. For example, accurate forecasts are needed most
when the network loads or electricity whole sale market
prices are high.

   Because cheaper night time tariffs and partially storing
electric night time heating are applied in the studied area, the
daily load peak is near midnight, but the highest whole sale
market area prices were outside the night tariff.

    In this comparison the NN model was the most accurate
especially outside the peak load times. The cluster load
profile was second in accuracy in forecasting hourly powers,
but in forecasting the daily energies the physically based
model was slightly better regarding most of the performance
indices. During the critical times in winter the differences in
accuracy between the three main methods of the comparison
were small except for a small number of hours where the
clustering load profiles method forecasted too small loads.

The load profiling approaches do not require continuous
measurement of power. Adding feedback from power
measurement removed the annual energy error and improved
the other indices, such as the hourly energy forecast SSE from
33.6 to 29.0. The other methods assume that real time
measurement of the sum power of the target load group is
available at the forecasting moment. Starting at the beginning
of the year 2014 in Finland the hourly consumption of each
customer is read every night and after some hours the previous
day measurements are available for load forecasting.
Combining those measurements with real time measurements
from the distribution network enables estimation of the
aggregated power of the target group. The dependence on the
reliability and accuracy of the real time information is an
important issue to consider and to study further.

It is increasingly important that the models predict the
control responses. Physically based load forecasting models
can do that [13]. It is still unclear how and to what extent they
can be added to artificial neural network model or load
profiles. Forecasting control responses is a relevant topic for
future research. Physically based models include a-priori
information on the system which can help to maintain good
forecasting performance also in situations not included in the
identification data set.  In this study the temperature range in
verification was wider than in the identification and there the
accuracy of the partly physically based model was only
slightly and not significantly better. The results of the
comparison also indicate a need to study how the physically
based model can be improved regarding the seasonal
variations in the daily load profile.

In our initial studies with data from some other network
areas and years, it seems that the methods work well also with
them, but the relative order regarding the accuracy indices
may vary slightly. Further data and research are needed to
confirm that.

The predictions by the neural network model were the
most accurate in terms of the performance indices of Table II.

New situations that have not been experienced before may
include uncertainty, challenges and risks regarding the
prediction performance of purely data-driven NN models. In
addition, instead of the conventional MLP network it is
necessary to test more advanced NN and machine learning
techniques such as support vector machines and hybrid
methods as well. As a reference for the comparison standard
regression models combined with input nonlinearity are
needed, too. These and analysis of confidence intervals are
part of the planned future studies.

In order to better learn the benefits and limitations of
different approaches extensive evaluations are still needed
using data from several years and distribution areas. The
methods compared and their tuning and evaluation should also
be harmonized. Based on the literature, such as [1,3,4,13],
there are ample improvement possibilities to study.

V. CONCLUSION

Some promising methods were compared in short-term
load forecasting. The neural network was the most accurate in
this comparison, but the differences in performance were
rather small and the other methods have their inherent
strengths. We plan to study, merge and evaluate all the three
main approaches further.
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