8 research outputs found

    Adaptive Robot Framework: Providing Versatility and Autonomy to Manufacturing Robots Through FSM, Skills and Agents

    Get PDF
    207 p.The main conclusions that can be extracted from an analysis of the current situation and future trends of the industry,in particular manufacturing plants, are the following: there is a growing need to provide customization of products, ahigh variation of production volumes and a downward trend in the availability of skilled operators due to the ageingof the population. Adapting to this new scenario is a challenge for companies, especially small and medium-sizedenterprises (SMEs) that are suffering first-hand how their specialization is turning against them.The objective of this work is to provide a tool that can serve as a basis to face these challenges in an effective way.Therefore the presented framework, thanks to its modular architecture, allows focusing on the different needs of eachparticular company and offers the possibility of scaling the system for future requirements. The presented platform isdivided into three layers, namely: interface with robot systems, the execution engine and the application developmentlayer.Taking advantage of the provided ecosystem by this framework, different modules have been developed in order toface the mentioned challenges of the industry. On the one hand, to address the need of product customization, theintegration of tools that increase the versatility of the cell are proposed. An example of such tools is skill basedprogramming. By applying this technique a process can be intuitively adapted to the variations or customizations thateach product requires. The use of skills favours the reuse and generalization of developed robot programs.Regarding the variation of the production volumes, a system which permits a greater mobility and a faster reconfigurationis necessary. If in a certain situation a line has a production peak, mechanisms for balancing the loadwith a reasonable cost are required. In this respect, the architecture allows an easy integration of different roboticsystems, actuators, sensors, etc. In addition, thanks to the developed calibration and set-up techniques, the system canbe adapted to new workspaces at an effective time/cost.With respect to the third mentioned topic, an agent-based monitoring system is proposed. This module opens up amultitude of possibilities for the integration of auxiliary modules of protection and security for collaboration andinteraction between people and robots, something that will be necessary in the not so distant future.For demonstrating the advantages and adaptability improvement of the developed framework, a series of real usecases have been presented. In each of them different problematic has been resolved using developed skills,demonstrating how are adapted easily to the different casuistic

    State of the art for the systematic construction and analysis of i* models for assessing COTS-based systems development

    Get PDF
    This document presents the state of the art related with the systematic construction and analysis of i* models for assessing COTS-based systems development. The fist section presents an overview of the Component-Based Systems (CBS) development processes. As components are part of the architecture of the system, the second section introduces the evaluation of software architectures. The i* framework has been proved useful on the representation and evaluation of software architectures, including those containing COTS, the third section presents the i* framework and some other requirements engineering techniques. As the i* framework is agent-oriented, and so, the fourth section presents an overview of agent-oriented paradigm. Finally, as CBS development is an activity that seldom takes place from the scratch, we can tackle it as a process reengineering activity, because of that, section 5 outline the main issues in business process reengineering.Postprint (published version

    Adaptive Robot Framework: Providing Versatility and Autonomy to Manufacturing Robots Through FSM, Skills and Agents

    Get PDF
    207 p.The main conclusions that can be extracted from an analysis of the current situation and future trends of the industry,in particular manufacturing plants, are the following: there is a growing need to provide customization of products, ahigh variation of production volumes and a downward trend in the availability of skilled operators due to the ageingof the population. Adapting to this new scenario is a challenge for companies, especially small and medium-sizedenterprises (SMEs) that are suffering first-hand how their specialization is turning against them.The objective of this work is to provide a tool that can serve as a basis to face these challenges in an effective way.Therefore the presented framework, thanks to its modular architecture, allows focusing on the different needs of eachparticular company and offers the possibility of scaling the system for future requirements. The presented platform isdivided into three layers, namely: interface with robot systems, the execution engine and the application developmentlayer.Taking advantage of the provided ecosystem by this framework, different modules have been developed in order toface the mentioned challenges of the industry. On the one hand, to address the need of product customization, theintegration of tools that increase the versatility of the cell are proposed. An example of such tools is skill basedprogramming. By applying this technique a process can be intuitively adapted to the variations or customizations thateach product requires. The use of skills favours the reuse and generalization of developed robot programs.Regarding the variation of the production volumes, a system which permits a greater mobility and a faster reconfigurationis necessary. If in a certain situation a line has a production peak, mechanisms for balancing the loadwith a reasonable cost are required. In this respect, the architecture allows an easy integration of different roboticsystems, actuators, sensors, etc. In addition, thanks to the developed calibration and set-up techniques, the system canbe adapted to new workspaces at an effective time/cost.With respect to the third mentioned topic, an agent-based monitoring system is proposed. This module opens up amultitude of possibilities for the integration of auxiliary modules of protection and security for collaboration andinteraction between people and robots, something that will be necessary in the not so distant future.For demonstrating the advantages and adaptability improvement of the developed framework, a series of real usecases have been presented. In each of them different problematic has been resolved using developed skills,demonstrating how are adapted easily to the different casuistic

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    In pursuit of autonomous distributed satellite systems

    Get PDF
    A la p脿gina 265 diu: "In an effort to facilitate the reproduction of results, both the source code of the simulation environment and the configuration files that were prepared for the design characterisation are available in an open repository: https://github.com/carlesaraguz/aeossSatellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per sat猫l路lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanit脿ries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d鈥檕bservaci贸 de la Terra (OT) estan explorant la idone茂tat dels Sistemes de Sat猫l路lit Distribu茂ts (SSD), on m煤ltiples observatoris espacials mesuren el planeta simult脿niament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribu茂ts i, tot i que s贸n possibles gr脿cies a l鈥檃cceptaci贸 de les plataformes de sat猫l路lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d鈥檈lls s贸n els pilars principals d鈥檃questa tesi, en concret, la concepci贸 d鈥檈ines de suport a la presa de decisions pel disseny de SSD, i la definici贸 d鈥檕peracions aut貌nomes basades en gesti贸 descentralitzada a bord dels sat猫l路lits. La primera part d鈥檃questa dissertaci贸 es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits sat猫l路lits amb actius tradicionals. Es presenta un entorn d鈥檕ptimitzaci贸 orientat al disseny basat en metodologies d鈥檈xploraci贸 i comparaci贸 de solucions. Els objectius d鈥檃quest entorn s贸n: la selecci贸 el disseny de constel路laci贸 m茅s 貌ptim; i facilitar la identificaci贸 de tend猫ncies de disseny, regions d鈥檌ncompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d鈥橭T, els requeriments del sistema i l鈥檈xpressi贸 de prioritats no nom茅s s鈥檃rticulen en quant als atributs funcionals o les restriccions monet脿ries, sin贸 tamb茅 a trav茅s de les caracter铆stiques qualitatives com la flexibilitat, l鈥檈volucionabilitat, la robustesa, o la resili猫ncia, entre d鈥檃ltres. En l铆nia amb aix貌, l鈥檈ntorn d鈥檕ptimitzaci贸 defineix una 煤nica figura de m猫rit que agrega rendiment, cost i atributs qualitatius. Aix铆 l鈥檈quip de disseny pot influir en les solucions del proc茅s d鈥檕ptimitzaci贸 tant en els aspectes quantitatius, com en les caracter铆stiques dalt nivell. L鈥檃plicaci贸 d鈥檃quest entorn d鈥檕ptimitzaci贸 s鈥檌l路lustra en dos casos d鈥櫭簊 actuals identificats en context del projecte europeu ONION: un sistema que mesura par脿metres de l鈥檕ce脿 i gel als pols per millorar la predicci贸 meteorol貌gica i les operacions marines; i un sistema que obt茅 mesures agron貌miques vitals per la gesti贸 global de l鈥檃igua, l鈥檈stimaci贸 d鈥檈stat dels cultius, i la gesti贸 de sequeres. L鈥檃n脿lisi de propietats arquitecturals ha perm猫s copsar de manera exhaustiva les caracter铆stiques funcionals i operacionals d鈥檃quests sistemes. Amb aix貌, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l鈥檃utonomia. Minimitzar la intervenci贸 de l鈥檕perador hum脿 茅s com煤 en altres sistemes espacials i podria ser especialment cr铆tic pels SSD de gran escala, d鈥檈structura din脿mica i heterogenis. En els SSD s鈥檈spera que l鈥檃utonomia solucioni la possible incapacitat d鈥檕perar sistemes de gran escala de forma centralitzada, que millori el retorn cient铆fic i que n鈥檃puntali les seves propietats emergents (e.g. toler脿ncia a errors, adaptabilitat a canvis estructural i de necessitats d鈥檜suari, capacitat de resposta). Es proposa un sistema d鈥檕peracions aut貌nomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a trav茅s del raonament local, l鈥檃ssignaci贸 individual de recursos, i les interaccions sat猫l路lit-a-sat猫l路lit. Al contrari que treballs anteriors, la presa de decisions aut貌noma s鈥檃valua per constel路lacions que tenen com a objectius de missi贸 la minimitzaci贸 del temps de revisita global.Postprint (published version

    In pursuit of autonomous distributed satellite systems

    Get PDF
    Satellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per sat猫l路lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanit脿ries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d鈥檕bservaci贸 de la Terra (OT) estan explorant la idone茂tat dels Sistemes de Sat猫l路lit Distribu茂ts (SSD), on m煤ltiples observatoris espacials mesuren el planeta simult脿niament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribu茂ts i, tot i que s贸n possibles gr脿cies a l鈥檃cceptaci贸 de les plataformes de sat猫l路lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d鈥檈lls s贸n els pilars principals d鈥檃questa tesi, en concret, la concepci贸 d鈥檈ines de suport a la presa de decisions pel disseny de SSD, i la definici贸 d鈥檕peracions aut貌nomes basades en gesti贸 descentralitzada a bord dels sat猫l路lits. La primera part d鈥檃questa dissertaci贸 es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits sat猫l路lits amb actius tradicionals. Es presenta un entorn d鈥檕ptimitzaci贸 orientat al disseny basat en metodologies d鈥檈xploraci贸 i comparaci贸 de solucions. Els objectius d鈥檃quest entorn s贸n: la selecci贸 el disseny de constel路laci贸 m茅s 貌ptim; i facilitar la identificaci贸 de tend猫ncies de disseny, regions d鈥檌ncompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d鈥橭T, els requeriments del sistema i l鈥檈xpressi贸 de prioritats no nom茅s s鈥檃rticulen en quant als atributs funcionals o les restriccions monet脿ries, sin贸 tamb茅 a trav茅s de les caracter铆stiques qualitatives com la flexibilitat, l鈥檈volucionabilitat, la robustesa, o la resili猫ncia, entre d鈥檃ltres. En l铆nia amb aix貌, l鈥檈ntorn d鈥檕ptimitzaci贸 defineix una 煤nica figura de m猫rit que agrega rendiment, cost i atributs qualitatius. Aix铆 l鈥檈quip de disseny pot influir en les solucions del proc茅s d鈥檕ptimitzaci贸 tant en els aspectes quantitatius, com en les caracter铆stiques dalt nivell. L鈥檃plicaci贸 d鈥檃quest entorn d鈥檕ptimitzaci贸 s鈥檌l路lustra en dos casos d鈥櫭簊 actuals identificats en context del projecte europeu ONION: un sistema que mesura par脿metres de l鈥檕ce脿 i gel als pols per millorar la predicci贸 meteorol貌gica i les operacions marines; i un sistema que obt茅 mesures agron貌miques vitals per la gesti贸 global de l鈥檃igua, l鈥檈stimaci贸 d鈥檈stat dels cultius, i la gesti贸 de sequeres. L鈥檃n脿lisi de propietats arquitecturals ha perm猫s copsar de manera exhaustiva les caracter铆stiques funcionals i operacionals d鈥檃quests sistemes. Amb aix貌, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l鈥檃utonomia. Minimitzar la intervenci贸 de l鈥檕perador hum脿 茅s com煤 en altres sistemes espacials i podria ser especialment cr铆tic pels SSD de gran escala, d鈥檈structura din脿mica i heterogenis. En els SSD s鈥檈spera que l鈥檃utonomia solucioni la possible incapacitat d鈥檕perar sistemes de gran escala de forma centralitzada, que millori el retorn cient铆fic i que n鈥檃puntali les seves propietats emergents (e.g. toler脿ncia a errors, adaptabilitat a canvis estructural i de necessitats d鈥檜suari, capacitat de resposta). Es proposa un sistema d鈥檕peracions aut貌nomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a trav茅s del raonament local, l鈥檃ssignaci贸 individual de recursos, i les interaccions sat猫l路lit-a-sat猫l路lit. Al contrari que treballs anteriors, la presa de decisions aut貌noma s鈥檃valua per constel路lacions que tenen com a objectius de missi贸 la minimitzaci贸 del temps de revisita global
    corecore