3D Textured Surface Reconstruction from Endoscopic Video

Abstract

Endoscopy enables high-resolution visualization of tissue texture and is a critical step in many clinical workflows, including diagnosis of infections, tumors or diseases and treatment planning for cancers. This includes my target problems of radiation treatment planning in the nasopharynx and pre-cancerous polyps screening and treatment in colonoscopy. However, an endoscopic video does not provide its information in 3D space, making it difficult to use for tumor localization, and it is inefficient to review. In addition, when there are incomplete camera observations of the organ surface, full surface coverage cannot be guaranteed in an endoscopic procedure, and unsurveyed regions can hardly be noticed in a continuous first-person perspective. This dissertation introduces a new imaging approach that we call endoscopography: an endoscopic video is reconstructed into a full 3D textured surface, which we call an endoscopogram. In this dissertation, I present two endoscopography techniques. One method is a combination of a frame-by-frame algorithmic 3D reconstruction method and a groupwise deformable surface registration method. My contribution is the innovative combination of the two methods that improves the temporal consistency of the frame-by-frame 3D reconstruction algorithm and eliminates the manual intervention that was needed in the deformable surface registration method. The combined method reconstructs an endoscopogram in an offline manner, and the information contained in the tissue texture in the endoscopogram can be transferred to a 3D image such as CT through a surface-to-surface registration. Then, through an interactive tool, the physician can draw directly on the endoscopogram surface to specify a tumor, which then can be automatically transferred to CT slices to aid tumor localization. The second method is a novel deep-learning-driven dense SLAM (simultaneous localization and mapping) system, called RNN-SLAM, that in real time can produce an endoscopogram with display of the unsurveyed regions. In particular, my contribution is the deep learning system in the RNN-SLAM, called RNN-DP. RNN-DP is a novel multi-view dense depth map and odometry estimation method that uses Recurrent Neural Networks (RNN) and trains utilizing multi-view image reprojection and forward-backward flow-consistency losses.Doctor of Philosoph

    Similar works