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Abstract The MPEG-DASH protocol has been rapidly adopted by most major
network content providers and enables clients to make informed decisions in the
context of HTTP streaming, based on network and device conditions using the
available media representations. A review of the literature on adaptive streaming over
mobile shows that most emphasis has been on adapting the video quality whereas this
work examines the trade-off between video and audio quality. In particular, subjective
tests were undertaken for live music streaming over emulated mobile networks with
MPEG-DASH. A group of audio/video sequences was designed to emulate varying
bandwidth arising from network congestion, with varying trade-off between audio
and video bit rates. Absolute Category Rating was used to evaluate the relative impact
of both audio and video quality in the overall Quality of Experience (QoE). One key
finding from the statistical analysis of Mean Opinion Scores (MOS) results using
Analysis of Variance indicates that providing reduced audio quality has a much lower
impact on QoE than reducing video quality at similar total bandwidth situations.
This paper also describes an objective model for audiovisual quality estimation
that combines the outcomes from audio and video metrics into a joint parametric
model. The correlation between predicted and subjective MOS was computed using
several outcomes (Pearson and Spearman correlation coefficients, Root Mean Square
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Error (RMSE) and epsilon-insensitive RMSE). The obtained results indicate that the
proposed approach is a viable solution for objective audiovisual quality assessment
in the context of live music streaming over mobile network.

Keywords MPEG-DASH · QoE · Multimedia Broadcasting · Mobile TV

1 Introduction

Although a relatively recent development, the evolution and penetration of HTTP
Adaptive Streaming (HAS) has been rapid over the last years. This has been driven
by the very strong commercial case, as evidenced by proprietary solutions that were
initially developed by Apple, Adobe and Microsoft. The common objective across
these solutions was to provide a media consumption platform that piggy-backed on
existing web infrastructure, and that was client driven and adaptive. This allowed the
client to make informed decisions based on a range of factors, principally real time
network characteristic estimates, user device type/capabilities, and client preferences.
The backend server provides the media for consumption, divided into short chunks of
a few seconds and rendered multiple times. The server also provides metadata, both
at a semantic level (e.g. genre) and physical level (e.g. media structure/formats/bit
rates/video frame rates etc) on its stored media in the form of a Media Presentation
Description file. The client first pulls this file and makes decisions based on this and
the other variables, listed above. Such a model fits very well with best-effort Internet
infrastructure and maps well to user demands to consume media on a wide variety of
devices under differing scenarios. The proliferation of these proprietary solutions to
meet user needs, and the resulting interoperability challenges, necessitated work on
standardization, and culminated in the release of MPEG-DASH (Dynamic Adaptive
Streaming over HTTP) standard in 2011 [1, 2]. With YouTube and Netflix as key
adopters, it has received huge support and adoption rates. Consequently, HAS has
been the subject of very significant research that has examined the many variables
that make up the full system, and their interaction. A key objective of much of this
research is driven by the need to maximize the end user Quality-of-Experience (QoE).

In this research the QoE in a mobile network scenario is studied, considering the
particular case of live music streaming. The limiting situation of a concert streaming
in mobile devices was chosen, specifically because it represents a very special case
where bandwidth limitations can easily appear. The specific influence of both audio
and video content quality in the global audiovisual quality perceived by the end user
is explored. One of the main goals is to pinpoint possible trade-off strategies, which
might provide an alternative to typical MPEG-DASH behaviour, where video holds
the dominant role in bandwidth management. In this scenario, the effects of stalling,
delay or latency are not considered, as they have already been extensively studied in
the past [3, 4, 5, 6].

This paper establishes a methodology for audiovisual quality evaluation of live
music concert streaming based on the subjective evaluation initially presented in [7].
Trade-off strategies for bandwidth allocation under congested network conditions
are derived using MPEG-DASH technology, by providing an effective single-valued
measure of overall content quality.
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The remainder of the paper is organized as follows. In the following section,
the related work and motivations for this research are discussed. In Section 3,
the proposed framework for QoE evaluation and estimation for live music concert
streaming using MPEG-DASH, over mobile networks, is described. Both subjective
and objective quality assessment methodologies are described within this section,
as well as the proposed audiovisual quality estimation models. Section 4 covers in
results analysis and discussion. Subjective test scores are presented and analysed
in detail using both one-way and two-way Analysis of Variance (ANOVA) tests,
whereas the performance of the quality estimation models is assessed by their
correlation with the obtained subjective QoE. Finally, Section 5 provides the final
conclusions, as well as future work considerations.

2 Background & Related Work

With the huge growth over the last years in multimedia traffic over best-effort IP
networks, significant research has been undertaken in both subjective and objective
assessment of multimedia quality as perceived by the end-user. However, most
studies to date have focused on individual modalities, i.e. audio and video separately.
This has resulted in relatively mature and well researched subjective approaches
and objective metrics. The subjective approaches include those defined in ITU-T
Rec. P.910 [8] and ITU-R Rec. BT.500-13 [9] for video quality, those defined in
ITU-R Rec. BS.1116-3 [10] and BS.1534-3 [11] for audio quality and regarding
both modalities and those defined in ITU-T Rec. P.911 [12] and ITU-T Rec. P.913
[13] for audiovisual quality. The latter is primarily focused on audiovisual device
performance in multiple environments, as well as the quality impact of multiple
devices. Regarding the objective quality metrics for audio, these include PEAQ
(Perceived Evaluation of Audio Quality) [14], POLQA Music (Perceptual Objective
Listening Quality Assessment) [15, 16], and ViSQOL Audio (Virtual Speech Quality
Objective Listener) [17]. For video, a whole range of quality metrics exist, such as
PEVQ (Perceptual Evaluation of Video Quality) [18], VQM (Video Quality Metric)
[19], ST-MAD (Spatiotemporal Most-Apparent Distortion model) [20], MOVIE
(Motion-based Video Integrity Evaluation) [21], ST-RRED (Spatiotemporal Reduced
Reference Entropic Differences) [22], and FLOSIM [23], among others. It is also
common to adapt Image Quality Metrics, such as PSNR (Peak Signal-to-Noise Ratio)
and MS-SSIM [24] using the average of frame-wise measurements.

A recent survey on HAS QoE estimation models may be found in [25]. Many of
these approaches rely only on video quality measures or take into account only video-
related impairments. Tran et al. [6] studied a multi-factor model for quality prediction
in HAS over mobile networks. The proposed QoE model relied on three different
video-related factors, based on the quality switches, interruptions/stalling and initial
delay. In [26], the authors proposed a cumulative quality model, based on quality
variation histograms computed within a sliding window of video segments. Duanmu
et al. [27] proposed an approach based on the Expectation-Confirmation Theory, in
which the instantaneous QoE is evaluated by comparing the intrinsic quality of the
current segment with that of the previously viewed segments. The intrinsic quality
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of a given segment considers both spatial (coming from video quality metrics) and
temporal (frame rate) information. More recently, machine learning approaches are
also being considered. The authors in [28] used a Long Short-Term Memory (LSTM)
network to estimate the overall QoE in the context of adaptive streaming, using
input features such as the content-specific characteristics, occurrence and duration
of stalling events, and segment quality measure.

Subjective tests have clearly shown that there is a strong inter-relationship
between audio and video quality [29], and thus research has progressively focused on
developing combined audiovisual models. The authors in [30] focused on the relative
importance of the audio and video quality in the audiovisual quality assessment and
questioned whether a regression model predicting audiovisual quality can be devised
that is generally applicable. They have concluded on the basis of a comprehensive
analysis of the available experimental data, covering different application areas
ranging from television and UDP-based video streaming to video-teleconference,
that audio quality and video quality are equally important in the overall audiovisual
quality. Moreover, the application dictates the relative range of the audio and video
quality examined and this can result in findings that suggest that one factor has
greater influence than the other. This research aims to add to the knowledge base
in designing such a joint model for the particular scenario of live music streaming
deploying MPEG-DASH.

In [31], a review of audio and video quality metrics is presented, as well as a
study of the key issues in developing joint audiovisual quality metrics. In particular,
it outlines the common approach to deriving audiovisual quality (AVQ) from the audio
quality (AQ) and visual quality (VQ) as follows:

AVQ = a0 +a1AQ +a2VQ +a3AQVQ (1)

where parameters (a1, a2, a3) denote the different weights of audio and video
quality and the multiplication factor (AQVQ), with a0 as a residual term. Despite this
seemingly simple approach, this is a significant challenge with many influences and
contextual factors. For example, in [32], two experiments were carried out in order to
develop a basic multimedia (audiovisual) predictive quality metric. The first used two
’head-and-torso / shoulder’ audio-video sequences and the second one has deployed
one of the ’head-and-torso / shoulder’ sequences from the first experiment together
with a different high-motion sequence as test material. Whilst, the overall result of
the studies confirmed that human subjects integrate audio and video quality together
using a multiplicative rule, the specific results differed. A regression analysis using
the subjective quality test data from each experiment found that:

1. For ’head-and-torso / shoulder’ content, both modalities contribute significantly
to the predictive power of the resultant model, although audio quality is weighted
slightly higher than video quality;

2. For high-motion content, video quality is weighted significantly higher than audio
quality.

Finally, two different parametric audiovisual quality estimation models were
designed using the subjective quality test data acquired within this research, one



Audiovisual Quality of Live Music Streaming over Mobile Networks using MPEG-DASH 5

called the final ‘head and torso’ regression model and the second one called the high
motion regression model. It is worth noting here that this study has considered neither
impairments introduced by UDP-based video streaming nor impairments introduced
by TCP-based video streaming such as MPEG-DASH in the subjective tests and thus,
these are not reflected in the model development.

Recently, the ITU-T SG12 has finished their work on the work item entitled
P.NATS – Parametric non-intrusive assessment of TCP-based multimedia streaming
quality, considering adaptive streaming, resulting in a set of recommendations, i.e.
ITU-T Rec. P.1203 [33], ITU-T Rec. P.1203.1 [34], ITU-T Rec. P.1203.2 [35]
and ITU-T Rec. P.1203.3 [36]. The aim was to develop a collection of objective
parametric quality assessment modules that predict the impact of observed IP network
impairments on quality experienced by the end-user in multimedia mobile streaming
and fixed network applications using progressive download, also including adaptive
streaming methods.

In [37], the authors have applied a parametric model based on the approach
proposed in the P.NATS for HAS end-user quality estimation. Quality assessment
took into account both audio and video bitrate, as well as content length information.
Video resolution and stalling events were also input factors. Martinez and Farias
proposed in [38] a parametric approach for audiovisual quality estimation, which
focuses on RTP-based streaming. In this paper, subjective and objective quality was
assessed for different quality levels of audio and video, with constant bitrates. A
QoE estimation model was proposed, considering different combinations of audio
and video quality metrics.

Considering the previously proposed QoE estimation methods mentioned in this
section, it should be noted here that none of them was particularly designed for live
music streaming applications.

For subjective quality assessment of HAS and QoE impact factors, comprehen-
sive reviews may be found in [39] and [25]. Most of the published HAS-related sub-
jective studies follow a strong tendency to focus only on the influence of video im-
pairments on the perceived audiovisual quality. Some examples are covered below. In
[4], the authors describe a subjective study, which relies on both spatial and temporal
quality factors to derive a QoE measure for video HAS. An extensive set of test con-
ditions was created considering temporal factors such as the initial delay and stalling
(total duration vs. frequency) and spatial quality of the video content (quality level
variations). In this particular case, the average quality level, the number of switches
and the average magnitude of the switches were taken into account. The predicted
Mean Opinion Score (MOS) provided by the developed user experience model shows
a high linear correlation with subjective test results (0.91). A study of the correlation
between QoE and Quality of Service (QoS) for an HTTP video streaming scenario is
presented in [5]. A set of performance metrics were used, considering both buffering
related parameters (initial delay, stalling duration and frequency) and video qual-
ity switches. Among the drawn conclusions, it is stated that the temporal structure
has a prominent impact on the QoE, with the rebuffering frequency being identified
as the main factor affecting MOS. The influence of several factors in the QoE of
video streaming over HTTP was studied in [40], through crowdsourcing subjective
tests. Besides other relevant conclusions, the results clearly identify stalling events
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as dominant in the quality perceived by the end-user. Vriendt et. al [41] evaluated
the performance of a number of parametric quality prediction models for adaptive
video streaming to mobile devices. Subjective tests were carried out using 2 differ-
ent clips, from which 90 different test conditions were obtained, considering video
quality switches between 6 different quality levels. The model parameters were de-
rived using different characteristics of the test samples: nominal bitrate, quality level,
PSNR and SSIM average and standard deviation and chunk MOS (MOS per qual-
ity level). The obtained results indicate that chunk MOS approach provides the best
correlation with the subjective MOS, followed by the averaged SSIM. The authors
in [42] studied the perceptual impact of quality adaptation strategies and content on
the perceived quality of video streaming. A wide range of study cases was created
by combining different temporal video bitrate dynamics, initial bitrate conditions,
chunk sizes and visual content. The reported results indicate a significant preference
for gradual quality changes over long chunks (10 seconds). In [43], the Absolute Cat-
egory Rating (ACR) methodology was used to evaluate QoE in relation to the scaling
dimensions of High Efficiency Video Coding (HEVC/H.265), by varying the frame
rate, spatial resolution and codec quantization parameter. Takahashi et al. [44] anal-
ysed the impact of the average video bitrate, stalling and the initial loading delay on
the cumulative quit rate of users on smartphones with full HD resolution, who were
allowed to freely search and change between videos under varying network condi-
tions.

The influence of audio presence was investigated by Tavakoli et al. [45], following
an evaluation of the video-related impairments previously studied in [42]. This study
shows that audio has only a minor impact (a Pearson correlation coefficient of 0.93
between Audio and No audio tests was reported) on overall quality perceived by
the end user, assessed according to the methodology defined in ITU-T Rec. P.910 [8].
Moreover, when it comes to quality adaptation strategies, a correlation between MOS
obtained for a whole sequence and MOS for processed sequences was always lower
when an audio part was involved in the test.

When it comes to optimizing bandwidth utilization, [46] describes the EnvDASH
system, an environment-aware adaptive streaming client based on MPEG-DASH
that adapts the quality of audiovisual content according to viewing and listening
conditions as well as the user’s interest. It deploys a sensed environment, sensing
separately the viewing and listening conditions as well as the user’s interest in
the content. This is done in order to reduce network traffic generated by the
corresponding streaming service or application in situations where the user is not
able to fully enjoy high quality video and audio, e.g. while travelling over rough
terrain. According to the experiment presented in the paper, a 5.3% bandwidth saving
was achieved with the proposed system over all the subjects/users involved in the
experiment.

In the available literature, no study exists that explicitly deals with the impact of
audio quality, and more specifically the trade-off in relative bandwidth utilization on
audiovisual quality experienced by the end user in the context of HAS. Such insights
may be very useful for TV broadcasters and video content delivery providers, such as
Netflix, YouTube, Amazon, and Hulu, that are interested in optimizing their client-
side quality adaptation strategies. Such insights can inform decisions about the range
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Fig. 1 Flowchart of the proposed methodology.

of both audio and video content quality rendered, so as to provide the end user with
the best quality possible considering the mix of corresponding network conditions,
user device capabilities, and user preferences. It is worth noting here that with very
few exceptions, the quality adaptation strategies up to now have uniquely focused
only on adapting the quality of the video content.

Thus, this research deals with the combined effect of varying the quality level
of both audio and video content on the audiovisual quality experienced by the end
user, in the context of HAS, while considering the particular case of live music
concert streaming. To do so, a subjective test has been run according to ITU-T Rec.
P.911 [12] simulating a live music concert transmitted over a mobile network with
varying congestion levels. In terms of content, recorded live music performances
were deployed, as this constitutes a very common use-case scenario. Moreover, this
scenario represents a good example of the situation whereby the quality of audio
should play a crucial role, i.e. music concert. Insights arising from this study will
allow HAS content providers to optimize the use of limited bandwidth in terms of the
trade-off between video and audio. Moreover, on the basis of the subjective quality
test data presented in this paper, a parametric model was designed to estimate the
audiovisual quality experienced by the end user in the context of recorded live music
streaming deploying MPEG-DASH. A conceptual diagram of the proposed approach
is depicted in Fig. 1.

3 Methods

3.1 Subjective test design

3.1.1 Source videos and impairment design

Live music performances from two different bands - U2 and Pink Floyd - were ripped
from DVD to provide source content. There is a clear differentiation between the
content from both bands. In U2 videos, there is constant movement involving fast
camera and light changes. On the other hand, Pink Floyd videos have less on-stage
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(a) U2 band video sequence 1 frame (b) U2 band video sequence 2 frame

(c) Pink Floyd band video sequence 1 frame (d) Pink Floyd band video sequence 2 frame

Fig. 2 Representative frame of each sequence used on the subjective tests.

movement and both camera and light changes are, generally, slower. In terms of
audio, U2 videos have a lot more interference from the audience.

The source videos were resized to 480p (854x480), which is standard definition
deployed in mobile streaming [47]. It is important to note that the initial source
content had a spatial resolution of 720x576 and was resized using the FFmpeg
software 1 to match a 16:9 aspect ratio screen, which is the case of the mobile set
used for testing. Video resizing and upscaling would be also automatically done by
the mobile set in a real life situation.

The video frame rate was 25 frames per second. Four 1 min long sequences were
selected (Fig. 2) and cut into 10 second chunks, according to the results reported
in [45], representing a typical DASH chunk size deployed by popular streaming
services, e.g. Apple HTTP Streaming 2. FFmpeg software was used to encode
demuxed video and audio at different compression rates. Audio chunks were encoded
using High Efficiency Advanced Audio Coding v2 (HE-AAC v2) scheme [48], at two
different quality levels, i.e. 128 kbps and 24 kbps. 128 kbps is a common bitrate in
audio experiments and also extensively used in audiovisual content streaming, which
delivers high quality audio. To attempt the introduction of distortions that could affect
audio quality, the low end of the HE-AACv2 range of operation was chosen as a low
quality level (24 kbps). It should be noted here that stereo audio signals were used
in this experiment. Video chunks were encoded with the H.264/AVC video coding
standard [49] at three quality levels (H: 512 kbps, M: 256 kbps and L: 128 kbps),

1 https://www.ffmpeg.org/
2 https://bitmovin.com/mpeg-dash-hls-segment-length/
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(a) Case 1 (V: HHMMMH / A:
HHHLLH)

(b) Case 2 (V: HHHHHH / A:
HHHLLH)

(c) Case 3 (V: HHMLMH / A:
HHHHHH)

(d) Case 4 (V: HHHLLH / A:
HHHHHH)

(e) Case 5 (V: HHMMMH / A:
HHLLLH)

(f) Case 6 (V: HHHLLH / A:
HHHLLH)

Fig. 3 Temporal dynamics of impairments test cases. Video profiles (V) are in the upper half (H. 512 kbps,
M. 256 kbps, L. 128 kbps) and audio profiles (A) in the lower half (H. 128 kbps, L. 24 kbps)

which are within the range deployed in [41], with a spatial resolution of 854x480.
These bitrates represent multiples of the high quality audio bitrate, i.e. 128 kbps, in
order to create a balance in terms of the audio and video quality perceived by the end
user, allowing us to study a tradeoff between video and audio bitrates in the selected
video streaming context. It should be noted that audio and video were synchronous
in all experiments, as that issue was not the aim of this study.

Fig. 3 depicts the different impairment cases created through the concatenation of
the diverse encoded streams into 1 min long mp4 files (6 x 10 sec). These impairments
involve different tradeoffs between audio and video quality levels, simulating diverse
network congestion situations. Audio degradation only is simulated in case 2, while
video degradation only is represented by cases 3 and 4. Simultaneous degradation of
audio and video is simulated in the remaining cases (1, 5 and 6). As evident, cases 1
and 5 are similar to cases 3 and 4, respectively, in terms of bit rate request. Case 6
includes sequences with lowest total bandwidth level.

Most of the previous research in the context of HAS considers larger datasets of
streaming sessions or impairments in their design, e.g. [41, 4], which is necessary
to draw general conclusions that cover a broad scope of scenarios. In our research, a
more specific use-case of HAS, i.e. live music concert streaming to mobile devices, is
considered, with a focus on both audio and video quality. Regarding the experiment
design, the number of test conditions involved in the test had to be limited in order to
avoid participants fatigue in the subjective test (described in the next section), while
maintaining reasonable content diversity. Taking into account the extensive studies
considering different encoding scenarios and content, we believe that the final range
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Fig. 4 Rating screen in Android App used for subjective tests

of test conditions lead to representative, plausible and interesting combinations, both
in terms of spatial and temporal information.

3.1.2 Test methodology

A single-stimulus study was conducted at the Image and Video Technology
Laboratory, Universidade da Beira Interior (UBI) [7]. The study followed the ITU-
T standard on subjective audiovisual quality assessment methods for multimedia
applications (ITU-T Rec. P.911) [12], which recommends a minimum of 15
participants, in order to obtain statistically reliable data. A total of 32 subjects
participated in this study, consisting mostly of students from UBI, from which 21
were male, with ages ranging between 18 and 35 years (mean 24 years), and 11 were
female, with ages ranging between 18 and 22 (mean 20 years). Subjects were selected
to best represent the target end user group of live music streaming services.

Test sessions, with an average duration of 20 minutes, were carried out in
a controlled environment. Subjects were given LG Nexus 5 smartphones (quad-
core, 4.95” screen with a resolution of 1920x1080) and stereo headphones (Philips
SL3060). The experiment was ran using an Android app designed specifically for this
purpose. The app provided full screen visualization of the test sequences, as well as a
rating screen (Fig. 4) presented after each visualization, which included a calibrated
bar for a nine-level ACR. Like in many real applications, the test content resolution
was smaller than the display resolution, and thus an automatic resizing was made to
allow a full screen visualization.

Hidden, or non-explicit, references were included in all sessions of the subjective
test. The experimental setup did not support the original quality references, due to
some hardware limitations associated with the mobile devices deployed in the test,
i.e. memory and processing power limitations of the mobile device. Hence, the in-
test references consisted in non-distorted sequences, in the sense that both audio and
video were kept at the maximum quality levels among the available representations
(A: 128 kbps, V: 512 kbps). It should be noted here that both audio and video
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distortions carried by the in-test reference sequences were unnoticeable for the expert
test persons involved in preliminary tests, using the mobile device test setup.

There were a total of 24 different impaired sequences involved in the test set (4
different sequences with 6 impairments per sequence) plus the 4 reference versions
(hidden references). Considering the relatively long duration of each sequence, a
given session included only half of the entire test set to prevent user fatigue and
avoid the consequent bias in the results. The test design ensured that each impaired
sequence was viewed the same number of times, i.e. 16. Each subject thus attended
a single session, in which 12 impaired sequences were randomly presented plus the
4 reference sequences. The actual test session was preceded by 2 training sequences,
not included in the test set, which reproduced similar impairments for different
sequences of the available content, to adapt the subject to the viewing conditions
and context of the test.

With the objective of studying the impact of audio and video distortions on global
quality perception, subjects were explicitly prompted to score each test sequence
according to their perceived global quality, i.e. taking both audio and video quality
into consideration. In this study, the resulting subjective quality for each tested
sequence is represented by MOS, which is commonly deployed in HAS studies
[4, 5, 40, 41, 42, 45]. Analysing the differential MOS (DMOS) might help scatter the
content dependency of the results and improve the discrimination power of the test.
However, it is worth noting here that it was not possible to use DMOS, commonly
used in video quality studies, as it was not feasible to obtain subjective quality
scores for the original quality sequences. MOS from the different test sequences
was compared individually with the respective references MOS, using one-way
ANOVA tests. Moreover, individual modality comparisons (i.e. audio-only or video-
only impairment sequences) were also studied with ANOVA, to obtain insights on
the actual impact of each modality distortion on the global quality perceived by the
end user.

3.2 Objective Quality Assessment

3.2.1 Audio and video quality metrics

Objective quality of the test sequences was measured using a set of 6 video quality
metrics and 2 audio quality metrics. The metrics chosen for video quality assessment
were PSNR, SSIM [50] and MS-SSIM [24], using the averaged frame-by-frame
output [41], ST-MAD [20], ST-RRED [22], and VQM [19]. MOVIE [21] and
FLOSIM [23] were also considered, however both metrics ran excessively slow
and did not provide reasonable predictions with the used dataset. For audio quality
metrics, POLQA Music [15, 16] and ViSQOL Audio [17] were used. At an initial
stage, the PEAQ model, standardized as ITU-R Recommendation BS.1387, was also
involved. However, PEAQ failed to provide reasonable predictions, perhaps due to a
varied delay/clock drift present in the test signals, caused by different encoding rates,
or/and simply by the corresponding implementation of HE-AAC v2 codec. It is worth
noting here that PEAQ was not designed for these degradations.
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All the used metrics are full-reference methods, i.e. they all include the original
signal/reference in the quality assessment process. It should be noted that the metric
references are different from those included in the subjective test. Due to limitations
of the mobile handsets used for the tests, a choice was made on using sequences
continuously encoded at high quality as non-explicit test references. However, these
would probably contain coding artefacts, even though at an imperceptible level,
that would bring a systematic bias into the objective quality assessment. Hence,
the resized maximum quality videos (480p) were used as a reference for metric
computation. In the case of video measurements, the Y component from the raw
uncompressed YUV-format video sources was used, whereas in the case of audio
measurements, uncompressed audio (wav format, Stereo, 44100Hz) was used.

3.2.2 Audiovisual quality model

Another objective of this work was to derive a joint audiovisual model which
can effectively characterize/estimate the global quality perception of live concert
streaming, as obtained from the subjective tests. As mentioned in section II, the model
shown in equation (1) is a common approach when deriving audiovisual quality
(AVQ) [31]. In this study, a parametric regression was used to fit the normalized MOS
data (MOSn), considering both audio (AQ) and video (VQ) objective quality outputs,
which were also normalized prior to data fitting. Data range was normalized into [0,
1], using xn = (x−min(x))/(max(x)−min(x)).

MOS predictions (MOSp) were obtained by mapping MOSn into the resulting
models. Data fitting was done using the Curve Fitting tool of MATLAB. Moreover,
an extension of the mentioned model was also investigated, with the inclusion of
quadratic terms of both audio and video quality metrics. These terms increase the
degrees of freedom in the audiovisual model, which are expected to improve the
fitting to MOSn and finally the model accuracy. Hence, this extended model is defined
as follows:

AVQ = a0 +a1AQ +a2VQ +a3AQVQ +a4A2
Q +a5V 2

Q (2)

with the addition of quadratic terms for audio (A2
Q) and video (V 2

Q) and respective
weight coefficients a4 and a5. This model extends the quadratic model where only
a3AQVQ was used. Adding third order terms would lead to extra complexity and
would also run the risk of over-fitting.

A goodness-of-fit analysis of each joint audiovisual model was carried out. The
coefficients of the fitted models were also analysed for a better understanding of the
relative influence of separate audio and video quality in each joint metric. Finally,
MOSp for each joint audiovisual metric were computed, to assess which combination
of metrics provide the best characterization of the MOS from the subjective tests.
The performance of the proposed models is evaluated using a series of statistical
evaluation metrics, which include the Pearson Linear Correlation Coefficient (PLCC),
the Spearman Rank Order Correlation Coefficient (SROCC), the Root Mean Squared
Error (RMSE) and the epsilon-insensitive RMSE (RMSE*), as defined in ITU-T Rec.
P.1401 [51], using the subjective evaluation results as baseline.
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(a) All videos

(b) U2 band videos

(c) Pink Floyd band videos

Fig. 5 Overall distribution of the subjective test scores. The boxes include data between the 25th and the
75th percentiles. Median values and Mean Opinion Scores (MOS) are indicated by the line and the circle
inside the boxes, respectively. Outliers are indicated by the crosses.

4 Results and Analysis

4.1 MOS data analysis

Following the ITU-T Recommendation BT.500 [9], subjective test results were
screened to discard subjects whose ratings present a strong shift compared to the
average behaviour. According to this analysis, no subject should be discarded.
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Table 1 Summary of two-way ANOVA test conducted on the MOS values.

Sum of Squares df Mean Square F-ratio p-value
Test condition 211.66 6 35.2760 16.77 <0.0001

Signal 64.15 3 21.3839 10.16 <0.0001
TC*Signal 57.13 18 3.1739 1.51 0.0830

Error 883.63 420 2.1039
Total 1216.56 447

Fig. 5 presents box plots of the subjective scores obtained from the experiment,
considering all stimuli (Fig. 5(a)) and stimuli separated into U2 (Fig. 5(b)) and Pink
Floyd (Fig. 5(c)). MOS of each impairment is indicated by a circle. A two-way
ANOVA test was initially conducted over the entire data (Table 1) to analyse the
statistical significance of both signal (i.e. audiovisual content) and test conditions
(i.e. impairments designed for the test). The ANOVA outcome shows that subjects
revealed higher sensitivity to the test conditions (F-ratio = 16.77, p < 0.0001) than
to the investigated signals (F-ratio = 10.16, p < 0.0001). The interaction between the
involved factors is not statistically significant (F-ratio = 1.51, p = 0.0830).

An initial analysis of the data shown in Fig. 5(a) reveals that case 2 (audio-only
impairments) achieved the best MOS after the reference. MOS of case 2 is slightly
lower when compared to reference MOS, which shows that listeners were able to
detect lower audio quality when no video distortion is present. Nonetheless, this
difference is not statistically significant. Moreover, cases 3, 4 and 6, where video
quality is dropped to the lower available level for 1-2 10 sec chunks, yield the worst
MOS and are quite similar to each other.

One-way ANOVA tests (CI = 95%) were carried out over this data (Table 2).
Normal distribution of the data was confirmed by a Kolmogorov-Smirnov test [52].
Some important conclusions arise from these outcomes. MOS similarity between
audio-only impairment scores and the reference scores was previously discussed.
The similarity between MOS of cases 1 and 5 (p = 0.8590) further shows that audio
distortions do not affect the global quality perception, even when the distortions span
a longer period of time. MOS values of cases 3 and 4 are statistically similar to
MOS of case 6 (p = 0.9130 and p = 0.7111, respectively). Taking a look at directly
comparable cases, in terms of bandwidth requirements, ANOVA shows a statistical
difference between MOS of cases 1 and 4 (p = 0.0120) and also between cases 3
and 5 (p = 0.0022), with higher MOS for the cases with video encoded at 256 kbps
and audio encoded at 128 kbps. Based on these results, it is possible to conclude that
the perceived quality is not significantly affected by lower audio quality, particularly
when video distortions are present.

Fig. 6 shows data box plots of the subjective test scores with all stimuli for audio-
only impairments (case 2) and video-only impairments (cases 3 and 4), in comparison
with the corresponding references. It should be noted that for the statistical analysis,
reference data consists of the paired reference scores in each test. For example, if a
given subject saw impairment case 2 for U2 video 1 and Pink Floyd video 2, the scores
for U2 video 1 and Pink Floyd video 2 references from the same test are considered.
It becomes apparent, from the observation of the data box plots in Fig. 6 that video
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Table 2 One-way ANOVA p-values for impairment comparison with all videos (results above p = 0.05
are highlighted).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Case 1
Case 2 0.0039
Case 3 0.0040 <0.0001
Case 4 0.0120 <0.0001 0.7995
Case 5 0.8590 0.0068 0.0022 0.0072
Case 6 0.0017 <0.0001 0.9130 0.7111 0.0011

Reference <0.0001 0.2502 <0.0001 <0.0001 0.0226 <0.0001

Table 3 One-way ANOVA p-values for impairment comparison with U2 videos (results above p = 0.05
are highlighted).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Case 1
Case 2 0.0005
Case 3 0.0587 <0.0001
Case 4 0.0673 <0.0001 0.9443
Case 5 0.3101 0.0116 0.0068 0.0079
Case 6 0.1461 <0.0001 0.5421 0.5911 0.0168

Reference 0.0003 0.5916 <0.0001 <0.0001 0.1098 <0.0001

Table 4 One-way ANOVA p-values for impairment comparison with Pink Floyd band videos (results
above p = 0.05 are highlighted).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case 1
Case 2 0.7722
Case 3 0.0237 0.0060
Case 4 0.0718 0.0280 0.7548
Case 5 0.4421 0.2596 0.1336 0.2763
Case 6 0.0037 0.0007 0.4260 0.2980 0.0284

Reference 0.0507 0.2617 <0.0001 0.0004 0.1071 <0.0001

impairments have a greater impact than audio impairments on the quality perceived
by the end user.

Statistical analysis of these results was also performed, after confirming the
normal distribution of the data using the Kolmogorov-Smirnov test [52]. A one-
way ANOVA test (CI = 95%) was ran to evaluate the statistical significance of the
differences between the mean values of the impairment scores and the respective
references. ANOVA tests yielded a p-value of 0.4431 for audio-only impairments and
a p-value of 1.71×10−17 for video-only impairments. Therefore, it may be concluded
that differences in quality perception in cases with only audio distortion are not
statistically significant (p > 0.05), whilst for cases with only video distortion these
differences are statistically significant (p < 0.05).

As mentioned in the description of the source content, this experiment included
representations of two different contexts. Hence, one-way ANOVA (CI = 95%) was



16 Rafael Rodrigues et al.

(a)

(b)

Fig. 6 Comparison of subjective test scores of both audio (a) and video (b) impaired sequences with the
subjective test scores of the respective references. The boxes include data between the 25th and the 75th

percentiles. Median values and Mean Opinion Scores (MOS) are indicated by the line and the circle inside
the boxes, respectively.

also performed differentiating the content of each band, to analyse the possible
influence of the type of content (Tables 3 and 4). Statistical similarities found with
undifferentiated content were also found for both U2 and Pink Floyd bands video
groups. Regarding the U2 band related data, there is statistical similarity between case
5 and the reference (p = 0.1098). A gradual reduction of total bandwidth requirements
to 280 kbps (V + A: 256 kbps + 24 kbps) did not cause a significant loss in the quality
experienced by the end user. In this profile, the audio quality variation allows the
reduction of total bandwidth to a level close to those of cases 3 and 4 (256 kbps),
where global quality perception is affected by low video quality. The results obtained
from Pink Floyd sequences suggest that audio distortions are less negligible, which
may arise from a higher focus on the specific musical content, as a clearer difference
may be seen between MOS from case 2 and the reference in Fig 5(c). However,
this difference is not statistically significant. Nevertheless, case 5 is also statistically
similar to its reference (p = 0.1071), as well as case 1 (p = 0.0507), where an abrupt
bandwidth reduction to 280 kbps is simulated. analysing the directly comparable
bandwidth cases (1-4 and 3-5), although MOS values for 1 and 5 (video quality
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Table 5 Parametric regression coefficients for model 1.

aaa000 aaa111 aaa222 aaa333

POLQA+PSNR 0.3862 -0.2739 0.3282 0.6429
POLQA+SSIM 0.4212 -0.3249 0.6118 0.2407

POLQA+MS-SSIM 0.0363 -0.0364 0.8806 0.0909
POLQA+ST-MAD 0.2108 -0.1615 0.6359 0.2560
POLQA+ST-RRED 0.2749 -0.2951 0.6074 0.2807

POLQA+VQM 0.3807 -0.2317 0.2155 0.7657

ViSQOL+PSNR -0.0240 0.2867 1.1686 -0.4882
ViSQOL+SSIM 0.2853 -0.1501 0.7625 0.0449

ViSQOL+MS-SSIM -0.0226 0.0484 0.9704 -0.0311
ViSQOL+ST-MAD 0.0492 0.0358 1.0230 -0.2519
ViSQOL+ST-RRED 0.2093 -0.3006 0.7461 0.1986

ViSQOL+VQM -0.0503 0.3482 1.0764 -0.3674

loss compensated with audio at 128 kbps) are still higher than their related cases,
a statistical separation of MOS is more apparent for U2 over Pink Floyd content. In
fact, a statistical similarity is registered for both of these comparisons in Pink Floyd,
with particular relevance for cases 3 and 5. Hence, a possibility of compensating
video quality losses with audio seems to be content-dependent to a certain extent.

Some marginal conclusions may be derived from the reported results. Scores
of cases 3 and 4 are statistically similar to each other (p = 0.7995). Hence, highly
noticeable video distortions cause a great impact on the perceived quality of a given
audiovisual stream, with both gradual or abrupt bit rate variations. Furthermore, other
marginal conclusions of this study may be drawn. Impairment case 1 of U2 videos,
(video bit rate is dropped to 256 kbps), shows statistical similarity with cases 3 (p =
0.0587), 4 (p = 0.0673) and 6 (p = 0.1461), where the video bit rate drops to a 128
kbps. These results show that an identical loss in global quality experienced by the
end user may be caused by both smaller or larger variations in video quality, when
the visual content involves rapid movement and/or camera changes.

4.2 Audiovisual quality model

The coefficients obtained from the parametric model regression are shown in Tables
5 (model 1) and 6 (proposed model). Regarding the model 1 coefficients, a2 (weight
of the video quality metric, VQ) assumes a higher absolute value than a1 (weight of
the audio quality metric, AQ) for the majority of metric combinations. This is well
in line with the subjective results discussed above, which suggested that video may
be the most determining factor in global perceived quality. In the proposed model,
a similar tendency is observable as coefficients a2 and a5 (weight of the quadratic
term of video quality metric, V 2

Q) have, in general, a bigger absolute value than both
a1 and a4 (coefficients of the audio metric and the quadratic term of audio metric,
respectively). Furthermore, both models also consider a term AQ.VQ, which refers to
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Table 6 Parametric regression coefficients for the proposed model.

aaa000 aaa111 aaa222 aaa333 aaa444 aaa555

POLQA+PSNR 0.1333 0.2393 1.0220 0.5615 -0.3640 -0.6692
POLQA+SSIM 0.2025 0.5267 1.0100 0.7539 -0.8564 -0.8009

POLQA+MS-SSIM 0.0066 -0.3312 1.1730 -0.0228 0.3271 -0.1674
POLQA+ST-MAD 0.2047 -1.5570 1.5600 -0.2752 1.4320 -0.3119
POLQA+ST-RRED 0.3426 -0.4586 0.3874 0.2498 0.1319 0.2557

POLQA+VQM 0.2496 -0.1196 0.7198 0.6434 -0.0121 -0.4460

ViSQOL+PSNR -0.2604 0.1738 2.2850 -0.5898 0.2779 -1.0530
ViSQOL+SSIM 0.2705 -0.7050 1.4080 0.4156 0.4629 -0.8561

ViSQOL+MS-SSIM -0.0986 0.3929 1.1540 -0.0325 -0.3575 -0.1734
ViSQOL+ST-MAD -0.0193 0.6640 1.1480 0.0115 -0.8016 -0.2635
ViSQOL+ST-RRED 0.1997 -0.0681 0.6553 0.2180 -0.2603 0.0798

ViSQOL+VQM -0.3555 0.6933 2.2190 -0.6849 -0.0962 -0.9924

Table 7 Goodness-of-fit measures for audiovisual quality models.

Model 1 Proposed Model

R2 Ad jR2
∑E2 R2 Ad jR2

∑E2

POLQA+PSNR 0.6434 0.5988 0.8328 0.6764 0.6029 0.7557
POLQA+SSIM 0.7581 0.7279 0.5649 0.8417 0.8057 0.3698

POLQA+MS-SSIM 0.8565 0.8385 0.3352 0.8621 0.8307 0.3222
POLQA+ST-MAD 0.6360 0.5905 0.8501 0.7032 0.6357 0.6932
POLQA+ST-RRED 0.8528 0.8344 0.3438 0.8605 0.8288 0.3257

POLQA+VQM 0.6717 0.6307 0.7666 0.6862 0.6148 0.7330

ViSQOL+PSNR 0.6507 0.6070 0.8159 0.7222 0.6591 0.6488
ViSQOL+SSIM 0.7276 0.6936 0.6362 0.7917 0.7444 0.4865

ViSQOL+MS-SSIM 0.8573 0.8395 0.3332 0.8684 0.8385 0.3073
ViSQOL+ST-MAD 0.6428 0.5982 0.8342 0.6874 0.6164 0.7300
ViSQOL+ST-RRED 0.8732 0.8573 0.2962 0.8800 0.8527 0.2802

ViSQOL+VQM 0.6895 0.6507 0.7252 0.7543 0.6984 0.5739

an interaction between both individual quality measures (a3, in the fourth column of
Tables 5 and 6). It is interesting to find that this interaction term plays a considerable
role in almost every case. Absolute values of a3 are not negligible and are bigger than
the audio coefficients in most cases. However, it is not possible from this study to
clearly understand the relation of this interaction factor with the individual metrics
nor the individual audio and video quality outcomes.

In Fig. 7, the surface fitting of MOSn using parametric regressions of model 1
are shown. Table 7 presents goodness-of-fit parameters provided by the curve fitting
tool (R2, Adjusted R2 and Sum of Squared Errors). Based on the results in this
Table, it is possible to conclude that ViSQOL Audio and ST-RRED provide the best
fit for model 1 (R2 = 0.8732, SSE = 0.2962). Taking into account only the results
involving POLQA Music, MS-SSIM performs better than other tested video metrics
(R2 = 0.8565, SSE = 0.3352). Globally, the worst results are obtained with ST-MAD,
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Table 8 Statistical evaluation metrics for predicted MOS using the audiovisual quality models.

Model 1 Proposed Model

PLCC SROCC RMSE RMSE* PLCC SROCC RMSE RMSE*

POLQA+PSNR 0.8021 0.8112 0.1725 0.1464 0.8225 0.7887 0.1643 0.1527
POLQA+SSIM 0.8707 0.8862 0.1420 0.0987 0.9174 0.8823 0.1149 0.0844

POLQA+MS-SSIM 0.9255 0.9245 0.1094 0.0831 0.9285 0.9245 0.1073 0.0668
POLQA+ST-MAD 0.7975 0.7718 0.1742 0.1406 0.8386 0.8265 0.1573 0.1153
POLQA+ST-RRED 0.9235 0.9009 0.1108 0.0203 0.9276 0.8922 0.1079 0.0472

POLQA+VQM 0.8196 0.8073 0.1655 0.1477 0.8283 0.7969 0.1618 0.1559

ViSQOL+PSNR 0.8066 0.7937 0.1707 0.1182 0.8498 0.8041 0.1522 0.1329
ViSQOL+SSIM 0.8530 0.8768 0.1507 0.1017 0.8898 0.8960 0.1318 0.0872

ViSQOL+MS-SSIM 0.9259 0.9234 0.1091 0.0678 0.9319 0.9064 0.1048 0.0407
ViSQOL+ST-MAD 0.8018 0.7625 0.1726 0.1272 0.8291 0.7920 0.1615 0.0926
ViSQOL+ST-RRED 0.9344 0.8982 0.1028 0.0563 0.9381 0.9064 0.1000 0.0423

ViSQOL+VQM 0.8304 0.8188 0.1609 0.0967 0.8685 0.8205 0.1432 0.1029

considering both audio metrics (R2 = 0.6360, SSE = 0.8501 with POLQA Music and
R2 = 0.6428, SSE = 0.8342 with ViSQOL Audio).

Table 8 reports the statistical evaluation metrics for MOS predictions (MOSp)
using both fitted audiovisual models (PLCC, SROCC, RMSE and RMSE*). Given
the small number of samples, the t-student 95% confidence interval was considered
when computing RMSE* [51].

All audiovisual metric combinations yield relatively good Pearson coefficients
between MOSn and MOSp (PLCC > 0.8), using model 1. The top performing
combinations, according to PLCC and RMSE, are ViSQOL Audio with ST-RRED
(PLCC = 0.9344, RMSE = 0.1028), ViSQOL Audio with MS-SSIM (PLCC = 0.9259,
RMSE = 0.1091) and POLQA Music with MS-SSIM (PLCC = 0.9255, RMSE =
0.1094). These results are coherent with the goodness-of-fit measures discussed
previously. Further analysis of the Spearman correlation coefficients, indicates the
same top 2 performing metrics. The third best combination is POLQA Music and
ST-RRED.

Fig. 8 presents surface fittings of MOSn using parametric regression of the
proposed model, i.e. equation (2). The obtained surfaces fit the data in a less
rigid manner than the surfaces obtained with equation (1), suggesting a better
approximation of MOSn. As shown in Table 7, R2 are higher and SSE values are
lower for every fitted curve and SSE, when compared with the analogous values from
model 1, suggesting an improvement with the addition of quadratic terms.

Adjusted R2 offers a measure of the explanatory power of adding a term to a given
model. Comparing the adjusted R2 values of both models in Table 7, the inclusion of
the quadratic variables effectively increases the fitting of MOSn data for seven of
the total metric combinations. However, the adjusted R2 slightly decays for other
combinations.

These combinations include the top performing audiovisual metrics in terms of
linear correlation. MOSp statistical evaluation metrics for the proposed model are
presented in Table 8. Pearson correlation coefficients are higher in every case and
RMSE values for MOSp from the proposed model are lower, when compared with the
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(a) POLQA Music and PSNR (b) POLQA Music and SSIM (c) POLQA Music and MS-
SSIM

(d) POLQA Music and ST-
MAD

(e) POLQA Music and ST-
RRED

(f) POLQA Music and VQM

(g) ViSQOL Audio and PSNR (h) ViSQOL Audio and SSIM (i) ViSQOL Audio and MS-
SSIM

(j) ViSQOL Audio and ST-
MAD

(k) ViSQOL Audio and ST-
RRED

(l) ViSQOL Audio and VQM

Fig. 7 Surface fits for joint audiovisual metrics, obtained with non-linear regression of equation (1).

same measures for model 1. The results indicate an overall better performance of this
extended joint model, in terms of MOS prediction. Although the linear correlation
is globally improved by the proposed model, the monotonic correlation coefficients
show a different tendency, as SROCC decreases for most combinations using POLQA
Music for the proposed model. Combinations with ViSQOL Audio show improved
monotonic correlation, with the exception of ViSQOL Audio and MS-SSIM, which
nonetheless still yielded a Spearman coefficients slightly above 0.9. However, the four



Audiovisual Quality of Live Music Streaming over Mobile Networks using MPEG-DASH 21

(a) POLQA Music and PSNR (b) POLQA Music and SSIM (c) POLQA Music and MS-
SSIM

(d) POLQA Music and ST-
MAD

(e) POLQA Music and ST-
RRED

(f) POLQA Music and VQM

(g) ViSQOL Audio and PSNR (h) ViSQOL Audio and SSIM (i) ViSQOL Audio and MS-
SSIM

(j) ViSQOL Audio and ST-
MAD

(k) ViSQOL Audio and ST-
RRED

(l) ViSQOL Audio and VQM

Fig. 8 Surface fits for joint audiovisual metrics, obtained with parametric regression of equation (2),
including the quadratic terms.

top performing joint metrics, according to SROCC, are the same as those of model 1,
with MS-SSIM (SROCC = 0.9245 with POLQA Music and SROCC = 0.9064 with
ViSQOL Audio) and ST-RRED (SROCC = 0.9064 with ViSQOL Audio and 0.8922
with POLQA Music). This again suggests that video quality plays a more important
role in this context than audio quality, as shown in the subjective test presented in this
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Table 9 Results of statistical significance tests for PLCC, RMSE and RMSE*. Note: “1” indicates that
this metric combination is statistically equivalent to the top performing metric combination (denoted by
shaded cells). “0” indicates a statistical difference.

Model 1 Proposed Model

PLCC RMSE RMSE* PLCC RMSE RMSE*

POLQA+PSNR 0 0 0 0 0 0
POLQA+SSIM 1 1 0 1 1 0

POLQA+MS-SSIM 1 1 0 1 1 0
POLQA+ST-MAD 0 0 0 1 0 0
POLQA+ST-RRED 1 1 1 1 1 1

POLQA+VQM 1 0 0 1 0 0

ViSQOL+PSNR 0 0 0 1 0 0
ViSQOL+SSIM 1 0 0 1 1 0

ViSQOL+MS-SSIM 1 1 0 1 1 1
ViSQOL+ST-MAD 0 0 0 1 0 0
ViSQOL+ST-RRED 1 1 0 1 1 1

ViSQOL+VQM 1 0 0 1 0 0

research. It should also be noted that the best metric according to SROCC (POLQA
Music with MS-SSIM) did not decrease its monotonic correlation.

As differences between the reported correlation measures, RMSE and RMSE*
values for all the investigated audio and video metric combinations are small,
the corresponding statistical significance tests [51] were performed to specify the
significance of those differences. This represents the common Video Quality Experts
Group and International Telecommunication Union approach when it comes to a
quality prediction/estimation models benchmark. It should be noted here that the
SROCC has mostly a non-linear relationship, and therefore the statistical significance
test for the correlation coefficients cannot be computed in this case. Table 9 shows
that, regarding PLCC, most of the metric combinations are statistically equivalent
to the best performing metric combination (ViSQOL Audio with ST-RRED in
both audiovisual models). As for RMSE, an efficient discrimination between metric
combinations is also not possible, even though a smaller number of performances
are statistically equivalent to the best joint metric (ViSQOL Audio with ST-RRED in
both audiovisual models).

Taking into consideration these statistical significance tests, RMSE* appears to
be the most discriminative performance measure in the case of the both models.
As described in [51], RMSE* measures differences taking into account MOS
uncertainty. In other words, it measures the scattering of MOSp, as it ignores small
differences with respect to an epsilon-wide band defined by t × σ , where t refers
to the t-student critical value at 95% confidence and σ to the standard deviation
of MOS. Interestingly, RMSE* isolates POLQA Music with ST-RRED as the best
performing joint metric for model 1 (RMSE* = 0.0203). Regarding the proposed
model, ViSQOL Audio with MS-SSIM yields the best result (RMSE* = 0.0407),
with two other combinations presenting statistically equivalent results (ST-RRED
combined with both POLQA Music and ViSQOL).
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The experimental setup in this work does not consider short-term temporal
quality variations, as the chunk duration is constant and relatively long, i.e. 10
seconds, which is usually considered the best compromise, as in [45]. Based on
results from preliminary performance tests, the deployed audio and video quality
prediction models were found to be able to provide reasonable predictions of the
long-term quality variations introduced by our impairment cases, despite the fact
that they were not explicitly designed for taking into account temporal variations
of the quality. Furthermore, it is worth reiterating here that the main goal of the
developed models was to effectively map the predictions provided by both audio
and video quality metrics into a global quality level estimation, which was confirmed
by the good correlation coefficients obtained with both audiovisual quality estimation
models. However, the accuracy of these models may be further increased, considering
audiovisual quality prediction models designed to fully take into account temporal
quality variations introduced by HAS. The outcome of the ITU-T SG12 P.NATS
standardization effort may contribute vastly to this objective, especially when it
comes to video quality prediction models.

5 Conclusion

The objectives of this paper were two-fold. First, considering the purpose and
design of the MPEG-DASH protocol, a main goal was to generate valuable insights
into possible trade-offs in relative bandwidth allocation. Therefore, the joint effect
of audio and video quality was subjectively assessed, using varying aggregate
bandwidth in a recorded live music streaming scenario to emulate a mobile network.
It should be emphasized that the drawn conclusions are limited to this case study. In
particular, we studied only live concert streaming in the context of mobile devices
and networks. As it is well known, typically, mobile devices are not capable of
reproducing high quality audio, despite being commonly used by the general public
for audio reproduction. For this reason, audio quality can be reduced without a strong
impact on the perceived audiovisual quality. If other systems different from mobile
ones are used, these conclusions may not be valid, particularly, if higher bandwidth
is available.

Typical MPEG-DASH encoding variations were used in the sequences, which
were divided in 10 second chunks. Network congestion was emulated for 1-3
consecutive chunks, reducing the bit rate of video, audio or both media respectively.
The scores obtained from the subjective test have allowed us to draw the following
important conclusions. The reduction of audio content bit rate for a small number
of chunks does not affect significantly the global/audiovisual quality perceived by
the end user. On the other hand, video bit rate reduction has a greater impact on
global/audiovisual quality perceived by the end user. Hence, it is possible to conclude
that reducing audio quality to the lowest tested quality allows avoiding video quality
reduction without a significant loss on the audiovisual quality perceived by the end
user. That would not be the case if the video quality was by a similar bit rate amount,
causing a significant perceived quality loss. As a trade-off example, it is preferable
to reduce the bit rate of the audio content from 128 to 24 kbps even for two chunks
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than the bit rate of video content from 256 to 128 kbps for just one chunk. Also, the
direct comparison of similar aggregate bandwidth cases indicates that reducing audio
bit rate to 24 kbps, with simultaneous video bit rate reduction to an intermediate level
(256 kbps), yields a better perceived audiovisual quality than the case involving only
video bit rate reduction to 128 kbps.

Based on the results provided by a number of audio and video objective quality
metrics, the second main goal of the paper was to derive an effective joint model
for estimating audiovisual quality perceived by the end user, in the context of live
music streaming over mobile network. A parametric model was proposed, which
incorporates quadratic terms of the separate audio and video quality metrics, to extend
a commonly used model for the joint audiovisual quality [31].

The obtained performance measures suggest that the proposed approach is valid
as a joint audiovisual quality estimation model in the context of recorded live
music streaming over mobile network. All tested metric combinations achieved
Pearson correlation coefficients above 0.8 and the proposed model globally improved
the results of the previous approach. Considering all the discussed performance
measures, top performing metric combinations include ST-RRED and MS-SSIM,
whether with POLQA Music or ViSQOL Audio.

The conclusions arising from the results presented in this paper may be valuable
for the development of new bandwidth adaptation strategies for adaptive streaming
over HTTP, which in turn is important for the rapidly growing commercial case of
network service providers. However, a similar study with other types of content and
devices should be considered in future work, in order to fully assess the applicability
of these results to a general case. Unfortunately, to the best of our knowledge, there
is no such database publicly available.

Based on the reported results, it also seems to be worth investigating
the performance of higher order polynomials, when it comes to the proposed
audiovisual quality assessment approach. Furthermore, the reported quality
evaluation methodologies might be applied as a basis in the context of
omnidirectional audio and video, by varying the quality of the different audio signals
and also the quality of different tiles of the omnidirectional video considering the
focus of the viewer, in order to keep a reasonable bandwidth consumption.

Acknowledgements The authors would like to acknowledge QuiVVer - ”Centro de competência em
Qualidade, Validação e Verificação de software” (CENTRO-07-CT62-FEDER-005009) for providing the
equipment used in the subjective tests. Furthermore, we acknowledge the E.U. Action COST IC 1003 -
Qualinet for enabling the cooperation between the three research institutions involved in this project.

References

1. Sodagar I (2011) The MPEG-DASH Standard for Multimedia Streaming over
the Internet. IEEE Multimedia 18(4):62–67

2. Thang TC, Ho QD, Kang JW, Pham AT (2012) Adaptive Streaming of
Audiovisual Content using MPEG DASH. IEEE Transactions on Consumer
Electronics 58(1):78–85



Audiovisual Quality of Live Music Streaming over Mobile Networks using MPEG-DASH 25

3. Claeys M, Latre S, Famaey J, De Turck F (2014) Design and Evaluation of a
Self-learning HTTP Adaptive Video Streaming Client. IEEE Communications
Letters 18(4):716–719

4. Liu Y, Dey S, Ulupinar F, Luby M, Mao Y (2015) Deriving and Validating
User Experience Model for DASH Video Streaming. IEEE Transactions on
Broadcasting 61(4):651–665

5. Mok RK, Chan EW, Chang RK (2011) Measuring the Quality of Experience
of HTTP Video Streaming. In: 2011 IFIP/IEEE International Symposium on
Integrated Network Management, IEEE, pp 485–492

6. Tran HT, Ngoc NP, Pham AT, Thang TC (2016) A Multi-factor QoE Model
for Adaptive Streaming over Mobile Networks. In: 2016 IEEE Globecom
Workshops, IEEE, pp 1–6

7. Rodrigues R, Pocta P, Melvin H, Pereira M, Pinheiro AM (2016) MPEG DASH
– Some QoE-based Insights into the Tradeoff between Audio and Video for
Live Music Concert Streaming under Congested Network Conditions. In: 8th
International Conference on Quality of Multimedia Experience (QoMEX), IEEE,
pp 1–6

8. ITU-T Recommendation P.910 (2008) Subjective Video Quality Assessment
Methods for Multimedia Applications. ITU Telecommunication Std Sector

9. ITU-R Recommendation BT.500-13 (2012) Methodology for the Subjective
Assessment of the Quality of Television Pictures. ITU Radiocommunication Std
Sector

10. ITU-R Recommendation BS.1116-3 (2015) Methods for the Subjective
Assessment of Small Impairments in Audio Systems. ITU Radiocommunication
Std Sector

11. ITU-R Recommendation BS.1534-3 (2015) Method for the Subjective Assess-
ment of Intermediate Quality Levels of Coding Systems. ITU Radiocommunica-
tion Std Sector

12. ITU-T Recommendation P.911 (1998) Subjective Audiovisual Quality Assess-
ment Methods for Multimedia Applications. ITU Telecommunication Std Sector

13. ITU-T Recommendation P.913 (2016) Methods for the Subjective Assessment
of Video Quality, Audio Quality and Audiovisual Quality of Internet Video and
Distribution Quality Television in Any Environment. ITU Telecommunication
Std Sector

14. ITU-R Recommendation BS.1387 (2001) Method for Objective Measurements
of Perceived Audio Quality. ITU Radiocommunication Std Sector

15. ITU-T Recommendation P.863 (2014) Perceptual Objective Listening Quality
Assessment. ITU Telecommunication Std Sector

16. Pocta P, Beerends JG (2015) Subjective and Objective Assessment of Perceived
Audio Quality of Current Digital Audio Broadcasting Systems and Web-Casting
Applications. IEEE Transactions on Broadcasting 61(3):407–415

17. Hines A, Gillen E, Kelly D, Skoglund J, Kokaram A, Harte N (2015)
ViSQOLAudio: An Objective Audio Quality Metric for Low Bitrate Codecs.
The Journal of the Acoustical Society of America 137(6):449–455

18. ITU-T Recommendation J.247 (2008) Objective Perceptual Multimedia Video
Quality Measurement in the Presence of a Full Reference. ITU Telecommunica-



26 Rafael Rodrigues et al.

tion Std Sector
19. Pinson MH, Wolf S (2004) A New Standardized Method for Objectively

Measuring Video Quality. IEEE Transactions on Broadcasting 50(3):312–322
20. Vu PV, Vu CT, Chandler DM (2011) A Spatiotemporal Most-Apparent-

Distortion Model for Video Quality Assessment. In: 18th IEEE International
Conference on Image Processing (ICIP), IEEE, pp 2505–2508

21. Seshadrinathan K, Bovik AC (2009) Motion-based Perceptual Quality Assess-
ment of Video. In: Proceedings of SPIE - Human Vision and Electronic Imaging
XIV, International Society for Optics and Photonics, SPIE, vol 7240, pp 283 –
294

22. Soundararajan R, Bovik AC (2013) Video Quality Assessment by Reduced
Reference Spatio-Temporal Entropic Differencing. IEEE Transactions on
Circuits and Systems for Video Technology 23(4):684–694

23. Manasa K, Channappayya SS (2016) An Optical Flow-based Full Reference
Video Quality Assessment Algorithm. IEEE Transactions on Image Processing
25(6):2480–2492

24. Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale Structural Similarity for
Image Quality Assessment. In: 37th IEEE Asilomar Conference on Signals,
Systems and Computers, IEEE, vol 2, pp 1398–1402

25. Barman N, Martini MG (2019) QoE Modeling for HTTP Adaptive Video
Streaming - a Survey and Open Challenges. IEEE Access 7:30831–30859

26. Tran HT, Ngoc NP, Hoßfeld T, Thang TC (2018) A Cumulative Quality Model
for HTTP Adaptive Streaming. In: 10th International Conference on Quality of
Multimedia Experience (QoMEX), IEEE, pp 1–6

27. Duanmu Z, Ma K, Wang Z (2018) Quality-of-Experience for Adaptive Streaming
Videos: An Expectation Confirmation Theory Motivated Approach. IEEE
Transactions on Image Processing 27(12):6135–6146

28. Tran HT, Nguyen DV, Nguyen DD, Ngoc NP, Thang TC (2019) An LSTM-based
Approach for Overall Quality Prediction in HTTP Adaptive Streaming. In: IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS),
IEEE, pp 702–707

29. Beerends JG, De Caluwe FE (1999) The Influence of Video Quality on Perceived
Audio Quality and Vice Versa. Journal of the Audio Engineering Society
47(5):355–362

30. Pinson M, Ingram W, Webster A (2011) Audiovisual Quality Components. IEEE
Signal Processing Magazine 6(28):60–67

31. You J, Reiter U, Hannuksela MM, Gabbouj M, Perkis A (2010) Perceptual-based
Quality Assessment for Audiovisual Services: A Survey. Signal Processing:
Image Communication 25(7):482–501

32. Hands DS (2004) A Basic Multimedia Quality Model. IEEE Transactions on
Multimedia 6(6):806–816

33. ITU-T Recommendation P.1203 (2017) Parametric Bitstream-based Quality
Assessment of Progressive Download and Adaptive Audiovisual Streaming
Services over Reliable Transport. ITU Telecommunication Std Sector

34. ITU-T Recommendation P.1203.1 (2019) Parametric Bitstream-based Quality
Assessment of Progressive Download and Adaptive Audiovisual Streaming



Audiovisual Quality of Live Music Streaming over Mobile Networks using MPEG-DASH 27

Services over Reliable Transport - Video Quality Estimation Module. ITU
Telecommunication Std Sector

35. ITU-T Recommendation P.1203.2 (2017) Parametric Bitstream-based Quality
Assessment of Progressive Download and Adaptive Audiovisual Streaming
Services over Reliable Transport – Audio Quality Estimation Module. ITU
Telecommunication Std Sector

36. ITU-T Recommendation P.1203.3 (2017) Parametric Bitstream-based Quality
Assessment of Progressive Download and Adaptive Audiovisual Streaming Ser-
vices over Reliable Transport - Quality Integration Module. ITU Telecommuni-
cation Std Sector

37. Yamagishi K, Hayashi T (2017) Parametric Quality-Estimation Model
for Adaptive-Bitrate-Streaming Services. IEEE Transactions on Multimedia
19(7):1545–1557

38. Martinez HAB, Farias MC (2018) Combining Audio and Video Metrics to
Assess Audio-visual Quality. Multimedia Tools and Applications 77(18):23993–
24012

39. Garcia MN, De Simone F, Tavakoli S, Staelens N, Egger S, Brunnstrom K, Raake
A (2014) Quality of Experience and HTTP Adaptive Streaming: A Review of
Subjective Studies. In: 6th International Workshop on Quality of Multimedia
Experience (QoMEX), IEEE, pp 141–146

40. Hoßfeld T, Schatz R, Biersack E, Plissonneau L (2013) Internet Video Delivery
in YouTube: From Traffic Measurements to Quality of Experience. In: Data
Traffic Monitoring and Analysis, Springer, pp 264–301

41. De Vriendt J, De Vleeschauwer D, Robinson D (2013) Model for Estimating
QoE of Video Delivered using HTTP Adaptive Streaming. In: 2013 IFIP/IEEE
International Symposium on Integrated Network Management (IM 2013), IEEE,
pp 1288–1293

42. Tavakoli S, Brunnstrøm K, Wang K, Andrén B, Shahid M, Garcia N (2014)
Subjective Quality Assessment of an Adaptive Video Streaming Model. In:
Proceedings of SPIE - Image Quality and System Performance XI, International
Society for Optics and Photonics, SPIE, vol 9016, pp 197 – 208

43. Irondi I, Wang Q, Grecos C, Calero JMA, Casaseca-De-La-Higuera P (2019)
Efficient QoE-aware Scheme for Video Quality Switching Operations in
Dynamic Adaptive Streaming. ACM Transactions on Multimedia Computing,
Communications, and Applications 15(1):1–23

44. Takahashi S, Yamagishi K, Lebreton P, Okamoto J (2019) Impact of Quality
Factors on Users’ Viewing Behaviors in Adaptive Bitrate Streaming Services. In:
11th International Conference on Quality of Multimedia Experience (QoMEX),
IEEE, pp 1–6

45. Tavakoli S, Brunnstrøm K, Gutiérrez J, Garcı́a N (2015) Quality of Experience
of Adaptive Video Streaming: Investigation in Service Parameters and Subjective
Quality Assessment Methodology. Signal Processing: Image Communication
39:432–443

46. Wilk S, Schönherr S, Stohr D, Effelsberg W (2015) EnvDASH: An Environment-
Aware Dynamic Adaptive Streaming over HTTP System. In: Proceedings of the
ACM International Conference on Interactive Experiences for TV and Online



28 Rafael Rodrigues et al.

Video, ACM, pp 113–118
47. Bossen F (2013) Common Test Conditions and Software Reference Configu-

rations (JCTVC-K1100). In: 11th Meeting: Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T SG16

48. Herre J, Dietz M (2008) MPEG-4 High-efficiency AAC Coding [Standards in a
Nutshell]. IEEE Signal Processing Magazine 25(3):137–142

49. Wiegand T, Sullivan GJ, Bjöntegaard G, Luthra A (2003) Overview of the
H.264/AVC Video Coding Standard. IEEE Transactions on Circuits and Systems
for Video Technology 13(7):560–576

50. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image Quality
Assessment: from Error Visibility to Structural Similarity. IEEE Transactions
on Image Processing 13(4):600–612

51. ITU-R Recommendation P.1401 (2012) Methods, Metrics and Procedures
for Statistical Evaluation, Qualification and Comparison of Objective Quality
Prediction Models. ITU Telecommunication Std Sector

52. Massey Jr. FJ (1951) The Kolmogorov-Smirnov Test for Goodness of Fit. Journal
of the American Statistical Association 46(253):68–78


