6,104 research outputs found

    Analytical method to measure three-dimensional strain patterns in the left ventricle from single slice displacement data

    Get PDF
    Background: Displacement encoded Cardiovascular MR (CMR) can provide high spatial resolution measurements of three-dimensional (3D) Lagrangian displacement. Spatial gradients of the Lagrangian displacement field are used to measure regional myocardial strain. In general, adjacent parallel slices are needed in order to calculate the spatial gradient in the through-slice direction. This necessitates the acquisition of additional data and prolongs the scan time. The goal of this study is to define an analytic solution that supports the reconstruction of the out-of-plane components of the Lagrangian strain tensor in addition to the in-plane components from a single-slice displacement CMR dataset with high spatio-temporal resolution. The technique assumes incompressibility of the myocardium as a physical constraint. Results: The feasibility of the method is demonstrated in a healthy human subject and the results are compared to those of other studies. The proposed method was validated with simulated data and strain estimates from experimentally measured DENSE data, which were compared to the strain calculation from a conventional two-slice acquisition. Conclusion: This analytical method reduces the need to acquire data from adjacent slices when calculating regional Lagrangian strains and can effectively reduce the long scan time by a factor of two

    Modelling mitral valvular dynamics–current trend and future directions

    Get PDF
    Dysfunction of mitral valve causes morbidity and premature mortality and remains a leading medical problem worldwide. Computational modelling aims to understand the biomechanics of human mitral valve and could lead to the development of new treatment, prevention and diagnosis of mitral valve diseases. Compared with the aortic valve, the mitral valve has been much less studied owing to its highly complex structure and strong interaction with the blood flow and the ventricles. However, the interest in mitral valve modelling is growing, and the sophistication level is increasing with the advanced development of computational technology and imaging tools. This review summarises the state-of-the-art modelling of the mitral valve, including static and dynamics models, models with fluid-structure interaction, and models with the left ventricle interaction. Challenges and future directions are also discussed

    Nonlinear physics of electrical wave propagation in the heart: a review

    Get PDF
    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that are triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media and their application to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact in cardiac arrhythmias.Peer ReviewedPreprin

    Novel echocardiographic techniques to assess left atrial size, anatomy and function

    Get PDF
    Three-dimensional echocardiography (3DE) and speckle tracking echocardiography (STE) have recently applied as imaging techniques to accurately evaluate left atrial (LA) size, anatomy and function. 3DE and off-line quantification softwares, have allowed, in comparison to magnetic resonance imaging, the most time-efficient and accurate method of LA volume quantification. STE provides a non-Doppler, angle-independent and objective quantification of LA myocardial deformation. Data regarding feasibility, accuracy and clinical applications of LA analysis by 3DE and STE are rapidly gathering. This review describes the fundamental concepts of LA 3DE and STE, illustrates how to obtain respective measurements and discuss their recognized and emerging clinical applications

    Flow pattern analysis for magnetic resonance velocity imaging

    Get PDF
    Blood flow in the heart is highly complex. Although blood flow patterns have been investigated by both computational modelling and invasive/non-invasive imaging techniques, their evolution and intrinsic connection with cardiovascular disease has yet to be explored. Magnetic resonance (MR) velocity imaging provides a comprehensive distribution of multi-directional in vivo flow distribution so that detailed quantitative analysis of flow patterns is now possible. However, direct visualisation or quantification of vector fields is of little clinical use, especially for inter-subject or serial comparison of changes in flow patterns due to the progression of the disease or in response to therapeutic measures. In order to achieve a comprehensive and integrated description of flow in health and disease, it is necessary to characterise and model both normal and abnormal flows and their effects. To accommodate the diversity of flow patterns in relation to morphological and functional changes, we have described in this thesis an approach of detecting salient topological features prior to analytical assessment of dynamical indices of the flow patterns. To improve the accuracy of quantitative analysis of the evolution of topological flow features, it is essential to restore the original flow fields so that critical points associated with salient flow features can be more reliably detected. We propose a novel framework for the restoration, abstraction, extraction and tracking of flow features such that their dynamic indices can be accurately tracked and quantified. The restoration method is formulated as a constrained optimisation problem to remove the effects of noise and to improve the consistency of the MR velocity data. A computational scheme is derived from the First Order Lagrangian Method for solving the optimisation problem. After restoration, flow abstraction is applied to partition the entire flow field into clusters, each of which is represented by a local linear expansion of its velocity components. This process not only greatly reduces the amount of data required to encode the velocity distribution but also permits an analytical representation of the flow field from which critical points associated with salient flow features can be accurately extracted. After the critical points are extracted, phase portrait theory can be applied to separate them into attracting/repelling focuses, attracting/repelling nodes, planar vortex, or saddle. In this thesis, we have focused on vortical flow features formed in diastole. To track the movement of the vortices within a cardiac cycle, a tracking algorithm based on relaxation labelling is employed. The constraints and parameters used in the tracking algorithm are designed using the characteristics of the vortices. The proposed framework is validated with both simulated and in vivo data acquired from patients with sequential MR examination following myocardial infarction. The main contribution of the thesis is in the new vector field restoration and flow feature abstraction method proposed. They allow the accurate tracking and quantification of dynamic indices associated with salient features so that inter- and intra-subject comparisons can be more easily made. This provides further insight into the evolution of blood flow patterns and permits the establishment of links between blood flow patterns and localised genesis and progression of cardiovascular disease.Open acces

    Evaluation of left ventricle strains by applying SPAMM cardiac MRI techniques

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2017As doenças cardiovasculares são uma das maiores causas de morte no mundo, causando aproximadamente 17.5 milhões de mortes por ano, o que corresponde a 31% de todas as mortes no mundo. Estas doenças caracterizam-se pela diminuição da contração da parede do miocárdio durante o ciclo cardíaco. Uma das doenças mais comuns é a cardiomiopatia dilatada (DCM), onde o músculo cardíaco fica mais fino e fraco, e as cavidades cardíacas ficam aumentadas. Consequentemente, a capacidade de deformação do miocárdio é diminuída, o que impossibilita o coração de bombear eficientemente o sangue para as restantes partes do corpo. Esta condição é maioritariamente genética, mas também pode ser provocada por diferentes causas como infeções virais, inflamações ou lesões. A análise da deformação da parede do miocárdio aquando do ciclo cardíaco possibilita não só a identificação das deformações normais do miocárdio aquando da sua contração, mas também das deformações anormais devido a doenças cardíacas. A técnica de ressonância magnética cardíaca (CMR) é não invasiva e tem uma elevada resolução espacial, sendo por isso indispensável no estudo destas deformações. Esta técnica permite detetar essas mesmas características da contração e distensão do músculo cardíaco, possibilitando a análise das deformações e a respetiva distinção entre os pacientes saudáveis e os pacientes com cardiomiopatia dilatada. Nesta doença, observa-se o estreitamento das paredes do miocárdio e a dilatação das cavidades cardíacas, como é o caso do ventrículo esquerdo, o que se observa pelo aumento do seu diâmetro. O resultado é um decréscimo significativo na tensão e deformação da parede do miocárdio, o que impacta negativamente na eficiência da sístole ventricular. A técnica de Modulação Espacial da Magnetização (SPAMM) tem vindo a ser proposta para a visualização do movimento e deslocamento da parede do miocárdio no seu plano de imagem, através da criação de padrões de linhas e grelhas com magnetização alterada na imagem. Estes padrões são marcadores que seguem a deformação do músculo cardíaco. Ao serem detetados e seguidos durante o ciclo cardíaco, estes marcadores contribuem para o estudo do movimento da parede do miocárdio aquando da sua contração. A amostra usada nesta tese consistiu em imagens de ressonância magnética cardíaca de 9 indivíduos, 3 dos quais são saudáveis e os outros 6 são pacientes com DCM. As imagens foram adquiridas pelo Hospital Motol em Praga (República Checa) e analisadas pelo Instituto de Informática, Robótica and Cibernética da Faculdade de Engenharia Elétrica em Praga. A tese proposta teve como objetivo o estudo da deformação radial no ventrículo esquerdo através da automatização na deteção dos marcadores presentes no mesmo, assim como no seu seguimento ao longo do ciclo cardíaco. Pela análise das deformações de voluntários saudáveis e de pacientes com cardiomiopatia dilatada, é possível comparar os seus padrões de deformação cardíaca de modo a analisar as diferenças entre os dois. Pelo estudo das deformações, sabe-se que um valor positivo de deformação corresponde a um espessamento de um objeto e um valor negativo corresponde ao seu encurtamento, relativamente ao seu tamanho inicial. Durante a contração do miocárdio, é normal observar-se um espessamento e encurtamento da parede do ventrículo esquerdo. Assim sendo, as deformações radiais tomam valores positivos devido ao espessamento da parede e as circunferenciais tomam valores negativos devido ao encurtamento da parede. Os métodos de deteção dos marcadores foram aplicados com sucesso nos sujeitos saudáveis e com cardiomiopatia dilatada, sendo que estes marcadores foram também corretamente seguidos ao longo do ciclo cardíaco, durante a sístole e a diástole. Nos sujeitos saudáveis, foi observado um intervalo de deformações radiais entre 18.63 % e 43.84 %, enquanto que em pacientes com cardiomiopatia dilatada, os valores de deformação radial variaram entre 10.73 % e 14.14 %. De notar que os valores das deformações radiais são positivos e, por isso, confirmam o espessamento da parede do ventrículo esquerdo aquando da sua contração. Assim sendo, os resultados desta dissertação vão de encontro com os resultados dos testes feitos anteriormente em voluntários saudáveis e com cardiomiopatia dilatada, visto que os intervalos de deformações são semelhantes para os dois grupos. Ao comparar-se as deformações dos dois grupos pelo teste estatístico Mann-Whitney, verificou-se uma diferença significativa (p<0.05) nos valores das deformações entre os mesmos. Assim sendo, esta tese também confirma que os pacientes com a doença cardíaca têm valores mais baixos de deformação em relação aos indivíduos saudáveis, tal como é comprovado pelo facto da doença cardiomiopatia dilatada ser caracterizada pela diminuição da deformação do miocárdio durante o ciclo cardíaco. Pela comparação dos diferentes segmentos ao longo das secções básica, média e apical do ventrículo esquerdo, foi também observado que nos pacientes com cardiomiopatia dilatada, a deformação mínima correspondeu ao segmento inferolateral da base do ventrículo e que a deformação máxima se deu no segmento anteroseptal da secção média do ventrículo. Em contrapartida, nos indivíduos saudáveis, o mínimo da deformação foi no segmento anterior e o máximo da deformação correspondeu ao segmento inferoseptal, ambos os segmentos pertencentes à secção média do ventrículo esquerdo. Estes resultados foram também observados em estudos anteriores relativos a pacientes com cardiomiopatia dilatada. Relativamente à análise das deformações circunferenciais, foi observado que, nos sujeitos saudáveis, o intervalo das deformações esteve entre -32.17 % e -24.33 %, enquanto que nos pacientes com cardiomiopatia dilatada, o intervalo foi de -15.92 % a -8.17 %. O valor negativo da deformação circunferencial é devido ao encurtamento da parede do ventrículo esquerdo, sendo que este valor se encontra em conformidade com o correto comportamento da parede do ventrículo durante a contração do miocárdio, tal como observado em estudos anteriores. Para alem destes factos, também se verificou que o máximo da deformação circunferencial foi dado na secção media do ventrículo esquerdo, enquanto que o mínimo foi na secção apical do mesmo. Ao comparar-se as deformações circunferenciais, pelo teste estatístico Mann-Whitney, durante a systole e entre os dois grupos de sujeitos, verificou-se existe uma diminuição significativa (p<0.05) do seu valor absoluto nos pacientes, relativamente aos sujeitos saudáveis. Adicionalmente, também foi estudado o efeito do género (masculino / feminino) nas deformações dos pacientes com cardiomiopatia dilatada. Os resultados do estudo mostraram que as deformações do ventrículo esquerdo são maiores no género masculino, em relação ao género feminino. Contudo, outros estudos realizados anteriormente não relataram qualquer relação entre as deformações do miocárdio e o género (masculino / feminino) dos respetivos pacientes. Com esta dissertação foi possível concluir que o estudo das deformações no ventrículo esquerdo é um parâmetro importante na avaliação da contratilidade do coração. O facto de a Ressonância magnética ser uma técnica não invasiva e da técnica de Modulação espacial da magnetização permitir criar um padrão de grelha que facilmente acompanha movimentos na parede do músculo, possibilitou a eficiente deteção das deformações na parede do ventrículo esquerdo. Uma outra conclusão importante deste estudo é o facto da doença cardiomiopatia dilatada provocar uma diminuição da capacidade de deformação do coração, visto que a doença é caracterizada pelo estreitamento da parede do miocardio e por uma dilatação das cavidades cardíacas, especialmente dos ventrículos. Este facto está na origem da diminuição das deformações radiais e circunferenciais, em relação às deformações dos pacientes saudáveis. Foi também observado que a secção do ventrículo esquerdo responsável pela maior deformação é a secção média, pois foi nesta secção que se observou um maior número de valores máximos de deformação. Por fim, nesta tese também se confirma que durante a contração do miocárdio, a deformação radial teve valores positivos e a deformação circunferencial teve valores negativos, o que comprova que houve um espessamento e encurtamento da parede do ventrículo esquerdo durante a sua contração. Assim sendo, verifica-se que ao longo desta dissertação foi possível analisar a relação da deformação do ventrículo esquerdo com a doença cardiomiopatia dilatada e consequentemente, avaliar se a deformação calculada é normal ou devido à doença cardíaca. Como tal, a partir deste estudo foi possível facilitar a deteção das deformações, bem como fazer a sua análise para contribuição do estudo das doenças cardíacas, tal como a cardiomiopatia dilatada. Como trabalho futuro, poderá estudar-se como detetar automaticamente o ventrículo esquerdo e como calcular eficientemente as suas deformações. Assim, poderá também aprofundar-se o estudo e a análise da doença cardiomiopatia dilatada e de outras doenças cardíacas.Cardiovascular diseases are one of the main causes of death in the world. These diseases modify the myocardial wall contraction during cardiac cycle. One of the most common types of these diseases is the dilated cardiomyopathy (DCM), in which the heart muscle becomes weaker and the heart cavities are enlarged. Consequently, the heart deformation capability is decreased, which prevents it from pumping blood efficiently. This condition can be genetic or due to various causes such as viral infections, inflammation or injuries. The analysis of cardiac wall deformation enables identifying normal or abnormal deformations due to heart disease. Cardiac Magnetic Resonance Imaging (MRI) is able to detect the characteristic abnormalities of DCM, which are the wall thinning and dilation of heart chambers, more specifically the increasing of ventricle diameter. The result is a significant decrease in wall stress and strain, which has a negative impact on systolic ventricular performance. The Spatial Modulation of Magnetization (SPAMM) technique has been proposed for imaging myocardial motion within the plane of the image by creating a pattern of lines or grids with altered magnetization on the image. These patterns are tags that deform according to the heart muscle deformation and can be detected and tracked for wall motion studying. The sample used in this thesis was composed by cardiac MRI scans of 9 subjects, 3 of which were healthy subjects and the other 6 were patients with DCM. The scans were acquired by Motol Hospital in Prague (Czech Republic) and analyzed in the Institute of Informatics, Robotics and Cybernetics from the Faculty of Electrical Engineering in Prague. The proposed thesis intended to assess the left ventricle (LV) radial and circumferential strains by automatically detecting LV tags and tracking those during cardiac cycle. By analyzing the heart strains from healthy subjects and patients with DCM, it is possible to compare both patterns of cardiac deformation within the cardiac cycle in order to analyze the differences between them. Positive strain values describe myocardial thickening and negative values describe its shortening, related to its original length. During myocardial contraction, the radial strain is positive due to myocardial thickening, and the circumferential strain is negative due to myocardial shortening. The tracking methods were successfully applied on heathy and DCM patients and the tags were successfully detected during systole and diastole. A comparison between the strains, by Mann-Whitney statistical test, during the cardiac cycle in both sets of subjects, identified a significant difference (p<0.05) between them. It was observed that in healthy subjects, the radial strain varied from 18.63 % to 43.84 %, while in DCM patients, the radial strain varied from 10.73 % to 14.14 %. The radial strains are positive values, as the LV thickens during myocardial contraction. The results of this thesis are in agreement with previous studies done with DCM and healthy subjects, as the ranges of deformations are similar in both sets of subjects. Moreover, this thesis also confirms that DCM patients have lower radial strain values than healthy subjects, as DCM is characterized by a decrease in heart muscle strain during the cardiac cycle. By comparing several segments in the different sections of the heart, it was also observed that in DCM patients, the minimum deformation was on the inferolateral segment of the base, while the maximum was on the anteroseptal segment of the middle section. However, in healthy subjects, the minimum deformation was on the anterior segment and the maximum was on the inferoseptal segment, both in the middle section of the left ventricle. This result was also observed in previous studies. Regarding to the circumferential strains analysis, it was observed that in healthy subjects, the average circumferential strain range was from -32.17 % to -24.33 %, while in DCM patients, it was from -15.92 % to -8.17 %. The negative value of the circumferential strain means that there was a LV wall shortening and this is in conformity with the correct behavior of LV during myocardial contraction. Moreover, in healthy subjects, the mid section of LV has the major strain, while in DCM patients, it is the apical section. A comparison between the circumferential strains during systole in both sets of subjects supports the previous studies results, in which the circumferential stains values are negative during systole. Additionally, the results of Mann-Whitney statistical test also shown significant lower absolute (p<0.05) values on DCM patients, when comparing to healthy subjects. Additionally, the effect of the gender (male/ female) on the strains was also investigated on the DCM patients and the results suggest that in women, the LV strain is lower than in men. Despite these results, the other studies did not report any conclusion related to this effect. It is possible to state that the study of the LV strain is an important parameter in the evaluation of the cardiac contractility. A non-invasive assessment of LV by MRI and the superimposed grid created by SPAMM improved the tracking of LV wall strains. Another important conclusion of this study was that DCM decreases the deformation capabilities of the heart, as it is responsible for the wall thinning and dilation of heart chambers, causing a decrease in wall radial and circumferential strains. Moreover, it was observed that the major section responsible for the myocardial deformation was the middle section of the LV. Finally, this thesis also confirmed that during myocardial contraction, the radial strain values are positive due to the myocardial thickening and the circumferential values are negative due to the myocardial shortening. A need to automatically detect the LV and also to efficiently calculate the LV strains in a short time can be developed as a future work, which will also improve the analysis of DCM disease and other cardiac diseases

    Analysis of myocardial contractility with magnetic resonance

    Get PDF
    Heart failure has considerable morbidity and poor prognosis. An understanding of the underlying mechanics governing myocardial contraction is a prerequisite for interpreting and predicting changes induced by heart disease. Gross changes in contractile behaviour of the myocardium are readily detected with existing techniques. For more subtle changes during early stages of cardiac dysfunction, however, it requires a sensitive method for measuring, as well as a precise criterion for quantifying, normal and impaired myocardial function. Cardiovascular Magnetic Resonance (CMR) imaging is emerging as an important clinical tool because of its safety, versatility, and the high quality images it produces that allow accurate and reproducible quantification of cardiac structure and function. Traditional CMR approaches for measuring contractility rely on tagging of the myocardium with fiducial markers and require a lengthy and often subjective dependant post-processing procedure. The aim of this research is to develop a new technique, which uses velocity as a marker for the visualisation and assessment of myocardial contractility. Two parallel approaches have been investigated for the assessment of myocardial velocity. The first of these is haimonic phase (HARP) imaging. HARP imaging allows direct derivation of myocardial velocity and strain without the need of further user interaction. We investigated the effect of respiration on the accuracy of the derived contractility, and assessed the clinical applicability and potential pitfalls of the technique by analysing results from a group of patients with hypertrophic cardiomyopathy. The second technique we have investigated is the direct measurement of myocardial velocity with phase contrast myocardial velocity mapping. The imaging sequence used employs effective blood saturation for reducing flow induced phase errors within the myocardium. View sharing was used to improve the temporal resolution, which permitted acquisition of 3D velocity information throughout the cardiac cycle in a single breath-hold, enabling a comprehensive assessment of strain rate of the left ventricle. One key factor that affects the derivation of myocardial contractility based on myocardial velocity is the practical inconsistency of the velocity data. A novel iterative optimisation scheme by incorporating the incompressibility constraint was developed for the restoration of myocardial velocity data. The method allowed accurate assessment of both in-plane and through-plan strain rates, as demonstrated with both synthetic and in vivo data acquired from normal subjects and ischaemic patients. To further enhance the clinical potential of the technique and facilitate the visual assessment of contractile abnormality with myocardial velocity mapping, a complementary analysis framework, named Virtual Tagging, has been developed. The method used velocity data in all directions combined with a finite element mesh incorporating geometrical and physical constraints. The Virtual Tagging framewoik allowed velocity measurements to be used for calculating strain distribution within the 3D volume. It also permitted easy visualisation of the displacement of the tissue, akin to traditional CMR tagging. Detailed validation of the technique is provided, which involves both numerical simulation and in vitro phantom experiments. The main contribution of this thesis is in the improvement of the effectiveness and quality of quantitative myocardial contractility analysis from both sequence design and medical image computing perspectives. It is aimed at providing a sensitive means of detecting subtle as well as gross changes in contractile behaviour of the myocardium. The study is expected to provide a clinically viable platform for functional correlation with other functional measures such as myocardial perfusion and diffusion, and to serve as an aid for further understanding of the links between intrinsicOpen acces

    Image based approach for early assessment of heart failure.

    Get PDF
    In diagnosing heart diseases, the estimation of cardiac performance indices requires accurate segmentation of the left ventricle (LV) wall from cine cardiac magnetic resonance (CMR) images. MR imaging is noninvasive and generates clear images; however, it is impractical to manually process the huge number of images generated to calculate the performance indices. In this dissertation, we introduce a novel, fast, robust, bi-directional coupled parametric deformable models that are capable of segmenting the LV wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of the LV wall to track the evolution of the parametric deformable models control points. We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and mean AD value of 2.16±0.60 mm compared to two other level set methods that achieve mean DSC values of 0.904±0.033 and 0.885±0.02; and mean AD values of 2.86±1.35 mm and 5.72±4.70 mm, respectively. Also, a novel framework for assessing both 3D functional strain and wall thickening from 4D cine cardiac magnetic resonance imaging (CCMR) is introduced. The introduced approach is primarily based on using geometrical features to track the LV wall during the cardiac cycle. The 4D tracking approach consists of the following two main steps: (i) Initially, the surface points on the LV wall are tracked by solving a 3D Laplace equation between two subsequent LV surfaces; and (ii) Secondly, the locations of the tracked LV surface points are iteratively adjusted through an energy minimization cost function using a generalized Gauss-Markov random field (GGMRF) image model in order to remove inconsistencies and preserve the anatomy of the heart wall during the tracking process. Then the circumferential strains are straight forward calculated from the location of the tracked LV surface points. In addition, myocardial wall thickening is estimated by co-allocation of the corresponding points, or matches between the endocardium and epicardium surfaces of the LV wall using the solution of the 3D laplace equation. Experimental results on in vivo data confirm the accuracy and robustness of our method. Moreover, the comparison results demonstrate that our approach outperforms 2D wall thickening estimation approaches

    Ventricular anatomical complexity and sex differences impact predictions from electrophysiological computational models

    Get PDF
    The aim of this work was to analyze the influence of sex hormones and anatomical details (trabeculations and false tendons) on the electrophysiology of healthy human hearts. Additionally, sex- and anatomy-dependent effects of ventricular tachycardia (VT) inducibility are presented. To this end, four anatomically normal, human, biventricular geometries (two male, two female), with identifiable trabeculations, were obtained from high-resolution, ex-vivo MRI and represented by detailed and smoothed geometrical models (with and without the trabeculations). Additionally one model was augmented by a scar. The electrophysiology finite element model (FEM) simulations were carried out, using O’Hara-Rudy human myocyte model with sex phenotypes of Yang and Clancy. A systematic comparison between detailed vs smooth anatomies, male vs female normal hearts was carried out. The heart with a myocardial infarction was subjected to a programmed stimulus protocol to identify the effects of sex and anatomical detail on ventricular tachycardia inducibility. All female hearts presented QT-interval prolongation however the prolongation interval in comparison to the male phenotypes was anatomy-dependent and was not correlated to the size of the heart. Detailed geometries showed QRS fractionation and increased T-wave magnitude in comparison to the corresponding smoothed geometries. A variety of sustained VTs were obtained in the detailed and smoothed male geometries at different pacing locations, which provide evidence of the geometry-dependent differences regarding the prediction of the locations of reentry channels. In the female phenotype, sustained VTs were induced in both detailed and smooth geometries with RV apex pacing, however no consistent reentry channels were identified. Anatomical and physiological cardiac features play an important role defining risk in cardiac disease. These are often excluded from cardiac electrophysiology simulations. The assumption that the cardiac endocardium is smooth may produce inaccurate predictions towards the location of reentry channels in in-silico tachycardia inducibility studiesJA-S, FS, GH and MV are supported by the European Union’s Horizon 2020 research and innovation programme under grant agreements No 675451 (Compbiomed project phase 1) and No 823712 (CompBioMed project, phase 2) and project No 777204 (SilicoFCM project). Part of the simulation computing hours were provided by the CompBioMed project phase 1. JA-S was awarded computation time from Red Espanola de Supercomputacion (RES). (Activity IDs: FI-2018-2-0049 and BCV-2019-2-0014) JA-S is funded by a Ramon y Cajal fellowship (RYC-2017-22532), Ministerio de Ciencia e Innovacion, Spain; and by Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2017-2020 from the Ministerio de Ciencia e Innovacion y Universidades (PID2019-104356RBC41/AEI/10.13039/501100011033): meHeart ME PID2019-104356RB-C44. CB is funded by the Torres Quevedo Program (PTQ2018-010290), Ministerio de Ciencia e Innovacion, Spain. MV, GH and CB are funded by the Spanish Neotec project EXP - 00123159/SNEO-20191113 Generador de corazones virtuales. LKGM was funded by Fundacion Carolina-BBVA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There was no additional external funding received for this study.Peer Reviewed"Article signat per 11 autors/es: Pablo Gonzalez-Martin,Federica Sacco,Constantine Butakoff,Ruben Doste,Carlos Bederian,Lilian K. Gutierrez Espinosa de los Monteros,Guillaume Houzeaux,Paul A. Iaizzo,Tinen L. Iles,Mariano Vazquez,Jazmin Aguado-Sierra"Postprint (published version
    corecore