
Adaptive Robot Framework: Providing
Versatility and Autonomy to Manufacturing
Robots Through FSM, Skills and Agents

Thesis Dissertation

August 30, 2017

Héctor Herrero Cueva

Supervisors:
Karmele López de Ipiña

Damien Sallé

(cc) 2017 HECTOR HERRERO CUEVA (cc by-nc 4.0)

I

To my family. Thank you for everything!
and of course... to the love of my live:
we got it!

II

Acknowledgements

First of all I would like to thank Tecnalia for giving me this opportunity. Throughout
these years the resources and the support that I have received have helped me to reach
where I have arrived.

Moreover, on the one hand I would like to thank to my advisor in the University
side, Prof. Karmele López de Ipiña, for her help and above all for her positivity and
optimism. You have managed to keep me motivated in the times when it was uphill.

On the other hand, I can not forget my advisor in Tecnalia’s side, Dr. Damien
Sallé, I have to thank his support, but especially, I would like to thank for trusting
on me. Your sincerity and constructive criticism have made me better professional.
Thank you for transmitting that balance between the excellence and pragmatism.

At this point has arrived the turn of all colleagues who have accompanied me
during all these years, not only to the Robotics team, but also to all Tecnalia people
with whom I have shared coffees, meals and more. I would like to thank the good
atmosphere they generate, which allows to be distracted and have a laugh, even when
the results resist or do not arrive. It is an honour to work with you.

Special mention is for my family, thank you very much for your support along this
years. In the end it will be true that every sacrifice has its reward. I can only thank
the instilled values and sense of responsibility.

Last but not least, I would like to express my greatest appreciation to the most im-
portant person in my life. Thank you for encouraging me to embark on this adventure,
and above all, thank you for supporting and accompanying me all this time. I should
apologize for my long and boring talks about robotics, although I think you can admit
that the robots are cool! Without your help I would not have been able to get here,
we got it!

Part of this work has been developed in the LIAA (Lean Intelligent Assembly
Automation) project from the European FP7 program (FP7/2007-2013) under grant
agreement No. 608604. In the same way part of the work has been developed in the
ReCaM (Rapid Reconfiguration of Flexible Production Systems) project from the Eu-
ropean Union’s Horizon 2020 research and innovation program under Grant Agreement
No. 680759.

III

IV

Contents

1 Introduction 3
1.1 Introduction . 4
1.2 Motivation . 5
1.3 Objectives . 7
1.4 Structure . 7

2 State of the art 11
2.1 Nomenclature . 12
2.2 Robot programming techniques . 13
2.3 Summary . 18

3 Towards an improved adaptability 21
3.1 Introduction . 22
3.2 Robot system architectures . 22
3.3 What is missing in the existing frameworks? 23
3.4 Proposed architecture . 26
3.5 Flexible application development . 28

3.5.1 Software structure of an application 29
3.5.2 Execution engine . 29
3.5.3 Application to executable XML 30

3.6 Summary . 32

4 Capability oriented state machine 35
4.1 Introduction . 36
4.2 State machine for improved execution control, introspection and error

handling . 36
4.3 Core of the framework . 36
4.4 State/Primitive equivalence . 38

4.4.1 Cartesian/Articular motion . 38
4.4.2 Record trajectory . 40
4.4.3 Trajectory execution . 40
4.4.4 End-effector operation . 41
4.4.5 Vision operation . 41
4.4.6 Full body coordinated motion 41
4.4.7 Master/Slave mode . 42

4.5 Summary . 42

V

VI Contents

5 Skill based programming 45

5.1 Human skills translated to a robot . 46

5.2 Involved universities and institutions 46

5.3 Modelling an industrial process for skill based programming 47

5.3.1 Scene information . 48

5.3.2 Object information . 48

5.3.3 End-effector information . 49

5.3.4 Process definition . 51

5.4 Skill definition . 51

5.5 Skill library . 54

5.6 Skill parametrization . 55

5.7 Skill interaction . 55

5.8 Summary . 57

6 Agent based supervision 61

6.1 Agents in robotics . 62

6.2 Agent based supervision . 62

6.3 Emergency supervision agent . 63

6.4 Collision detection agent . 65

6.5 Joint temperature supervision agent . 66

6.6 Workspace supervision agent . 67

6.7 Summary . 67

7 Validation on industrial use-cases 71

7.1 Introduction . 72

7.2 Tested robots . 72

7.2.1 Kawada Nextage/Hironx . 73

7.2.2 UR10 . 74

7.2.3 Dual UR10 + torso + mobile platform 75

7.2.4 Dual UR10 custom configuration 76

7.2.5 Kuka IIWA . 77

7.3 Rivet installation into aeronautical composite parts 78

7.4 Deburring the drills of the lead edge ribs of the HTP 81

7.5 Telecommunications antenna assembling 84

7.6 Aeronautical undercarriage assembling 88

7.7 Summary . 91

8 Evaluation 93

8.1 Introduction . 94

8.2 Architecture tradeoff analysis . 94

8.3 Required development time evaluation 96

8.4 Discussion . 98

8.5 Summary . 100

Contents VII

9 Conclusions and future work 103
9.1 Conclusions . 104
9.2 Future work . 104

Bibliography 107

I Primitives and skills 121
I.a Primitives . 122

I.a.1 XML representation . 122
I.a.2 Python implementation . 122

I.b Skills . 123
I.b.1 Assembly skill . 123

II Publications 129
II.a Journal publications . 130

II.a.1 Journal article 1 . 131
II.a.2 Journal article 2 . 133

II.b Conference publications . 135
II.b.1 Conference paper 1 . 136
II.b.2 Conference paper 2 . 138
II.b.3 Conference paper 3 . 140
II.b.4 Conference paper 4 . 142
II.b.5 Conference paper 5 . 144

VIII Contents

List of Figures

2.1 Universal Robots teach pendant. 13
2.2 Key steps for off-line programming. 15
2.3 ABB’s Robotstudio screenshot. 16
2.4 Dassault Systèmes’ Delmia screenshot. 17

3.1 The combination of FSM, Skills and Agents provides an enhanced flex-
ibility. 27

3.2 Proposed overall architecture. The figure shows how it is divided into
three levels. 28

3.3 Software structure of the framework. 29
3.4 Application program fragment. 31
3.5 Simple GUI for new application development. 31

4.1 Proposed state machine-based architecture. The figure represents an
overview of the architecture. 37

4.2 Proposed state machine-based architecture in detail. The figure shows
existing states and transitions. 37

4.3 FSM guarantee the execution conflict avoidance. One operation must
finish before starting another one. 38

4.4 Trajectory execution state can be provided with trajectories from dif-
ferent sources . 41

5.1 Cell origin definition for improving human comprehension. 48
5.2 Fixtures and fixed element definition. 49
5.3 Required auxiliary frames for assembly operation (orientations have

been removed for reducing size of the figure). 50
5.4 Each object will be grasped with different gripper 51
5.5 Process file which contains the sequence of skills and primitives 52
5.6 Link between skill and primitive parameters. 53
5.7 Graphical representation of a pick and place skill 54
5.8 Skill and primitive parametrization using an easy-to-use GUI 56
5.9 Communication through Parameter Server. Dynamic operations require

obtaining the result from the Parameter Server 58

6.1 Agent based supervision . 63
6.2 Emergency signal supervision . 64
6.3 Collision detection agent . 65

IX

X LIST OF FIGURES

6.4 Temperature supervision agent . 66
6.5 Different zones are defined and the position of the worker is monitored 67
6.6 Workspace monitoring agent . 68

7.1 Kawada Nextage/Hironx robot . 73
7.2 UR10 robot . 74
7.3 Dual UR10 + torso + mobile platform. It is a Tecnalia’s custom robot 75
7.4 Dual UR10 Telnet’s robots . 76
7.5 Kuka IIWA robot (image obtained from [1]) 77
7.6 Deburring a drilling based on the vision result 79
7.7 Picking and inserting the rivet into a drilling 79
7.8 Install rivet process organized into skills. Skills are composed by primi-

tives. 80
7.9 Debur drilling skill mapping into the state machine. 81
7.10 Coordination between both arms’ timeline. 82
7.11 Manipulation process. The robot is taking parts from the store 83
7.12 Deburring process. The robot is detecting drillings through vision and

deburring them . 83
7.13 Decomposition of necessary skills for drilling deburring operation 85
7.14 State machine sequence in a debur drilling skill 86
7.15 Assembly skill adapts to different elements 86
7.16 Assembly skill configuration. The assembly skill is composed of different

elements and, as can be seen, can be composed of other skills 87
7.17 Nextage robot performing antenna assembly operations 88
7.18 Assembly skill configuration assembling and screwing parts. 89
7.19 Undercarriage assembly operation performed with a UR10 robot. 90

8.1 Comparison of the process development time according to its complexity. 97
8.2 Comparison of the process development time according to the number

of adjustments in element positions. 98
8.3 Comparison of the process development time when the robot provider

is changed. 98

List of Tables

3.1 Summary of the most relevant robot frameworks. 25

4.1 Summary of the main elements of the state machine. 39
4.2 Summary of the signals and transitions of the state machine. 40

5.1 Skill Based Progamming: involved institutions and different implemen-
tations. 47

7.1 Kawada Nextage/Hironx robot specifications [2] 73
7.2 UR10 robot specifications [3] . 74
7.3 Tecnalia’s custom dual UR10 + torso + mobile platform specifications

(based on UR10 specifications) . 75
7.4 Dual UR10 custom robot specifications (based on UR10 specifications) 76
7.5 Kuka IIWA robot specifications [1] . 77

8.1 Strengths and weakness of different robot programming approaches. . . 96

XI

XII List of Tables

Abstract

The main conclusions that can be extracted from an analysis of the current situation
and future trends of the industry, in particular manufacturing plants, are the follow-
ing: there is a growing need to provide customization of products, a high variation
of production volumes and a downward trend in the availability of skilled operators
due to the ageing of the population. Adapting to this new scenario is a challenge for
companies, especially small and medium-sized enterprises (SMEs) that are suffering
first-hand how their specialization is turning against them.

The objective of this work is to provide a tool that can serve as a basis to face
these challenges in an effective way. Therefore the presented framework, thanks to its
modular architecture, allows focusing on the different needs of each particular company
and offers the possibility of scaling the system for future requirements. The presented
platform is divided into three layers, namely: interface with robot systems, the execu-
tion engine and the application development layer.

Taking advantage of the provided ecosystem by this framework, different modules
have been developed in order to face the mentioned challenges of the industry. On the
one hand, to address the need of product customization, the integration of tools that
increase the versatility of the cell are proposed. An example of such tools is skill based
programming. By applying this technique a process can be intuitively adapted to the
variations or customizations that each product requires. The use of skills favours the
reuse and generalization of developed robot programs.

Regarding the variation of the production volumes, a system which permits a
greater mobility and a faster re-configuration is necessary. If in a certain situation
a line has a production peak, mechanisms for balancing the load with a reasonable
cost are required. In this respect, the architecture allows an easy integration of dif-
ferent robotic systems, actuators, sensors, etc. In addition, thanks to the developed
calibration and set-up techniques, the system can be adapted to new workspaces at an
effective time/cost.

With respect to the third mentioned topic, an agent-based monitoring system is
proposed. This module opens up a multitude of possibilities for the integration of
auxiliary modules of protection and security for collaboration and interaction between
people and robots, something that will be necessary in the not so distant future.

For demonstrating the advantages and adaptability improvement of the developed
framework, a series of real use cases have been presented. In each of them different
problematic has been resolved using developed skills, demonstrating how are adapted
easily to the different casuistic.

XIV

XV

XVI

Resumen

Las principales conclusiones que pueden extraerse tras realizar un análisis de las situa-
ción actual y tendencia futura de la industria, en concreto de las plantas de fabricación,
son las siguientes: hay una creciente necesidad de proporcionar personalización o “cus-
tomización” de los productos, una alta variación de los lotes de producción y tendencia
a la baja de la disponibilidad de mano de obra cualificada debido al envejecimiento
de la población. Adaptarse a este nuevo escenario está suponiendo un reto para las
empresas, sobre todo para la pequeña y mediana empresa (PyME) que está sufriendo
de primera mano cómo su especialización se está volviendo en contra.

El objetivo de este trabajo es proporcionar una herramienta que pueda servir como
base para afrontar estos retos de una manera efectiva. Para ello se presenta un entorno
de trabajo, que gracias a su arquitectura modular, permite encarar las diferentes ne-
cesidades de cada empresa en particular y ofrece la posibilidad de escalar el sistema
para futuras exigencias. La plataforma presentada en este trabajo está dividia en tres
capas, a saber: interface con los sistemas robóticos, el motor de ejecución y la capa de
desarollo de aplicaciones.

Aprovechando el ecosistema que brinda esta plataforma se han desarrollado dife-
rentes módulos que permiten atacar los mencionados retos de la industria. Por un lado,
para afrontar la necesidad de personalización de productos, se propone la integración
de herramientas que incrementen la versatilidad de la célula. Un ejemplo de estas herra-
mientas es la programación basada en habilidades. Aplicando esta técnica un proceso
puede adaptarse de manera intuitiva a las variaciones o personalizaciones que requiera
cada producto. El uso de habilidades favorece la reutilización y generalización de los
programas robot desarrolados.

En cuanto a la variación de los lotes de producción es necesario un sistema que per-
mita una mayor movilidad y una re-configuración lo más rápida posible. Si en cierto
momento una ĺınea tiene un pico de producción, se requieren los mecanismos necesarios
para poder balancear la carga con un coste razonable. En este aspecto la arquitectu-
ra permite integrar fácilmente diferentes sistemas robóticos, actuadores, sensores, etc.
además de que gracias a las técnicas desarrolladas de calibración y puesta a punto, el
sistema puede adecuarse a nuevos espacios de trabajo en un tiempo/coste efectivo.

Respecto al tercer aspecto mencionado, se propone un sistema de supervisión basa-
do en agentes. Este sistema abre una infinidad de posibilidades para la integración de

módulos auxiliares de protección y seguridad para la colaboración e interacción entre
personas y robots, algo que será necesario en un futuro no tan lejano.

Para demostrar las ventajas y el incremento de adaptabilidad que ofrece el entorno
de trabajo desarrollado, se presentan una serie de casos de uso reales. En cada uno de
ellos se resuelven problemáticas diferentes haciendo uso de las habilidades desarrolla-
das, demostrando cómo se adaptan fácilmente a diferentes casúısticas.

XVIII

XIX

XX

Publications

Part of the work presented in this thesis have appeared previously on the following
publications:

H. Herrero, J. L. Outón, M. Puerto, D. Sallé, and K. López de Ipiña, “Enhanced
flexibility and reusability through state machine-based architectures for multisensor
intelligent robotics,” Sensors, vol. 17, no. 6, p. 1249, 2017

H. Herrero, A. A. Moughlbay, J. L. Outón, D. Sallé, and K. L. de Ipiña, “Skill
based robot programming: Assembly, vision and workspace monitoring skill interac-
tion,” Neurocomputing, vol. 255, pp. 61 – 70, 2017. Bioinspired Intelligence for machine
learning

H. Herrero, J. L. Outón, U. Esnaola, D. Sallé, and K. L. de Ipiña, “State machine
based architecture to increase flexibility of dual-arm robot programming,” in Interna-
tional Work-Conference on the Interplay Between Natural and Artificial Computation,
pp. 98–106, Springer International Publishing, 2015

H. Herrero, J. L. Outón, U. Esnaola, D. Sallé, and K. L. de Ipiña, “Development
and evaluation of a skill based architecture for applied industrial robotics,” in Bioin-
spired Intelligence (IWOBI), 2015 4th International Work Conference on, pp. 191–196,
IEEE, 2015

H. Herrero, R. Pacheco, N. Alberdi, M. Rumayor, D. Sallé, and K. L. de Ipiña,
“Skills for vision-based applications in robotics application to aeronautics assembly
pilot station,” in EUROCON 2015-International Conference on Computer as a Tool
(EUROCON), IEEE, pp. 1–6, IEEE, 2015

M. J. Puerto, D. Sallé, J. L. Outón, H. Herrero, and Z. Lizuain, “Towards a
flexible production system environment server implementation,” in EUROCON 2015-
International Conference on Computer as a Tool (EUROCON), IEEE, pp. 1–6, IEEE,
2015

A. A. Moughlbay, H. Herrero, R. Pacheco, J. L. Outón, and D. Sallé, “Reliable
workspace monitoring in safe human-robot environment,” in International Conference
on EUropean Transnational Education, pp. 256–266, Springer International Publish-
ing, 2016

XXII

1

2

Chapter 1

Introduction

Contents
1.1 Introduction . 4

1.2 Motivation . 5

1.3 Objectives . 7

1.4 Structure . 7

3

4 Chapter 1. Introduction

1.1 Introduction

An analysis of the current situation of the industry, particularly in manufacturing
plants, allows to highlight three major trends[11]:

� An ever-increasing customization of products and short lifecycle, which requires
an increase in the flexibility of the production means (one unique system must
handle all of the product diversity and operations) [12, 13]. Robots fit perfect into
this topic due to their versatility; robot programs can adapt to the customisations
of the products.

� A large variation in production volumes, which requires an increase in the recon-
figurability of production (one system for one product/task within recombinable
production lines) [12, 14]. Robotic mobile platforms play an important role in
this trend; easy to move robots are necessary in some production chains where
production volumes change frequently.

� Limited access to skilled operators due to an ageing workforce, changes in educa-
tion and an ever faster technology development. This requires new solutions to
assist operators and provide collaborative work environments [15]. Collaborative
robotics are being developed for this topic.

The research addressed in this work focuses on providing a tool that can serve as a
basis to face these challenges in an effective way. Despite the large effort in the research
community, large companies, as well as small and medium enterprises (SME) still do
not have appropriate software tools and solutions to react rapidly with economic vi-
ability for an interesting return of investment for the automation of their processes.
The direct consequence is that mostly production operations are performed manually,
with high operation costs that endanger those companies with respect to lower wage
countries. This research is thus oriented toward developing and providing a software
ecosystem that allows for a rapid and efficient programming of production processes,
providing the required adaptability. Even if this approach is generic and applicable to
industrial manipulators, this work will use a dual-arm robotic system for demonstrat-
ing most of the use cases.

The dual-arm robots provide more dexterity, in addition to the advantage that
they can be used in the existing workstations. Due to these arguments the dual-arm
robot deployment is growing year by year, not only in large multinationals, but also in
SMEs. Sector experts [12, 16] affirm investments for robot deployment are amortised
in 1-2 years, however, this information cannot be extrapolated to all cases. However,
applications with short production batches, environments prone to many changes, and
processes that need human-robot collaboration or special environment supervision do
not comply with this trend. Dual-arm robots are being introduced in such contexts.
The growth of dual-arm systems [17] is resulting in many efforts made by robotic
researchers to manage them. Programming, coordinating and supervising bi-manual

1.2. Motivation 5

robots is a need that is increasingly being demanded by the community; even more
with the rise of collaborative robots, which have to integrate different sensors for cell
supervising and monitoring [18, 19]. In this scenario the need for actuation when ex-
ternal signals are received becomes essential, e.g., a person enters the workspace of the
robot and it must stop its movement and adapt its behaviour.

This is why Tecnalia [20] (and consecuently this research work) is involved not only
in several EU projects (LIAA [21], ReCaM [22], THOMAS [23], etc.), but also has
established a network of strategic contacts ranging from suppliers to industrial users
through integrators and engineering companies. In this way Tecnalia is in the position
of orchestrating the transference of science and technology to the real world, being one
of the main actors in applied research in Spain and Europe.

1.2 Motivation

Adapting to the current scenario in the industry, where everything changes at a never
seen before speed, is a challenge for companies, especially small and medium-sized en-
terprises (SMEs) that are suffering first-hand how their specialization is turning against
them. Years ago SMEs specialized in few products, and were competitive thanks to pro-
ducing large quantities of them, thus reducing production costs. However, nowadays,
having a big stock of products is risky, because the client can change the specifications
at any time. And, if this happens, you can have a customer who needs your order
urgently and a warehouse full of scrap.

This kind of situations arise when more adaptability is required: when production
series are short, when new reference is very different from preceding, etc. Large en-
terprises have expert engineers in robotics that can tackle cell adjustment within a
bounded period and cost. These expenses are not affordable for SMEs, they do not
have trained staff and it must be outsourced. In a sector in which more every day
flexibility in production lines is more and more important, lack of tools or resources to
adapt reduces considerably benefits of process automation.

Adapting robot applications to a changes prone environment using standard start-
up methods need weeks or even months, depending of complexity. Although there have
made great progress recently, robot programming is complex and time consuming. In
essence, process has to be reproduced with the robot, moving it with teach-pendant
and storing points that robot have to reach. After that, a program is written in robot
specific language with necessary instructions to complete the process. This method-
ology is denominated on-line programming and its main disadvantage is the lack of
adaptability against changes, since a little modification is needed all the process must
be reprogrammed and inspected. Moreover, security and integrity of the cell is not
assured, if an error in program is made would not detect until real execution. Then,
collisions may occur producing material damages.

6 Chapter 1. Introduction

Because of this, robot manufacturers have gone developing different kind of tools
that initially allow simulating programmed process and later program process with a
3D environment, which is denominated offline programming. Some examples of these
tools are: Robotstudio of ABB [24], Roboguide of Fanuc [25], Kuka Sim of Kuka [26],
etc. In spite of these solutions, increasing versatility, reducing down time and assuring
security and integrity of the production line, are currently, challenges that have much
room for improvement. On the one hand very trained staff is needed, and on the other
hand, obtained versatility is not enough as the cost of line adapting is too expensive,
and often unapproachable for SMEs.

In relation to large and complex production lines (generally located at large multi-
national enterprises as cars or aircraft builders, for example), are composed of a large
number of robots that usually cooperate and work together. Despite of tools that
robot manufacturers provide are very powerful and optimized for their robots, are not
designed for the complexity and requirements of some cells, e.g. process in which are
necessary robots from different manufacturers. Should keep in mind that the business
of robot builders is to sell robots, and they are not so interested in integration with
other robot manufacturers. For these purposes there are tools that allow to control
a large number of robots (can be from different manufacturers) and manage complex
process like automation and aeronautic assembling. Some examples of these tools are:
Delmia from Dassault Systèmes [27], RobCad from Siemens, RoboDK [28], etc. But
the main disadvantage of these solutions is cost of licenses, are clearly more expensive
that robot manufacturer’s tools, moreover experts in each solution are required because
there are important differences between them and a very steep learning curve.

One of the problem of large enterprises is that they usually outsource design task to
different external engineering companies, or in the case of some multinationals, design
process is made in different country than production. The lack of relation between
design process and manufacturing process causes, for example, if designers have to
change some features of CAD model, e.g. move drills positions, they may delete a
drill and make another one. This operation can seem innocuous for designers but in
manufacturing they are detecting features of the CAD model with previously men-
tioned software. So in certain situations they have to reprogram completely robot
process. Available tools are feasible for important enterprises because invest heav-
ily in research and development (R&D), but novel solutions that would allow taking
advantage between design information (CAD model) and manufacturing process, and
with it, reducing time and costs to adapt production lines would be highly appreciated.

Due the economic crisis that has been suffering since 2007, which shows very wor-
rying unemployment data, talking about automation is increasingly being linked to
the destruction of jobs. However, a multitude of analysis alerts that the growing age-
ing of the population will result in a loss of the necessary workforce for maintaining
the sustainability of modern society [29, 30]. These reports indicate that there is
an increasing trend of workers over 65. One of the alternatives for alleviating this
situation could be introducing robots [31], on the one hand for supporting and collab-
orating these persons, and in the other hand for supplying the lack of skilled operators.

1.3. Objectives 7

Everything commented in this section serves as motivation for creating a tool to
help companies, especially SMEs with fewer resources, to adapt to this changing world.
The intention of creating new framework and not use existing ones is justified with
the intention of exploiting it commercially. Being possible, in this way, an effective
technology transference between state of the art methods to real world applications.

1.3 Objectives

The objective of this work is to focus in the problematic of SME’s limitations for adopt-
ing new automation processes. Proposing new solutions for easier programming and
reducing start-up time is necessary, and a framework which integrate different state
of the art techniques must be developed. But our vision of a more flexible concept of
programming and implementation of robotic systems may interest to large companies
as well, consequently the proposed solution must be modular and scalable for adapting
to different requirements.

Thus, the main objective is to integrate different techniques in the state of art
to achieve a robust system that allows automating production lines so far were not
profitable, increasing productivity and competitiveness. Recently many progresses are
being made in skill based programming. The appropriate integration of these tech-
niques will result in a novel framework that allow to non expert operators become
robot trainer without excessive cost in formation.

With the intention of establishing the basis for collaborative future between human
and robots, implementing an agent based approach which allows supervising and op-
timizing the workspace is another important point of this thesis.

This concept of framework pretend to bring robot programming closer to actual
SMEs workers, in order to keep the employment and to banish the thought that the
automation removes jobs. In fact this kind of tools will increase productivity and
competitiveness of SMEs favouring growth and hiring. Usability of the framework will
considered a very important topic with the intention of encourage existing operators
become robot programmers/trainers of the future.

1.4 Structure

After this introduction, the background for this work is settled (Chapter 2). On the
one hand the nomenclature used in this thesis is presented, and on the other hand, a
review of the state of the art of robot programming techniques is presented. Additional
state of the art will be provided in the Chapters 3, 5 and 6.

8 Chapter 1. Introduction

This dissertation is the result of the analysis of the current situation of the manufac-
turing sector, the existing technologies and their limitations and the needs of various
actors in the sector; Chapter 3 introduces the framework that intends to deal with
these aspects.

Chapter 4 presents a finite state machine for execution control. Moreover a sub-
state machine is presented in which each state represents a capability of the the robot.

In Chapter 5 a relevant contributions in the integration of Skill based programming
and generalization of assembly processes have been presented.

With the objective of having an auxiliary supervision modules, the Agent based
supervision is presented in Chapter 6. Different examples of agents and their integra-
tion with the framework has been analysed.

The presented framework has been validated on different real industrial use cases.
In the Chapter 7 how to lead with different applications is shown. In some of them the
adaptability that provides the framework is evident by allowing to change the robotic
platform that is being used with a successful result.

In order to evaluate the performance and features in a objective way, in Chapter 8
a comparison between different architectures and robot programming techniques has
been performed. Based on different desirable qualities, a metrics of strengths and
weakness have been obtained.

The conclusions extracted after several years of research and testing are presented
in Chapter 9. In addition, this chapter analyses the future lines that this work opens
for robot programming and system supervising.

1.4. Structure 9

10 Chapter 1. Introduction

Chapter 2

State of the art

Contents
2.1 Nomenclature . 12

2.2 Robot programming techniques 13

2.3 Summary . 18

11

12 Chapter 2. State of the art

2.1 Nomenclature

On the following pages the readers will be able to find terms with which they are not
familiar in the context of this work. The next lines try to bring together these vocab-
ulary in order to clarify it in a brief summary.

Flexibility. This concept is one the most repeated in the context of automation
in recent times. Versatility could be a valid synonym, with the particularity that
flexibility adds connotations as adaptability to different production batch sizes.

Framework. Commonly used in computer programming for describing an ab-
straction which provides generic functionality that can be parametrize or configure for
application-specific cases. Translated to robotics and automation a framework provides
a standard way to build and deploy applications which interact with robots, sensors,
actuators, environment, etc.

State machine. In this work an implementation of Finite-State Machine (FSM)
for execution control is presented. This FSM has a direct mapping between robot
capabilities and states of the FSM, besides each state has a sub state machine for
managing execution control.

Execution Engine. It is the node responsible for managing applications, processes
and communication between them. This node contain the implementation of the state
machine.

Process. The sequence of actions for achieving a result. Related with an industrial
context, a process contains a series of tasks for accomplish different objectives with
specific requirements. In this work, the process file is also the executable program that
the framework will take as input.

Task. A group of operations that fulfil a concrete objective. A process require
performing a set of tasks for its completion.

Primitive. Unary operation that (conceptually) can not be subdivided into smaller
sub-operations. A hardware element can perform a limited set of primitives, in this
way, a primitive can be seen like a intrinsic capability of the hardware. For example,
a robot has Cartesian and joint space movement primitives.

Skill. Primitives can be grouped generating skills. The robot skills are the analogies
of human skills. In other words, a human can pick and place an object without taking
care about more than the object to pick, and the target to place. All the other needed
information is inferred due to the prior learning and experience. A robot skill for
pick and place allows a simple parametrization for achieving the result; thanks to the
previous development of sequencing the necessary primitives and the generalization of
commonly used parameters.

Action. When a process is translated to code, it can be composed by a sequence
of primitives and skills. The Execution Engine does not differentiate between both
concepts, thus, action nomenclature has been selected for process files.

Scene. The 3D reconstruction of the real world. A scene contains all the relevant
objects that are involved in a process.

Parameter server. A parameter server is a shared, multi-variate dictionary that
is accessible via network APIs. The parameter server is the mechanism used by the
Execution Engine for communicating primitives and skills.

2.2. Robot programming techniques 13

Figure 2.1: Universal Robots teach pendant.

Agent. Although there are multiple definition for agents, in this work can be de-
fined as follow: A persistent software entity dedicated to specific purpose. An agent
should be autonomous, however, it must have social abilities for communicating with
other agents or systems. The ability of reactivity must allows it perceiving the envi-
ronment through sensors and respond in accordingly.

ROS driver. In the text the author references that any robot that has the appro-
priate ROS driver will be supported by the presented framework. The “appropriate
ROS driver” means, at least, that a Unified Robot Description Format (URDF) of
the robot exists, and a ros control implementation offers the necessary mechanisms for
commanding the robot joints.

2.2 Robot programming techniques

Despite the fact that each automation project has its own particularities and it is very
difficult to estimate an indicative deployment time, it can be said that the required
effort can be weeks or even months. The idea that wants to be transmitted is that
they are complex projects that can involve lot of time and resources.

After the necessary, and usually critical, analysis and design phases of an automa-
tion project (that it is not the scope of this work), the robot programming phases can
be highlighted. These phases could be, in some cases, in which the most of the time is
invested, above all, for integration and final adjustments stages.

14 Chapter 2. State of the art

The most conventional approach, and paradoxically, the most popular method of
robot programming is the on-line programming [32, 33], i.e., using the teach pendant
of the robot. According to the British Automation and Robot Association [34], over
90% of robots are programmed using this method. This method consists in moving
the robot using the teach pendant (see Figure 2.1 as example) to point-to-point and
storing these robot positions individually. Depending of the robot brand different com-
mands must be used for specifying movements between stored points. When the whole
process has been taught the robot can play back the process at production speed. The
main advantage of the on-line programming is it simplicity. Technicians are familiar
with this kind of devices, thus simple tasks can be rapidly deployed. Regarding the
drawbacks, some of them can be presented. Guiding the robot through the desired
motion for complicated geometry pieces is not intuitive, requires high expertise and it
is time consuming. When the program is generated, lot of test are required for assuring
the reliability and safety of the process. These tests must be done with the real robot,
therefore the production must be stopped during the teaching process. The generated
programs with this approach lack of the flexibility and re-usability that current mar-
ket asks for. A slight difference in the workpiece could require repeating almost the
whole process of teaching. In spite of all the above mentioned drawbacks, as has been
commented, on-line programming is the most used programming method, above all,
for most SMEs.

In order to alleviate these drawbacks, the on-line programming has been evolving
toward off-line programming [33, 35, 36, 37], supported by more-and-more sophisticated
software for 3D simulation. Off-line programming software provides a 3D simulator
which allows creating the program that the robot must follow interactively, permitting
to test reachability and a fine-tune of the process parameters (assurance of normals,
straight lines, edge following, etc.). When the program is generated it has to be down-
loaded to the robot. Off-line programming offers many advantages over the on-line
method. First, it reduces downtime required for the robot, since the program is cre-
ated off-line and the actual robot is only needed when the program is downloaded
and tested in the real environment. Second, many approaches for solving the same
problem can be tested at time effective, unthinkable for on-line methods. Third, the
programs generated off-line are more flexible to changes. Intermediate points can be
easily moved, and sequence of movement can be easily reused too. Fourth, the simula-
tor allows optimizing robot trajectories, and minimizing errors and collisions. There-
fore, the productivity and safety is improved. The main drawbacks of the off-line
programming are the followings. The virtual environment probably never represents
the real world with 100% accuracy, thus programs may still need adjustments when are
deployed in the real environment. Besides, additional calibration procedures are nec-
essary for referencing robot system to virtual world. Another important disadvantage
affects more to SME, it is difficult to amortize the cost of necessary software licenses
and skilled staff for off-line programming. Even though off-line programming provides
more mechanisms for adapting and re-using existing programs, the learning curve is
steep and requires very skilled staff for programming and adjusting appropriately robot
programs. In the Figure 2.2 the key steps for off-line programming are presented.

2.2. Robot programming techniques 15

Figure 2.2: Key steps for off-line programming.

The first step of off-line programming is preparing the 3D environment. The soft-
ware frameworks allow importing CAD models of the parts that will be processed.
Moreover, additional components, such as, conveyors, profiles, tables, etc. can be in-
tegrated in the virtual world. The idea is generating the most realistic simulation as
possible. The next step is the creation of necessary tags and frames. The tools that the
robot will use must be specified and their tool center point (TCP) must be available.
In addition, local reference systems and auxiliary frames need to be created. After this
preparation, the trajectories of the robot are created. Depending of the used software
more automatic process or more operator intervention is needed. Some programming
software provide collision avoidance modules and only initial and final points have to be
provided. In other frameworks, instead, safe points must be provided in order to avoid
collisions with the environment and even with the robot itself. When the trajectories
are generated and validated, depending of other processes or another external reasons
the sequence of operations can be optimized. In order to avoid dead times, some pro-
cesses may be performed in parallel, or can be advanced. Then, in the post processing
step, external I/O signal are added and smoothing and fine tuning of the trajecto-
ries are performed. Of course, this step include the conversion or generation of robot
specific language programme. This program will the result that will be downloaded
to the actual robot. In this moment of the process the final simulations are carried
out. The process is analysed carefully in order to assure the reliability and safety of
the cell, if something is not correct it is necessary to return to the previous stage in
order to fix it. Finally, the last stage of the process is the calibration. This process
consists in referencing the 3D virtual environment with the reality. For this step there
are different approaches, such as, finding a reference point (zero point) with external
sensors or mechanically, referencing the workspace using computer vision techniques,
etc.

For off-line programming there is wide range of possibilities. On the one hand, each
robot manufacturer provide their own tools for off-line programming. Although they
are becoming more powerful, they are limited to the robots of their brand. Taking as
reference some of the more extended robot manufacturers, we can follow the following
frameworks: Roboguide from Fanuc [25], Kuka Sim from Kuka [26], ABB’s Robot-

16 Chapter 2. State of the art

Figure 2.3: ABB’s Robotstudio screenshot.

studio [24], Motosim from Motoman/Yaskawa [38], etc. Figure 2.3 shows an example
of brand specific off-line programming software. On the other hand, there are generic
off-line programming software that are more flexible for hardware from different manu-
facturers and provide tools for centralizing lot of processes (that use different hardware)
in the same virtual world. Major automotive and aeronautic manufacturers use these
packages for integrating all the automated production line. The main drawback of
this software stacks is the price off the licensing, they are very expensive, thus finding
skilled staff is therefore more complicated that with the robot manufacturers software.
Some examples of this kind of software can be Delmia from Dassault Systèmes [27],
Robotmaster [39] and RoboDK [28]. Figure 2.4 shows an example of generic off-line
programming framework.

There are other programming techniques that are increasingly less common, such
as the lead trough robot programming. Firstly smaller models of the robot were used
for replicating the desired movements by the operator. This was very expensive and
inflexible, because the model is completely dependant of the real robot and cannot be
used with another hardware. Moreover, the generated program can not be modified
or adapted to new workpieces. This approach was specially useful for spray painting
applications.

Nowadays, this teaching method has evolved to teach by demonstration techniques.
Robot mockups have been replaced by force sensors [40, 41, 42], even there are robots

2.2. Robot programming techniques 17

Figure 2.4: Dassault Systèmes’ Delmia screenshot.

with force sensors in their axes for allowing a compliant mode that allow manual guid-
ing, e.g. Kuka IIWA robot [1]. In fact, this approach is a very active research field.
Lot of authors are investigating techniques that gather different sources of informa-
tion for teaching processes [43], e.g., RGB-D sensors, voice, kinesthetic devices, etc.
The use of augmented reality has permit assisting the operators in the progamming
process providing aditional information [44, 45]. The “teach” word is being replaced
for “learn” since the robots are more and more autonomous [46, 47, 48]. However,
presented methods and technology are in research phase, and are not deployed in the
industry except in very specific cases, thus they are not a practical solution for a com-
pany, even less for a SME that can not count with a R&D department for applying
novel technologies.

After the revision of the current robot programming techniques results evident
that novel approaches are needed in order to reduce costs of changes prone processes.
The growth of new techniques allows SMEs improving their competitiveness and will
strengthen its capabilities to face the current situation of the manufacturing industry.

In this work, after analysing existing software solutions for industrial robot pro-
gramming, it has opted for the combination of different modules that composes a robot
programming framework. With the intention of improving the robustness, reliability
and introspection, a finite state machine that acts as core of the framework is proposed.
This state machine has the particularity that maps the robot capabilities in particular
states, achieving a higher modularity and a greater control for error handling. For

18 Chapter 2. State of the art

enhancing adaptability and promoting re-usability, skill based programming approach
has been integrated in the framework. All of this supervised by an agents provides a
higher level of safety not only for the operators but also for the hardware. In the fol-
lowing section the concept of a framework composed by these three legs for improving
versatility of robot applications is presented.

2.3 Summary

This chapter started with the nomenclature used in this work, it has been tried to put
in context the specific vocabulary for which is not familiar with. Afterwards, a state
of the art has been presented in order to settle a background for the rest of the work.
Specifically robotic programming techniques have been introduced, and, based on this
analysis, the shortcomings of the current systems have been highlighted.

2.3. Summary 19

20 Chapter 2. State of the art

Chapter 3

Towards an improved adaptability

Contents
3.1 Introduction . 22

3.2 Robot system architectures 22

3.3 What is missing in the existing frameworks? 23

3.4 Proposed architecture . 26

3.5 Flexible application development 28

3.5.1 Software structure of an application 29

3.5.2 Execution engine . 29

3.5.3 Application to executable XML 30

3.6 Summary . 32

21

22 Chapter 3. Towards an improved adaptability

3.1 Introduction

After presenting a background of robotics and existing methodologies for industrial
robot programming, the need of novel tools that enhance adaptability becomes evi-
dent. The existing tools are not cost-effective to deal with the real world challenges
(Section 1.2).

Due to this arising demand from the manufacturer industry, a robot programming
framework has been developed. This framework is the result of combining different
modules and technologies that have been specially selected for facing the challenges
of the industry. The developed framework aims increasing flexibility of automated
production lines that are not profitable enough, increasing productivity and competi-
tiveness.

Part of the work presented in this chapter is explained with more details in the
journal article [4] that can be found in the Appendix II.a.1.

3.2 Robot system architectures

The increase of robotic applications development, both in number and in complexity,
has the consequence that researchers have to construct different architectures based
on their own needs. In the literature there is no applicable standard, however, the
mainstream that has been following in recent years goes on the same path: monolithic
systems have been abandoned, towards distributed systems, due to their inability to
handle complex problems.

In recent years, many authors have worked in different architectural paradigms for
the robotic field. As a remarkable case, Amoretti, M. and Reggiani, M. [49] present
a clear analysis of three of the most used distributed architectures: distributed object
architecture (DOA), component-based architecture (CBA), and service-oriented ar-
chitectures (SOA). DOA combines object-oriented design techniques with distributed
computing systems; it is often used to identify fine-grained interfaces that need a strict
level of control on concurrency during multiple objects interactions. CBA, moreover,
is more oriented to the design of components that expose interfaces that are more
coarsely-grained than objects that deploy autonomous units with well-defined and un-
derstood purposes. Finally, SOA is generally used to loose the coupling of interacting
software entities that are self-contained; services can be used without knowing the
underlying platform implementation. As can be seen these paradigms have different
levels of abstraction, so they may be used according to the application.

When discussing about robotic architectures, besides the internal structure of the
source code, the application level architecture should not be forgotten, i.e. how the
execution of the different components or modules that interact with each other should
be managed. In this area different paradigms have been used; the most relevant ones
are listed below [50]:

3.3. What is missing in the existing frameworks? 23

� Function based architectures were the first approaches which were used, also
known as deliberative or hierarchical control architectures, following the top-
down sense-plan-act (SPA) approach.

� In behavior-based or reactive control architectures, however, there is no planning
phase. Inputs to actuators are direct output from a sensor. At this point we
should mention a very interesting example of behavior-based architectures: The
subsumption architecture by Brooks [51].

� Combining the previous approaches, hybrid architectures were developed with
the intention of addressing the problems of the function-based and behaviour-
based architectures, and to blend their qualities.

In a higher level of abstraction, which allows a new way of developing hybrid robust
architectures, we can find agent based paradigms. As Jennings and Wooldridge [52]
describe: “An agent is a computer system situated in some environment, and that is
capable of autonomous action in this environment in order to meet its design objec-
tives”. And an “agent-based system” means one in which the key abstraction used is
that of an agent. Innocenti [53] exposes an exhaustive review of existing robot control
architectures and also presents a multi-agent architecture for an autonomous robot
[54, 55]. Chapter 6 presents more details about agents in robotics.

Regarding the execution control and introspection, Finite State Machines (FSM)
are another point of view. These tools are commonly used for general-purpose pro-
cesses and, in particular, they have been extensively adopted by the robotic community.
FSMs are an easy way for describing behaviors and for modeling how components react
to different external and internal signals. Chapter 4 offers more details about FSM
and their applications in robotics.

Apart from the architecture technology or topology, it is of the utmost importance
how to interact with it. For working effectively with a robot architecture, a software
framework that provides a standard way to build and deploy applications is needed.
The framework must be reusable, and must provide the necessary tools for facilitating
the creation of new robotic applications.

3.3 What is missing in the existing frameworks?

In the literature many reviews of existing robot programming environments and frame-
works can be found [56, 57, 58, 59]. Nonetheless, there are not so many frameworks
that are actually “alive”. In a field as changing as robotics, it is necessary to have an
active community of not only developers, but also users that can provide feedback. Ta-
ble 3.1 resumes some of the most relevant robot frameworks that can be found currently.

Orca [60] and MRDS [61] have been losing relevance, there are not new releases
since 2009 and 2012 respectively. Regarding Player/Stage [62], different situation can

24 Chapter 3. Towards an improved adaptability

be mentioned; since Player (provides a network interface for to a variety of robot and
sensor hardware) has not been updated since 2010, Stage (a robot simulator that pro-
vides a virtual world populated by mobile robots and sensors) is being active lately.
It allows the integration of sonar, laser, pan-tilt-zoom cameras and odometry, however
it is oriented to mobile robots. Continuing with MRPT (Mobile Robot Programming
Toolkit) [63], this toolkit provides a wide variety of supported sensors: 3D range cam-
eras, 2D laser, 3D lasers, cameras, inertial sensors, gps, etc. Moreover, MRPT offers
a large library of modules for different applications: map managing, visual odometry,
SLAM (Simultaneous Localization And Mapping), etc. One remarkable plus point is
its compatibility with Windows, GNU/Linux and MacOS. Another relevant environ-
ment is OpenRAVE (Open Robotics Automation Virtual Environment) [64], it provides
an environment for testing, developing, and deploying motion planning algorithms in
real-world robotics applications. OpenRAVE provide very powerful manipulation and
planning algorithms, and above all, IKFast module [65] deserves an special mention
due to its good performance for solving analytically the inverse kinematics equations
for robot manipulators. One of the most relevant framework, the Orocos project
(Open RObot Control Software) [66], started with a European Project that involved
K.U.Leuven, LAAS Toulouse and KTH Stockholm. From this project, previously
mentioned Orca framework was presented. Orocos continued evolving and introduced
two new sub-modules, as complement to the core Real-Time Toolkit (RTT): Bayesian
Filtering Library (BFL) and Kinematics and Dynamics Library (KDL)[67]. KDL is
designed for working as application independent module and has become very valuable
tool for inverse and forward kinematics problems. Over time more libraries have been
incorporated to the Orocos project, e.g., rFSM [68] and iTaSC (instantaneous Task
Specification using Constraints) [69], converting Orocos in a very powerful framework.
With regard to ROS (Robot Operating System) [70] currently is, very likely, the most
used robot programming framework. In 2007, Willow Garage (robotics research lab
and technology incubator) presented the first version of ROS, and after it countless
researchers have been contributed to improving and adding new packages. Apart from
ROS features, it has become a huge database of packages for controlling any kind of
hardware: sensors, motors, manipulators, mobile vehicles, grippers, cameras, lasers,
etc. ROS has a large community of users worldwide, and combined with a collabora-
tive documentation wiki [71] and ROS Answers Q&A website [72] makes available to
users a very efficient support. This arguments in conjunction with the advantages of
the BSD license has drove the author for selecting ROS as base framework.

Entering in details, ROS is divided into three main components:

� Communication infrastructure. It allows message passing through publish/sub-
scribe mechanisms, these named buses are called topics. For synchronous re-
quest/response interaction ROS offers services. When topics and services are not
enough, if you need to initiate a goal-seeking behaviour, monitor its progress, be
able to preempt it along the way, and receive notification when it is complete,
ROS provides actions. Moreover, a parameter server is available for storing/re-
trieving parameters at runtime, it is shared by all nodes.

3.3. What is missing in the existing frameworks? 25

Table 3.1: Summary of the most relevant robot frameworks.

Framework Activity License Programming
Language

Documentation Ref.

Orca
Low activity (last
version: 2009)

LGPL/GPL C++ Poor [60, 73]

MRDS
Low activity (last
version: 2012)

MSDN C#, VPL Poor [61]

Player/Stage
Lately quite active
(last update: 2017)

GPL C++, Java,
TCL, Python

Poor [62, 74]

OpenRAVE
Active (last version:
2017)

LGPL/Apache C++, Python Rich [64, 75]

MRPT
Active (last version:
2017)

BSD C++ Rich [63, 76]

Orocos
Active (last update:
2017)

LGPL/GPL C++, LUA,
Python

Rich [66, 77]

ROS
Very active (last
version: 2017)

BSD C++, Python,
Lisp

Very rich [70, 78]

� Robot-Specific Features. ROS provides tf (transform) library for keeping track
of where different parts of the robot are with respect to each other. Besides, a
set of tools for describing and modelling robots are offered. Through the URDF
(Unified Robot Description Format) model, the physical properties of the robot
(from the lengths of limbs and sizes of wheels to the locations of sensors and the
visual appearance of each part of the robot) are described.

� Tools. Apart from the previously mentioned features, with rviz ROS provides a
3D visualization tool for displaying many sensor data and any URDF-described
robot. Furthermore, with the support of rqt (a Qt-based framework for devel-
oping graphical interfaces) different plug-ins are provided: for introspection and
visualization of a ROS applications (rqt graph), for plotting any kind of data
(rqt plot), for storing data for further analysis or repetition (rqt bag), etc.

ROS has not only very powerful packages for navigation (robot pose ekf, amcl,
gmapping, navigation) and manipulation (moveit), but also integrates some the most
relevant features of Orocos (KDL and rFSM) or OpenRAVE (IKFast). In addition, as
an extra compelling argument, in the 2013 DARPA Challenge (it is one of the most rel-
evant robot competition, it was funded by the US Defense Advanced Research Projects
Agency [79]) 18 of the 23 finalist teams used ROS [80].

It is not easy to justify the creation of a new framework, especially after seeing the
list of the frameworks developed over the last few years. Nevertheless, as WD. Smart
concluded [81], the fantasy of a common middleware for all robots should be forgotten;

26 Chapter 3. Towards an improved adaptability

the field of robotics is very vast, and more practical result will be obtained if it is
divided in subfields. Some middlewares as ROS or Orocos have evolved and improved
until becoming very powerful frameworks, however there is a drawback that arises when
industrial applications are being developed with them: the lack of specificity. One of
their major advantages, the generality, is translated into a loss of efficiency when real
world applications must be deployed. The need of industrial oriented development
tools, combined with the importance of controlling the core and development strategy
(especially when it is intended to be economically exploited) drives Tecnalia to bet
for a new framework. In the same position are other relevant research institutions
as Danish Technological Institute and Fraunhofer IPA that are developing their own
ROS-based frameworks (Co-worker and Drag&Bot respectively)

Nonetheless, the proposed framework is using ROS as baseline, which it implies that
different libraries of Orocos (KDL, rFSM, etc.) and OpenRAVE (IKFast) can be inte-
grated; in fact, it does, e.g., the Kinematics and Dynamics Library (KDL) is used for
computation of kinematic chains. Thus it is completely compatible with existing stan-
dards and offers the capabilities that are demanding from the manufacturing industry:
FSM for improving robustness, skill based programming for enhancing adaptability
and agents for increase autonomy and safety. In the following sections the internal
architecture and its alignment with an industrial applications will be presented.

3.4 Proposed architecture

The proposed architecture is composed by three main modules which, when combined,
can provide the necessary flexibility that the industry is asking for (Figure 3.1). With
the intention of improving the robustness, reliability and introspection, a finite state
machine that acts as core of the framework is proposed. This state machine has the
particularity that maps the robot capabilities in particular states, achieving a higher
modularity and a greater control for error handling. For enhancing versatility and
promoting re-usability, a skill based programming approach has been integrated in the
framework. All of this supervised by agents provides a higher level of safety not only
for the operators but also for the hardware. In the following lines the concept of a
framework composed by these three legs for improving adaptability of robot applica-
tions is presented.

The underlying software architecture allows absolute control and supervision of the
execution [6, 5]. In addition, it eases the programming of new applications by increas-
ing the re-usability of the developed modules. Through an easy-to-use graphical user
interface, operators are able to create, modify, reuse and maintain industrial processes
increasing the flexibility of the cell. As can be seen in the Figure 3.2, the architec-
ture is composed by three layers, namely: (i) robotic interface layer, that provides the
necessary interfaces and controllers for different robots [7]; (ii) execution engine layer,
to execute a broad portfolio of primitives and skills; and (iii) application development
layer, which allows to create, load and modify processes.

3.4. Proposed architecture 27

Figure 3.1: The combination of FSM, Skills and Agents provides an enhanced flexibility.

Throughout this research, all of the prototypes are being tested and validated in a
Kawada Nextage dual-arm robot and afterwards, exported to another robotic hardware
such as UR10 or Kuka IIWA (more details at Chapter 7). This hardware independence
is thanks to ROS paradigm that offers a common way of controlling robotic manipula-
tors. This interface works thanks to ros control package [82]. The ros control package
takes as input the joint state data from the robot’s actuator’s encoders and an input set
point. It uses a generic control loop feedback mechanism, typically a PID controller,
to control the output, typically effort, sent to the actuators. Thus, theoretically, all
the robots that implement ros control package could work under developed framework.

The execution engine layer is composed by a FSM that controls the execution sta-
tus. This module allows integrating robot skills as well as 3rd party modules such as
ROS MoveIt! [83]. More details of the FSM will be presented in the next chapter
(Chapter 4). The execution is supervised thanks to agents that can warn of different
kind of situations (emergency, temperature, hardware errors, etc.). More details of the
Agent Based Supervision will be presented at Chapter 6.

Regarding the application development layer, different ways of programming robots
are supported. On the one hand, thanks to a broad portfolio of functions that compose

28 Chapter 3. Towards an improved adaptability

Figure 3.2: Proposed overall architecture. The figure shows how it is divided into three levels.

a library for robot programming, the Script Programming module is available. It can
be understood as a robot Application Programming Interface (API), and is similar to
a robot vendor language. The main particularities are that can be programmed in
Python (a high level programming language) and the API is valid for all the robots
supported by the framework. In the next section (Section 3.5) an example of this ap-
proach is presented. On the other hand, novel programming approaches are supported
by the framework. Some examples can be CAD Based Programming, Programming
by Demonstration and Skill Based Programming. The Skill Based Programming is
one of the contribution made in this research work. Chapter 5 presents more details
of this approach. One of the main objectives of this work is increasing the flexibility
of the robotic applications, in the following section an example of the structure of an
application developed by the proposed framework is presented.

3.5 Flexible application development

The proposed architecture in this chapter contains everything necessary for deploying
varying robotic applications. One of the key advantages of the proposed work is that
different applications reuse the common structure of the framework.

3.5. Flexible application development 29

Figure 3.3: Software structure of the framework.

3.5.1 Software structure of an application

In order to ease the maintainability and assure software quality, the developed frame-
work is organized into different packages. In this way, following the ROS philosophy,
each package must fulfil minimum quality criteria.

The simplest application is composed by at least the following three packages: core
functions, application functions, and execution engine. Figure 3.3 illustrates these
packages (three columns) and the relation between them. As can be seen (from right
to left), the execution engine creates (instantiates) the state machines. Each state
machine controls a manipulator and has an instance of an application function (Riv-
etInstallation, AntenaAssembly, etc.). Application functions inherit from core func-
tions all of the attributes and methods, which allows using the robot basic operations
(Section 4.4), enhancing and particularising them for applying into specific industrial
applications. In this way, all the applications are composed by core functions (basic
operations) and application functions, which are a combination of the previous ones.
These function libraries basically configure the requests for the state machine filling
required parameters. This organization also allows having specific graphical user inter-
faces for each project (rivet installation gui) and a common one for basic robot guiding
or teaching (dashboard).

3.5.2 Execution engine

The execution engine creates as many threads as manipulators are configured in the
robot; these threads will contain instances of the proposed state machine. The exe-
cution engine will continue its execution managing the request of operations, i.e., the
execution engine is responsible for orchestrating the application flow.

30 Chapter 3. Towards an improved adaptability

At this point, it is important to think about the change of paradigm for executing
robotic applications. As has been explained here, there may be several “independent”
threads. As the proposed architecture is running under ROS, the state machine threads
are actually ROS nodes and basically act like threads with their own parametrisation
and independent behaviour. The execution engine communicates with these nodes via
ROS messages, which contain robot commands with the necessary parametrisation;
in this way, each node receives commands to execute and starts triggering the state
machine to the convenient state. When the operation is finished, the state machine
returns to the idle state. The heart of the matter remains in how these messages are
generated and managed (Section 3.5.3).

The consistency of the execution is guaranteed by the deterministic operation of
the state machine. Each node will not receive the next operation until necessary
synchronization requirements are met, i.e., until the execution engine can assure that
state machines are in the Ready state. Next chapter (Chapter 4) explains the details
of the state machine.

3.5.3 Application to executable XML

As mentioned above, applications are programmed in Python. Nevertheless, in order
to store, share and distribute a robot process, they are saved in XML files. In this XML
file a sequence of the functions available in core functions and application functions
(see Figure 3.3) is specified, with the particularity that each group of the robot (manip-
ulator, torso, head, etc.) can have his block of instructions. This is because each state
machine needs to execute operations both synchronously and asynchronously: in some
cases, a process requires both arms of the robot at the same time, e.g., a big part that
needs two arms for a correct handling; in other cases, some process can require the use
of both arms, but not at the same time. The XML files contain, in addition to the op-
erations, the necessary flags and synchronization tools to assure this coordination. In
this work, the simplest instruction for coordination is used: a wait instruction. This al-
lows one manipulator to wait until the other manipulator finishes its ongoing operation.

As can be seen in Figure 3.4, generating a simple application can be performed
writing each XML file by hand; however, when the application and complexity grow,
it is difficult to maintain the correct perspective and timeline, leading to errors. To
address this, a simple graphical user interface (GUI) can be used. The presented GUI
in Figure 3.5 obtains a list of available functions from core functions and application
functions packages (introduced in Section 3.5.1). For creating new applications, the
user has to add functions and parametrize them. With the help of the GUI many
programming errors are avoided, especially for the synchronization of available manip-
ulators, allowing a global vision of the execution flow. In Figure 3.5, at the right frame,
the application program is represented; the displayed example is for rivet installation
process. When the application is ready, an XML file is created, containing the list of
commands that each arm has to execute. The wait function represents the simplest

3.5. Flexible application development 31

Figure 3.4: Application program fragment.

Figure 3.5: Simple GUI for new application development.

32 Chapter 3. Towards an improved adaptability

synchronization mechanism, because in those time lapses, the other manipulator has
to wait until the active one finishes; therefore, in the generated XML file, this will be
translated as the wait synchronization operation.

3.6 Summary

This section presented the link between motivation (Section 1.2) and existing technol-
ogy. Considering the limitations of the available robot programming alternatives, a
new ROS-based framework has been proposed for obtaining higher flexibility and im-
proving the easy-of-use of robot programming tools. The architecture of the proposed
framework has been outlined, and moreover, how a robotic application is organized
has been presented.

3.6. Summary 33

34 Chapter 3. Towards an improved adaptability

Chapter 4

Capability oriented state machine

Contents
4.1 Introduction . 36

4.2 State machine for improved execution control, introspec-
tion and error handling . 36

4.3 Core of the framework . 36

4.4 State/Primitive equivalence 38

4.4.1 Cartesian/Articular motion 38

4.4.2 Record trajectory . 40

4.4.3 Trajectory execution . 40

4.4.4 End-effector operation . 41

4.4.5 Vision operation . 41

4.4.6 Full body coordinated motion 41

4.4.7 Master/Slave mode . 42

4.5 Summary . 42

35

36 Chapter 4. Capability oriented state machine

4.1 Introduction

In this section the details of the FSM that acts as the core of the framework are pre-
sented. This module acts as scheduler and not only manages the execution, but maps
robot capabilities into states of the FSM. Thanks to this paradigm a higher modularity
and a greater control for error handling is achieved.

Most of the work presented in this chapter has been published in a journal article
[4] and a conference paper [6] that can be found in Appendix II.a.1 and Appendix II.b.1
respectively.

4.2 State machine for improved execution control,

introspection and error handling

Regarding the execution control, state machines can address dual-arm challenges.
These tools are commonly used for general-purpose processes and, in particular, they
have been extensively adopted by the robotic community. In this aspect the work
made by different authors combining FSM with knowledge and skills is very relevant
[84, 85, 86]. State-machines are an easy way for describing behaviours and for mod-
elling how components react to different external and internal stimuli [87, 88]. In this
area there are different implementation alternatives, e.g., there are many projects using
Orocos rFSM [77]. rFSM is a small and powerful state-chart implementation designed
for coordinating complex systems such as robots. SMACH [89] is another implementa-
tion of state machines. It can be defined as task-level architecture for rapidly creating
complex robot behaviours. In this work SMACH has been selected for implementing
the state machine. One of the reasons is because SMACH can be used under ROS
[70, 78].

4.3 Core of the framework

One of the first requirements identified was introspection. Introspection in this context
refers to be able to provide the current execution state continuously, allowing us to
manage possible errors and improving the recovery from them. In Figures 4.1 and
4.2, the proposed FSM is outlined. In this case, if Kawada Nextage dual-arm robot
is taken as example, the FSM consists of two state machines, one per arm, with some
common states. These common states are used when synchronization of the arms is
required, i.e., when both arms have to move at the same time. This combination of
two state machines related by some common states provides some advantages: hav-
ing independent FSMs for processes that do not need dual-arm cooperation, and the
robustness that allows centralized states for dual-arm requiring processes. The use
of the SMACH/ROS combination provides some tools that are very useful for intro-
spection. SMACH uses ROS messages for publishing, besides other information, the
current state, thus any module of the software can be checked easily.

4.3. Core of the framework 37

Figure 4.1: Proposed state machine-based architecture. The figure represents an overview of the
architecture.

Figure 4.2: Proposed state machine-based architecture in detail. The figure shows existing states and
transitions.

When the application is launched, the system starts from a Ready state and keeps
changing to different states that can be seen as available abilities or capacities of the
robot. Note that some states have not been included in order to simplify the dia-
gram. These states are Pause/Stop, Error handling and Finish. The proposed FSM
allows either human or Agent Based Supervision (see Chapter 6) of the environment
and permits cancelling or adapting plans according to sensor values and perception
system information. When an error occurs, e.g., in a trajectory execution, the system
is able to cancel the current operation in order to handle the error and return to a safe
position (if possible) or enter in alarm state that requires operator intervention.

Thanks to the implicit properties of FSMs, each state machine ensures that conflicts
with received requests cannot occur. Ready states are intended to act as dispatchers,
i.e., they will handle operation requests triggering state machine to corresponding
state. If state machine is not in the Ready state, the request will have to wait until
the current operation finishes. Figure 4.3 shows how FSM avoids execution conflicts,
an unwanted situation in distributed environments.

38 Chapter 4. Capability oriented state machine

Figure 4.3: FSM guarantee the execution conflict avoidance. One operation must finish before starting
another one.

4.4 State/Primitive equivalence

Each state has been implemented as a module that generally is independent from the
core. Only a few modules have been defined as fundamentals. These special mod-
ules are Articular/Cartesian, Full body coordinated motion and Trajectory execution.
Figure 4.1 shows all available modules for this version. It should be emphasized that
according to the requirements of the different applications, the available states can be
updated by incorporating new capabilities or removing others that will not be used.

In order to understand the proposed architecture, Table 4.1 summarizes the differ-
ent states and their utility. In addition, Table 4.2 presents a summary of the signals
and transitions. Each state may contain a more or less complex structure according
to its purpose. For example, the structure of the Vision Operation state is simple,
containing only the calls to different vision functions. On the other hand, the Articu-
lar/Cartesian motion state is highly general, i.e., this state contains all of the required
code to manage motions both in Cartesian and articular spaces. For a state transition-
ing, different events are handled; these events can be thrown out by the Agent Based
Supervision system or by any module. In the following subsections a description of the
proposed states can be found.

4.4.1 Cartesian/Articular motion

This state manages robot movements both in Cartesian and articular (joint) spaces.
When a Cartesian or articular motion request is received by the Ready state, it triggers
the FSM to this state passing the required parameters. The parameters can be different
depending of the type of the movement, e.g., for Cartesian movements, goal position
and orientation must be provided. Instead, for articular movements, a list of joint goal
values must be provided. It must be emphasized that this state works for a unique
robot group (kinematic chain). Thus, must not be forgotten that the other arm’s FSM

4.4. State/Primitive equivalence 39

Table 4.1: Summary of the main elements of the state machine.

State Description

Ready The state machine is ready for receiving new instructions.
This state is waiting until the execution engine sends a new
request.

Cartesian
Articular
motion

Manages the robot movements both in the Cartesian space
and the articular space. If the movement cannot be executed
correctly there is an Error handling state to manage it.

Full body
coordinated

motion

Allows controlling both arms in coordination. Two arms
must be in this state to start coordinated motion. Sending
the values of the 15 joints of the robot is necessary.

Record
trajectory

Allows recording trajectories with a trajectory planner or
teaching by demonstration. These trajectories are stored in
a database for future use.

Trajectory
execution

Executes trajectories, provided by a trajectory planner or
previously stored in a database.

End-effector
operation

Manages end-effector operations; depending on the end ef-
fector, different operations can be made, e.g., gripper open/-
close, deburring tool activate/deactivate, screwing opera-
tion, etc.

Vision
operation

Manages different computer vision operations. This includes
picture acquisition, processing and reference frame transfor-
mation, among others. As the robotic system has multiple
vision systems, this state is responsible for managing them
depending on the operation that will be executed.

Master/Slave
mode

Puts robot in bi-manual coordinated manipulation mode;
one arm actuates as the master and the other one as the
slave. Consists of planning a trajectory for the master arm
and then computing this trajectory with an offset for the
slave arm.

40 Chapter 4. Capability oriented state machine

Table 4.2: Summary of the signals and transitions of the state machine.

State Signal Transition to

Ready motion request Cartesian/Articular motion
vision request Vision operation
end effector request End effector operation
... ...
end Finish

Cartesian ok Ready
Articular pause Pause
motion stop Stop

error Error handling
Pause resume Cartesian/Articular motion

stop Stop
error Error handling

Stop error Error handling
Error ok Ready
handling end Finish

can be executing Cartesian/articular movement of his associated robot group in the
same time. This behaviour repeats the all other states (except, of course, for special
states as Full body coordinated motion and Master/Slave mode).

4.4.2 Record trajectory

As its name suggests this state allows recording trajectories in a database for a further
use. This module permits using teach by demonstration techniques [40, 41, 42] to
generate and store movements in a database. The robot can be manually moved,
and then, its arms trajectories can be saved to repeat them in the future. Another
available feature, is generating trajectories through a trajectory planner, for example,
using ROS MoveIt! package [83]. When a trajectory is generated in MoveIt! it can be
pre-visualized and stored it in a database if desired. In case that the generated path
is not appropriate, is possible to reject the trajectory, and try to generate a new one.

4.4.3 Trajectory execution

This state groups trajectory execution operations. Trajectories can be provided from
different sources:

� Generated trajectory in runtime by a trajectory planner (e.g. ROS MoveIt!
package, Kineo, etc.).

� Loaded trajectory from a database (e.g. generated by a trajectory planner pre-
viously, stored using teach by demonstration techniques, etc.)

4.4. State/Primitive equivalence 41

Figure 4.4: Trajectory execution state can be provided with trajectories from different sources

� Provided by other node as a message (ROS trajectories can be stored in a message
composed by, among other things, points in space, velocity and acceleration at
each instant).

Figure 4.4 illustrates how Trajectory execution state manages different sources to
execute a trajectory when is requested.

4.4.4 End-effector operation

This states has the responsibility of the management of the end-effector operations
(e.g. opening or closing gripper, starting or stopping compressed air flow, starting or
stopping electric tool, etc.). These operations are determined by the application and
can be very different according to the robot and the end-effector characteristics. Sec-
tion 5.3 presents how the relation between end-effectors and objects to be manipulated
is managed.

4.4.5 Vision operation

This state is the responsible for managing different computer vision operations. As
vision applications vary greatly from one another, this state do not pretends to be
a library of vision. Instead, is oriented to be the manager of the resources for the
existing vision solutions. As a robotic system can has multiple vision system Vision
operation state is the responsible of activating/deactivating them to allow picture ac-
quisition, pointcloud generation, etc. It is also responsible to collect the results of
vision applications in order to link with successive operations.

4.4.6 Full body coordinated motion

Full body coordinated motion state is one of the special states of the proposed archi-
tecture. Figure 4.1 illustrates how in this state exists a relation with the other arm

42 Chapter 4. Capability oriented state machine

homonyms state. To understand the reason of this decision an example can be clari-
fying. In case of a movement request which implies robot torso or both arms, if this
movement is executed can cause a conflict, e.g., if one arm is moving and suddenly the
torso moves, collisions can be occur. That is to say, should not be possible to execute
two arm movement or movements that implies the torso until assure that two arms are
ready to do it. Thanks to intrinsic characteristics of the proposed FSM assuring that
each state machine is in Full body coordinate motion state is very easy. At this point,
potential conflicts between the arms have been controlled, and it is possible to attend
the requested operation.

4.4.7 Master/Slave mode

This state is other of the special states of the architecture. It is designed for bi-
manual coordinated manipulation tasks, and operates like previous state. Just as
above is mandatory that the two state machines are located in the Master/Slave mode
state. One of the state machines will be the master (provided by parameter in the
request) and the other one will actuate as slave. The master generates a trajectory
for manipulating an object, and after that the necessary trajectory for the slave is
computed. The slave’s trajectory must guarantee that the constraints for maintaining
an appropriate object handling are met. When two trajectories are generated both
state machines will start movement synchronized.

4.5 Summary

This section described the designed FSM for improved execution control, introspection
and error handling. Afterwards, it was shown how the core of the framework is imple-
mented, presenting a novel approach in which robot capabilities are linked to execution
states.

4.5. Summary 43

44 Chapter 4. Capability oriented state machine

Chapter 5

Skill based programming

Contents
5.1 Human skills translated to a robot 46

5.2 Involved universities and institutions 46

5.3 Modelling an industrial process for skill based programming 47

5.3.1 Scene information . 48

5.3.2 Object information . 48

5.3.3 End-effector information . 49

5.3.4 Process definition . 51

5.4 Skill definition . 51

5.5 Skill library . 54

5.6 Skill parametrization . 55

5.7 Skill interaction . 55

5.8 Summary . 57

45

46 Chapter 5. Skill based programming

5.1 Human skills translated to a robot

One of the most powerful features of the framework is the integration of skill based
programming approach. The framework is not only prepared for executing complex
C++/Python high-level functions, it is also ready for executing an infinite set of skills.
In this way, it is intended to take a further step in the integration of robots in environ-
ments commonly occupied by people. By modelling the skills of humans in order to
be interpreted by software systems, a more intuitive interaction want to be achieved.
Part of the work of this chapter has been published in a journal article [5] and some
conference papers [7, 9]. In the Appendix II.a.2 and Appendixes II.b.2 and II.b.4 the
full papers can be found.

Due to the transformation that the industry is suffering, one of the key factors for
increasing versatility of robotic solutions is reducing complexity and required expertise
for robot programming [90, 91, 92, 33, 93]. The classical way of programming robots,
e.g. using Teach Pendants and vendor-specific robot programming languages [92, 33],
requires high qualified staff and increases the costs of process automation, especially in
complex tasks where high adaptability is required. The need for easier programming
techniques has led to the elaboration of several alternatives that reduce programming
time and required expertise. Skill based programming is one approach to alleviate this
drawback: allows easy, simple and intuitive robot programming [90, 91, 94]. The robot
skills are the analogies of human skills. In other words, a human can pick and place an
object without taking care about more than the object to pick, and the target to place.
All the other needed information is inferred due to the prior learning and experience.

The approach of skill based programming is divided into three layers [95, 96]: prim-
itive, skill, and task layer. At the lowest level the idea is to model system capabilities in
simple and intuitive symbolic units. Examples of these symbolic units (or primitives)
can be the robot movement capability, both the movement in joint space and Carte-
sian space. Another example of primitive can be a gripper operation (open/close).
Any capability of the system which can act atomically can be termed primitive. In
the adjacent layer the skills are defined; the skills are combination of primitives. The
skills can be seen as human-like cognitive abilities [97, 98]: can combine perception for
decision taking increasing their autonomy, or by contrast, can perform simple pick and
place ability with provided object and place pose. The task layer has a more global
perspective. Tasks are composed of the required skills to achieve the objective. The
approach of task-level programming using skills is an alternative that many authors
have followed [99, 100, 101, 102].

5.2 Involved universities and institutions

Focused on the skill implementation approach, several alternatives of skill engines
have been developed in different EU projects, the did not succeded on summing up

5.3. Modelling an industrial process for skill based programming 47

Table 5.1: Skill Based Progamming: involved institutions and different implementations.

University or research center EU projects and main
publications

Fraunhofer (IPA) [103], followed its develop-
ment in SMErobotics [104]
and LIAA [21]

Tampere University of Technology (TUT) [105]

Aalborg University (AAU) [106, 107]

Danish Technological Institute (DTI) [108] and LIAA [21]

Technical University Munich (TUM) and
University of Bremen

RoboEarth [109] and Robo-
how [110] projects

German Aerospace Center (DLR) [99]

Catholic University of Leuven (KUL) PickNPack [111] and Sherpa
[112]

Fraunhofer IOSB, Karlsruhe Institute of
Technology (KIT) and the Research Cen-
ter for Information Technology (FZI)

[113]

efforts to get more mature and more applicable solutions to industrial use. Research
on flexible production lines using skills implementation is centralized in universities
and research institutes with a large capacity to research in basic sciences. It is an
indication of the low level of current developments. The universities and institutions
summarized in Table 5.1 lead a manner to implement flexible systems using semantics
and skills. Note that this revision of state of the art is explained with more details
in one of the conference papers that have served as contribution for this work [9] (see
Appendix II.b.4).

5.3 Modelling an industrial process for skill based

programming

Due to the variety of skill engines and implementations in the literature, and above all,
the absence of a standard, it is complicated to choose and follow an existing alterna-
tive. On this work, after analysing existing definitions and formalization of skills, has
decided to focus into a pragmatic approach which allows not only taking advantage of
skill based programming, but also being open and flexible enough for adapting current
Execution Engine to possible future standardisation.

When a human operator is using his innate skills for performing an operation or pro-
cess, lot of information is obviated, taken as intrinsic information of the process and of

48 Chapter 5. Skill based programming

the elements that it compounds. In order to make this information explicit the process
and the elements must be modelled. An automation process can be modelled repre-
senting the involved information in the following groups: scene, object, end-effector
and process information.

5.3.1 Scene information

In this section the virtual environment representation is stored. The scene contains
3D CAD models of all the elements that can interact with the robot or not, and at
any time elements can be added or be deleted. Developed framework takes advantage
of the MoveIt! features for virtual world representation [83]. This mechanism is called
planning scene, and it is used to represent the world around the robot and also stores
the state of the robot itself. The planning scene is publishing all of this information
to be accessible from all ROS nodes. In addition, the scenes can be stored into a file
for further re-use.

5.3.2 Object information

A scene is composed by a set of objects. In addition to their virtual representation,
the skills manage additional information. A set of transform frames (tf) [114] are
associated to each of the objects. These tfs are published into ROS and also are stored
in XML format. Three files can be differentiated into a typical application:

Figure 5.1: Cell origin definition for improving human comprehension.

<?xml version=”1.0” encoding=”UTF−8”?>
<transform>
<parent frame>base link</parent frame>
<child frame>cell origin</child frame>
<position>
<x>−0.79</x>
<y>0.0</y>
<z>0.0</z>

</position>
<orientation>
<rpy>
<r>1.57</r>
<p>0.0</p>
<y>1.57</y>

</rpy>
</orientation>

</transform>

5.3. Modelling an industrial process for skill based programming 49

1. Auxiliary frames: This file (see Figure 5.1) contains local reference system that
can improve human comprehension. Very useful when robot’s origin frame is in
another orientation than the workplace. As can be seen a tf contains a reference
system (parent frame) and the name of the frame (child frame). The position
and orientation of the frame is obtained applying the specified translation and
orientation to the reference system.

2. Fixtures: Figure 5.2 shows the way of representing the positions of the fixtures
or fixed elements in the scene. As can be seen the object is represented as child
of the previously defined cell origin frame.

3. Assembly part information: In this file (see Figure 5.3) process dependant aux-
iliary frames are defined. If a simple assembly operation is taken as example,
grasp, assembly point and target poses must be defined. For the robot to be
able to grasp correctly the object, a grasping position must be specified. The
assembly point indicates the exact point of contact of the object with respect to
desired target position. The target pose is the goal position of the object being
manipulated.

5.3.3 End-effector information

In this section the relation between the end-effectors and the objects is modelled. The
basic idea can be summarized as how the object is manipulated by the corresponding
end-effector. Each object to be manipulated, processed or assembled must appear in
this XML file, and for each operation that will suffer, a link with gripper or external
mechanical automatism must be established. Figure 5.4 shows how the objects can be

Figure 5.2: Fixtures and fixed element definition.

<?xml version=”1.0” encoding=”UTF−8”?>
<transform>
<parent frame>cell origin</parent frame>
<child frame>MLG BLOCK TOOLING calib</child frame>
<position>
<x>0.4375</x>
<y>−0.3025</y>
<z>0.13</z>

</position>
<orientation>
<rpy>
<r>0.0</r>
<p>0</p>
<y>0.0</y>

</rpy>
</orientation>

</transform>

50 Chapter 5. Skill based programming

Figure 5.3: Required auxiliary frames for assembly operation (orientations have been removed for
reducing size of the figure).

<transform>
<parent frame>ABS1384C16 1</parent frame>
<child frame>ABS1384C16 1 grasp</child frame> //grasp position
<position>
<x>0</x>
<y>0</y>
<z>0</z>

</position>
<orientation>
<rpy>

...
</rpy>

</orientation>
</transform>
<transform>
<parent frame>ABS1384C16 1</parent frame>
<child frame>ABS1384C16 1 assembly point</child frame>//assembly point
<position>
<x>0</x>
<y>0.02741</y>
<z>0</z>

</position>
<orientation>
<rpy>

...
</rpy>

</orientation>
</transform>
<transform>
<parent frame>MANIFOLD 1</parent frame>
<child frame>Axis System.10</child frame> //target position
<position>
<x>−0.041</x>
<y>0.0868</y>
<z>0.0445</z>

</position>
<orientation>
<rpy>

...
</rpy>

</orientation>
</transform>

5.4. Skill definition 51

Figure 5.4: Each object will be grasped with different gripper

<part name=”ABS1384C16 1”>
<operation name=”assembly”>
<open gripper function name = ”open electric gripper”>

<param value=”200”/> <!−− aperture (mm) −−>
<param value=”20”/> <!−− force (N) −−>

</open gripper>
<close gripper function name = ”close electric gripper”>

<param value=”0”/> <!−− aperture (mm) −−>
<param value=”20”/> <!−− force (N) −−>

</close gripper>
</operation>

</part>
<part name=”ABS1384C12 2”>
<operation name=”assembly”>
<open gripper function name = ”open pneumatic gripper”>
</open gripper>
<close gripper function name = ”close pneumatic gripper”>
</close gripper>

</operation>
</part>

grasped with different grippers by only defining them in the XML. This information
allows easing reconfiguration and increasing versatility of the developed skills. Pick
and place skill can be used for picking different objects with different end-effectors by
only incorporating this link to the proposed XML file.

5.3.4 Process definition

The process is a sequence of operations for achieving one goal: accomplish the require-
ments of the automation process. The process is basically the program that will be
executed by the robotic system. As can be seen in Figure 5.5, the process file contains a
sequence of skills and primitives. The details of the skills and primitives are presented
in the next section (Section 5.4).

5.4 Skill definition

As commented above (Section 5.1), robot skills are a way of representing human ca-
pabilities through the composition of basic functionalities (primitives). In terms of
implementation, a skill is no more than a mechanism for representing, storing and
exchanging the links between primitives. The skills do not contain implementation
code. A skill can be composed by other skills (there is no limit in the number of levels)

52 Chapter 5. Skill based programming

Figure 5.5: Process file which contains the sequence of skills and primitives

<process>
<action name=”assembly”>
<parameters>
<param name=”robot group”>
<value>arm</value>

</param>
<param name=”end effector”>
<value>pneumatic gripper tcp</value>

</param>
<param name=”part name”>
<value>ABS1384C16 1</value>

</param>
<param name=”grasp frame”>
<value>ABS1384C16 1 grasp</value>

</param>
<param name=”assembly point frame”>
<value>ABS1384C16 1 assembly point</value>

</param>
<param name=”place frame”>
<value>Axis System.10</value>

</param>
</parameters>
<result/>

</action>
<action name=”go to safe pose”>
<parameters/>
<result/>

</action>
</process>

and by primitives, e.g. a skill can be composed by one unique primitive (probably
because the user could understand better the behaviour with provided name), or can
be composed by a mix of skills and primitives. Due to this reason, the term action
is used in the following lines. An action refers to a primitive or a skill. This enables
to represent a sequence of operations in a XML file regardless of the element type.
Appendix I contains a complete example of a assembly skill.

Presented skills have been defined with the following attributes:

� Name: The name must be unique and allows storing and retrieving the skills in
the skill library.

� Parameters: The parameters are a selection of a key properties of the primitives
and skills. If one of the properties is relevant for the process must be provided

5.4. Skill definition 53

in the skill definition as a parameter. Primitives and skills can be created with
some default parameter values.

� List of actions that compose the skill: As has been commented above, the skills
are composed by primitives or other skills. In this part, the link between the skill
parameters and each primitive or skill is specified (see Figure 5.6).

� Result: Each skill or primitive can return a result value. The result value is
identified with a name. This is necessary for further use in other skills or prim-
itives. The existence of this identifier allows creating the link between different
primitives or skills (more details in Section 5.7).

Figure 5.7 presents a graphical representation of a pick and place skill. Note that
some of the names have been changed in order to improve comprehension of the reader.
In the Appendix I a full example of the pick and place skill can be found.

In order to allow adding not only skills but also primitives to the process file (see
Section 5.3), a XML convention has been implemented. The primitive is no more than

Figure 5.6: Link between skill and primitive parameters.

54 Chapter 5. Skill based programming

Figure 5.7: Graphical representation of a pick and place skill

a name, parameters, and returned result. This XML representation is mapped into
a Python method which is executed by the execution engine (see Section 3.5.2). In
the Appendix I an example of XML representation and Python implementation of a
primitive can be found.

5.5 Skill library

Skills are mechanisms to promote the re-usability, thus a place for storing skills for
further use have been designed. In the presented implementation each skill is stored
in a XML file, with a unique name that allows to identify unequivocally.

In the current version of the framework two categories of skills have been decided.
Both categories’ skills are identical, however, with the aim of maintaining a stable core,
following categories have been created: general purpose skills and application specific
skills.

5.6. Skill parametrization 55

The basic idea behind this differentiation is simple, if a skill is generic enough for
being reused easily in another application, it is catalogued as general purpose skill,
otherwise, if resolves a very specific casuistic, it is stored as application specific skill.
In the end, this is a decision for maintaining the entity and coherence of the frame-
work. At the implementation level, there are two paths for searching and storing skills.

These folders contains XML files with skill definition. The skills stored in this files
do not contain any implementation values, only definition. The process specific values
are stored in each application’s process files (Section 5.3).

The skill library is queried by the execution engine (Section 3.5.2) and by the easy
programming GUI which presents all available skills; if more skills are added to the
library they are automatically discovered by them.

5.6 Skill parametrization

The skill parametrization is performed with an easy-to-use GUI that allows building
and configuring applications. Simply using the drag & drop feature new processes can
be composed, and then, thanks to the information stored in the XML files presented
in Section 5.3 the skills can be easily parametrized. Figure 5.8 shows how the skills
and primitives can be parametrized.

In this step the skill parameters are read taking the skill definition as schema;
that means, if additional parameters are needed, the user must return to skill defini-
tion step for selecting the key parameters that should be configured. In the current
implementation it is not possible to change the skill definition at configuration step.
The idea behind this decision is no other than keeping the skill parametrization and
configuration as simple as possible.

5.7 Skill interaction

With skill interaction the author refers to the communication between skills and prim-
itives. The mechanisms presented in this section are based in the work done in [5].
With the traditional robot programming techniques (using vendor specific robot pro-
gramming languages) a static sequence of commands are available, and the programs
are a sequence of this commands with corresponding parameters. The commands can
store their outputs in local variables for future use, for example, vision operations are
related with motion operations sequentially, i.e., motion operations takes as input the
value (result) returned by the vision operation.

The use of skill based programming changes the paradigm, skills must be indepen-
dents and must be able to work in different scenarios or applications with a minimal
configuration. Besides, a skill can not contain any code, i.e., a skill can be defined as

56 Chapter 5. Skill based programming

Figure 5.8: Skill and primitive parametrization using an easy-to-use GUI

a sequence of primitives with a parametrization. This is one of the reasons that skills
can be stored in XML files, containing a sequence of pointers or links to corresponding
primitives. Different ways for communicating skills are necessary due to their dynamic
behaviour, their versatility and their autonomy. Function calling and storing the re-
turned value in a local variable is not valid for a process that can be created by the
operator on-the-fly using a set of available skills.

The presented framework combine the skill execution in a state machine with
ROS communication infrastructure; being each state responsible for using ROS sub-
scribe/publish mechanisms for communication. Taking into account the above men-
tioned skills, the following example is presented: how an assembly skill receives the
obtained values from a feature detection skill which detects the actual place position
of the assembled element. Before presenting the scenario, Parameter Server must be
introduced. This tool is used to allow communication between skills when the result of
one skill must be sent to another one. Benefiting of ROS tools, the Parameter Server
is essentially a namespace where skills can read or write relevant information.

In order to introduce the scenario of communication problematic between skills,
Listing 5.1 presents a simplified robot program. As can be seen, it describes the
process of detecting a hole and moving the robot to the detected pose. Despite the
simplicity of the code, the fact of using computer vision converts the application into

5.8. Summary 57

dynamic, i.e., is not possible to know the target position of the robot (hole pose) until
execution time. In order to ease the management of dynamic and static parameters, the
developed skills behave transparent in this aspect. Skills are composed by primitives,
which are independent entities that must be provided with a fixed set of parameters. In
this case, when target position of the Move primitive is not known at design phase, the
Cartesian/Articular motion state (note that as commented in Section 4.4 the states
contain the primitive implementation) obtains the dynamic target position from the
Parameter Server. The execution engine is responsible of publishing the result in the
Parameter Server. This is facilitated through the “result” and “link” fields of the
skill (see Figure 5.6). The execution engine publishes in the parameter server the
return value (if any) of the executed skill or primitive; afterwards, if the next skill or
primitive requests the parameter through “link” field, the execution engine provides
it. Figure 5.9 shows how skills can communicate through the mentioned mechanism.

Listing 5.1: A simple code fragment presenting typical robotic application using computer vision

Moves robot to an approximate position. This command receives
the target position as parameter
move robot(aproximate position)
Calls Computer Vision operation for hole detecting. Stores
the result in local variable
hole pose = detect hole by vision()
Moves robot to previously detected hole. The hole pose is
provided as parameter
movet robot(hole pose)

5.8 Summary

This section starts presenting the analogy of how human skills can be translated to a
robot. How a pragmatic approach for implementing robot skills is integrated in the
developed framework is discussed. An example of industrial application modelling is
described as well. Then, an approach for defining and organizing developed skills is
presented. To finish, the parametrization and interaction of the skills is showed.

58 Chapter 5. Skill based programming

Figure 5.9: Communication through Parameter Server. Dynamic operations require obtaining the
result from the Parameter Server

5.8. Summary 59

60 Chapter 5. Skill based programming

Chapter 6

Agent based supervision

Contents
6.1 Agents in robotics . 62

6.2 Agent based supervision . 62

6.3 Emergency supervision agent 63

6.4 Collision detection agent . 65

6.5 Joint temperature supervision agent 66

6.6 Workspace supervision agent 67

6.7 Summary . 67

61

62 Chapter 6. Agent based supervision

6.1 Agents in robotics

To the question of what is an agent? [115] presents multiple definitions and points of
view of different institutions and researchers that employ software agents for multiple
purposes. The authors present a set of properties that agents must have to a greater
or lesser degree: reactive, autonomous, goal-oriented, temporally continuous, commu-
nicative, adaptive, mobile, flexible and character. On the one hand, in [116] the author
presents an extensive review of the agents typology and, besides, especially useful ex-
amples of what are not agents are showed. On the other hand, N. Jennings, argues
that the development of robust and scalable software systems requires autonomous
agents in order to improve productivity, reliability and maintainability [117]. Taking
into account the theoretical advantages of agents for distributed software architectures,
following, some examples of the application of the agents are presented. In [88] the au-
thors present a system architecture for the design, implementation and management of
homecare applications for elderly. The use of multi-agent technology has been adopted
to convert components into intelligent entities, allowing the adaptation to different
events in the environment and improving the adaptability of the solution. Related
with robotics field, other authors present a multi-agent architecture for controlling
mobile robots [118]. The authors claim several desirable features such as flexibility,
adaptability and easy design. Another example of software architecture is presented
in [119]. In this case, an architecture in top of ROS is described. The remarkable
results are that enhance ROS for multi-robot management and demonstrate it through
different experiments that involves multi-robot communication and cooperation.

After a revision of the history and state of the art, it can be seen that there are
multiple definitions for agents. In this work the author is more identified with the
following definition: A persistent software entity dedicated to specific purpose. An
agent should be autonomous, however, it must have social abilities for communicating
with other agents or systems. The ability of react must allow the agent to perceive the
environment through sensors and respond accordingly. The analysis of the advantages
of agents in large software systems has conduct to develop an agent based supervision
system for enhance the reliability the framework.

Part of the work presented in this chapter has been published in a journal article
[5] and a conference paper [10]. The full papers can be found in the Appendix II.a.2
and Appendix II.b.5 respectively.

6.2 Agent based supervision

This chapter presents an agent-based monitoring system. This system works indepen-
dently of the core, i.e., it does not need to be running in order to use the framework.
It could be said that this is an auxiliary system that provides capabilities to increase,
for example, security, traceability or hardware life.

6.3. Emergency supervision agent 63

Figure 6.1: Agent based supervision

These agents, in addition to interacting with the core, must communicate with
each other (Figure 6.1). In some cases the data obtained from one agent can trig-
ger another agent behaviour, e.g., if the joint temperature is being supervised by one
agent, after a certain time the emergency supervision agent must be informed of the
situation and the system should be in a special state, at least until the circumstances
return to normal. This infrastructure of agents opens the door to an infinite variety
of components that can be added to the architecture depending on the requirements.
In the current status of the research, the developed agents are oriented to supervision
tasks, but many other purposes can be achieved with similar agents. One example of
future work, is using agents for optimizing the layout; when the automation applica-
tion is completed an agent could try to optimize the positions of the involved elements
(parts to process, robots, fixtures, etc.), this will translate in a cycle-time improvement.

In the following subsections a set of implemented agents is presented: emergency
supervision, collision detection, joint temperature supervision and workspace supervi-
sion.

6.3 Emergency supervision agent

As the proposed framework allows integrating not only robots, but also grippers, screw-
drivers, sensors, etc. each of them have their own mechanism for communicating their
emergency state. This agent establishes a connection between the core and the emer-
gency signals of each element.

64 Chapter 6. Agent based supervision

Figure 6.2: Emergency signal supervision

Taking advantage of the ROS communication features, each component in its driver
must publish this emergency state. In the same way that each element publishes its
available services or list of topics. With this information the emergency supervision
agent watches over these topics in order to send Error handling signal to the core state
machine (see Figure 6.2).

For implementing these agents, a ROS node is “attached” to the driver of the com-
ponent. The idea is that the agent is working autonomously sensing the information
of the environment and acting in the case of abnormal behaviour is detected. The
communication with other agents and with the core state machine of the framework
is done via publish/subscribe mechanisms. Each emergency supervision agent has at
least the following interfaces:

� Emergency subscriber: It is listening for external or internal signals that trigger
to emergency state. For example, a software error that raises an exception could
communicate with this subscriber.

� Emergency status publisher: The agent must have a publisher which publishes
the Error handling signal to the core state machine in order to manage the error
properly.

6.4. Collision detection agent 65

Figure 6.3: Collision detection agent

6.4 Collision detection agent

There are different ways for collision detection, this agent pretends centralizing the
collision detection data from different sources and provide the information to the state
machine.

Figure 6.3 illustrates how the collision detection agent is subscribed to different
sources for communicating to the robot motion states an imminent or probable colli-
sion. In the presented example the arms of the Nextage robot are too close to each
other. The ROS driver provides a visualization of this proximity using markers in the
simulation. The role of the agent is to monitor this information and warn the mo-
tion state when the distance exceeds the established safety limits. Taking advantage
of other information sources, e.g., when RBG-D sensors are integrated in the system,
the information of the environment provided by them is useful for detecting danger-
ous situations. The widely used OctoMap [120] package provides an occupancy map,
which in combination with the robot position, the collision detection agent can deter-
mine if the robot is entering in these occupied spaces. This agent also can be used
for receiving signals from external sensors that warn when physical contact is perceived.

Following previous agent approach, a set of subscribers plus a publisher to the
core state machine compose the collision detection agents. Depending on the source
of collision signal, a Stop or Error handling signal is published, e.g. if a robot node
communicates a collision, an Error handling signal is required; but if it is the camera

66 Chapter 6. Agent based supervision

Figure 6.4: Temperature supervision agent

which provides the collision signal, probably only stopping the robot should be enough
(cheap RGB-D sensors as Microsoft Kinect have low precision, thus a big boundary is
usually established).

6.5 Joint temperature supervision agent

The increasing of the temperature could damage the hardware, following the same
philosophy of the other supervision agents, this agent takes a list of topics and bound
value from each element which provides temperature information.

Due to the fact that each component could have different operational temperatures,
providing the boundaries is necessary. In the same line, the emergency signal (see sec-
tion 6.3) of each element must be provided. In this way the affected hardware enters
into emergency state until the temperature problem reverts (Figure 6.4).

For the joint temperature supervision agents configuration files for each component
are required. ROS incorporates very useful mechanisms for configuring nodes based

6.6. Workspace supervision agent 67

Figure 6.5: Different zones are defined and the position of the worker is monitored

on a set of parameters. The launch files that launch the nodes can include YAML
files with the required information for each component. After loading this files each
parameter is stored in the ROS Parameter Server, being available for the node. This
mechanism also allows changing the values dynamically, if the temperature boundaries
are required to be modified in run-time.

6.6 Workspace supervision agent

Supervision agents can be more complex that the examples that have been presented.
In this case, based on the work done in previous researches [10, 5], the integration
of human detection in the workspace is performed through supervision agents. For
establishing different behaviour based on the level of danger, three different zones has
been created (Figure 6.5). The workspace supervision agents will translate the human
location to Cartesian/Articular motion state.

The states in charge of managing the movements of the actuators must adapt or
limit the requested speed taking into account the information given from workspace
supervision agent (see Figure 6.6). More details about workspace monitoring can be
found in the published material that supports this work (Appendix II.a.2 and Ap-
pendix II.b.5).

6.7 Summary

This section introduced the use of software agents in robotics. The section continued
with the integration of the agents in the developed framework. After that, a series
of multi-purpose agents have been presented, namely, emergency supervisor, collision

68 Chapter 6. Agent based supervision

Figure 6.6: Workspace monitoring agent

detector, joint temperature supervisor and workspace supervisor.

6.7. Summary 69

70 Chapter 6. Agent based supervision

Chapter 7

Validation on industrial use-cases

Contents
7.1 Introduction . 72

7.2 Tested robots . 72

7.2.1 Kawada Nextage/Hironx . 73

7.2.2 UR10 . 74

7.2.3 Dual UR10 + torso + mobile platform 75

7.2.4 Dual UR10 custom configuration 76

7.2.5 Kuka IIWA . 77

7.3 Rivet installation into aeronautical composite parts 78

7.4 Deburring the drills of the lead edge ribs of the HTP . . 81

7.5 Telecommunications antenna assembling 84

7.6 Aeronautical undercarriage assembling 88

7.7 Summary . 91

71

72 Chapter 7. Validation on industrial use-cases

7.1 Introduction

As Tecnalia is in direct contact with companies in different industrial sectors, the de-
veloped framework and its modules have been tested in various scenarios with different
requirements. The first use cases that have been tested are for the aeronautic sector;
Tecnalia and Airbus Operations (Puerto Real facilities, Spain) [121] are working to-
gether for several years developing a pilot cell for a dual-arm robot. One of the most
relevant tasks in the aerostructure assembly is presented: the rivet installation op-
eration; involving deburring and small element manipulation. On the other hand, a
related use case is presented: the process of deburring the drills of the lead edge ribs of
the horizontal tail plane (HTP). Another relevant use case for validating the technol-
ogy is for the telecommunications sector. Tecnalia and Telnet Redes Inteligentes [122]
are involved in LIAA [21] (EU FP7 project) for flexible assembling operations. This
use case involves the assembly of small electronic elements and screwing them with
an automatic screwdriver. Returning to aeronautics sector, in the last use case that
is presented, Tecnalia and CESA [123] are working together in ReCaM project [22]
which is focused in reconfigurable capabilities. Concretely in this use case assembly
capabilities are being developed, in order to apply in the undercarriage assembling
process.

The main mission of Tecnalia is transferring technology from the university and
laboratories to the industry, thus the phases in which Tecnalia works are worth clar-
ifying. In a standard project after the technology has been tested in the laboratory,
it is validated in the real environment. Although in some particular cases progresses
to later phases, the most common scenario is to reach the phase of developing a func-
tional prototype in a real environment. In the following sections a short description of
the robots that have been tested are introduced, afterwards, the use cases and their
current status are presented.

The use cases presented in this chapter have been published in different journal
articles and conference papers. The full papers can be found in the Appendix II.

7.2 Tested robots

The developed framework is hardware agnostic; since ROS is used, any kind of robot,
which its ROS driver is implemented [124, 125], can be integrated in the framework.
More specifically, the presented framework employs an implementation of ROS Control
package [82] (see Figure 3.2 in Section 3.4). This means that if the ROS driver does
not exist, creating this ROS Control implementation should be enough.

In the following lines the robots that have been tested with the framework can
be found. In order to have a wide robot portfolio, which meets with the different
automation projects needs, the integration of additional robotic system is planned for
future steps.

7.2. Tested robots 73

7.2.1 Kawada Nextage/Hironx

Table 7.1: Kawada Nextage/Hironx robot specifications [2]

Degrees of
freedom

15 axes (6 for arms × 2, 2 for neck, 1 for waist)

Reach 600 mm
Payload 1.5 kg (one arm), 3.0 kg (two arms)

Repeatability ±0.03 mm
Integrated

force sensor
No

Integrated
vision system

Yes, stereo system in the head

Pros � The quality of mechatronics
� High repeatability
� 15 DOF in a very compact frame

Cons � Low payload
� It does not have brakes in the joints. Thus, the
arms fall down when enter in emergency

Figure 7.1: Kawada Nextage/Hironx robot

74 Chapter 7. Validation on industrial use-cases

7.2.2 UR10

Table 7.2: UR10 robot specifications [3]

Degrees of
freedom

6 axes

Reach 1300 mm
Payload 10 kg

Repeatability ±0.1 mm
Integrated

force sensor
No, but provides force feedback based on current
values

Integrated
vision system

No

Pros � Easy-to-use HMI
� Force feedback. Not very precise but can be

useful.
� Low cost

Cons � Strange axis configuration

Figure 7.2: UR10 robot

7.2. Tested robots 75

7.2.3 Dual UR10 + torso + mobile platform

Table 7.3: Tecnalia’s custom dual UR10 + torso + mobile platform specifications (based on UR10
specifications)

Degrees of
freedom

16 axes (6 for arms × 2, 2 for pan/tilt head, 2
for waist) + mobile platform (4 omnidirectional
wheels)

Reach 1300 mm (each arm)
Payload 10 kg (one arm), 20 kg (two arms)

Repeatability ±0.1 mm
Integrated

force sensor
No, but provides force feedback based on current
values

Integrated
vision system

Yes, in the pan/tilt head. Monocular camera +
texture projector and Microsoft Kinect 2

Pros � Lot of features and technologies integrated in
the same system
� Autonomy. Thanks to the batteries no wires

are needed
� Previously mentioned UR10 features

Cons � So many elements implies a greater difficulty
in finding the source of the error (especially for
hardware errors)
� Previously mentioned UR10 drawbacks

Figure 7.3: Dual UR10 + torso + mobile platform. It is a Tecnalia’s custom robot

76 Chapter 7. Validation on industrial use-cases

7.2.4 Dual UR10 custom configuration

Table 7.4: Dual UR10 custom robot specifications (based on UR10 specifications)

Degrees of
freedom

12 axes (6 for arms x 2)

Reach 1300 mm (each arm)
Payload 10 kg (one arm), 20 kg (two arms)

Repeatability ±0.1 mm
Integrated

force sensor
No, but provides force feedback based on current
values

Integrated
vision system

No

Pros � Industrial set-up
� Due to Tecnalia’s experience with this robot

platform, better support can be provided
� Previously mentioned UR10 features

Cons � Previously mentioned UR10 drawbacks

Figure 7.4: Dual UR10 Telnet’s robots

7.2. Tested robots 77

7.2.5 Kuka IIWA

Table 7.5: Kuka IIWA robot specifications [1]

Degrees of
freedom

7 axes

Reach 800-820 mm
Payload 7-14 kg

Repeatability ±0.1 − 0.15 mm
Integrated

force sensor
Yes

Integrated
vision system

No

Pros � Good payload
� Force sensors provide very useful features
� The extra axis allows better manipulability
� Quality of mechatronics

Cons � High price

Figure 7.5: Kuka IIWA robot (image obtained from [1])

78 Chapter 7. Validation on industrial use-cases

7.3 Rivet installation into aeronautical composite

parts

The rivet installation process involves deburring and small element manipulation op-
erations . Regarding the deburring process, this operation prepares the surface of the
drilling perimeter for the correct rivet installation. For that purpose, a deburring tool
that is integrated in one of the arms of the robot is used. The other arm is prepared
with a gripper for taking and introducing rivets into drilled holes. This demonstration
takes advantage of the dual-arm capabilities. Furthermore, for robot perception, a
stereo vision system has been incorporated for the precise hole detection; thanks to
the incorporated stereo cameras on the arms, the production tolerances (0.2mm) can
be achieved [126].

Summarizing, the current use case demonstrator is composed of the following steps:

1. Detect and debur drilled hole with left arm (Figure 7.6).

2. Pick and extract rivet from a tray with the right arm (Figure 7.7a).

3. Insert rivet into detected hole with the right arm (Figure 7.7b).

Note that step 1 and 2 can be performed at the same time, because the rivet ex-
traction operation takes more time than the deburring operation. If these operations
are viewed as skills, the deburring skill, pick rivet skill and rivet inserting skill are
obtained. Figure 7.8 shows how skills are decomposed into primitives. The organiza-
tion into skills eases the composition of new programs, because the parametrization is
perceptibly easier. This parametrization contains the key features that vary between
different skill executions. The way to determine the parameters is as follows: the sys-
tem programmer starts by selecting the references or elements that change for different
scenarios. For example, in the case of deburring and insertion, the references of the
holes and rivets to be inserted must be parametrized. If that would not be enough,
the parameters that allow one to configure the differences between scenarios would be
added. Once these skills have been validated, abstracting from primitives is possible.
In the case of the deburring operation, only the theoretical position must be provided,
taking into account that this information can be extracted from the CAD model of the
piece.

Calibration or the referencing process of the cell is beyond the scope of this work
(even if it will be addressed in future work); nevertheless, it can be easily summarized
in three steps: at first, the positions of the drilled holes are obtained, referenced to
the origin of the CAD model. After that, using an accurate tool center point (TCP),
three known points of the real piece are touched; the easiest way is usually touching
one corner and their adjacent edges with the TCP. With these points, the position
and orientation of the piece can be estimated. Finally, using the obtained theoretical

7.3. Rivet installation into aeronautical composite parts 79

Figure 7.6: Deburring a drilling based on the vision result

Figure 7.7: Picking and inserting the rivet into a drilling

80 Chapter 7. Validation on industrial use-cases

Figure 7.8: Install rivet process organized into skills. Skills are composed by primitives.

position of the piece in the robot frame and the position of the hole in the piece frame,
a frame transformation can be done to obtain the approximate position of the piece
drillings. Of course, this approximate position must be corrected using artificial vision
to achieve the required 0.2 mm of precision.

Returning to the proposed architecture, once the skills are decomposed, the re-
sulting primitives are the ones that are executed by the state machine. Each state is
processing the primitive callbacks and handling errors if they take place. Thus, the
error handling is simpler, and it is managed specifically in each state or module. Tak-
ing one of the operations that are being analyzed, the sequence of the machine state
is shown in Figure 7.9.

The execution engine sends to the state machines the request for the next opera-
tion, based on the information that is stored in the application XML (see Figure 3.4 in
Section 3.5.3). The state machine changes from one state to another, completing the
requested operations. As can be seen in Figure 7.10, some operations of the task of
installing one rivet can be performed using both arms of the robot at the same time,
improving the cycle time. After these coordinated operations, an exclusive movement
of the right arm is performed; at this moment, the left arm is waiting until the right
arm finishes the installation of the rivet. The whole process of rivet installation is
composed by the repetition of this block of skills.

7.4. Deburring the drills of the lead edge ribs of the HTP 81

Figure 7.9: Debur drilling skill mapping into the state machine.

This development was the result of collaboration between Tecnalia and Airbus
Operations Puerto Real. The objective was to demonstrate the capabilities of the
dual-arm robots for real workstations. This application was tested in the Airbus facil-
ities validating the feasibility of small, lightweight and low consumption robots. The
selected robot platform was dexterous enough for achieving in a high grade of success
the operations of deburring and rivet inserting. The results obtained in this project
drove Airbus continuing trusting in Tecnalia for further stages of the integration of
novel robot solutions.

7.4 Deburring the drills of the lead edge ribs of the

HTP

The drilling deburring of composite ribs is a complex task that requires the combina-
tion of dexterity and precision. As presented in the introduction, this development is
performed in collaboration with Airbus Operations (Puerto Real plant in Spain). The
proposed architecture has been validated for rivet installation in aerostructure parts

82 Chapter 7. Validation on industrial use-cases

Figure 7.10: Coordination between both arms’ timeline.

(presented in previous Section and in [6]), consequently, this project is a continuation
of the previous one. In this case, the process of deburring the drills of the lead edge ribs
of the HTP (composite parts) has been selected as use case for evaluation. This task
consist of the following: there is a store with different composite parts, through vision,
the parts are detected and the robot takes one with the left arm (Figure 7.11); then
the part is placed in a bracket equipped with a vacuum system; in this moment, the
right arm detects drilling using stereoscopic vision and deburs them with an integrated
deburring tool (Figure 7.12); and finally, the robot place the piece back to the store.
This task is clearly more complicated and requires the coordination of many elements of
the robot, namely: pneumatic gripper, pneumatic deburring tool, stereoscopic vision,
dual-arm coordination, etc. Presented task can be divided in the following skills:

1. Take piece from the store

2. Place part in the vacuum system

3. Debur drillings of the piece

4. Return piece to the store

7.4. Deburring the drills of the lead edge ribs of the HTP 83

Figure 7.11: Manipulation process. The robot is taking parts from the store

Figure 7.12: Deburring process. The robot is detecting drillings through vision and deburring them

84 Chapter 7. Validation on industrial use-cases

As it was mentioned above, there is a store with different composite parts, in this
detail lies the major advantage of the system. All the pieces are similar in shape,
but different in size, thus coding specific programs for each part is not an option
when there are up to 44 references. This is when skill based programming shows its
power, as the skills are sufficiently flexible to adapt necessary movements to each piece.

Necessary skills are represented in Figure 7.13. As can be seen these skills are
decomposed in primitives: move, detect part vision, open gripper, close gripper, de-
tect drilling vision and activate deburring tool. These primitives are the ones that are
executed by the proposed state machine architecture. Each state is processing the
primitive callbacks, and handling errors if they take place. Thus, the error handling
is simpler and it is managed specifically in each state or module. With the example
that is being analysed, the sequence of the machine state, for debur drilling skill, is
shown in Figure 7.14. This debur drilling skill block is repeated for each drilling of the
composite rib.

After applying the skill based approach combined with the proposed software ar-
chiteture, some objective conclusions can be drawn. On the one hand, the improved
adaptability of this approach is demonstrated with the fact that the same skills can be
used to perform the process which contains 44 different references. This assertion is
supported by the work that the author made in different applications [6], in that case
inserting rivets into a drilling was performed using very similar skills. On the other
hand, following [127] can be appreciated that with the proposed approach the archi-
tecture has been simplified. Dividing responsibilities in different layers, besides easing
the maintenance and evolution of the software, allows better complexity assessment
[128]. A video of the developed prototype can be found in [129]

The current status of this development is a pilot cell in Airbus Innovation Lab
of Puerto Real facilities. Although several tests have been made in production en-
vironment and with production parts, the cell could not be installed permanently in
production due to safety certification issues. The absence of brakes in the robot axes
added to the lack of CE marking (it is a Japanese imported robot) have prevented to
follow further stages of the project.

7.5 Telecommunications antenna assembling

The assembling operations of electronics components require high dexterity. With
the advance of robot programming techniques, sensors precision, and grippers design,
different solutions for automation of this kind of task are being developed everyday.
Tecnalia is working in different projects for precise assembling in the telecommuni-
cations sector. This use case is being developed under LIAA project [21] (working
together with Telnet Redes Inteligentes), where one of the principal topics is the de-
velopment of assembly skills for robots. Basically, the required steps for an antenna
assembly are the following: pick and place small elements (cylindrical capacitors) into

7.5. Telecommunications antenna assembling 85

Figure 7.13: Decomposition of necessary skills for drilling deburring operation

a fixture, pick and place bigger elements (radiant element with plate shape) into a
fixture, and screwing all elements with each other. Figure 7.15 shows how the pick and
place skill adapts to different elements.

In this demonstrator the information extracted from CAD models (more details
about process modelling can be found in Section 5.3) plays an important role. With-
out going into details, in this process relevant information for configuring assembly
skills is obtained: grasp pose, assembly point, target pose, etc. Using this informa-
tion, and adding few additional parameters such as robot arm and gripper, this skill
is able to perform the steps listed above to complete the assembly of capacitors with
radiant element. But this information is theoretical, i.e., it works in simulation with
perfect aligned fixtures and elements; but in the real world perfectly aligning elements

86 Chapter 7. Validation on industrial use-cases

Figure 7.14: State machine sequence in a debur drilling skill

Figure 7.15: Assembly skill adapts to different elements

7.5. Telecommunications antenna assembling 87

Figure 7.16: Assembly skill configuration. The assembly skill is composed of different elements and,
as can be seen, can be composed of other skills

for assembly is very complicated without very expensive and not flexible fixtures. For
translating this to the reality the use of computer vision is required. Figure 7.16 shows
a detailed example of how the capacitor assembly is modelled and parametrized as
assembly skill using provided information. As can be seen this skill contains a Fea-
ture Detection skill instance for hole detecting. In the Section 5.7 the communication
between these skills have been explained in detail. Using this pre-programmed skills
a trained operator only has to modify few parameters for reconfiguring the skill for
assembling the different elements that compounds an antenna.

The most remarkable point in this demonstrator is, undoubtedly, that has been
used as test suite for demonstrating the adaptability and versatility that this program-
ming approach and the underlying architecture provide. The antenna assembly use
case has been faced and resolved using three different robotic platforms and configu-
rations. Figure 7.17 shows how Kawada Nextage robot is prepared with the necessary
equipment to carry out the process. This has been the first prototype for automating
the assembling. Due to the payload limitation of Nextage robot, a weight compensator
must be used for the automatic screwdriver. In order to avoid this, the use of UR
10 robots has been proposed, since Tecnalia owns a mobile platform equipped with
these robots. The migration process to this new platform imply a few changes in the
application and the environment representation, but the developed skills can be reused
with simple changes in the parametrization, e.g., the robot group that is used for each
movement operation. Figure 7.3 shows how the application has been migrated to this
new hardware. Finally, after validating the migration process, the end-user (Telnet)
required to have this pilot cell in their facilities. Then, the application was migrated

88 Chapter 7. Validation on industrial use-cases

Figure 7.17: Nextage robot performing antenna assembly operations

to another dual UR10 custom configuration. In this case, the necessary changes in the
application were reduced to integration issues, namely, end-effectors TCP (tool center
point) calibration, and cell referencing. Figure 7.4 shows the pilot cell for antenna
assembly in Telnet facilities.

This development started under the European Project LIAA with the goal of creat-
ing robot agnostic skills for assembly operations. After the antenna assembly process
was validated using Nextage robot, the application was migrated to dual UR10 custom
configuration. Currently, Telnet has a pilot station in their innovation section with a
prototype of Tecnalia’s Framework. The application of the assembly skills to different
variants of products is being evaluated.

7.6 Aeronautical undercarriage assembling

As has been commented above, Tecnalia is working in different projects with assem-
bling operations in aeronautical sector. This use case is being developed under the
ReCaM project [22] (working together with CESA), where one of principal topics is
the development of assembly capabilities for robots. In ReCaM project the starting
point will be the Product Requirement Description, which is first matched against the
resource capabilities existing on the current system layout. If no matches are found,
the system needs to be reconfigured. New resources can be searched from the resource
catalogues. This matchmaking and search is allowed by an OWL-based capability

7.6. Aeronautical undercarriage assembling 89

Figure 7.18: Assembly skill configuration assembling and screwing parts.

model [130], which is used to describe the resource capabilities in a formal, computer-
and human-interpretable, way. The capability matchmaking approach is presented in
[131]. Once the system has been re-configured (or found suitable as such), the actual
operations need to be programmed and executed. For this programming, the skill-
based approach by Tecnalia is used. Basically, the required steps are the following:
pick and assembly various elements (valves, springs, caps, etc.) into a manifold. All
the elements are stored in a kit which can be referenced and located by artificial vision.

Using the same schema than in the previous demonstrator, the information ex-
tracted from CAD models allows to take advantage of the power of the skill based
programming. This information is modelled into different XML files: fixture informa-
tion and element information. Fixture information XML file contains the position and
orientation of the relevant points of the fixture, these points are marked as targets for
pick and place operations. Element information XML file contains different data: the

90 Chapter 7. Validation on industrial use-cases

Figure 7.19: Undercarriage assembly operation performed with a UR10 robot.

grasp position, the necessary gripper for grasping, and the assembly point in the model,
i.e., the point that is necessary to align with the fixture relevant point. Used skill is
able to perform the steps listed above to complete the assembly of different elements
into the manifold, only taking into account the information provided in the XML files.
Figure 7.18 shows a detailed example of how this operation is broken down. As can
be seen this assembly skill is reusing most of the primitives and the structure of the
antenna assembly skill presented in Section 7.5. Besides, a vision based detection and
referencing skill has been added. On the other hand a screwing skill has been added
for the pieces that must be screwed after assembling.

Following this programming approach different applications can be modelled through
the same schema; the parameters that appear in the skill configuration are codified
in a XML file. This XML is completely compatible with the state machine and exe-
cution engine (sections 3.4 and 3.5.2 respectively). The system capacity to adapt to
changes in the environment provides advantages: for instance, if there is variation in
the position of the parts (elements) or in the number of parts to process, the high-level
program can be adjusted through minor changes (e.g., reprocess the CAD model for
updating positions and adding more blocks of a particular skill). No changes in the
low-level program are needed. In consequence, an increase of system flexibility has been
achieved. In Figure 7.19 an UR10 robot can be seen performing the screwing operation.

7.7. Summary 91

This development takes advantage of the lessons learned from the LIAA project
and enhances assembly skills with additional variants such as screwing with the robot
arm (without external equipment). The ReCaM project is ongoing, and the next stages
imply the migration to Tecnalia’s dual arm mobile platform and performing assembling
and screwing in different variants of products.

7.7 Summary

In the validation section, the demonstration of the claimed features has been presented.
On the one hand, the robot platforms that have been tested were introduced. On
the other hand, the use cases in which the framework has been used were described.
Moreover, the current status of the uses cases was explained.

92 Chapter 7. Validation on industrial use-cases

Chapter 8

Evaluation

Contents
8.1 Introduction . 94

8.2 Architecture tradeoff analysis 94

8.3 Required development time evaluation 96

8.4 Discussion . 98

8.5 Summary . 100

93

94 Chapter 8. Evaluation

8.1 Introduction

Most of the work presented in this section has been published in a journal article [4].
The details of this publication can be found in the Appendix II.a.1.

In the last few years, several methods for evaluating software architectures have
been defined: scenario-based (SAAM, architecture tradeoff analysis method (ATAM),
ALMA , etc.) [132, 133, 134, 135, 136, 137], mathematical model-based (reliabil-
ity analysis, performance analysis) [138] and metrics-based software architecture eval-
uation methods (QuADAI) [139]. In order to evaluate the advantages of the proposed
architecture, based on the previously-mentioned methods, a simplified approach of the
architecture tradeoff analysis method (ATAM) has been selected to perform a compar-
ative analysis [132, 140, 141]. This method is widely used by the research community
for architecture evaluation [142, 143, 144]. When the architecture is evaluated, depend-
ing on the requirements, different qualities must be analyzed. ATAM concentrates on
evaluating suitability; therefore, the selection of the appropriate qualities has a re-
markable relevance.

As has been mentioned above, ATAM is a scenario-based method; that is why dif-
ferent scenarios have been selected in order to compare different desirable qualities.
On the one hand, the creation of a new application from scratch has been chosen.
New application deployment implies working environment definition, relevant position
acquisition, fixture calibration, robot process programming, simulating, testing and
adjusting. On the other hand, another common scenario is proposed, adapting an ex-
isting application to new product references (the required process would be the same,
but could change the number of operations or the dimensions of the elements).

The proposed architecture has been compared with different ways of addressing
the automation of an industrial process [92, 33]. The traditional and most commonly-
used method is online programming, i.e., teach by demonstration (moving the robot
with the teach pendant), replicating the process and acquiring required way points.
In other cases, the use of offline programming software can be found. This approach
is composed by the following steps: the generation of the 3D scene, tag creation,
trajectory planning, process planning, post-processing simulation and calibration [33].
As can be seen, the proposed framework in this article is very similar to an offline
programming process, though with some improvements.

8.2 Architecture tradeoff analysis

In order to evaluate different approaches, a set of desirable qualities have been analyzed:

Ease of use: To deal with the first scenario, differences between online program-
ming and other alternatives are evident. A new application deployment requires stop-
ping the production for fixture calibrations, way point acquisition, process replication,

8.2. Architecture tradeoff analysis 95

simulations and adjustments. These tasks require a high expertise in robotics and pro-
gramming. With offline alternatives, the process can be offline almost entirely; only
calibration and final adjustments require stopping the production. Generally, offline
programming software is very complex and also requires highly trained staff. The cost
of these technicians (plus license costs) could not be affordable for SMEs. The proposed
framework provides a set of ease-to-configure primitives and skills, which reduces the
training costs.

Adaptability: This quality impacts the second scenario. Modifying an existing
process using online programming is very time consuming; new position acquisition
moving the robot implies stopping the production. For offline programming, changes
can be made without stopping the production, although depending on the nature of
the changes, this could imply repeating many tasks in order to adapt the application.
In the case of the proposed approach, the process is similar to offline programming,
though with the particularity that the developed skills are programmed keeping in
mind possible changes. For example, in the case of deburring and riveting holes (Sec-
tion 7), possible changes in the hole positions and rivet size are anticipated, so the skill
takes the information of the hole position and size from a processed CAD file. Then,
the skill adapts its behavior, configuring the target position and gripper aperture with
respect to the obtained information. The same idea is applied in the assembly opera-
tion; the developed skills can adapt to usual changes in this kind of process: changes
in assembly points’ positions, changes in parts’ size, etc.

Reliability: The presented approach provides an implicit supervision tool: the
state machine allows knowing the current status of the execution. Besides, the modu-
lar error handling permits an individualized response for the different types of errors.
Traditional robot programming techniques require ad hoc error handling in each criti-
cal part of the program.

Subsetability: This is the ability to support the production of a subset of the
system [33]. This concept could be important in different ways. For the commercial
side, the possibility of having different optional modules (states or even skills) is an
advantage. In the case of requiring incremental developments, the possibility to deliver
simple prototypes that are enhanced with new modules and abilities is interesting. For
the end user, having only the functionalities that are required could reduce the training
time and increase the ease of use. Subsetability quality does not exist for traditional
online programming, and for offline programming, software usually is used only for the
commercial aspect.

Performance: Both online programming and offline programming have the best
performance, because these methods do not add any layer of software in the execution
time, i.e., when the configuration or set-up phase concluded, only a robot specific code
is executed in the controller. In the proposed framework, the XML program is parsed
for executing existing skills, which are composed by primitives that execute directly in
the robot controller. This, combined with the overhead from the state machine, results

96 Chapter 8. Evaluation

Table 8.1: Strengths and weakness of different robot programming approaches.

Quality
Online

Programming
Offline

Programming
State Machine
and Skill Based
Programming

Framework

Ease of use − + ++

Adaptability − + ++

Reliability − +− +

Subsetability − + ++

Performance ++ ++ −

in greater demands on processing resources. Even so, the executed process and robot
movements are the same for all alternatives, so these differences in performance do not
affect the overall operation.

Table 8.1 summarizes the strengths and weakness of different robot programming
approaches. Online programming is the simplest approach, which only has the per-
formance as the clear advantage. The proposed approach can be seen as an enhanced
offline programming method; both have in common many insights, in spite of the fact
that through the skill programming and state machine-based architecture, the ease
of use, adaptability and subsetability have been improved. Thanks to the developed
skills, many of assembly applications that are composed by pick and place operations
can be easily modeled and resolved by the presented framework. This proposal is a step
forward in the generalization of this kind of problem. These improvements have a per-
formance drawback, but taking into account the advantages, the trade-off is acceptable.

Based on the obtained conclusions in Table 8.1, the representation of the claimed
improvements has been done. The more important qualities that have been improved
are the ease of use and the adaptability. These improvements are translated directly
into the reduction of the development time. Despite that the required time for the
programming of different automation processes can vary widely, one of the most usual
operations has been selected: pick and place. If the Telnet’s telecommunications an-
tenna assembling use case has been taken as the reference (Section 7.5), in the following
lines, an analysis of the required time for programming the assembling operations can
be found.

8.3 Required development time evaluation

Figure 8.1 shows how the online programming development time grows linearly accord-
ing to the number of operations that must be programmed. Each operation requires
moving the robot manually and storing waypoints. Regarding offline programming, an

8.3. Required development time evaluation 97

Figure 8.1: Comparison of the process development time according to its complexity.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10
11

Complexity (number of operations)

D
ev

el
op

m
en

t
ti

m
e

(d
ay

s)

Online programming
Offline programming

Skill-based programming

initial overrun can be perceived, mainly due to the required time for cell referencing,
i.e., the transition between simulation and reality. After that, successive operations
require less time than manual teaching. Concerning skill-based programming, higher
initial overrun is necessary, due to the required cell referencing and the additional in-
formation, which complements the skills (grasp positions, assembly positions, gripper
information, etc). When this information is modeled, the successive instantiation of
assembly skills is faster; only drag and drop and simple parametrization are required.
In conclusion, it can be perceived how when more than five operations are required,
the skill-based programming offers better performance.

Figure 8.2 presents the required development time for adjusting an existing process,
i.e., when something has moved or another reference of the product requires position
adjustments. As before, online programming will require repeating all of the process,
teaching new waypoints and assuring no collisions. Regarding offline programming and
skill-based programming, in this case, they behave in a similar way: on the one hand,
an initial cell referencing is necessary, and on the other hand, as the program is already
created, only parameter modifications are required. Of course, the necessary changes
are different in both methodologies, but the same required time has been estimated.

Finally, Figure 8.3 shows the required time if the robot of the cell is changed to a
different one. Taking a process composed by 10 operations, for an online programming
approach, this is a completely new process. Using an offline solution, in the best case,
the program sequence can be reused. However, it must be noted that a revision of
all of the waypoints must be done. In the case of skill-based programming, the de-
veloped skill does not require a revision in terms of programming or parametrization
because the problem to resolve is the same. For the proposed framework, this scenario
is taken as another process adjustment, requiring the same time as in the previous case.

98 Chapter 8. Evaluation

Figure 8.2: Comparison of the process development time according to the number of adjustments in
element positions.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10
11

Required changes

D
ev

el
op

m
en

t
ti

m
e

(d
ay

s)

Online programming
Offline programming

Skill-based programming

Figure 8.3: Comparison of the process development time when the robot provider is changed.

0
1
2
3
4
5
6
7
8
9

10
11

Used robot programming approach

D
ev

el
op

m
en

t
ti

m
e

(d
ay

s)

Online programming
Offline programming

Skill-based programming

8.4 Discussion

As has been analyzed in the previous chapters, the presented approach in this work
offers greater flexibility and reusability (adaptability) than traditional frameworks. On
the one hand, the improved adaptability of this approach is demonstrated by the fact
that the same skills can be used to perform different processes although they suffer
from certain variations, e.g., variations in the rivet models, variations in the drilled
holes’ number or positions, etc. This assertion is supported by the work that the
authors have made in different applications [7, 129, 5, 8]: another deburring process
was performed using very similar skills; the antenna assembling skill was presented;
workspace monitoring and vision operations for hole detection and 3D CAD match-

8.4. Discussion 99

ing were integrated as skills; and finally, the interaction between the skills and the
state machine was presented. On the other hand, new applications can be generated
graphically (Section 3.5.3), reducing the required expertise and increasing the ease of
use. When the user adds a skill to the execution flow, all required parameters must be
filled. In this way, a succession of blocks, which compose the application, is generated.
The developed GUI allows exporting sections or entire applications into XML files in
order to increase the re-usability.

One of the foreseen advantages of the present approach is that the state machine
architecture can be enhanced with different modules (states) that could be useful in
completely different processes. In the proposed scenario, the states are related to the
robot primitives, i.e., robot movements controlled in velocity in the Cartesian space.
Nevertheless, the proposed primitives can be combined with nonlinear controllers, such
as predictive control [145], neural networks or fuzzy approaches [146, 147], needed in
other industrial processes with high uncertainty in the model like chemical processes
(i.e., petrochemical plants). The skills approach could provide additional information
and actuation; basic functionality could operate the aperture or closure of valves, and
a complex implementation could cover other acting elements. This is an idea explored
in the TOP-REF project [148].

Regarding reliability and robustness that the state machine provides, it permits
users to abstract from the specifics of dual-arm robotic programming. The proposed
framework eases the coordination of both arms with the help of a simple GUI (Figure
3.5). Besides, a complete traceability of the program status combined with modular
error handling increases the overall reliability compared with traditional online and
offline software.

One of the drawbacks of the presented approach is the performance. The entire
ROS ecosystem added to the state machine requires a powerful computer, but taking
into account the cost of a computer in relation to automation project costs, this is not
a relevant issue. Another relevant topic is that the proposed architecture is hardware
agnostic; the developed skills are not using robot-specific functions; however, when
primitives are executed, ROS interfaces are used. ROS is compatible with a large
number of robots [124], though for an industrial environment, ROS-Industrial [149]
is more adequate. ROS-Industrial appears with the support of a large research com-
munity and robot manufacturers. Their goal is to provide reliable and robust ROS
packages. The list of supported industrial robots [125] is growing day by day. This can
be a disadvantage compared with available offline programming software, e.g., Delmia,
which offers a huge database of robots.

In the industrial world, presenting a framework mostly composed of open source
modules always causes a discussion. Even so, as has been mentioned in Section 1.1,
nowadays, more versatility and novel solutions are demanded, and open source initia-
tives like ROS are responding to these requirements of the industry.

100 Chapter 8. Evaluation

8.5 Summary

This section presented the evaluation of the proposed architecture. For the evaluation
the ATAM approach has been applied and the desirable qualities for a robot program-
ming framework have been compared with other approaches. Afterwards, an estima-
tion of the improvement regarding the required development time has been presented.
Finally, a discussion in which a review of the work done is initiated, commenting the
remarkable advantages and drawbacks of the framework.

8.5. Summary 101

102 Chapter 8. Evaluation

Chapter 9

Conclusions and future work

Contents
9.1 Conclusions . 104

9.2 Future work . 104

103

104 Chapter 9. Conclusions and future work

9.1 Conclusions

To improve the control and coordination of anthropomorphic multisensor robots, state
machine-based architectures have been introduced. This approach allows us to in-
crease the robustness and reliability of the whole system. The proposed architecture is
designed to act as a basis for easier programming methodologies. Thanks to the pre-
sented graphical user interface, new applications can be generated without the need to
be an expert in robotics. With the proper training, the operator will be able to create,
adapt and maintain industrial processes.

In addition to these advantages, the reusability has been noticeably increased. By
employing the skill based programming combined with the software architecture that
has been presented, completely different applications can leverage well-tested modules
and functions used in previous developments. At present, the same architecture is be-
ing used in different pilot stations with different types of robots and requirements; in
these pilot stations, this technology is under intense tests for validating the usability,
robustness and feasibility.

The use of agents for supervision task opens an infinite variety of ways to enhance
the features of a robotic system. This approach can be used not only for safety and
emergency detection, but also on process monitoring and data retrieving. Agents are
a very useful mechanism for integrating robots in the Industry 4.0 [150].

The proposed architecture has been compared with traditional approaches in order
to analyze and highlight the strengths and weaknesses. ATAM has been selected in
order to evaluate the qualities that have notable relevancy: ease of use, adaptability,
reliability, subsetability and performance. The required development time for accom-
plishing assembly operations has been compared. The results of the evaluation reveal
that the framework improves almost all of the mentioned qualities; the exception is
the performance in terms of computational cost, which is inevitably increased by the
additional software layers introduced.

9.2 Future work

In future work, we will further investigate how to integrate different skill formalisms
into the proposed architecture, especially for the ease of the automatic creation of new
skills. The database of skills proposed in the LIAA project is another topic that will
be reviewed in order to integrate more skills in the architecture. Additionally, this
architecture will be integrated with the reconfigurable and flexible production system
under development at ReCaM project. The tools provided by this framework will en-
able auto-programming and self-adjusting to the required task by utilizing parametric
capabilities in the CESA use case.

9.2. Future work 105

Regarding the state machine-based architecture, if the proposed approach is used,
the industrial processes that can benefit from dual-arm robots are more controlled, and
this allows an easier and faster deployment of new applications. In the future, the focus
will be set on the coordinated manipulation of the arms with the intention of easing
this kind of task. Besides, the integration of a multi-agent system for decision making
in coordination and synchronization tasks is being considered, taking into account the
external and environmental factors the execution order, consequently the cycle time,
could be optimized.

The next step to follow in the future will be performing a wider test bench for
evaluating and comparing the performance of the robot operation with other alter-
natives, i.e., online and offline programming and other programming frameworks. In
this evaluation, users with different levels of training could be requested. Additionally,
some stress tests will be applied for assuring the stability of the system.

106 Chapter 9. Conclusions and future work

Bibliography

[1] “Kuka iiwa robot technical specifications..” https://www.kuka.
com/en-gb/products/robotics-systems/industrial-robots/
lbr-iiwa. [accessed on July 2017].

[2] “Kawada nextage robot technical specifications..” http://nextage.
kawada.jp/en/specification/#specHontaiTable. [accessed on July
2017].

[3] “Ur10 robot technical specifications..” https://www.universal-robots.
com/media/1514642/101081_199901_ur10_technical_details_
web_a4_art03_rls_eng.pdf. [accessed on July 2017].

[4] H. Herrero, J. L. Outón, M. Puerto, D. Sallé, and K. López de Ipiña, “Enhanced
flexibility and reusability through state machine-based architectures for multi-
sensor intelligent robotics,” Sensors, vol. 17, no. 6, p. 1249, 2017.

[5] H. Herrero, A. A. Moughlbay, J. L. Outón, D. Sallé, and K. L. de Ipiña, “Skill
based robot programming: Assembly, vision and workspace monitoring skill in-
teraction,” Neurocomputing, vol. 255, pp. 61 – 70, 2017. Bioinspired Intelligence
for machine learning.

[6] H. Herrero, J. L. Outón, U. Esnaola, D. Sallé, and K. L. de Ipiña, “State machine
based architecture to increase flexibility of dual-arm robot programming,” in
International Work-Conference on the Interplay Between Natural and Artificial
Computation, pp. 98–106, Springer International Publishing, 2015.

[7] H. Herrero, J. L. Outón, U. Esnaola, D. Sallé, and K. L. de Ipiña, “Development
and evaluation of a skill based architecture for applied industrial robotics,” in
Bioinspired Intelligence (IWOBI), 2015 4th International Work Conference on,
pp. 191–196, IEEE, 2015.

[8] H. Herrero, R. Pacheco, N. Alberdi, M. Rumayor, D. Sallé, and K. L. de Ipiña,
“Skills for vision-based applications in robotics application to aeronautics assem-
bly pilot station,” in EUROCON 2015-International Conference on Computer as
a Tool (EUROCON), IEEE, pp. 1–6, IEEE, 2015.

[9] M. J. Puerto, D. Sallé, J. L. Outón, H. Herrero, and Z. Lizuain, “Towards a flexi-
ble production system environment server implementation,” in EUROCON 2015-
International Conference on Computer as a Tool (EUROCON), IEEE, pp. 1–6,
IEEE, 2015.

107

https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/lbr-iiwa
http://nextage.kawada.jp/en/specification/#specHontaiTable
http://nextage.kawada.jp/en/specification/#specHontaiTable
https://www.universal-robots.com/media/1514642/101081_199901_ur10_technical_details_web_a4_art03_rls_eng.pdf
https://www.universal-robots.com/media/1514642/101081_199901_ur10_technical_details_web_a4_art03_rls_eng.pdf
https://www.universal-robots.com/media/1514642/101081_199901_ur10_technical_details_web_a4_art03_rls_eng.pdf

108 Bibliography

[10] A. A. Moughlbay, H. Herrero, R. Pacheco, J. L. Outón, and D. Sallé, “Reli-
able workspace monitoring in safe human-robot environment,” in International
Conference on EUropean Transnational Education, pp. 256–266, Springer Inter-
national Publishing, 2016.

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, vol. 1, pp. 886–893, IEEE, 2005.

[12] C. R. Duguay, S. Landry, and F. Pasin, “From mass production to flexible/agile
production,” International Journal of Operations & Production Management,
vol. 17, no. 12, pp. 1183–1195, 1997.

[13] S. J. Hu, “Evolving paradigms of manufacturing: From mass production to mass
customization and personalization,” Procedia CIRP, vol. 7, pp. 3–8, 2013.

[14] W. Wang and Y. Koren, “Scalability planning for reconfigurable manufacturing
systems,” Journal of Manufacturing Systems, vol. 31, no. 2, pp. 83–91, 2012.

[15] F. Tao, Y. Cheng, L. Zhang, and A. Nee, “Advanced manufacturing systems:
socialization characteristics and trends,” Journal of Intelligent Manufacturing,
pp. 1–16, 2015.

[16] C. Haslarn, “The end of mass production?,” Economy and Society, vol. 16, no. 3,
1987.

[17] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Dimarogonas,
and D. Kragic, “Dual arm manipulation—a survey,” Robotics and Autonomous
systems, vol. 60, no. 10, pp. 1340–1353, 2012.

[18] L. Xia, C.-C. Chen, and J. K. Aggarwal, “Human detection using depth in-
formation by kinect,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on, pp. 15–22, IEEE, 2011.

[19] G. Blumrosen, Y. Miron, N. Intrator, and M. Plotnik, “A real-time kinect
signature-based patient home monitoring system,” Sensors, vol. 16, no. 11,
p. 1965, 2016.

[20] “Tecnalia.” http://www.tecnalia.com/en/. [accessed on February 2017].

[21] “Lean Automation (LIAA). LIAA aims to keep assembly jobs in Europe by creat-
ing and implementing a framework that enables humans and robots to truly work
together in assembly tasks.” http://www.project-leanautomation.
eu/. [accessed on June 2016].

[22] “Rapid Reconfiguration of Flexible Production Systems (ReCaM). ReCaM
project aims to demonstrate a set of integrated tools for the rapid reconfiguration
of flexible production systems.” http://recam-project.eu/. [accessed on
February 2017].

http://www.tecnalia.com/en/
http://www.project-leanautomation.eu/
http://www.project-leanautomation.eu/
http://recam-project.eu/

Bibliography 109

[23] “Mobile dual arm robotic workers with embedded cognition for hybrid and dy-
namically reconfigurable manufacturing systems. project id: 723616. h2020 fof2
– 2016.” http://www.thomas-project.eu/project/. [accessed on May
2017].

[24] “Abb robotstudio.” http://new.abb.com/products/robotics/es/
robotstudio. [accessed on August 2017].

[25] “Fanuc roboguide.” http://www.fanuc.eu/es/es/robots/
accesorios/roboguide. [accessed on August 2017].

[26] “Kuka sim.” https://www.kuka.com/en-de/products/
robot-systems/software/. [accessed on August 2017].

[27] “3ds delmia.” https://www.3ds.com/products-services/delmia/.
[accessed on August 2017].

[28] “Robodk.” http://www.robodk.com/. [accessed on May 2017].

[29] K. Christensen, G. Doblhammer, R. Rau, and J. W. Vaupel, “Ageing popu-
lations: the challenges ahead,” The lancet, vol. 374, no. 9696, pp. 1196–1208,
2009.

[30] A. Ch loń-Domińczak, I. E. Kotowska, J. Kurkiewicz, A. Abramowska-Kmon, and
M. Stonawski, “Population ageing in europe: facts, implications and policies,”
European Commission, Brussels, 2014.

[31] R. Ervik, “A missing leg of ageing policy ideas: Dependency ratios, technology
and international organizations,” in Paper from ESPA-net conference, Urbino.
Available on http://www.espanet-italia.net/conference2009/
paper/15Ervik.pdf(Accessed:June1,2014), 2009.

[32] “What are the different programming meth-
ods for robots?.” http://blog.robotiq.com/
what-are-the-different-programming-methods-for-robots.
[accessed on July 2017].

[33] Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish, “Recent progress on
programming methods for industrial robots,” Robotics and Computer-Integrated
Manufacturing, vol. 28, no. 2, pp. 87–94, 2012.

[34] “British automation & robot association.” http://www.bara.org.uk/
robots/robot-programming-methods.html. [accessed on July 2017].

[35] W. Zhu, W. Qu, L. Cao, D. Yang, and Y. Ke, “An off-line programming system
for robotic drilling in aerospace manufacturing,” The International Journal of
Advanced Manufacturing Technology, vol. 68, no. 9-12, pp. 2535–2545, 2013.

http://www.thomas-project.eu/project/
http://new.abb.com/products/robotics/es/robotstudio
http://new.abb.com/products/robotics/es/robotstudio
http://www.fanuc.eu/es/es/robots/accesorios/roboguide
http://www.fanuc.eu/es/es/robots/accesorios/roboguide
https://www.kuka.com/en-de/products/robot-systems/software/
https://www.kuka.com/en-de/products/robot-systems/software/
https://www.3ds.com/products-services/delmia/
http://www.robodk.com/
http://www. espanet-italia. net/conference2009/paper/15 Ervik. pdf (Accessed: June 1, 2014)
http://www. espanet-italia. net/conference2009/paper/15 Ervik. pdf (Accessed: June 1, 2014)
http://blog.robotiq.com/what-are-the-different-programming-methods-for-robots
http://blog.robotiq.com/what-are-the-different-programming-methods-for-robots
http://www.bara.org.uk/robots/robot-programming-methods.html
http://www.bara.org.uk/robots/robot-programming-methods.html

110 Bibliography

[36] C. A. Jara, F. A. Candelas, P. Gil, F. Torres, F. Esquembre, and S. Dormido,
“Ejs+ ejsrl: An interactive tool for industrial robots simulation, computer vi-
sion and remote operation,” Robotics and Autonomous systems, vol. 59, no. 6,
pp. 389–401, 2011.

[37] V. S. Bottazzi and J. C. Fonseca, “Off-line robot programming framework,” in
Autonomic and Autonomous Systems and International Conference on Network-
ing and Services, 2005. ICAS-ICNS 2005. Joint International Conference on,
pp. 71–71, IEEE, 2005.

[38] “Yaskawa motosim.” http://www.yaskawa.eu.com/en/products/
robotic/software/offline-tools/. [accessed on August 2017].

[39] “Robotmaster.” http://www.robotmaster.com/en/. [accessed on August
2017].

[40] T. Brog̊ardh, “Present and future robot control development—an industrial per-
spective,” Annual Reviews in Control, vol. 31, no. 1, pp. 69–79, 2007.

[41] L. Qi, D. Zhang, J. Zhang, and J. Li, “A lead-through robot programming
approach using a 6-dof wire-based motion tracking device,” in Robotics and
Biomimetics (ROBIO), 2009 IEEE International Conference on, pp. 1773–1777,
IEEE, 2009.

[42] S. Calinon and A. Billard, “Incremental learning of gestures by imitation in a
humanoid robot,” in Proceedings of the ACM/IEEE international conference on
Human-robot interaction, pp. 255–262, ACM, 2007.

[43] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot
learning from demonstration,” Robotics and autonomous systems, vol. 57, no. 5,
pp. 469–483, 2009.

[44] J. W. S. Chong, S. Ong, A. Y. Nee, and K. Youcef-Youmi, “Robot program-
ming using augmented reality: An interactive method for planning collision-free
paths,” Robotics and Computer-Integrated Manufacturing, vol. 25, no. 3, pp. 689–
701, 2009.

[45] R. Marin, P. J. Sanz, and J. Sanchez, “A very high level interface to teleoperate
a robot via web including augmented reality,” in Robotics and Automation, 2002.
Proceedings. ICRA’02. IEEE International Conference on, vol. 3, pp. 2725–2730,
IEEE, 2002.

[46] R. Dillmann, O. Rogalla, M. Ehrenmann, R. Zöliner, and M. Bordegoni, “Learn-
ing robot behaviour and skills based on human demonstration and advice: the
machine learning paradigm,” in Robotics Research, pp. 229–238, Springer, 2000.

[47] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter, “Learn-
ing the semantics of object–action relations by observation,” The International
Journal of Robotics Research, vol. 30, no. 10, pp. 1229–1249, 2011.

http://www.yaskawa.eu.com/en/products/robotic/software/offline-tools/
http://www.yaskawa.eu.com/en/products/robotic/software/offline-tools/
http://www.robotmaster.com/en/

Bibliography 111

[48] S. Muench, J. Kreuziger, M. Kaiser, and R. Dillman, “Robot programming by
demonstration (rpd)-using machine learning and user interaction methods for
the development of easy and comfortable robot programming systems,” in Pro-
ceedings of the International Symposium on Industrial Robots, vol. 25, pp. 685–
685, INTERNATIONAL FEDERATION OF ROBOTICS, & ROBOTIC IN-
DUSTRIES, 1994.

[49] M. Amoretti and M. Reggiani, “Architectural paradigms for robotics applica-
tions,” Advanced Engineering Informatics, vol. 24, pp. 4–13, 1 2010.

[50] M. Mtshali and A. Engelbrecht, “Robotic architectures,” Defence Science Jour-
nal, vol. 60, pp. 15–22, JAN 2010.

[51] R. Brooks, “A robust layered control-system for a mobile robot,” Ieee Journal of
Robotics and Automation, vol. 2, pp. 14–23, MAR 1986.

[52] N. R. Jennings and M. Wooldridge, Applications of intelligent agents, pp. 3–28.
Agent technology, Springer, 1998.

[53] B. I. Badano, “A multi-agent architecture with distributed coordination for an
autonomous robot,” University of Girona, PhD theses, Oct, 2008.

[54] R. Badawy, A. Yassine, A. Heßler, B. Hirsch, and S. Albayrak, “A novel multi-
agent system utilizing quantum-inspired evolution for demand side management
in the future smart grid,” Integrated Computer-Aided Engineering, vol. 20, no. 2,
pp. 127–141, 2013.

[55] T. Pinto, Z. Vale, H. Morais, T. M. Sousa, et al., “Strategic bidding in electric-
ity markets: an agent-based simulator with game theory for scenario analysis,”
Integrated Computer-Aided Engineering, vol. 20, no. 4, pp. 335–346, 2013.

[56] E. Colon, “Robotics frameworks,” Royal Military Academy, Belgium, 2014.

[57] K. Jensen, M. Larsen, S. H. Nielsen, L. B. Larsen, K. S. Olsen, and R. N.
Jørgensen, “Towards an open software platform for field robots in precision agri-
culture,” Robotics, vol. 3, no. 2, pp. 207–234, 2014.

[58] N. T. Dantam, D. M. Lofaro, A. Hereid, P. Y. Oh, A. D. Ames, and M. Stilman,
“The ach library: a new framework for real-time communication,” IEEE Robotics
& Automation Magazine, vol. 22, no. 1, pp. 76–85, 2015.

[59] A. Harris and J. M. Conrad, “Survey of popular robotics simulators, frameworks,
and toolkits,” in Southeastcon, 2011 Proceedings of IEEE, pp. 243–249, IEEE,
2011.

[60] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback, “Towards
component-based robotics,” in Intelligent Robots and Systems, 2005.(IROS
2005). 2005 IEEE/RSJ International Conference on, pp. 163–168, IEEE, 2005.

112 Bibliography

[61] “Microsoft robotics developer studio. windows-based environment for robot con-
trol and simulation.” https://msdn.microsoft.com/en-us/library/
bb648760.aspx. [accessed on July 2017].

[62] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project: Tools for
multi-robot and distributed sensor systems,” in Proceedings of the 11th interna-
tional conference on advanced robotics, vol. 1, pp. 317–323, 2003.

[63] J.-L. Blanco et al., “Mobile robot programming toolkit (mrpt),” 2011.

[64] R. Diankov, Automated Construction of Robotic Manipulation Programs. PhD
thesis, Carnegie Mellon University, Robotics Institute, August 2010.

[65] “Ikfast analytically solves robot inverse kinematics equations and generates op-
timized c++ files..” http://openrave.org/docs/0.8.2/openravepy/
ikfast/. [accessed on July 2017].

[66] H. Bruyninckx, “Open robot control software: the orocos project,” in Robotics
and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference
on, vol. 3, pp. 2523–2528, IEEE, 2001.

[67] “The kinematics and dynamics library (kdl). an application independent frame-
work for modelling and computation of kinematic chains.” http://www.
orocos.org/kdl. [accessed on July 2017].

[68] M. Klotzbücher and H. Bruyninckx, “Coordinating robotic tasks and systems
with rfsm statecharts,” JOSER: Journal of Software Engineering for Robotics,
vol. 3, no. 1, pp. 28–56, 2012.

[69] R. Smits, T. De Laet, K. Claes, H. Bruyninckx, and J. De Schutter, “itasc: a
tool for multi-sensor integration in robot manipulation,” in Multisensor Fusion
and Integration for Intelligent Systems, 2008. MFI 2008. IEEE International
Conference on, pp. 426–433, IEEE, 2008.

[70] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA Workshop
on Open Source Software, 2009.

[71] “Wiki ROS. A collaborative documentation wiki..” http://wiki.ros.org/.
[accessed on July 2017].

[72] “ROS Answers. Q&A website..” http://answers.ros.org/questions/.
[accessed on July 2017].

[73] “Orca is an open-source framework for developing component-based robotic
systems.” http://orca-robotics.sourceforge.net/orca_doc_
publications.html. [accessed on July 2017].

[74] “Player/stage. free software tools for robot and sensor applications.” http:
//playerstage.sourceforge.net/. [accessed on July 2017].

https://msdn.microsoft.com/en-us/library/bb648760.aspx
https://msdn.microsoft.com/en-us/library/bb648760.aspx
http://openrave.org/docs/0.8.2/openravepy/ikfast/
http://openrave.org/docs/0.8.2/openravepy/ikfast/
http://www.orocos.org/kdl
http://www.orocos.org/kdl
http://wiki.ros.org/
http://answers.ros.org/questions/
http://orca-robotics.sourceforge.net/orca_doc_publications.html
http://orca-robotics.sourceforge.net/orca_doc_publications.html
http://playerstage.sourceforge.net/
http://playerstage.sourceforge.net/

Bibliography 113

[75] “Openrave provides an environment for testing, developing, and deploying
motion planning algorithms in real-world robotics applications.” http://
openrave.org/docs/latest_stable/devel/. [accessed on July 2017].

[76] “Mrpt comprises a set of c++ libraries and a number of ready-to-use applica-
tions for mobile robot platforms.” http://www.mrpt.org/. [accessed on July
2017].

[77] M. Klotzbuecher, “Orocos rFSM. rFSM is a statechart implementation designed
for coordinating of complex systems such as robots.” https://github.com/
orocos/rFSM/tree/master/doc. [accessed on June 2016].

[78] “Robot Operating System (ROS). It is a collection of tools, libraries, and con-
ventions that aim to simplify the task of creating complex and robust robot
behavior.” http://www.ros.org/. [accessed on June 2016].

[79] “Darpa challenge is one of the most relevant robot competition. it is funded by
the us defense advanced research projects agency.” http://archive.darpa.
mil/roboticschallenge/. [accessed on July 2017].

[80] “At least 18 of the 23 finalist of darpa challenge uses ros..” https://www.
osrfoundation.org/ros-gazebo-at-the-drc-finals/. [accessed on
July 2017].

[81] W. D. Smart, “Is a common middleware for robotics possible?,” in Proceedings
of the IROS 2007 workshop on Measures and Procedures for the Evaluation of
Robot Architectures and Middleware. Citeseer, vol. 1, 2007.

[82] “Ros control package..” http://wiki.ros.org/ros_control. [accessed
on July 2017].

[83] I. A. Sucan and S. Chitta, “Moveit!.” http://moveit.ros.org/
documentation/concepts/. [accessed on June 2017].

[84] A. Björkelund, H. Bruyninckx, J. Malec, K. Nilsson, and P. Nugues, “Knowl-
edge for intelligent industrial robots.,” in AAAI Spring Symposium: Designing
Intelligent Robots, 2012.

[85] J. Huckaby, S. Vassos, and H. I. Christensen, “Planning with a task modeling
framework in manufacturing robotics,” in Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, pp. 5787–5794, IEEE, 2013.

[86] M. Stenmark and J. Malec, “A helping hand: Industrial robotics, knowledge
and user-oriented services,” in AI-based Robotics Workshop, 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2013.

[87] D. Alonso, C. Vicente-Chicote, J. A. Pastor, and B. Alvarez, Stateml : From
graphical state machine models to thread-safe ada code, pp. 158–170. Reliable
Software Technologies - Ada-Europe 2008, Springer, 2008.

http://openrave.org/docs/latest_stable/devel/
http://openrave.org/docs/latest_stable/devel/
http://www.mrpt.org/
https://github.com/orocos/rFSM/tree/master/doc
https://github.com/orocos/rFSM/tree/master/doc
http://www.ros.org/
http://archive.darpa.mil/roboticschallenge/
http://archive.darpa.mil/roboticschallenge/
https://www.osrfoundation.org/ros-gazebo-at-the-drc-finals/
https://www.osrfoundation.org/ros-gazebo-at-the-drc-finals/
http://wiki.ros.org/ros_control
http://moveit.ros.org/documentation/concepts/
http://moveit.ros.org/documentation/concepts/

114 Bibliography

[88] A. Armentia, U. Gangoiti, R. Priego, E. Estévez, and M. Marcos, “Flexibility
support for homecare applications based on models and multi-agent technology,”
Sensors, vol. 15, no. 12, pp. 31939–31964, 2015.

[89] J. Bohren, “SMACH. Is a ROS-independent Python library to build hierarchical
state machines.” http://wiki.ros.org/smach. [accessed on June 2016].

[90] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter, A. Ude,
T. Asfour, D. Kraft, D. Omrčen, et al., “Object–action complexes: Grounded
abstractions of sensory–motor processes,” Robotics and Autonomous Systems,
vol. 59, no. 10, pp. 740–757, 2011.

[91] T. Abbas and B. A. MacDonald, “Generalizing topological task graphs from
multiple symbolic demonstrations in programming by demonstration (pbd) pro-
cesses,” in Robotics and Automation (ICRA), 2011 IEEE International Confer-
ence on, pp. 3816–3821, IEEE, 2011.

[92] G. Biggs and B. MacDonald, “A survey of robot programming systems,” in
Proceedings of the Australasian conference on robotics and automation, pp. 1–3,
2003.

[93] A. Lemme, A. Freire, G. Barreto, and J. Steil, “Kinesthetic teaching of visuo-
motor coordination for pointing by the humanoid robot icub,” Neurocomputing,
vol. 112, pp. 179 – 188, 2013. 20th European Symposium on Artificial Neural
Networks (ESANN 2012).

[94] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V. Krüger,
and O. Madsen, “Robot skills for manufacturing: From concept to industrial
deployment,” Robotics and Computer-Integrated Manufacturing, vol. 37, pp. 282–
291, 2016.

[95] E. Gat et al., “On three-layer architectures,” Artificial intelligence and mobile
robots, vol. 195, p. 210, 1998.

[96] A. Björkelund, L. Edström, M. Haage, J. Malec, K. Nilsson, P. Nugues, S. G.
Robertz, D. Störkle, A. Blomdell, R. Johansson, M. Linderoth, A. Nilsson,
A. Robertsson, A. Stolt, and H. Bruyninckx, “On the integration of skilled
robot motions for productivity in manufacturing,” in Assembly and Manufac-
turing (ISAM), 2011 IEEE International Symposium on, pp. 1–9, 2011.

[97] J. G. Trafton, “Cognitive Robotics and Human Robot Inter-
action.” http://www.nrl.navy.mil/itd/aic/content/
cognitive-robotics-and-human-robot-interaction. [accessed
on August 2016].

[98] L. Moshkina, S. Trickett, and J. G. Trafton, “Social engagement in public places:
a tale of one robot,” in Proceedings of the 2014 ACM/IEEE international con-
ference on Human-robot interaction, pp. 382–389, ACM, 2014.

http://wiki.ros.org/smach
http://www.nrl.navy.mil/itd/aic/content/cognitive-robotics-and-human-robot-interaction
http://www.nrl.navy.mil/itd/aic/content/cognitive-robotics-and-human-robot-interaction

Bibliography 115

[99] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann, “A new
skill based robot programming language using uml/p statecharts,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on, pp. 461–466,
IEEE, 2013.

[100] S. Sen, G. Sherrick, D. Ruiken, and R. A. Grupen, “Hierarchical skills and skill-
based representation.,” in Lifelong learning, 2011.

[101] J. Zhou, X. Ding, and Y. Y. Qing, “Automatic planning and coordinated control
for redundant dual-arm space robot system,” Industrial Robot: An International
Journal, vol. 38, no. 1, pp. 27–37, 2011.

[102] A. A. Moughlbay, E. Cervera, and P. Martinet, “Real-time model based visual
servoing tasks on a humanoid robot,” in Intelligent Autonomous Systems 12,
pp. 321–333, Springer, 2013.

[103] “Holistic, extensible, scalable and standard virtual factory framework.” http:
//cordis.europa.eu/project/rcn/97739_en.html, 2009. [accesed on
June 2017].

[104] “Robots for small and medium-sized enterprises.” http://www.
smerobotics.org/, 2012. [accessed on January 2017].

[105] M. Lanz, E. Jarvenpaa, F. Garcia, P. Luostarinen, and R. Tuokko, “To-
wards adaptive manufacturing systems - knowledge and knowledge manage-
ment systems,” Manufacturing System, vol. ISBN: 978-953-51-0530-5, DOI:
10.5772/36015, 2012.

[106] S. Bøgh, M. Hvilshøj, M. Kristiansen, and O. Madsen., “Autonomous industrial
mobile manipulation (aimm): From research to industry,” in Proceedings of the
42nd International Symposium on Robotics, 2011.

[107] S. Bøgh, O. S. Nielsen, M. R. Pedersen, V. Krüger, and O. Madsen., “Does your
robot have skills?,” in The 43rd Intl. Symp. on Robotics (ISR2012), (Taipei,
Taiwan, Aug. 29-31), 2012.

[108] R. H. Andersen, T. Solund, and J. Hallam, “Definition and initial case-based eval-
uation of hardware-independent robot skills for industrial robotic co-workers,”
in ISR/Robotik 2014; 41st International Symposium on Robotics; Proceedings of,
pp. 1–7, 2014.

[109] M. Tenorth, A. C. Perzylo, R. Lafrenz, and M. Beetz, “The roboearth language:
Representing and exchanging knowledge about actions, objects, and environ-
ments,” in Robotics and Automation (ICRA), 2012 IEEE International Confer-
ence on, pp. 1284–1289, IEEE, 2012.

[110] “Robohow: Web-enabled and experience-based cognitive robots that learn
complex everyday manipulation tasks..” http://cordis.europa.eu/
project/rcn/102157_en.html, 2013. [accessed on July 2017].

http://cordis.europa.eu/project/rcn/97739_en.html
http://cordis.europa.eu/project/rcn/97739_en.html
http://www.smerobotics.org/
http://www.smerobotics.org/
http://cordis.europa.eu/project/rcn/102157_en.html
http://cordis.europa.eu/project/rcn/102157_en.html

116 Bibliography

[111] “Flexible robotic systems for automated adaptive packaging of fresh and pro-
cessed food products.” http://www.picknpack.eu/. [accessed on July
2017].

[112] “Sherpa: Smart collaboration between humans and ground-aerial robots
for improving rescuing activities in alpine environments..” http://www.
sherpaproject.eu/sherpa/. [accessed on July 2017].

[113] “Skillpro: Skill-based propagation of ’plug and produce’ devices in reconfigurable
production systems by aml..” http://www.skillproproject.eu/. [ac-
cessed on July 2017].

[114] T. Foote, “tf: The transform library,” in Technologies for Practical Robot Appli-
cations (TePRA), 2013 IEEE International Conference on, Open-Source Soft-
ware workshop, pp. 1–6, April 2013.

[115] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A taxonomy
for autonomous agents,” in International Workshop on Agent Theories, Archi-
tectures, and Languages, pp. 21–35, Springer, 1996.

[116] H. S. Nwana, “Software agents: An overview,” The knowledge engineering review,
vol. 11, no. 3, pp. 205–244, 1996.

[117] N. R. Jennings, “On agent-based software engineering,” Artificial intelligence,
vol. 117, no. 2, pp. 277–296, 2000.

[118] B. Innocenti, B. López, and J. Salvi, “A multi-agent architecture with coop-
erative fuzzy control for a mobile robot,” Robotics and Autonomous Systems,
vol. 55, no. 12, pp. 881–891, 2007.

[119] A. Koubâa, M.-F. Sriti, H. Bennaceur, A. Ammar, Y. Javed, M. Alajlan, N. Al-
Elaiwi, M. Tounsi, and E. Shakshuki, “Coros: a multi-agent software architecture
for cooperative and autonomous service robots,” in Cooperative Robots and Sen-
sor Networks 2015, pp. 3–30, Springer, 2015.

[120] “The OctoMap library implements a 3D occupancy grid mapping approach, pro-
viding data structures and mapping algorithms in C++ particularly suited for
robotics.” https://octomap.github.io/. [accessed on July 2017].

[121] “Airbus operations.” http://www.airbus.com/. [accessed on July 2017].

[122] “Telnet - redes inteligentes.” http://www.telnet-ri.es/. [accessed on
July 2017].

[123] “Cesa, compañia española de sistemas aeronauticos.” http://www.cesa.
aero/en/. [accessed on February 2017].

[124] “ROS supported hardware.” http://wiki.ros.org/Robots. [accessed on
January 2017].

http://www.picknpack.eu/
http://www.sherpaproject.eu/sherpa/
http://www.sherpaproject.eu/sherpa/
http://www.skillproproject.eu/
https://octomap.github.io/
http://www.airbus.com/
http://www.telnet-ri.es/
http://www.cesa.aero/en/
http://www.cesa.aero/en/
http://wiki.ros.org/Robots

Bibliography 117

[125] “ROS-I supported hardware.” http://wiki.ros.org/Industrial/
supported_hardware. [accessed on January 2017].

[126] H. Herrero, U. Esnaola, and D. Sallé, “Tecnalia hiro performing aeronautics
assembly - deburring and riveting.” https://www.youtube.com/watch?
v=pvxlqyJtPNo. [accessed on April 2017].

[127] S. G. MacDonell, “Determining delivered functional error content based on the
complexity of case specifications,” New Zealand Journal of Computing, vol. 5,
no. 1, pp. 57–65, 1994.

[128] M. Mangili, “Supporting software evolution through a diagnostic approach of
maintainability,” 2009. Bachelor Thesis.

[129] H. Herrero, F. Garćıa, U. Esnaola, and D. Sallé, “Tecnalia nextageopen -
dual-arm robot for aeronautics pilot station.” https://www.youtube.com/
watch?v=x-eJ66jM1Rk. [accessed on April 2017].

[130] E. Järvenpää, N. Siltala, and M. Lanz, “Formal resource and capability descrip-
tions supporting rapid reconfiguration of assembly systems,” in In Proceedings of
the 12th Conference on Automation Science and Engineering, and International
Symposium on Assembly and Manufacturing, pp. 120–125, IEEE, 2016.

[131] E. Järvenpää, N. Siltala, O. Hylli, and M. Lanz, “Capability matchmaking pro-
cedure to support rapid configuration and re-configuration of production sys-
tems,” in Submitted for publication in 27th International Conference on Flexible
Automation and Intelligent Manufacturing, FAIM2017, 2017.

[132] M. A. Babar, L. Zhu, and R. Jeffery, “A framework for classifying and comparing
software architecture evaluation methods,” in Software Engineering Conference,
2004. Proceedings. 2004 Australian, pp. 309–318, IEEE, 2004.

[133] L. Dobrica and E. Niemela, “A survey on software architecture analysis meth-
ods,” IEEE Transactions on software Engineering, vol. 28, no. 7, pp. 638–653,
2002.

[134] M. T. Ionita, D. K. Hammer, and H. Obbink, “Scenario-based software architec-
ture evaluation methods: An overview,” Icse/Sara, 2002.

[135] R. Kazman, M. Klein, and P. Clements, “Atam: Method for architecture evalu-
ation,” tech. rep., DTIC Document, 2000.

[136] J. Gonzalez-Huerta, E. Insfran, and S. Abrahão, “Models in software architec-
ture derivation and evaluation: Challenges and opportunities,” in International
Conference on Model-Driven Engineering and Software Development, pp. 12–31,
Springer, 2014.

[137] M. A. Babar and I. Gorton, “Comparison of scenario-based software architec-
ture evaluation methods,” in Software Engineering Conference, 2004. 11th Asia-
Pacific, pp. 600–607, IEEE, 2004.

http://wiki.ros.org/Industrial/supported_hardware
http://wiki.ros.org/Industrial/supported_hardware
https://www.youtube.com/watch?v=pvxlqyJtPNo
https://www.youtube.com/watch?v=pvxlqyJtPNo
https://www.youtube.com/watch?v=x-eJ66jM1Rk
https://www.youtube.com/watch?v=x-eJ66jM1Rk

118 Bibliography

[138] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early prediction
of software component reliability,” in Proceedings of the 30th international con-
ference on Software engineering, pp. 111–120, ACM, 2008.

[139] J. Gonzalez-Huerta, E. Insfran, S. Abrahão, and G. Scanniello, “Validating a
model-driven software architecture evaluation and improvement method: A fam-
ily of experiments,” Information and Software Technology, vol. 57, pp. 405–429,
2015.

[140] R. Kazman, M. Klein, and P. Clements, “Evaluating software architectures-
methods and case studies,” 2001.

[141] J. O. Ringert, B. Rumpe, and A. Wortmann, “A case study on model-based
development of robotic systems using montiarc with embedded automata,” arXiv
preprint arXiv:1408.5692, 2014.

[142] P. Giorgini, M. Kolp, and J. Mylopoulos, “Multi-agent and software architec-
tures: a comparative case study,” in International Workshop on Agent-Oriented
Software Engineering, pp. 101–112, Springer, 2002.

[143] J. Bravo, V. Villarreal, R. Hervás, and G. Urzaiz, “Using a communication model
to collect measurement data through mobile devices,” Sensors, vol. 12, no. 7,
pp. 9253–9272, 2012.

[144] W. Aman and E. Snekkenes, “Edas: An evaluation prototype for autonomic
event-driven adaptive security in the internet of things,” Future Internet, vol. 7,
no. 3, pp. 225–256, 2015.

[145] T. Wang, H. Gao, and J. Qiu, “A combined fault-tolerant and predictive con-
trol for network-based industrial processes,” IEEE Transactions on Industrial
Electronics, vol. 63, pp. 2529–2536, April 2016.

[146] T. Wang, Y. Zhang, J. Qiu, and H. Gao, “Adaptive fuzzy backstepping control
for a class of nonlinear systems with sampled and delayed measurements,” IEEE
Transactions on Fuzzy Systems, vol. 23, no. 2, pp. 302–312, 2015.

[147] T. Wang, J. Qiu, H. Gao, and C. Wang, “Network-based fuzzy control for non-
linear industrial processes with predictive compensation strategy,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, 2016.

[148] “Innovative tools, methods and indicators for optimizing the resource efficiency
in process industry. project id: 604140. fp7-nmp.” http://toprefproject.
eu/. [accessed on April 2017].

[149] “ROS-Industrial. It is an open-source project that extends the advanced
capabilities of ROS to manufacturing automation and robotics.” http://
rosindustrial.org/about/description/. [accessed on January 2017].

http://toprefproject.eu/
http://toprefproject.eu/
http://rosindustrial.org/about/description/
http://rosindustrial.org/about/description/

Bibliography 119

[150] S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, “Towards smart factory for
industry 4.0: a self-organized multi-agent system with big data based feedback
and coordination,” Computer Networks, vol. 101, pp. 158 – 168, 2016. Industrial
Technologies and Applications for the Internet of Things.

120 Bibliography

Appendix I

Primitives and skills

Contents
I.a Primitives . 122

I.a.1 XML representation . 122

I.a.2 Python implementation . 122

I.b Skills . 123

I.b.1 Assembly skill . 123

121

122 Appendix I. Primitives and skills

In the following sections different examples of skills and primitives can be found.

I.a Primitives

The implemented primitive representation is no more than a name, parameters, and
returned result. This XML representation is mapped into a Python method. In the
following lines examples of both alternatives can be found.

I.a.1 XML representation

Listing I.1: XML representation of a point to point linear interpolated robot movement primitive

<?xml version=”1.0” encoding=”UTF−8”?>
<action name=”move tcp”>

<parameters>
<param name=”group”>

<value></value>
</param>
<param name=”pose”>

<value></value>
</param>
<param name=”tcp pose”>

<value></value>
</param>

</parameters>
<result>

<name></name>
</result>

</action>

I.a.2 Python implementation

Listing I.2: Python implementation of move tcp primitive

def move tcp(self, group, pose, tcp pose = None, velocity ratio = None,
timeout = None):

”””
Synchronously move robot group to given pose with
joint space interpolation
”””
robot base pose = self. to pose in group base(group, pose)
robot tip tcp pose = self. to pose in group tip(group, tcp pose)

if tcp pose else None

I.b. Skills 123

return self.robot.move tcp(group, robot base pose,
robot tip tcp pose, velocity ratio, timeout)

I.b Skills

In the next sections an examples of the skills XML representation of the industrial
use-cases (Section 7) can be found.

I.b.1 Assembly skill

Listing I.3: XML representation of the assembly skill

<?xml version=”1.0” encoding=”UTF−8”?>
<skill name=”assembly skill”>

<parameters>
<param name=”robot group”/>

<value></value>
<param name=”end effector”/>

<value></value>
<param name=”part name”/>

<value></value>
<param name=”grasp frame”/>

<value></value>
<param name=”assembly point frame”/>

<value></value>
<param name=”place frame”/>

<value></value>
</parameters>
<action list>

<action name=”approx move tcp”>
<parameters>

<param name=”group”>
<link>robot group</link>
<value></value>

</param>
<param name=”pose”>

<link>grasp frame</link>
<value></value>

</param>
<param name=”tcp pose”>

<link>end effector</link>
<value></value>

</param>
</parameters>
<result>

124 Appendix I. Primitives and skills

<name></name>
</result>

</action>
<action name=”open gripper”>

<parameters>
<param name=”part name”>

<link>part name</link>
<value></value>

</param>
</parameters>
<result>

<name></name>
</result>

</action>
<action name=”move lin”>

<parameters>
<param name=”group”>

<link>robot group</link>
<value></value>

</param>
<param name=”pose”>

<link>grasp frame</link>
<value></value>

</param>
<param name=”tcp pose”>

<link>end effector</link>
<value></value>

</param>
</parameters>
<result>

<name></name>
</result>

</action>
<action name=”close gripper”>

<parameters>
<param name=”part name”>

<link>part name</link>
<value></value>

</param>
</parameters>
<result>

<name></name>
</result>

</action>
<action name=”approx move lin”>

<parameters>
<param name=”group”>

<link>robot group</link>

I.b. Skills 125

<value></value>
</param>
<param name=”pose”>

<link>grasp frame</link>
<value></value>

</param>
<param name=”tcp pose”>

<link>assembly point frame</link>
<value></value>

</param>
</parameters>
<result>

<name></name>
</result>

</action>
<action name=”approx move tcp”>

<parameters>
<param name=”group”>

<link>robot group</link>
<value></value>

</param>
<param name=”pose”>

<link>target frame</link>
<value></value>

</param>
<param name=”tcp pose”>

<link>assembly point frame</link>
<value></value>

</param>
</parameters>
<result>

<name></name>
</result>

</action>
<action name=”move lin”>

<parameters>
<param name=”group”>

<link>robot group</link>
<value></value>

</param>
<param name=”pose”>

<link>target frame</link>
<value></value>

</param>
<param name=”tcp pose”>

<link>assembly point frame</link>
<value></value>

</param>

126 Appendix I. Primitives and skills

</parameters>
<result>

<name></name>
</result>

</action>
<action name=”open gripper”>

<parameters>
<param name=”part name”>

<link>part name</link>
<value></value>

</param>
</parameters>
<result>

<name></name>
</result>

</action>
<action name=”approx move lin”>

<parameters>
<param name=”group”>

<link>robot group</link>
<value></value>

</param>
<param name=”pose”>

<link>grasp frame</link>
<value></value>

</param>
<param name=”tcp pose”>

<link>end effector</link>
<value></value>

</param>
</parameters>
<result>

<name></name>
</result>

</action>
</action list>
<result></result>

</skill>

I.b. Skills 127

128 Appendix I. Primitives and skills

Appendix II

Publications

Contents
II.a Journal publications . 130

II.a.1 Journal article 1 . 131

II.a.2 Journal article 2 . 133

II.b Conference publications . 135

II.b.1 Conference paper 1 . 136

II.b.2 Conference paper 2 . 138

II.b.3 Conference paper 3 . 140

II.b.4 Conference paper 4 . 142

II.b.5 Conference paper 5 . 144

129

130 Appendix II. Publications

The following sections contains the accepted publications during this work.

II.a Journal publications

� Enhanced Flexibility and Reusability Through State Machine Based Architec-
tures for Multisensor Intelligent Robotics.

� Skill based robot programming: Assembly, vision and Workspace Monitoring
skill interaction

II.a. Journal publications 131

II.a.1 Journal article 1

sensors

Article

Enhanced Flexibility and Reusability through State
Machine-Based Architectures for Multisensor
Intelligent Robotics

Héctor Herrero 1,*, Jose Luis Outón 1, Mildred Puerto 1, Damien Sallé 1 and
Karmele López de Ipiña 2

1 Tecnalia Research and Innovation, Industry and Transport Division, San Sebastián 20009, Spain;
joseluis.outon@tecnalia.com (J.L.O.); mildred.puerto@tecnalia.com (M.P.); damien.salle@tecnalia.com (D.S.)

2 Department of Systems Engineering and Automation, Universidad del País Vasco/Euskal Herriko
Unibertsitatea, EleKin Research Group, San Sebastián 20009, Spain; karmele.ipina@ehu.eus

* Correspondence: hector.herrero@tecnalia.com

Academic Editor: Gonzalo Pajares Martinsanz
Received: 1 March 2017; Accepted: 23 May 2017; Published: 31 May 2017

Abstract: This paper presents a state machine-based architecture, which enhances the flexibility
and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed
architecture, in addition to allowing absolute control of the execution, eases the programming of new
applications by increasing the reusability of the developed modules. Through an easy-to-use graphical
user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing
the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to
demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is
presented for evaluating the presented approach versus traditional robot programming techniques.

Keywords: intelligent robotics; flexibility; reusability; multisensor; state machine; software
architecture; computer vision

1. Introduction

An analysis [1] of the current situation in manufacturing plants highlights three major trends:

• An ever-increasing customization of products and short lifecycle, which require an increase in the
flexibility of the production means (one unique system must handle all of the product diversity
and operations) [2,3]. Robots fit perfect into this topic due to their versatility; robot programs can
adapt to the customizations of the products.

• A large variation in production volumes, which requires an increase in the reconfigurability
of production (one system for one product/task within recombinable production lines) [2,4].
Robotic mobile platforms play an important role in this trend; easy to move robots are necessary
in some production chains where production volumes change frequently.

• Limited access to skilled operators due to an aging workforce, changes in education and an
ever-faster technology development. This requires new solutions to assist operators and provide
collaborative work environments [5]. Collaborative robotics are being developed for this topic.

The research addressed in this paper focuses on the first trend: the need for highly flexible and
intelligent robotic systems. Despite the large effort in the research community, large companies, as well
as small and medium enterprises (SME) still do not have appropriate software tools and solutions to
react rapidly with economic viability for an interesting return of investment for the automation of their
processes. The direct consequence is that production operations are mostly performed manually, with

Sensors 2017, 17, 1249; doi:10.3390/s17061249 www.mdpi.com/journal/sensors

Sensors 2017, 17, 1249 2 of 21

high operation costs that endanger those companies with respect to lower wage countries. This research
is thus oriented toward developing and providing a software ecosystem that allows for a rapid and
efficient programming of production processes, providing the required flexibility and permitting
an effective integration of auxiliary sensors and artificial vision systems. Even if this approach is
generic and applicable to industrial manipulators, this paper will be focused on dual-arm multisensor
robotic operations.

The dual-arm robots provide more dexterity, in addition to the advantage that they can be used in
the existing workstations. Due to these arguments, the dual-arm robot deployment is growing year
by year, not only in large multinationals, but also in SMEs. Sector experts [2,6] affirm investments for
robot deployment are amortized in 1–2 years; however, this information cannot be extrapolated to all
cases. However, applications with short production batches, environments prone to many changes
and processes that need human-robot collaboration or special environment supervision do not comply
with this trend. Dual-arm robots are being introduced in such contexts. The growth of dual-arm
systems [7] is resulting in many efforts made by robotic researchers to manage them. Programming,
coordinating and supervising bi-manual robots is a need that is increasingly being demanded by the
community; even more with the rise of collaborative robots, which have to integrate different sensors
for cell supervising and monitoring [8,9]. In this scenario, the need for actuation when external signals
are received becomes essential, e.g., a person enters the workspace of the robot, and the robot must
stop its movement and adapt its behavior.

In this paper, we present an approach to alleviate the challenges that can be identified for dual-arm
robotic programming. The presented framework eases the deployment of industrial applications
and allows managing the execution control, increasing the reliability and traceability of the system
(Section 2). To ease the deployment of this kind of application, we present how the framework can
integrate skill-based programming. For understanding the advantages, the assembly operation of
an aeronautical part is detailed. Moreover, an evaluation of the architecture is presented (Section 3).
Finally, we present the discussion, conclusions and future work (Sections 4 and 5).

2. Materials and Methods

2.1. State Machine-Based Execution Coordination for Dual-Arm Robots

Traditional robot programming is still not very flexible; thus, the dual-arm programming suffers
the same problems. In the industry, smaller and smaller batches are ordered, and as a consequence, the
costs of reprogramming the robots grow. Even though there are usually different parts, the process is
very similar, e.g., assembling parts with different types of screws. In this case, the assembly operation
is the same; only the screw size, type or position is changing. Those tasks can be modeled; the key is to
be able to subdivide a task (screw operation) into smaller operations (robot movement, end-effector
actuation, etc.). Then, re-using these tasks can be made parametrizing correctly the corresponding
suboperations without needing to reprogram the whole task. Grouping the robot basic movements
(primitives) according to tasks or skills is an alternative that many authors have followed [10–14].

One of the most relevant issues in dual-arm robotic programming, especially for industrial
applications, is the lack of powerful and easy to use graphical user interfaces [15]. An easy to configure
graphical user interface (GUI), which allows the previously-mentioned skill-based programming,
will enable operators to program and maintain the industrial processes. This, in addition to the
workers feeling a part of the automation process, will also contribute to reduce the costs of the robotic
systems’ deployment.

Regarding the execution control, state machines can address dual-arm challenges. These tools are
commonly used for general-purpose processes, and in particular, they have been extensively adopted
by the robotics community. In this aspect, the work made by different authors combining finite
state machines with knowledge and skills is very relevant [16–18]. State machines are an easy way
for describing behaviors and for modeling how components react to different external and internal

Sensors 2017, 17, 1249 3 of 21

stimuli [19,20]. In this area, there are different implementation alternatives, e.g., there are many
projects using Orocos rFSM [21]. rFSM is a small and powerful state-chart implementation designed
for coordinating complex systems, such as robots. SMACH [22] is another implementation of state
machines. It can be defined as a task-level architecture for rapidly creating complex robot behavior.
In this work, SMACH has been selected for implementing the state machine. One of the reasons is
because SMACH can be used under the ROS (Robot Operating System) [23,24], which is a flexible
framework for writing robot software. ROS is a collection of tools, libraries and conventions [25] that
aims to simplify the task of creating complex and robust robot behavior across a wide variety of robotic
platforms [26]. As a complementary element to the execution control, multi-agent systems can be
useful for decision making in coordination and synchronization tasks [27,28].

2.1.1. Proposed Architecture

As illustrated in Figure 1, the proposed state machine interconnects the application development
framework (graphical user interface) and the robotic lower level control system. The presented state
machine is composed of different states where each state corresponds to one of the basic operations that
the robot can execute. Basic operations are considered the functions or commands that by themselves
are able to achieve a goal, e.g., Cartesian point to point interpolation. It can be understood as a robot
API (application programming interface). Following the program provided by the user, the active state
triggers its corresponding state to execute the necessary functions.

Figure 1. Proposed overall architecture. The figure shows how it is divided into three levels.

In this research, all of the prototypes are being tested and validated in a dual-arm robot, specifically
in a Kawada Nextage Open Robot (Figure 2). This robot has humanoid aspects, with two arms of
6 degrees of freedom (DOF) attached to a rotatory torso; it is equipped with a 2-DOF head, which
incorporates the stereo vision system. In conclusion, it is a 15-DOF robot managed by a single controller.
In order to obtain more precision, other stereo vision systems have been added to each wrist.

As is detailed in Section 3.1, the applications are composed of tasks, and these in turn are
composed of primitives (or previously-mentioned basic operations), which are translated to states.
On the one hand, the execution engine triggers state changes at the low level. On the other hand, in the
case of the Kawada Nextage Open robot, the states are connected to the robotic system through an
OpenRTM bridge [29]. Even so, it should not be forgotten that ROS allows hardware independence,
and changing the bridge properly, another robotic system can be used (for example, Orocos or the Fast
Research Interface [30] to interface a Kuka LWR with the proposed architecture).

This combination of the application development framework and a low level state machine
allows us to considerably improve the flexibility and hardiness, make the programming easier, achieve
hardware independence and environment control, resulting in a more industry-oriented solution.

Sensors 2017, 17, 1249 4 of 21

Figure 2. Nextage Open Robot where all developments are being tested.

2.1.2. Core Description

One of the first requirements that was identified was introspection, which is a tool able to
provide the current execution state continuously, allowing us to manage possible errors and improving
the recovery from them. In Figures 3 and 4, the proposed architecture is outlined. The proposed
architecture consists of two state machines, one per arm, with some common states. These common
states are used when a synchronization between the arms is required, i.e., when both arms of the robot
have to move at the same time. This combination of two state machines related by some common
states combines the advantages of having individual machines for processes that do not need dual-arm
cooperation, with the robustness that allows centralized states for dual-arm requiring processes.
The use of the SMACH/ROS combination provides some tools that are very useful for introspection.
SMACH uses ROS messages for publishing, besides other information, the current state; thus, any
module of the software can be checked easily.

Figure 3. Proposed state machine-based architecture. The figure represents an overview of
the architecture.

When the application is launched, the system starts from a ready state and keeps changing to
different states that can be seen as available abilities or capacities of the robot. Note that some states
have not been included in order to simplify the diagram. These states are pause/stop, error handling
and finish. The proposed work in this paper allows either human or sensor-based supervision of
the environment and permits canceling or adapting plans according to sensor values and perception
system information. When an error occurs, e.g., in a trajectory execution, the system is able to cancel

Sensors 2017, 17, 1249 5 of 21

the current operation in order to handle the error and return to a safe position (if possible) or enter an
alarm state that requires operator intervention.

Figure 4. Proposed state machine-based architecture in detail. The figure shows existing states
and transitions.

2.1.3. Description of the Developed States

Each state has been implemented as a module that generally is independent from the core. Only a
few modules have been defined as fundamentals. These special modules are articular/Cartesian,
full body coordinated motion and trajectory execution. All available modules for this version are
shown in Figure 3. It should be emphasized that according to the requirements of the different
applications, the available states can be updated by incorporating new capabilities or removing others
that will not be used.

Table 1. Summary of the main elements of the state machine.

State Description

Ready
The state machine is ready for receiving new instructions. This state is waiting
until the execution engine sends a new request.

Cartesian
articular motion

Manages the robot movements both in the Cartesian space and the articular
space. If the movement cannot be executed correctly, there is an error handling
state to manage it.

Full body
coordinated

motion

Allows controlling both arms in coordination. Two arms must be in this state
to start coordinated motion. Sending the values of the 15 joints of the robot
is necessary.

Record
trajectory

Allows recording trajectories with a trajectory planner or teaching by
demonstration. These trajectories are stored in a database for future use.

Trajectory
execution

Executes trajectories, provided by a trajectory planner or previously stored in
a database.

End-effector
operation

Manages end-effector operations; depending on the end effector, different
operations can be made, e.g., gripper open/close, deburring tool
activate/deactivate, screwing operation, etc.

Vision
operation

Manages different computer vision operations. This includes picture
acquisition, processing and reference frame transformation, among others. As
the robotic system has multiple vision systems, this state is responsible for
managing them depending on the operation that will be executed.

Master/slave
mode

Puts robot in bi-manual coordinated manipulation mode; one arm actuates
as the master and the other one as the slave. Consists of planning a trajectory
for the master arm and then computing this trajectory with an offset for the
slave arm.

Sensors 2017, 17, 1249 6 of 21

In order to understand the proposed architecture, Table 1 summarizes the different states and
their utility. Besides, in Table 2, a summary of the signal and transitions is presented. Each state may
contain a more or less complex structure according to its purpose. On the one hand, for example,
the vision operation state only contains the calls to different vision functions. On the other hand, the
articular/Cartesian motion state is highly general, i.e., this state contains all of the required code to
manage motions both in Cartesian and articular spaces. For a state transitioning, different events are
handle; these events can be thrown out by the safety supervision system or by any module.

Table 2. Summary of the signals and transitions of the state machine.

State Signal Transition to

Ready motion_request Cartesian/articular motion
vision_request Vision operation
end_effector_request End effector operation
... ...
end Finish

Cartesian ok Ready
Articular pause Pause
motion stop Stop

error Error handling

Pause resume Cartesian/articular motion
stop Stop
error Error handling

Stop error Error handling

Error ok Ready
handling end Finish

2.2. Flexible Application Development

The proposed architecture in this paper not only refers to the state machine-based execution
manager, but contains everything necessary for deploying different robotic applications. One of the
key advantages of the proposed work is that different applications reuse the common structure of
the framework.

2.2.1. Software Structure of the Framework

In order to ease the maintainability and assure software quality, the developed framework is
organized into different packages. In this way, following the ROS philosophy, each package must fulfil
minimum quality criteria.

The simplest application is composed by at least the following three packages: execution engine,
core functions and application functions. Figure 5 illustrates these packages (three columns) and the
relation between them. As can be seen, the execution engine creates (instantiates) the state machines.
Each state machine has an instance of an application function (RivetInstallation, AntenaAssembly, etc.).
Application functions inherit from core functions all of the attributes and methods, which allows using
the robot basic operations (Section 2.1.3), enhancing and particularizing them for applying into specific
industrial applications. In this way, all applications are composed by core functions (basic operations)
and application functions, which are a combination of the previous ones. These function libraries
basically configure the requests for the state machine filling required parameters. This organization
also allows having specific graphical user interfaces for each project (rivet_installation_gui) and a
common one for basic robot guiding or teaching (dashboard).

Sensors 2017, 17, 1249 7 of 21

Figure 5. Software structure of the framework.

2.2.2. Execution Engine

The execution engine creates two threads, one per arm; these threads will contain instances of the
proposed state machine. The execution engine will continue its execution managing the request of
operations, i.e., the execution engine is responsible for orchestrating the application flow.

At this point, it is important to think about the change of paradigm for executing robotic
applications. As has been explained here, there are three “independent” threads. As the proposed
architecture is running under ROS, the state machine threads are actually ROS nodes and basically
act like threads with their own parametrization and independent behavior. The execution engine
communicates with these nodes via ROS messages, which contain robot commands with the necessary
parametrization; in this way, each node receives commands to execute and starts triggering the state
machine to the convenient state. When the operation is finished, the state machine returns to the
ready state. The heart of the matter remains in how these messages are generated and managed
(Section 2.2.3).

The consistency of the execution is guaranteed by the deterministic operation of the state machine.
Each node will not receive the next operation until necessary synchronization requirements are met,
i.e., until the execution engine can assure that state machines are in the ready state. In Section 3.1,
a real use case is presented explaining how the operations are executed maintaining the coordination
of both arms.

2.2.3. Application to Executable XML

As mentioned above, applications are stored in XML files, with the particularity that each group
of the robot (left arm, right arm and torso/head) has its own instructions. This is because each state
machine needs to execute operations both synchronously and asynchronously: in some cases, a process
requires both arms of the robot at the same time, e.g., a big part that needs two arms for a correct
handling; in other cases, some process can require the use of both arms, but not at the same time. XML
files contain, in addition to the operations, the necessary flags and synchronization tools to assure this
coordination. In this paper, for the presented use case, the simplest instruction for coordination is used:
a wait instruction. This allows one arm to wait until the other arm finishes its ongoing operation.

Sensors 2017, 17, 1249 8 of 21

Generating a simple application (as can be seen in Figure 6) can be performed writing each XML
file by hand; however, when the application and complexity grow, it is difficult to maintain the correct
perspective and timeline, leading to errors. To address this, a simple graphical interface can be used.
The presented GUI in Figure 7 obtains a list of available functions from core functions and application
function packages (introduced in Section 2.2.1). For creating new applications, the user has to add
functions and parametrize them. With the help of the graphical interface many programming errors
are avoided, especially for the synchronization of both arms, allowing a global vision of the execution
flow. In Figure 7, at the right frame, the application program is represented; the displayed example is
for rivet installation process. When the application is ready, an XML file is created, containing the list
of commands that each arm has to execute. The wait function represents the simplest synchronization
mechanism, because in those time lapses, the left arm has to wait until the right arm finishes; therefore,
in the generated XML file, this will be translated as the wait synchronization operation.

Figure 6. Application program fragment.

Figure 7. Simple GUI for new application development.

Sensors 2017, 17, 1249 9 of 21

3. Results

3.1. Validation in a Real Use Case

As Tecnalia [31] is in direct contact with companies in different industrial sectors,
these developments have been tested in several scenarios with different requirements. One of the
most relevant use cases is for the aeronautics sector; Tecnalia and Airbus Operations (Puerto Real
facilities, Spain) have been working together for several years developing pilot cells for a dual-arm
robot (see LIAA [32] (the EU’s FP7 program) for flexible assembling operations). The first steps
toward the technology transfer for industry validation of this architecture are currently in process in
the Rapid Reconfiguration of Flexible Production Systems (ReCaM) (this research has received funding
from the European Union’s Horizon 2020 research and innovation program under Grant Agreement
No. 680759) [33] project (the EU’s Horizon 2020 program). The relation between a technological center
(Tecnalia), a robotic system integrator (DGH [34]) and the end user (CESA [35]) is a key issue in
ReCaM, where the aim to demonstrate a set of integrated tools for the rapid reconfiguration of flexible
production systems, particularly the assembly of aeronautical actuators, is addressed.

As had been mentioned in previous work [36], one of the most relevant tasks in the aerostructure
assembly is the rivet installation operation. In this paper, the progress made on the automation
of the riveting installation is presented; in the current prototype a deburring operation has been
added, because this prepares the surface of the drilling perimeter for the correct rivet installation.
This operation is performed with an integrated deburring tool in one of the grippers of the robot.
The other gripper is prepared for taking and introducing rivets into drilled holes. This demonstration
takes advantage of the dual-arm capabilities. Furthermore, for robot perception, a stereo vision system
has been incorporated for the precise hole detection; using incorporated stereo cameras on the arms,
production tolerances (0.2 mm) can be achieved [37]. In the same way that the vision system is used,
different kinds of sensors can be integrated adding the corresponding state to the state machine.

Summarizing, the current demonstrator is composed of the following steps:

a. Detect and debur the drilled hole with the left arm (Figure 8).
b. Pick and extract the rivet from a tray with the right arm (Figure 9a).
c. Insert the rivet into the detected hole with the right arm (Figure 9b).

Figure 8. A drilled hole is deburred after detecting its position by vision.

Sensors 2017, 17, 1249 10 of 21

Figure 9. (a) The right arm of the robot is taking a rivet from a tray; (b) after taking the rivet, it is
introduced in the previously-detected drilled hole.

Note that Steps a and b can be performed at the same time, because the rivet extraction operation
take more time than the deburring operation.

If these operations are viewed as skills, the deburring skill, pick rivet skill and rivet inserting
skill are obtained. Figure 10 shows how skills are decomposed into primitives. The organization
into skills eases the composition of new programs, because the parametrization is perceptibly easier.
This parametrization contains the key features that vary between different skill executions. The way
to determine the parameters is as follows: the system programmer starts by selecting the references
or elements that change for different scenarios. For example, in the case of deburring and insertion,
the references of the holes and rivets to be inserted must be parametrized. If that would not be
enough, the parameters that allow one to configure the differences between scenarios would be added.
Once these skills have been validated, abstracting from primitives is possible. In the case of the
deburring operation, only the theoretical position must be provided, taking into account that this
information can be extracted from the CAD model of the piece.

Calibration or the referencing process of the cell is beyond the scope of this work (even if it will
be addressed in future work); nevertheless, it can be easily summarized in three steps: at first, the
positions of the drilled holes are obtained, referenced to the origin of the CAD model. After that, using
an accurate tool center point (TCP), three known points of the real piece are touched; the easiest way is
usually touching one corner and their adjacent edges with the TCP. With these points, the position and
orientation of the piece can be estimated. Finally, using the obtained theoretical position of the piece in
the robot frame and the position of the hole in the piece frame, a frame transformation can be done to
obtain the approximate position of the piece drillings. Of course, this approximate position must be
corrected using artificial vision to achieve the required 0.2 mm of precision.

Returning to the proposed architecture, once the skills are decomposed, the resulting primitives
are the ones that are executed by the state machine. Each state is processing the primitive callbacks and
handling errors if they take place. Thus, the error handling is simpler, and it is managed specifically
in each state or module. Taking one of the operations that are being analyzed, the sequence of the
machine state is shown in Figure 11.

The execution engine sends to the state machines the request for the next operation, based on the
information that is stored in the application XML (see Figure 6). The state machine changes from one
state to another, completing the requested operations. As can be seen in Figure 12, some operations
of the task of installing one rivet can be performed using both arms of the robot at the same time,

Sensors 2017, 17, 1249 11 of 21

improving the cycle time. After these coordinated operations, an exclusive movement of the right arm
is performed; at this moment, the left arm is waiting until the right arm finishes the installation of the
rivet. The whole process of rivet installation is composed by the repetition of this block of skills. In
order to demonstrate the adaptability of the presented framework, the CESA [35] use case is presented.

Figure 10. Install rivet process organized into skills. Skills are composed by primitives.

Figure 11. Debur drilling skill mapping into the state machine.

Sensors 2017, 17, 1249 12 of 21

Figure 12. Coordination between both arms’ timeline.

As has been mentioned above, Tecnalia is working on different projects with assembling
operations in the aeronautical sector. This use case is being developed under the ReCaM
project [33], one of the principal topics of which is the development of assembly capabilities for
robots. In the ReCaM project, the starting point will be the product requirement description, which is
first matched against the resource capabilities existing on the current system layout. If no matches
are found, the system needs to be reconfigured. New resources can be searched from the resource
catalogs. This matchmaking and search is allowed by the OWL-based capability model [38], which
is used to describe the resource capabilities in a formal, computer- and human-interpretable manner.
The capability matchmaking approach is presented in [39]. Once the system has been re-configured
(or found suitable as such), the actual operations need to be programmed and executed. For this
programming, the skill-based approach by Tecnalia is utilized. Basically, the required steps are the
following: pick and assembly various elements (valves, springs, caps, etc.) into a manifold. All of the
elements are stored in a kit, which can be referenced and located by artificial vision.

In this demonstrator, the information extracted from CAD models (an offline process that is not
in the scope of this work) plays an important role. This information is modeled into different XML
files: fixture information and element information. The fixture information XML file contains the
position and orientation of the relevant points of the fixture; these points are marked as targets for pick
and place operations. The element information XML file contains the grasp position, the necessary
gripper for grasping and the assembly point in the model, i.e., the point that is necessary to align
with the fixture relevant point. This skill is able to perform the steps listed above to complete the
assembly of different elements into the manifold, only taking into account the information provided in
the XML files. Figure 13 shows a detailed example of how the assembly skill is parametrized using the
provided information.

Sensors 2017, 17, 1249 13 of 21

Figure 13. Assembly skill configuration for one cap of the manifold.

As can be seen, different applications can be modeled following the same schema; the parameters
that appear in the skill configuration are codified in an XML file (as has been presented for the
previous use case in Figure 6). This XML is completely compatible with the state machine and
execution engine (Sections 2.1.1 and 2.2.2, respectively). The system capacity to adapt to changes in the
environment provides advantages. For instance, if there is variation in the position of parts (elements)
or in the number of parts to process, the high-level program can be adjusted through minor changes
(e.g., reprocess the CAD model for updating positions and adding more blocks of a particular skill).
No changes in the low-level program are needed. As a consequence, an increase of system flexibility
has been achieved.

3.2. Evaluation

In the last few years, several methods for evaluating software architectures have been defined:
scenario-based (SAAM, architecture tradeoff analysis method (ATAM), ALMA, etc.) [40–45],
mathematical model-based (reliability analysis, performance analysis) [46] and metrics-based software
architecture evaluation methods (QuADAI) [47]. In order to evaluate the advantages of the proposed
architecture, based on the previously-mentioned methods, a simplified approach of the architecture
tradeoff analysis method (ATAM) has been selected to perform a comparative analysis [40,48,49].
This method is widely used by the research community for architecture evaluation [50–52]. When
the architecture is evaluated, depending on the requirements, different qualities must be analyzed.
ATAM concentrates on evaluating suitability; therefore, the selection of the appropriate qualities has a
remarkable relevance.

As has been mentioned above, ATAM is a scenario-based method; that is why different scenarios
have been selected in order to compare different desirable qualities. On the one hand, the creation
of a new application from the beginning scenario has been chosen. New application deployment
implies working environment definition, relevant position acquisition, fixture calibration, robot process
programming, simulating, testing and adjusting. On the other hand, another common scenario is
proposed, adapting an existing application to new product references (the required process would be
the same, but could change the number of operations or the dimensions of the elements).

The proposed architecture has been compared with different ways of addressing the automation of
an industrial process [53,54]. The traditional and most commonly-used method is online programming,
i.e., teach by demonstration (moving the robot with the teach pendant), replicating the process and
acquiring required way points. In other cases, the use of offline programming software can be found.
This approach is composed by the following steps: the generation of the 3D scene, tag creation,
trajectory planning, process planning, post-processing simulation and calibration [54]. As can be seen,
the proposed framework in this article is very similar to an offline programming process, though with
some improvements.

In order to evaluate different approaches, a set of desirable qualities have been analyzed:

Sensors 2017, 17, 1249 14 of 21

Ease of use: To deal with the first scenario, differences between online programming and other
alternatives are evident. A new application deployment requires stopping the production for fixture
calibrations, way point acquisition, process replication, simulations and adjustments. These tasks
require a high expertise in robotics and programming. With offline alternatives, the process can
be offline almost entirely; only calibration and final adjustments require stopping the production.
Generally, offline programming software is very complex and also requires highly trained staff. The cost
of these technicians (plus license costs) could not be affordable for SMEs. The proposed framework
provides a set of ease-to-configure primitives and skills, which reduces the training costs.

Adaptability: This quality impacts the second scenario. Modifying an existing process using
online programming is very time consuming; new position acquisition moving the robot implies
stopping the production. For offline programming, changes can be made without stopping the
production, although depending on the nature of the changes, this could imply repeating many tasks
in order to adapt the application. In the case of the proposed approach, the process is similar to offline
programming, though with the particularity that the developed skills are programmed keeping in
mind possible changes. For example, in the case of deburring and riveting holes (Section 3.1), possible
changes in the hole positions and rivet size are anticipated, so the skill takes the information of the hole
position and size from a processed CAD file. Then, the skill adapts its behavior, configuring the target
position and gripper aperture with respect to the obtained information. The same idea is applied in the
assembly operation; the developed skills can adapt to usual changes in this kind of process: changes in
assembly points’ positions, changes in parts’ size, etc.

Reliability: The presented approach provides an implicit supervision tool: the state machine
allows knowing the current status of the execution. Besides, the modular error handling permits an
individualized response for the different types of errors. Traditional robot programming techniques
require ad hoc error handling in each critical part of the program.

Subsetability: This is the ability to support the production of a subset of the system [54].
This concept could be important in different ways. For the commercial side, the possibility of having
different optional modules (states or even skills) is an advantage. In the case of requiring incremental
developments, the possibility to deliver simple prototypes that are enhanced with new modules and
abilities is interesting. For the end user, having only the functionalities that are required could reduce
the training time and increase the ease of use. Subsetability quality does not exist for traditional online
programming, and for offline programming, software usually is used only for the commercial aspect.

Performance: Both online programming and offline programming have the best performance,
because these methods do not add any layer of software in the execution time, i.e., when the
configuration or set-up phase concluded, only a robot specific code is executed in the controller.
In the proposed framework, the XML program is parsed for executing existing skills, which are
composed by primitives that execute directly in the robot controller. This, combined with the overhead
from the state machine, results in greater demands on processing resources. Even so, the executed
process and robot movements are the same for all alternatives, so these differences in performance do
not affect the overall operation.

Table 3 summarizes the strengths and weakness of different robot programming approaches.
Online programming is the simplest approach, which only has the performance as the clear advantage.
The proposed approach can be seen as an enhanced offline programming method; both have in
common many insights, in spite of the fact that through the skill programming and state machine-based
architecture, the ease of use, adaptability and subsetability have been improved. Thanks to the
developed skills, many of assembly applications that are composed by pick and place operations can
be easily modeled and resolved by the presented framework. This proposal is a step forward in the
generalization of this kind of problem. These improvements have a performance drawback, but taking
into account the advantages, the trade-off is acceptable.

Sensors 2017, 17, 1249 15 of 21

Table 3. Strengths and weakness of different robot programming approaches.

Quality
Online

Programming
Offline

Programming
State Machine and Skill Based

Programming Framework

Ease of use − + ++
Adaptability − + ++

Reliability − +− +
Subsetability − + ++
Performance ++ ++ −

Based on the obtained conclusions in Table 3, the representation of the claimed improvements
has been done. The more important qualities that have been improved are the ease of use and the
adaptability. These improvements are translated directly into the reduction of the development time.
Despite that the required time for the programming of different automation processes can vary widely,
one of the most usual operations has been selected: pick and place. If the CESA use case has been taken
as the reference (Section 3), in the following lines, an analysis of the required time for programming
the assembling operations can be found.

Figure 14 shows how the online programming development time grows linearly according to
the number of operations that must be programmed. Each operation requires moving the robot
manually and storing waypoints. Regarding offline programming, an initial overrun can be perceived,
mainly due to the required time for cell referencing, i.e., the transition between simulation and reality.
After that, successive operations require less time than manual teaching. Concerning skill-based
programming, higher initial overrun is necessary, due to the required cell referencing and the additional
information, which complements the skills (grasp positions, assembly positions, gripper information,
etc). When this information is modeled, the successive instantiation of assembly skills is faster; only
drag and drop and simple parametrization are required. In conclusion, it can be perceived how when
more than five operations are required, the skill-based programming offers better performance.

Figure 15 presents the required development time for adjusting an existing process, i.e.,
when something has moved or another reference of the product requires position adjustments.
As before, online programming will require repeating all of the process, teaching new waypoints and
assuring no collisions. Regarding offline programming and skill-based programming, in this case, they
behave in a similar way: one the one hand, an initial cell referencing is necessary, and on the other
hand, as the program is already created, only parameter modifications are required. Of course, the
necessary changes are different in both methodologies, but the same required time has been estimated.

Finally, Figure 16 shows the required time if the robot of the process is changed to a different
one. Taking a process composed by 10 operations, for an online programming approach, this is a
completely new process. Using an offline solution, in the best case, the program sequence can be
reused. However, it must be noted that a revision of all of the waypoints must be done. In the case of
skill-based programming, the developed skill does not require a revision in terms of programming or
parametrization because the problem to resolve is the same. For the proposed framework, this scenario
is taken as another process adjustment, requiring the same time as in the previous case.

Sensors 2017, 17, 1249 16 of 21

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10
11

Complexity (number of operations)

D
ev

el
op

m
en

tt
im

e
(d

ay
s)

Online programming
Offline programming

Skill-based programming

Figure 14. Comparison of the process development time according to its complexity.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10
11

Required changes

D
ev

el
op

m
en

tt
im

e
(d

ay
s)

Online programming
Offline programming

Skill-based programming

Figure 15. Comparison of the process development time according to the number of adjustments in
element positions.

0
1
2
3
4
5
6
7
8
9

10
11

Used robot programming approach

D
ev

el
op

m
en

tt
im

e
(d

ay
s)

Online programming
Offline programming

Skill-based programming

Figure 16. Comparison of the process development time when the robot provider is changed.

Sensors 2017, 17, 1249 17 of 21

4. Discussion

As has been analyzed in the previous section, the presented approach in this article offers greater
flexibility and reusability (adaptability) than traditional frameworks. On the one hand, the flexibility
of this approach is demonstrated by the fact that the same skills can be used to perform different
processes although they suffer from certain variations, e.g., variations in the rivet models, variations in
the drilled holes’ number or positions, etc. This assertion is supported by the work that the authors
have made in different applications [55–58]: another deburring process was performed using very
similar skills; the antenna assembling skill was presented; workspace monitoring and vision operations
for hole detection and 3D CAD matching were integrated as skills; and finally, the interaction between
the skills and the state machine was presented. On the other hand, new applications can be generated
graphically (Section 2.2.3), reducing the required expertise and increasing the ease of use. When the
user adds a skill to the execution flow, all required parameters must be filled. In this way, a succession
of blocks, which composes the application, is generated. The developed GUI allows exporting sections
or entire applications into XML files in order to increase the re-usability.

One of the foreseen advantages of the present approach is that the state machine architecture can
be enhanced with different modules (states) that could be useful in completely different processes.
In the proposed scenario, the states are related to the robot primitives, i.e., robot movements controlled
in velocity in the Cartesian space. Nevertheless, the proposed primitives can be combined with
nonlinear controllers, such as predictive control [59], neural networks or fuzzy approaches [60,61],
needed in other industrial processes with high uncertainty in the model like chemical processes
(i.e., petrochemical plants). The skills approach could provide additional information and actuation;
basic functionality could operate the aperture or closure of valves, and a complex implementation
could cover other acting elements. This is an idea explored in the TOP-REF project [62].

Regarding reliability and robustness that the state machine provides, it permits users to abstract
from the specifics of dual-arm robotic programming. The proposed framework eases the coordination
of both arms with the help of a simple GUI (Figure 7). Besides, a complete traceability of the program
status combined with modular error handling increases the overall reliability compared with traditional
online and offline software.

One of the drawbacks of the presented approach is the performance. The entire ROS ecosystem
added to the state machine requires a powerful computer, but taking into account the cost of a computer
in relation to automation project costs, this is not a relevant issue. Another relevant topic is that the
proposed architecture is hardware agnostic; the developed skills are not using robot-specific functions;
however, when primitives are executed, ROS interfaces are used. ROS is compatible with a large
number of robots [26], though for an industrial environment, ROS-Industrial [63] is more adequate.
ROS-Industrial appears with the support of a large research community and robot manufacturers.
Their goal is to provide reliable and robust ROS packages. The list of supported industrial robots [64]
is growing day by day. This can be a disadvantage compared with available offline programming
software, e.g., Delmia, which offers a huge database of robots.

In the industrial world, presenting a framework mostly composed of open source modules always
causes a discussion. Even so, as has been mentioned in Section 1, nowadays, more flexibility and novel
solutions are demanded, and open source initiatives like ROS are responding to these requirements of
the industry.

5. Conclusions and Future Work

To improve the control and coordination of anthropomorphic multisensor robots, state
machine-based architectures have been introduced. This approach allows us to increase the robustness
and reliability of the whole system. The proposed architecture is designed to act as a basis for easier
programming methodologies. Thanks to the presented graphical user interface, new applications can
be generated without the need to be an expert in robotics. With the proper training, the operator will
be able to create, adapt and maintain industrial processes.

Sensors 2017, 17, 1249 18 of 21

Besides these advantages, the reusability has been noticeably increased. By employing the
software architecture that has been presented, completely different applications can leverage
well-tested modules and functions used in previous developments. At present, the same architecture
is being used in different pilot stations with different types of robots and requirements; in these pilot
stations, this technology is under intense tests for validating the usability, robustness and feasibility.

The proposed architecture has been compared with traditional approaches in order to analyze
and highlight the strengths and weakness. ATAM has been selected in order to evaluate the qualities
that have notable relevancy: ease of use, adaptability, reliability, subsetability and performance. The
required development time for accomplishing assembly operations has been compared. The results of
the evaluation reveal that the framework improves almost all of the mentioned qualities; the exception
is the performance in terms of computational cost, which is inevitably increased by the additional
software layers introduced. The next step to follow in the future will be performing a wider test
bench for evaluating and comparing the performance of the robot operation with other alternatives,
i.e., online and offline programming and other programming frameworks. In this evaluation, users
with different levels of training could be requested. Additionally, some stress tests will be applied for
assuring the stability of the system.

In future work, we will further investigate how to integrate different skill formalisms into
the proposed architecture, especially for the ease of the automatic creation of new skills. The
database of skills proposed in the LIAA project is another topic that will be reviewed in order to
integrate more skills in the architecture. Additionally, this architecture will be integrated with the
reconfigurable and flexible production system under development at ReCaM project. The tools
provided by this framework will enable auto-programming and self-adjusting to the required task by
utilizing parametric capabilities in the CESA use case.

Regarding the state machine-based architecture, if the proposed approach is used, the industrial
processes that can benefit from dual-arm robots are more controlled, and this allows an easier and faster
deployment of new applications. In the future, the focus will be set on the coordinated manipulation
of the arms with the intention of easing this kind of task. Besides, the integration of a multi-agent
system for decision making in coordination and synchronization tasks is being considered.

Acknowledgments: This research has received funding from the European Union’s Horizon 2020 research
and innovation program under Grant Agreement No. 680759 (ReCaM: Rapid Reconfiguration of Flexible
Production Systems.

Author Contributions: All the authors have collaborated in the research: H.H. carried out the development and
wrote the paper; H.H., M.P. and D.S. conceived and designed the experiments; J.L.O. and H.H. performed the
experiments; D.S., K.L.I. and M.P. supervised the work and improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA,
USA, 21–23 September 2005; Volume 1, pp. 886–893.

2. Duguay, C.R.; Landry, S.; Pasin, F. From mass production to flexible/agile production. Int. J. Oper.
Prod. Manag. 1997, 17, 1183–1195.

3. Hu, S.J. Evolving paradigms of manufacturing: From mass production to mass customization and
personalization. Procedia CIRP 2013, 7, 3–8.

4. Wang, W.; Koren, Y. Scalability planning for reconfigurable manufacturing systems. J. Manuf. Syst. 2012,
31, 83–91.

5. Tao, F.; Cheng, Y.; Zhang, L.; Nee, A. Advanced manufacturing systems: Socialization characteristics and
trends. J. Intell. Manuf. 2015, 28, pp. 1–16.

6. Haslarn, C. The end of mass production? Econ. Soc. 1987, 16, 405–439.
7. Smith, C.; Karayiannidis, Y.; Nalpantidis, L.; Gratal, X.; Qi, P.; Dimarogonas, D.V.; Kragic, D. Dual arm

manipulation—A survey. Robot. Auton. Syst. 2012, 60, 1340–1353.

Sensors 2017, 17, 1249 19 of 21

8. Xia, L.; Chen, C.C.; Aggarwal, J.K. Human detection using depth information by kinect. In Proceedings
of the 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Colorado Springs, CO, USA, 20–25 June 2011; pp. 15–22.

9. Blumrosen, G.; Miron, Y.; Intrator, N.; Plotnik, M. A Real-time kinect signature-based patient home
monitoring system. Sensors 2016, 16, 1965.

10. Sen, S.; Sherrick, G.; Ruiken, D.; Grupen, R.A. Hierarchical Skills and Skill-based Representation.
In Proceedings of the Twenty-Fifth Conference on Artificial Intelligence (AAAI-11), San Francisco, CA,
USA, 7–8 August 2011.

11. Thomas, U.; Hirzinger, G.; Rumpe, B.; Schulze, C.; Wortmann, A. A new skill based robot programming
language using UML/P Statecharts. In Proceedings of the 2013 IEEE International Conference on Robotics
and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013.

12. Zhou, J.; Ding, X.; Qing, Y.Y. Automatic planning and coordinated control for redundant dual-arm space
robot system. Ind. Robot Int. J. 2011, 38, 27–37.

13. Andersen, R.H.; Solund, T.; Hallam, J. Definition and Initial Case-Based Evaluation of
Hardware-Independent Robot Skills for Industrial Robotic Co-Workers. In Proceedings of the 41st
International Symposium on Robotics (ISR/Robotik 2014), Munich, Germany, 2–3 June 2014.

14. Vanthienen, D.; De Laet, T.; Decré, W.; Smits, R.; Klotzbücher, M.; Buys, K.; Bellens, S.; Gherardi, L.;
Bruyninckx, H.; De Schutter, J. iTaSC as a unified framework for task specification, control, and coordination,
demonstrated on the PR2. In Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, San Francisco, CA, USA, 25–30 September 2011.

15. Poppa, F.; Zimmer, U. RobotUI-A software architecture for modular robotics user interface frameworks.
In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vilamoura-Algarve, Portugal, 7–11 October 2012.

16. Björkelund, A.; Bruyninckx, H.; Malec, J.; Nilsson, K.; Nugues, P. Knowledge for intelligent industrial
robots. In Proceedings of the AAAI Spring Symposium: Designing Intelligent Robots, Stanford, CA, USA,
26–28 March 2012.

17. Huckaby, J.; Vassos, S.; Christensen, H.I. Planning with a task modeling framework in manufacturing
robotics. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Tokyo, Japan, 3–7 November 2013.

18. Stenmark, M.; Malec, J. A helping hand: Industrial robotics, knowledge and user-oriented services.
In Proceedings of the 2013 IEEE/RSJ International Conferenceon Intelligent Robots and Systems, Tokyo,
Japan, 3–7 November 2013.

19. Alonso, D.; Vicente-Chicote, C.; Pastor, J.A.; Alvarez, B. Stateml : From graphical state machine models to
thread-safe ada code. In Reliable Software Technologies—Ada-Europe 2008; Springer: Berlin, Germany, 2008;
pp. 158–170.

20. Armentia, A.; Gangoiti, U.; Priego, R.; Estévez, E.; Marcos, M. Flexibility support for homecare applications
based on models and multi-agent technology. Sensors 2015, 15, 31939–31964.

21. Klotzbuecher, M. rFSM. Available online: https://github.com/orocos/rFSM/tree/master/doc (accessed on
1 June 2016).

22. Bohren, J. Package Summary. Available online: http://wiki.ros.org/smach. (accessed on 1 June 2016).
23. Quigley, M.; Conley, K.; Gerkey, B.P.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS:

An open-source Robot Operating System. Available online: http://www.willowgarage.com/sites/default/
files/icraoss09-ROS.pdf (accessed on 24 May 2017).

24. ROS. Available online: http://www.ros.org/ (accessed on 1 June 2016).
25. ROS. Core Components. Available online: http://www.ros.org/core-components/ (accessed on 1 June 2016).
26. ROS. Robots. Available online: http://wiki.ros.org/Robots (accessed on 1 January 2017).
27. Badawy, R.; Yassine, A.; Heßler, A.; Hirsch, B.; Albayrak, S. A novel multi-agent system utilizing

quantum-inspired evolution for demand side management in the future smart grid. Integr. Comput.-Aided Eng.
2013, 20, 127–141.

28. Pinto, T.; Praca, I.; Vale, Z.; Morais, H.; Sousa, T.M. Strategic bidding in electricity markets: An agent-based
simulator with game theory for scenario analysis. Integr. Comput.-Aided Eng. 2013, 20, 335–346.

29. OpenRTM. Available online: http://openrtm.org/ (accessed on 1 June 2016).

Sensors 2017, 17, 1249 20 of 21

30. Fast Research Interface Library. Available online: http://cs.stanford.edu/people/tkr/fri/html/ (accessed
on 1 June 2016).

31. Tecnalia. Available online: http://www.tecnalia.com/en/ (accessed on 1 February 2017).
32. LIAA. Available online: http://www.project-leanautomation.eu/ (accessed on 1 June 2016).
33. ReCaM. Available online: http://recam-project.eu/ (accessed on 1 February 2017).
34. DGH. Available online: http://www.grupodgh.es/en/ (accessed on 1 February 2017).
35. DGH. Available online: http://www.cesa.aero/en/ (accessed on 1 February 2017).
36. Herrero, H.; Outón, J.L.; Esnaola, U.; Sallé, D.; de Ipiña, K.L. State machine based architecture to increase

flexibility of dual-arm robot programming. In Bioinspired Computation in Artificial Systems; Springer: Berlin,
Germany, 2015; pp. 98–106.

37. Herrero, H.; Esnaola, U.; Sallé, D. TECNALIA HIRO Performing Aeronautics Assembly - Deburring and
riveting - Showcased at BIEMH2014. Available online: https://www.youtube.com/watch?v=pvxlqyJtPNo
(accessed on 1 April 2017).

38. Järvenpää, E.; Siltala, N.; Lanz, M. Formal resource and capability descriptions supporting rapid
reconfiguration of assembly systems. In Proceedings of the 12th Conference on Automation Science
and Engineering, and International Symposium on Assembly and Manufacturing, Fort Worth, TX, USA,
21–22 August 2016.

39. Järvenpää, E.; Siltala, N.; Hylli, O.; Lanz, M. Capability matchmaking procedure to support rapid
configuration and re-configuration of production systems. 2017. Unpublished.

40. Babar, M.A.; Zhu, L.; Jeffery, R. A framework for classifying and comparing software architecture evaluation
methods. In Proceedings of the Software Engineering Conference, Melbourne, Australia, 13–16 June 2004.

41. Dobrica, L.; Niemela, E. A survey on software architecture analysis methods. IEEE Trans. Softw. Eng. 2002,
28, 638–653.

42. Ionita, M.T.; Hammer, D.K.; Obbink, H. Scenario-based software architecture evaluation methods:
An overview. In Proceedings of the International Conference on Software Engineering (ICSE/SARA)
Orlando, FL, USA, 19–25 May 2002.

43. Kazman, R.; Klein, M.; Clements, P. ATAM: Method for Architecture Evaluation; Technical Report, DTIC
Document; Software Engineering Institute: Pittsburgh, PA, USA, 2000.

44. Gonzalez-Huerta, J.; Insfran, E.; Abrahão, S. Models in software architecture derivation and evaluation:
Challenges and opportunities. In Proceedings of the International Conference on Model-Driven Engineering
and Software Development, Lisbon, Portugal, 7–9 January 2014.

45. Babar, M.A.; Gorton, I. Comparison of scenario-based software architecture evaluation methods.
In Proceedings of the 11th Asia-Pacific Software Engineering Conference, Busan, South Korea,
30 November–3 December 2004.

46. Cheung, L.; Roshandel, R.; Medvidovic, N.; Golubchik, L. Early prediction of software component
reliability. In Proceedings of the 30th International Conference on Software Engineering, Leipzig, Germany,
10–18 May 2008.

47. Gonzalez-Huerta, J.; Insfran, E.; Abrahão, S.; Scanniello, G. Validating a model-driven software architecture
evaluation and improvement method: A family of experiments. Inf. Softw. Technol. 2015, 57, 405–429.

48. Kazman, R.; Klein, M.; Clements, P. Evaluating Software Architectures-Methods and Case Studies;
Addison-Wesley Professional: Boston, MA, USA, 2001.

49. Ringert, J.O.; Rumpe, B.; Wortmann, A. A Case Study on Model-Based Development of Robotic Systems
using MontiArc with Embedded Automata. arXiv 2014, arXiv:1408.5692.

50. Giorgini, P.; Kolp, M.; Mylopoulos, J. Multi-agent and software architectures: A comparative case study.
In Proceedings of the International Workshop on Agent-Oriented Software Engineering, Bologna, Italy,
15 July 2002.

51. Bravo, J.; Villarreal, V.; Hervás, R.; Urzaiz, G. Using a communication model to collect measurement data
through mobile devices. Sensors 2012, 12, 9253–9272.

52. Aman, W.; Snekkenes, E. EDAS: An evaluation prototype for autonomic event-driven adaptive security in
the internet of things. Future Internet 2015, 7, 225–256.

53. Biggs, G.; MacDonald, B. A survey of robot programming systems. In Proceedings of the Australasian
Conference on Robotics And Automation, Brisbane, Australia, 1–3 December 2003.

Sensors 2017, 17, 1249 21 of 21

54. Pan, Z.; Polden, J.; Larkin, N.; Van Duin, S.; Norrish, J. Recent progress on programming methods for
industrial robots. Robot. Comput.-Integr. Manuf. 2012, 28, 87–94.

55. Herrero, H.; Outon, J.L.; Esnaola, U.; Salle, D.; Lopez de Ipina, K. Development and evaluation of a Skill
Based Architecture for applied industrial robotics. In Proceedings of the 2015 4th International Work
Conference on Bioinspired Intelligence (IWOBI), San Sebastian, Spain, 10–12 June 2015.

56. Herrero, H.; García, F.; Esnaola, U.; Sallé, D. 2015 TECNALIA NextageOpen—Dual-arm robot for
Aeronautics Pilot Station. Available online: https://www.youtube.com/watch?v=x-eJ66jM1Rk (accessed
on 1 April 2017).

57. Herrero, H.; Moughlbay, A.A.; Outón, J.L.; Sallé, D.; de Ipiña, K.L. Skill based robot programming: Assembly,
vision and Workspace Monitoring skill interaction. Neurocomputing 2017, doi:10.1016/j.neucom.2016.09.133.

58. Herrero, H.; Pacheco, R.; Alberdi, N.; Rumayor, M.; Salle, D.; Lopez de Ipiña, K. Skills for vision-based
applications in robotics application to aeronautics assembly pilot station. In Proceedings of the
2015-International Conference on Computer as a Tool (EUROCON), Salamanca, Spain, 8–11 September 2015.

59. Wang, T.; Gao, H.; Qiu, J. A Combined Fault-Tolerant and Predictive Control for Network-Based Industrial
Processes. IEEE Trans. Ind. Electron. 2016, 63, 2529–2536.

60. Wang, T.; Zhang, Y.; Qiu, J.; Gao, H. Adaptive fuzzy backstepping control for a class of nonlinear systems
with sampled and delayed measurements. IEEE Trans. Fuzzy Syst. 2015, 23, 302–312.

61. Wang, T.; Qiu, J.; Gao, H.; Wang, C. Network-Based Fuzzy Control for Nonlinear Industrial
Processes With Predictive Compensation Strategy. IEEE Trans. Syst. Man Cybern. Syst. 2016,
doi:10.1109/TSMC.2016.2616904.

62. TOPREF. Available online: http://toprefproject.eu/ (accessed on 1 April 2017).
63. ROS. Available online: http://rosindustrial.org/about/description/ (accessed on 1 January 2017).
64. ROS. Supported Hardware. Available online: http://wiki.ros.org/Industrial/supported_hardware

(accessed on 1 January 2017).

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

II.a. Journal publications 153

II.a.2 Journal article 2

Neurocomputing 255 (2017) 61–70

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Skill based robot programming: Assembly, vision and Workspace

Monitoring skill interaction

Héctor Herrero

a , ∗, Amine Abou Moughlbay

a , Jose Luis Outón

a , Damien Sallé a ,
Karmele López de Ipiña

b

a Tecnalia Research and Innovation, Industry and Transport Division, San Sebastián (20 0 09), Spain
b Engineering and Automation, UPV/EHU (Basque Country University), San Sebastián (20 0 09), Spain

a r t i c l e i n f o

Article history:

Received 7 March 2016

Revised 28 August 2016

Accepted 9 September 2016

Available online 27 March 2017

Keywords:

Robotics

Flexibility

Skill based programming

State machine

Easy programming

Vision skills

Collaborative robots

Workspace Monitoring

a b s t r a c t

The skill based programming eases the robot program generation, its similarity to human behavior allows

non expert operators maintaining, adapting or creating robotic applications. The use of skills requires dif-

ferent approaches for the interaction between them, especially for sharing information. The presented

approach combines the skill based programming using a state machine for low level robot execution

management. With the proposed framework the interaction and communication between skills is im-

proved. The work presented below is focused on the use of vision skills and safe Workspace Monitoring,

for addressing a real use case where interaction with robot motions (organized as assembly skills) is

required.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Three major trends are currently of high actuality in the in-

dustrial sectors: the transformation from mass production to mass

customization [1,2] , the requirement of more reconfigurability of

the production lines [1,3] , and the need of collaborative robotics

for assisting operators [4] . The research addressed in this article

focuses in the interaction of these trends: the need for a frame-

work which allow highly flexible robotics systems combined with

a collaborative workspace.

One of the key factor for increasing flexibility of robotics solu-

tions is reducing complexity and required expertise for robot pro-

gramming [5–9] . The classical way of programming robots is using

Teach Pendants and vendor-specific robot programming languages

[7,8] . Programming with these tools requires high qualified staff

and increases the costs of process automation, especially in com-

plex tasks where high flexibility is required. The need for easier

programming techniques has led to the elaboration of several alter-

natives that reduce programming time and required expertise. Skill

∗ Corresponding author.

E-mail addresses: hector.herrero@tecnalia.com (H. Herrero),

karmele.ipina@ehu.es (K.L. de Ipiña).

based programming is one approach to alleviate this drawback: al-

lows easy, simple and intuitive robot programming [5,6–10] .

The approach of skill based programming is divided into three

layers [11,12] : the primitive, skill, and task layer. At the lowest level

the idea is to model system capabilities in simple and intuitive

symbolic units. Examples of these symbolic units (or primitives)

can be the robot movement capability, both the movement in joint

space and Cartesian space. Another example of primitive can be a

gripper operation (open/close). Any capability of the system which

can act atomically can be termed primitive. In the adjacent layer

the skills are defined; the skills are combination of primitives. The

skills can be seen as human-like cognitive abilities [13,14] : can

combine perception for decision taking increasing their autonomy,

or by contrast, can perform simple pick and place ability with pro-

vided object and place pose. The task layer has a more global per-

spective. The tasks are composed of the required skills to achieve

the objective. The approach of task-level programming using skills

is an alternative that many authors have followed [15–18] .

A human-robot collaborative workspace requires, with high pri-

ority, to ensure operator’s safety. In the recent years, a large num-

ber of collaborative robots have entered in the market [19] such as:

ABB YuMi [20] , Fanuc CR-35iA [21] , Kawada Nextage [22] , KUKA

LBR IIWA [23] , Rethink Robotics Baxter [24] , Universal Robots

UR3/5/10 [25] , etc. A lot of these collaborative robots are dual arm

robots or are combined into dual arm configuration. It is therefore

http://dx.doi.org/10.1016/j.neucom.2016.09.133

0925-2312/© 2017 Elsevier B.V. All rights reserved.

62 H. Herrero et al. / Neurocomputing 255 (2017) 61–70

necessary to find a way for managing the collaboration not only

between the robot and human, but also between robot’s arms.

The deterministic behavior of the finite state machines can play

a decisive role in coordination and safety terms [26,27] . Finite state

machines are commonly used for general-purpose processes and,

in particular, they have been extensively adopted by the robotic

community. State-machines are an easy way for describing be-

haviors and for modeling how components react to different ex-

ternal and internal stimuli [26–28] . For finite state machine im-

plementation, there are different alternatives, e.g., there are many

projects using Orocos rFSM. rFSM is a small and powerful state-

chart implementation designed for coordinating complex systems

such as robots [29] . SMACH [30] is another implementation of state

machines, it can be defined as task-level architecture for rapidly

creating complex robot behavior. Both alternatives can work un-

der Robot Operating System (ROS) [31,32] . ROS is a middleware

which provides the necessary ecosystem to manage complex appli-

cations involving trajectory planning with collision detection, pick

and place, perception, simulation and much more. Considering the

large and active community behind it, is one of the best alterna-

tives for developing novel solutions for robot programming.

Following these research lines [33–35] and reviewing the large

number of existing frameworks and middlewares [36,37] , the au-

thors propose a way for combining the skill based programming

with a novel architecture based on finite state machines. One of

the arguments why it was decided to develop a new framework

was the need of reusing existing robot applications, utilities and

drivers. Presented framework is capable to execute both the legacy

code and the new skill based modules with minimal adjustments,

moreover all is managed by the state machine. The result is a en-

vironment able to run well tested modules and ready for incorpo-

rating new capacities for increase the versatility and ease the robot

programming.

This article continues in Section 2 with a summary of the char-

acteristics of the used architecture with the details of the state

machine. The necessary skills for performing an assembly opera-

tion are described in Section 3 , and in Section 4 we present how

the skills interact with each other through proposed mechanisms.

Finally, conclusions and future work are presented (Section 5).

2. State machine based architecture

The proposed architecture is designed to work not only with a

single robot, but allows also to take advantage of dual arm robotics.

The low level architecture consists of two state machines, one per

arm, with some common states [38,39] . These common states are

used for coordinated manipulation. The system has a Ready state

as initial state, and moreover, is composed by different states that

can be seen as available abilities or capacities of the robot. Each

state has been implemented as a module that is independent from

the core (Ready state). The consequence of this is a scalable ar-

chitecture, as new capacities are implemented or other robot with

more hardware capacities is used, these can be incorporated into

the architecture. Besides, the error handling also benefits of these

configuration, since a state level error handling can be performed

in addition to a general one.

The authors are continuously enhancing the framework func-

tionalities. In this paper, the interaction of vision skills with assem-

bly skills is described. Furthermore, the use of Workspace Mon-

itoring skill to interrupt robot motions is explained. When skill

based programming is used, each skill can be seen as indepen-

dent entity, i.e., each skill can be used in different contexts with-

out needing the execution of auxiliary functions. After the skill is

parametrized, adapts its behaviour to the provided environment

conditions, allowing reusing skills for different applications, e.g.,

pick and place skill for different object manipulation. When skills

are reused, there must be a communication between them; the

proposed architecture allow different way of communicating be-

tween the skills (Section 4).

The developed framework is composed by different modules,

summarizing, three modules can be highlighted:

• Application development . Since the scope of this article is not

explaining the process for developing new applications, it does

not go into too much detail in this part. For creating new ap-

plications an intuitive graphical user interface (GUI) is available

[40] . This GUI allows generating a new sequence of operations

by selecting from the available skills. After program composing,

a XML file is generated with the selected operations and the

corresponding parametrization or configuration.

• Execution engine . Is the responsible for orchestrating the appli-

cation flow. It takes the process XML as input and parses it for

providing corresponding requests to the state machine.

• State machine . It receives requests from execution engine and,

depending on the request, triggers to different state. Each state

is responsible for executing one of the available ability of the

robotic hardware.

The presented framework is prepared to work under ROS in

order to take advantage of the communication infrastructure and

robot-specific features [41] . For state machine implementation

SMACH formalism has been selected. SMACH allows not only con-

trolling execution, but also designing complex hierarchical state

machines; this feature is especially helpful in order to develop fur-

ther phases of the project. The proposed architecture is designed to

continue developing works related with formalizing skills and au-

tomatic code generation, following the same proposal as the BRICS

project [42] , which is part of EU FP7. Another plus point of SMACH

is its simplicity and ease of integration in ROS.

The developed state machine provides current execution state

continuously, allowing to manage possible errors and improving

their recovery. The proposed architecture, outlined in Fig. 1 , con-

sists of two state machines, one per arm, with some common

states. These common states are used for coordinated manipula-

tion. The system starts from a Ready state and keeps changing

to different states that can be seen as available abilities of the

robot. In order to simplify the diagram the details of the architec-

ture are shown at Fig. 2 . This figure presents a zoom of the Ready

and Cartesian/Articular motion states (which are identical for both

arms). Each state shown at Fig. 1 has an instance of Pause, Stop and

Error handling states which permits pausing, resuming or recover-

ing from errors. Presented schema allows supervising the environ-

ment and permits cancelling or adapting plans according to sensor

values and perception system information.

Each state has been implemented as a module that is inde-

pendent from the core. All available modules for this version are

shown in Fig. 1 . It should be emphasized that according to the re-

quirements of the different applications, the available states can

be updated by incorporating new capabilities or removing others

which will not be used. In order to understand the proposed ar-

chitecture, Table 1 summarizes the different states and their util-

ity. Besides at Table 2 a summary of the signal and transitions is

presented.

3. Integration of skills into the architecture

The architecture presented above is designed to be adapted for

different kind of skills. Each available state is responsible for exe-

cuting primitives whatever the combination of them. Therefore de-

pending of the application different skills can be composed. In this

work, with the objective of presenting a typical electronic assem-

bly use case, a set of skills have been selected. Firstly, a Feature

Detection skill is presented: it is necessary for detecting assembly

H. Herrero et al. / Neurocomputing 255 (2017) 61–70 63

Fig. 1. Proposed state machine based architecture. It represents an overview of the architecture.

Fig. 2. Proposed state machine based architecture in detail. It shows existing states and transitions.

Table 1

Summary of the main elements of the state machine.

State Description

Ready The state machine is ready for receiving new instructions. This state is waiting until execution engine

sends a new request.

Cartesian articular motion Manages robot movements both in Cartesian space and articular space. If the movement cannot be

executed correctly there is an Error handling state for manage it.

Full body coordinated motion Allows controlling both arms coordinately. Two arms must be in this state to start coordinated motion.

Sending the values of the 15 joints of the robot is necessary.

Record trajectory Allows recording trajectories with a trajectory planner or teaching by demonstration. These trajectories are

stored in a database for a future use.

Trajectory execution Executes trajectories, provided by a trajectory planner or previously stored in a database.

End-effector operation Manage end-effector operations, depending the end effector different operations can be made, e.g., gripper

open/close, deburring tool activate/deactivate, screwing operation, etc.

Vision operation Manages different computer vision operations. This includes picture acquisition, processing and reference

frame transformation among others. As the robotic system has multiple vision systems, this state is

responsible to manage them depending on the operation that will be executed.

Master/slave mode Puts robot in bi-manual coordinated manipulation mode, one arm actuates as master and the other one as

slave. Consists in planning a trajectory for master arm and then computing this trajectory with an offset

for the slave arm.

points (holes). Afterwards, assembly skill is detailed: it is basically

a pick and place process. Besides, Workspace Monitoring skill is

presented, this skill works in background supervising the environ-

ment for ensuring safety.

3.1. Feature Detection skill

In previous work, the organization of vision applications as skill

has been introduced [43] . Explaining in detail how vision algo-

rithms works is not in the scope of this work, therefore an exam-

ple of this method will only be used to implement a drilling detec-

tion skill. The developed algorithm is implemented in Python us-

ing OpenCV libraries [44] . Through OpenCV functions, the drillings

are detected in the camera frame, and then based on previously

performed stereo calibration and hand-eye calibration, the drilling

pose is estimated in the robot frame. During the image processing

and depending on the characteristics of the taken picture (back-

ground color, hole radius, luminosity, brightness, distance from the

cameras, etc.), skill parameters must be tuned properly. It has been

determined that changes in some of these parameters allows hole

detection for different pieces and hole sizes. In Fig. 3 an example

of Feature Detection skill is shown.

Abstracting these conclusions into simple terms, providing dif-

ferent combinations of parameters to the algorithm permits detect-

64 H. Herrero et al. / Neurocomputing 255 (2017) 61–70

Table 2

Summary of the signals and transitions of the state machine.

State Signal Transition to

Ready Motion_request Cartesian/articular motion

Vision_request Vision operation

End_effector_request End effector operation

... ...

End Finish

Cartesian Ok Ready

Articular Pause Pause

motion Stop Stop

Error Error handling

Pause Resume Cartesian/articular motion

Stop Stop

Error Error handling

Stop Error Error handling

Error Ok Ready

handling End Finish

Fig. 3. Hole detection operation working as Feature Detection skill. In the right im-

age the detection of a hole is shown.

ing features in different conditions with a reasonable level of reli-

ability. As can be seen in Fig. 4 , Feature Detection skill can be con-

figured providing few key parameters that are intuitive for trained

operators (without needing expert engineers in vision).

3.2. Assembly skill

The assembling operations of electronics components require

a lot of dexterity. With the advance of robot programming tech-

niques, sensors precision, and grippers design, different solutions

for automation of this kind of task are being developed everyday.

Tecnalia is working in different projects for precise assembling in

telecommunication sector. This use case is being developed under

LIAA project [45] , which one of his principal topics is the devel-

opment of assembly skills for robots. Basically, the required steps

for an antenna assembly are the following: pick and place small

elements (cylindrical capacitors) into a fixture, pick and place big-

ger elements (radiant element with plate shape) into a fixture, and

screwing all elements each other. Fig. 5 shows how the pick and

place skill adapts to different elements.

In this demonstrator the information extracted from CAD mod-

els (offline process that is not in the scope of this work) plays an

important role. Without going into details, in this process relevant

information for configuring assembly skills is obtained: grasp pose,

assembly point, target pose, etc. Using this information, and adding

few additional parameters such as robot arm and gripper, this skill

is able to perform the steps listed above to complete the assembly

of capacitors with radiant element. But this information is theoret-

ical, i.e., it works in simulation with perfect aligned fixtures and

elements; but in the real world aligning perfectly elements for as-

sembly is very complicated without very expensive and not flexible

Fig. 4. Feature Detection skill. The skill is composed of more basic elements that

only require the presented parameters for adaptation to different scenarios.

fixtures. For translating this to the reality the use of computer vi-

sion is required. Fig. 6 shows a detailed example of how the capac-

itor assembly is modelled and parametrized as assembly skill using

provided information. As can be seen this skill contains a Feature

Detection skill instance for hole detecting. In the next section the

communication between these skills will be presented. Using this

pre-programmed skills a trained operator only has to modify few

parameters for reconfiguring the skill for assembling the different

elements that compounds an antenna.

3.3. Workspace Monitoring

The Workspace Monitoring skill allows tracking the human po-

sition in the workspace. Dividing the workspace into different

safety zones the robot behaviour can be adapted for assuring the

safety in the workcell. For covering whole workspace, four RGBD

sensors (Microsoft Kinect) have been arranged in four masts in or-

der to avoid possible occlusions (see Fig. 7). Regarding the soft-

ware the OpenNI SDK module [46] provides, for the used RGBD

Kinect sensors, a high-level skeleton tracking module, which can

be used for detecting the captured human and tracking his body

joints. More specifically, the OpenNI tracking module produces the

positions of 15 joints, along with the corresponding tracking con-

fidence. However, this module requires a-priori user calibration in

order to infer information about the user’s height and body char-

acteristics. More specifically, skeleton calibration requires the cap-

tured user to stay still in a specific “calibration pose” for a few

seconds to have accurate results.

To avoid human calibration, each time he enters in the spec-

ified workspace, which is not realistic for industrial collaborative

applications, another technique is used in this work. It consists

on real time detecting standing/walking people on a ground plane

with RGB-D data using PCL Library [47,48] . This approach relies on

selecting a set of clusters from the point cloud as people candi-

dates which are then processed by a HOG-based people detector

[49] applied to the corresponding image patches. The track initial-

ization procedure allows to minimize the number of false positives

and the online learning person classifier is used every time a per-

H. Herrero et al. / Neurocomputing 255 (2017) 61–70 65

Fig. 5. Assembly skill adapts to different elements.

Fig. 6. Assembly skill configuration. The assembly skill is composed of different elements and, as can be seen, can be composed of other skills.

Fig. 7. Location of the RGBD sensors for Workspace Monitoring.

66 H. Herrero et al. / Neurocomputing 255 (2017) 61–70

Fig. 8. Safety zones. Scheme of the possible scenarios. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

son is lost, in order to recover the correct person ID even after a

full occlusion.

But detecting humans is not enough, the developed system uses

simple techniques to get a first robust coarse grain activity recog-

nition. The first stage consists then to detect if the worker is inside

or outside the workspace. In this part, the human activity recogni-

tion is simplified to recognize one single and simple event which

the persons availability in the working place.

In the second stage, the robot end-effector pose is used to cal-

culate the distance between the detected worker and the robot. As

can be seen in Fig. 8 three static activities are defined:

• Worker in safe zone (worker / robot distance > d warning zone): The

worker is in the working area but far from the robot, no danger

is present on the worker.

• Worker in red zone (worker / robot distance < d red zone): The

worker is very close to the robot, a collision or interaction may

be present between the robot and the worker.

• Worker in warning zone (d red zone < worker / robot distance < d warning zone):

The worker is between the safe zone and the red zone.

At this stage, the activity model consists of two thresholds

(d red zone and d warning zone) that define the borders of these three

levels. Furthermore, the robots position in the environment is re-

quired to be able to calculation worker-robot distance, thus this in-

formation should be also predefined in the activity model or given

online by other modules.

The third stage consists of tracking the motion of the human;

therefore four dynamic actions are defined:

• Moving from safe zone to warning zone.

• Moving from warning zone to red zone.

• Moving from red zone to warning zone.

• Moving from warning zone to safe zone.

More details about the implementation can be found at [50] .

In order to integrate Workspace Monitoring into a skill formal-

ism, some considerations must be taken into account. The use of

a monitoring tool differs from previously presented assembly skill

or Feature Detection skill. In this case, the skill must be treated

as background service, i.e., Workspace Monitoring skill is supervis-

ing the environment, and only communicates with the main thread

of execution when a relevant situation is detected. Regarding the

modularity and flexibility which skill based programming is char-

acterized, the most relevant parameters have been selected for its

configuration. These parameters are: sensor IDs, safe zone, warning

zone and red zone radius. Fig. 9 shows the Workspace Monitoring

skill model.

4. Interaction between the skills

With the traditional robot programming techniques (using ven-

dor specific robot programming languages) a static sequence of

commands are available, and the programs are a sequence of this

commands with corresponding parameters. The commands can

store their outputs in local variables for future use, for example,

vision operations are related with motion operations sequentially,

i.e., motion operations takes as input the value (result) returned by

the vision operation.

The use of skill based programming changes the paradigm,

skills must be independents and must be able to work in different

scenarios or applications with a minimal configuration. Besides, a

skill could not contain any code, i.e., a skill can be defined as a se-

quence of primitives with a parametrization. This is one of the rea-

sons that skills can be stored in XML files, containing a sequence of

pointers or links to corresponding primitives. Due to their dynamic

behaviour, their flexibility and autonomy different ways for com-

municating skills are necessary. Function calling and storing the

returned value in a local variable is not valid for a process that

can be created by the operator on-the-fly using a set of available

skills.

The presented framework combine the skill execution in a state

machine with ROS communication infrastructure, being each state

responsible for using ROS subscribe/publish mechanisms for com-

municating. Taking into account the mentioned skills above, differ-

ent communication scenarios are presented. On the one hand, how

the assembly Skill receives the obtained values from the Feature

Detection skill. On the other hand how the Workspace Monitoring

skill interrupts the motions when a human is detected in safety

areas.

4.1. Skill interaction through Parameter Server

Before presenting the first scenario, Parameter Server must be

introduced. This tool is used to allow communication between

skills when the result of one skill must be sent to another one.

Benefiting of ROS tools, the Parameter Server is essentially a

namespace where skills can read or write relevant information.

H. Herrero et al. / Neurocomputing 255 (2017) 61–70 67

Fig. 9. Workspace Monitoring skill configuration. The arrow represents a continuous execution.

Code fragment 1. A simple code fragment presenting typical robotic application using computer vision.

In order to introduce the first scenario of communication prob-

lematic between skills, in Code fragment 1 a simplified robot pro-

gram is presented. As can be seen, it describes the process of de-

tecting a hole and moving the robot to the detected pose. Despite

the simplicity of the code, the fact of using computer vision con-

verts the application into dynamic, i.e., is not possible to know the

target position of the robot (hole pose) until execution time. In or-

der to ease the management of dynamic and static parameters, the

developed skills behave transparent in this aspect. Skills are com-

posed by primitives, which are independent entities that must be

provided with a fixed set of parameters. In this case, when target

position of the Move primitive is not known on design phase, the

Cartesian/articular motion state obtains the dynamic target position

from the Parameter Server. Of course, Feature Detection skill is re-

sponsible of publishing the result in the Parameter Server. Fig. 10

shows how states can communicate through the mentioned mech-

anism.

4.2. Interrupting and adapting motions when human activity is

detected

The second scenario for skill communicating addresses the in-

terruption or speed adaptation of ongoing motions of the robot.

Providing a reliable and fast response mechanism is crucial for as-

suring the safety in the workspace. Since safety zones have been

defined, depending of the detected human actions, different be-

haviours have been configured. The warning zone is beyond the

reach of the robot, but the motion speed must be reduced for var-

ious reasons: too fast movements could scare the worker when is

close to the robot, and the most important, in case that the hu-

man enters in the red zone (within the reach of the robot) stopping

the robot is imperative, so a reduced speed is needed to stop it in

time.

Based on ROS publish/subscribe tools quick response mecha-

nisms can be implemented. On the one side, Workspace Moni-

toring skill is continuously supervising the environment. In the

current prototype the human activity is being checked at 20 Hz,

this frequency is limited by the frame rate of the Kinect sensors

(30 fps) and by the fusion of the obtained point clouds. When a

change on safety zones is detected the corresponding topic is pub-

lished.

On the other side, inside of Cartesian/articular motion state, a

subscription to different ROS topics of safety zones is established.

If the Workspace Monitoring skill publishes into warning zone cor-

responding ROS topic, then the callback of the subscriber forces to

limit the speed to a safe value. So for the successive movements,

even they have higher values of speed, the motion is controlled.

In the case of the Workspace Monitoring skill detects a human

into the red zone, a robot specific command is sent in order to

stop the robot immediately (see Fig. 11). This function could be

hardware specific, because some robot does not allow stopping the

robot without entering into emergency status. If the robot would

recover from this status, when the human exits from the red zone,

the execution will continue. In case of the robot would not be able

to recover from this situation, the state machine will continue in

the error handling status in order to finish or restart the execu-

tion.

68 H. Herrero et al. / Neurocomputing 255 (2017) 61–70

Fig. 10. Communication through Parameter Server. Dynamic operations require obtaining the result from the Parameter Server.

Fig. 11. Workspace Monitoring skill interacts with Cartesian/articular motion state in order to control or stop motions. (For interpretation of the references to color in this

figure, the reader is referred to the web version of this article.)

5. Conclusions and future work

In this article, the evolution of the framework presented in pre-

vious works can be seen. The presented state machine architecture

is compatible with a different kind of programming techniques. As

proof of this the assembly, vision and Workspace Monitoring skills

are integrated into the work flow.

Developed skills are independent modules, thus in order to in-

teract with each other different mechanisms have been applied.

A Parameter Server is presented in order to share information

between assembly and vision skills; this element allow storing

parameters in a shared place for using by other skills. Regard-

ing the communication between Workspace Monitoring skill with

the robot motion module, ROS publish/subscribe mechanisms are

used in order to limit or stop robot movements; the motion mod-

ule (Cartesian/articular motion state) overrides the speed value or

stops the robot completely when human activity is detected.

In future work, Vision Operation state will be subdivided into

different sub-state machines. In this way, each vision skill could

be composed by vision primitives, following the robot motion

schema.

Regarding process management, in the current status of the

framework, developed applications are a sequence of skills that are

executed one after the other. Taking into account that the frame-

work is prepared for dual-arm or multi-robot systems, there is

room to optimize different aspects: task modelling (add informa-

tion in order to determine if a robot configuration is able to per-

form it) [51] , task scheduling and assignment to available robotic

system [52] , etc.

H. Herrero et al. / Neurocomputing 255 (2017) 61–70 69

Acknowledgment

The research has been funded in part from the European FP7

program (FP7/2007–2013) under grant agreements # 608604 (LIAA:

Lean Intelligent Assembly Automation).

References

[1] C.R. Duguay , S. Landry , F. Pasin , From mass production to flexible/agile produc-

tion, Int. J. Oper. Prod. Manag. 17 (12) (1997) 1183–1195 .
[2] S.J. Hu , Evolving paradigms of manufacturing: from mass production to mass

customization and personalization, Proc. CIRP 7 (2013) 3–8 .

[3] W. Wang , Y. Koren , Scalability planning for reconfigurable manufacturing sys-
tems, J. Manuf. Syst. 31 (2) (2012) 83–91 .

[4] F. Tao , Y. Cheng , L. Zhang , A. Nee , Advanced manufacturing systems: socializa-
tion characteristics and trends, J. Intell. Manuf. (2014) 1–16 .

[5] N. Krüger , C. Geib , J. Piater , R. Petrick , M. Steedman , F. Wörgötter , A. Ude , T. As-
four , D. Kraft , D. Omr ̌cen , et al. , Object–action complexes: grounded abstrac-

tions of sensory–motor processes, Robot. Auton. Syst. 59 (10) (2011) 740–757 .

[6] T. Abbas , B.A. MacDonald , Generalizing topological task graphs from multiple
symbolic demonstrations in programming by demonstration (PBD) processes,

in: Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), IEEE, 2011, pp. 3816–3821 .

[7] G. Biggs , B. MacDonald , A survey of robot programming systems, in: Pro-
ceedings of the Australasian Conference on Robotics and Automation, 2003,

pp. 1–3 .

[8] Z. Pan , J. Polden , N. Larkin , S. Van Duin , J. Norrish , Recent progress on pro-
gramming methods for industrial robots, Robot. Comput. Integr. Manuf. 28 (2)

(2012) 87–94 .
[9] A . Lemme , A . Freire , G. Barreto , J. Steil , Kinesthetic teaching of visuomo-

tor coordination for pointing by the humanoid robot iCub, Neurocomputing
112 (2013) 179–188 . 20th European Symposium on Artificial Neural Networks

(ESANN 2012).
[10] M.R. Pedersen , L. Nalpantidis , R.S. Andersen , C. Schou , S. Bøgh , V. Krüger ,

O. Madsen , Robot skills for manufacturing: from concept to industrial deploy-

ment, Robot. Comput. Integr. Manuf. 37 (2016) 282–291 .
[11] E. Gat , et al. , On three-layer architectures, Artif. Intell. Mob. Robots 195 (1998)

210 .
[12] A. Bjrkelund , L. Edstrm , M. Haage , J. Malec , K. Nilsson , P. Nugues , S.G. Robertz ,

D. Strkle , A. Blomdell , R. Johansson , M. Linderoth , A . Nilsson , A . Robertsson ,
A. Stolt , H. Bruyninckx , On the integration of skilled robot motions for produc-

tivity in manufacturing, in: Proceedings of the IEEE International Symposium

on Assembly and Manufacturing (ISAM), 2011, pp. 1–9 .
[13] J.G. Trafton, Cognitive robotics and human robot interaction. (ac-

cessed on August 2016). http://www.nrl.navy.mil/itd/aic/content/
cognitive-robotics-and-human-robot-interaction .

[14] L. Moshkina , S. Trickett , J.G. Trafton , Social engagement in public places: a tale
of one robot, Proceedings of the 2014 ACM/IEEE International Conference on

Human-robot Interaction (2014) 382–389 .

[15] U. Thomas , G. Hirzinger , B. Rumpe , C. Schulze , A. Wortmann , A new skill based
robot programming language using UML/P statecharts, in: Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2013,
pp. 461–466 .

[16] S. Sen , G. Sherrick , D. Ruiken , R.A. Grupen , Hierarchical skills and skill-based
representation., in: Proceedings of Lifelong Learning, 2011 .

[17] J. Zhou , X. Ding , Y.Y. Qing , Automatic planning and coordinated control for re-

dundant dual-arm space robot system, Ind. Robot Int. J. 38 (1) (2011) 27–37 .
[18] A .A . Moughlbay , E. Cervera , P. Martinet , Real-time model based visual servoing

tasks on a humanoid robot, in: Intelligent Autonomous Systems 12, Springer,
2013, pp. 321–333 .

[19] Robotiq collaborative robots survey, (accessed on June 2016). http://blog.
robotiq.com/collaborative-robot-ebook .

[20] ABB YuMi. Collaborative dual-arm robot of ABB, (accessed on June 2016). http:

//new.abb.com/products/robotics/yumi .
[21] Fanuc CR-35ia. Collaborative robot of Fanuc, (accessed on June 2016). http://

www.fanuc.eu/de/en/robots/robot- filter- page/collaborative-cr35ia .
[22] Kawada Nextage. Dual-arm robot of Kawada, (accessed on June 2016). http:

//nextage.kawada.jp/en/ .
[23] KUKA LBR IIWA. Collaborative robot of KUKA, (accessed on June 2016). http:

//www.kuka- lbr- iiwa.com/ .

[24] Rethink Robotics Baxter. Collaborative dual-arm robot of Rethink Robotics, (ac-
cessed on June 2016). http://www.rethinkrobotics.com/baxter .

[25] Universal Robots UR3/5/10. Set of collaborative robots of Universal Robots, (ac-
cessed on June 2016). http://www.universal-robots.com .

[26] R. Brooks , A robust layered control system for a mobile robot, IEEE J. Robot.
Autom. 2 (1) (1986) 14–23 .

[27] D. Alonso , C. Vicente-Chicote , J.A. Pastor , B. Alvarez , StateML : from graphical
state machine models to thread-safe ADA code, in: Proceedings of the Reliable

Software Technologies – Ada-Europe 2008, Springer, 2008, pp. 158–170 .

[28] L. König , S. Mostaghim , H. Schmeck , Online and onboard evolution of robotic
behavior using finite state machines, in: Proceedings of the 8th International

Conference on Autonomous Agents and Multiagent Systems, vol. 2, Inter-
national Foundation for Autonomous Agents and Multiagent Systems, 2009,

pp. 1325–1326 .

[29] M. Klotzbuecher, Orocos rFSM. rFSM is a statechart implementation designed
for coordinating of complex systems such as robots, (accessed on June 2016).

https://github.com/orocos/rFSM/tree/master/doc .
[30] J. Bohren, SMACH. Is a ROS-independent Python library to build hierarchical

state machines, (accessed on June 2016). http://wiki.ros.org/smach .
[31] M. Quigley , K. Conley , B.P. Gerkey , J. Faust , T. Foote , J. Leibs , R. Wheeler , A.Y. Ng ,

ROS: an open-source Robot Operating System, in: Proceedings of the ICRA
Workshop on Open Source Software, 2009 .

[32] Robot Operating System (ROS). It is a collection of tools, libraries, and con-

ventions that aim to simplify the task of creating complex and robust robot
behavior, (accessed on June 2016). http://www.ros.org/ .

[33] A. Björkelund , H. Bruyninckx , J. Malec , K. Nilsson , P. Nugues , Knowledge for
intelligent industrial robots., in: Proceedings of the AAAI Spring Symposium

on Designing Intelligent Robots, 2012 .
[34] J. Huckaby , S. Vassos , H.I. Christensen , Planning with a task modeling frame-

work in manufacturing robotics, in: Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), IEEE, 2013,
pp. 5787–5794 .

[35] M. Stenmark , J. Malec , A helping hand: industrial robotics, knowledge and
user-oriented services, in: Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and SystemsAI-based Robotics Workshop, 2013 .
[36] A. Elkady , T. Sobh , Robotics middleware: a comprehensive literature survey

and attribute-based bibliography, J. Robot. 2012 (2012) 15 Hindawi Publishing

Corporation .
[37] P. Iñigo-Blasco , F. Diaz-del Rio , M.C. Romero-Ternero , D. Cagigas-Muñiz , S. Vi-

cente-Diaz , Robotics software frameworks for multi-agent robotic systems de-
velopment, Robot. Auton. Syst. 60 (6) (2012) 803–821 .

[38] H. Herrero , J.L. Outón , U. Esnaola , D. Sallé, K.L. de Ipiña , State machine based
architecture to increase flexibility of dual-arm robot programming, in: Bioin-

spired Computation in Artificial Systems, Springer, 2015a, pp. 98–106 .

[39] H. Herrero , J.L. Outon , U. Esnaola , D. Salle , K. Lopez de Ipina , Development and
evaluation of a skill based architecture for applied industrial robotics, in: Pro-

ceedings of the 4th International Work Conference on Bioinspired Intelligence
(IWOBI), IEEE, 2015b, pp. 191–196 .

[40] H. Herrero, J.L. Outón, U. Esnaola, D. Sallé, K.L. de Ipiña, Enhanced flexibility
and reusability through state machine based architecture for robotics, 2017 (in

press).

[41] Some of the core parts of ROS, (accessed on June 2016). http://www.ros.org/
core-components/ .

[42] R. Bischoff, T. Guhl , E. Prassler , W. Nowak , G. Kraetzschmar , H. Bruyninckx ,
P. Soetens , M. Haegele , A. Pott , P. Breedveld , et al. , Brics-best practice in

robotics, in: Proceedings of the 41st International Symposium and the 6th Ger-
man Conference on Robotics (ROBOTIK)R, VDE, 2010, pp. 1–8 .

[43] H. Herrero , R. Pacheco , N. Alberdi , M. Rumayor , D. Salle , K. Lopez de Ipiña ,

Skills for vision-based applications in robotics application to aeronautics as-
sembly pilot station, in: Proceedings of the IEEE International Conference on

Computer as a Tool (EUROCON), IEEE, 2015, pp. 1–6 .
[44] G. Bradski , A. Kaehler , Learning OpenCV: Computer Vision With the OpenCV

Library, O’Reilly Media, Inc., 2008 .
[45] Lean Automation (LIAA). LIAA aims to keep assembly jobs in Europe by cre-

ating and implementing a framework that enables humans and robots to
truly work together in assembly tasks, (accessed on June 2016). http://www.

project-leanautomation.eu/ .

[46] Introducing OpenNI, Open Natural Interaction Library, (accessed on June 2016).
https://github.com/OpenNI/OpenNI .

[47] M. Munaro , E. Menegatti , Fast RGB-D people tracking for service robots, Auton.
Robots 37 (3) (2014) 227–242 .

[48] M. Munaro , F. Basso , E. Menegatti , Tracking people within groups with RGB-D
data, in: Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), IEEE, 2012, pp. 2101–2107 .

[49] N. Dalal , B. Triggs , Histograms of oriented gradients for human detection, in:
proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, vol. 1, IEEE, 2005, pp. 886–893 .
[50] A .A . Moughlbay , H. Herrero , R. Pacheco , J.L. Outón , D. Sallé, Reliable workspace

monitoring in safe human-robot environment, International Conference on
European Transnational Education, Springer International Publishing, 2016,

pp. 256–266 .

[51] M. Staffa , D. Perfetto , S. Rossi , Engineering central pattern generated behaviors
for the deployment of robotic systems, Neurocomputing 170 (2015) 98–112 .

International Conference on Intelligence Science and Big Data Engineering (IS-
cIDE 2013)Computational Energy Management in Smart Grids.

[52] R.M. de Mendona , N. Nedjah , L. de Macedo Mourelle , Efficient distributed al-
gorithm of dynamic task assignment for swarm robotics, Neurocomputing 172

(2016) 345–355 .

Héctor Herrero received Computer Sciences Degree in
2011 from Basque Country University and completed his

Master Degree in Automation, Control and Robotics in
2013 from Basque Country University. Currently he is

working in his Ph.D. in Robotics at TECNALIA where he
is also involved in several FP7 European Projects. His re-

search interests are software architectures, robotic easier

programming techniques and dual-arm path planning.

70 H. Herrero et al. / Neurocomputing 255 (2017) 61–70

Dr. Amine Abou Moughlbay . He received his Ph.D. in

Robotics from Ecole Centrale of Nantes – France in 2013,
and his Master’s degree in Mechanical Engineering from

Faculty of Engineering of the Lebanese University in 2009

with a specialty in Automatic Control and Robotics from

Ecole Centrale of Nantes. After graduation, he has been

an associate professor at the Electronic, Electrotechnic
and Automation Department (Vision and Robotics sec-

tion) of University of Picardie Jules Verne – France. He
was responsible of Master 2 module on Advanced Per-

ception and mobile robotics, and the supervisor of Master

projects on modeling and control of mobile and industrial
robots. Since September 2014, he is a member of Robotics

group at Industry and Transport Division of Tecnalia (Spain) and he is involved in
several projects dealing with visual servoing and control of complex robotic systems

and the use of several RGB-D sensors for workspace monitoring in a safe collabora-
tive human-robot environment.

Jose Luis Outón Méndez received Computer Sciences De-
gree in 2013 from Basque Country University and Mas-

ter Degree in Computational Engineering and Intelligent
Systems (Basque Country University, 2013). Currently he

is working in his Ph.D. named Advances in Versatile
Robotics by means of Machine Learning and Computer

Vision Paradigms. Within the field of robotics his re-
search interests are mobile robotics, autonomous naviga-

tion mainly. He studied the ability to make more flexi-

ble and autonomous robots, providing them with greater
intelligence based on the perception of environment. He

works as a robotics researcher in Tecnalia, where he is
involved in some European Projects.

Ph.D. Damien Sallé (male): He was awarded Ph.D. (2004)

from University Pierre et Marie Curie, Paris, and M.Sc.
in Mechanical Engineering (HEI Engineering School, Lille,

20 0 0). His research focused on methodologies for the op-

timal design of redundant robotic manipulators applied
to heart surgery. He joined Robosoft Company in 2005,

where he first was in charge of the scientific coordina-
tion and R&D project management, before being the Head

of the R&D department. Since 2010, Damien Sallé is the
Head of the Robotics unit of TECNALIA where he impulses

and manages the developments of Robotics and Vision for

Advanced Manufacturing.

Dr. Karmele López de Ipiña. Universidad del País Vasco/

Euskal Herriko Unibertsitatea. She is member of the IEEE,
received the Ph.D. degree in Computer Science in 2003,

and a Master Degree in Electronics and Automation and
the B.Sc. degree in Physics in 1990, at the University

of the Basque Country. She worked for enterprises until
1995 when joined the Department of Systems Engineer-

ing and Automation of the University of the Basque Coun-

try as Associate Professor. She was also Director at the
University of the Basque Country. She is currently head of

the EleKin research group (Engineering, Society and Bio-
engineering). Her experience and qualifications are clearly

represented in the number and level of her publications:
to date, she has published papers in high-standard peer-reviewed journals and has

presented results at several international conferences being also general chair and

chair in some of them. She has on-going research collaborations with several in-
ternational groups. Her research interests are in Engineering and Society, Robotics,

Bioengineering and Biomedical Engineering, Pattern Recognition, Signal Processing
and Ambient Intelligence.

164 Appendix II. Publications

II.b Conference publications

� State machine based architecture to increase flexibility of dual-arm robot pro-
gramming.

� Development and evaluation of a Skill Based Architecture for applied industrial
robotics

� Skills for vision-based applications in robotics application to aeronautics assembly
pilot station

� Towards a flexible production system Environment Server implementation

� Reliable Workspace Monitoring in Safe Human-Robot Environment.

II.b. Conference publications 165

II.b.1 Conference paper 1

State Machine Based Architecture to

Increase Flexibility of Dual-Arm Robot

Programming

Héctor Herrero, Jose Luis Outón, Urko Esnaola, Damien Sallé1 and Karmele
López de Ipiña2

1 Tecnalia Research and Innovation, Industry and Transport Division, San Sebastián,
Spain. {hector.herrero; joseluis.outon; urko.esnaola; damien.salle}@tecnalia.com

2 Department of Systems Engineering and Automation, UPV/EHU (Basque Country
University), San Sebastián, Spain. karmele.ipina@ehu.es

Abstract. This paper introduces a state machine based architecture
with the aim of increasing flexibility of dual-arm robot programming.
The proposed architecture allows absolute control of the execution, eas-
ing coordination of the arms if necessary. This work attempts to deal
with dual-arm robotic programming challenges, providing a robust and
reliable core which is able to interconnect different software modules
where each one provides different capabilities. A pilot station is under
development at Airbus Operations plant in Puerto Real, Spain.

1 INTRODUCTION

An analysis of the current situation in manufacturing plants allows to highlight
3 major trends:

– An ever increasing customization of products and short lifecycle. Which re-
quires an increase in the Flexibility of production means (1 unique system
must handle all the product diversity and operations)

– A strong variation in production volumes. Which requires an increase in
the Reconfigurability of production (1 system for one product/task within
recombinable production lines)

– Limited access to skilled operators due to ageing workforce, changes in ed-
ucation and an ever faster technology development. Which requires new so-
lutions to Assist operators and provide collaborative work environments.

The research addressed in this paper focuses on the first trend: the need for
highly flexible robotic systems. Despite of a large effort in the research commu-
nity, large companies as well as SMEs still don’t have appropriate software tools
and solutions to react rapidly and at costs compatible with an interesting return
of investment for the automation of their processes. The direct consequence is

that mainly production operations are performed manually, with high operation
costs that endanger those companies with respect to lower-wages countries. This
research is thus oriented at developing and providing a software ecosystem that
allows for a rapid and efficient programming of production processes, providing
the required flexibility. Even if this approach is generic and applicable to indus-
trial manipulators, this paper will be focused on dual-arm robotic operations.

The dual-arm robots provide more dexterity, in addition to the advantage
that they can be used in the existing workstations. Due to these arguments the
dual-arm robot implantation is growing year by year, not only in large multina-
tionals, but also in small and medium enterprises (SMEs). Theoretically, sector
experts say investments for robot implantation are amortized in 1-2 years, but
this affirmation can not be extrapolated to applications with dual-arm robots
and specially to short production series or many changes prone environment,
neither to industrial processes which need human-robot collaboration or special
environment supervision, and to many other cases in which specific solutions are
needed.

The growing of dual-arm systems [1] is resulting in a lot of efforts made
by robotic researchers to manage them. Programming, coordinating and super-
vising bi-manual robots is a need that is increasingly being demanded by the
community.

In this paper we present the challenges that can be identified for dual-arm
robotic programming (Section 2). To ease deployment of this kind of applications
we propose an architecture that allows controlling execution very simply and that
considerably facilitates programming through skill based organization of robot
primitives (Section 3). To understand advantages of the proposed architecture,
a riveting use case is presented (Section 4). Finally, we present conclusions and
future work (Section 5).

2 DUAL-ARM ROBOTIC PROGRAMMING
CHALLENGES

One of the points that differs the dual-arm robots from traditional robots is that
two different scenarios can be presented [1]:

1. Non-coordinated manipulation.
2. Coordinated manipulation.

In the case of non-coordinated manipulation each arm works in a different
process, i.e., one arm does not have to worry about the status of the other arm,
except for self collision detection. For this setting it is necessary an architecture
which does not obstruct the execution with unjustified synchronization or waits.

In the second scenario, both arms perform different parts of the same task.
This setup can be divided into goal-coordinated and bi-manual coordination.
In the case of goal-coordinated manipulation the arms are not interacting with
each other but, they have some elements in common, e.g. two arms palletizing
items in the same box. For the bi-manual manipulation, it is necessary to control
and coordinate synchronously the whole robot, e.g., two arms manipulation pro-
cesses or processes in which one arm is holding something while the other one is
doing assembly operations. For these configurations it is necessary the commu-
nication or coordination between arms in order to assure the correct behavior of
the whole system.

The traditional robot programming is still not very flexible, thus the dual-
arm programming suffers the same problems. In the industry smaller and smaller
series are ordered, and as a consequence costs of reprogramming the robots grow.
Even though there are usually different parts, the process is very similar, i.e.,
assembling parts with different types of screw. In this case the assembly opera-
tion is the same, only the screw size, type or position is changing. Grouping the
robot basic movements (primitives) according to tasks or skills is an alternative
that many authors have followed [2][3][4].

One of the most relevant issues in dual-arm robotic programming, especially
for industrial applications, is the lack of both powerful and easy to use graphical
user interfaces [5]. An easy to configure GUI, which allows the previously men-
tioned skill based programming, will enable operators to program and maintain
the industrial processes. This, in addition to the workers feel themselves part of
the automation process, will also contribute to reduce the costs of the robotic
systems deployment.

Another important topic concerning dual-arm robotics that will not be dealt
here is related with the scenario mentioned above. In the case of processes with
independent task for each arm, the effect of the inertia generated by the other
arm should be considered. This is a common problem in dual-arm robots in
which the arms are connected to a central torso. This phenomenon may produce
a loss of accuracy in some instants.

3 STATE MACHINE BASED EXECUTION
COORDINATION

State machines for execution control can face dual-arm challenges. These tools
are commonly used for general-purpose processes and, in particular, they have
been extensively adopted by the robotic community. State-machines are an easy
way for describing behaviors and for modeling how components react to different
external and internal stimuli [6]. In this area there are different implementation
alternatives, e.g., there are many projects using Orocos rFSM. rFSM is a small

and powerful state-chart implementation designed for coordinating complex sys-
tems such as robots [7]. SMACH [8] is another implementation of state machines.
It can be defined as task-level architecture for rapidly creating complex robot
behavior.

The proposed architecture in this paper has focused on both alleviating
problems related with coordinated and non-coordinated manipulation tasks and
preparing the way for the ongoing development of skills based programming to
ease the use of dual-arm robots.

3.1 Technology

Different open source software was chosen to implement this architecture. Con-
sidering the large and active community behind it, ROS is used like middleware
[9]. ROS provides the necessary ecosystem to manage complex applications in-
volving trajectory planning with collision detection, pick and place, perception,
simulation and much more. In this paper SMACH is used to state machine im-
plementation. SMACH allows not only controlling execution, but also designing
complex hierarchical state machines; this feature is especially helpful in order
to develop further phases of the project. The proposed architecture is designed
to continue developing works related with formalizing skills and automatic code
generation, following the same proposal as the BRICS project [10], which is part
of EU FP7.

Regarding the hardware, TECNALIA owns a Kawada Nextage Open robot
[11]. It has two arms attached to a rotatory torso with 6 degrees of freedom per
arm and a stereo vision equipped head with two degrees of freedom, 15 DOF al-
together managed by a single controller. This robot is connected to ROS through
a bridge developed through collaboration between Tokyo University’s JSK Lab-
oratory [12], TORK [13] and TECNALIA. OpenRTM middleware developed by
AIST [14] also is used to interconnect the robot with ROS. This combination of
components allows using all ROS capabilities. At this point, it should be em-
phasized that thanks to the use of ROS, the presented architecture is hardware
vendor independent: different robotic hardware will be used just utilizing appro-
priate interface between ROS and the robot controller.

3.2 Core

One of the first requirements that was identified was introspection, which is a
tool able to provide current execution state continuously, allowing us to manage
possible errors and improving the recovery of them. In Fig. 1 the proposed ar-
chitecture is outlined. The proposed architecture consists of two state machines,
one per arm, with some common states. These common states are used for coor-
dinated manipulation. The system starts from a Ready state and keeps changing

to different states that can be seen as available abilities or capacities of the robot.
Note that some states have not been included in order to simplify the diagram.
These states are Pause/Stop, Error handling and Finish.

Fig. 1: Proposed state machine based architecture to control dual-arm robots

The proposed work in this paper allows supervising the environment and
permits cancelling or adapting plans according to sensor values and perception
system information.

3.3 States

Each state has been implemented as a module that generally is independent from
the core. Only a few modules have been defined as basic and required. These
special modules are Articular/Cartesian movements, Full body coordinated mo-
tion and Trajectory execution. All available modules for this version are shown
in Fig. 1. It should be emphasized that according to the requirements of the
different applications, the available states can be updated by incorporating new
capabilities or removing others which will not be used.

In order to understand the proposed architecture, Table 1 summarizes the
different states and their utility. Each state may contain a more or less com-
plicated structure according to its purpose. On the one hand, for example, the
Change-end effector state only contains a few arm movements and some simple
pneumatic operations for the end-effector exchange. On the other hand, the Ar-
ticular/Cartesian motion state is highly general, i.e., this state contains all the
required code to manage motions both in cartesian and articular spaces.

Table 1: Summary of states

State Description

Ready Robot is ready for receive new instruction

Articular/Cartesian motion Manage robot movements both in cartesian space and
articular space

Full body coordinated mo-
tion

Allows to control both arms coordinately. Two arms must
be in this state to start coordinated motion

Trajectory execution Executes trajectories, provided by a trajectory planner
or previously stored in a database

Change end-effector Include necessary operations for changing end-effectors

End-effector coordination Manage end-effector operations, and coordinate move-
ments if a combined operation is required

Record trajectory Allows to record trajectories with a trajectory planner or
by teach by demonstration

Visual servoing Coordinates robot motions with perception provided in-
formation

Slave mode Puts robot in bi-manual coordinated manipulation mode,
one arm actuates as master and the other one as slave.

3.4 Overall architecture

As illustrated in Fig. 2, the proposed state machine interconnects the previously
commented skill programming (Section 3) and the robotic lower level control
system.

As it is detailed in the next section, the skills are composed by primitives
which are translated to states. On the one hand, the skill execution engine trig-
gers state changes at the low level. On the other hand, in the case of Kawada
Nextage Open the states are connected to the robotic system through an Open-
RTM bridge. But it should not be forgotten that ROS allows hardware inde-
pendence, and changing the bridge properly another robotic system can be used
(for example, Orocos or Fast Research Interface [15] to interface a Kuka LWR
with the proposed architecture).

This combination of a skill application framework and a low level state ma-
chine allows us to considerably improve the flexibility, hardiness, easier pro-
gramming, hardware independence and environment control, resulting in a more
industry oriented solution.

Fig. 2: Overall architecture

In order to illustrate these abstract concepts, an example of a manipulation
task is detailed in Section 5.

4 VALIDATION ON RIVETING USE CASE

This development is performed in collaboration with Airbus Operations (Puerto
Real plant in Spain). One of the most relevant tasks in the aerostructure assembly
is the installation of rivets. So picking a rivet and introducing it into a drilling
has been selected as a manipulation skill example. This skill is composed of the
following steps:

1. Pick and extract a rivet from a tray
2. Insert a rivet into a drilling

We can decompose this skill into robot primitives. In this case, the required
primitives are move, close and open. The meaning of these primitives can be in-
tuited easily: moving the robot to the provided position, and opening and closing
the gripper, respectively.

Once the skills are decomposed, the resulting primitives are the ones that are
executed by the proposed state machine architecture. Each state is processing
the primitive callbacks, and handling errors if they take place. Thus, the error
handling is simpler and managed specifically in each state or module. With the
example that is being analysed, the sequence of the machine state is shown in
Fig. 3.

Fig. 3: State machine sequence in a pick rivet skill

5 CONCLUSIONS AND FUTURE WORK

In this paper, a revision of the most common robotic architectures has been done.
The trend of using distributed systems versus monolithic systems has been high-
lighted. At application level, deliberative and reactive architectures have been
mentioned. At a higher level of abstraction, agent and state machine based ar-
chitectures have been reviewed.

Considering the architectures found in the bibliography and the challenges
that are emerging from the dual-arm robot programming, the need of a novel
architecture is increasingly evident in order to increase the flexibility of dual-
arm robots. Thus, this would allow an easier and faster deployment of industrial
dual-arm robotics cells.

Fig. 4: Pilot station at Airbus facilities using proposed architecture

To improve the control and coordination of anthropomorphic robots, state
machine based architectures have been introduced. This approach allows us to
increase the robustness and reliability of the whole system. The proposed archi-
tecture is designed to act as a basis for easier programming methodologies. At
present, a pilot station is under deployment at the Airbus Operations plant in
Puerto Real, Spain (Fig. 4).

In future work, following the efforts made by other authors [16][17], we will
further investigate how to define and implement new skills easily and quickly,
and especially their integration into an intuitive and graphical interface.

Regarding the state machine based architecture, if the proposed approach is
used, the non-coordinated manipulation scenario is more controlled and allows
an easier and faster deployment of new applications. In the future, the focus will
be set on the coordinated manipulation with the intention of easing this kind of
tasks.

ACKNOWLEDGMENT

The authors would like to thank Juan Francisco Garćıa Amado for managing
the pilot cell at the Airbus facilities. We greatly appreciate the support and
supervision of Karmele Lopéz de Ipiña, Professor in the department of System
Engineering and Automation at the University of the Basque Country. We also
would like to thank Kei Okada from JSK Laboratory for his support with Nex-
tage robot.

References

1. C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Dimarogo-
nas, and D. Kragic, “Dual arm manipulationa survey,” Robotics and Autonomous
systems, vol. 60, no. 10, pp. 1340–1353, 2012.

2. U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann, “A new skill
based robot programming language using uml/p statecharts,” in Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on, pp. 461–466, IEEE,
2013.

3. S. Sen, G. Sherrick, D. Ruiken, and R. A. Grupen, “Hierarchical skills and skill-
based representation.,” in Lifelong learning, 2011.

4. J. Zhou, X. Ding, and Y. Y. Qing, “Automatic planning and coordinated control
for redundant dual-arm space robot system,” Industrial Robot: An International
Journal, vol. 38, no. 1, pp. 27–37, 2011.

5. F. Poppa and U. Zimmer, “Robotui-a software architecture for modular robotics
user interface frameworks,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pp. 2571–2576, IEEE, 2012.

6. D. Alonso, C. Vicente-Chicote, J. A. Pastor, and B. Alvarez, Stateml : From graph-
ical state machine models to thread-safe ada code, pp. 158–170. Reliable Software
Technologies - Ada-Europe 2008, Springer, 2008.

7. “Orocos rfsm,
http://people.mech.kuleuven.be/ mklotzbucher/rfsm/readme.html.”

8. “Smach, http://wiki.ros.org/smach.”
9. “Ros, http://www.ros.org/.”

10. R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar, H. Bruyninckx,
P. Soetens, M. Haegele, A. Pott, P. Breedveld, et al., “Brics-best practice in
robotics,” in Robotics (ISR), 2010 41st International Symposium on and 2010 6th
German Conference on Robotics (ROBOTIK), pp. 1–8, VDE, 2010.

11. “Kawada nextage, http://nextage.kawada.jp/en/.”
12. “Jouhou system kougaku laboratory, tokyo university,

http://www.jsk.t.u-tokyo.ac.jp/.”
13. “Tokyo opensource robotics kyokai association,

http://opensource-robotics.tokyo.jp/?lang=en.”
14. “Openrtm-aist middleware, http://openrtm.org/.”
15. “Fast research interface library,

http://cs.stanford.edu/people/tkr/fri/html/.”
16. R. H. Andersen, T. Solund, and J. Hallam, “Definition and initial case-based

evaluation of hardware-independent robot skills for industrial robotic co-workers,”
in ISR/Robotik 2014; 41st International Symposium on Robotics; Proceedings of,
pp. 1–7, 2014.

17. D. Vanthienen, T. De Laet, W. Decré, R. Smits, M. Klotzbücher, K. Buys, S. Bel-
lens, L. Gherardi, H. Bruyninckx, and J. De Schutter, “itasc as a unified framework
for task specification, control, and coordination, demonstrated on the pr2,” in IEEE
International Conference on Mechatronics and Robotics, 2011.

176 Appendix II. Publications

II.b.2 Conference paper 2

Development and Evaluation of a Skill Based
Architecture for Applied Industrial Robotics

Héctor Herrero, Jose Luis Outón,
Urko Esnaola and Damien Sallé
Tecnalia Research and Innovation
Industry and Transport Division

San Sebastián, Spain
Email: hector.herrero@tecnalia.com

Karmele López de Ipiña
Department of Systems

Engineering and Automation
UPV/EHU (Basque Country University)

San Sebastián, Spain
Email: karmele.ipina@ehu.es

Abstract—This paper presents and evaluates a Skill Based
Architecture with the aim of increasing flexibility of dual-arm
robot programming. The proposed architecture allows absolute
control of the execution, easing coordination of the arms if
necessary. This work try to quantify the advantages of the
proposed paradigm based in different indicators. A pilot station
is under development at Airbus Operations plant in Puerto Real,
Spain. A real operation, drilling deburring of composite parts,
has been selected as use case for evaluation.

I. INTRODUCTION

An analysis of the current situation in manufacturing plants
allows to highlight 3 major trends:

• An ever increasing customization of products and
short lifecycle. Which requires an increase in the
Flexibility of production means (1 unique system must
handle all the product diversity and operations)

• A strong variation in production volumes. Which
requires an increase in the Reconfigurability of pro-
duction (1 system for one product/task within recom-
binable production lines)

• Limited access to skilled operators due to ageing
workforce, changes in education and an ever
faster technology development. Which requires new
solutions to Assist operators and provide collaborative
work environments.

In previous work [1] a State Machine based Architecture
has been presented. This architecture aims to face the first
trend: the need for highly flexible robotic systems. Using this
novel paradigm allows increasing the flexibility of dual-arm
robots, resulting in a deployment time reduction and easier
programming experience. Besides flexibility, the robustness
and reliability of the whole system has been increased.

The research addressed in this paper focuses on trying to
measure or quantify the advantages and improvements of the
proposed architecture. The use of state machines, on the one
hand, not imply reduction regarding execution time, robot
movements are the same alike the process is the same; on the
other hand, the improvements in reliability are not easy to
demonstrate. Because of this justifying the implementation
of a new architecture is not a trivial topic, moreover when

cycle time is not improved. But, of course, the advantages are
not something subjective, and can be quantified. Analysing
from other perspective, although the execution time remains
constant, start up and reconfiguring time is considerably
reduced. Besides, the execution on finite state machines
allows controlling the execution status at every moment.

In this paper we present a review of skill based
programming which eases deployment of industrial
applications (Section 2). We expose different alternatives
to evaluate the State Machine Based Architecture and
Skill Programming advantages (Section 3). To demonstrate
advantages of the proposed architecture and the skill based
programming, a drilling deburring of composite parts use case
is presented (Section 4). Finally, we present conclusions and
future work (Section 5).

II. SKILL BASED PROGRAMMING

The classical way of programming robots is using Teach
Pendants or proprietary robot programming languages. This
requires high qualified staff and increases the costs of process
automation, moreover in complex process which flexibility
is needed. This had led researchers to develop other ways of
programming which allow easy, simple and intuitive robot
programming. Skill based programming is one approach
to alleviate this drawback. The idea is modelling system
capabilities in simple and intuitive symbolic units [2][3].
Explain this paradigm is easier with a practical example, in
the industry smaller and smaller series are ordered, and as a
consequence costs of reprogramming the robots grow. Even
though there are usually different parts, the process is very
similar, i.e., assembling parts with different types of screw.
In this case the assembly operation is the same, only the
screw size, type or position is changing. Grouping the robot
basic movements (primitives) according to tasks or skills is
an alternative that many authors have followed [4][5][6]. Fig.
1 illustrate an example of a process decomposition into skills.

In our case we have related the skill based programming
with a novel architecture based on finite state machines. The
proposed architecture consists of two state machines, one per
arm, with some common states. These common states are used
for coordinated manipulation. The system starts from a Ready

Fig. 1: Decomposition of necessary skills for drilling deburring
operation

state and keeps changing to different states that can be seen
as available abilities or capacities of the robot. Each state has
been implemented as a module that generally is independent
from the core, this makes it a scalable architecture, besides
easing the error handling.

III. EVALUATION FOR COMPLEX SYSTEMS

In BRICS project [7], which is part of EU FP7, best
practises in robotics are presented. These best practises
emphasizes in the importance of evolution and maintenance
of the software. Considering the importance of this quality
attribute, it would be extremely useful to make an evaluation
of the flexibility of an application [8].

Mangili describes different approaches for software
quality evaluation [9]. On the one hand, metrics based
approaches, they are based on the hypothesis that there
are some measurable attributes that affect the maintenance.
Although this can be used as indicator of quality this approach
not take into account the changes in the environment and
the semantics of the whole application setting aside the the
potential benefits of an architecture versus other. On the other
hand, quality modes, they consists on breaking a complex
attribute into more manageable entities. Then using bottom-up
approach, it is possible to make an evaluation of the general
quality attribute. The problem of this methodology is that it
is unrealistic try to modelling, for example flexibility, into
a single number. Another authors establish a close relation
between software quality and complexity [10]. Basically more

complex software contains more errors, so they present an
approach to assess the complexity. Evaluation of the user
interfaces is another useful indicator. Nielsen and Molich
[11] present the use of heuristics for user interfaces evaluation.

The variability in robotics domains forces to design
components and systems that are flexible enough to face
frequently changing environment. As Brugali and Prassler
describe [12], a robotic system may be able to sensing,
planning, control, reasoning, and learning. These are human-
like capabilities that can be artificially replicated in a
computer-based robotic system. All of these requirements
need a high computing capability, so robotic engineers, to
achieve performance usually have to sacrifice other quality
attributes like maintainability, interoperability and reusability.
In this paper authors try to demonstrate that with the proposed
architecture and skill based programming reusability and
maintainability are improved.

IV. ANALYSIS AND EVALUATION OF A REAL
CASE

Drilling deburring of composite parts is a complex task
that requires the combination of dexterity and precision. This
development is performed in collaboration with Airbus Oper-
ations (Puerto Real plant in Spain). The proposed architecture
have been validated for rivet installation in aerostructure parts
[1]. In this case, drilling deburring of composite parts has
been selected as use case for evaluation. This task consist
of the following: there is a store with different composite
parts, through vision, parts are detected and the robot takes
one with left arm (Fig. 2); then the part is placed in a bracket
equipped with a vacuum system; in this moment, right arm
detects drilling using stereoscopic vision and deburs them with
an integrated deburring tool (Fig. 3); and finally, the robot
place the piece back to the store. This task is clearly more
complicated and requires the coordination of many elements
of the robot, namely: pneumatic gripper, pneumatic deburring
tool, stereoscopic vision, dual-arm coordination, etc. Presented
task can be divided in the following skills:

1) Take piece from the store
2) Place part in the vacuum system
3) Debur drillings of the piece
4) Return piece to the store

As has been mentioned above, there is a store with
different composite parts, in this detail lies the major
advantage of the system. All the pieces, despite having the
same shape, have different size so codify specific programs
for each part is not an option, moreover when there are up
to 44 references. In this moment can be perceived the power
of the skill based programming, the skills are sufficiently
flexible to adapt necessary movements to each piece.

Necessary skills are represented in Fig. 1. As can be
seen these skills are decomposed in primitives: move, detect
part vision, open gripper, close gripper, detect drilling
vision and activate deburring tool. These primitives are
the ones that are executed by the proposed state machine
architecture. Each state is processing the primitive callbacks,

Fig. 2: Manipulation process. The robot is taking parts from
the store

Fig. 3: Deburring process. The robot is detecting drillings
through vision and deburring them

and handling errors if they take place. Thus, the error
handling is simpler and managed specifically in each state or
module. With the example that is being analysed, the sequence
of the machine state, for debur drilling skill, is shown in Fig. 4.

Following the indicators that have been mentioned in
Section 2, some objective conclusions can be drawn. On the
one hand, the flexibility on this approach is demonstrated
with the fact that the same skills can be used to perform the
process which contains 44 different references. This assertion
is supported by the work that the authors have been made
in different applications [1], in that case inserting rivets
into a drilling was performed using very similar skills. On
the other hand, following [10] can be appreciated that with
the proposed approach the architecture has been simplify.
Dividing responsibilities in different layers, besides easing
the maintenance and evolution of the software, allows better
complexity assessment [9]. Fig. 5 illustrates the evolution of
the architecture.

Fig. 4: State machine sequence in a debur drilling skill

Using actual architecture, each new application can be
generated graphically. When the user add a skill to the
execution flow all required parameters must be filled. In this
way, a succession of blocks which composes the application
goes being generated. Developed GUI allows exporting
sections or entire applications into a XML files in order to
increase the reusability. These XML files can be imported in
new applications.

This graphical management of the applications enable
operators to interact with the system to perform modifications
without needing a robotic expert to adapt the programs. The
small changes required in the day may be managed more
quickly and cheaply.

Regarding reliability and robustness that state machine
provides, it permits users abstracting from the specifics of
dual-arm robotic programming. Proposed architecture assure
no conflicts between the arms, besides a complete traceability
of the program status.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a revision of evaluation methodologies for
complex system has been done. Taking into account how
difficult is to assess the flexibility of one architecture versus
other or to evaluate how much improvement is obtained using
proposed approach, it has attempted to quantify the perceived
advantages.

Fig. 5: Previous architecture VS proposed approach

To improve the control and coordination of
anthropomorphic robots, state machine based architecture
have been used [1]. This approach allows us to increase
the robustness and reliability of the whole system. The
proposed architecture is designed to act as a basis for easier
programming methodologies and combined with Skill Based
Programming allows us to increase the flexibility of dual-arm
robots. Thus, this combination of paradigms allow an easier
and faster deployment of industrial dual-arm robotics cells .
At present, a pilot station is under deployment at the Airbus
Operations plant in Puerto Real, Spain (Fig. 6). In this pilot
station different demonstrators are being tested with the
goal of demonstrating that this novel paradigm enhances
considerably the performance of traditional robotic.

In future work, following the efforts made by other au-
thors [13][14], we will further investigate how to define and
implement new skills easily and quickly, and especially their
integration into an intuitive and graphical interface. Regarding
the state machine based architecture, the focus will be set on
the coordinated manipulation with the intention of easing this
kind of tasks. As has been mentioned in Section 2 an heuristic
evaluation of graphical interfaces can be an useful indicator
of quality, the authors will further work in this topic trying
to evaluate and demonstrate the advantages of the proposed
approach.

ACKNOWLEDGMENT

The authors would like to thank Juan Francisco Garcı́a
Amado for managing the pilot cell at the Airbus facilities.
We also would like to thank Kei Okada from JSK Laboratory
and Isaac Saito from TORK for his support with Nextage.

REFERENCES

[1] H. Herrero, J. Outón, U. Esnaola, D. Sallé, and K. de Ipiña, “State
machine based architecture to increase flexibility of dual-arm robot
programming,” in IWINAC 2015, Part II, LNCS 9108,, pp. 98–106,
2015.

Fig. 6: Pilot station at Airbus facilities deburring rib drillings

[2] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, et al., “Object–action com-
plexes: Grounded abstractions of sensory–motor processes,” Robotics
and Autonomous Systems, vol. 59, no. 10, pp. 740–757, 2011.

[3] T. Abbas and B. A. MacDonald, “Generalizing topological task graphs
from multiple symbolic demonstrations in programming by demonstra-
tion (pbd) processes,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pp. 3816–3821, IEEE, 2011.

[4] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann, “A
new skill based robot programming language using uml/p statecharts,”
in Robotics and Automation (ICRA), 2013 IEEE International Confer-
ence on, pp. 461–466, IEEE, 2013.

[5] S. Sen, G. Sherrick, D. Ruiken, and R. A. Grupen, “Hierarchical skills
and skill-based representation.,” in Lifelong learning, 2011.

[6] J. Zhou, X. Ding, and Y. Y. Qing, “Automatic planning and coordinated
control for redundant dual-arm space robot system,” Industrial Robot:
An International Journal, vol. 38, no. 1, pp. 27–37, 2011.

[7] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar,
H. Bruyninckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld, et al.,
“Brics-best practice in robotics,” in Robotics (ISR), 2010 41st Interna-
tional Symposium on and 2010 6th German Conference on Robotics
(ROBOTIK), pp. 1–8, VDE, 2010.

[8] D. Brugali, P. Scandurra, A. Gargantini, L. Gherardi, A. Luzzana, and
M. Pedroni, “Design principles, implementation guidelines, evaluation
criteria for system openness and flexibility and use case implementa-
tions,” BRICS Deliverable D, vol. 7.

[9] M. Mangili, “Supporting software evolution through a diagnostic ap-
proach of maintainability,” 2009. Bachelor Thesis.

[10] S. G. MacDonell, “Determining delivered functional error content based
on the complexity of case specifications,” New Zealand Journal of
Computing, vol. 5, no. 1, pp. 57–65, 1994.

[11] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in
Proceedings of the SIGCHI conference on Human factors in computing
systems, pp. 249–256, ACM, 1990.

[12] D. Brugali and E. Prassler, “Software engineering for robotics,” IEEE
Robotics and Automation Magazine, vol. 16, no. 1, pp. 9–15, 2009.

[13] R. H. Andersen, T. Solund, and J. Hallam, “Definition and initial case-
based evaluation of hardware-independent robot skills for industrial
robotic co-workers,” in ISR/Robotik 2014; 41st International Sympo-
sium on Robotics; Proceedings of, pp. 1–7, 2014.

[14] D. Vanthienen, T. De Laet, W. Decré, R. Smits, M. Klotzbücher,
K. Buys, S. Bellens, L. Gherardi, H. Bruyninckx, and J. De Schutter,
“itasc as a unified framework for task specification, control, and coor-
dination, demonstrated on the pr2,” in IEEE International Conference
on Mechatronics and Robotics, 2011.

II.b. Conference publications 181

II.b.3 Conference paper 3

Skills for Vision-based Applications in Robotics
Application to aeronautics assembly pilot station

Héctor Herrero, Raquel Pacheco, Nerea Alberdi,
Mikel Rumayor and Damien Sallé

Tecnalia Research and Innovation
Industry and Transport Division

San Sebastián, Spain
Email: hector.herrero@tecnalia.com

Karmele López de Ipiña
Department of Systems

Engineering and Automation
UPV/EHU (Basque Country University)

San Sebastián, Spain
Email: karmele.ipina@ehu.es

Abstract—This paper presents an approach which allows
solving different computer vision problems organized in skills
to execute them in an industrial robot. Vision applications are
generally very specific and very dependent of the problem. The
the use of skill-based programming is attempting to ease the
use of vision in robotics field. Through this abstraction level,
vision skills can be reused in different robots and applications.
To demonstrate it, two skill are presented: 3D CAD Matching
and feature detection. Additionaly the integration of these skills
in ROS is presented and demonstrated in an aeronautics assembly
industrial application.

I. INTRODUCTION

Nowadays the use of computer vision in industrial
processes is very common, being a key element in the
process automation. Artificial vision is used for many
industrial applications such as delicate electronics component
manufacturing, quality textile production, metal product
finishing, glass manufacturing, parts machining, printing
products, granite quality inspection, integrated circuits
manufacturing and many others [1]. Vision applications are
very specific and dependent on the problem. They are thus
usually implemented as ad hoc solutions and can not be
reused in other application.

Each vision problem usually needs specific
hardware/software combination. Not only depending on
the environment but also depending on the features that must
be detected, different illumination system are used. Selecting
optics is similar: the distance is not the only factor to take
into account, the environment also impacts in the decision,
being necessary adding different kind of filters. Another
important factor is the camera sensor, depending of the
needs and required precision a very wide range of products
can be selected with different features regarding resolution,
sensibility, shutter speed, etc.

If the focus is on the software, it is recommended
attempting to provide the best illumination conditions as
possible. It is always better not to fix the problems via
software when a hardware solution is available. For image
processing there are a huge amount of algorithms [2][3]. As

with the hardware, each software application is configured
specifically for the process and can hardly be reused on other
industrial processes.

An analysis of the current situation in manufacturing plants
allows to highlight the following trends: an ever increasing
customization of products and shortening of life-cycle, which
requires an increase in the Flexibility of the production means
(1 unique system must handle all the products diversity and
operations); a strong variation in production volumes, which
requires an increase in the Reconfigurability of production (1
system for one product/task within recombinable production
lines). Taking this into account, computer vision has to
increase its flexibility in order to adapt to the trend of the
industry. This paper presents an approach which allows
solving different computer vision problems organized in
skills and execute them in an industrial robot, following
the research line presented in [4]. Vision applications are
generally very specific and very dependent on the problem.
The use of skill-based programming is attempting to ease
the use of vision in robotics field. Through this abstraction
level, vision skills can be reused in different robots and
applications. To demonstrate it, two skill are presented:
3D CAD Matching and feature detection. Additionally
the integration of these skills in ROS [5] is presented and
demonstrated in an aeronautics assembly industrial application.

In this paper we present a state of the art of the the skills
based programming and some concrete vision applications
for robotics (Section 2). To ease the use and re-utilizing of
computer vision in robotics field we propose the organization
of vision applications into skills (Section 3). To demonstrate
advantages of the proposed approach, real use cases are
presented (Section 4). Finally, we present conclusions and
future work (Section 5).

II. STATE OF THE ART - SKILLS AND VISION
APPLICATIONS FOR ROBOTICS

The classical way of programming robots is using Teach
Pendants or proprietary robot programming languages. This
requires high qualified staff and increases the costs of process
automation, in particular in complex process where flexibility978-1-4799-8569-2/15/$31.00 c©2015 IEEE

Figure 1: Stereo vision pose estimation

is needed. This has led researchers to develop other ways of
programming which allow easy, simple and intuitive robot
programming. Skill-based programming is one approach
to alleviate this drawback. The idea is modelling system
capabilities in simple and intuitive symbolic units [6][7].
Explaining this paradigm is easier with a practical example:
in the industry lot sizes are smaller and smaller, and as
a consequence, costs of reprogramming the robots grows.
Even though there are usually different parts, the process
is very similar, i.e., assembling parts with different types
of screw. In this case the assembly operation is the same,
only the screw size, type or position is changing. Grouping
the robot basic movements (primitives) according to tasks
or skills is an alternative that many authors have followed
[8][9][10]. The objective of this paper is to take the same
idea and apply it to vision applications, i. e. we propose a
pragmatic approach for generating reusable skills that, with
an easy parametrization, could be used by different robots
and in different applications. In this study two different vision
applications have been chosen: Feature Detection (Drillings)
and 3D part CAD Matching.

Feature detection, and specially Drillings pose estimation,
is a well known problem that has been deeply studied by many
researchers [11]. It basically consists in fitting ellipses in the
holes that are detected through different algorithms[12][13].
Then obtaining the center of the ellipses, the pose of the
Drilling can be estimated [14][15] by 3D stereo vision
calibration and hand-eye camera calibration (Figure 1).

3D CAD Matching is, essentially, surface registration. The
key idea is to identify corresponding points between the data
obtained by a sensor which provide a point cloud and the key
points of a CAD model (these key points are generated by
processing the 3D model) and find a transformation that min-
imizes the distance (alignment error) between corresponding
points. According to Salvi et al. [16] classification, Coarse and
Fine methods exist:

• Coarse methods compute an initial estimation between
two clouds of 3D points using correspondences of the
theoretical model (source) and the scene (target). An
example of these methods are Chen’s Ransac-based
Darces algorithm [17] or Point Signature introduced
by Chua [18].

• Fine methods compute most accurate solution min-

Figure 2: Vision applications organized as skills

imizing distance among the correspondences of the
theoretical model (source) and the scene (target). For
instance, ICP method, presented by Besl and McKay
[19], or Matching signed distance fields, introduced
by Masuda [20][21].

III. VISION APPLICATIONS ORGANIZED AS SKILLS

The big challenge is to determine the balance between
versatility and usability. If a very complex application is
developed, it may be cover all the requirements, but a very
trained (and expensive) staff is required, in addition to
expensive software licenses. The current economical situation
makes it difficult for SMEs to address these projects, so
easy-to-use solutions might help more than complex powerful
tools. In this paper we have tried to provide a flexible solution
with high usability. Skill based programming can help in this
topic.

As commented above, skills are composed by primitives
and corresponding parametrization. In this paper the focus
will be on the second part, parametrization of a skill and its
integration within a robotics applications. As can be seen
in Figure 2 lot of vision applications can be used as skills
(blue elements) and can be combined in order to achieve
more capabilities. For example, Feature Detection skill needs
the Hand-Eye Calibration and Stereo Vision Calibration to
be useful, and combining them Robot Position Guide can be
used to perform a specific industrial process such as localizing
and deburring lead edge ribs (aeroespacial parts).

In this paper two of these vision skills have been selected
to be analysed in order to extract configurable properties. The
objective is to have enough flexible algorithms that allow,
through parameter tuning, solve some of the most common
vision problems of the industry: feature detection and object
localization.

A. Feature Detection and Pose Estimation Skill

Explaining in detail how this algorithm works is not in the
scope of this work, therefore an example of this method will
be used to implement a drilling detection skill. The developed
algorithm is implemented in Python using OpenCV libraries

[22]. Through OpenCV functions, drillings are detected in
camera frame, and then based on previously performed stereo
calibration and hand-eye calibration, drilling pose is estimated
in robot frame. During the image processing and depending
on the characteristics of the taken picture (background
color, hole radio, luminosity, brightness, distance from the
cameras, etc.), parameters must be tuned properly. It has been
determined that changes in some of these parameters allows
hole detection for different pieces and hole sizes.

Abstracting these conclusions into simple terms, providing
different combinations of parameters to the algorithm permits
detecting features in different conditions with a reasonable
level of reliability. So Feature Detection skill can be configured
providing few key parameters that are intuitive for operators
(without being experts in vision):

In this phase of the research the skills formalism definition
is still a “work in progress”: we are using a pragmatic approach
to get experimental results. In this moment a simple XML
is being used but in the future an existing approach will
be followed for skills implementation, e.g. the proposals of
SkillPro [23], LIAA [24] or PicknPack [25] EU projects that
TECNALIA is participating.

B. 3D CAD Matching Skill

With this approach we are able to determine the position
and orientation of a part from a point cloud and providing
a 3D CAD model. This method uses PCL (Point Cloud
Library)[26] to align obtained point clouds with 3D CAD
models. In this process there are certain topics that are key
to perform a correct object localization. For example, the
approximate distance of the objective is very relevant because
the size of the point cloud is decisive for the performance
of the algorithm. Thus, if the distance is bounded, the
CPU resources can be used for improve the precision.
Another important matter is the selected algorithms for
initial estimation and for minimizing distance among the
correspondences. And, of course, provided CAD model, that
is the basis against which the point cloud is compared.

As in the previous skill, it has been determined that with
few intuitive parameters, the algorithm is able to localize
different objects successfully. Thus, 3D CAD Matching skill
can be configured providing following parameters:

Of course, this previous work of preparing algorithms to be
used in skills must be performed by computer vision experts

and, surely, there are a lot of peculiarities for each industrial
case. But if flexibility is considered from the beginning the
deployment of this paradigm is feasible.

C. Integration with ROS

ROS provides the necessary ecosystem to manage
complex applications involving trajectory planning with
collision detection, pick and place, perception, simulation
and much more. Besides, considering the large and active
community behind it, ROS is the path that this research line
follows.

In order for all functionalities of ROS to interact with each
other, applications are organized in nodes, and these nodes
are launched through special files called roslaunch files. This
element acts as a launcher, and is responsible of executing all
necessary nodes for the application. Besides nodes, roslaunch
may contain parameters for them, as well as another optional
roslaunch files.

These launch files are written in XML, which gives us a
feature that will be used in this paper. Managing XML files
is very easy, and can be generated quickly, so new roslaunch
can be generated online with the configuration that a node
requires. At this point, a link with the previous sections can
be established. A vision skill will be executed by a node, and
the configuration of the skill will be provided via roslaunch
parameters. Figure 3 illustrates an example of launch file,
concretely the launch file for Feature Detection skill.

Figure 3: Launch file for Detect Features skill

Summarizing, the process flow is as follows: the operator
configures the skill via an intuitive GUI; then, taking the
parameters of the skill, a roslaunch file is generated, and
finally, the node is executed with the provided configuration.
Figure 4 shows the process clearly.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the increased flexibility of the
proposed approach, different real scenarios have been tested. A
pilot station is under deployment at Airbus Operations (Puerto
Real plant in Spain) using a Kawada Nextage Open dual-arm
robot (see Figure 5). In this pilot station another phases of
this research have been validated, e.g. a State Machine Based
Architecture [4] and the use of Skill Based Programming
in the proposed architecture [27]. For the computer vision
skills studied in this research, Feature Detection and 3D CAD
Matching have been selected. These technologies are being
tested in real processes.

Figure 4: Process flow for Feature Detection Skills

Figure 5: Pilot station at Airbus facilities

A. Feature Detection

Feature Detection is used for detecting drillings in different
production parts. At first, we started detecting drillings in a
black composite spar (long parts that structure the wings and
horizontal stabilizers). These drillings have to be deburred in
order to introduce rivets. Another parts that are in automation
process are leading edge ribs, white composite parts. In this
case, also, drillings have to be detected in order to debur them
with a robot.

This skill, as presented above in Section III, can be
configured for different scenarios. In the black composite part
the skill can be configured as follows:

With this configuration, the ROS node is configured calling
the generated roslaunch file. Feature Detection algorithm re-
ceives this configuration as parameters, and after execution the
result can be seen in Figure 6. In the case of white composite
part the necessary configuration is as follows:

As can be seen, the configuration changes a little, but these
small changes have many effects in image processing, specially
changes in the color of the part. As before, necessary roslaunch
file is invoked with these properties and the result of the
execution can be seen at Figure 7. Both images are processed
using the same algorithm, only changes in parametrization
have been made.

Figure 6: Feature Detection skill execution result in a black
material element

Figure 7: Feature Detection skill execution result in a white
material element

Figure 8: 3D CAD Matching skill execution result on small
part

B. 3D CAD Matching

3D CAD Matching is used to localize parts in the
workspace. The idea is to localize different models of leading
edge ribs (white composite parts mentioned above) providing
their 3D CAD model. There are up to 44 references of this
part: 22 for each wing with different sizes. So having a system
that is flexible enough for detecting all of them is required.
Following the same methodology, 3D CAD Matching skill can
be configured providing few intuitive parameters as follows:

This configuration corresponds to one of the smallest part,
and the result of the execution of generated roslaunch file is
illustrated in Figure 8. Applying the same paradigm for another
part reference we have this skill configuration:

In this case, apart from CAD model, approximate distance
and precision have changed. Because it is a larger part, the
3D vision sensor must be further than with the other element.
Regarding precision, it has been reduced because the bigger
a part, the higher number of points to be processed. Thus,
in order to maintain timing performance the precision must
be reduced. Figure 9 shows the result of this configuration.

Figure 9: 3D CAD Matching skill execution result on a big
part

In both cases the executed algorithm is the same, and like in
the Feature Detection skill, a simple configuration that can be
performed by the operator, results in a considerably increase
of the flexibility.

V. CONCLUSION AND FUTURE WORK

In this paper, the current limitations of computer vision
solutions have been mentioned. Taking into account the
trends of the manufacturing industry, the need of increasing
flexibility and reusability has been highlighted.

In order to alleviate exposed limitations, an approach to
increase flexibility and reusability of computer vision applied
in robotics have been presented. Using easy-to-configure
vision skills, not trained operators may be able to configure
or adapt many vision applications.

In the future work, presented vision applications will be
analysed deeply in order to extract more configurable proper-
ties. Other vision skills will be implemented, such as, marker
based tracking or workspace monitoring for collaborative
robotics. An exhaustive analysis of these vision applications is
necessary in order to extract candidate parameters of the skill;
e.g., for marker based tracking skill marker-type or search
space could be key properties. The intention is to develop a
skill library composed by different vision functionalities which
can be used with as simple as possible configuration.

ACKNOWLEDGMENT

The research has been funded in part from the Euro-
pean FP7 program (FP7/2007- 2013) under grant agreements
#608604 (LIAA: Lean Intelligent Assembly Automation). The
authors also would like to thank Juan Francisco Garcı́a Amado
for managing the pilot cell at the Airbus facilities.

REFERENCES

[1] E. N. Malamas, E. G. Petrakis, M. Zervakis, L. Petit, and J.-D. Legat,
“A survey on industrial vision systems, applications and tools,” Image
and vision computing, vol. 21, no. 2, pp. 171–188, 2003.

[2] R. Szeliski, Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[3] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, “Review of stereo
vision algorithms: from software to hardware,” International Journal of
Optomechatronics, vol. 2, no. 4, pp. 435–462, 2008.

[4] H. Herrero, J. Outón, U. Esnaola, D. Sallé, and K. L. de Ipiña, “State
machine based architecture to increase flexibility of dual-arm robot
programming,” in IWINAC 2015, Part II, LNCS 9108,, pp. 98–106,
2015.

[5] http://www.ros.org/, ROS, Robot Operating System, 2015.
[6] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,

A. Ude, T. Asfour, D. Kraft, D. Omrčen, et al., “Object–action com-
plexes: Grounded abstractions of sensory–motor processes,” Robotics
and Autonomous Systems, vol. 59, no. 10, pp. 740–757, 2011.

[7] T. Abbas and B. A. MacDonald, “Generalizing topological task graphs
from multiple symbolic demonstrations in programming by demonstra-
tion (pbd) processes,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pp. 3816–3821, IEEE, 2011.

[8] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann, “A
new skill based robot programming language using uml/p statecharts,”
in Robotics and Automation (ICRA), 2013 IEEE International Confer-
ence on, pp. 461–466, IEEE, 2013.

[9] S. Sen, G. Sherrick, D. Ruiken, and R. A. Grupen, “Hierarchical skills
and skill-based representation.,” in Lifelong learning, 2011.

[10] J. Zhou, X. Ding, and Y. Y. Qing, “Automatic planning and coordinated
control for redundant dual-arm space robot system,” Industrial Robot:
An International Journal, vol. 38, no. 1, pp. 27–37, 2011.

[11] S. Malassiotis and M. G. Strintzis, “Stereo vision system for precision
dimensional inspection of 3d holes,” Machine Vision and Applications,
vol. 15, no. 2, pp. 101–113, 2003.

[12] J. Canny, “A computational approach to edge detection,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, no. 6, pp. 679–698,
1986.

[13] H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study
of hough transform methods for circle finding,” Image and vision
computing, vol. 8, no. 1, pp. 71–77, 1990.

[14] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

[15] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International journal of
computer vision, vol. 47, no. 1-3, pp. 7–42, 2002.

[16] J. Salvi, C. Matabosch, D. Fofi, and J. Forest, “A review of recent range
image registration methods with accuracy evaluation,” Image and Vision
Computing, vol. 25, no. 5, pp. 578–596, 2007.

[17] C.-S. Chen, Y.-P. Hung, and J.-B. Cheng, “Ransac-based darces: A new
approach to fast automatic registration of partially overlapping range
images,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 21, no. 11, pp. 1229–1234, 1999.

[18] C. S. Chua and R. Jarvis, “Point signatures: A new representation for 3d
object recognition,” International Journal of Computer Vision, vol. 25,
no. 1, pp. 63–85, 1997.

[19] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Robotics-DL tentative, pp. 586–606, International Society for Optics
and Photonics, 1992.

[20] T. Masuda, “Generation of geometric model by registration and integra-
tion of multiple range images,” in 3-D Digital Imaging and Modeling,
2001. Proceedings. Third International Conference on, pp. 254–261,
IEEE, 2001.

[21] T. Masuda, “Object shape modelling from multiple range images by
matching signed distance fields,” in 3D Data Processing Visualization
and Transmission, 2002. Proceedings. First International Symposium
on, pp. 439–448, IEEE, 2002.

[22] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[23] European Project, http://www.skillpro-project.eu/, 2012.
[24] http://www.project-leanautomation.eu/, LIAA aims at the development

of low-cost, low-complexity robot systems, 2013.
[25] http://www.picknpack.eu/, Flexible robotic systems for automated adap-

tive packaging of fresh and processed food products.
[26] http://pointclouds.org/, Point Cloud Library, 2015.
[27] H. Herrero, J. Outón, U. Esnaola, D. Sallé, and K. L. de Ipiña,

“Development and evaluation of a skill based architecture for applied
industrial robotics,” 2015.

188 Appendix II. Publications

II.b.4 Conference paper 4

978-1-4799-8569-2/15/$31.00 ©2015 IEEE

 Towards a Flexible Production System
Environment Server implementation

Mildred J. Puerto, Damien Sallé, José Luis Outón, Héctor Herrero and Zigor Lizuain.
TECNALIA. Industry and Transport Division

Paseo Mikeletegi 7 - Parque Tecnológico Donostia - San Sebastián, Spain
{mildred.puerto, damien.salle, hector.herrero, joseluis.outon, zigor.lizuain}@tecnalia.com

Abstract— Flexible production systems represents the future
of manufacturing processes in Europe. Small batches of products
and adaptation of the line to variants or new products is in the
European view of the 2020 manufacturing. This new paradigm
requires a novel approach where many advances in the theory
have been made and laboratory prototype implementations have
shown the potential of this approach. However, industrial
implementations have not been yet achieved. More pragmatic
approaches suitable for system integrators are still needed. This
paper introduces a proposal of such as approach with a mobile
robot using the information contained in an Environment
Server.)

Keywords— Skills, flexible production systems, AutomationML,
mobile robots, environment server, OPC-UA, ROS,Gazebo.

I. INTRODUCTION
Product customization and production in small batches are
nowadays requirements of European manufacturing industry.
High quality, complex and safe products must be
manufactured in human friendly lines, being at the same time
flexible and reusable, maintaining cost-effective processing
which delivers quality in the shortest time. To achieve these
requirements, new technologies must be implemented.
Semantics and how this paradigm can be used in
manufacturing processes seem to be the most promising
solution. It is part of how engineers and computer science
experts are looking and solving these current industry
requirements.
The implementation of skills on robots by means of semantics
had led researchers to develop other ways of programming
allowing easy, simple and intuitive robot programming. Skill
based programming is one approach to alleviate the
complexity of those requirements.
The idea is to model system capabilities by simple and
intuitive symbolic units [20 and 13]. The precursor of a new
paradigm on skills implementation implicit in a theory about
best practices on robotics is Brics project [3 and 17].
The terminology of task and skill is introduced and designed
to separate responsibilities of robot system developers, robot
system integrators and shop floor users concerning
programming of the robot system. Focused on the skill
implementation approach, several alternatives of skill engines
have been developed in different EU projects, instead of

summing up efforts to get one more mature and more
applicable to industrial use. Because of this, the state of the art
presented in Section 2 is larger than usual. It is the intention of
this paper to highlight the large effort invested in this theory
and the necessity to start thinking in industry implementations.
This paper presents a state of the art in Section 2.
Section 3 presents the practical approach followed in Skillpro
project [8], it contains the mobile robot and environment
server description. Environment Server (ES) testing is
described in Section 4, leaving the conclusions and discussion
for section 5.

II. SOA ON SKILLS IMPLEMENTATION FRAMEWORKS

Research on flexible production lines using skills
implementation is centralised in universities and research
institutes with a large capacity to research in basic sciences. It
is an indication of the low level of current developments. The
next institutions (TABLE 1) lead a manner to implement
flexible systems using semantics and skills.

Skillpro concept is introduced in the following sections, it has
been selected because of its pragmatic approach oriented to
use existing standards. It is a good candidate for industry
implementations.

III. SKILLPRO BASES

The implementation and use of standards will improve
and spread the use of flexible systems. The practical
implementation proposed in Skillpro standardizes the use of
the different resources in the production line.
Basic concepts defined in Skillpro that will be used for the
execution of a task are introduced below:

• AMS (Asset Management System) is responsible for
integrating AML (AutomationML) description of a
new device into the overall model of the production
system, as well as administrating the different
configurations of the production system. It also
publishes the Skills of a newly registered production
resource.

• MES (Manufacturing Execution System) cares about
setting up and scheduling autonomously a Skillbased
action plan for a given production operation.

TABLE I. SKILLS IMPLEMENTATION FRAMEWORKS

University or
Research Center EU projects and main publications Additional information

Fraunhofer (IPA)

Fraunhofer approach was made public
and implemented partially in VFF
[2], followed its development in
SMErobotics [12] and LIAA [10].

Main innovations are: High-level programming by non-robot experts (programming by
demonstration), Model based approach supports integration of different components
(robots, gripper, sensors), supports reuse of available skills/function blocks, automatic
generation of executable robot program using model-based approach by merging
component descriptions, skill descriptions and high-level user input and the use of
ROS [1] and ROS Industrial [7].

Tampere
University of
Technology

(TUT)

Additional information about this
proposal is available in a wiki page
[9] and papers by Lanz [21].

Dynamic Operation Environment (DOE) developed at Tampere University of
Technology at Department of Production Engineering is a complex implementation of
a several modular services (including simulation, control, editor and client
implementation, i.e.) through a common information exchange layer implemented with
an ontology.

Aalborg
University

Aalborg approach follows the symbolic
representation of tasks (goals) proposed
on [23 and 24].

In KIF an abstract representation is stored, such that it can be used on robots of
different kind if the same basic capabilities are available. Disadvantages of this
approach are the lack of a formal description of which conditions the program will
work under, the preconditions, and a description of the effects of executing the
program, the post-conditions.

Danish
Technological
Institute (DTI)

A hierarchical action framework in [14],
facilitates easy and intuitive robot
instruction.

The proposed hierarchy is composed by Primitives, Skills and Tasks. Creating new
Skills is done by connecting existing actions in the desired structure and specifying
which parameters are required as input and which are produced as output. It is
hardware independent. They also emphasize in the simplicity of creating new skills
and tasks, not requiring robot experts.

Technical
University

Munich (TUM)
and

University of
Bremen

RoboEarth project [5] and KnowRob
project [6].

The architecture and implementation of RoboEarth is guided by the idea of allowing
robots to reuse and expand each other’s knowledge. The database is made available via
standard Internet protocols. The core of this architecture is a server layer that holds a
database, including reusable information on objects, environments maps and actions.

German
Aerospace

Center (DLR)

Its programming language for skills in
robots is proposed in [25].

LightRocks DLR(Light Weight Robot Coding for Skills) is a DSL (Domain specific
language) for robot programming. The languages offers three different levels of
abstraction: 1- level (coded by domain experts), 2- abstract level (these skills are
combined by shop floor workers or technicians to define tasks) and 3-level with nets of
skills and nets of tasks.

Catholic
University

of Leuven (KUL)

PickNPack [4] and Sherpa [11], with
PhD courses are looking to advance in
this definition, however it is still under
development.

KUL is making a large effort for specify a common framework for the best practises in
robotics. The instantaneous task specification and control - generalisation proposed is a
systematic constraint-based approach to specify complex tasks of general sensor-based
robot systems [18]. Automatic derivation of controller and estimator equations follows
from a geometric task model that is obtained using a systematic task modelling
procedure. The approach applies to a large variety of robot systems (mobile robots,
multiple robot systems, dynamic human-robot interaction, etc.).

Constraint-based programming tasks (impose constraints on the modelled relative
motions between robots and objects) using Domain Specific Language (DSL). KUL
follows the Meta Model approach of Model Driven Engineering MDE.

Fraunhofer IOSB,
Karlsruhe Institute

of Technology
(KIT) and

the Research
Center for

Information
Technology (FZI)

European project Skillpro [8] using the
standardized OPC-UA (IEC 62541) with
AutomationML (IEC62714).

An implementable approach for flexible systems in real productivity lines is followed
by Fraunhofer (IOSB), FZI and KIT. In [19] is presented the creation of OPC UA
models based on existing AutomationML. Overall concept of Skillpro is explained in
[22], where the core of the concept is the abstraction for manufacturing tasks, taking
from the skills-based model the generic high-level descriptions to low level formats
that can be directly executed. Sensorized workspace and information about the
environment and activities in the line are implemented.

• SEE (Skill execution engine and Skill execution
assets) carries out the Skill-based action plan created
by theMES and the eventually necessary parallel
processing of different Skills.

• ES (Environment Server) keeps a representation of
the current status of the resources and their
knowledge about the environment. The Environment
Model can be updated by the resources states on the
workspace.

Fig. 1. Environment server operation in SKILLPRO architecture

Every SEE must firstly introduce itself to the SkillPro system,
in order to get an unique ID by which it can be addressed
while it is connected to the system. First the SEE connects to
the AMS via a web service to publish its AML description.
Next the AMS creates a node for this specific SEE on the
OPC-UA server and the SEE gets a unique ID by which it can
be addressed.
Besides the ID, the SEE gets the required configuration
information to be able to connect to the dedicated OPC-UA
server. Once the SEE is recognized by the Skillpro system,
then, the line is configured and production can start.
Figure 1 shows the architecture implemented to use the
Environment Server (ES). The ES is communicated with the
AMS and the assets in the production line that provide and/or
need information for the workspace. The ES is ROS based.
Additionally (and taking advantage of Skillpro paradigm),
OPCUA connection is provided to the assets that request it.
The proposed structure has been implemented (see Fig. 1). In
order to test its functionality an operation that shows easily the
flexibility in manufacturing lines was selected: the
autonomous navigation of a mobile platform.

A. Navigating a robot autonomously

Localization is what separates Industrial Platforms (IP) from
mobile robots (MR). An IP is in general installed in one

position and all predefined tasks are related to this installation
position. This result in a global operating positioning error
directly related to the precision of installation and calibration.
The precision performance for these repeated operations is
very good. Current industry transportation systems are bound
to predefined paths chosen by a central coordination system. If
an obstacle appears, the transport system should stop. Due to
this rigid concept, flexibility cannot be implemented using
predefined paths [15].
For autonomous mobile robots, interaction with the
environment and adaptability to changing requests are
necessary [16].
For flexible navigation, localization is performed using
landmarks in the surrounding environment and simultaneously
building a map of these landmarks, it is implemented by
means of Simultaneous Localization and Mapping (SLAM).
Localization is where a robot is positioned relative to a
common reference frame, later referred to as pose. Mapping is
how the surroundings are spatially related to the robot.
Implementing executable skills, a continuously updated
environment model based on the data collection of the mobile
robots using SLAM and other sensors located in the
workspace is available. It gives redundancy, increases
robustness, provides scalability, and increases efficiency to the
system.
In autonomous navigation systems perception is vital for the
proper functioning of the system. Poor odometry measurement
or an incorrect understanding of the lasers could produce
unexpected results in the behaviour of the robot. That is why,
in the case of odometry three different sources have been
implemented, one obtained by the odometry wheel encoders,
other by the cameras on the robot and the last obtained by the
IMU (Inertial Measurement Unit).
These three sources are fused by an extended Kalman filter
taking into account their covariance matrix. The result is a
more accurate odometry, which gives us a correct position of
the robot in the world. Intelligent obstacle avoidance is also
necessary in mobile robots in order to ensure safety and
reliably manoeuvre to the goal position. In this system, the
robot must cope with all the uncertainties and provide the
flexibility to the manufacturing process. Changes in the work
floor will be communicated in real time to the ES, providing
real time feedback to the system.

• Input data required by the MR
− ExecutableSkill called by ID (containing

references to executable code, constraints
and conditions as well as product
description)

− Task trigger by MES
− Sensor data
− Environmental data provided by

Environment Server

• Output Data provided by the MR
– Notifications, exceptions to MES.
– Logged process data for KPI evaluation and

process/error analysis (see Logging
Module).

– Notification to MES/AMS about execution
result of ExecutableSkill (ID) on resource
(ID) in configuration (ID).

– Sensor data to Environment Server to update
common environment model.

Fig. 2. Autonomous navigation supported by the Environment Server.

B. SEE: Task description of the mobile platform

The objective of navigate a robot autonomously is to
demonstrate the possibilities of an intelligent logistics
component (MR) in a production site using the SkillPro
concept (Fig.2). A mobile robot moves from a given start
position to a given target position on the shop-floor avoiding
static and dynamic obstacles.
This involves the following steps:

• Inform the mobile robot about the start position (this
can be its current position or any known position on
the shop-floor).

• Inform the mobile robot about the target position.
• Robot navigates autonomously on the shop floor

thereby avoiding static and dynamic obstacles and
collecting information about the current situation at
the shop-floor.

• The ES merges the information from different mobile
robots to create a consistent and continuously
updated environment model.

• MES uses the ES to interact with the mobile platform
e.g. Change dynamically the target position.

• Robot arrives at the last communicated target
position.

The mobile robot localization and navigation has been
programmed on ROS. Testing and simulation used GAZEBO

to provide virtual environment interaction and detailed
3Dmodel visualization of the robots (including all the sensors
on board). Real time visualization used RVIZ.

C. Environment Server

The Environment Server (ES) is a source of information for
mobile robots about the working space.
Information sharing requires modularity and general models,
which consume computational resources of the assets.
Centralizing this information improves the MR SEE
efficiency. The ES will contain the map of the workfloor and
all the resources placed in it. The main users of the
information and services contained in the ES are mobile
robots.

The requirements that the ES must satisfy are:

• To allow a collaborative development by various
partners on various locations.

• To be open source.
• Suitable for a transfer on industrial robots and

industrial-grade applications.
• Real-time execution.

Capabilities of the ES have been implemented using the
information required for the mobile manipulator to act on the
workspace. Mobile robots must be recognised by the system,
after that, it is transparent for the integrator how the skill is
recognised and organised.
All the tasks allowed by the mobile robot were previously
defined by the robot configuration in the AML description.
The map contained in the ES is defined by an occupancy grid
in which the topological information is expressed by grey
scale [0-100]. Each cell represents the probability of
occupancy: being black, inaccessible places by the robot
(walls, columns, machines, other robots, ...), grey are
unexplored areas and white are unobstructed and accessible
zones for the robot.
The map information, object location and mobile platform
real-time position are sent to ES for further management and
sharing with other mobile platforms and/or other SEEs.

IV. ENVIRONMENT SERVER TESTING

Testing has been performed in simulation and using Tecnalia
MUGIRO omnidirectional robot (Fig.3).
Implementation of skills on mobile robots using the proposed
Skillpro approach makes transparent the ontology to the robot
integrators. The only step necessary is the definition of an
AutomationML file with the mobile robot description; it will
be used only in the connection of the asset to the line (getting
an unique ID). After this step, the communications between
SEE, MES, AMS and ES will use OPC-UA or ROS protocols.
The mobile robot receives information to execute a task. The
manner how the resource is managed by higher layers of the
Skillpro system is transparent to the robot and to the ES.

Fig. 3. MUGIRO MR SEE (laboratory prototype) developed by Tecnalia.

Figure 3 shows the mobile robot used to test the ES services.
The ES contains the 3D model of the robot and the 3Dmodel
of the working space. Communications has been implemented
on ROS. Data fusion is made in the ES. The map contained
there has all the information provided by the assets. In Fig.4
two mobile robots are sending information about its own
location in real time. If two different robots generate a map on
different locations of the workspace, the ES is able to fusion
both maps, generating a new one, common for both robots.

Fig. 4. Mobile robots navigation fused in the ES. Once the map is fused, the
robots can explore other parts of the workspace having the same general
coordenates.

V. CONCLUSIONS

The purpose of this paper is to present the current approach in
skills for flexible manufacturing systems and provide a real
implementation on this theory. This paper wants to remark
that even if industrial implementation is distant in time,
current efforts are producing knowledge in the right direction,
increasing the feasibility level on the architecture that will
support skills implementation. Regarding the Environment
Server (ES) implementation and the shared information
between different assets in the workspace, it is an example of
how sharing information in real time improves flexibility and
reusability.
Additionally, the union of AutomationML and OPC-UA
standardises skills implementation and facilitates
communication between machinery and robots with higher
layers in the MES and company logistics. This structure will
make possible to mix robots with different characteristics
since with the sensor fusion provided by the ES and the
Skillpro structure, the robots would inherit each other’s
characteristics if sensors are used correctly. Uncertainty
propagation is the main problem of this kind of approach.
Future work should focus in analysing this problem.

ACKNOWLEDGMENT
This position paper was supported by SkillPro [8]. It is a
research project funded by the Framework Program 7 of the
European Commission. Project reference: 314247.

REFERENCES

[1] (2009). ROS: Robot Operating System. http://www.ros.org/.
[2] (2009). VFF: Holistic, extensible, scalable and standard virtual factory

framework. http://www.itia.cnr.it/sitiprogetti/vff/.
[3] (2010). Best practice in Robotics. http://www.best-ofrobotics.org/.
[4] (2012). PickNpack: Flexible robotic systems for automated adaptive

packaging of fresh and processed food products.
http://www.picknpack.eu/.

[5] (2012a). RoboEarth A World Wide Web for Robots and Rapyuta: The
RoboEarth Cloud Engine. http://roboearth.org/.

[6] (2012b). Robohow: Web-enabled and Experience-based Cognitive
Robots that Learn Complex Everyday Manipulation Tasks.
https://robohow.eu/.

[7] (2012). ROSIndustrial: Robot Operating System (ROS) software to new
industrial applications. http://rosindustrial.org/.

[8] (2012). Skillpro: Skill-based Propagation of ’Plug and Produce’ Devices
in Reconfigurable Production Systems by AML. http://www.skillpro-
project.eu/.

[9] (2012). Tampere University of Technology.
http://wiki.tut.fi/DOE/WebHome.

[10] (2013). LIAA aims at the development of low-cost, low-complexity
robot systems. http://www.projectleanautomation.eu/.

[11] (2013). Sherpa: Smart collaboration between Humans and ground-aErial
Robots for imProving rescuing activities in Alpine environments.
http://www.sherpaproject.eu/sherpa/.

[12] (2013). SMERobotics: The European Robotics Initiative for
Strengthening the Competitiveness of SMEs in Manufacturing by
integrating aspects of cognitive systems. http://www.smerobotics.org/.

[13] Abbas, T. andMacDonald, B. A. (2011). Generalizing topological task
graphs from multiple symbolic demonstrations in programming by
demonstration (pbd) processes. In Robotics and Automation (ICRA),
2011. IEEE International Conference on, pages 3816–3821.

[14] Andersen, R. H., Solund, T., and Hallam, J. (2014). Definition and initial
case-based evaluation of hardwareindependent robot skills for industrial
robotic coworkers. In ISR/Robotik 2014; 41st International Symposium
on Robotics; Proceedings of, pages 1–7.

[15] Andersson, L. A. A. (2008). Multi-robot Information Fusion.
Considering spatial uncertainty models. PhD thesis, Linkøping
University, Department of Management and Engineering.

[16] Banjanovic-Mehmedovic, L., Lukac, D., and Suljic, M. (2013).
Biologically based behavior as inspiration for mobile robots navigations.
In Proceedings of Eurocon 2013, International Conference on Computer
as a Tool, Zagreb, Croatia, July 1-4, 2013, pages 1980–1987.

[17] Bruyninckx, H. (2008). Robotics software: The future should be open
[position]. Robotics and Automation Magazine, IEEE, 15(1):9–11.

[18] Dominick Vanthienen, Markus Klotzbuecher, H. B. (2014). The 5c-
based architectural composition pattern: lessons learned from re-
developing the itasc framework for constraint-based robot programming.
JOSER: Journal of Software Engineering for Robotics, 5(1).

[19] Henßen, R. and Schleipen, M. (2014). Interoperability between OPC-UA
and AutomationML. In 8th International Conference on Digital
Enterprise Technology – DET 2014, pages 1–8.

[20] Krüger, N., Geib, C., Piater, J., Petrick, R., Steedman, M., Wörgötter, F.,
Ude, A., Asfour, T., Kraft, D., Omrˇcen, D., et al. (2011). Object–action
complexes: Grounded abstractions of sensory–motor processes. Robotics
and Autonomous Systems, 59(10):740–757.

[21] Minna Lanz, Eeva Jarvenpaa, F. G. P. L. and Tuokko, R. (2012).
Towards adaptive manufacturing systems- knowledge and knowledge
management systems. Manufacturing System, ISBN: 978-953-51-0530-
5, DOI: 10.5772/36015.

[22] Pfrommer J., Stogl D., A. K. S. V. and B., H. (2014). Modelling and
orchestration of service-based manufacturing systems via skills. In IEEE
19th Conference on Emerging Technologies and Factory Automation
(ETFA).

[23] Simon Bøgh, Mads Hvilshøj, M. K. and Madsen., O (2011).
Autonomous industrial mobile manipulation (aimm): From research to
industry. In Proceedings of the 42nd International Symposium on
Robotics.

[24] Simon Bøgh, Oluf Skov Nielsen, M. R. P. V. K. and Madsen., O. Does
your robot have skills? In The 43rd Intl Symp. on Robotics (ISR2012).

[25] Thomas, U., Hirzinger, G., Rumpe, B., Schulze, C., and Wortmann, A.
(2013). A new skill based robot programming language using uml/p
statecharts. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 461–466.

II.b. Conference publications 195

II.b.5 Conference paper 5

Reliable Workspace Monitoring in Safe
Human-Robot Environment

Amine Abou Moughlbay, Héctor Herrero(B), Raquel Pacheco,
Jose Luis Outón, and Damien Sallé

TECNALIA, Industry and Transport Division, Parque Cient́ıfico y
Tecnológico de Gipuzkoa, 20009 Donostia-san Sebastián, Spain

{amine.moughlbay,hector.herrero,raquel.pacheco,
joseluis.outon,damien.salle}@tecnalia.com

Abstract. The implementation of a reliable vision system for full per-
ception of the human-robot environment is a key issue for the flexible
collaborative production industries, especially for the frequently chang-
ing applications. The use of such system facilitates the perception and
recognition of the human activity, and consequently highly increases the
robustness and reactivity of safety strategies in collaborative tasks. This
paper presents an implementation of several techniques for workspace
monitoring in collaborative human-robot applications. A reliable per-
ception of the overall environment is performed to generate a consistent
point cloud which is used for human detection and tracking. Addition-
ally, safety strategies on the robotic system (reduced velocity, emergency
stop, ...) are activated when the human-robot distance approaches pre-
defined security thresholds.

Keywords: Workspace monitoring · Human-robot collaboration ·
Human detection · Point cloud fusion · Safety strategies

1 Introduction

The implementation of hybrid production systems, characterized by a close rela-
tionship among human operators and robots in cooperative tasks, is promoted in
several research projects and is supported by the new standards (ISO 10218) [1].
Furthermore, collaborative tasks between human operators and robotic manip-
ulators can improve the performance and flexibility of industrial environments
where, depending on the current work load, either a human is assembling small
lot sizes of a specific product at a work place or a robot is additionally put
into place to support the human. Therefore the use of such hybrid systems pro-
motes the low volume production and facilitates the setup of frequently changing
applications.

Nevertheless, this workspace sharing introduces mandatory and challeng-
ing safety aspects which involve two different application layers: the algorithms
enabling safe space sharing between humans and robots (as the modification of

c© Springer International Publishing AG 2017
M. Graña et al. (eds.), International Joint Conference SOCO’16-CISIS’16-ICEUTE’16,
Advances in Intelligent Systems and Computing 527, DOI 10.1007/978-3-319-47364-2 25

Reliable Workspace Monitoring in Safe Human-Robot Environment 257

robot’s behavior when a risk of collision may happen) and the enabling tech-
nologies allowing acquisition data from sensor fusion and environmental data
analyzing.

The second issue is addressed in this paper where we develop a monitoring
system which guarantees human safety by achieving a reliable perception of the
overall human-robot environment, precisely tracking the complete body of the
human and activating safety strategies when the distance between them is too
small. This paper presents the different techniques which have been implemented
and integrated together under the Robot Operating System ROS [2] and shows
its application in real human-robot collaborative tasks. In Sect. 2, the state of the
art on workspace perception and human recognition and tracking is discussed.
Later on, a reliable workspace perception is presented and implemented in Sect. 3
using point cloud fusion and filtering algorithms. A human detection and track-
ing is then performed in Sect. 4 and safety strategies are activated when the
human-robot distance approaches predefined security thresholds. Finally, con-
clusions and future work are presented in Sect. 5.

2 State of the Art

Researchers and application developers have long been interested in performing
automatic and semi-automatic recognition of human behavior from observations.
Successful perception of human behavior is critical in a number of compelling
applications, including automated visual surveillance and multimodal human–
robot interaction (HCI) user interfaces that consider multiple streams of infor-
mation about a user’s behavior and the over-all context of a situation.

2.1 Workspace Perception

Most of the work on leveraging perceptual information to recognize human activ-
ities has centered on the identification of a specific type of activity in a particular
scenario as the person’s availability in an office [3]. Most work has focused on
using 2D video [4,5] or RFID sensors placed on humans and objects [6]. The
use of RFID tags is generally too intrusive because it requires a placement of
RFID tags on the people. One common approach in activity recognition from a
2D video is to use space-time features to model points of interest in video [7,8].

Several authors have supplemented these techniques by adding more infor-
mation to these features [6,9,10]. Other, less common approaches for activity
recognition include filtering techniques [11], and sampling of video patches [12].
Also, GPS traces of a person were utilized through a model based on hierarchi-
cal conditional random fields (CRF) [13]. However, this model is only capable
of off-line classification using several tens of thousands of data points. Wearable
sensors are also used in [14] where authors combine the neural networks and the
hidden Markov models. Multiple RGB-D sensors are simultaneously used in our
case to ensure a 360◦ perception of the workplace and a reliable detection of
humans working around the robot.

258 A.A. Moughlbay et al.

2.2 Human Recognition and Tracking

Workspace monitoring requires a detection and tracking of the human body.
Therefore a human body model should be predefined to the system. This model
gives to the algorithm the opportunity of exploiting the a priori information
about the human body structure and, therefore, the search space related to
possible body part configurations can be reduced through the definition of a set
of constraints, such as human body proportions and limb.

Since the late 1970’s more than 50 different human models have been devel-
oped. Early human models used only hands or arms to check clearances for tool
manipulation. Today’s models create whole-body representations using a basic
“link” system resembling a human skeleton to enable posturing of the model
within the work environment.

Representations have used either simple shape primitives (cylinders, cones,
ellipsoids, and super-quadrics) or a surface (polygonal mesh, sub-division sur-
face) articulated using the kinematic skeleton. A number of approaches have
been proposed to refine the generic model shape to approximate a specific per-
son. One example is the skeleton model defined in [15] which is a simplified
representation of the human skeleton, named stick figure, where the joints are
modeled as spheres or ellipsoids and the bones as cylinders or cones. Another
approach is used in [3] to determine the parametric model of human from the
images sequence. Moving object is separated from background by using back-
ground subtraction technique which small noises are removed by morphological
opening and closing filters. The extracted foreground that supposed to be a
human is then segmented into three regions representing the three important
parts of human structure, for instance, head, body, and legs.

Furthermore, the OpenNI SDK module [16] provides, for the used RGBD
Kinect sensors, a high-level skeleton tracking module, which can be used for
detecting the captured human and tracking his body joints. More specifically,
the OpenNI tracking module produces the positions of 15 joints, along with
the corresponding tracking confidence. However, this module requires a-priori
user calibration in order to infer information about the user’s height and body
characteristics. More specifically, skeleton calibration requires the captured user
to stay still in a specific “calibration pose” for a few seconds to have accurate
results. To avoid human calibration in front of all sensors, each time he enters in
the specified workspace, which is not realistic for industrial collaborative appli-
cations, another technique is used in this paper. It consists on real time detection
of standing/walking people on a ground plane using PCL Library [17,18].

Additionally, regarding human activity recognition, many techniques are
targeted to recognize single, simple events as the person’s availability in the
workspace [3]. Others [19] used a simple human model and identified several
basic actions. These actions were classified into two types: static and dynamic
actions. The actions are considered static if only if there are at least one com-
ponent which the velocity is null. By definition, the static actions are comprised
of standing, bending and sitting. The actions are considered dynamic if only if
all components of human model move.

Reliable Workspace Monitoring in Safe Human-Robot Environment 259

3 Reliable Workspace Perception

To interpret a safe human-robot collaboration, a first activity is focused in
achieving a reliable environment perception. As a foundation a system formed
by several RGB-D cameras is used. They are installed in such positions to be
able to capture robot and human activities consistently. After the calibration of
the overall vision system, a consistent point cloud fusion algorithm is applied
to develop a robust system that provides a unique point cloud with full human-
robot environment perception avoiding occlusions.

3.1 Workspace Monitoring Setup

The setup is composed of multiple RGB-D sensors which are mounted in specific
position/orientation to have a consistent perception of the overall human–robot
environment (Fig. 1). Data redundancy caused by the simultaneous use of sev-
eral 3D sensors with overlapping field of views allows a complete perception of
the human activity, robot motions and environment’s objects. Furthermore, it
permits the avoidance of occlusions produced by the presence of the human’s
body near to the robot, and by the existence of industrial equipment or tools in
the workplace.

Fig. 1. Workspace monitoring setup with the calibration tag in simulation (left) and
in the real setup (right).

Nevertheless, the efficiency of this system for human activity perception may
highly increases if it was well adapted for the applied industrial tasks. The
placement of these sensors should takes into consideration the executed task,
the field of work of the human and its possible motions, in addition to the
workspace of the robotic platform.

The presented techniques were implemented in the scope of an European
project for Lean Intelligent Assembly Automation (LIAA) [20], the setup is
composed of 4 RGB-D Kinect sensors consistently positioned in the 4 corners
of a squared aluminum structure of dimension 4 m × 4 m with a height of 2.2 m
(Fig. 1). Note that the position and orientation of these Kinects could be easily
modified and adapted to the applied tasks and human-robot environment. In
fact, due to the automatic extrinsic calibration, presented in the next section,

260 A.A. Moughlbay et al.

sensors positioning can be freely and easily modified to be adapted for the applied
tasks. This flexibility promotes the use of the presented technique in the fre-
quently changing industrial applications.

3.2 Automatic System Calibration

In addition to the intrinsic calibration of the RGB-D sensors, an extrinsic cali-
bration is necessary to determine the relative pose between these sensors. The
results of these calibrations will be directly used to generate a complete point
cloud of the environment.

Fig. 2. A target marker is imaged allowing for the 4 corners of marker to be detected
in the image. If the true distance between the corners is known, then there can be only
one position along the back projected rays where marker of that size would produce
the image [21] (left) and calibration results for the 4 Kinects system (right).

Extrinsic calibration of the system uses the ALVAR tracking library [22]
which allow the detection and tracking of individual AR tags, and thus calculat-
ing the pose of these tags with respect to the different sensors using the formal-
ism initially presented in [21] (Fig. 2). Several modifications were implemented
to allow the online detection of the same tag by multiple sensors simultaneously;
in addition to the integration of RGB-D depth data to have a better tag pose
estimation.

Once the pose, of the used 587 mm squared tag, with respect to the different
sensors is found with sufficient precision, the calculation of the relative transfor-
mations (tf) between the different RGB-D sensors is performed and the extrinsic
calibration is done.

3.3 Point Cloud Fusion and Filtering

Later on, a point cloud fusion technique is needed to benefit from the presence
of the different sensors to provide a complete perception of the human-robot
environment. Therefore, an algorithm for merging the point cloud generated
from multiple RGB-D sensors is implemented. It uses the results of the extrin-
sic calibration to reposition all the point cloud in a fixed frame. However, the

Reliable Workspace Monitoring in Safe Human-Robot Environment 261

dimension of the generated point cloud is relatively huge due to the superposi-
tion of the different sensors data. Therefore, down sampling and filtering actions
are needed to optimize data dimension and then facilitate point cloud processing
while performing human body detection and tracking.

PCL (Point Cloud Library) ROS interface stack [23] is a bridge for 3D appli-
cations involving n-D Point Clouds and 3D geometry processing in ROS. It is
used to perform the filtering and optimization of the obtained point cloud. Down
sampling uses a 3D voxel grid (3D boxes in space) over the input point cloud
data. Then, in each voxel, all the points are approximated with their centroid.
This approach is a bit slower than approximating them with the center of the
voxel, but it represents the underlying surface more accurately.

Fig. 3. Resulting merged point cloud before (left) and after (right) filtering and down
sampling.

Specifications of the human working space and robot working area are used
to decrease the dimension of the data to be processed later during human’s
detection and tracking. Therefore knowing the applied collaborative tasks, a
predefinition of the human working area should be given to the system to limit
the generated point cloud and limit the search area in the 3D scene for the
worker.

As it could be seen in Fig. 3, the resulting point cloud from 4 Kinects is very
big and contains a lot of irrelevant points outside of the bounding structure.
The dimension of the resulted point cloud is very big and implies high time
consumption for the computation process and data analysis. It also deleteriously
affects the reactivity of the system to environment changes and human motions
detection for example. Therefore a filtering and down sampling processes are
implemented.

In our experiments, we consider that the human can move within all the
mounted structure. Therefore we consider only the points which are inside the
3D structure (4 m × 4 m × 2.2 m). Despite the decrease of the dimension of the
resulting point cloud, it contains of several superposed or very closed points.
Therefore a down sampling action is performed with a predefined size of a leaf
on X, Y and Z directions. A 10 mm voxel grid is used in our case. The resulting
point cloud after filtering and down sampling is presented in Fig. 3. Compared
to the original one, the final point cloud size was smaller by 90 %.

262 A.A. Moughlbay et al.

4 Safe Human Activity in the Workspace

4.1 Human Detection in System Workspace

Once the optimized point cloud is generated from the multi-Kinects system, a
PCL library technique is used for real time detection of standing/walking people
on a ground plane. This approach relies on selecting a set of clusters from the
point cloud as people candidates which are then processed by a HOG-based
people detector applied to the corresponding image patches (Fig. 4). The track
initialization procedure allows to minimize the number of false positives and the
online learning person classifier is used every time a person is lost, in order to
recover the correct person ID even after a full occlusion.

Fig. 4. Block diagram describing input/output data and the main operations per-
formed by the detection and tracking modules [18].

In this scope, human model uses a preloaded database containing information
about the geometry of the worker and specification about the workspace of
the human. Several parameters are considered and adapted to have an efficient
human detection as:

– Minimum and maximum human height: this information given by the
human model is very useful for the algorithm and allows a decrease in the
false positive detections.

– Minimum and maximum number of point in the human point cloud.
These values should be adapted with respect to the workspace dimension and
the applied tasks, because the number of points decreases proportionally to the
distance of the human to the sensors. Furthermore, this number also depends
on the dimension of the voxel grid used during the down sampling process.

Therefore these parameters should be carefully adapted and modified to have
a more robust tracking and consequently a higher accuracy of the worker’s

Reliable Workspace Monitoring in Safe Human-Robot Environment 263

position calculation, and finally improve the efficiency and reactivity of the
workspace monitoring system. In our implementation, the human height is con-
sidered between 1.5 m and 2.1 m, and the human point cloud has between 280
and 650 points.

As it could be seen in Fig. 5 the human is detected while moving around the
robot. It is identified by several Kinects simultaneously as shown in the images
at the corners, the green box represents the detected human. The red arrow in
the merged and filtered point could in the center of the figures, represents the
final human pose in the environment. Knowing this position and the robot’s
one (from the predefined activity model of robot calibration), the human-robot
distance is calculated and used in the safety strategies presented in the next
section.

Fig. 5. Simultaneous human detection by several Kinects and representation of the
human position in the final point cloud and within the defined safety zones.

Note that the detection of human from several sensors simultaneously,
increases the precision of its position and makes the workspace monitoring sys-
tem more reactive and robust to occlusions and sensor failures.

4.2 Implementation of Safety Strategies

Following the safety standards for collaborative robots about speed and separa-
tion monitoring (ISO 10218-1, 5.10.4, ISO/TS 15066) [1] which consist on reduc-
ing the risk by maintaining sufficient distance between the worker and robot in
collaborative workspace. This goal is achieved by distance and speed supervi-
sion, by having a protective stop if minimum separation distance or speed limit is
violated, and by taking account of the braking distance in minimum separation
distance.

The developed system uses simple techniques to get a first robust coarse
grain activity recognition. The first stage consists then to detect if the worker is
inside or outside the workspace. In this part, the human activity recognition is
simplified to recognize one single and simple event which the person’s availability
in the working place. In the second stage, the robot end-effector pose is used to
evaluate the separation distance (drobot/worker) between the detected worker and
the robot to define 3 static activities:

264 A.A. Moughlbay et al.

– Worker in safe zone: The worker is the working area but far from the robot,
no danger is present on the worker (drobot/worker > dwarning zone).

– Worker in red zone: The worker is very close to the robot, a collision or
interaction may be present between the robot and the worker (drobot/worker <
dred zone).

– Worker in warning zone: The worker is between the safe zone and the red
zone (dred zone < drobot/worker < dwarning zone).

At this stage, the activity model consists of two thresholds represented in
Fig. 6 by dred zone and dwarning zone that define the borders of these three lev-
els. Furthermore, the robot’s position in the environment is required to be able
to calculation worker-robot distance, thus this information should be also pre-
defined in the activity model or given online by other modules. The third stage
consists of tracking the motion of the human; therefore four dynamic actions are
defined: (1) Moving from safe zone to warning zone, (2) Moving from warning
zone to red zone, (3) Moving from red zone to warning zone, and (4) Moving
from warning zone to safe zone.

Fig. 6. Example of configuration file for safety zones (left) and representation of the
working area with the safe, warning and red zones (right).

This method for human detection and tracking was integrated with other exe-
cution modules on different robotic systems, to activate several safety strategies
when the human–robot distance approaches the predefined security thresholds
in the configuration file (Fig. 6). These strategies consist on switching the robot
motion mode between: normal speed when worker is in the safe zone, reduced
speed/force when the worker approaches warning zone and finally robot enters
in emergency stop when the worker arrives in the red zone1.

5 Conclusions and Future Works

In this paper, we presented an implementation of a reliable vision system for full
perception of the human-robot environment. A consistent and optimized point
cloud of the system is generated and used for human detection in the defined

1 An implementation of the presented techniques in the scope of LIAA project is
available on https://youtu.be/AtZGeX2t51k.

Reliable Workspace Monitoring in Safe Human-Robot Environment 265

safety zones. The presented work was implemented with several robotic systems
in different configurations.

In addition to the ease of configuration and calibration, system’s reactivity
and robustness for occlusion promotes its use in flexible collaborative production
industries with changing applications. This workspace monitoring system is an
important step towards the implementation of a generic system for human-robot
activity monitoring. It could be used to develop new methods for identifying sta-
tic and dynamic actions of the human in the workspace. Furthermore, generated
point cloud could be also used for dynamic collision anticipation and avoidance:
for safe human robot co-working, the collision threat could be thus anticipated
by either stopping the robot or generating of a new safe trajectory.

Acknowledgments. The research leading to these results has been funded in part
by the European Union’s seventh framework program (FP7/2007-2013) under grant
agreements #608604 (LIAA: Lean Intelligent Assembly Automation).

References

1. ISO: ISO 10218–1: Robots and robotic devices-safety requirements for industrial
robots-part 1: Robots. Geneva, Switzerland: International Organization for Stan-
dardization (2011)

2. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software, vol. 3, p. 5 (2009)

3. Johnson, B., Greenberg, S.: Judging people’s availability for interaction from video
snapshots. In: Proceedings of the 32nd Annual Hawaii International Conference on
Systems Sciences, HICSS-32, p. 9. IEEE (1999)

4. Ning, H., Han, T.X., Walther, D.B., Liu, M., Huang, T.S.: Hierarchical space-time
model enabling efficient search for human actions. IEEE Trans. Circ. Syst. Video
Technol. 19(6), 808–820 (2009)

5. Gupta, A., Srinivasan, P., Shi, J., Davis, L.S.: Understanding videos, constructing
plots learning a visually grounded storyline model from annotated videos. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2012–
2019. IEEE (2009)

6. Wu, J., Osuntogun, A., Choudhury, T., Philipose, M., Rehg, J.M.: A scalable
approach to activity recognition based on object use. In: IEEE 11th International
Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)

7. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123
(2005)

8. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse
spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual
Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72.
IEEE (2005)

9. Liu, J., Ali, S., Shah, M.: Recognizing human actions using multiple features. In:
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp.
1–8. IEEE (2008)

10. Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action
recognition. In: IEEE 11th International Conference on Computer Vision, ICCV
2007, pp. 1–8. IEEE (2007)

266 A.A. Moughlbay et al.

11. Rodriguez, M.D., Ahmed, J., Shah, M.: Action mach a spatio-temporal maximum
average correlation height filter for action recognition. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

12. Boiman, O., Irani, M.: Detecting irregularities in images and in video. Int. J.
Comput. Vis. 74(1), 17–31 (2007)

13. Liao, L., Fox, D., Kautz, H.: Extracting places and activities from GPS traces using
hierarchical conditional random fields. Int. J. Robot. Res. 26(1), 119–134 (2007)

14. Zhu, C., Sheng, W.: Human daily activity recognition in robot-assisted living using
multi-sensor fusion. In: IEEE International Conference on Robotics and Automa-
tion, ICRA 2009, pp. 2154–2159. IEEE (2009)

15. Marcon, M., Pierobon, M., Sarti, A., Tubaro, S.: 3d markerless human limb local-
ization through robust energy minimization. In: Workshop on Multi-camera and
Multi-modal Sensor Fusion Algorithms and Applications, M2SFA2 2008 (2008)

16. The OpenNI Organization: Introducing openni, open natural interaction library.
http://www.openni.org. Accessed: 30 Nov 2015

17. Munaro, M., Menegatti, E.: Fast RGB-D people tracking for service robots. Auton.
Robots 37(3), 227–242 (2014)

18. Munaro, M., Basso, F., Menegatti, E.: Tracking people within groups with RGB-
D data. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2101–2107. IEEE (2012)

19. Noorit, N., Suvonvorn, N., Karnchanadecha, M.: Model-based human action recog-
nition. In: Second International Conference on Digital Image Processing, p. 75460P.
International Society for Optics and Photonics (2010)

20. LIAA: Lean intelligent assembly automation. http://www.project-leanautomation.
eu. Accessed: 05 Jun 2016

21. Noonan, P.J., Anton-Rodriguez, J.M., Cootes, T.F., Hallett, W.A., Hinz, R.: Mul-
tiple target marker tracking for real-time, accurate, and robust rigid body motion
tracking of the head for brain pet. In: 2013 IEEE Nuclear Science Symposium and
Medical Imaging Conference (NSS/MIC), pp. 1–6. IEEE (2013)

22. Niekum, S.: ROS wrapper for alvar, an open source ar tag tracking library. http://
wiki.ros.org/ar track alvar. Accessed: 30 Nov 2015

23. Kammerl, J., Woodall, W.: PCL (point cloud library) ros interface stack. http://
wiki.ros.org/pcl ros. Accessed: 30 Nov 2015

II.b. Conference publications 207

	Introduction
	Introduction
	Motivation
	Objectives
	Structure

	State of the art
	Nomenclature
	Robot programming techniques
	Summary

	Towards an improved adaptability
	Introduction
	Robot system architectures
	What is missing in the existing frameworks?
	Proposed architecture
	Flexible application development
	Software structure of an application
	Execution engine
	Application to executable XML

	Summary

	Capability oriented state machine
	Introduction
	State machine for improved execution control, introspection and error handling
	Core of the framework
	State/Primitive equivalence
	Cartesian/Articular motion
	Record trajectory
	Trajectory execution
	End-effector operation
	Vision operation
	Full body coordinated motion
	Master/Slave mode

	Summary

	Skill based programming
	Human skills translated to a robot
	Involved universities and institutions
	Modelling an industrial process for skill based programming
	Scene information
	Object information
	End-effector information
	Process definition

	Skill definition
	Skill library
	Skill parametrization
	Skill interaction
	Summary

	Agent based supervision
	Agents in robotics
	Agent based supervision
	Emergency supervision agent
	Collision detection agent
	Joint temperature supervision agent
	Workspace supervision agent
	Summary

	Validation on industrial use-cases
	Introduction
	Tested robots
	Kawada Nextage/Hironx
	UR10
	Dual UR10 + torso + mobile platform
	Dual UR10 custom configuration
	Kuka IIWA

	Rivet installation into aeronautical composite parts
	Deburring the drills of the lead edge ribs of the HTP
	Telecommunications antenna assembling
	Aeronautical undercarriage assembling
	Summary

	Evaluation
	Introduction
	Architecture tradeoff analysis
	Required development time evaluation
	Discussion
	Summary

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Primitives and skills
	Primitives
	XML representation
	Python implementation

	Skills
	Assembly skill

	Publications
	Journal publications
	Journal article 1
	Journal article 2

	Conference publications
	Conference paper 1
	Conference paper 2
	Conference paper 3
	Conference paper 4
	Conference paper 5

