45 research outputs found

    Exploring variability in medical imaging

    Get PDF
    Although recent successes of deep learning and novel machine learning techniques improved the perfor- mance of classification and (anomaly) detection in computer vision problems, the application of these methods in medical imaging pipeline remains a very challenging task. One of the main reasons for this is the amount of variability that is encountered and encapsulated in human anatomy and subsequently reflected in medical images. This fundamental factor impacts most stages in modern medical imaging processing pipelines. Variability of human anatomy makes it virtually impossible to build large datasets for each disease with labels and annotation for fully supervised machine learning. An efficient way to cope with this is to try and learn only from normal samples. Such data is much easier to collect. A case study of such an automatic anomaly detection system based on normative learning is presented in this work. We present a framework for detecting fetal cardiac anomalies during ultrasound screening using generative models, which are trained only utilising normal/healthy subjects. However, despite the significant improvement in automatic abnormality detection systems, clinical routine continues to rely exclusively on the contribution of overburdened medical experts to diagnosis and localise abnormalities. Integrating human expert knowledge into the medical imaging processing pipeline entails uncertainty which is mainly correlated with inter-observer variability. From the per- spective of building an automated medical imaging system, it is still an open issue, to what extent this kind of variability and the resulting uncertainty are introduced during the training of a model and how it affects the final performance of the task. Consequently, it is very important to explore the effect of inter-observer variability both, on the reliable estimation of model’s uncertainty, as well as on the model’s performance in a specific machine learning task. A thorough investigation of this issue is presented in this work by leveraging automated estimates for machine learning model uncertainty, inter-observer variability and segmentation task performance in lung CT scan images. Finally, a presentation of an overview of the existing anomaly detection methods in medical imaging was attempted. This state-of-the-art survey includes both conventional pattern recognition methods and deep learning based methods. It is one of the first literature surveys attempted in the specific research area.Open Acces

    DYNAMIC MEASUREMENT OF THREE-DIMENSIONAL MOTION FROM SINGLE-PERSPECTIVE TWO-DIMENSIONAL RADIOGRAPHIC PROJECTIONS

    Get PDF
    The digital evolution of the x-ray imaging modality has spurred the development of numerous clinical and research tools. This work focuses on the design, development, and validation of dynamic radiographic imaging and registration techniques to address two distinct medical applications: tracking during image-guided interventions, and the measurement of musculoskeletal joint kinematics. Fluoroscopy is widely employed to provide intra-procedural image-guidance. However, its planar images provide limited information about the location of surgical tools and targets in three-dimensional space. To address this limitation, registration techniques, which extract three-dimensional tracking and image-guidance information from planar images, were developed and validated in vitro. The ability to accurately measure joint kinematics in vivo is an important tool in studying both normal joint function and pathologies associated with injury and disease, however it still remains a clinical challenge. A technique to measure joint kinematics from single-perspective x-ray projections was developed and validated in vitro, using clinically available radiography equipmen

    3D Textured Surface Reconstruction from Endoscopic Video

    Get PDF
    Endoscopy enables high-resolution visualization of tissue texture and is a critical step in many clinical workflows, including diagnosis of infections, tumors or diseases and treatment planning for cancers. This includes my target problems of radiation treatment planning in the nasopharynx and pre-cancerous polyps screening and treatment in colonoscopy. However, an endoscopic video does not provide its information in 3D space, making it difficult to use for tumor localization, and it is inefficient to review. In addition, when there are incomplete camera observations of the organ surface, full surface coverage cannot be guaranteed in an endoscopic procedure, and unsurveyed regions can hardly be noticed in a continuous first-person perspective. This dissertation introduces a new imaging approach that we call endoscopography: an endoscopic video is reconstructed into a full 3D textured surface, which we call an endoscopogram. In this dissertation, I present two endoscopography techniques. One method is a combination of a frame-by-frame algorithmic 3D reconstruction method and a groupwise deformable surface registration method. My contribution is the innovative combination of the two methods that improves the temporal consistency of the frame-by-frame 3D reconstruction algorithm and eliminates the manual intervention that was needed in the deformable surface registration method. The combined method reconstructs an endoscopogram in an offline manner, and the information contained in the tissue texture in the endoscopogram can be transferred to a 3D image such as CT through a surface-to-surface registration. Then, through an interactive tool, the physician can draw directly on the endoscopogram surface to specify a tumor, which then can be automatically transferred to CT slices to aid tumor localization. The second method is a novel deep-learning-driven dense SLAM (simultaneous localization and mapping) system, called RNN-SLAM, that in real time can produce an endoscopogram with display of the unsurveyed regions. In particular, my contribution is the deep learning system in the RNN-SLAM, called RNN-DP. RNN-DP is a novel multi-view dense depth map and odometry estimation method that uses Recurrent Neural Networks (RNN) and trains utilizing multi-view image reprojection and forward-backward flow-consistency losses.Doctor of Philosoph

    Topics on Cervical Cancer With an Advocacy for Prevention

    Get PDF
    Cervical Cancer is one of the leading cancers among women, especially in developing countries. Prevention and control are the most important public health strategies. Empowerment of women, education, "earlier" screening by affordable technologies like visual inspection, and treatment of precancers by cryotherapy/ LEEP are the most promising interventions to reduce the burden of cervical cancer.Dr Rajamanickam Rajkumar had the privilege of establishing a rural population based cancer registry in South India in 1996, as well as planning and implementing a large scale screening program for cervical cancer in 2000. The program was able to show a reduction in the incidence rate of cervical cancer by 25%, and reduction in mortality rate by 35%. This was the greatest inspiration for him to work on cerrvical cancer prevention, and he edited this book to inspire others to initiate such programs in developing countries. InTech - Open Access Publisher plays a major role in this crusade against cancer, and the authors have contributed to it very well

    Body sensor networks: smart monitoring solutions after reconstructive surgery

    Get PDF
    Advances in reconstructive surgery are providing treatment options in the face of major trauma and cancer. Body Sensor Networks (BSN) have the potential to offer smart solutions to a range of clinical challenges. The aim of this thesis was to review the current state of the art devices, then develop and apply bespoke technologies developed by the Hamlyn Centre BSN engineering team supported by the EPSRC ESPRIT programme to deliver post-operative monitoring options for patients undergoing reconstructive surgery. A wireless optical sensor was developed to provide a continuous monitoring solution for free tissue transplants (free flaps). By recording backscattered light from 2 different source wavelengths, we were able to estimate the oxygenation of the superficial microvasculature. In a custom-made upper limb pressure cuff model, forearm deoxygenation measured by our sensor and gold standard equipment showed strong correlations, with incremental reductions in response to increased cuff inflation durations. Such a device might allow early detection of flap failure, optimising the likelihood of flap salvage. An ear-worn activity recognition sensor was utilised to provide a platform capable of facilitating objective assessment of functional mobility. This work evolved from an initial feasibility study in a knee replacement cohort, to a larger clinical trial designed to establish a novel mobility score in patients recovering from open tibial fractures (OTF). The Hamlyn Mobility Score (HMS) assesses mobility over 3 activities of daily living: walking, stair climbing, and standing from a chair. Sensor-derived parameters including variation in both temporal and force aspects of gait were validated to measure differences in performance in line with fracture severity, which also matched questionnaire-based assessments. Monitoring the OTF cohort over 12 months with the HMS allowed functional recovery to be profiled in great detail. Further, a novel finding of continued improvements in walking quality after a plateau in walking quantity was demonstrated objectively. The methods described in this thesis provide an opportunity to revamp the recovery paradigm through continuous, objective patient monitoring along with self-directed, personalised rehabilitation strategies, which has the potential to improve both the quality and cost-effectiveness of reconstructive surgery services.Open Acces

    Unsupervised learning for anomaly detection in Australian medical payment data

    Full text link
    Fraudulent or wasteful medical insurance claims made by health care providers are costly for insurers. Typically, OECD healthcare organisations lose 3-8% of total expenditure due to fraud. As Australia’s universal public health insurer, Medicare Australia, spends approximately A34billionperannumontheMedicareBenefitsSchedule(MBS)andPharmaceuticalBenefitsScheme,wastedspendingofA 34 billion per annum on the Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme, wasted spending of A1–2.7 billion could be expected.However, fewer than 1% of claims to Medicare Australia are detected as fraudulent, below international benchmarks. Variation is common in medicine, and health conditions, along with their presentation and treatment, are heterogenous by nature. Increasing volumes of data and rapidly changing patterns bring challenges which require novel solutions. Machine learning and data mining are becoming commonplace in this field, but no gold standard is yet available. In this project, requirements are developed for real-world application to compliance analytics at the Australian Government Department of Health and Aged Care (DoH), covering: unsupervised learning; problem generalisation; human interpretability; context discovery; and cost prediction. Three novel methods are presented which rank providers by potentially recoverable costs. These methods used association analysis, topic modelling, and sequential pattern mining to provide interpretable, expert-editable models of typical provider claims. Anomalous providers are identified through comparison to the typical models, using metrics based on costs of excess or upgraded services. Domain knowledge is incorporated in a machine-friendly way in two of the methods through the use of the MBS as an ontology. Validation by subject-matter experts and comparison to existing techniques shows that the methods perform well. The methods are implemented in a software framework which enables rapid prototyping and quality assurance. The code is implemented at the DoH, and further applications as decision-support systems are in progress. The developed requirements will apply to future work in this fiel

    Preface

    Get PDF
    corecore