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Abstract

The digital evolution of the x-ray imaging modality has spurred the development 

of numerous clinical and research tools. This work focuses on the design, development, 

and validation of dynamic radiographic imaging and registration techniques to address 

two distinct medical applications: tracking during image-guided interventions, and the 

measurement of musculoskeletal joint kinematics.

Fluoroscopy is widely employed to provide intra-procedural image-guidance. 

However, its planar images provide limited information about the location of surgical 

tools and targets in three-dimensional space. To address this limitation, registration 

techniques, which extract three-dimensional tracking and image-guidance information 

from planar images, were developed and validated in vitro.

The ability to accurately measure joint kinematics in vivo is an important tool in 

studying both normal joint function and pathologies associated with injury and disease, 

however it still remains a clinical challenge. A technique to measure joint kinematics 

from single-perspective x-ray projections was developed and validated in vitro, using 

clinically available radiography equipment.

Keywords: x-ray imaging, registration, tracking, joint kinematics, dynamic measurement
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1

1 Introduction

Since its inception in 1895 by Wilhelm Roentgen x-ray imaging has, and 

continues to be a staple of medical imaging. Today, x-ray imaging modalities are 

employed for a wide range of medical purposes, including: diagnosis, treatment and 

intervention, and monitoring of disease progression. X-ray imaging has typically been 

the front-line medical imaging modality in the clinic for diagnosis, and monitoring of 

musculoskeletal disease and trauma, and is also widely used, in the form of fluoroscopy, 

to provide intra-procedural image-guidance during surgical interventions. Although these 

two applications are relatively far removed, they both rely on x-rays. The central theme 

of this thesis is the application of clinical x-ray imaging to image-guidance during 

interventional procedures, as well as the measurement of musculoskeletal joint 

kinematics. The following literature review is therefore divided into these two themes 

that are main focus of this thesis: tracking during image-guided interventions (section 

§1.1), and measurement of joint kinematics (section §1.2). Additionally, a review of 

current digital radiography detector technologies is provided, along with a description of 

the perspective geometry of the standard projection radiography system (section §1.3).



2

1.1 Tracking in Image-guided Interventions

Image-guidance is used during interventions in a manner similar to modem 

navigational techniques that are employed to guide a submarine through the depths of the 

ocean.1 In both cases a direct view of the surrounding environment is unavailable, and 

navigation (or guidance) must be supplemented through indirect means to arrive at the 

intended destination. During surgery it is often important to know precisely where an 

instrument is located with respect to the surgical target at all times during the procedure. 

Tracking systems fulfill this requirement, and are therefore an essential component of any 

intra-operative image-guidance system.1 The following sections review some of the 

current techniques used for tracking purposes during image-guided interventions. The 

principles behind optical and electromagnetic tracking systems are reviewed, and their 

strengths and limitations are listed. Additionally, several tracking techniques based 

directly upon intra-operative medical imaging modalities are reviewed.

1.1.1 Optical Tracking

Although there are numerous variants of optical tracking systems (OTS), the type
2most widely used in clinical applications is based on the capture of infrared (IR) light. 

IR-based OTS have been used in orthopaedic, neurological, craniofacial, otolaryngologic, 

and numerous other general surgical procedures.3 IR-based OTS use optical band-pass 

filters to eliminate all other forms of ambient light outside of the IR range, making the 

task of identifying optical markers, or fiducials, simple and reliable. There is a 

distinction between the types of fiducials utilized with OTS. For active optical tracking, 

the fiducials are infrared-emitting diodes (IREDs), while for passive optical tracking; they
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are retro-reflective spheres, reflecting IR light back towards the source. Both types of 

fiducials are rigidly attached to surgical instruments, intraoperative imaging equipment, 

and also to the patient, enabling the tracking of all components in a common coordinate 

system.

Active OTS consists of a position sensor that contains either two or three co- 

planar charged coupled device (CCD) camera units, a central control unit, and the active 

fiducials either attached directly to a surgical instrument, or to a rigid reference frame 

(Figure l-la,c). The IREDs are fired sequentially and detected by each CCD unit. The 

position and orientation of the fiducials is determined by triangulation, based upon the 

prior fiducial geometric configuration, the firing sequence of the IREDs, and the known 

distance between the CCD units.2 A minimum of three non-collinear fiducials are 

required to determine the six degrees-of-freedom (DOF) pose of the instrument or rigid 

frame. Active OTS are capable of tracking multiple rigid bodies simultaneously, as the 

central control unit controls their firing sequences. Since, the IREDs are powered, active 

OTS are typically wired systems.

Passive OTS consist of a position sensor capable of both emitting, and detecting 

IR light by means of illuminators (arrays of IREDs) and CCD units (Figure 1-lb), 

respectively. The position sensor emits IR light from its illuminators, similar to the flash 

of a conventional camera. The IR light floods the surrounding area, reflects off the retro- 

reflective spheres attached to surgical instruments to be tracked (Figure 1-ld), and is then 

detected by the CCD units. As with the active systems, the pose of the instrument or 

reference frame is identified by triangulation. However, since each instrument or 

reference frame is illuminated simultaneously, their geometric configuration must be
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unique to ensure unambiguous identification.2 Moreover, passive OTS do not require 

wires between the fiducials and the positioning sensor.

Figure 1-1: a) Active optical tracking system (OTS) consiting o f position sensor, central control unit, and 
active tool (Northern Digitial Polaris), b) Passive position sensor capable of both emitting and detecting 
infrared light (Northern Digital Viera), c) Active instruments and reference frames containing infrared light 
emitting diodes, d) Passive instruments and reference frames containing retro-reflective spheres.

Numerous studies have examined the accuracy of OTS.3'5 The accuracy of 

tracking an instrument or reference frame is dependent on a number of factors: the rigid 

body design, its characterization, the tracking algorithm (wired or wireless), dynamic 

motion, and the distance between instruments and reference frames.5 In general, the 

accuracy of measuring the pose of an instrument or reference frame is better than 1 mm 

and 0.5° when design and methodological considerations are carefully taken into 

account.4,5 This level of performance represents the main advantages of OTS, and has 

contributed to its success in the clinical environment. On the other hand, their main 

limitation is the requirement for uninterrupted line-of-sight between the optical fiducials
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and the position sensor, which is often difficult to maintain in a crowded operating 

theatre.

1.1.2 Electromagnetic Tracking

To overcome the line-of-sight limitation imposed by OTS, electromagnetic 

tracking systems (EMTS) were developed as an alternative tracking method. EMTS have 

been incorporated into numerous procedures including motion detection in radiation 

oncology, image-guided radiological interventions, endoscopic procedures, and 3D 

ultrasound imaging,2 to mention a few. An EMTS consist of a field generator, a central 

control unit, and field sensors (Figure l-2a). The field generator, powered by the central 

control unit, produces a controlled magnetic field generated by either alternating current 

(AC), or pulsed direct current (DC). The field sensors react to the magnetic field to 

produce a signal that is dependant upon their position and orientation within the field. 

This signal is transmitted back to the central control unit where it is processed to 

determine the pose of field sensor. Field sensors come in both five DOF and six DOF 

configurations (Figure l-2b).

The main distinction between AC-driven and DC-driven EMTS is their reactions 

to metallic objects that are in close proximity to either the field generator or field sensors. 

With AC-driven systems, eddy currents are induced within conductive materials, which in 

turn create an opposing magnetic field that interferes with the field created by the field 

generator.2 This secondary field distorts the signals produced by the field sensors and 

leads to errors in the pose determination. With DC-driven systems the magnetic field is
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pulsed on and off, allowing eddy currents to decay a sufficient amount to mitigate 

distortions caused by any opposing magnetic fields.

Another source of distortion that affects both AC and DC-driven systems is the 

presence of ferromagnetic materials. These materials become magnetic in the presence of 

an external magnetic field, and by a mechanism similar to that mentioned above, can 

distort the magnetic field created by the field generator, which negatively affects the 

measurement accuracy of EMTS. Additional sources of field distortions may include 

stray magnetic fields created by computer equipment and peripheral devices.2

Figure 1-2: a) Electromagnetic tracking system (EMTS) consisting of field generator, central control unit, 
and tracked probe containing field sensor (Northern Digital Aurora), b) Miniature field sensors in six 
degree-of-freedom (top) and five degree-of-freedom (bottom) configurations.

Several studies have examined the accuracy of EMTS in both an undisturbed 

environment6'8 (i.e. no sources of field distortions), as well as in the presence of surgical 

instruments and operating room equipment, as possible sources of field distortion.7'10 The 

accuracy of EMTS was found to be dependent on the position of the field sensor with 

respect to the field generator. In an undisturbed environment, the accuracy of tracking the 

field sensor was in the range of 1 to 3 mm, and 0.5 to l0.6 When sources of field distortion 

are introduced into the tracking environment, they have a significant effect on the
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accuracy of EMTS. Studies have reported tracking errors in the range of 1 to 20 mm, and 

1 to 4°.7"10 Although the accuracy of EMTS does not compete with OTS, it is relevant for 

numerous applications. The main advantage of EMTS is the lack of any line-of-sight 

limitations, and their ability to track flexible instruments such as catheters or endoscopes.

1.1.3 Tracking via Medical Imaging Modalities

Intra-procedural imaging via real-time medical imaging modalities is another 

technique that has been employed for tracking purposes. X-ray fluoroscopy has been 

long utilized as a means to guide instruments during percutaneous procedures, including 

endovascular catheter interventions and various orthopaedic interventions.1,11 The main 

limitation of using conventional fluoroscopy for tracking purposes is that images are only 

available in one plane at a time, and therefore information derived from these images is 

typically limited to 2D. To overcome this limitation, biplane radiography systems have 

been used to obtain sequences of stereo projections from which 3D tracking information 

is derived. This technique has been used to track guide wires during endovascular 

interventions,12,13 and also tumor motion during radiotherapy treatment of tumors.14

Ultrasound (US) has also been employed for many years as an interventional 

imaging modality.1 Procedures that utilize ultrasound for guidance include percutaneous 

biopsies15 and brachytherapy,16 and treatment of musculoskeletal pain.17 Since 

conventional US is constrained to a 2D fan beam, limited amounts of tracking 

information can be derived from its images. 3D US volumes are much better suited 

towards tracking and image-guidance applications. A 3D US volume can be 

reconstructed from a series of acquired 2D images,18 or acquired directly with the use 3D
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ultrasound transducers.19,20 Using optimized image-processing techniques it is possible to 

segment, localize, and track instruments directly from 3D US datasets in real-time.21'23 

These tracking techniques are applicable to numerous percutaneous procedures, and also 

minimally invasive cardiac interventions.

Despite the real-time capability of both fluoroscopy and US, their images are 

often difficult to interpret for guidance purposes. This has lead to the adaptation of 

computed tomography (CT) and magnetic resonance imaging (MRI), conventionally 

preoperative imaging modalities, to be incorporated into interventional suites. 

Interventional CT (iCT) is capable of CT fluoroscopy, which is the near real-time 

acquisition and display of 3D CT slices at rates of up to 8 frames-per-second (fps).24 CT 

fluoroscopy has been utilized for guidance during numerous interventional procedures 

including biopsies, drainage procedures, and intracranial procedures.24 In these 

procedures, the interventional instrument is generally a needle, which is visually tracked 

from updated display of CT images. The high level of radiation exposure to both the 

patient and interventionalist during CT fluoroscopy has limited its use to procedures short 

in duration (typically less than 3 min).

Several interventional MRI (iMRI) scanners have been developed for use in 

interventional suites, all of which increase the interventionalist’s physical access (i.e. 

horizontal or ‘double donut’ bore design) to the patient compared to conventional 

diagnostic MRI scanners.1 Advances in MRI hardware, and computing power have 

enabled the acquisitions of MRI slices in real-time. As a result, iMRI has been utilized 

for image-guidance during numerous interventions including biopsies, cryoablation, 

brachytherapy, neurosurgery, and numerous endovascular procedures.25'27 Often
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conventional surgical instruments cannot be used in an iMRI suite due to safety 

considerations or technical imaging issues. This has lead to the development of MR- 

compatible instruments that can be tracked or visualized within the acquired MR images. 

Two principal methods to tracking instruments directly from acquired MR images have 

been explored for use during interventional procedures: the use of passive or active 

markers.27,28 Passive markers incorporate contrast agents or materials that produce a 

signal enhancement, void, or distortion, thereby enabling their localization directly within 

the MR slices. Active markers contain miniature MR receiver coils or antenna that are 

connected to the MRI scanner hardware. These coils produce signals during excitation by 

the external gradient fields, enabling their 3D localization. The majority of clinical

• 90experience with humans has been restricted to the use of passively tracked devices. 

Although several actively tracked devices have been used successfully in animal studies, 

some safety concerns, mainly the generation of unwanted heat, have prevented their use

within the clinic.
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1.2 Techniques to Measure Joint Kinematics

Additional to its role in image-guided interventions, tracking technology has a 

significant impact in the measurement of joint kinematics. Measurement of joint 

kinematics plays an essential role in understanding normal joint function, as well as 

pathologies associated with musculoskeletal disorders and trauma. By gaining a deeper 

understanding of patient factors, the effectiveness of surgery and rehabilitation, and 

pathologies associated with musculoskeletal disorders it is possible to influence diagnoses 

and treatment, which can lead to improved patient outcome. The following section 

reviews several clinical techniques that can be used to measure and evaluate the skeletal 

kinematics of human subjects. The methodology of each technique is reviewed, and the 

strengths and limitations relating to its implementation are listed. Additionally, the 

measurement accuracy of each technique is reviewed for comparative purposes.

1.2.1 Gait Analysis

Gait analysis, or the study of locomotion, has numerous applications in medicine, 

competitive sports, and industiy. It has been used extensively in the field of medicine to 

distinguish between pathological and normal gait.30 This technique of motion capture has 

seen dramatic changes within the past decade mainly due to technological advances in 

computing power and data analysis techniques.31 The current state-of-the-art gait lab 

contains a 3D motion capture system, comprising of up to ten infrared sensitive cameras

30that track and record the motion of retro reflective skin markers attached to a subject. 

Current infrared cameras are capable of tracking the motion of these reflective markers at 

frequencies upwards to 250 Hz,31 making them ideal for capturing detailed motions of a
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subject during complex, dynamic activities. Ultimately, the motion and forces acting 

upon the skeleton can be inferred from the trajectories of the skin markers, and various 

pressure gauges attached to the subject using the inverse dynamics technique.32

One advantage of this technique is its ability to measure the motion of several 

joints simultaneously, which enables measurement of whole-body movements. The 

motion capture systems within a gait analysis lab have a very large operating volume, 

typically consisting of a 2 m wide by 10 m long walkway. This setup allows for motion 

measurements during a variety of both weight-bearing and non weight-bearing activities. 

Additionally, the technique is non-invasive and subjects are not exposed to any ionizing 

radiation.

On the other hand a major limitation of this technique is the estimation of skeletal 

kinematics from the trajectories of the skin markers. A potential for error arises due to 

the movement of skin and tissue relative to the underlying bone during physical 

activities.33 Differences between joint kinematics derived from skin markers and those 

derived from direct skeletal measurements have been reported in the range of 10 mm34 to 

30 mm35 for translations, and up to 15° for rotations.34 Although numerous strategies and 

models have been developed to account for skin motion artefacts, the objective of reliable 

estimation of skeletal kinematics using skin markers has not yet been achieved.

1.2.2 Intracortical Pin Fixation

Direct measurement of the underlying boney structures is preferred when accuracy 

is a necessity. One technique that directly measures skeletal motion involves the use of 

intracortical pins implanted directly into skeletal structures.37 Novel six DOF spatial
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localizer instruments,37 and retro-reflective markers imaged by infrared sensitive 

cameras,38 have been employed to measure motion. Since these instruments are rigidly 

attached to the skeletal structure via the intracortical pin, the skeletal kinematics derived 

from their measured motion provides an accurate representation of the actual bone 

kinematics. Ishii et al.37 reported the measurement accuracy of their 6DOF spatial 

localizer instrument to be within 0.5 mm for translations and 0.5° for rotations. Similar 

accuracies have been reported with the use of optical measurement equipment.39 This 

technique has been utilized in vivo to study both normal37 and pathological knee 

kinematics, the latter arising due to anterior cruciate ligament deficiency.

Advantages of this measurement technique include its ability to accurately 

measure skeletal kinematics. Despite the accuracy of the technique, the high degree of 

invasiveness associated with the procedure reduces its application in practice. For this 

procedure, subjects are required to undergo surgery to have the pins implanted into their 

bones. Additionally, significant pain was reportedly associated with the procedure, as the 

pins can unnaturally restrict the movement of soft tissue surrounding the insertion site.30 

This pain can be more pronounced during weight-bearing activities and as a result 

subjects may be limited to performing non weight-bearing activities.39 Other 

methodological concerns for the use of intracortical pins include reports of pin 

deformation39 and pin loosening40 during dynamic activities.

1.2.3 Magnetic Resonance Imaging

Magnetic resonance imaging has been widely used to noninvasively measure 3D 

joint kinematics. Several studies have employed MRI to examine joint kinematics during
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static weight-bearing, and non-weight-bearing activities. Sequential volumes of the joint 

are acquired in multiple static positions.41'43 The observed motion between different 

positions can be calculated by using one of two analysis techniques. The first method 

involves manual identification of anatomical landmarks within each volume,43 followed 

by point-based registration to calculate the rigid-body motion between the anatomical 

landmarks amongst sequential volumes, while the latter involves surface models 

segmented from the high-quality MRI volumes.41,44 These surface models can then be 

registered to bone contours, identified within sequentially acquired, lower-quality 

volumes, using surface registration techniques to calculate motion between different 

multiple joint positions. The measurement accuracy of estimating 3D joint kinematics 

using these techniques has been reported in the range of 0.88 mm to 1.8 mm for 

translations, and 1.75° to 3° for rotations.41,42

MRI has also been used extensively to examine 3D joint kinematics during 

dynamic activities. The acquisition techniques used have been described by various 

names including kinematic MRI,45,46 cine phase contrast MRI,47,48 fast phase contrast 

MRI,49 and motion-triggered cine MRI.50 These techniques involve acquisition of MR 

images as a subject performs a periodic motion activity. Each MR image is acquired at a 

unique phase of the motion cycle. Thus, a single motion cycle can be represented using 

MR images acquired during multiple repetitions of the motion. Validation studies have 

reported accuracy of motion measurements within the range of 1 to 3 mm.47,48

There are several advantages to utilizing MRI to measure 3D joint kinematics: it 

is noninvasive, does not expose subjects to ionizing radiation, and has the added bonus of 

providing information about the soft tissues surrounding the joint. However, one of the
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major limitations is the small operating volume, which is limited by the bore size of the 

MRI unit. As a result, activities performed inside the magnet are limited to a small range 

of motion, and only a single joint can be scanned at one time. Additionally, longer scan 

times, reported between 40 sec42 and 5 min,49 can make it challenging for subjects to 

perform weight-bearing activities, or repeatedly execute a cyclic movement.

1.2.4 Computed Tomography

Computed tomography is another medical imaging modality that has been used to 

noninvasively measure joint kinematics.51'53 Skeletal kinematics can be derived from 

volumetric CT images using rigid-registration techniques. Commonly, rigid registration 

is performed between like groups of anatomical landmarks, or surface contours identified 

in sequential volumes. Several studies have employed CT to examine the kinematics of 

the patellofemoral joint as a means to investigate causes of anterior knee pain,54'56 and 

validated the accuracy of measuring skeletal kinematics from CT volumes in the range of 

0.5 mm to 3 mm for translations, and 0.7° to 3° for rotations.57

The major limitation of using CT to measure joint kinematics is the exposure of 

the subject to relatively large amounts of ionizing radiation. Other limitations include the 

restrictive working volume of the CT bore that limits examination of a single joint at one 

time, and poor soft tissue contrast in CT images, which does not provide information 

about the soft tissues surrounding the joint. However, CT does provide excellent 

delineation of boney structures, making it ideal for extracting surface features and 

landmarks for registration and modeling purposes.
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1.2.5 Radiostereometric Analysis

Radiostereometric analysis (RSA) is a technique to obtain accurate 3D spatial 

measurements from radiographs.58 RSA was first introduced in 1974 by Goran Selvik as a 

means of studying the skeletal system in vivo.59 Since its inception, the technique has 

been refined through numerous scientific contributions,60'63 and seen significant advances 

due to the growth of digital technologies and computing power.64'66 RSA is an effective 

clinical tool that has been utilized for numerous clinical applications in orthopaedics,67'71 

pediatrics,72’73 odontology and plastic surgery,74 rheumatology,75,76 and neurology.77'79

80 84RSA has also been used extensively to study skeletal kinematics.

RSA requires the implantation of at least 3 non-colinear markers, introduced into 

the skeletal segment under clinical examination to enable its localization it in 3D space. 

Studies have suggested that 6 to 9 markers be utilized in vivo to ensure localization with a 

high accuracy.63 Spherical tantalum markers, 0.8 mm or 1.0 mm in diameter, are 

commonly used in clinical studies, since tantalum possesses a high biocompatibility, 

and is also fairly radio-opaque, resulting in high contrast within radiographs. The 

technique generates a 3D spatial model of the markers using stereographic x-ray sources 

that produce stereo projection images of the skeletal segment (implanted with markers) 

during a simultaneous radiographic exposure. A calibration cage is present during the 

image acquisition and allows the photogrammetric projective parameters of the x-ray 

systems to be determined (section §1.3.4). A 3D spatial model of the markers implanted 

into the skeletal segment can be calculated through the intersection of the rays cast 

between the image of each marker within the stereo projection images and their 

respective x-ray foci (Figure 1-3).
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Image plane 2 Image plane 1

Figure 1-3: Spatial reconstruction of 3D position of tantalum markers implanted into the skeleton using 
radiostereometric analysis (RSA). The 3D reconstructed position of each marker (m,) is determined by the 
intersection o f the rays cast between the projections of each marker in the pair of stereo images (Cj) and its 
respective x-ray focus.

To measure joint kinematics, successive RSA examinations of the joint under 

investigation must be performed. The observed motion between successive examinations 

can be quantified by performing a rigid point-based registration between the 3D spatial 

models of the markers derived from each RSA examination.86 In RSA motion is described 

in both absolute and relative terms. Absolute motion describes the movement of a single 

rigid-body segment during a finite time interval, while relative motion describes the 

movement between two rigid-body segments during a finite time interval (Figure 1-4). A 

detailed methodology of calculating absolute and relative motion using point-based 

registration has previously been described.86,87 Motion is commonly presented in terms of 

translations and Euler angular-rotations, using six DOF.63 The accuracy of localizing a
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rigid body in 3D space using RSA has been reported in the range of 0.01 to 0.25 mm and 

0.03 to 0.6°.58’88

Rigid Body 1

Time 1 Time 2
Absolute Motion

Figure 1-4: The computation of absolute motion and relative motion of rigid body 2 to rigid body 1. 
Absolute motion of rigid body 1 is calculated by finding the transformation S j x j  =  x, =  [ R J T x , + da , 
which describes the motion of rigid body 1 between times 1 and 2. The inverse of this movement is then 
used to transform the points in rigid body 2 at time 2 from the positions Vj to positions 
3 a~J(Vi) =  v, = [ R ] I  v, -  [ R ] J  da . Finally, the relative motion between the two rigid bodies can be 
computed such that % (u j  =  v, . Adapted from Soderkvist et al.86

RSA is accepted as the de-facto gold standard for obtaining accurate 3D 

measurement of the skeletal system. The high measurement accuracy is the main 

advantage of utilizing RSA to measure joint kinematics. Disadvantages of RSA include 

exposure to ionizing radiation, the requirement that markers be implanted in the skeleton, 

and the small operating volume, which is defined by the intersection of the two x-ray 

beams. Because RSA relies on markers implanted into the skeleton, it is typically limited 

to examining subjects who have undergone corrective surgery. Implantation of skeletal 

markers may easily be incorporated into a preexisting surgical plan by means of a simple 

bead insertion instrument.89 The small operation volume of RSA limits the type of 

activities that can be performed, and only allows for examination of a single joint at one
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time. Additionally, a conventional RSA setup employs film cassettes that must be 

manually interchanged between examinations, preventing dynamic studies from being 

performed using a conventional RSA system. Although several dynamic joint studies 

have been performed using a specialized film exchanger apparatus that enabled frame 

rates of up to 4 frames per second,82,83,90 this device is one-of-a-kind and therefore is not 

widely available.

1.2.6 Biplane Radiography

Because of the static nature of conventional, film-based RSA, the technique has 

been extended to digital radiography systems capable of real-time image acquisition. 

Several studies have utilized image intensifier-based, biplane radiography systems to 

measure joint kinematics during dynamic activities.91'94 Marker-based techniques for 

measuring joint kinematics with biplane radiography are based on the same principles as 

conventional RSA (section §1.2.5). The accuracy of measuring joint kinematics using 

marker-based techniques with an intensifier-based radiography system has been reported 

in the range of 0.08 mm to 0.2 mm for translations, and 0.3° to 1.6° for rotations.92

To overcome the requirement of implanting markers into the skeleton, several 

model-based techniques have been developed and implemented using biplane 

radiography systems.91,95,96 The main assumption of model-based techniques is that a 

properly orientated projection through a 3D volumetric model will produce an image 

similar to the obtained radiograph.91 Therefore, model-based techniques to measure joint 

kinematics rely on a subject specific model of the joint under examination. This model is 

typically obtained by acquiring a CT scan of the joint. By reconstructing the projective
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geometry of the biplane radiography system, digitally reconstructed radiographs (DRRs)

from a set of acquired stereo radiographs using an iterative search that modifies the pose 

of the subject specific model to optimize matching between the DRRs and the stereo 

radiographs. Motion is quantified by the change in the 3D pose of the model determined 

from subsequent pairs of stereo radiographs. Validation studies have reported the 

accuracy of this technique in the range of 0.4 mm to 0.8 mm for translations, and 0.8° to

Figure 1-5: Model-based measurement of kinematics using biplane radiography. Digitally reconstructed 
radiographs (DRRs) are rendered using ray-casting techniques. The intensity values of the pixels, 7; and I2 , 
are determined by summation of the attenuation coefficients of the voxels within model along the ray path 
bewteen pixels, 7/ and 12, and their corresponding x-ray focus.

can be rendered by ray-casting through the subject specific model (Figure 1-5),93,95 or 3D 

texture mapped volume rendering.91 In either case, the 3D pose of a joint is determined

2.5° for rotations.91,96

i
Digitally reconstructed 
radiograph (DRR) 2

Digitally reconstructed 
radiograph (DRR) 1
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An advantage of using biplane radiography to measure joint kinematics is the 

ability to acquire images in real-time, enabling dynamic analysis. In addition, both 

marker-based and model-based techniques can measure joint kinematics with a high 

degree of accuracy. Model-based techniques have the added advantage of not requiring 

markers implanted into the skeleton to measure its motion. Disadvantages of using 

biplane radiography include exposure to ionizing radiation, and its small operating 

volume (defined by the intersection of the x-ray beams), which limits the examination to 

a single joint at one time. Additionally, biplane radiography systems often have a 

restrictive setup, limiting the type of activities a subject can perform, and can making it 

technically challenging to ensure the joint under examination remains within the 

operating volume during a dynamic activity.94

1.2.7 Single-plane Radiography

Single-plane radiography is a long-standing medical imaging modality that is 

widely available, and employed for numerous diagnostic, therapeutic, and interventional 

purposes. Because of its wide availability, single-plane radiography systems have been 

utilized in numerous studies to examine and measure joint kinematics.97'100 As with 

biplane radiography, there are two main distinctions in the techniques used to measure 

joint kinematics using single-plane radiography: marker-based techniques, similar to 

RSA (section §1.2.5), rely on radio-opaque markers implanted into the skeleton, and 

model-based techniques (section §1.2.6) rely on a subject specific volumetric model of 

the joint under examination.
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Several marker-based techniques for measuring joint kinematics have been 

implemented using single-plane radiography, most notably on intensifier-based C-arm 

radiography systems. To compensate for the limited amount of information available 

from a single perspective view, the 3D spatial distribution or geometry of the implanted 

markers must be known a priori. The 3D pose of the rigid-body implanted with markers 

is determined by performing 3D-to-2D registration between the known 3D geometry of 

markers and their corresponding projections in 2D radiographs (Figure 1-6). Motion 

between subsequent 3D poses of the rigid-body containing the markers is calculated using 

similar point-based registration methods employed in RSA (section §1.2.5).

Validation studies have been performed to assess the accuracy of single-plane, 

marker-based localization, all of which found that translations occurring orthogonal to the 

image plane (out-of-plane) were measured with a lower accuracy than those that occurred 

parallel to the image plane (in-plane). The accuracy of measuring translation has been 

reported in the range of 0.1 mm to 1 mm in-plane, and 0.7 mm to 2.1 mm out-of-plane, 

while rotational accuracy was reported in the range of 0.3° to 1.7° about all axes.101'104
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Figure 1-6: Technique to estimate 3D pose of joint implanted with markers from a single-persepective 
projection. Makers implanted into the skeleton, m , , are fit to the projection lines cast between the marker 
projections, c , , and the x-ray focus using a 3D-to-2D registration algorithm.

Model-based techniques allow joint kinematics to be measured without the need 

for markers implanted into the skeleton. However, there is the requirement of a patient 

specific model of the joint. This model can be obtained from a CT scan, or if the subject 

has a joint replacement, from the CAD geometry of the implant. Several studies have 

implemented this technique using intensifier-based C-arm radiography systems to study 

joint kinematics.97,102,105'107 Similar, ray-casting102,108,109 or graphics rending algorithms110 

are used to render DRRs (section § 1.2.6). Often, only the surface geometry of the joint or 

joint replacement is extracted from the CT volume, or CAD design,105,106,108 limiting the 

rendering of DRRs to contours or silhouettes of the surface geometry (Figure 1-7). The 

3D pose of the model obtained from CT or CAD geometry is modified such that a 

matching criterion between the DRR and the acquired single-perspective radiographs is 

optimized. Motion of a joint can be quantified by tracking the change in the 3D pose of 

the model as it is matched to a sequence of radiographs. As with the marker-based 

techniques, the accuracy of measuring translations in the out-of-plane direction was found
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to be significantly lower than those measured in-plane. Validation studies have reported 

the accuracy of single-plane, model-based techniques in the range of 0.3 mm to 1.5 mm, 

and 1.5 mm to 5.6 mm for measuring translations in-plane and out-of-plane respectively, 

and in the range of 0.4° to 2.0° for measuring rotations.105,108'111

Focus Digitally reconstructed radiograph (2D contour)

Figure 1-7: Perspective projection of CAD surface geometry on single-plane radiography system. A 
digitally reconstructed radiography (DRR) is rendered using ray-casting techniques.

The wide availability of single-plane radiography systems enables the 

measurement of joint kinematics in the typical hospital or research environment. In 

addition, the working volume spans the entire field of view of the radiography system. 

This volume is typically much larger than spatial region of intersection between 

stereoscopic x-ray sources used in RSA and biplane radiography, resulting in the ability 

to easily capture and measure numerous dynamic activities. The main drawback of 

single-plane techniques is the lower accuracy of pose estimation in the direction 

orthogonal to the imaging plane, compared to estimations of pose in the in-plane 

directions. Additionally, as with all radiology-based techniques of measuring joint 

kinematics, subjects are exposed to ionizing radiation.



24

1.3 Digital Radiography and Perspective X-ray Systems

With current trends towards all-digital environments, digital radiography systems 

are commonplace in modem hospitals. The transition to an all-digital radiology 

department is spurred by several advantages that digital radiography systems offer over 

conventional film-based radiography, including: higher patient throughput, immediate 

image viewing, computer aided diagnoses and intervention, and convenient storage of 

images on computer disks rather than in archaic film stacks.112 X-ray image intensifiers 

(XRII) have long been a staple of digital radiography. However, with the recent 

widespread implementation of flat-panel (FP) detectors they are poised to eventually 

replace the use of XRIIs altogether.113 The following section reviews the imaging chain of 

both image intensifiers (IIs) and FP detectors, and lists some of the advantages and 

limitations associated with these detector technologies. Additionally, the geometry of a 

typical perspective x-ray system is visited, and a common method to determining the 

photogrammetric projective parameters of perspective x-ray systems is briefly reviewed.

1.3.1 X-ray Image Intensifiers

Since their introduction in the mid 1950’s XRII have seen significant 

technological advances in their design. Now, digital image technology is intrinsic to most 

modem XRII radiography systems. The imaging chain of a typical XRII radiography 

system, which converts incident x-rays into a digital image, is shown in Figure l-8a. The 

II consists of four main components (Figure l-8b): (a) a vacuum bottle that keeps air 

out, (b) an input layer that converts the incident x-ray signal to electrons, (c) electronic
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lenses that focus the electrons, and (d) an output phosphor that converts the accelerated 

electrons into visible light.113

The input screen of the II is made up of several layers (Figure l-8c), the first 

being the vacuum window, typically a thin 1 mm aluminum barrier that is part of the 

vacuum bottle, designed to minimize x-ray absorption and for mechanical strength under 

atmospheric pressure. After passing through the input window, x-rays are incident upon 

the input phosphor, which absorbs incident x-rays and converts their energy into visible 

light. This phosphor must be sufficiently thick to absorb the majority of incident x-rays, 

but thin enough to not significantly degrade spatial resolution. Therefore, virtually all 

modem IIs use cesium iodide (Csl) for the input phosphor. Cesium iodide has the 

property of forming long, needle-like crystals, which act as light pipes channeling the 

visible light toward the photocathode with minimal lateral diffusion.113 The photocathode 

is a thin layer of antimony and alkali metals that emit electrons when struck by visible 

light.

Once x-rays have been converted to electrons within the input screen, the latter are 

accelerated across a high-strength electric field created between the photocathode and 

anode. The accelerated electrons are focused down to the size of the output phosphor by 

a series of electrostatic focusing electrodes. After penetrating the thin anode, the high- 

energy electrons strike the output phosphor causing the emission of a burst of light. The 

output phosphor is typically made of 4 to 8 pm of zinc cadmium sulfide doped with 

silver, deposited directly on the output window of the II.113 Each electron that strikes the 

output phosphor causes the emission of approximately 1000 light photons.
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Figure 1-8: (a) Imaging chain of a digital image intensifier radiography system; (b) internal structure of an 
image intensifier; (c) input screen of an image intensifier. Adapted from Bushberg et al.113

The small analog image is focused onto a digital camera assembly to produce a 

digital output image. The optic assembly consists of two lenses and a variable aperture. 

The lenses act to focus the incoming light onto a charged coupled device (CCD) chip. 

The variable aperture controls the amount of light that passes through the lens assembly, 

similar to the iris of a human eye. Adjustment of the aperture has an important effect on 

the performance of the radiography system. Constricting the iris of the aperture lowers 

the amount of light passing through it, resulting in a higher x-ray exposure to maintain the 

exposure of light at the CCD, which in turn reduces noise in the digital image. Dilating 

the iris of the aperture allows more light to pass through, allowing a lower x-ray exposure
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to maintain the light exposure at the CCD. This results in a lower dose, but also reduced 

image quality.

The primary feature of CCD detectors is that the CCD chip itself is an integrated 

circuit, with discrete pixel electronics etched into its surface.113 The surface of a CDD is 

photosensitive; therefore as light falls on each pixel, electrons are liberated and 

accumulate charge within the pixel. Electron emission is proportional to the intensity of 

incident light. The pixel values of a digital image produced from a CCD are the 

quantized and encoded form of the magnitude of charge built up within each pixel of the 

CCD chip following exposure to light.

XRIIs have several advantages inherent to their design. First, the collection and 

focusing of electrons by the electrostatic field is a very efficient process and overcomes 

any inefficiencies of the photocathode.114 Additionally, the acceleration of electrons 

within the II, and the minification of the image from the input phosphor to the output 

phosphor produce large gains, and allows for coupling of an II to external optics and 

electronics.

However, the bulky nature of IIs can often impede the clinician by limiting access 

to patient and preventing acquisition of important radiographic views.114 Moreover, image 

contrast losses occur due to the scattering of light and x-rays within the II, also referred to 

as veiling glare.112 Finally, XRIIs are susceptible to a number of magnetic and electric 

field-dependant defects. Geometric distortion of images occur due to the mapping of 

electrons from a concave photocathode onto a planar output screen curvature of the input 

phosphor, producing pincushion distortions.115 In addition, the curvature of the input
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screen also produces a non-uniform distribution of brightness across the image, referred 

to as vignetting. Also, IIs are subject to a second form of geometric distortion, known as 

‘S’ distortion, due to the influence of extraneous magnetic field on the electrostatic field 

within the II.113 The impact of ‘S’ distortion is compounded by the fact that it varies with 

change in orientation of the II.

1.3.2 Flat Panel Detectors

In recent years there has been significant research and development in the area of 

active-matrix arrays, which allows the deposition of semiconductors across large-area 

substrates in a well-controlled fashion.112 The coupling of traditional x-ray detection 

media, such as phosphors or photoconductors, with large-area active-matrix structures 

(Figure l-9c) forms the basis of FP x-ray detectors. There is currently a distinction 

between two types of FP detectors: indirect and direct detectors. Indirect FP detectors 

incorporate a phosphor layer that produces visible light upon detection of x-rays, whereas 

direct FP detectors incorporate a photoconductor that produces electrical charges upon 

detection of an x-ray.

In the indirect method of x-ray detection a phosphor layer is placed in close 

contact with an active-matrix array (Figure l-9a). Common phosphors used in FP 

detectors include terbium-doped gadolinium oxysulfide (Gd2C>2 S:Tb) and thallium-doped 

cesium iodide (CsI:Tl).112 The intensity of light emitted from the phosphor layer is 

directly proportional to the intensity of the x-ray beam incident upon its surface. Each 

pixel on the active-matrix array contains a photosensitive element that generates electrical 

charge whose magnitude is proportional to the intensity of light incident upon its surface.
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This charge is stored within the pixel until the active-matrix is read out. The pixels of the 

resulting digital image contain the quantized and encoded magnitudes of the charges 

stored within the pixels of the active-matrix array. Since the x-rays are converted first to 

visible light and then finally to electrical charge (from which the image information is 

derived), the detection process is termed indirect.

In the direct detection scheme, x-rays are detected with a thick layer of 

photoconductor material (such as selenium)113 deposited on top of the active-matrix array 

(Figure l-9b). A negative voltage is applied to a thin electrode on the front surface of the 

photoconductive layer, producing an electric field across the photoconductor. Incident 

x-rays interact with the photoconductor liberating electrons, which migrate towards the 

pixels of the active-matrix array under the influence of the electric field, to create a 

charge at each element. Each pixel on the active-matrix array contains a capacitive 

storage element that accumulates the electrons incident upon its surface until the active- 

matrix is read out and the charge transferred to an A/D converter. The detection process 

is termed direct since x-ray photons are converted directly to an electrical charge, from 

which the digital image is formed, without any intermediaiy stage.
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Figure 1-9: (a) Cross-section of indirect detection flat panel; (b) cross-section of direct detection flat panel; 
(c) schematic diagram of an active-matrix array and electronics used to control readout. Each pixel element 
within the active-matrix consists of either a discrete photosensitive or capacitve detector, and a switch, 
usually a thin field transistor (TFT) or diode. Adapted from Bushberg et al.113 and Beutel et al.112

Flat-panel detectors overcome several of the limitations associated with XRIIs. 

FP detectors are significantly more compact, allowing better access to a patient. Their 

flat geometry frees them from veiling glare, vignetting, and geometric distortion,112 which 

greatly facilitates quantitative image analysis, registration, and 3D reconstruction.114 

Additionally, unlike XRIIs, FP detectors are immune to magnetic fields, and therefore can 

be used within magnetic environments such as MRI suites. FP detectors however, are not 

flawless. They can often suffer from lag and ghosting effects (i.e. production of a 

spurious frozen pattern that mirrors image content produced by preceding x-ray 

exposures, and reflects a non-uniform variation in a detector response depending upon its
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exposure history).115 Lag quantifies the ability of a detector to accurately record time- 

varying changes, and results from the carry-over of the measured signal into succeeding 

frames. Most flat-panel detectors incorporate measures to minimize these effects.

1.3.3 Geometry of the Perspective Radiography System

Photogrammetry is concerned with obtaining 3D measurements from information 

contained in 2D images.116 Performing photogrammetric measurements with an x-ray 

system requires knowledge of the projective parameters that define the geometry of the 

imaging system. A photogrammetric camera system consists of an imaging plane and a 

perspective centre.117 In the radiographic context, the x-ray focus is synonymous with the 

perspective centre, and the image plane, the detector. A perspective projection defines 

the transformation of a 3D point in object space onto the 2D image plane (Figure 1-10). 

Additional parameters that describe the geometry of a perspective camera system include 

the principle distance and principle point. The principle point is the point on the image 

plane given by the intersection of the perspective centre and a line orthogonal to the 

image plane.117 The distance between the principle point and perspective centre is termed 

the principle distance. Often in radiography, this distance is referred to as the source-to-

detector distance.
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Figure 1-10: Central perspective projeciton of object point, P (x,y,z), onto imaging plane, im (ij) . The 
geometry of a radiography system can be described by the perspective centre (x-ray focus), the principle 
distance (source-to-detector distance), and the principle point, (/„ , j a), on the imaging plane (detector). 
Adapted from Mikhail et al.117

1.3.4 Determination of Projective Parameters

Determination of the perspective parameters of a radiography system often consists 

of acquiring radiographic projections of a calibration cage, an enclosure often comprising 

of two parallel, radio-translucent plates (referred to as the fiducial plane and the control 

plane) embedded with radio-opaque markers (Figure 1-11). The position of the radio­

opaque markers must be well characterized in relation to the origin of the enclosure. The 

calibration process consists of two steps: the first determines the mathematical 

relationship between the 2D coordinate system of the imaging plane and the 3D 

coordinate system of the calibration cage, which defines the object coordinate system, 

while the second involves the calculation of the 3D position of the x-ray focus with 

respect to the calibration cage coordinate system.



33

Figure 1-11: A calibration cage is used to determine the photogrammetric projective paramaters of a 
persepctive x-ray system. Calibration cages usually contain two radio-transulent plates embedded with 
radio-opaque markers. The fiducial plane is used to determine the direct linear transformation (DLT), 
which transforms 2D image points into the 3D object coordinate system. The control plane is used to 
determine the position of the x-ray focus.

The relationship between the image plane and the 3D coordinate system of the 

calibration cage can be described mathematically by a projective transformation,59 also 

referred to as the direct linear transformation (DLT). The DLT describes the mapping 

between points within the image plane and the fiducial plane of the calibration cage 

within the 3D object coordinate system, and is just one way to describe the projective 

transformation between the image and object coordinate systems. Other mathematical 

formulations that describe this projective transformation have been proposed and 

validated, but have shown no distinct advantages over the original solution.118,119

To compute the 3D position of the x-ray focus with respect to the calibration cage, 

points lying on the control plane of the calibration cage are identified within the 

projection radiograph and mapped to the fiducial plane using the DLT. Theoretically, the 

x-ray focus is the intersection of the lines connecting the points on the control plane, and 

their projections mapped onto the fiducial plane. Realistically, these lines may not 

intersect, since the focus of a radiography system is of a finite size, and there are
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measurement errors associated with localizing the marker projections within a radiograph. 

Therefore, the focus position is determined as the point with the least sum squared 

distance between the lines connecting the points on the control plane and their 

corresponding projections.
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1.4 Thesis Proposal

This thesis focuses on two distinct medical applications, mainly tracking for image- 

guided interventions and measurement of joint kinematics, using radiographic imaging 

and registration techniques. Previous work in these areas has laid the foundation for 

localizing objects in 3D space from single-perspective radiographic projections,101’120,121 

and optimizing radiographic acquisition parameters towards this task.121 With the 

widespread implementation of digital radiography systems, and the recent implementation 

of FP detector technology, the potential to apply these techniques towards dynamics 

tasks, such as object tracking and measurement of joint kinematics, is well posed and 

highly realizable. The overall objective of this study can be subdivided into the following 

specific aims.

1) Design, test and validate a technique to track objects in 3D space from a 

dynamic sequence of single-perspective projections.

2) Quantitatively compare two generations of digital radiography systems, 

specifically an intensifier-based and flat panel radiography system, towards the 

tracking application.

3) Validate a technique to dynamically measure joint kinematics from single­

perspective projections.

4) Determine the effective dose of ionizing radiation imparted to a human subject 

during a radiographic examination performed to measure joint kinematics.
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1.5 Thesis Outline

The achievement of the above thesis objectives is presented in the following two 

chapters, which are intended for publication in peer-reviewed journals. These two 

chapters form the body of the thesis, followed by a summary chapter, which presents the 

main findings of this thesis, and isolates key areas of research for future work.

Chapter 2 consists of a study that addresses the first two aims listed above. In this 

chapter a description of the software implementation, that performs the automated image 

measurements and the registration enabling the tracking of objects in 3D space from 

single-perspective projections, is provided. Subsequently, testing and validation of the 

technique were performed via a series of in vitro experiments. These experiments were 

performed on two clinically available digital radiography systems, to provide a 

quantitative comparison of the two digital detector technologies that could be utilized for 

application of the technique.

Chapter 3 describes the methods used to address the final two aims listed above. A 

quick overview of the techniques utilized to measure the joint kinematics from single­

perspective projection is provided (this is based upon the software implementation 

presented in Chapter 2, and previous work). Validation of the technique was performed 

through a series of in vitro experiments that utilized an anatomically relevant joint 

phantom. An additional in vitro experiment was performed to estimate the effective dose 

of ionizing radiation that would be associated with the measurement procedure.



37

1.6 References

1. Peters TM. 2006. Image-guidance for surgical procedures. Phys Med Biol 51: 
R505-540.

2. Peters T, Cleary K (editors). 2008. Image-guided interventions - technology and 
applications New York, NY: Springer.

3. Khadem R, Yeh CC, Sadeghi-Tehrani M, Bax MR, Johnson JA, Welch JN, 
Wilkinson EP, Shahidi R. 2000. Comparative tracking error analysis of five 
different optical tracking systems. Comput Aided Surg 5: 98-107.

4. West JB, Maurer CR, Jr. 2004. Designing optically tracked instruments for image- 
guided surgery. IEEE Trans Med Imaging 23: 533-545.

5. Wiles AD, Thompson DG, Frantz DD. 2004. Accuracy assessment and 
interpretation for optical tracking systems. In, SPIE - Medical Imaging 2004, pp. 
421-432.

6. Frantz DD, Wiles AD, Leis SE, Kirsch SR. 2003. Accuracy assessment protocols 
for electromagnetic tracking systems. Phys Med Biol 48: 2241-2251.

7. Hummel JB, Bax MR, Figl ML, Kang Y, Maurer C, Jr., Birkfellner WW, 
Bergmann H, Shahidi R. 2005. Design and application of an assessment protocol 
for electromagnetic tracking systems. Med Phys 32: 2371-2379.

8. Hummel J, Figl M, Birkfellner W, Bax MR, Shahidi R, Maurer CR, Jr., Bergmann 
H. 2006. Evaluation of a new electromagnetic tracking system using a 
standardized assessment protocol. Phys Med Biol 51: N205-210.

9. Hummel J, Figl M, Kollmann C, Bergmann H, Birkfellner W. 2002. Evaluation of 
a miniature electromagnetic position tracker. Med Phys 29: 2205-2212.

10. Schicho K, Figl M, Donat M, Birkfellner W, Seemann R, Wagner A, Bergmann 
H, Ewers R. 2005. Stability of miniature electromagnetic tracking systems. Phys 
Med Biol 50: 2089-2098.

11. Kahler DM. 2004. Image guidance: fluoroscopic navigation. Clin Orthop Relat 
Res: 70-76.

12. Baert SA, van Walsum T, Niessen WJ. 2003. Endpoint localization in guide wire 
tracking during endovascular interventions. Acad Radiol 10: 1424-1432.

13. Baert SA, van de Kraats EB, van Walsum T, Viergever MA, Niessen WJ. 2003. 
Three-dimensional guide-wire reconstruction from biplane image sequences for 
integrated display in 3-D vasculature. IEEE Trans Med Imaging 22: 1252-1258.



38

14. Harada T, Shirato H, Ogura S, Oizumi S, Yamazaki K, Shimizu S, Onimaru R, 
Miyasaka K, Nishimura M, Dosaka-Akita H. 2002. Real-time tumor-tracking 
radiation therapy for lung carcinoma by the aid of insertion of a gold marker using 
bronchofiberscopy. Cancer 95: 1720-1727.

15. Middleton WD, Teefey SA, Dahiya N. 2006. Ultrasound-guided chest biopsies. 
Ultrasound Q 22:241-252.

16. Carey B, Swift S. 2007. The current role of imaging for prostate brachytherapy. 
Cancer Imaging 7: 27-33.

17. Adler RS, Sofka CM. 2003. Percutaneous ultrasound-guided injections in the 
musculoskeletal system. Ultrasound Q 19: 3-12.

18. Fenster A, Downey DB, Cardinal HN. 2001. Three-dimensional ultrasound 
imaging. Phys Med Biol 46: R67-99.

19. Sugeng L, Coon P, Weinert L, Jolly N, Lammertin G, Bednarz JE, Thiele K, Lang 
RM. 2006. Use of real-time 3-dimensional transthoracic echocardiography in the 
evaluation of mitral valve disease. J Am Soc Echocardiogr 19: 413-421.

20. Ryan LP, Salgo IS, Gorman RC, Gorman JH, 3rd. 2006. The emerging role of 
three-dimensional echocardiography in mitral valve repair. Semin Thorac 
Cardiovasc Surg 18: 126-134.

21. Ding M, Fenster A. 2003. A real-time biopsy needle segmentation technique using 
Hough transform. Med Phys 30: 2222-2233.

22. Wei Z, Gardi L, Downey DB, Fenster A. 2005. Oblique needle segmentation and 
tracking for 3D TRUS guided prostate brachytherapy. Med Phys 32: 2928-2941.

23. Novotny PM, Stoll JA, Vasilyev NV, del Nido PJ, Dupont PE, Zickler TE, Howe 
RD. 2007. GPU based real-time instrument tracking with three-dimensional 
ultrasound. Med Image Anal 11: 458-464.

24. Froelich JJ, Wagner HJ. 2001. CT-fluoroscopy: Tool or gimmick? Cardiovasc 
Intervent Radiol 24: 297-305.

25. Tatli S, Morrison PR, Tuncali K, Silverman SG. 2007. Interventional MRI for 
oncologic applications. Tech Vase Interv Radiol 10: 159-170.

26. Mittal S, Black PM. 2006. Intraoperative magnetic resonance imaging in 
neurosurgery: the Brigham concept. Acta Neurochir Suppl 98: 77-86.

27. Henk CB, Higgins CB, Saeed M. 2005. Endovascular interventional MRI. J Magn 
Reson Imaging 22: 451-460.



39

28. Kos S, Huegli R, Bongartz GM, Jacob AL, Bilecen D. 2008. MR-guided 
endovascular interventions: a comprehensive review on techniques and 
applications. Eur Radiol 18: 645-657.

29. Ozturk C, Guttman M, McVeigh ER, Lederman RJ. 2005. Magnetic resonance 
imaging-guided vascular interventions. Top Magn Reson Imaging 16: 369-381.

30. Sutherland DH. 2002. The evolution of clinical gait analysis. Part II kinematics. 
Gait Posture 16: 159-179.

31. Chester VL, Biden EN, Tingley M. 2005. Gait analysis. Biomed Instrum Technol 
39: 64-74.

32. Hatze H. 2002. The fundamental problem of myoskeletal inverse dynamics and its 
implications. J Biomech 35: 109-115.

33. Cappozzo A, Catani F, Leardini A, Benedetti MG, Croce UD. 1996. Position and 
orientation in space of bones during movement: experimental artefacts. Clin 
Biomech (Bristol, Avon) 11: 90-100.

34. Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renstrom P. 2006. 
Effect of skin movement artifact on knee kinematics during gait and cutting 
motions measured in vivo. Gait Posture 24: 152-164.

35. Stagni R, Fantozzi S, Cappello A, Leardini A. 2005. Quantification of soft tissue 
artefact in motion analysis by combining 3D fluoroscopy and 
stereophotogrammetry: a study on two subjects. Clin Biomech (Bristol, Avon) 20: 
320-329.

36. Leardini A, Chiari L, Della Croce U, Cappozzo A. 2005. Human movement 
analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and 
compensation. Gait Posture 21: 212-225.

37. Ishii Y, Terajima K, Terashima S, Koga Y. 1997. Three-dimensional kinematics 
of the human knee with intracortical pin fixation. Clin Orthop Relat Res: 144-150.

38. Ramsey DK, Lamontagne M, Wretenberg PF, Valentin A, Engstrom B, Nemeth 
G. 2001. Assessment of functional knee bracing: an in vivo three-dimensional 
kinematic analysis of the anterior cruciate deficient knee. Clin Biomech (Bristol, 
Avon) 16: 61-70.

39. Ramsey DK, Wretenberg PF, Benoit DL, Lamontagne M, Nemeth G. 2003. 
Methodological concerns using intra-cortical pins to measure tibiofemoral 
kinematics. Knee Surg Sports Traumatol Arthrosc 11: 344-349.

40. Reinschmidt C, van den Bogert AJ, Nigg BM, Lundberg A, Murphy N. 1997. 
Effect of skin movement on the analysis of skeletal knee joint motion during 
running. J Biomech 30: 729-732.



40

41. Patel VV, Hall K, Ries M, Lotz J, Ozhinsky E, Lindsey C, Lu Y, Majumdar S. 
2004. A three-dimensional MRI analysis of knee kinematics. J Orthop Res 22: 
283-292.

42. Fellows RA, Hill NA, Gill HS, MacIntyre NJ, Harrison MM, Ellis RE, Wilson 
DR. 2005. Magnetic resonance imaging for in vivo assessment of three- 
dimensional patellar tracking. J Biomech 38: 1643-1652.

43. McPherson A, Karrholm J, Pinskerova V, Sosna A, Martelli S. 2005. Imaging 
knee position using MRI, RSA/CT and 3D digitisation. J Biomech 38: 263-268.

44. Fellows RA, Hill NA, Macintyre NJ, Harrison MM, Ellis RE, Wilson DR. 2005. 
Repeatability of a novel technique for in vivo measurement of three-dimensional 
patellar tracking using magnetic resonance imaging. J Magn Reson Imaging 22: 
145-153.

45. Shellock FG, Mink JH, Deutsch A, Pressman BD. 1991. Kinematic magnetic 
resonance imaging of the joints: techniques and clinical applications. Magn Reson 
Q 7: 104-135.

46. Powers CM, Shellock FG, Pfaff M. 1998. Quantification of patellar tracking using 
kinematic MRI. J Magn Reson Imaging 8: 724-732.

47. Sheehan FT, Zajac FE, Drace JE. 1998. Using cine phase contrast magnetic 
resonance imaging to non-invasively study in vivo knee dynamics. J Biomech 31 : 
21-26.

48. Barrance PJ, Williams GN, Novotny JE, Buchanan TS. 2005. A method for 
measurement of joint kinematics in vivo by registration of 3-D geometric models 
with cine phase contrast magnetic resonance imaging data. J Biomech Eng 127: 
829-837.

49. Rebmann AJ, Sheehan FT. 2003. Precise 3D skeletal kinematics using fast phase 
contrast magnetic resonance imaging. J Magn Reson Imaging 17: 206-213.

50. Melchert UH, Schroder C, Brossmann J, Muhle C. 1992. Motion-triggered cine 
MR imaging of active joint movement. Magn Reson Imaging 10: 457-460.

51. Feipel V, Rooze M. 1999. Three-dimensional motion patterns of the carpal bones: 
an in vivo study using three-dimensional computed tomography and clinical 
applications. Surg Radiol Anat 21: 125-131.

52. Shapeero LG, Dye SF, Lipton MJ, Gould RG, Galvin EG, Gênant HK. 1988. 
Functional dynamics of the knee joint by ultrafast, cine-CT. Invest Radiol 23: 
118-123.

53. Dupuy DE, Hangen DH, Zachazewski JE, Boland AL, Palmer W. 1997. 
Kinematic CT of the patellofemoral joint. AJR Am J Roentgenol 169: 211-215.



41

54. Pinar H, Akseki D, Karaoglan O, Gene I. 1994. Kinematic and dynamic axial 
computed tomography of the patello-femoral joint in patients with anterior knee 
pain. Knee Surg Sports Traumatol Arthrose 2: 170-173.

55. Muhle C, Brossmann J, Heller M. 1999. Kinematic CT and MR imaging of the 
patellofemoral joint. Eur Radiol 9: 508-518.

56. Elias DA, White LM. 2004. Imaging of patellofemoral disorders. Clin Radiol 59: 
543-557.

57. Neu CP, McGovern RD, Crisco JJ. 2000. Kinematic accuracy of three surface 
registration methods in a three-dimensional wrist bone study. J Biomech Eng 122: 
528-533.

58. Karrholm J. 1989. Roentgen stereophotogrammetry. Review of orthopedic 
applications. Acta Orthop Scand 60: 491-503.

59. Selvik G. 1989. Roentgen stereophotogrammetry. A method for the study of the 
kinematics of the skeletal system. Acta Orthop Scand Suppl 232: 1-51.

60. Selvik G, Alberius P, Aronson AS. 1983. A roentgen stereophotogrammetric 
system. Construction, calibration and technical accuracy. Acta Radiol Diagn 
(Stockh) 24: 343-352.

61. Nystrom L, Soderkvist I, Wedin PA. 1994. A note on some identification 
problems arising in roentgen stereo photogrammetric analysis. J Biomech 27: 
1291-1294.

62. Valstar ER, de Jong FW, Vrooman HA, Rozing PM, Reiber JH. 2001. Model- 
based Roentgen stereophotogrammetiy of orthopaedic implants. J Biomech 34: 
715-722.

63. Valstar ER, Gill R, Ryd L, Flivik G, Borlin N, Karrholm J. 2005. Guidelines for 
standardization of radiostereometry (RSA) of implants. Acta Orthop 76: 563-572.

64. Ostgaard SE, Gottlieb L, Toksvig-Larsen S, Lebech A, Talbot A, Lund B. 1997. 
Roentgen stereophotogrammetric analysis using computer-based image-analysis. J 
Biomech 30: 993-995.

65. Valstar ER, Vrooman HA, Toksvig-Larsen S, Ryd L, Nelissen RG. 2000. Digital 
automated RSA compared to manually operated RSA. J Biomech 33: 1593-1599.

66. Borlin N, Thien T, Karrholm J. 2002. The precision of radiostereometric 
measurements. Manual vs. digital measurements. J Biomech 35: 69-79.

67. Brostrom LA, Goldie I, Selvik G. 1989. Micromotion of the total knee. Acta 
Orthop Scand 60: 443-445.



42

68. Ahl T, Dalen N, Selvik G. 1989. Ankle fractures. A clinical and roentgenographic 
stereophotogrammetric study. Clin Orthop Relat Res: 246-255.

69. Hansson U, Toksvig-Larsen S, Jom LP, Ryd L. 2005. Mobile vs. fixed meniscal 
bearing in total knee replacement: a randomised radiostereometric study. Knee 12: 
414-418.

70. Madanat R, Moritz N, Larsson S, Aro HT. 2006. RSA applications in monitoring 
of fracture healing in clinical trials. Scand J Surg 95: 119-127.

71. Bragdon CR, Greene ME, Freiberg AA, Harris WH, Malchau H. 2007. 
Radiostereometric analysis comparison of wear of highly cross-linked 
polyethylene against 36- vs 28-mm femoral heads. J Arthroplasty 22: 125-129.

72. Karrholm J, Hansson LI, Selvik G. 1984. Longitudinal growth rate of the distal 
tibia and fibula in children. Clin Orthop Relat Res: 121-128.

73. Hildebrand H, Aronson S, Kullendorff CM, Selvik G. 1991. Roentgen 
stereophotogrammetric short-term analysis of growth rate in children operated for 
Crohn's disease. Acta Paediatr Scand 80: 917-923.

74. Rune B, Samas KV, Aberg M. 1999. Mandibulofacial dysostosis—variability in 
facial morphology and growth: a long-term profile roentgenographic and roentgen 
stereometric analysis of three patients. Cleft Palate Craniofac J 36: 110-122.

75. Nilsson KG, Karrholm J, Ekelund L, Magnusson P. 1991. Evaluation of 
micromotion in cemented vs uncemented knee arthroplasty in osteoarthrosis and 
rheumatoid arthritis. Randomized study using roentgen stereophotogrammetric 
analysis. J Arthroplasty 6: 265-278.

76. van der Linde MJ, Garling EH, Valstar ER, Tonino AJ, Nelissen RG. 2006. 
Periapatite may not improve micromotion of knee prostheses in rheumatoid 
arthritis. Clin Orthop Relat Res 448: 122-128.

77. Johnsson R, Selvik G, Stromqvist B, Sunden G. 1990. Mobility of the lower 
lumbar spine after posterolateral fusion determined by roentgen 
stereophotogrammetric analysis. Spine 15: 347-350.

78. Gunnarsson G, Axelsson P, Johnsson R, Stromqvist B. 2000. A method to 
evaluate the in vivo behaviour of lumbar spine implants. Eur Spine J 9: 230-234.

79. Axelsson P, Karlsson BS. 2005. Standardized provocation of lumbar spine 
mobility: three methods compared by radiostereometric analysis. Spine 30: 792- 
797.

80. Karrholm J, Selvik G, Elmqvist LG, Hansson LI. 1988. Active knee motion after 
cruciate ligament rupture. Stereoradiography. Acta Orthop Scand 59: 158-164.



43

81. Karrholm J, Elmqvist LG, Selvik G, Hansson LI. 1989. Chronic anterolateral 
instability of the knee. A roentgen stereophotogrammetric evaluation. Am J Sports 
Med 17: 555-563.

82. Jonsson H, Karrholm J, Elmqvist LG. 1989. Kinematics of active knee extension 
after tear of the anterior cruciate ligament. Am J Sports Med 17: 796-802.

83. Jonsson H, Karrholm J. 1999. Three-dimensional knee kinematics and stability in 
patients with a posterior cruciate ligament tear. J Orthop Res 17: 185-191.

84. Karrholm J, Brandsson S, Freeman MA. 2000. Tibiofemoral movement 4: 
changes of axial tibial rotation caused by forced rotation at the weight-bearing 
knee studied by RSA. J Bone Joint Surg Br 82: 1201-1203.

85. Aronson AS, Jonsson N, Alberius P. 1985. Tantalum markers in radiography. An 
assessment of tissue reactions. Skeletal Radiol 14: 207-211.

86. Soderkvist I, Wedin PA. 1993. Determining the movements of the skeleton using 
well-configured markers. J Biomech 26: 1473-1477.

87. Yuan X, Ryd L. 2000. Accuracy analysis for RSA: a computer simulation study 
on 3D marker reconstruction. J Biomech 33: 493-498.

88. Bragdon CR, Malchau H, Yuan X, Perinchief R, Karrholm J, Borlin N, Estok DM, 
Harris WH. 2002. Experimental assessment of precision and accuracy of 
radiostereometric analysis for the determination of polyethylene wear in a total 
hip replacement model. J Orthop Res 20: 688-695.

89. Aronson AS, Hoist L, Selvik G. 1974. An instrument for insertion of radiopaque 
bone markers. Radiology 113: 733-734.

90. Brandsson S, Karlsson J, Sward L, Kartus J, Eriksson BI, Karrholm J. 2002. 
Kinematics and laxity of the knee joint after anterior cruciate ligament 
reconstruction: pre- and postoperative radiostereometric studies. Am J Sports Med 
30:361-367.

91. You BM, Siy P, Anderst W, Tashman S. 2001. In vivo measurement of 3-D 
skeletal kinematics from sequences of biplane radiographs: application to knee 
kinematics. IEEE Trans Med Imaging 20: 514-525.

92. Tashman S, Anderst W. 2003. In-vivo measurement of dynamic joint motion 
using high speed biplane radiography and CT: application to canine ACL 
deficiency. J Biomech Eng 125: 238-245.

93. Bey MJ, Zauel R, Brock SK, Tashman S. 2006. Validation of a new model-based 
tracking technique for measuring three-dimensional, in vivo glenohumeral joint 
kinematics. J Biomech Eng 128: 604-609.



44

94. Li G, Van de Velde SK, Bingham JT. 2008. Validation of a non-invasive 
fluoroscopic imaging technique for the measurement of dynamic knee joint 
motion. J Biomech 41: 1616-1622.

95. Li G, Wuerz TH, DeFrate LE. 2004. Feasibility of using orthogonal fluoroscopic 
images to measure in vivo joint kinematics. J Biomech Eng 126: 314-318.

96. Bey MJ, Kline SK, Tashman S, Zauel R. 2008. Accuracy of biplane x-ray imaging 
combined with model-based tracking for measuring in-vivo patellofemoral joint 
motion. J Orthop Surg 3: 38.

97. Hoff WA, Komistek RD, Dennis DA, Gabriel SM, Walker SA. 1998. Three- 
dimensional determination of femoral-tibial contact positions under in vivo 
conditions using fluoroscopy. Clin Biomech (Bristol, Avon) 13: 455-472.

98. Komistek RD, Allain J, Anderson DT, Dennis DA, Goutallier D. 2002. In vivo 
kinematics for subjects with and without an anterior cruciate ligament. Clin 
Orthop Relat Res: 315-325.

99. Zihlmann MS, Gerber H, Stacoff A, Burckhardt K, Szekely G, Stussi E. 2006. 
Three-dimensional kinematics and kinetics of total knee arthroplasty during level 
walking using single plane video-fluoroscopy and force plates: a pilot study. Gait 
Posture 24: 475-481.

100. Garling EH, Kaptein BL, Nelissen RG, Valstar ER. 2007. Limited rotation of the 
mobile-bearing in a rotating platform total knee prosthesis. J Biomech 40 Suppl 1 : 
S25-30.

101. Yuan X, Ryd L, Tanner KE, Lidgren L. 2002. Roentgen single-plane 
photogrammetric analysis (RSPA.) A new approach to the study of 
musculoskeletal movement. J Bone Joint Surg Br 84: 908-914.

102. Tang TS, MacIntyre NJ, Gill HS, Fellows RA, Hill NA, Wilson DR, Ellis RE. 
2004. Accurate assessment of patellar tracking using fiducial and intensity-based 
fluoroscopic techniques. Med Image Anal 8: 343-351.

103. Garling EH, Kaptein BL, Geleijns K, Nelissen RG, Valstar ER. 2005. Marker 
Configuration Model-Based Roentgen Fluoroscopic Analysis. J Biomech 38: 893- 
901.

104. Ioppolo J, Borlin N, Bragdon C, Li M, Price R, Wood D, Malchau H, Nivbrant B. 
2007. Validation of a low-dose hybrid RSA and fluoroscopy technique: 
Determination of accuracy, bias and precision. J Biomech 40: 686-692.

105. Banks SA, Hodge WA. 1996. Accurate measurement of three-dimensional knee 
replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 
43: 638-649.



45

106. Komistek RD, Dennis DA, Mahfouz M. 2003. In vivo fluoroscopic analysis of the 
normal human knee. Clin Orthop Relat Res: 69-81.

107. Dennis DA, Mahfouz MR, Komistek RD, Hoff W. 2005. In vivo determination of 
normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 38: 
241-253.

108. Zuffi S, Leardini A, Catani F, Fantozzi S, Cappello A. 1999. A model-based 
method for the reconstruction of total knee replacement kinematics. IEEE Trans 
Med Imaging 18: 981-991.

109. Yamazaki T, Watanabe T, Nakajima Y, Sugamoto K, Tomita T, Yoshikawa H, 
Tamura S. 2004. Improvement of depth position in 2-D/3-D registration of knee 
implants using single-plane fluoroscopy. IEEE Trans Med Imaging 23: 602-612.

110. Mahfouz MR, Hoff WA, Komistek RD, Dennis DA. 2003. A robust method for 
registration of three-dimensional knee implant models to two-dimensional 
fluoroscopy images. IEEE Trans Med Imaging 22: 1561-1574.

111. Fregly BJ, Rahman HA, Banks SA. 2005. Theoretical accuracy of model-based 
shape matching for measuring natural knee kinematics with single-plane 
fluoroscopy. J Biomech Eng 127: 692-699.

112. Beutel J, Kundel HL, Van Metter RL (editors). 2000. Handbook of medical 
imaging - vol. 1: physics and psychophysics. Bellingham, WA: SPIE Press.

113. Bushberg JT, Seibert JA, Leidholdt Jr. EM, Boone JM. 2002. The essential 
physics of medical imaging. Lippincott Williams & Wilkins, Philadelphia, PA.

114. Yaffe MJ, Rowlands JA. 1997. X-ray detectors for digital radiography. Phys Med 
Biol 42: 1-39.

115. Cowen AR, Davies AG, Sivananthan MU. 2008. The design and imaging 
characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital 
fluoroscopy and fluorography. Clin Radiol 63: 1073-1085.

116. Fryer J, Mitchell H, Chandler J (editors). 2007. Applications of 3D measurements 
from images. Dunbeath, Scotland: Whittles Publishing.

117. Mikhail EM, Bethel JS, McGlone JC. 2001. Introduction to modem 
photogrammetry. JohnWiley & Sons, Inc., Toronto, ON.

118. Choo AM, Oxland TR. 2003. Improved RSA accuracy with DLT and balanced 
calibration marker distributions with an assessment of initial-calibration. J 
Biomech 36: 259-264.



46

119. Borlin N. 2002. Comparison of resection-intersection algorithms and projection 
geometries in radiostereometry. ISPRS Journal of Photogrammetry & Remote 
Sensing 56: 390-400.

120. Hoffmann KR, Esthappan J. 1997. Determination of three-dimensional positions 
of known sparse objects from a single projection. Med Phys 24: 555-564.

121. Habets DF, Pollmann SI, Yuan X, Peters TM, Holdsworth DW. 2009. Error 
analysis of marker-based object localization using a single-plane XRII. Med Phys 
36: 190-200.



47

2 Tracking o f Sparse Objects from Single-perspective 
Projections towards Image-guided Applications

2.1 Introduction

The role of medical imaging and image guidance is rapidly increasing in all 

aspects of surgery and therapy, including treatment planning and follow-up of many 

interventions.1'3 Fluoroscopy and x-ray images are utilized intra-operatively to provide 

guidance and target localization during many procedures,1’3’4 however these imaging 

modalities are typically limited to a 2D context. The quality of image guidance could be 

greatly improved if surgical targets and tools were given a 3D context.2’5'7 To overcome 

the limited information provided by 2D x-ray imaging, numerous technologies have been 

considered, including optical or magnetic tracking systems, ’ and even more complex 

x-ray imaging systems such as biplane x-ray or dual-source, single-detector x-ray.10'12 

However, these systems are accompanied by their own set of limitations.

Although, optical tracking systems are typically employed within computer-aided 

surgery suites, because of their robustness, reliability and accuracy, they require 

uninterrupted line-of-sight, which may not be practical during many intra-operative or 

dynamic procedures. Magnetic tracking systems do not require line-of-sight, but are
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susceptible to magnetic field disturbances, caused by the presence of ferromagnetic 

materials and electrical equipment, which negatively affects their reliability.13'15 Biplane 

x-ray systems and stereoscopic imaging techniques can be used to calculate 3D 

information16'18 and have been utilized for numerous applications. However, many 

applications -  such as measurement of joint kinematics, gait analysis, and cardiac 

imaging19'21 -  are limited to, or benefit from, image acquisition with a single x-ray 

projection plane. Benefits of single-plane acquisition are particularly apparent in the 

operating room, where two large C-arms can significantly restrict access to the patient. 

While single-plane stereo x-ray systems can provide 3D image guidance, provided that 

the imaging system geometry is known and fixed,11,12 their use is limited by availability, 

restrictive mechanical setup, and need for re-calibration subsequent to any change in 

imaging parameters. A single-plane, single-source x-ray system capable of providing 3D 

localization would not be limited by these restrictions.

3D localization using a single-plane, single-source x-ray system is possible, 

provided that the tracked object is constructed with rigidly affixed, radio-opaque markers, 

whose relative dimensions are known.22 Several 3D-to-2D registration methods have been 

developed to provide 3D localization from single-perspective, 2D projections. These 

registration methods can be grouped into basic linear solvers or iteratively refined 

algorithms. ’ ' An iterative, single x-ray source approach to 3D localization has been 

described by Hoffmann et al.,22 and further expanded upon by Habets et al.25 The iterative 

3D-to-2D registration finds an optimized solution to the projection-Procrustes problem, 

which allows for the 3D position and orientation of a sparse object, with a known 

configuration of radio-opaque markers, to be determined from the projected locations of
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these markers as registered on x-ray film. For intra-operative or dynamic applications, 

the use of an x-ray image intensifier (XRII) or a digital flat-panel (FP) detector required. 

A key component of localizing a sparse object in 3D from a single perspective projection 

is the measurement of the projected marker locations from the 2D projection images. A 

fully automated algorithm capable of identifying and localizing the position of each 

projected marker from projection images is therefore necessary for dynamic or real-time 

tracking applications.

The following study investigates the feasibility of applying the 

projection-Procrustes registration to track objects in 3D space during an interventional 

procedure. The design and implementation of the software, which performs the 3D 

localization and tracking of sparse objects from a sequence of projection images, is 

presented. The implementation includes automated means of identifying and measuring 

the locations of the markers of the sparse object as they appear on 2D projections, and 

3D-to-2D registration by solution of the projection-Procrustes problem. Validation and 

testing of the technique are performed through means of in vitro experiments to determine 

the accuracy of both localizing and tracking a sparse pointer tool from single-perspective 

projections. The terminology recommended by the International Standards Organization 

(ISO) was followed in describing the accuracy of a measurement in terms of its 

‘trueness’, sometimes referred to as bias, and its ‘precision’ relating to the repeatability or 

reproducibility of measurement.26 In addition, two x-ray C-arm imaging systems are 

utilized for image acquisition: one equipped with an XRII, and another with a FP 

detector, to explore the strengths and limitations of both detector technologies with regard

to the task at hand.
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2.2 Methods

2.2.1 Overview of the projection-Procrustes Registration

The generalized solution of the orthogonal Procrustes registration problem is well 

established,27 and defines the optimal transformation that aligns two corresponding 3D 

point sets in a least-square sense. Projection-Procrutes registration couples projection 

equations, derived from the perspective geometry of a single-plane radiography system, 

with Procrustes registration techniques to determine the 3D pose (i.e. position, and 

orientation) of a sparse object from a single projection view.22 A sparse object is any 

object containing a sparse, and rigidly affixed configuration of markers. For purposes of 

radiography, it is important that these markers be radio-opaque in nature such that their 

projections have a significant amount of contrast within the radiograph (i.e. radio-opaque 

objects have high electron densities, which results in higher x-ray attenuation and 

therefore contrast within the radiograph).

The projection-Procrustes registration process differentiates between three 

separate coordinate systems (Figure 2-1): a 2D image coordinate system, uv, a 3D world 

coordinate system, xyz, and a 3D local object coordinate system, x'y'z'. The world 

coordinate system can be arbitrarily placed within the space of the imaging system. The 

world coordinate system is the common reference from which all others will be mapped, 

and is also the coordinate system in which the perspective geometry of the radiography 

system is defined. The local object coordinate system is relative to the sparse object 

itself, and describes the relative 3D locations of each marker contained within the object. 

The image coordinates («,, v,), of a marker projection upon the image plane, are directly
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related to 3D position of the marker, P, (x, , y j , z,), within the 3D world coordinate system 

by the following relationship:

M,.= (x , .)* D /a ,.) (1)

v i = ( y i) * D / ( z i) (2 )

where D is the focal length of the radiography system. While this relationship would be 

the case in an ideal imaging system (i.e. no noise or image distortion, infinitely small 

focal spot, etc.), in practical applications measurements of the image coordinates (u, , v;) 

of the marker projections will contain errors that arise from image noise and geometric 

distortion in the detector.

Figure 2-1: Coordinate systems defined in projection-Procrustes registration problem. The world 
coordinate system, xyz, in which the perspective geometry is defined, the image coordinate system, uv, 
describes the image space, and the object coordinate system, x'y'z', describes the relative positions of each 
marker within the sparse object.
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The projection-Procrutes registration technique maps the local object coordinate 

system into the world coordinate system by utilizing the 2D information derived from the 

projection image to constrain the registration problem. The position of a sparse object 

marker within the object coordinate system, P/, is related to its position within the 

imaging coordinate system, Ph by the following transformation.

Pi- lRfP l  + t (3)

Where [R]1 is the transpose of the rotation matrix, and t is the translation that relates the 

origins of both coordinate systems. Ideally, the registration should result in a 

transformation that aligns the centre of each marker of the sparse object with its 

corresponding projection line (i.e. the line running from the centre of the marker 

projection within the 2D image to the focal spot of the x-ray system -  Figure 2-2). 

Realistically, the markers will not align perfectly with their corresponding projection line 

due to errors that arise during the measurement process. Therefore, an optimization 

problem must be solved that finds the transformation that minimizes the alignment errors 

about all points used in the registration (i.e. marker centres).
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Figure 2-2: Optimal alignment of sparse object marker with their corresponding projection lines. In an 
ideal situation, where no noise or geometric distortion is present and the locations of the marker projections 
upon the image can be measured without error, the minimal distance between each marker and its 
corresponding projection line is zero. 3 { P , }  = [R ]TP, + t , is the transformation that relates the postion of 
the markers within the local object coordinate system, x'y'z', to their position within the three-dimensional 
world coordinate system, xyz, after optimal alignment.

2.2.2 Algorithm Overview

The structure of the algorithm that tracks sparse objects in 3D space from their 

projections in 2D digital radiographs is presented in Figure 2-3. The following sections 

summarize the function of each module, and describe the techniques used to provide 

functionality. The algorithm requires several inputs: a sequence of digital radiographs, 

parameters describing the geometry of the perspective radiography system used to acquire 

the digital radiographs, and the rigid-body coordinate file describing the relative 3D 

locations of the markers comprising the sparse object within a local coordinate system. 

All software was developed in C++ and ran on a personal computer equipped with a 

2.0 GHz processor and 1 GB of memory.
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Figure 2-3: Flow chart of algorithm for 3D tracking of sparse objects from 2D digital radiographs

Initialization Module

The initialization module provides three functions: the first is to initialize the 

location of marker projections as they appear in the image frame; the second establishes 

correspondence between each marker described by the rigid body model and their 

projections within the image frame; and the third is to acquire parameters that describe 

the size of each marker. All of this is accomplished through user interaction. The image
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frame input into the initialization module is loaded onto an interactive display (i.e. 

computer display and mouse). The software prompts the user to select the image location 

of each marker projection in the order corresponding to the list of 3D coordinates of the 

markers described in the rigid body file. This initializes the location of each marker 

projection as well as establishing correspondence between the markers in the 3D rigid 

body file and their respective projection within the image. The software additionally 

prompts the user to enter the radius of each marker. It is assumed that all markers within 

the sparse object are spherical in shape, and therefore a single parameter (i.e. the radius) 

is sufficient to describe the size of the marker. This parameter will be used in the marker 

identification and measurement module to aid in positive marker identification. Note, 

that initialization is only required for the first frame of a multi-frame image sequence, or 

if tracking failure is detected, in which case the algorithm has failed and must re-initialize 

beginning at the frame where tracking failure occurred.

Marker Position Prediction Module

The marker position prediction module serves an important function: predicting 

the location of each marker projection within the next frame of the image sequence from 

their locations in previous frames. This function is important for two reasons: it helps 

maintain correspondence between the 3D rigid body file and the marker projections 

throughout an image sequence, and it substantially reduces the search region of the 

marker identification and measurement module, which leads to significant savings in 

processing time. Even a highly optimized detection algorithm requires a significant 

amount of CPU time to search an entire image frame. By using the predicted locations 

determined within the marker position prediction module, only a local region surrounding
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the predicted location is searched in order to identify and measure the location of marker 

projection within the image frame.

Predicting the location of marker projections in new frames is accomplished by 

linearly extrapolating the 3D positions of markers determined from previous imaging 

frames. Linear extrapolation uses the two most recent samples to find the sparse object
* J Q

velocity, and predicts that it will maintain a constant velocity until the next frame. The 

predicted 3D location of the markers in the world coordinate system is given by the 

following formula,

xf = 2xf_x -  x f_2 (4)

where x/.j is the 3D position of markers within the world coordinate system determined 

from the previous image frame, and xf.2  is the 3D position of markers within the world 

coordinate determined from second past image frame. The predicted 3D location of the 

markers, xf, must then be projected onto the imaging plane using a perspective projection, 

based upon the known geometry of the perspective radiography system.

Although there are numerous techniques to predict motion, linear extrapolation 

was chosen due its simple implementation, and some assumptions made regarding the 

imaging modality and the intended applications. It was assumed that a high temporal 

resolution (i.e. 15 or 30 fps) would be employed during acquisition of the images, and 

that although the velocity of the sparse object may not be constant throughout the entire 

acquisition, its acceleration during a small time interval (encompassing several imaging 

frames) would be minimal. The assumption of constant velocity was therefore deemed to 

be adequate for providing a robust prediction result.
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Marker Identification and Measurement Module

The marker identification and measurement module finds all possible marker 

projections within each local search region, identifies that corresponding to the actual 

marker projection, and measures its location within the image frame. The structure of the 

module is presented in Figure 2-4. A square search window of size s x s  pixels, where s 

is set empirically, is centered at the predicted maker position determined in the previous 

module. In the case where the previous module was the initialization module, each search 

window is center about the locations selected by the user.

The search window is convolved with an inverted Laplacian of a Gaussian (LoG) 

convolution kernel, also referred to as a Mexican hat convolution kernel, that performs 

both edge enhancement and image smoothing when convolved with an image. The 

implementation of the inverted LoG kernel is based upon the implementation of the LoG 

within Matlab (The Mathworks Inc., MA, USA). The implementation of the LoG kernel 

in Matlab is described by the following function,

and produces a normalized LoG convolution kernel (i.e. the summation of all elements 

within the kernel is equal to one). The variables i and j  refer to the rows and columns of 

the convolution kernel respectively. The variable o  is the Gaussian standard deviation.

hg(i,j) = e (5)

(6)



The dimensions of the inverted LoG kernel are set to be proportionate to the radius of the

marker to be identified within the search window, and value for a  is set empirically.

CC Labeling

intensity parameters 
area
shape parameters

shape criterion 

area criterion

Figure 2-4: Flow chart of marker identification and measurement module, and example images processed.
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After LoG convolution, the search window is binarized using a threshold 

calculated from the intensity values of the convolved search window. The maximum gray 

level (g /m a x ) within the search window is located. The pixels in an area approximately 

equal to the magnified cross sectional area of the sparse object markers, and centered 

about the glmaK, are visited to find a local minimum gray level (g/mm). A threshold for the 

search window is calculated as follows

thres = glmn + y(g/max -  glmm) (7)

where the parameter y is set empirically. Pixels within the search window that have an 

intensity higher than the threshold are set to the foreground, while those with lower 

intensities are assigned to the background level. It is assumed that the markers of the 

sparse object will be made from a radio-opaque material; therefore their projections 

within a digital radiograph will be bright.

The foreground pixels of the resulting binarized search window are partitioned 

into connected components using an efficient connected components labeling algorithm. 

The algorithm differs from the classical approach by handling equivalences during the 

first scan through the image (or in our case the search window) by merging equivalent 

classes as soon as a new equivalence is found. The connected components labeling 

algorithm implemented within the marker identification and measurement module uses 

4-connectivity. Further details regarding the connected components labeling algorithm 

can be found in Di Stefano et al.30

Each component labeled within the search window is considered as a possible 

marker projection. Several parameters describing each component are gathered including
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its area in pixels, the outermost i and j  dimensions of the component, and several 

intensity-based parameters. The intensity-weighted centroid of each component is 

calculated using the pixel intensities of the original image as follows:

(8)

Jc (9)

The intensity-weighted centroid is calculated over all pixels within a component, where / 

and j  are the coordinates of the pixels in the component, and IltJ is the intensity of pixel i,j.

Once the parameters describing each labeled component within the search window 

have been gathered, each possible marker projection (i.e. labeled component) is subject to 

area and shape criteria. The area criterion is based upon the known cross-sectional area 

of the marker (calculated from the radius or each marker input during initialization), the 

pixel spacing of the image, and the approximated geometric magnification. If the area 

occupied by a component is outside a specified range, then it is discarded as a possible 

marker projection. The shape criterion is based upon the known spherical shaped of each 

marker and its radius. The distance from the calculated intensity-based centroid to the 

outermost pixels of the component is determined and compared to the magnified radius of 

the marker. If any of these distances is greater than the magnified radius, then that 

component is discarded as a possible marker projection.
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The remaining components that have satisfied both the area and shape criterion

are subjected to a weighted-ranking to determine which has the highest probability of

28being the actual marker projection.

rnktot = wdistrnkdist + w,rnk, + warearnkarea (10)

The total rank, rnkm , of a possible marker projection is based upon its several sub­

rankings. These sub-rankings are calculated as follows.

i) Distance rank - rnkdisu is based on the distance of each component to the 

predicted marker location (determined in the marker position prediction module). The 

component that is closest the predicted location receives the highest distance ranking.

ii) Intensity similarity rank - mkf. is based on the closeness in average 

intensity between a possible marker projection and the corresponding marker projection 

successfully identified in the previous image frame. The component with the average 

intensity closest to the corresponding maker successfully identified in the previous frame, 

receives the highest similarity ranking.

Hi) Area similarity rank - rnkarea: is based on the closeness in area (i.e. 

number of pixels) between a possible marker projection and the corresponding marker 

projection successfully identified in the previous image frame. The components with an 

area closest to the corresponding maker successfully identified in the previous frame, 

receives the highest area similarity ranking.

The variables Wdist, w i , and warea are the weighting factors assigned to each respective 

sub-ranking. The weighing factors are assigned empirically such that their sum is equal
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to one. The component within the search window that has the highest total rank, rnktot, is 

identified as the actual marker projection belonging to its corresponding marker within 

the 3D rigid body model. Its intensity-based centroid and other parameters collected 

during the module are retained for future use.

Initial Alignment Module

This module automatically provides an initial estimate of the six degree-of- 

freedom (DOF) pose of the sparse object for the first frame of an image sequence, as a 

starting point for the 3D-to-2D registration. Translations occurring parallel to the image 

plane (i.e. in-plane, x-y-direction) are initialized using the mean position of the measured 

centres of the marker projections (intensity-weighted centroids determine in previous 

module). The translation orthogonal to the image plane (i.e. out-of-plane, z-direction) is 

determined by estimating the magnification of the sparse object from the image. 

Rotations are initialized by iteratively rotating the rigid body model of the sparse object in 

90° increments to find the orientation that minimizes the distance between the measured 

centres of the marker projections, and position of the points of rigid body model projected 

onto the imaging plane after the applied transformation. Note, that the initial alignment 

module is only executed for the very first image in a sequence. The starting point for all 

subsequence image frames is set using the final six DOF pose determined from the 

3D-to-2D registration performed upon the previous image frame in the sequence.

3D-to-2D Registration Module

The 3D-to-2D registration module is an iterative and optimized solution to the 

projection-Procrustes registration problem. The implementation of the registration
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algorithm has previously been described by Hoffmann et al.,22 and Habets et al.25 The 

algorithm requires three sets of points: the rigid body file that describes the 3D location 

of each marker within its local coordinate system, the corresponding locations of the 2D 

marker projection centroids mapped into the 3D world coordinate system, and the 3D 

position of the x-ray focal spot within the 3D world coordinate system. Projection lines 

are defined between each of the 2D marker projection centroids and the 3D x-ray focus. 

The 3D pose of the rigid body points is iteratively modified until an optimized alignment 

between each point and its corresponding projection line is achieved. The criterion used 

to optimize the alignment is the minimization of the perpendicular distance between each 

marker and its corresponding projection line. This distance is defined as

4 - |  P,-(P,)r\ (ii)

where is the projection of the ith point of rigid body, P, , onto its corresponding 

projection line. This projection is given by

TO,-[((•(,]<, (12)

where /, is the unit vector that defines the direction from the ith 2D centroid to the x-ray 

focus. Best fit is achieved when the difference between the 3D poses of subsequent 

iterations is below a predefined threshold, or a maximum number of iterations is 

performed. Further details regarding the projection-Procrustes registration algorithm can 

be found in Hoffmann et al.,22 and Habets et al.25
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Tracking Failure Detection Module

This module detects whether a tracking failure has occurred, and if so it notifies 

the user, and re-initiates the tracking process beginning at the failed image frame. If any 

one of the following conditions is not meet, then it is deemed that tracking failure has 

occurred.

i) The number of marker projections successfully identified must be greater 

than or equal to four. If less than four marker projections are successfully identified then 

it is not possible to find a unique solution to the 3D-to-2D registration problem.

ii) The registration error, resulting from the 3D-to-2D registration, must be 

less then a predefined threshold. The registration error is calculated as the difference 

between the 3D points of the rigid body file, re-projected onto the image plane after the 

iterative registration process, and the measured centres of the marker projections within 

the image. If the registration error is unreasonable large (i.e. above the threshold) then 

registration process achieved sub-optimal results.

iii) The absolute motion of the sparse object between subsequent frames must 

be less than a calculated threshold. Since, the temporal resolution of the image 

acquisition is known, and the velocity of the sparse object can be approximated, it is 

possible to estimate the extent of movement of the sparse object between subsequent 

frames. If the absolute motion of the sparse object between subsequent frames is above 

the calculated threshold, then this is an indication that the registration results are

erroneous.
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2.2.3 Phantoms

The validation and testing of the above-presented tracking technique was 

performed through a series of in vitro experiments. Two phantoms were fabricated for 

the in vitro experiments: an acrylic plate containing a regularly spaced grid of 

hemispherical divots on its surface, and a stylus-like phantom used to mimic the function 

of a pointer tool (Figure 2-5). The divots on the grid phantom, machined on a numerical 

mill with a ball-end cutter, have a diameter 3.18 mm and are spaced at 20 ± 0.050 mm 

intervals. The stylus phantom is a sparse object comprising of two rigidly attached 

components: an acrylic cube with five implanted tungsten-carbide (TC) ball bearings 

(BB), each with a diameter of 1.59 mm; and an acrylic pointer, 85 mm in length with a 

3.18 mm in diameter, stainless steel BB rigidly attached to its end, which acts as a tool 

tip. The BB’s in the acrylic cube are arranged in a known manner. Four of the BB’s are 

situated at the lower vertices of the 20 x 20 x 20 mm3 cube and the fifth is offset 10 mm 

from one vertex. TC BB’s were used within the phantom to maximize the contrast 

between the markers and the background, while being compact and symmetric to 

maintain x-ray flux independent of marker orientation relative to the x-ray source. The 

stylus phantom was scanned on a GE Explore Locus Ultra micro-CT scanner at 120 kVp, 

20 mA, and an isotropic voxel spacing of 150 pm to geometrically characterize the 

locations of each BB (i.e. to generate the rigid-body file required for algorithm input). 

The centroid of each BB was determined to sub-voxel accuracy using the semi-automatic 

centroiding algorithm available in the GE MicroView software package.
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Figure 2-5: Phantoms manufactured for in vitro experiments: a) Grid phantom, manufactured from an 
acrylic plate, contains hemispherical divots; b) Stylus phantom, made to mimic function of a pointer tool.

2.2.5 Assessment of Accuracy and Precision

In image-guided procedures, it is important to measure the accuracy and precision 

o f localizing point targets in 3D space.32,33 The procedure used to assess the accuracy and 

precision of localizing targets, using the stylus phantom and single-perspective 

projections, is similar to that described by West et al.,33 who applied it to optically tracked 

tools. A subset of divots (i.e. targets) within the acrylic grid phantom was selected for the 

assessment. The tool tip of the stylus phantom was placed at a random orientation in each 

of the selected divots, the grid phantom being kept stationary throughout the experiment. 

At each divot location a series of 30 measurements of the 3D location of the tool tip was 

obtained. Accuracy was assessed using the root-mean-square (RMS) target registration 

error (TRE) obtained from registering the measured tool tip locations to the known 

geometry of the grid phantom, which was provided by its CAD model. The registration 

between the measured tip locations and the CAD model of the grid phantom was 

performed five times using measurements selected randomly out of the thirty acquired at

each divot locations. The mean result of the RMS TRE across the five trials was used to
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quantify accuracy. Precision was assessed as the mean of the standard deviation (SD) of 

the 30 repeated measurements of the tool tip location obtained at each divot location.

This procedure was performed on both an XRII-based radiography system, and a 

radiography system equipped with a FP detector for comparative purposes (see sections 

§1.3.1 & §1.3.2). The image acquisition, measurement, and registration procedure was 

performed twice upon each radiography system: first with images acquired in the 

anterior-posterior (AP) view, and again with images acquired in the left-anterior-oblique 

(LAO) view. A Siemens Multistar x-ray C-arm unit, equipped with an x-ray image 

intensifier (XRII), and a GE Innova 4100 x-ray C-arm unit, equipped with a flat-panel 

(FP) detector, were the two radiography systems utilized for image acquisition purposes. 

The perspective geometry of the Siemens Multistar had been well characterized in 

previous studies that utilized this specific radiography system for computed tomography 

acquisitions.34,35 This previous knowledge was utilized to establish the relationship 

between the image plane and the world coordinate system, and establish the 3D location 

of the x-ray focus. A 3 x 3 subset of divots was selected for the assessment performed 

with the Multistar. Projections were acquired on the Multistar (equipped with an XRII) 

using a 280 mm field of view (FOV), a potential of 90 kVp, and exposure of 1 mAs 

(Figure 2-6a,b). These acquired projection have a matrix size of 440 x 440, an isotropic 

pixel spacing of 0.54 mm, and a pixel depth of 10 bits. Bright-field correction and 

geometric distortion correction were applied to all images acquired on the Multistar to 

correct for the non-uniformities of the XRII.34,36

The perspective geometry of the GE Innova 4100 was reconstructed by acquiring 

images of a commercial Radiostereometric Analysis (RSA) calibration cage (Lund Knee
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Box, RSA Biomedical, Umea, Sweden). These images were processed using commercial 

RSA software (UmRSA, RSA Biomedical, Umea, Sweden) to establish the 

transformation between the image and world coordinate systems, and to determine the 3D 

position of the x-ray focus (see section §1.4.4). A 4 x 4 subset of divots was selected for 

the assessment performed with the Innova 4100. Projections were acquired on the Innova 

4100 (FP detector) using a 200 mm FOV, a potential of 50 kVp, and an exposure of 

3 mAs (Figure 2-6c,d). These acquired projections have a matrix size of 1000 x 1000, an 

isotropic pixel spacing of 0.2 mm, and a pixel depth of 12 bits.

Figure 2-6: Experimetal setup for assessment of accuracy and precision: a) Siemens Multistar C-arm 
equipped with x-ray image intensifier (XRII) with phantoms inside field of view (FOV). b) Close-up of 
phantom setup within FOV of XR11. c) GE Innova 4100 C-arm with flat-panel (FP) detector with phantoms 
inside the FOV. d) Close-up of phantom setup within FOV of the FP detector.
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In addition to the assessments performed upon the radiography systems, an 

additional assessment was performed using an optical tracking system (OTS) (Polaris 

Viera, Northern Digital Inc., Waterloo) to provide a standard of comparison. OTS are 

very robust, and are typically the preferred tracking system for computer-aided surgery 

suites. The Viera has a manufacturers stated accuracy of 0.25 mm. A passive optical 

tracking frame was manufactured, characterized, and rigidly attached to the stylus 

phantom (Figure 2-7a). A 4 x 4 subset of divots upon the grid phantom was used for the 

assessment, and 30 measurements of the tool tip were obtained at each divot location 

using the optical tracking system (Figure 2-7b). Accuracy and precision were quantified 

in the same manner as outlined above. To compare the results of the assessments 

performed using the radiography systems (XRI1 and FP), with those performed using the 

OTS, statistical analysis was conducted using a statistics software package (Prism 4, 

GraphPad Software Inc., CA, USA). A one-way analysis of variance (ANOVA) followed 

by a Tukey post-hoc test was performed to identify any statistically significant 

differences.

Figure 2-7: Assessment of accuracy and precision using an optical tracking system: a) Passive optical 
tracking frame rigidly attached to stylus phantom, b) Stylus phantom secured in a divot of the grid 
phantom. The location of the stylus is measured by the optical tracking system via the passive optical 
tracking frame attached to the stylus.
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2.2.6 Dynamic Tracking Assessment

To provide a proof-of-principle demonstration of the technique and its ability to 

track sparse objects from single-perspective projections, a dynamic tracking assessment 

was performed. For the dynamic tracking experiment an anatomical skull phantom was 

implanted with six tantalum BBs, each 1 mm in diameter. A CT scan of this phantom 

was acquired on a 64 slice clinical CT scanner at 120 kVp, 400 mA, and a voxel spacing 

of 0.488 x 0.488 x 0.625 mm, from which the locations of the BBs were determined to 

sub-voxel accuracy. During the tracking experiment, several point targets within the skull 

phantom were localized sequentially with the tool tip of the stylus phantom while it was 

simultaneously tracked using single-perspective projections, acquired at a rate of 15fps 

using the FP radiography system (GE Innova 4100), as well an OTS (NDI Polaris Viera) 

that recorded the position a rigidly attached passive optical tracking frame at a frequency 

of 20 Hz (Figure 2-8). The perspective projections were acquired using a cine 

acquisition (15 fps), a 200 mm FOV, an x-ray potential of 65 kVp, and a low exposure of 

0.1 mAs, which was used to mimic the low dose levels of a fluoroscopic acquisition. The 

acquired projections have a matrix size of 1000 x 1000, an isotropic pixel spacing of 

0.2 mm, and a pixel depth of 8 bits. The perspective geometry of the radiography system 

was reconstructed through use of a RSA calibration cage, as previously discussed.
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Figure 2-8: Setup of dynamic tracking experiment: a) localization of point targets within the skull 
phantom with tool tip of stylus phantom, b) Stylus phantom with rigidily attached passive optical tracking 
frame. Stylus was simultaneously tracked using the single-perspective projections, and optical tracking 
system.

In order to use the measurements made by the OTS to validate the tracking by 

means of single-perspective projections, it was necessary to map the 3D measurements 

made from both the single-perspective projections, and the OTS into a common 

coordinate system. To do this, the stylus was placed at five locations within the volume 

defined by the overlap between the FOV and tracking volume of the FP C-arm and OTS, 

respectively. At each location, 30 measurements of the 3D position of the tool tip of the 

stylus were made using both the OTS, and single perspective projections acquired on the 

FP radiography system. These projections were acquired using a 200 mm FOV, an x-ray 

potential of 50 kVp, and an exposure of 3 mAs. The mean position of the measurements 

obtained at each location was used to generate two point sets: one within the coordinate 

system of the OTS, and the other in the radiography system’s frame of reference. A rigid, 

3D-to-3D, point-based registration was performed between the two corresponding point 

sets to determine the transformation that aligned the coordinate system of the OTS to the

msamam
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coordinate system of the radiography unit.27 This transformation was applied to all 

subsequent measurements made by the OTS.

After the measurements made by the OTS systems were transformed into the 

coordinate system of the radiography unit, an additional processing step was performed to 

directly compare the two measurement sets. Because the acquisition from the 

radiography system was not synchronized to the measurement acquisition of the OTS, 

and because each system acquired data at different frequencies, it was necessary to 

resample each measurement set to a higher sampling frequency, and to synchronize them 

to common start points. To resample, and synchronize the two measurement sets, a linear 

interpolant was fit to each using curve fitting software (Matlab curve fitting toolbox, 

Mathworks Inc., MA, USA). The resulting piecewise curves were each resampled to a 

frequency of 60 Hz, and the time shift required to synchronize them was found by 

minimizing the distance between common points identified in each curve. The resampled 

and synchronized data were used to validate the position of the tool tip of the stylus 

throughout the tracking experiment, from which the RMS difference between the tracked 

positions of the tool tip of the stylus as measured by the OTS, and from the acquired 

single-perspective projections was determined.

2.2.7 Visualization

Visualization plays a veiy important role in image-guided procedures, as it is one 

of the primary interfaces between a patient and the interventionalist.37 The purpose of 

visualization is to provide a realistic representation of the patient and interventional 

environment, and to accurately guide the interventionalist to the treatment target.37 To
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achieve this, visualization environments often incorporate both preprocedural and 

intraprocedural imaging modalities, along with tracking information. To visualize the 

localization of the targets within the skull phantom by the stylus during the dynamic 

tracking experiment, a 3D virtual environment was created to incorporate the cine 

projections acquired during the experiment, virtual models of the skull and stylus 

phantoms, and the 3D tracking data measured from the perspective projections.

The virtual environment was created using custom C++ scripts developed from 

open-source visualization classes38 (Visualization ToolKit, Kitware Inc., NY, USA). The 

virtual models of the skull and stylus phantom were obtained from the CT scans that were 

acquired of each phantom. CT analysis software (GE MicroView) was used to extract 

surface models of the skull and stylus that could be uploaded into the virtual environment. 

The locations of the imaging plane and the x-ray source were reconstructed within the 

virtual environment using the data obtained from the reconstruction of the perspective 

geometry of the x-ray system through use of the RSA calibration cage. Because the skull 

phantom was implanted with tantalum BBs, its 3D pose within the world frame of 

reference could be determined from the acquired projection images using the above- 

presented algorithm (see section §2.2.2). This information was in turn used to register the 

surface model of the skull into the virtual environment. The surface model of the stylus 

phantom was registered this space using the tracking data obtained from the cine 

projections acquired during the dynamic tracking experiment. All of this information was 

combined to virtually represent the environment of the dynamic tracking experiment, and 

reconstruct the motion of the stylus phantom as it dynamically localized targets within the 

skull phantom.
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2.3 Results

2.3.1 Accuracy and Precision Assessment

A summary of the results from the assessment of accuracy and precision are 

shown in Figure 2-9. Accuracy was quantified using the RMS TRE of the registrations 

between the measured target locations and known geometry (CAD model) of the divots 

upon the grid phantom. The RMS TRE associated with target measurement procedure 

performed using the OTS, and the XRII and FP radiography systems were better than 

0.22 mm, 2.3 mm and 1.1 mm, respectively (Figure 2-9a). Precision was quantified 

using the standard deviation of repeated measures made on the 3D position of the tool tip. 

The precision of measurements made using the OTS, the XRII and FP radiography 

system were better than 0.04 mm, 0.68 mm and 0.16 mm, respectively (Figure 2-9b). 

Both the RMS TRE and the precision are plotted in terms of in-plane (i.e. measurements 

made parallel to the imaging plane), and out-of-plane (i.e. measurements made orthogonal 

to the imaging plane, in the direction joining the x-ray focal spot and detector plane).
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OTS XRII - AP XRII - LAO FP - AP FP - LAO

Figure 2-9: Summary of accuracy and precision assessment performed with the optical tracking system 
(OTS), and single-plane tracking using x-ray image-intensifier (XRII) and flat panel (FP), with image 
acquisition performed in both anterior-posterior (AP) and left anterior oblique (LAO) views. The results 
are reported in terms of measurements made inplane and out-of-plane, a) The root-mean-square (RMS) 
target registration error (TRE) of the registration between the measured tool tip locations and the known 
geometry of divots upon the grid phantom, b) The precision of repeeated measurements made using each 
system. The precision was quantified using the standard deviation of repeated measurements of the location 
of the tool tip of the stylus.
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A more detailed review of the results of the accuracy assessment is presented in 

Figure 2-10, which show the results of the statistical analysis performed to identify 

statistically significant differences (p < 0.05) between the accuracy of measurements 

performed using the radiography systems (XRII and FP), with those performed using the 

OTS. The mean and standard deviation (error bars) of the TRE associated with each 

assessment are plotted in the in-plane (Figure 2-10a) and out-of-plane (Figure 2-10b) 

directions.

Figure 2-10: Statistical analysis of accuracy assessment performed on the optical tracking system (OTS), 
and single-plane tracking using x-ray image-intensifier (XRII) and flat panel (FP), with image acquisition 
performed in both anterior-posterior (AP) and left-anterior-oblique (LAO) views. Accuracy was quantified 
using the target registration error (TRE) of the registration between the measured tool tip locations and the 
known geometry of divots upon the grid phantom, a) Inplane target registration error (TRE); b) Out-of- 
plane TRE. * represents a statistically significant difference (p < 0.05) when compared to the OTS.
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A more detailed review of the results of the precision assessment is presented in 

Figure 2-11, which show the results of the statistical analysis performed to identify 

statistically significant differences (p < 0.05) between the precision of measurements 

performed using the radiography systems (XRII and FP), with those performed using the 

OTS. The mean and standard error (error bars) of the precision associated with each 

assessment are plotted in the in-plane (Figure 2-1 la) and out-of-plane (Figure 2-1 lb) 

directions.
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Figure 2-11: Statistical analysis o f precision assessment performed on the optical tracking system (OTS), 
and single-plane tracking using x-ray image-intensifier (XRII) and flat panel (FP), with image acquisition 
performed in both anterior-posterior (AP) and left-anterior-oblique (LAO) views. Precision was quantified 
using the standard deviation o f repeated measurements of the location o f the tool tip of the stylus, a) 
Inplane precision; b) Out-of-plane preicision. * represents a statistically significant difference (p < 0.05) 
when compared to the OTS.
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2.3.2 Dynamic Tracking Assessment

The results of the dynamic tracking assessment found that the RMS tracking error, 

determined by comparing the trajectories of the tool tip of the stylus phantom as 

measured from the single-perspective projections acquired with the FP radiography 

system, and by the OTS (standard reference), was 2.1 mm. The trajectory of the tool tip 

of the stylus, as measured by both the OTS and single-plane tracking using the FP 

detector, is plotted as the x-translation (Figure 2-12a), y-translation (Figure 2-12b), and 

the z-translation (Figure 2-12c). The RMS error is reported for each trajectory, and was 

quantified using the difference between the two curves calculated at every frame.

2.3.3 Algorithm Performance

During the dynamic tracking experiment an image sequence, comprising 

approximately 450 projections, was acquired. These 2D projections were processed using 

the above presented algorithm (see section §2.2.2) to track the position of both the stylus 

and skull phantom in 3D space. The algorithm experienced a failure rate of 

approximately 4% (i.e. image frames in which tracking failed -  see section §2.2.2) while 

tracking the stylus phantom from the acquired projections. A failure rate of 0% was 

experienced while tracking the skull phantom (which was stationary throughout). The 

values of the empirically set variables, as listed within the equations in section §2.2.2, 

employed to achieve these rates are listed in Table 2-1. Automatic identification of 

marker projections and measurement of their 2D centroids by the marker identification 

and measurement module required approximately 100 ms per frame. Calculation of the 

3D pose of each phantom by the 3D-to-2D registration module required approximately
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50 ms per image frame, initialization by the users required approximately 10 seconds, and 

determining an initial pose of the sparse object for the first image frame by the initial 

alignment module required less than 5 seconds.

Table 2-1: Employed values of empirically set variables listed within the equations of section §2.2.2

Variable Value Description Equation No.

a 2.2 Gaussian standard deviation of inverted Laplacian 
of a Gaussian convolution kernel 5 & 6

Y 0.5 Scale factor (0 -  1) of gray level threshold 7
Wdist 0.6 Weighting factor of distance ranking 10

W j 0.2 Weighting factor of intensity similarity ranking 10
W area 0.2 Weighting factor of area similarity ranking 10

2.3.4 Visualization

Snapshots of the visualization of the dynamic tracking experiment are presented in 

Figure 2-13 and Figure 2-14. Figure 2-13 shows the reconstruction of the intra­

procedural setup (i.e. projection geometry of the radiography system and location of the 

skull phantom) of the dynamic tracking experiment within the 3D virtual environment. 

The geometry of the perspective x-ray imaging system was reconstructed to include the 

3D position of the 2D imaging plane, and x-ray source. The skull phantom was 

reconstructed using a surface model extracted from an acquired CT volume of the 

phantom, and its position from the tracking data determined from the single-perspective 

projections. Figure 2-14 shows the localization of each of the targets within the skull 

phantom with the tool tip of the stylus. Frames from the acquired sequence of 2D 

projection images are shown within the first row of the figure, and the corresponding 3D

reconstructions within the virtual environment are shown below.
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F ra m e

Figure 2-12: Assessment of dynamic tracking using optical tracking system (OTS) as standard reference to 
validate single-plane tracking using the flat panel (FP) detector. Comparsion of the tool tip trajectory 
during the localization of targets within the skull phantom with the tool tip of stylus in: a) X translation, 
b) Y translation, c) Z translation. The root-mean-square (RMS) error is reported for each translational 
component. The RMS error was calculated using the differences between each curve at every frame.



Figure 2-13: Snapshots of the 3D virtual environment at various camera angles, showing the projective 
geometry of the perspective x-ray system, respective positions of imaging plane and x-ray source, and 
position of skull phantom within the x-ray field of view. Several close-up views of the surface model of the 
skull phantom are also presented.



Figure 2-14: Two-dimensional projections acquired during dynamic tracking experiment (first row), and 
corresponding snapshots of the 3D virtual environment (second and third rows) during target localization.
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2.4 Discussion

The results of the accuracy and precision assessment show several general trends. 

Firstly, both the accuracy and precision of target localization using single-perspective 

projections are significantly better in the in-plane directions compared to the out-of-plane 

direction (Figure 2-9). The decrease in accuracy and precision in the out-of-plane 

direction can be attributed to the perspective geometry of the imaging system, where the 

greatest localization uncertainty lies in out-of-plane direction. A relatively large 

translation (i.e. several mm) of the sparse object in the out-of-plane direction only has a 

small impact on the resulting change in geometry magnification within the acquired 2D 

perspective projections. However in the in-plane directions, translations can be measured 

more accurately due to the resolution of the acquired projections. All of the 2D 

projections acquired during the experiment had sub-millimeter pixel spacing; therefore it 

is intuitive to be able to localize our sparse object markers with a sub-pixel accuracy and 

precision in the in-plane directions, which is reflected in the results. This decreased 

accuracy and precision of localization in the out-of-plane direction has been noted in 

other studies that have utilized single-perspective projections for measurement and

IQ  77 2S 10 40registration purposes. ’ ’ ’ ’

The second trend evident within the results of the accuracy assessment is that the 

TRE is significantly affected by the acquisition view; most notably with the accuracy 

assessment performed using the XRII (Figure 2-10). In general, the accuracy was 

significantly better when acquiring images in the AP view. This can be attributed to the 

anisotropic distribution of the markers of the sparse object, which causes the localization
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accuracy to be dependant on the orientation of the sparse object with respect to the 

imaging plane. Due to the experimental setup, the sparse object was in a more favorable 

orientation (i.e. long axis of stylus aligned orthogonal to the image plane) during the 

assessments performed utilizing the AP views, which lead to a significantly better TRE.

This trend of accuracy being dependant on the sparse object orientation was not as 

prevalent within the results of the precision assessment (Figure 2-11). The measurements 

made using the FP detector did not show any significant difference in precision between 

the two viewing angles. Although there was a significant difference noted in the 

precision of measurements made with the XRII between the two viewing angles, the 

difference was less than several hundred microns, and therefore negligible. The 

independence of the precision of measurements and the orientation of the tool is expected 

and can be explained by the main factor limiting the precision. The main source of 

variation (or imprecision) between the repeated measurements made during the precision 

assessments was the noise present within the acquired projection images. Since the 

projections acquired in both the AP and LAO views were acquired with the same imaging 

parameters, it is expected that the noise levels within those images would be similar, and 

therefore the precision of the measurements to be consistent, irrespective of the projection 

view.

Also, the results show that the accuracy and precision of measurements performed 

using the FP detector were significantly better than those performed using the XRII 

(Figure 2-9). Although the differences in the accuracy and precision of measurements 

made in-plane (Figure 2-10a & Figure 2-1 la) were negligible, the differences are clearly 

evident, and significant when comparing the accuracy and precision of measurements
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made in the out-of-plane direction (Figure 2-10b & Figure 2-1 lb). The improved 

performance when utilizing the FP detector for image acquisition can be attributed to a 

number of advantageous characteristics associated with a FP detector when compared to 

the XRII (see section § 1.4). The main advantage of the FP detector is that it is inherently 

free of any geometric distortions, and although the images acquired using the XRII were 

corrected for geometric distortions and non-uniformities, the correction is imperfect, and 

residual errors within the corrected images remain.34,36 These residual errors degrade the 

accuracy and precision of single-plane tracking. Additionally, the FP detector has a 

higher resolution (i.e. finer pixel spacing) than the XRII. This higher resolution allows 

the centroids of the 2D marker projections to be measured with a higher precision, 

leading to an improved accuracy and precision when localizing the sparse object from a 

single-perspective projection.

Finally, the results verified an expected outcome: the accuracy and precision of 

measurement made with the OTS, the gold standard, were higher than those made using 

the single-perspective projections (Figure 2-9). Although there was no significant, or 

relevant, difference in the accuracy and precision of the measurements made in-plane 

(Figure 2-10a & Figure 2-lla), the accuracy and precision of measurements made in the 

out-of-plane directions were significantly higher with the OTS compared to the other 

methods (Figure 2-10b & Figure 2-1 lb). This reflects that the fact that the OTS 

localizes its optical fiducials through triangulation from two views, whereas the single­

plane tracking only has one. This second view supplements the lack, or insensitivity, of 

information available in the out-of-plane direction thereby improving the accuracy and 

precision of measurements made in this direction.
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The results of the dynamic tracking assessment reflect the trend previously noted 

from the assessment of accuracy and precision. The tracking accuracy in the in-plane 

directions (Figure 2-12a,b) is significantly better than that in the out-of-plane direction 

(Figure 2-12c). Since the results of the assessment of accuracy show that there was no 

significant difference in the accuracy of measurements made inplane between the OTS 

and single-perspective projection acquired using the FP detector (Figure 2-10a), the 

inplane RMS tracking error (Figure 2-12a,b) can be viewed as a combination of errors 

contributed equally from both tracking systems. The majority of the RMS tracking error 

in the out-of-plane direction is contributed by the single-plane tracking, as the OTS has 

significantly higher measurement accuracy in this direction (Figure 2-10b). The large 

frame-to-frame variation in the out-of-plane translation determined from the projection 

acquired using the FP detector (Figure 2-12c) can be partly attributed to the low exposure 

(0.1 mAs) used during image acquisition. The low exposure resulted in higher noise 

levels within the acquired projections, which in turn propagate into the solution of the 

out-of-plane translation. It would be possible to further reduce the tracking error in the 

out-of-plane direction through implementation of either low pass filtering, or a moving 

average through the sliding window technique, which would in either case act to smooth 

the data of the z translation by removing some of the unwanted noise from the solution.

It is important to note that both the results of the accuracy and precision 

assessment, and the dynamic tracking assessment, are specifically related to the design of 

the sparse object. Changing the number and geometric configuration of the markers 

within the sparse object would result in different accuracies and precision in localizing it
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from a single-perspective projection.22,25 This same principle applies to the optical 

tracking system and to the design of the optical tracking frame.41

The algorithm performed with a sufficiently low failure rate to enable seemingly 

continuous tracking of both the stylus and skull phantom from the projections acquired 

during the dynamic tracking experiment. The tracking failures that were encountered 

arose mainly from the occlusion of markers by higher density areas of the boney skull 

phantom, which prevented the 3D-to-2D registration module from calculating a 

transformation (requires at least 4 non-coplanar points). Therefore, optimizing the 

acquisition protocol, to further increase the contrast between the markers of the sparse 

object and higher density anatomical structures, would further reduce the failure rate. 

Note, that the radiography system used for the dynamic tracking experiment was installed 

with preset acquisition protocols (clinical protocols), and did not allow the input of 

custom acquisition parameters.

The algorithm also demonstrated the ability to process image frames in sub­

second time. Its current implementation, on a personal computer, achieved a throughput 

of approximately 4 image frames per second after the initialization process. With further 

optimization of the source code, and implementation on dedicated hardware, real-time 

processing of the acquired image frames is realizable. Several commercial tracking 

systems exist that process stereo camera images for real-time tracking applications 

(MicronTracker, Claron Technologies Inc., CA).

To fully automate the algorithm, the problem of establishing correspondence 

between the rigid-body model of the sparse object, and the 2D marker projections within
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the image frame must be addressed. In the current implementation of the algorithm the 

users sets the correspondence manually. This process could be automated through a 

combination of careful design of the sparse object (i.e. unique marker sizes and 

geometry), and automated algorithms that establish correspondence using unique 

geometric constraints.42"44 However, this problem is outside the scope of the study and 

will be left to future work.

The snapshots of the visualizations and 3D virtual environment are an example of 

how intraoperative imaging can be augmented with preoperative data, such as CT 

volumes, and tracking data to provide 3D context and navigation in an interactive 

environment (Figure 2-13 & Figure 2-14). The process of registering the preoperative, 

intraoperative, and tracking data into a common coordinate system is a crucial step in 

providing an accurate representation of the interventional environment.37 In our case, this 

registration was determined directly from the acquired intraoperative images (i.e. 

acquired 2D projections) by means of the 3D-to-2D registration algorithm presented 

above (see section §2.2.2). This step inherently registers both the preoperative data and 

tracking data into the intraoperative imaging coordinate system in one step. The use of 

virtual environments to augment intraoperative imaging has been explored for numerous 

applications including intracardiac interventions,45 abdominal procedures,46

neurosurgery,47 and various orthopaedic procedures.48
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2.5 Conclusions

This study has demonstrated the feasibility of tracking sparse objects in 3D space 

from single-perspective, 2D projections for purposes of image-guidance during 

interventional procedures. Better performance was achieved using the FP detector for 

image acquisition when compared to the XRII. The accuracy and precision of target 

localization was better than 1.1mm and 0.16 mm, respectively when using the FP 

detector for image acquisition, while the dynamic RMS tracking error was 2.1 mm when 

using an OTS as a standard reference. Most of the inaccuracies and imprecision in target 

localization and tracking were contributed by errors in out-of-plane localization. The 

OTS achieved higher levels accuracy and precision, as expected. However, the accuracy 

achieved using single-perspective projections are relevant for numerous applications, and 

could potentially be used to augment - or to replace - an OTS during procedures in which 

line-of-sight issues arise.
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3 Dynamic Measurement o f Joint Kinematics using 
Single-perspective Projections

3.1 Introduction

The ability to measure the kinematics of a joint during a dynamic activity in vivo, 

with a high degree of accuracy, has numerous orthopaedic applications. These include 

assessing joint function following corrective surgery,1 comparing different treatment 

options and therapies,2 and understanding the pathology of musculoskeletal disorders and 

injuries. For example, abnormal motion of the knee joint has been widely accepted as the 

cause of chondromalacia,4 and has been attributed to the cause and progression of 

osteoarthritis.5,6 A tool with the ability to measure the kinematics of a joint during a 

dynamic test of its function would be invaluable in a clinical setting, for diagnosis and for 

evaluating treatment options. Conventional techniques that have been employed to 

measure in vivo joint kinematics involve the use of optoelectronic cameras to track the 

motion of markers attached to the skin.7 However, the motion of these skin markers is not 

an accurate representation of the motion of the underlying bone structures.8

Direct measurement of the underlying bone structures is preferred when accuracy 

is a necessity. Numerous methods have been proposed, and used experimentally, to
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directly measure the motion of bone structures of a joint. These include the use of optical 

tracking frames attached to the ends of intra-cortical pins implanted directly into the bone 

structure,9 magnetic resonance imaging (MRI),10'12 and biplane radiography.413,14 

Although each of these techniques can measure joint kinematics with a high degree of 

accuracy, each is accompanied by its own set of limitations. Implanting intra-cortical 

pins into the bone structures of a joint is an invasive procedure that carries risk of 

infection for a patient.15 MRI is limited by the confines of the close-bore design, which 

restricts the range of motion, and require specialized apparatus to apply load to a joint.16 

Biplane radiography systems are relatively limited in their availability, and are subject to 

the technical challenge of ensuring that the joint of interest remains within the working 

volume defined by the intersection of the two x-ray beams throughout a specified 

motion.14 For these reasons, the majority of these techniques currently remain as 

specialized research tools and have yet to be implemented inside the routine clinical 

environment.

Since single-plane radiography systems are widely available, they are not subject 

to these limitations, are routinely used in many clinics, and have an increased working 

volume compared to both MRI and biplane radiography systems. Several techniques 

have been proposed to measure kinematics of the joint during a dynamic motion using 

single-perspective projection images.17'20 Marker-based techniques, originating from 

roentgen stereophotogrametric analysis21 (RSA), employ 3D-to-2D registration between 

known models of radio-opaque markers, implanted into skeletal segments, and their 

corresponding projections in radiographic images to derive kinematics. This single-plane 

technique has been referred to by numerous names including: roentgen single-plane
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photogrammetric analysis19 (RSPA), marker configuration model-based roentgen 

fluoroscopic analysis20 (MCM-based RFA), and hybrid RSA and fluoroscopy.22 Previous 

validations of this single-plane technique have made use of computer simulations,19,20 

simultaneous measurements made on a static cadaver knee using both fluoroscopy and 

RSA,23 dynamic zero-displacement phantom measurements,20 and static micrometer- 

based anatomical phantoms of the hip and knee.22 However, it remains unclear whether 

measurements made on a static phantom provide an acceptable representation of the 

dynamic case. Additionally, all previous phantom studies have employed intensifier- 

based radiography system. ’ ’ With the recent wide-spread implementation of digital 

flat-panel (FP) x-ray detector technology,24 several improvements over image intensifiers 

are realized, including: improved image quality, no inherent geometric distortion, and 

reduced dose. These improvements potentially increase the accuracy of single-plane 

kinematic measurements, making it more viable to implement in the clinic.

The purpose of this study is to validate the technique of dynamically measuring 

joint kinematics using single-perspective projections. The technique is validated through 

in vitro experiments to assess its accuracy and feasibility. All assessments were 

performed on a clinically available digital flat-panel radiography system to demonstrate 

the suitability of using FP detector technology to measure joint kinematics. An 

anatomically relevant phantom was used in both static and dynamic conditions to perform 

these assessments. Dosimetry was performed to estimate the effective dose of ionizing 

radiation imparted to the subject during the measurement procedure, to ensure it is within 

clinically acceptable levels. Additionally, a method to register computed tomography
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(CT) volumes to the measured kinematics is presented towards the applications of 

estimating joint contact area, biomechanics modeling, and visualization.

3.2 Methods

3.2.1 Measurement of Kinematics from Single-perspective Projections

The algorithm implemented to measure joint kinematics from single-perspective 

projection is based upon the solution of the projection-Procrustes registration 

problem.25,26 The solution of the projection-Procrustes registration problem determines 

the optimal 3D-to-2D registration between known sparse objects and their corresponding 

projections in 2D radiographs. In the case of joint kinematic measurement, the sparse 

object is a joint implanted with radio-opaque markers. Both the relative location of the 

markers, implanted into the joint, and the geometry of the perspective radiography 

system, must be known a priori to solve the registration problem. Common methods 

used to establish a local coordinate system describing the relative 3D locations of radio- 

opaque markers within a rigid body include RSA, ’ and computed tomography. The 

projective geometry of a single-plane imaging system can be determined using the same 

procedure that is employed in RSA, which uses a calibration cage (see sections §1.4.3 and 

§1.4.4).21 A more thorough review of the projection-Procrustes registration problem, and 

implementation of the algorithm that determines the 3D-to-2D registration enabling 

tracking of sparse objects from single-perspective projections are presented in the Chapter 

2 (sections §2.2.1 & §2.2.2). All software was developed in C++ and ran on a personal 

computer equipped with a 2.0 GHz processor and 1 GB of memory.
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3.2.2 Anatomical Model

An anatomical tibio-femoral model (Sawbones Model #4000-3, Pacific Research 

Laboratories Inc., WA, USA) was employed in all in vitro  experiments. The model 

consists o f two rigid plastic segments that mimic the boney structures of the knee joint. 

Each segment was implanted with 8 spherical, tantalum markers, each 1 mm in diameter 

(Figure 3 -1 a). The markers were inserted into the distal femur and proximal tibia o f the 

knee model, in a distribution that would be encountered in human subjects recruited for a 

RSA clinical study. The markers were inserted such that their distribution was well 

conditioned." A local coordinate system, defining the relative locations of implanted 

markers, was generated through a conventional RSA examination (Figure 3-lb,c) of the 

knee model using commercial RSA software (UmRSA, RSA Biomedical, Umea, 

Sweden). This local coordinate system was needed to produce the rigid-body file 

required as input to the registration algorithm.

Figure 3-1: a) The tibio-femoral knee model used for in vitro experiments. Eight tanatalum markers, each 
I mm in diameter, were implanted into both the distal femur and proximal tibia of the knee model. b,c) 
Stereo projections acquired during radiostereometric analysis (RSA) examination used to determine relative 
locations of the markers.
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3.2.3 Imaging Equipment

A floor-mounted C-arm radiography system equipped with a digital flat-panel 

detector (Innova 4100, General Electric, WI, USA) was used throughout the study to 

acquire images. The viewing mode of the detector, utilized throughout the study, 

acquires projections of IK x IK pixels in dimension, over a 20x20 cm2 field-of-view 

(FOV). The pixel depth of the image is dependent on the frame rate of the acquisition. 

Frame rates of 7.5 frames per second (fps) or less; result in projections with al2-bit pixel 

depth. Frame rates of 15 fps or more; have an 8-bit pixel depth. Because digital flat 

panel detectors contain no inherent geometric distortion, unlike conventional XRIIs, it 

was not necessary to implement any additional distortion-correction algorithm. In 

previous single-plane studies, which employed intensifier-based radiography systems, 

correction of geometric distortion was very important to ensure accurate results.20,22 

Before each experiment, the perspective geometry of the radiographic system was 

determined using a commercial RSA calibration cage (Fund Knee Box, RSA Biomedical, 

Umea, Sweden) (see section §1.4.3 & §1.4.4).

3.2.4 Static Assessment of Bias and Precision

To characterize the performance of the measurement technique under optimal 

conditions, high-quality, single radiographic exposures of a phantom, in a static position, 

were acquired to assess the accuracy and precision of measuring relative motion. The 

static phantom was constructed using a 3-axis, micrometer-driven positioning stage 

(Model M4434, Parker Hannifin Corp., PA, USA) mounted upon a polymethyl 

methacrylate base-plate. The positioning stage has a manufacturer’s reported accuracy of
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2 pm. The femur of the knee model was rigidly attached to the positioning stage, and the 

tibia fixed to the base-plate. The static phantom was positioned inside the FOV of the 

radiography system (Figure 3-2a), and the femur segment of the knee model was driven 

to 20 different locations in 50 pm increments, in the range of 0 - 300 pm along each axis 

of the positioning stage.22 A projection of the static phantom was acquired (50 kVp, 

76 mA, 43 ms) at each location (Figure 3-2b), from which the 3D pose of each joint 

segment was determined by processing the acquired projections with the custom 

developed software (see section §3.2.1). Relative motion between the femur and tibia 

was calculated between unique pairs of positions,28 which produced 10 independent 

measurements of motion in six degrees-of-freedom (DOF) (i.e. three translations, and 

three rotations). This displacement protocol was repeated six times, resulting in a total of 

60 independent measures of relative motion.

b)

Figure 3-2: Experimental setup during static assessment, a) Micrometer-driven positioning stage, with 
knee model rigidly attached, setup inside field-of-view of radiography system, b) Sample medial-lateral 
projection of static phantom acquired during the static assesssment.

Bias and precision were assessed using the differences between the measured and 

applied motion. Because the positioning stage was not capable of applying rotations, the 

known relative orientation between any pair of positions was assumed to be zero. The
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mean value of the differences, between measured and known motion, was used to 

estimate the bias, and the standard deviation the precision. To provide a robust measure 

of accuracy, the 95% prediction interval of the differences (i.e. measurement errors) was 

estimated using a two-tailed t-distribution.22,29 This prediction interval was calculated 

using the 95% percentile constant for a t-distribution with 59 DOF, which is 2.001. 

Statistical analysis was performed using a statistics software package (Prism 4, GraphPad 

Software Inc., CA, USA) to determine whether the measurement bias (mean error) was 

significantly different from zero, and whether the distributions of error were normal. A 

one-way analysis of variance (ANOVA), followed by a Tukey post-hoc test was 

performed to identify if the bias was significantly different from zero. A Kolmogorov- 

Smimov normality test was performed to determine if the distributions of measurement 

errors were normal.

3.2.5 Dynamic Assessment of Bias, Precision and Repeatability

To evaluate the accuracy of measuring kinematics from single-perspective 

projections under more realistic conditions it was necessary to mimic the kinematics of 

the knee joint during a dynamic motion. In addition, it was important that the prescribed 

motion be highly repeatable. To fulfill these requirements a six-axis articulated robot 

(Model A465 Arm + C500C Controller, Thermo CRS Ltd., ON, CA), commonly used in 

process automation, with a manufacturer’s stated precision of ± 0.05 mm, was used as a 

component of a dynamic phantom. The anatomical knee model, which was used within 

the static phantom, was again used within the dynamic phantom. The femur of the knee 

model was rigidly attached to the end-effector of the robotic arm, and the tibia was fixed 

to the base of the robotic arm. The robot was programmed to apply a repeated cycle of
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flexion/extension motions to the knee joint to mimic the tibio-femoral kinematics of a 

knee during an ascent/descent activity. The robot was positioned to ensure that the joint 

was within the 20 cm FOV of the digital Oat-panel radiography unit, throughout its 

prescribed flexion/extension motion (Figure 3-3). Six dynamic acquisitions of the 

dynamic knee phantom were acquired (30 frames per second, 60 kVp, 30 mA, 3 ms). 

During each acquisition, the knee joint was moved through approximately three 

flexion/extension cycles, with an average speed of approximately 60° per second (Figure 

3-4).

Figure 3-3: Experimental setup during dynamic assessment, a) Six-axis articulated robot, with knee model 
rigidly attached, setup inside field-of-view of the radiography sytem. b) A sample medial-lateral projection 
of the dy namic phantom acquired during the dyanmic assessment.

To assess the accuracy of dynamic measurements, two rigid-body models were 

defined within the femur segment of the knee phantom. Four of the eight markers 

imbedded into the femur segment were assigned to one rigid-body, and the remaining 

four to the other. The 3D pose of each defined rigid-body was determined from every 

frame within each acquisition with the custom developed software described in section 

§3.2.1. Relative motion was derived between consecutive frames in each acquisition. 

Since there was no actual relative motion between each rigid-body (both were rigidly
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attached to the femur segment of the knee phantom), any relative change in position or 

orientation can be attributed to measurement error.20 A total of over 1200 measurements 

of relative motion were obtained from all six acquisitions. Bias was estimated using the 

mean of the measurement errors, precision using the standard deviation. A robust 

measure of accuracy was determined by calculating the 95% prediction interval of the 

measurement errors using a two-tailed t-distribution.29 This interval was calculated using 

the 95% percentile constant for a t-distribution with over 1000 DOF, which is 1.96. 

Statistical analysis was performed using a statistics software package (Prism 4) to 

determine whether the measurement bias (mean error) was significantly different from 

zero, and whether the distributions of error were normal. A one-way ANOVA, followed 

by a Tukey post-hoc test was performed to identify if the bias was significantly different 

from zero. A Kolmogorov-Smimov normality test was performed to determine if the 

distribution of measurement errors were normal.

Comparison of the motion derived from each acquisition assessed the repeatability 

of measuring the kinematics of the femur, relative to the tibia. The 3D pose of both the 

tibia and femur segments was determined from every frame within each acquired 

sequence using the custom developed software (see section §3.2.1). All eight markers 

implanted into each segment were utilized during pose calculation. Relative motion was 

derived using the resting or neutral pose of the joint (~ 0° flexion) as a reference. The 

standard deviation was calculated at every time point for each kinematic DOF across the 

six trials. The mean value of the deviations was utilized to quantify repeatability. In 

order to achieve this, a common point within each of the six datasets was identified to 

synchronize them to common start and end time.13 It was necessary to perform this
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synchronization because the motion of the six-axis articulated robot was not intrinsically 

synchronized to the acquisition timing of the imaging system. To synchronize the data, a 

linear interpolant was fit to each dataset using curve fitting software (Matlab curve fitting 

toolbox, Mathworks Inc., MA, USA). The resulting piecewise curves were resampled to 

a higher rate (300 Hz), and the time shift required to synchronize them was found by 

minimizing the distance between common points identified in each curve. Repeatability 

was assessed using the resampled and synchronized motion datasets.

While the bone segments tracked in this study each contained eight marker beads, 

this represents the upper bound of the number of markers expected to be visible in a 

clinical implementation. To investigate the effect of a smaller number of markers on 

measurement repeatability for dynamic motion, all acquired images were subsequently 

re-processed to mimic two additional cases: inclusion of only six of the eight markers, 

and inclusion of only four markers in each of the segments. Statistical analysis was 

performed using a statistics software package (Prism 4) to determine if the number of 

markers utilized for pose calculation significantly affected the repeatability of 

measurements. A one-way ANOVA followed by a Tukey post-hoc test was performed 

along each DOF (i.e. 3 translations, 3 rotations), to identify statistically significant

differences.
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Figure 3-4: Sample frames acquired during the dynamic assesssment and representative of the range of 
motion of one cycle of the dyanmic phantoms programmed movement.

3.2.6 Registration of CT Data to Kinematic Measurements

Computed tomography (CT) scans of the knee model were acquired and registered 

to the kinematic measurements to demonstrate the application of single-perspective 

kinematic measurements towards several applications, including: estimation of joint space 

or contact area, biomechanics modeling, and visualization. A micro-CT scan of each 

segment (i.e. femur and tibia) of the knee model, implanted with the tantalum markers, 

was acquired using a micro-CT scanner (Locus Ultra, General Electric, WI, USA). The 

centroid of each tantalum marker was localized within the CT volumes using CT analysis 

software (MicroView, General Electric, WI, USA). Using a rigid, point-based 

technique to register the marker centroids identified within the microCT volumes, and
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the corresponding marker centres measured through the RSA examination, the coordinate 

system of the CT volume was aligned to the coordinate system of the rigid-body file used 

as input to the 3D-to-2D registration algorithm (i.e. solution of projection-Procrustes 

problem). By aligning the coordinate system of the micro-CT volume to the rigid-body 

file (coordinate system describing the relative location of markers), the transformations 

and kinematics measurements determined from the single-perspective projections were 

directly applicable to the CT data.

To provide a visual representation of the registration results, and motion of the 

knee during dynamic experiment, a surface model of each joint segment was extracted 

from the co-registered micro-CT volumes. Using the six DOF rigid transformations 

determined from the dynamic image sequences, the motion of joint was reconstructed 

inside a virtual environment. A custom C++ script developed using open-source 

visualization classes31 (Visualization ToolKit, Kitware Inc., NY, USA). The 

transformations were sequentially applied to each surface model to reconstruct the motion 

of the knee during the dynamic acquisitions.

3.2.7 Measurement of Effective Dose

Dose measurements were performed to estimate the effective dose a patient would 

receive during a typical dynamic single-plane acquisition. An ion chamber (Model 

96020A, Keithley Instruments Inc., OH, USA), in combination with a digital dosimeter 

(Model 35614, Keithley Instruments Inc., OH, USA) was used to obtain measurements of 

entrance exposure, from which the effective dose was determined. The ion chamber was 

positioned inside the FOV of the digital flat-panel radiography unit, facing the source



107

(Figure 3-5). Entrance exposure was measured during approximately six seconds of 

irradiation (30 fps, 60 kVp, 30 mA, 3 ms). Measurement of entrance exposure was 

repeated six times to ensure the stability and reproducibility of the measurement 

instruments. Absorbed dose was determined from the measured entrance exposure by 

using an accepted exposure-to-dose conversion coefficient ,2 for bone of 0.4 GyR'1. 

Effective dose was calculated using a tissue sensitivity constant applicable to the knee of 

0.9 pSvGy ’cm'2 derived from previous dosimetry studies,32 and estimating the irradiated 

tissue area to be 400 cm2.

Figure 3-5: Experimental setup during measurement of effective dose, a) Ion chamber within field-of- 
view (FOV) of radiography system, and digital dosimeter used to measure entrance exposure, b) Sample 
projection acquired during dose measurements showing knee model and ion chamber.
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3.3 Results

3.3.1 Static Assessment of Accuracy and Precision

A summary of the results of the static assessment of accuracy and precision is 

presented in Table 3-1. Measurement errors were defined as the difference between the 

measured and applied motion. The accuracy of measuring translations was found to be 

better than 0.03 mm in-plane (i.e. parallel to the imaging plane), and 0.5 mm out-of-plane 

(i.e. orthogonal to the imaging plane). Rotations were measure with an accuracy of better 

than 0.1° about all axes. The results of the statistical analysis performed (ANOVA with 

Tukey post-hoc) did not find any statistically significant difference between the bias in 

each DOF and zero (p > 0.05).

Table 3-1: Results of static assessment of bias and precision. Errors are reported as the difference between 
the measured and applied motion in 6 degrees of freedom (i.e 3 translations, 3 rotations). Note, that 
translations in the z-direction (t2) occured orthogonal to the imaging plane of the radiography system.

Translations film) Rotations (degrees X o
tx ty tz Rx Ry Rz

Bias (Mean) 2.4 -4.6 -13.2 0.7 4.1 0.9
Precision (SD) 10.6 9.1 224.5 15.9 12.3 13.8

95% PI (2.001 SD) 21.3 18.2 449.1 32.0 24.6 27.6

The distributions of error, in each DOF, from the static assessment are presented 

in Figure 3-6. The box and whisker plots display the median (centre line), 25th and 75th 

percentiles (outer edges of box), and the maximum and minimum measurement errors 

(whiskers). The results of the Kolmogorov-Smimov normality test showed that the 

distribution of error about each DOF was normal (i.e. p > 0.1 -  distributions are likely to 

be normal given the sample size).
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Figure 3-6: Box and whisker plots representing the distribution of errors (i.e. difference between measured 
and applied motion) in 6 degrees-of-freedom, obtained from static assessment of accuracy and precision. 
Note, that translations in the z-direction (t2) occured orthogonal to the imaging plane.

3.3.2 Dynamic Assessment of Accuracy and Precision

A summary of the results of the dynamic assessment of accuracy and precision are 

presented in Table 3-2. Measurement errors were defined as the deviation of the 

measured motion from zero (rigid-bodies were attached to same segment of the knee 

model). The accuracy of measuring translations was shown to be better than 0.03 mm 

in-plane, and 0.9 mm out-of-plane. Rotations were measured with an accuracy of better 

than 0.1° about all axes. The results of the statistical analysis performed (ANOVA with 

Tukey post-hoc) did not find any statistically significant difference between the bias in 

each DOF and zero (p > 0.05).

Table 3-2: Results o f dynamic assessment of bias and precision. Errors are reported as the deviation of 
measured motion from zero in 6 degrees-of-freedom (i.e 3 translations, 3 rotations). Note, that translations 
in the z-direction (tz) occured orthogonal to the imaging plane of the radiogarphy system.

Translations (pm) Rotations (degrees x 10'3)
t* ty t* Rx Ry Rz

Bias (Mean) 0.0 -0.2 0.2 0.1 0.0 0.0
Precision (SD) 14.5 12.9 433.3 25.9 27.0 23.8

95% PI (1.96SD) 28.4 25.2 849.4 50.7 52.9 46.6
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The distributions of error, in each DOF, from the dynamic assessment are 

presented in Figure 3-7. The box and whisker plots display the median (centre line), 25th 

and 75th percentiles (outer edges of box), and the maximum and minimum errors 

(whiskers). The results of the Kolmogorov-Smirnov normality test showed that the 

distribution of error about each DOF was normal (i.e. p > 0.1 -  distributions are likely to 

be normal given the sample size).
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Figure 3-7: Box and whisker plots representing the distribution of errors (i.e. deviation of measured 
motion from zero) in 6 degrees-of-freedom, obtained from dynamic assessment of accuracy and precision. 
Note, that translations in the z-direction (t2) occured orthogonal to the imaging plane.

3.3.3 Repeatability of Kinematic Measurements

The kinematics of a single cycle of motion of the knee model, as measured from 

all six trials of the dynamic assessment is presented in Figure 3-8. Note that although the 

motion is expressed in anatomically relevant terms, that these are simply ‘approximate’, 

and were not developed using anatomically-based methods.33,34 The process of assigning 

an anatomically-based coordinate system to a joint has errors inherent to the selection of 

bony landmarks,35’36 which would further contribute to the variation between the motion 

measured from each of the six trials. The repeatability of measuring the knee kinematics
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produced by motion of the six-axis articulated robot was better than ± 0.2 mm for 

translations, and ±0.1° for rotations, when using all 8 markers within both segments 

(Figure 3-9). The repeatability of measuring in-plane translations was higher than that in 

the out-of-plane direction. Measuring rotations were highly repeatability about all axes. 

The greatest variability in the measurement of rotation was seen about the axis with the 

largest range of motion (flexion/extension; range ~ 55°).

With respect to the repeatability in the case a of reduced number of visible 

markers, the results (Figure 3-9a) shows that the repeatability of measuring translations 

in the out-of-plane direction was significantly affected (p < 0.05) by reducing the number 

of markers from 8 to 4, and from 6 to 4. In-plane translations showed no significant 

reduction in the repeatability as the number of markers were reduced (p > 0.05). A 

significant difference (p < 0.05) was observed in the repeatability of measuring rotations 

around the x and y axes when reducing the number of markers from 8 to 4 (Figure 3-9b), 

however these differences were very small, less than 0.025° in magnitude.
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Time (s) Time (s) Time (s)

Figure 3-8: Kinematics of the knee model during dynamic assessment performed to assess repeatability of 
measurements. The kinematics measured from all six trials are plotted within the same axes, and are 
expressed in 6 degress-of-ffeedom (i.e 3 translations and 3 rotations). Both translations and rotations are of 
the femur relative to the tibia. Translation are expressed as (a) Proximal/Distal (tx), (b) Anterior/Posterior 
(ty), and (c) Medial/Lateral (t2). Rotations are expressed as (d) Abduction/Adduction (Rx), (e) 
Interior/Exterior (Ry), and (f) Flexion/Extension (R2). Note, that translation in the Medial/Lateral direction, 
(c), occurred orthogonal to the imaging plane of the radiography system (out-of-plane).
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Figure 3-9: Repeatability of kinematic measurements vs. the number of markers used within the rigid- 
body to perform 3D-to-2D registration. Repeatability is expressed along each degree of freedom (i.e. 3 
translations and 3 rotations). Translations, (a), are expressed as Proximal/Distal (PD or tx), 
Anterior/Posterior (AP or ty), and Medial/Lateral (ML or t2). Rotations, (b), are expressed as 
Abduction/Adduction (ad/ab or Rx), Interior/Exterior (int/ex or Ry), and Flexion/Extension (flex/ext or Rz). 
Note, that * represents a statistically significant difference (p < 0.05).
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3.3.4 Registration of CT Data to Kinematic Measurements

The root-mean-square (RMS) fiducial registration error37 (FRE) between the 

corresponding markers identified both in the CT volume, and by RSA was 0.1 mm. A 

snapshot o f the constructed virtual environment showing the registration between the 3D 

surface models of the knee, extracted from the acquired CT volumes, and the 2D 

projections, acquired during the dynamic assessment, is presented in Figure 3-10. The 

geometry of the perspective x-ray imaging system was reconstructed to include the 3D 

position o f the 2D imaging plane, and x-ray source. The 3D position of each segment of 

the knee model was determined by registering the CT data to the kinematic measurements 

determined from the single-perspective projections.

World Frame
'oTHEterence

Figure 3-10: Registration of three-dimensional (3D) computed tomography (CT) data to two-dimensional 
(2D) projections. Visualization shows reconstructed postion of x-ray source, imaging plane, knee joint 
(implanted with tantalum markers), and world frame of reference.

Further visuals of the registration between the CT data (i.e. surface models) and 

kinematic measurements are presented in Figure 3-11. Projections acquired during the 

dynamic assessment at 0°, and 55° flexion are presented in the first column of the figure.
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The corresponding anterior, and lateral views of the 3D joint surfaces are presented in the 

second and third columns respectively.

Figure 3-11: Registration of computed tomogrpahy (CT) data with kinematic measurements. First column 
shows projections acquired at 0° joint flextion a), and 55° joint flextion d). Second and third columns show 
the corresponding surface models of the femur and tibia segments, as registered with the kinematic 
measurement to reconstruct relative position of the joint. Both the anterior view b), e), and the lateral view 
c), 0  o f the joint are shown at both flexion angles.

3.3.5 Measurement of Effective Dose

The effective dose associated with a 180-frame dynamic acquisition of the knee 

was found to be less than 3 pSv, which corresponds to an effective dose of about 

0.01 pSv per frame. This estimate is only applicable for lower extremities, as the 

conversion from absorbed dose to effective dose is dependant on the tissue sensitivity of a 

specific anatomical site.
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3.4 Discussion

The results obtained from the validation experiments (Table 3-1 & Table 3-2) 

show that joint kinematics can be measured in six DOF with a high degree of accuracy 

from single-perspective projections. As in previous studies, our results are consistent in 

that the translations occurring in-plane were measured with a significantly greater 

accuracy than those out-of-plane.20,22 This can be attributed to the perspective geometry 

of the single-plane imaging system, where the greatest uncertainty of localization lies in 

the out-of-plane direction, due to the insensitivity of the information available (i.e. 

geometric magnification).

Previous implementations of the single-plane, marker-based technique have been 

validated using a wide variety of methods. Most recently, Ioppolo et al.22 used 

anatomical hip and knee models attached to micrometer-controlled positioning stages, 

and quantified accuracy as the difference between the applied and measured motion. 

They found translational accuracies of 0.1 mm in-plane, and 0.7 mm out-of-plane, and a 

rotational accuracy of 1° at 95% confidence (note that phantoms were static). Another 

study, performed by Tang et al.,23 utilized cadaver knees implanted with tantalum 

markers, and performed kinematic measurements using both a single-plane technique and 

biplane RSA. They established ground truth using the measurements obtained from 

biplane RSA. Accuracy was assessed using the mean absolute errors between the two 

measurement techniques. Absolute errors were found on the range of 1 to 2 mm for 

translations and around 1° for rotations (again this study was performed in static 

conditions). Finally, Garling et al.,20 made use of a rigid carbon fibre phantom containing
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17 markers, which were assigned to one of two rigid-body models. The phantom was 

connected to a pendulum that was swung in front of an image intensifier during 

acquisition. They assessed accuracy as the deviation of any measurements of relative 

motion from zero. Translational accuracy at 95% confidence was 0.15 mm, and 1.7 mm 

for translation in-plane and out-of-plane, respectively. The rotational accuracy was 0.1°.

Imprecision or bias in determining the 3D pose of a rigid-body from a single 

perspective projection can arise from several different sources. These sources include 

any inaccuracies or errors that arise during the characterization of the rigid-body, the 

reconstruction of the projective geometry, and the measurement of the 2D centroids of the 

projected marker locations within a radiograph. Garling et al.20 provide thorough 

simulation results showing how each of these factors can affect the accuracy of 3D 

localization. The main difference between our methodology and previous 

implementations of single-plane analysis is the use of a digital flat-panel detector (as 

opposed to an image intensifier), and our acquisition of images in pulsed digital 

radiography mode (i.e. 3 ms “stroboscopic” exposures), instead of using fluoroscopy. 

Both of these differences contribute to the reduced errors associated with measuring the 

2D centroid locations of marker projections within a radiograph.

Flat-panel detectors offer improved image quality compared to image 

intensifies,38 most importantly through the lack of inherent geometric distortion.24 

Geometric distortion correction has been widely addressed,39'41 and is a very important 

part of the calibration process when performing sensitive measurements with image 

intensifier-based radiography systems. Residual distortions after the application of 

correction algorithms have been reported in the range of 0.01 mm to 0.07 mm,39,42
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depending on the correction scheme. It has been shown through simulations and in vitro 

experiments that when using a single-plane to localize objects in 3D, in-plane errors on 

this range can propagate into inaccuracies of 0.2 mm to 1.5 mm in the out-of-plane 

direction.20,26 The results from the in vitro experiments performed by Garling et al. 

showed a significant reduction in the accuracy of measuring relative motion when using a 

suboptimal technique to correct for the geometric distortion.20 Additionally, performing 

the acquisition in pulsed-radiography mode results in higher quality images. Previous 

work26 has shown the relationship between exposure and precision of measuring 2D 

centroid of spherical markers within radiographs. By optimizing the exposure during 

acquisition the inherent noise within the acquired radiographs can be reduced. Noise 

reduction leads to increased precision in measuring the 2D centroid of projected marker 

locations, which improves the performance of localizing a rigid-body in 3D from a single­

perspective projection.

Comparison of the results of the accuracy assessments performed in static (Table 

3-1) and dynamic conditions (Table 3-2) show that the inaccuracies associated with the 

measurement technique are more greatly dominated by random errors, rather than 

systematic errors (i.e. measurement precision is much greater than bias). Although the 

bias measured in the static assessment was greater than that measured in the dynamic 

assessment, this can be partially attributed to the sample size of the assessment. In the 

static assessment a sample size of 60 was used to estimate the accuracy (bias and 

precision), where in the dynamic assessment a sample size of over 1000 was used. 

Comparison of the precision values between the two assessments show that the precision 

of the technique in dynamic mode was consistently lower than that in static mode.
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However, for translations in-plane (tx, ty) and all rotations (Rx, Ry, Rz) the difference in 

precision values between static and dynamic conditions is negligible (less than 10 pm for 

translations, and 0.1° for all rotations). The largest difference between the static and 

dynamic assessments was observed between the precisions values for the measurement of 

translations in the out-of-plane direction (tz). However, it should be noted that in the case 

of the dynamic assessment, each rigid-body only contained 4 markers, where as in the 

static assessment each contained 8. Results from the repeatability of kinematics 

measurements (Figure 3-9) show that the precision in performing measurements in the 

out-of-plane direction is significantly affected by the number of markers used in the rigid 

body, which contributes to the larger difference between the two values.

Because single-plane analysis is most likely to be employed to study the joint 

kinematics of dynamic movement it becomes very important to validate the technique in 

dynamic conditions in order to replicate the true conditions in vivo as closely as possible. 

Dynamic motion has an impact on the assessment of accuracy by introducing motion 

blurring artifacts within the acquired images. Even when using a very short exposure 

interval, such as 3 ms, motion blurring can be introduced into the images, although it may 

not be detectable through simple visual inspection. Blurring artifacts introduce errors in 

the process of measuring the 2D centroid location of marker projections within 

radiographs, which will in turn degrade the performance of the 3D pose determination. 

The dynamic assessment of repeatability was designed to mimic the motion of a knee 

joint during an ascent/descent activity. The kinematics of the dynamic knee phantom 

(Figure 3-8) provides a good approximation of knee kinematics during a bending 

activity, as the largest range of movement was observed in flexion/extension (range ~
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55°). All other rotations observed were relatively small (range ~ 2°), and all translations 

observed were within the range of 10 mm, with the smallest range observed in 

medial/lateral direction.

The results show a high repeatability in measuring both translations and rotations 

during an active motion (Figure 3-9). It was observed that the repeatability of measuring 

translations in-plane (tx, ty) was better than that out-of-plane (tz). This was expected, and 

can be explained by the projective geometry of the single-plane system, as mentioned 

above. Also, it was noted that the repeatability of measuring translations in the 

x-direction (tx) was consistently higher than in the y-direction (ty), even though both occur 

in-plane (Figure 3-9a). This anomaly was most probably due to the mechanical vibration 

of the six-axis robot, which most significantly affected the motion of the joint in the 

y-direction (ty). Further dynamic trails were performed employing a reduced robot-speed 

to minimize vibrations, and indeed the repeatability of measuring translations in the 

y-direction (ty) was significantly increased. Rotations were measured with a high 

repeatability about all axes. Tashman et al. used similar methods to analyze the 

repeatability of measuring joint kinematics of canine subjects using a biplane radiography 

technique,13 reporting across-trial repeatability of measurement was 0.14 mm for 

translations, and 1.0° for rotations.

Reducing the number of markers utilized in each rigid-body (femur and tibia 

segments) had a significant effect on the repeatability of measuring relative translations in 

the out-of-plane direction. However, even when using only four markers, the 

repeatability of measuring translations in this direction was on average better than 

0.5 mm. Although statistically significant differences were observed in the repeatability



1 2 1

of measuring rotations when reducing the number of markers, these differences are 

negligible since all rotations were measured with a repeatability of better than 0.1°. When 

comparing the curve of the relative translations in the medial/lateral (t2) direction (Figure 

3-8), with the motion in the other degrees of freedom, it is evident that this curve is much 

less smooth, or much “noisier”. This reflects the decreased sensitivity of measuring 

translations that occur orthogonal to the imaging plane, and suggests that some type of 

post processing (e.g. low-pass filtering or smoothing window technique) may have the 

ability to smooth the measured motion such that it more accurately reflects the true 

motion of the phantom. This however, is outside the scope of the study and will have to 

be left for future work.

The registration of CT data to the kinematic measures shows the applicability of 

the single-plane technique towards various other research and clinical goals, beyond the 

measurement of kinematics. Knowledge of the relative positions of the joint surfaces 

throughout a dynamic test of its function allows the estimation of the joint space and 

contact patterns over time.43,44 Changes in joint space and contact patterns can be used to 

quantify the progression of diseases, such as osteoarthritis.43 Progressive narrowing of 

joint space, due to osteoarthritis, has been recommended as an indicator for ‘failure’ of a 

secondary outcome in clinical trials for osteoarthritis of the hip and knee.45

Often in biomechanics, in vivo data, such as geometries derived from CT, 

kinematics, and kinetics, are used to build and validate finite element models of joints.46,47 

Biomechanical modeling of joints can be used to study their normal function, as well as 

the function of joints following corrective surgery, such as posterior cruciate ligament 

reconstruction,48 or total knee replacement.49 By combining kinematic measurements
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determined from single-perspective projection, with kinetic measurements obtained from 

force plates, it is possible to dynamically measure the mechanics of joints.50 This kind of 

information is invaluable from a biomechanics aspect, as it can lead to a better 

understanding of both normal and pathological joint mechanics. A better understanding 

of joint mechanics can improve treatment strategies, and also joint replacement designs 

and longevity.50

Visualization of the joint kinematics derived from the single-perspective 

projections aides in interpretation of the measured motion. Often, it is difficult to 

visualize or interpret the motion of the joint directly from the kinematic plots (Figure 

3-8). By constructing a 3D virtual environment to recreate the six DOF motion, it is 

possible to directly view the kinematics acting upon a 3D model. Previous studies have 

explored visualization techniques to animate the motion of carpal joints for the purposes 

of biomechanics modeling.51

It is important to note, that although the initial rigid-body model of the markers 

implanted into the knee model was obtained through an RSA examination, it is also 

possible to generate this local coordinate system directly from a CT volume. However, 

since RSA is considered the de facto gold standard for obtaining accurate measurements 

of markers implanted into skeletal segments,52 it was deemed best-suited to generate the 

rigid-body model used with the accuracy assessments. Previous work performed by 

Garling et al., has shown that errors present within the rigid-body model negatively 

effects the accuracy of single-plane localization. The RMS FRE of the registration 

between corresponding point-based models generated from RSA, and micro-CT was

0.1 mm. This suggests that discrepancies (i.e. errors in measurement) exist between the
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two characterization methods, which warrant further investigations to determine the 

relationship between the methods used to characterize the rigid body, and the accuracy of 

3D measurements determined from single-perspective projections.

The effective dose of radiation for a dynamic assessment of a knee was estimated 

to be less than 3 pSv (equivalent to 0.01 pSv per frame). A baseline RSA knee 

examination is also required to establish a local coordinate system describing the relative 

locations of the markers. The effective dose associated with this procedures is typically 

around 1 pSv.32 This can be compared to the effective dose of 50 pSv associated with a 

standard chest x-ray,53 and the effective whole body dose of 3000 pSv associated with 

annual natural background exposure. Therefore, the risk to human subjects would be 

considered minimal, and it is expected that ethics approval could be obtained to employ 

the procedure of dynamically measuring joint kinematics from single-perspective 

projections within in vivo studies.
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3.5 Conclusions

This study has demonstrated the accuracy and safety of the application of single­

plane radiographic imaging to dynamically measure joint kinematics, as well as the 

suitability of digital flat-panel radiography system for use in this application. The flat- 

panel detector design offers a number of improvements over image intensifiers, which 

increases the accuracy of measurement and the ease of implementation. The poorest 

performance in measurement was observed in the out-of-plane direction, however 

measurement accuracy was still better than 0.5 mm, which is suitable for most medical 

tracking applications. The effective dose of ionizing radiation that would be imparted in 

a clinical examination during the acquisition of a dynamic sequence of images was 

estimated to be significantly lower when compared to other standard radiological 

examinations. This measurement technique is valuable for numerous research and 

clinical applications, beyond the measurement of kinematics, including: dynamic 

estimation of joint space or contact area, biomechanics modeling, and visualization.
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4 Summary and Future Directions

The overall objective of this thesis was the development and validation of novel 

and dynamic radiographic imaging and registration techniques to address two distinct 

medical applications: tracking during image-guided interventions, and the measurement 

of musculoskeletal joint kinematics. The following sections summarize the main findings 

of the thesis (section §4.1), and identify key areas of research for future work, as well as 

address its clinical application (section §4.2).

4.1 Summary and Conclusions

4.1.1 Sparse Object Tracking towards Image-guided Interventions

This study was specifically designed to facilitate the clinical application of image- 

guidance for interventional procedures, and its main objective was to assess the feasibility 

of using single-perspective projections to track surgical objects in 3D space during an 

intervention. Several in vitro validation studies were performed to evaluate the accuracy 

of tracking sparse object in 3D space from single-perspective, 2D projections, and test the 

software implementation that enabled this application. Secondary objectives of the study
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were the comparison of two digital radiography systems, one equipped with an XRII and 

the other with a FP detector, towards the tracking task.

The first validation study was performed in static conditions, and employed two 

phantoms: a regular grid of divots of known geometry, and a sparse object manufactured 

to mimic a pointer tool. Targets upon the grid (i.e. divots) were localized in 3D using the 

sparse pointer tool and single-perspective projections. Accuracy was quantified using the 

RMS TRE, of the registration between the measured locations of the targets upon the 

grid, and its known geometry as given by its CAD model, while precision was quantified 

using the standard deviation of repeated measurements. The assessment was performed 

on two digital radiography systems (XRII and FP) using multiple acquisition views (AP 

and LAO), employing an OTS to provide a gold standard for comparison. The results of 

the assessment showed that measurements made using the radiography system equipped 

with a FP detector outperformed those made with the XRII. The accuracy and precision 

of localizing targets in 3D with the sparse object was better than 1.1 mm and 0.16 mm 

respectively, when utilizing the FP detector for image acquisition. The OTS had the best 

performance, as excepted, which highlighted the benefits of localization from two views, 

as opposed to one.

The second validation study was performed under dynamic conditions and again 

utilized two phantoms: the sparse pointer tool, and an anatomical skull implanted with 

tungsten markers. The sparse pointer tool was tracked simultaneously using both single­

perspective projections, and an OTS as it was used to localize several targets within the 

skull. Tracking accuracy was assessed using the RMS difference in the trajectory of the 

pointer tool, as measured using both the single-perspective projections and the OTS. The
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RMS tracking error was 2.1 mm. The sequence of projections acquired during the 

dynamic validation study also served as a robust test of the implemented software. The 

software was able to successfully track the sparse pointer tool from 96% of the acquired 

projections, and successfully track the anatomical skull from 100% of the acquired 

projections. The software achieved a throughput of approximately 4 frames per second. 

With further optimization and implementation on dedicated hardware, it would be 

possible to achieve real-time execution.

These studies demonstrated the feasibility of using single-perspective projections 

during an intervention for 3D tracking and localization of surgical objects. The accuracy 

of target localization and tracking are applicable for numerous image-guided applications. 

The main limitation of this tracking technique is the decreased accuracy in the 

measurement of the out-of-plane translation or position. However, since this limitation is 

well known, and affects only a single DOF, it can be overcome with careful 

methodological considerations, such as pre-procedural planning and equipment setup to 

limit the reliance on out-of-plane measurements.

4.1.2 Measurement of Joint Kinematics

The main objective of the second study was to validate the technique of measuring 

joint kinematics from single-perspective projections. Several in vitro validation 

experiments were performed to assess the accuracy of measuring joint kinematics in six 

DOF from single-perspective projections, and estimate the effective dose of ionizing 

radiation that would be associated with the measurement procedure. Secondary 

objectives of the study included demonstration of the suitability of using FP detector
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technology to perform the single-plane measurements, and registration of 3D CT data to 

the single-perspective projections and kinematics measurements.

The first experiment made use of a static phantom that incorporated an 

anatomical knee model, implanted with tungsten markers, and a three-axis positioning 

stage. Known displacements were applied to the positioning stage to move the 

anatomical knee model, and subsequently measured from single-perspective projections. 

Accuracy was assessed using differences between the measured and applied motion. The 

measurement accuracy was found to be better than 0.5 mm, and 0.1° at the 95% 

prediction interval for translations and rotations, respectively.

The second experiment employed a dynamic phantom that incorporated a six-axis 

articulated robot, and the anatomical knee model implanted with the tantalum markers. 

The robot was programmed to apply a flexion-extension motion to the knee model. Six 

repeated cine acquisitions of the moving phantom were acquired to perform several 

assessments. The first assessed accuracy by defining two rigid bodies from the markers 

implanted into the femur segment of the knee model. The motion between the two rigid- 

bodies was measured from the acquired projection sequences, and accuracy was assessed 

using the deviation of the measured motion from zero. The measurement accuracy was 

found to be better than 0.9 mm, and 0.1° at the 95% prediction interval for translations 

and rotations, respectively. The second assessment determined the repeatability of 

kinematic measurements. The motion between tibia the femur segment of the knee model 

was measured from the acquired projections sequences. The repeatability of kinematic 

measurements was assessed using the variability of the measured motion across each of 

the six trials in each kinematic DOF. The repeatability of kinematic measurements was
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better than ± 0.2 mm and ±0.1° for translations and rotations, respectively. The third 

assessment examined the effect of reduced visibility of markers on the measurement 

repeatability. The acquired projection sequences were re-processed using a two reduced 

sets of markers to measure the kinematics of the joint. It was found that reducing the 

number of makers had a significant affect on the measurement of translation in the out-of­

plane direction. Measurements in all other DOF (i.e. in-plane translations and all 

rotations) were robust to reducing the number of markers.

The effective dose of ionizing radiation associated with the dynamic measurement 

procedure was determined using an ion chamber and a digital dosimeter. The effective 

dose of the procedure was estimated to be less than 3 pSv for an approximately 

180-frame acquisition, which would be considered as a minimal risk to human subjects, 

and therefore acceptable for application in vivo.

This study validated the technique used to measure joint kinematics from single­

perspective projections, and demonstrated the suitability of FP detectors for this task. 

The accuracy of measurement, and the effective dose of ionizing radiation are viable for 

numerous clinical applications. Again, the main limitation of the technique is the 

decreased accuracy of measuring translations in the out-of-plane direction. However, the 

accuracy achieved in the out-of-plane directions is sufficient for the intended application 

(i.e. measurement of joint kinematics).
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4.2 Future Directions

4.2.1 Sparse Object Tracking towards Image-guided Interventions

Future Work

The next progression of this work is the continued development of the software 

such that it can be useable in the clinic. However, to achieve this goal several issues must 

be addressed. The first involves fully automating the algorithm so that it does not require 

any user interaction or input. Currently the user must establish correspondence between 

the markers in the sparse object and their projections within the acquired radiographs. 

This process should be automated to render the technique suitable for real-time tracking 

applications. Correspondence between point-sets is an issue that has been widely 

addressed in machine vision,1'3 and is also a problem that has been addressed in current 

OTS.4

The second issue involves implementation of the software on dedicated hardware. 

This includes optimizing and parallelizing the algorithm to increase its processing speed, 

and also implementing a frame-grabber module such that the acquired projections can be 

processed in real-time as they are acquired by the radiography system. During the 

reported studies, images were acquired on the radiography system, and then transferred to 

a personal computer for all subsequent processing steps.

Finally, the design of the sparse object (i.e. geometry, marker placement, and size) 

should be optimized for intended application. The sparse object employed during the 

study was a simple phantom manufactured to mimic a generic pointer tool, and to
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demonstrate the ability to localize very compact and sparsely distributed markers. 

However, specific clinical applications will require specialized sparse objects that must be 

carefully designed to ensure they meet accuracy requirements, and are robust. Additional 

assessments must also be performed to characterize the accuracy with which newly 

designed sparse objects can be localized and tracked, since the accuracy is dependant on 

the design. These same principles apply to OTS and any specialized optical tracking 

frames that are designed for image-guided applications.5

Clinical Applications

With further refinement and optimization, the technique of tracking sparse objects 

from single-perspective projections has the potential to be used within the clinic during 

interventional procedures. While this is a very broad category, several specific clinical 

interventions have been preemptively examined for potential application of this 

technique. One potential clinical application is in spinal surgery. Insertion of pedicle 

screws into the spine is an interventional procedure that commonly relies on fluoroscopy 

for image-guidance.6 Numerous studies have concluded that 3D image-guidance 

improves the safety and accuracy of spinal interventions.7'9 The fluoroscopic acquisitions 

that are commonly performed during this interventional procedure could be further 

utilized to provide 3D image-guidance, provided a sparse tool or device is incorporated 

into the intervention.

Another potential clinical application is in cardiac surgery. A novel, emerging 

technique for cardiac valve repair and replacement uses a transcatheter approach.10 Often 

image-guidance during the procedure is provided through a combination of fluoroscopy
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and transesophageal echocardiography (TEE).11,12 This combination is used because of 

the strengths and limitations of each imaging modality. Fluoroscopy can provide 

excellent delineation of the catheter, but has poor soft tissue contrast, where as ultrasound 

can provide excellent soft-tissue contrast, but poor visualization of the catheter. 

Currently, there is no way to fuse or register these two imaging modalities into a common 

coordinate system. OTS cannot be utilized because the lack of line-of-sight, and EMTS 

are unreliable because of the presence of the fluoroscopy unit.13 By designing a sparse 

rigid-body that can be incorporated into the ultrasound probe, registration of these two 

imaging modalities could be achieved. This would facilitate fusion of the images from 

the two modalities, and also provide a form of 3D guidance.

4.2.2 Measurement of Joint Kinematics

Future Work

The study has shown that the technique of measuring joint kinematics from single­

perspective projections is ready for use within the clinic. However, to optimize some 

aspects of the procedure, and gain a deeper understanding of some of its limiting factors, 

several additional studies should be performed. The first involves understanding the 

relationship between the characterization process used to establish the local coordinate 

system, describing the relative location of the implanted markers, and the accuracy of the 

corresponding kinematic measurements. Previous computer simulations have noted the 

negative effects of errors on measurement accuracy during the characterization process.14 

In the validation studies performed in this thesis, the local coordinate system was 

generated through an RSA examination (Figure 4-la,b), which is considered the gold
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s ta n d a rd  for this task.1:> However, in some applications, acquisition o f a CT scan is also a 

requirement.16 Therefore, it should be determined whether the accuracy of kinematic 

measurements, determined using the relative marker locations characterized from an 

acquired CT (Figure 4-lc,d), is sufficiently high for clinical use. Some of the ultimate 

factors affecting accuracy of the CT characterization process include the voxel spacing, 

reconstructed resolution, and the algorithms used to segment and measure the marker 

locations within the CT volume.

Figure 4-1: Several methods can be used to characterize the relative locations of the markers implanted 
into the joint, including: a radiostereometric analysis (RSA) examination, acquisition of a micro-computed 
tomography (microCT) scan, and acquisition of a clinical CT scan, a) and b) show stereo images of a knee 
phantom, implanted with tantalum markers, acquired during a RSA examination, c) and d) show maximum 
intensity projections (MIPs) of a micro-CT and CT scan, respectively of the same knee phantom. Note the 
bean-like shape of the markers within the CT volume (d); an image artefact due to the anisotropic voxel 
spacing of the CT volume.

The second study should determine optimized sampling rates (i.e. fps of 

acquisition) with which to measure the kinematics of joints moving a various speeds. 

Previous studies employing radiological-based techniques to measure joint kinematics 

have employed sampling rates ranging from 25 fps,17 all the way up to 250 fps.18 The 

problem is further compounded by the relationship between the sampling rate and x-ray 

pulse width, which differs during pulsed, synchronous acquisition, and continuous
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acquisition. All of these factors must be examined in order to determine the optimized 

sampling rates. This is important because these factors affect the resulting dose of 

ionizing radiation associated with the measurement procedure, and also are a limiting 

factor of the overall accuracy of the measurements.

Finally, the process involved in determining the projective parameters of 

radiography system should be further refined. This process is a very important step of the 

overall measurement technique, and is accomplished through the use of a calibration 

cage. In the validation studies performed, the perspective geometry of the radiography 

system was determined using a commercial calibration cage manufactured specifically for 

RSA examinations of the knee. Previous work has shown improvements in the accuracy 

of RSA measurements by optimizing the design of the calibration cage used to determine 

the perspective parameters of the radiography systems.19 By designing a calibration cage 

specifically for the task at hand (i.e. measurement of kinematics from single-perspective 

projections), it is possible to improve accuracy of the calibration procedure, which would 

lead to an improvement in the accuracy of the overall kinematic measurements.14

Clinical Application

The obvious application of this work is the measurement of joint kinematics in 

vivo. Measurement of kinematics is very important in understanding both normal joint 

function, and also pathologies associated with musculoskeletal disorder and trauma.20 

Additionally, this measurement tool can be used to aid in quantifying the outcomes of 

interventional procedures and therapy, and also aide in the design of new joint implants 

that better mimic physiological conditions.21 One limit to clinical application of this work
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is the need for tantalum markers to be implanted into skeletal segments of the joint 

interested in being examined. Since this procedure is invasive, the technique may be 

restricted to studying subjects that are currently undergoing surgery, where the 

implantation procedure can easily be incorporated into a pre-existing plan of intervention.

One of the significant contributions of this work is that it demonstrated the ease of 

implementation of the measurement technique using clinically available FP detector 

technology. Since current trends point towards FP detectors eventually replacing XRIIs 

altogether, this measurement technique has the potential to be implemented in any clinic 

with access to this growing technology. This is an important factor, since previous work 

in the area of measuring joint kinematics has relied on highly specialized equipment that 

is not commonly available in the typically clinical or hospital setting.18,22
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