295 research outputs found

    Video streaming

    Get PDF

    The QUIC Fix for Optimal Video Streaming

    Get PDF
    Within a few years of its introduction, QUIC has gained traction: a significant chunk of traffic is now delivered over QUIC. The networking community is actively engaged in debating the fairness, performance, and applicability of QUIC for various use cases, but these debates are centered around a narrow, common theme: how does the new reliable transport built on top of UDP fare in different scenarios? Support for unreliable delivery in QUIC remains largely unexplored. The option for delivering content unreliably, as in a best-effort model, deserves the QUIC designers' and community's attention. We propose extending QUIC to support unreliable streams and present a simple approach for implementation. We discuss a simple use case of video streaming---an application that dominates the overall Internet traffic---that can leverage the unreliable streams and potentially bring immense benefits to network operators and content providers. To this end, we present a prototype implementation that, by using both the reliable and unreliable streams in QUIC, outperforms both TCP and QUIC in our evaluations.Comment: Published to ACM CoNEXT Workshop on the Evolution, Performance, and Interoperability of QUIC (EPIQ

    Subjective quality study of adaptive streaming of monoscopic and stereoscopic video

    Get PDF
    Nowadays, HTTP adaptive streaming (HAS) has become a reliable distribution technology offering significant advantages in terms of both user perceived Quality of Experience (QoE) and resource utilization for content and network service providers. By trading-off the video quality, HAS is able to adapt to the available bandwidth and display requirements so that it can deliver the video content to a variety of devices over the Internet. However, until now there is not enough knowledge of how the adaptation techniques affect the end user's visual experience. Therefore, this paper presents a comparative analysis of different bitrate adaptation strategies in adaptive streaming of monoscopic and stereoscopic video. This has been done through a subjective experiment of testing the end-user response to the video quality variations, considering the visual comfort issue. The experimental outcomes have made a good insight into the factors that can influence on the QoE of different adaptation strategies

    Quality-Control algorithm for adaptive streaming services over wireless channels

    Full text link
    Dynamic Adaptive Streaming over HTTP (DASH) is a recent MPEG standard for IP video delivery whose aim is the convergence of existing adaptive-streaming proprietary solutions. However, it does not impose any adaptation logic for selecting the quality of the media segments requested by the client, which is crucial to cope effectively with bandwidth fluctuations, notably in wireless channels. We therefore propose a solution to this control problem through Stochastic Dynamic Programming (SDP). This approach requires a probabilistic characterization of the system, as well as the definition of a cost function that the control strategy aims to minimize. This cost function is designed taking into account factors that may influence the quality perceived by the users. Unlike previous works, which compute control policies online by learning from experience, our algorithm solves the control problem offline, leading promptly to better results. In addition, we compared our algorithm to others during a streaming simulation and we analyzed the objective results by means of a Quality of Experience (QoE) oriented metric. Moreover, we conducted subjective tests to complete the evaluation of the performance of our algorithm. The results show that our proposal outperforms the other approaches in terms of both the QoE-oriented metric and the subjective evaluation

    A QoE adaptive management system for high definition video streaming over wireless networks

    Full text link
    [EN] The development of the smart devices had led to demanding high-quality streaming videos over wireless communications. In Multimedia technology, the Ultra-High Definition (UHD) video quality has an important role due to the smart devices that are capable of capturing and processing high-quality video content. Since delivery of the high-quality video stream over the wireless networks adds challenges to the end-users, the network behaviors 'factors such as delay of arriving packets, delay variation between packets, and packet loss, are impacted on the Quality of Experience (QoE). Moreover, the characteristics of the video and the devices are other impacts, which influenced by the QoE. In this research work, the influence of the involved parameters is studied based on characteristics of the video, wireless channel capacity, and receivers' aspects, which collapse the QoE. Then, the impact of the aforementioned parameters on both subjective and objective QoE is studied. A smart algorithm for video stream services is proposed to optimize assessing and managing the QoE of clients (end-users). The proposed algorithm includes two approaches: first, using the machine-learning model to predict QoE. Second, according to the QoE prediction, the algorithm manages the video quality of the end-users by offering better video quality. As a result, the proposed algorithm which based on the least absolute shrinkage and selection operator (LASSO) regression is outperformed previously proposed methods for predicting and managing QoE of streaming video over wireless networks.This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" with in the Project under Grant TIN2017-84802-C2-1-P. This study has been partially done in the computer science departments at the (University of Sulaimani and Halabja).Taha, M.; Canovas, A.; Lloret, J.; Ali, A. (2021). A QoE adaptive management system for high definition video streaming over wireless networks. Telecommunication Systems. 77(1):63-81. https://doi.org/10.1007/s11235-020-00741-2638177

    Audiovisual Quality of Live Music Streaming over Mobile Networks using MPEG-DASH

    Get PDF
    The MPEG-DASH protocol has been rapidly adopted by most major network content providers and enables clients to make informed decisions in the context of HTTP streaming, based on network and device conditions using the available media representations. A review of the literature on adaptive streaming over mobile shows that most emphasis has been on adapting the video quality whereas this work examines the trade-off between video and audio quality. In particular, subjective tests were undertaken for live music streaming over emulated mobile networks with MPEG-DASH. A group of audio/video sequences was designed to emulate varying bandwidth arising from network congestion, with varying trade-off between audio and video bit rates. Absolute Category Rating was used to evaluate the relative impact of both audio and video quality in the overall Quality of Experience (QoE). One key finding from the statistical analysis of Mean Opinion Scores (MOS) results using Analysis of Variance indicates that providing reduced audio quality has a much lower impact on QoE than reducing video quality at similar total bandwidth situations. This paper also describes an objective model for audiovisual quality estimation that combines the outcomes from audio and video metrics into a joint parametric model. The correlation between predicted and subjective MOS was computed using several outcomes (Pearson and Spearman correlation coefficients, Root Mean Square Error (RMSE) and epsilon-insensitive RMSE). The obtained results indicate that the proposed approach is a viable solution for objective audiovisual quality assessment in the context of live music streaming over mobile network.info:eu-repo/semantics/acceptedVersio
    corecore