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ABSTRACT

IMAGE BASED APPROACH FOR EARLY ASSESSMENT OF HEART FAILURE

Hisham Z. Sliman

April 11, 2014

In diagnosing heart diseases, the estimation of cardiac performance indices

requires accurate segmentation of the left ventricle (LV) wall from cine cardiac

magnetic resonance (CMR) images. MR imaging is noninvasive and generates clear

images; however, it is impractical to manually process the huge number of images

generated to calculate the performance indices. In this dissertation, we introduce a

novel, fast, robust, bi-directional coupled parametric deformable models that are

capable of segmenting the LV wall borders using first- and second-order visual

appearance features. These features are embedded in a new stochastic external force

that preserves the topology of the LV wall to track the evolution of the parametric

deformable models control points. We tested the proposed segmentation approach

on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC)

and the average distance (AD) between the ground truth and automated

segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022

and mean AD value of 2.16±0.60 mm compared to two other level set methods that

achieve mean DSC values of 0.904±0.033 and 0.885±0.02; and mean AD values of

2.86±1.35 mm and 5.72±4.70 mm, respectively.

Also, a novel framework for assessing both 3D functional strain and wall

thickening from 4D cine cardiac magnetic resonance imaging (CCMR) is introduced.
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The introduced approach is primarily based on using geometrical features to track

the LV wall during the cardiac cycle. The 4D tracking approach consists of the

following two main steps: (i) Initially, the surface points on the LV wall are tracked

by solving a 3D Laplace equation between two subsequent LV surfaces; and (ii)

Secondly, the locations of the tracked LV surface points are iteratively adjusted

through an energy minimization cost function using a generalized Gauss-Markov

random field (GGMRF) image model in order to remove inconsistencies and

preserve the anatomy of the heart wall during the tracking process. Then the

circumferential strains are straight forward calculated from the location of the

tracked LV surface points. In addition, myocardial wall thickening is estimated by

co-allocation of the corresponding points, or matches between the endocardium and

epicardium surfaces of the LV wall using the solution of the 3D laplace equation.

Experimental results on in vivo data confirm the accuracy and robustness of our

method. Moreover, the comparison results demonstrate that our approach

outperforms 2D wall thickening estimation approaches.
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CHAPTER I

INTRODUCTION

The heart is a vital muscle. It pumps the blood to the whole body and back

continuously. Being a pump, it can become clogged, break down and need repair [1].

Medical reports show that the early detection of heart diseases can assist the

clinicians to afford better treatment and leads to increase in the survival rate of

patients with these diseases. Nowadays, Medical imaging represents a noninvasive

way that is effectively used to assist clinicians and cardiologists in diagnosis,

therapy decisions, and surgery operations.

A Heart Anatomy and Blood Circulation

The heart is a hollow, cone-shaped muscle that is between the lungs and

behind the breastbone. Two-thirds of the heart is located to the left of the midline

of the body and one-third is to the right. The size of the heart is almost the size of

the fist and its weight is negligible compared to the total body weight [1].

As we can see in Fig 1, the heart consists of four chambers: Right Atrium

(RA), Right Ventricle (RV), Left Atrium (LA) and Left Ventricle (LV). Each side

has its function and all the chambers have a one-way valve at their exit to forbid

blood from flowing backwards [2].

To pump blood out of the heart, the heart muscle contracts (systole phase)

on two steps. In the first step, the RA and LA contract at the same time, pumping

blood to the RV and LV. In the second step, both Ventricles contract together to

push blood out of the heart. The heart muscle then relaxes (diastole phase) to

1



Figure 1. Diagram of the human heart showing heart chambers and the blood flow
within the heart. The dotted lines point to the one-way valves. The image is taken
from [3].
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gather blood and fill up again before the next heartbeat [2].

The heart’s right and left sides act differently. The heart’s right side gathers

oxygen-poor blood from the body to pump it to the lungs where it picks up oxygen

and releases carbon dioxide. The left side of the heart then gets oxygen rich blood

from the lungs to pump it to the whole body to get the oxygen needed to function

properly [1].

Blood circulates through arteries and veins, the blood vessels that make up

the circulatory system. Arteries carry the oxygen-rich blood and veins carry the

oxygen-poor blood [1].

After the body’s organs and tissues have used the oxygen in the blood, all

blood returns to the heart from the body in a relatively exhausted status, poor in

oxygen, and goes into the RA. The RA contracts allowing the blood to enter into the

RV Which contracts to pump blood into the lungs where blood picks up oxygen [4].

Oxygen-rich blood now returns from the lungs and goes into the LA which

contracts to deliver blood to the LV. The LV is a very important chamber that

pumps blood into the whole body. The LV has a thick muscle, thicker than any

other heart chamber, because it must pump blood to the rest of the body against

much higher pressure in the general circulation (blood pressure) [4].

The heart, just like any other organ, requires to get oxygen and other

nutrients from blood to do its function. The heart does not extract its needs from

the blood flowing inside it. Rather, it gets them from blood flowing in coronary

arteries that eventually carry blood within the heart muscle. The heart also has

veins that collect oxygen-poor blood from the heart muscle [1].

1 Heart Disease

Heart disease includes all types of disorder that affect the heart and its

functionality, where heart here means all the parts that are working together to

pump blood [2]. Heart’s conditions and diseases of the heart’s muscle make it hard
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for the heart to pump blood normally. Heart disease is the leading cause of

mortality in the U.S, 25.4% of all deaths in the USA today are caused by heart

disease [5]. Slowly over time this develops to a complete heart failure. Although we

are witnessing unprecedented medical advancement, heart disease still causes

sudden death and many people die before even reaching the hospital [6, 7].

B Heart Failure

More than 5 million Americans are affected by heart failure and the number

of people who have heart failure is growing. More than 500,000 people are newly

diagnosed with it each year. Moreover, it is the leading cause of hospitalization in

people older than 65 as aging weakens the heart muscle. Heart failure indicates that

the heart’s pumping power is weaker than it is supposed to be. So, the blood moves

through the body at a slower rate, and pressure in the heart increases, then it

cannot supply the body’s needs of oxygen and nutrients. As a response, the heart

stretches more to keep the blood moving for a short while, but in time, the heart

muscle weakens and becomes unable to pump as strongly. This being said, if heart

failure is not diagnosed and treated early, these patients will have a relentless time

course to premature death [1, 2, 4, 5, 7].

1 Causes of Heart Failure

Disorders that damage the heart muscle and lead to heart failure are many,

including [1, 2, 4, 5, 7]:

• Coronary heart disease (CAD): Also known as coronary heart disease, is

caused by narrowing of the arteries that supply oxygen-rich blood to the heart

due to plaque build up. This reduces blood flow to the heart muscle and

makes it more likely that blood clots will form in the arteries which can

partially or completely block blood flow.If the blood supply is cut off, a heart

attack results.
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• High Blood Pressure: Also known as hypertension, is the force of blood

exerted against the walls of the arteries as blood flows through them. If this

pressure rises and stays high over time, it can weaken the heart and lead to

plaque buildup. Blood pressure always refers to two readings. The first is the

blood pressure at the heart’s maximum contraction; this is called the systolic

pressure. The second reading is measured at the heart’s minimum contraction,

maximum filling, and is called diastolic pressure.

• Diabetes: It is a disease in which the body’s blood glucose level is too high.

The body either doesn’t make enough insulin or doesn’t use its insulin

properly to turn the glucose into energy. Over time, high blood sugar levels

can damage and weaken the heart muscle and the blood vessels around the

heart, leading to heart failure.

• Heart attack: A heart attack may occur when a coronary artery becomes

suddenly blocked, stopping the flow of blood to the heart muscle and

damaging it. All or part of the heart muscle becomes cut off from its supply of

oxygen. A heart attack can damage the heart muscle, resulting in a scarred

area that does not function properly.

• Cardiomyopathy: Damage to the heart muscle. Causes include artery or

blood flow problems, infections, and alcohol and drug abuse.

• Dilated cardiomyopathy: In this disorder the heart chambers become

dilated because the heart muscle has become weak and cannot pump blood

properly. The most common reason is not enough oxygen reaching the heart

muscle (ischemia) due to coronary artery disease. Usually the left ventricle is

affected.

• Hypertrophic cardiomyopathy: A genetic disorder in which the wall of the

left ventricle becomes thick, making it harder for blood to leave the heart.
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The heart has to work harder to pump blood. This is the leading cause of

sudden death in athletes. A father or mother with hypertrophic

cardiomyopathy has a 50% chance of passing the disorder onto their children.

• Conditions that overwork the heart: Conditions like high blood pressure,

heart valve disease, thyroid disease, kidney disease, diabetes, or heart defects

present at birth can all cause heart failure. In addition, heart failure can occur

when several diseases or conditions are present at once.

2 Types of Heart Failure

Decreased heart’s pumping function occurs in two major ways:

1. Systolic dysfunction: Also called systolic heart failure; occurs when the

heart muscle doesn’t contract with enough force, so there is less oxygen-rich

blood that is pumped throughout the body.

2. Diastolic dysfunction: Also called diastolic heart failure; occurs when the

heart contracts normally, but the ventricle – the main pumping chamber –

does not relax properly, reducing the amount of blood that can enter the heart

and raising blood pressure in the lungs.

Ejection fraction (EF) is a measure of the percentage of blood that the heart

pumps out with each beat. EF is used to measure how well the heart pumps with

each beat to help determine if heart failure is present. In patients with systolic

heart failure, the EF is less than 40%. Heart failure can be detected by modern

imaging techniques. If systolic heart failure exists, imaging studies show the heart is

enlarged and pumps out less than a normal amount of blood. In contrast, patients

with diastolic heart failure usually have a normal ejection fraction, normal heart

pumping capability, but Imaging can show that the heart does not fill up with blood

properly when the heart is at the diastolic phase [2].
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3 Heart Failure Diagnostic Tests

A cardiologist may recommend one or more tests for diagnosing the heart

failure [1, 2, 4]:

• Electrocardiogram (EKG): An EKG is a simple, painless test that detects

and records the heart’s electrical activity. The test shows how fast the heart is

beating and its rhythm (steady or irregular). An EKG also records the

strength and timing of electrical signals as they pass through the heart. It

may show whether the walls in the heart’s pumping chambers are thicker than

normal. Thicker walls can make it harder for the heart to pump blood. An

EKG also can show signs of a previous or current heart attack.

• X-ray: A chest X-ray takes pictures of the structures inside the chest, such as

the heart, lungs, and blood vessels. This test can show whether the heart is

enlarged, you have fluid in the lungs, or you have lung disease.

• Stress Tests: They can diagnose the heart while it is beating fast. During

the test, the patient runs on a treadmill or pedals a bicycle to make the heart

work hard. If it’s not possible to exercise, the patient may be given medicine

to raise his heart rate. Heart tests, such as nuclear heart scanning and

Echocardiography, often are done during stress testing.

• Nuclear Scan: A nuclear heart scan shows how well blood is flowing through

the heart and how much blood is reaching the heart muscle. During the scan,

a radioactive substance, tracer, is injected into the bloodstream through a

vein. The tracer travels to the heart and releases energy. Special cameras

detect the released energy and create pictures of the heart to distinguish

between the healthy and damaged areas of the heart muscle. A positron

emission tomography scan (PET). PET is a type of nuclear heart scan. It

shows the level of chemical activity in areas of the heart. This test can help
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the doctor see whether enough blood is flowing to these areas. A PET scan

can show blood flow problems that other tests might not detect.

• Echocardiography (echo): echo uses sound waves to create a moving

picture of the heart. The test shows the size and shape of the heart and how

well its chambers and valves work. It can also identify areas of poor blood

flow to the heart, areas of heart muscle with contractile dysfunction, and any

damage caused by lack of blood flow.

• Doppler ultrasound: A Doppler ultrasound uses sound waves to measure

the speed and direction of blood flow. This test often is done with echo to give

a more complete picture of blood flow to the heart and lungs.

• Cardiac Catheterization: During cardiac catheterization, a long, thin, and

flexible tube called a catheter is put into a blood vessel in the arm or neck and

threaded to the heart. This allows the doctor to look inside the coronary

arteries and check the blood pressure and flow in the heart chambers, collect

blood samples, and use X-rays to look at the coronary arteries.

• Coronary angiography: It is usually done with cardiac catheterization by

injecting a dye that can be seen on X-ray into the bloodstream through the

tip of the catheter. This allows for monitoring the blood flow and heart

mechanics.

• Cardiac magnetic resonance imaging (CMR): CMR uses radio waves,

magnets, and a computer to create pictures of the heart as it’s beating. The

test produces both still and moving pictures of the heart and major blood

vessels. A CMR can show whether parts of the heart are damaged. Doctors

also use CMR in research studies to find early signs of heart failure, even

before symptoms appear.
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Heart failure can be mitigated by undergoing a bypass surgery or a balloon

valvuloplasty. There is also an implantable left ventricular assist device. The latter

is for patients who haven’t responded to other treatments. Lastly, if nothing works,

a person’s diseased heart can be exchanged with a healthy donor’s heart in a heart

transplant surgery.

A heart transplant is a surgery to remove a person’s diseased heart and

replace it with a healthy heart from a deceased donor. Most of these transplants are

done on patients who have end-stage heart failure; ”End-stage” means the condition

is so severe that all treatments,other than a heart transplant, have failed. Because

heart donors are rare, patients who need heart transplants go through a careful

selection process. They must be sick enough to need a new heart, yet healthy

enough to receive one.

C Dissertation Organization

The dissertation consists of five chapters. The following remarks summarize

the scope of each chapter:

Chapter II overviews the existing computational methods for identifying left

ventricle heart pathologies.

Chapter III illustrates the proposed framework for the segmentation of the

inner cavity and outer border of the myocardial (LV) wall using graph-cut

optimization of a cost function that accounts for the object visual appearance and

shape.

Chapter IV illustrates the proposed framework for LV pathology identification

and quantification based on a joint MGRF of image and its region map that

accounts for the pixel intensities and the spatial interactions between the pixels.

Chapter V concludes the work and outlines the future work.
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CHAPTER II

IMAGING THE HEART: SURVEY

Cardiovascular diseases (CVD) are the major cause of death worldwide.

Efforts have been made towards diagnosing CVD as early as possible to provide

efficient treatments and, hence, significantly decrease its mortality rate [8, 9]. CVD

may be identified and localized through the analysis of the cardiac deformation.

Especially, analyzing the left ventricle (LV) information is very important as it is the

main pumping chamber of the heart. Early efforts for quantifying the ventricular

wall motion used to be invasive and impractical, e.g., cardiac catheterization and

tracking of implanted markers[10, 11]. Instead, noninvasive imaging techniques have

been widely used over the last years to provide noninvasive cardiac imaging

methods that delineate cardiac structures and assess myocardial perfusion, function,

and metabolism, e.g., echocardiography, nuclear imaging, computed tomography

(CT) and cardiac magnetic resonance imaging (CMR) [12], see Fig. 2.

Figure 2. Cardiac imaging modalities.
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A Cardiac Imaging Modalities

1 Echocardiography

Echocardiography, also called cardiac ultrasound, uses standard ultrasound

techniques to produce 2D image slices of the heart and/or 1D M-mode

echocardiograms that show how the positions of intra-cardiac structures change

during the course of the cardiac cycle and permit measurement of cardiac

dimensions and motion patterns; see Fig. 3. Moreover, it can also produce accurate

assessment of the velocity of blood and cardiac tissue at any arbitrary point using

Doppler ultrasound. It possesses unique characteristics like: It is free form ionizing

radiation, less expensive than other imaging modalities of similar capabilities, and

portable; i.e., can be easily transported to the patient. It also produces images in

real time. The many advantages that ultrasound can offer have enabled it to

become a valuable diagnostic tool in such medical disciplines as cardiology. Due to

its importance, echocardiography is a training that every cardiologist must have

[13, 14]. Echocardiography also has several drawbacks:It depends on operator skills,

and It is sometimes impossible to obtain good images from certain types of patients,

e.g.,obese patients.

Echocardiography has many types [13, 15, 16]:

Transthoracic Echocardiogram (TTE)

In TTE the transducer, probe, is placed on the chest wall, thorax, of the

patient and images are taken. It allows non-invasive visualization of the heart and

the blood flow through the heart which gives a quick assessment of the overall

health of the heart.
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Figure 3. Echocardiogram in the parasternal long-axis view, showing a measurement
of the heart’s left ventricle. Image from [15].

Transesophageal Echocardiogram (TEE)

This is an alternative way of performing an echocardiogram. A specialized

probe containing an ultrasound transducer at its tip is passed into the patient’s

esophagus. This allows image and Doppler evaluation from a location directly

behind the heart.TEEs are mostly used when clearer images are required for

assessment.

Stress Echocardiography (SE)

SE utilizes ultrasound imaging of the heart to assess the regional myocardial

function in response to physical stress. Images of the heart are taken at rest first to

be a baseline of the patient’s wall motion at a resting heart rate. Then, the heart is

imaged at stress to assess wall motion at the peak heart rate. A stress echo assesses
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Figure 4. A 3D echocardiogram of a heart viewed from the apex, with the apical
part of the ventricles removed and the mitral valve clearly visible. To the left are two
standard two-dimensional views taken from the 3D dataset. Image is taken from [15].

wall motion of the heart.

Three-Dimensional Echocardiography (3DE)

3DE is achieved using special ultrasound probe and an appropriate processing

system. This enables detailed anatomical assessment of cardiac pathology. Real

Time 3DE can be used as a guide in many intraoperative assessments; see Fig. 4.

Contrast Echocardiography

Contrast is used in echocardiography, Contrast-enhanced ultrasound, for the

assessment of global and regional systolic function, visualization of wall thickening

and for the assessment of blood perfusion throughout myocardium. Contrast agents

enhance border detection.
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Figure 5. Doppler echocardiogram showing a mid-muscular ventricular septal defect.
The trace in the lower left shows the cardiac cycle and the red mark the time in the
cardiac cycle that the image was captured. Colors are used to represent the velocity
and direction of blood flow. Image from [15].

Doppler Echocardiography

Doppler echocardiography is a method for detecting the direction and

velocity of moving blood within the heart, as seen in Fig 5.

2 Computed Tomography (CT)

In a CT scan, an x-ray tube is rotated rapidly around the patient to produce

cross-sectional views of the body [2, 4, 17], Fig 6 shows different CT scanning

techniques. Cardiac CT is a heart-imaging test that uses CT technology with or

without contrast to visualize the heart and its surroundings and assess cardiac

structure and function.[2, 4, 17]
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Conventional CT

Also called the sequential CT. It involves taking scans slice by slice in a step

and shoot mode [2, 17].Here, taking smaller slice thickness allows for better

resolution, but this causes increased radiation exposure and scanning time [17].

Figure 6. (A) Conventional CT scan, (B) Spiral CT scan; [18].

Electron-Beam Computed Tomography (EBCT)

Also know as ultrafast CT scanners, EBCT is a variation of conventional

cross-sectional CT technique. It scans in a step and shoot mode, but instead of

using rotating x-ray tube it uses a focused electron beam is created from an electron

gun [19, 20]; as seen in Fig 7. It’s used to generate cine CT images [20].

SPIRAL CT, Single-Slice CT (SSCT)

Spiral scanners have the ability to rotate an X-ray tube continuously while

pushing forward the patient table through the scanning ring creating a 3-D

volumetric series. these scanners use one x-ray source and a fan beam; see Fig 8.
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Figure 7. EBCT scanner [21].

Figure 8. SDCT construction [21].
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Figure 9. DSCT [21].

Multi-Slice CT (MSCT)

MSCT uses multiple detectors and a cone beam which enables capturing

multiple image slices during the rotation of the CT X-ray tube. This capability has

sped up the amount of time needed to complete CT scans over that of the spiral

scanner [17, 19]; see Fig 10.

Dual-Source CT (DSCT)

The DSCT scanner uses two X-ray sources simultaneously, yielding the best

temporal resolution of any of the CT scanners. This allows to perform non-invasive

imaging of the structures of the heart at any heart rate [23–25]; see Fig 9.

Base on the fact that structures that attenuate similarly to X-rays producing

similar CT numbers at one beam energy may respond differently at another, DSCT

can increase the amount of information available from CT imaging by assigning a

different energy values for the X-ray tubes, becoming a dual-energy CT.
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Figure 10. Multi-slice CT.

Disadvantages of CT

Cardiac CT involves ionizing radiation. In general, higher radiation doses

result in higher-resolution images. Unfortunately, radiation might lead to cancer

[2, 16]. CT contrast medium is potentially nephrotoxic [16]. Contrast medium

induced nephropathy is a caveat for cardiac CT in clinical practice. Moreover, obese

patients, representing an increasingly prevalent segment, can’t undergo a cardiac

CT imaging as Image resolution may be deteriorated in them due to the X-ray

attenuation.
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Figure 11. Nuclear cardiac imaging [22].
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3 Nuclear Imaging

Nuclear imaging, single photon emission computed tomography (SPECT)

and positron emission tomography (PET), utilizes radioactive molecules, inserted in

the body by shot, inhaled, or swallowed, that target the heart for the imaging. The

nuclear imaging differs from other imaging disciplines in showing functional,

metabolic, instead of anatomic information of the heart [26]; see Fig 11. It can be

reliably used for myocardial perfusion and viability and with great power predict

short- and long-term prognosis [12, 27]. Nuclear imaging suffers from long

examination time and poor spatial resolution [26]. Nowadays, hybrid SPECT/CT or

PET/CT imaging is used to allow a patient-friendly image acquisition in only one

visit while combining the information of both modalities [12].

4 CMR

While there are competing modalities for every clinical application of CMR,

there is no one modality that can provide a comprehensive evaluation like CMR

[28]. CMR is a very versatile technique that generates a great variety of image

contrasts for a wide range of clinical and research applications with no or little

modifications to the imaging equipment [29, 30]. Based on the accurate and

reproducible anatomical and functional information provided by CMR, physicians

can determine appropriate therapeutic procedures [31–33].CMR allows studying

different aspects of the heart anatomy and function depending on the acquisition

settings, providing complementary data.

The advantages of CMR are [16, 34]:

• It is noninvasive, accurate and versatile.

• It lacks ionizing radiation.

• It has the highest spatial resolution compared to other imaging modalities.
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• It is capable of visualizing cardiac events in near real time cine mode.

• It captures high quality images.

• It can diagnose a broad range of conditions, including cardiovascular

anatomical anomalies, functional abnormalities, tumors and conditions related

to coronary artery disease.

• The contrast material used in exams is less likely to produce an allergic

reaction than the iodine-based contrast materials used for conventional X-rays

and CT scanning.

CMR also provides excellent dynamic and quantitative information on

cardiac function and on cardiac chamber blood flow. It can also be effective in

detecting myocardial infarcts, which can be valuable in the evaluation of myocardial

viability for planning the treatment of CAD [23].

On the other hand, CMR is contraindicated in a substantial number of

patients for various reasons [34–36]:

• If the patient has any type of medical implants.

• If the patient is Large and can’t fit into the bore of the MRI device.

• If the patient is Claustrophobic.

• If the patient is unable to lie still; movements degrade the taken images

quality.

• If the patient undergone a surgery in the previous 6 weeks.

Cine CMR

Cine CMR acquires images at each stage of the cardiac cycle. Cine CMR can

discriminate very well between blood and myocardium and is capable of extracting
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Figure 12. Cine CMR output. The images shown row-wise are from the basal, middle
and apical slices, respectively.

multiple diagnostic performance indices [37]. An example of the cine images is

introduced in Fig 12

Tagged CMR

Tagged CMR (tCMR) asses the myocardial contractility through capturing

tissue displacement which detects non-functioning myocardium. First, a grid of dark
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lines is superimposed across the first cine CMR image. Then, these tags

subsequently deform through the cardiac cycle allowing the estimation of regional

myocardial strain [37–40]. This can be seen in Fig 13.

Figure 13. Tagged cine images of the Heart. Images are taken from [41].

23



Velocity-Encoded Phase Contrast CMR:

Phase contrast CMR (pcCMR) can be used to translate the instantaneous

flow information, strain rate and shunt volume. Unlike doppler ultrasonography,

pcCMR is not limited by acoustic windows[37, 42–44]. Images from pcCMR can be

seen in Fig 14.

Figure 14. Short-axis velocity encoded pcCMR images, x-velocity and y-velocity
image sequences throughout cardiac cycle [43].

Contrast-Enhanced CMR (CE-CMR):

Although structural CMR provides excellent soft tissue contrast, it lacks

functional information. Contrast-enhanced CMR (CE-CMR) is a special MR

technique that has the ability to provide superior information of the anatomy,
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function, and metabolism of target tissues [45]. The technique involves the

acquisition of MR images with high temporal resolution before, during, and at

several times after the administration of a contrast agent into the blood stream. In

CE-CMR, the signal intensity in target tissue changes in proportion to the contrast

agent concentration in the volume element of measurement, or voxel. CE-CMR is

commonly used to enhance the contrast between different tissues, particularly

normal and pathological. Typical examples of CE-CMR time series data of the

heart is shown in Fig. 15.

CE-CMR has gained considerable attention due to the lack of ionizing

radiation, and increased spatial resolution. It has been extensively used in many

clinical applications, including detection of pathological tissue in the myocardium

and early detection of acute renal rejection [46]. The most successful MRI contrast

agents that have been widely investigated are gadolinium-based. Gadolinium, a rare

metal, is a non-toxic paramagnetic contrast agent that enhances the detected MR

signal and produces high contrast images of soft tissues by decreasing T1 relaxation

times of water protons in living tissue in the vicinity of the paramagnetic contrast

agent. Gadolinium-based CE-MRI has been extensively used in cardiovascular

imaging applications [47].

Late Contrast-Enhanced CMR (LCE-CMR)

LCE-CMR distinguishes infarct from viable myocardium [48]. The viable

parts appear dark in the LCECMR images, while the defected parts appear bright

white. The improved spatial resolution of MR imaging provides clear advantages

such that MR imaging is considered by some to outperform other modalities [49].

Images from LCE-CMR can be seen in Figs 15,16.
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Figure 15. CMR heart images taken at different time points post the adminstration
of the contrast agent showing the change of the contrast as the contrast agent perfuse
into the heart tissues. It starts in the right ventricle, followed by the left ventricle,
and ending with a progressive myocardial enhancement.

Dynamic Contrast-Enhanced CMR(DCE-CMR)

Conventional CE-CMR displays a single snapshot of the scanned body area

after the adminstration of the contrast agent. Although the anatomical information

derived from such images is valuable, it lacks functional information. Dynamic

contrast-enhanced CMR (DCE-CMR) has emerged as an MR imaging technique

that has the ability to yield superior anatomical and functional information about

the heart tissue [45]. This CMR technique has gained considerable attention

because of its ability to yield information about the hemodynamic (i.e., perfusion)

properties of tissues (blood flow, blood volume, mean transit time), micro-vascular

permeability, and extracellular leakage space. DCE-CMR helps guide intervention

and treatment for coronary artery narrowing and has been identified as a promising

approach for preliminary detection of CAD [51, 52].

The technique involves the acquisition of serial MR images with high

temporal resolution before, during, and at several times after the administration of

a contrast agent. The signal intensity in target tissue will change in proportion to

the contrast agent concentration in the volume element of measurement. DCE-CMR

is commonly used to enhance the contrast between different tissues, particularly
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Figure 16. Short-axis LCE-CMR images; arrows point to defected myocardium. Im-
ages are taken from [50].
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normal and pathologic. The enhancement kinetics and the pattern of enhancement

can be used to improve the diagnostic specificity of suspicious lesions. A typical

example of DCE-CMR time series data of the heart is shown in Fig. 15.

In general, DCE-CMR poses multiple challenges stemming from (i) the need

to image very quickly, to capture the transient first-pass transit event, while

maintaining adequate spatial resolution, (ii) varying signal intensities over the time

course of agent transit, (iii) variations of the target object shape changes due to

patient motion, breathing, heart contraction, and other pulsatile or transmitted

effects from adjacent structures, such as bowels.

All in all, MRI potential advantages include:

• MRI does not involve exposure to any harmful radiation,

• MRI can be repeated sequentially over time, and has the ability to generate

cross-sectional images in any plane (including oblique planes).

• MRI has the ability to distinguish the differences between two arbitrarily

similar but not identical tissues

• MRI plays an important role in assessing tumors locations and extent,

directing biopsies, planning proper therapy, and evaluating therapeutic results.

On the other hand, MRI imaging modality has its own disadvantages:

• MRI data acquisition is a relatively long and complex process,

• For each scan the imaging parameters and the pulse sequence need to be fixed,

• MRI is not suitable for patients with metal implants due to its magnetic

nature,

• MRI suffers from sensitivity to noise and image artifacts,
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• MRI signals are dependent on the imaging sequence used and can become

non-linear beyond certain concentrations leading to errors in extracted

physiology,

• MRI scanning processes may be uncomfortable for some people because it

noisy and it can produce claustrophobia. Recent improvements in MRI design

alleviates this by using more open magnet designs and shorter exam times

while sacrificing some of the image quality.

5 Quantifying the Heart Status

Different metrics can be extracted to quantify the Heart Status, especially

the LV functionality, and detect any local and global cardiac diseases using MRI,

such as the functional indexes. This can help cardiologists to accurately quantify

the heart status and detect local and global cardiac diseases, e.g., the EF metric

and the functional strain. The EF is a clinically relevant and well-documented

global indicator of the LV function in terms of the total cavity volume (the LV

volume variation over time): where ESV and EDV are the end systolic (the smallest

cavity area) and the end diastolic (the greatest cavity area) volumes, respectively.

To estimate the EF, the LV cavity volume-time data at each image slice is

used. Following the delineation of the cavity contour at each time point (image

frame) of the cardiac cycle, the corresponding cavity areas are computed and a

curve representing the physiology over the cardiac cycle is constructed. Then, the

Simpsons rule is used to estimate the total LV volume by summing the

contributions of enclosed areas from the individual image slices. From the total

ventricular function curve, the EDV and ESV can be automatically extracted and

hence calculate the EF.

On the other hand, Wall thickness and functional strain are used to detect

local wall function. The Wall thickness is measuring the distance between the inner

and outer borders of the LV wall in order to assess the regional function of the
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myocardium and is found to be more accurate than wall motion analysis in

detecting dysfunctional myocardium. It is typically assessed by visual inspection,

which is preferred clinically for practical purposes [53, 54]. The functional strain is

also used to detect any cardiac wall dysfunction that manifests on strain slopes

during the contraction and expansion phases of the cardiac cycle [55]. Traditionally,

the functional strain is estimated by using the tagged images that lead to errors

between the estimated indexes due to the inter-slice variability between the different

image modalities.
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CHAPTER III

MYOCARDIAL BORDERS SEGMENTATION FROM

CINE MR IMAGES USING DEFORMABLE MODELS

A Introduction

Accurate extraction of the myocardium from cine cardiac magnetic resonance

(CMR) images is an essential step for the quantification of the heart function by

estimating global (e.g., stroke volume (SV), end-systolic volume (ESV),

end-diastolic volume (EDV), and ejection fraction (EF)) and local (e.g., wall

thickening) performance indexes. These indexes help cardiologists in accurately

quantifying the heart status. The segmentation problem of the left ventricle (LV)

wall is being extensively investigated. However, segmentation of the LV wall is a

challenging task due to many reasons: (i) poor image quality and noise due to

patient movement, respiration motion, and artifacts from the moving blood within

the ventricular cavity; (ii) shape-deformations and intensity-variations of the LV at

different image slices and within the same slice over the cardiac cycle; (iii) partial

influence of adjacent structures, such as the diaphragm; (iv) irregularities and

protrusions of papillary muscles (PM) structures in the cavity boundary; and (v)

the lack of strong edges between the epicardium and the surrounding structures.

Traditionally, the segmentation of the left ventricle (LV) wall contours is

performed manually [56, 57]. However, it is prohibitively time consuming,

labor-intensive, and is prone to intra- and inter-observer variability [58]. To avoid

the manual procedure shortcomings, several semi-automated and automated

techniques have been proposed for the delineation of the LV wall. Below we will
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present an overview of the related work on cine CMR image segmentation.

1 Semi-automated Methods

In order to address the above-mentioned challenges, many semi-automated

techniques for the extraction of the LV wall borders have been proposed [59–65].

For example, Ben Ayed et al. [59, 60] proposed a semi-automated approach for the

segmentation of the LV using a variational deformable model-based approach to

minimize an energy functional containing a similarity/dissimilarity overlap

constraint, measured by the Bhattacharyya coefficient. A semi-automated

framework to extract the myocardium was proposed by Li et al. [61]. Their

framework employed two energy functionals, each represented by a weighted sum of

edge-, region-, and shape-based features, for segmenting the endo- and the

epi-cardiums. Feng et al. [62] developed a geometry-independent dual-contour

propagation technique to segment the myocardium. The LV endocardial contours

were manually drawn at end systole and end diastole. Their dual-contour

propagation technique showed promising results for the exclusion of the PM from

the LV wall, more accurate than single-contour propagation. Chen et al. [63]

proposed a hybrid semi-automated framework to segment the LV wall borders using

variational level sets. The myocardium is separated from the background, in a user

defined region-of-interest (ROI), based on the difference in their intensity

distributions. The deformable model evolution was derived by minimizing an energy

function consisting of regional and edge-based information. Pednekar et al. [64]

proposed an intensity-based segmentation approach that uses circular Hough

transform to estimate the LV borders in CMR images. Uzümcü et al. [65] proposed

a semi-automated method that is based on a multidimensional dynamic

programming (DP), which is applied to a parametric shape model instead of

applying it directly to image data. Please see Petitjean and Dacher [66] for a more

comprehensive review of semi-automated methods for cardiac image segmentation.
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2 Automated Methods

The challenging problem of the LV wall borders segmentation has also been

addressed using automated techniques [9, 67–69, 72, 74–78, 80–90]. In particular,

Khalifa et al. [67–69] presented an automated level set-based framework for the

segmentation of the myocardial borders on cine CMR images. They used a

stochastic force that accounts for a binary joint Markov-Gibbs random field

(MGRF) image model of the LV and its background to constrain the evolution of

the deformable contour. O’Brien et al. [70] proposed a model-based technique for

the LV segmentation on cardiac MR image. An active shape model (ASM) was

employed for statistical modeling of the LV shape and separate models for spatial

and temporal variation were used. Cousty et al. [71] proposed a segmentation

framework based on discrete mathematical morphology and spatiotemporal

watershed transforms to segment the endocardium and the epicardium separately.

Zhang et al. [72] proposed a segmentation approach based on a combination of an

ASM and an active appearance model (AAM) to segment the LV wall using short-

and long-axes CMR data. A refinement step followed by using a reversed 3D ASM

model to achieve better cardiac motion tracking as well as improved shape details.

Andreopoulos et al. [73] achieved LV segmentation using statistical models of shape

and appearance. Their method employed fitting of a 3D AAM on short axis cardiac

MR images followed by hierarchical 2D + time ASM to refine segmentation. Jolly et

al. [74] proposed an automated framework based on deformable registration for the

LV segmentation. Candidate contours of each slice are obtained in the average

image of the co-aligned time frames using the shortest paths, and a minimal surface

is built to generate the final contours. Kurkure et al. [75] proposed a hybrid

segmentation approach that integrates intensity- and texture-based information for

the extraction of the myocardium, LV blood pool, and other adjacent structures,

e.g., lungs and liver. A DP-based boundary detection method was used to delineate

the LV myocardial contours. A fully automated approach for LV segmentation was
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proposed by Schllhuber [9]. A ROI covering the heart was located by a hierarchical

pattern matching algorithm. Motion artifacts are minimized by image registration

using mutual information (MI). Cocosco et al. [76] proposed an automated approach

for the segmentation of the LV on cardiac images based on binary classification

within a predefined ROI to segment the blood pool. Lynch et al. [77] presented an

automated level-set scheme for the segmentation of CMR data using prior

knowledge of the temporal deformation of the myocardium. Liang et al. [78]

proposed an automated approach using the radial GVF [79] and the Hough

transform to segment the LV contours. Zhuang et al. [80] proposed a framework to

propagate the labels in a heart atlas to the CMR images for ventricle segmentations

based on image registration. Their method employed anatomical information from

the atlas as priors to constrain the registration. To improve the quality of

segmentations obtained by the AAMs on CMR data, Zambal et al. [81] combined a

set of local 2D AAMs with a global shape model. Their method propagates the

position and size of the basal slices to apical ones and keeps the global shape

characteristics plausible. Lynch et al. [82] presented a coupled level-set segmentation

of the LV of the heart using a priori information. Two fronts representing the epi-

and endo-cardium boundaries of the LV are evolved using both gradient and

region-based information. The segmentation is supervised with a coupling function

and a probabilistic model built from training instances. An approach relying on

morphological operations is proposed by Katouzian et al. [83]. For endo-cardium

segmentation, the edge detection is performed and the PM are excluded via a

convex-hull method. The epicardial boundary is delineated through a threshold

decomposition opening approach. Jolly et al. [84, 85] introduced an automated LV

segmentation technique to extract the myocardium using Gaussian mixture models

and Dijkstra active contours. Lynch et al. [86] introduced an automated framework

for the segmentation of the LV of the heart using clustering and cardiac anatomy

knowledge. Lelieveldt et al. [87] proposed a multiview AAM for the segmentation of
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multiple views in long- and short-axis CMR images. Fu et al. [88] developed a

wavelet-based image enhancement technique to enhance the LV wall borders profiles

as the pre-processor for a DP-based automatic border detection algorithm. Lalande

et al. [90] applied fuzzy logic-based automatic contour detection for the

identification of the LV wall borders in short-axis CMR images. A variational

coupled level set approach that combined boundary and region-based information to

segment the LV borders was introduced by Paragios [91]. They introduced an

anatomical module to constrain the relative positions of the endocardium and

epicardium interfaces and to enforce an intensity consistency over the temporal

cycle. A 3-D graph-based simultaneous multi-object segmentation proposed by Song

et al. [92] incorporates both shape and context prior knowledge to segment, e.g.,

intraretinal layers from optical coherence tomography images, and prostate and

bladder from 3-D CT images. State-of-the-art automated techniques for cardiac

image segmentation are detailed in the recent review by Petitjean and Dacher [66].

To summarize, the segmentation of cine CMR images has been the subject of

extensive research in the last few years. Several semi-automated and automated

segmentation methods have been developed. However, the known methods have the

following limitations: (i) some techniques require intensive manual training; (ii)

most of them are computationally expensive; (iii) parametric shape-based

approaches depend on the existence of good texture features in cardiac images and

perform poorly on some slices due to noise and lack of well-defined features; and

(iv) the accuracy of the knowledge-based approaches (e.g., deformable models that

are based on shape priors) depends on the size of the training data and the accuracy

of the alignment.

To overcome these limitations, we propose a novel approach to segment the

LV wall borders from short-axis cine CMR images, which exploits bi-directional

coupled parametric deformable models. Control points of these models are tracked

with a conventional internal force in addition to a novel external force. This force
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incorporates the first– and second–order visual appearance features of cine CMR

images, as well as a new coupling factor. The latter prevents the overlap between

the inner and outer borders of the LV wall in order to preserve the heart topology.

Unlike other existing methods, our approach needs neither shape prior, nor training.

All parameters, which are used to construct and evolve the deformable models, are

estimated from the input data.

This chapter is organized as follows. The above overview (Section A) of the

related work on cardiac image segmentation is followed in Section B by details of

the proposed approach. Section C discusses metrics used to evaluate performance of

our segmentation. Medical data used in this study, experimental results, and clinical

applications of the proposed segmentation are presented in Section D. Conclusions

are given in Section E.

Figure 17. Tracking control points of the deformable models at different time frames
of the cardiac cycle. Note that each deformable model was initialized using 20 points.
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B Methods

A 2D parametric deformable model is a curve

Φ = (ϕ(τ) = (x(τ), y(τ)); τ ∈ T ) in planar Cartesian co-ordinates (x, y) where ϕ(τ)

denotes the inner (ϕi(τ)) or outer (ϕo(τ)) control points of the deformable models, τ

is the continuous or discrete index of a contour point, and T is the index range,

T = [0, 1]. The inner deformable model moves through the spatial image domain to

minimize the total energy [93], in addition to a coupling factor 1
dc(·,·) :

Ei = Eint + Eext + coupling factor

=
∫
τ∈T ξint(ϕi(τ)) + ξext(ϕi(τ)) +

1
dc(ϕi(τ),ϕo(τ))

dτ
(1)

where ξint(ϕi(τ)), ξext(ϕi(τ)) and
1

dc(ϕi(τ),ϕo(τ))
denote, respectively, internal and

external forces that control the point-wise model movements, and a coupling factor

represented by the distance between the inner border control points ϕi(τ) and outer

border control points ϕo(τ) to preserve the heart topology (see Fig. 17). The

internal energy keeps the deformable model as a single unit. The internal force is

typically defined as ξint(ϕi(τ)) = α|ϕ′
i(τ)|2 + β|ϕ′′

i (τ)|2 where weights α and β

control the curve’s tension and rigidity, respectively (for all experiments, we use

α = 1 and β = 1
3
), and ϕ′

i(τ) and ϕ
′′
i (τ) are the first and second derivatives of ϕi(τ)

with respect to τ . In a similar way, the energy of the outer deformable model, Eo, is

calculated. Typical external forces to lead an active contour toward step edges in a

greyscale image g (e.g., designed by Kass et al. [93], or other traditional forces

based on lines, edges, GVF, etc.) are not suitable to track the control points of a

deformable model from one image frame to another. To overcome these drawbacks,

we propose a novel external force that integrates both first-and second-order

appearance features of the cine images to track the evolution of the control points.
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1 Second-Order Features of Visual Appearance

The 2D visual appearance of the LV wall in cine CMR images is modeled

with a generic translation and rotation invariant second-order MGRF. Before

describing the MGRF model of LV wall, let us define the following basic notation:

• R = [(x, y) : x = 0, . . . , X − 1; y = 0, . . . , Y − 1] is a 2D lattice supporting 2D

images g = [gx,y : (x, y) ∈ R; gx,y ∈ Q] with a finite set of intensities

Q = {0, . . . , Q− 1}.

• N is an index set of characteristic translation-rotation invariant

central-symmetric pixel neighborhoods {nν : ν ∈ N}onR, illustrated in

Fig. 18.

• Cν = {cν : ν ∈ N} is a family of pairwise cliques forming the

translation-rotation invariant neighborhoods indexed by ν ∈ N.

• Vν = [Vν(∆) : ∆ ∈ D]T, where T indicates the vector-matrix transposition, is

the vector of values of a Gibbs potential for the cliques of the family Cν . The

potential is a scalar function Vν : D → (−∞,∞) with only finite values, i.e.

−∞ < Vν(d) <∞, depending on integer arguments from the set

D ≡ Q = {0, 1, . . . , Q− 1} of absolute pairwise signal differences.

A generic translation and rotation invariant second-order MGRF of images g

has the following Gibbs probability distribution [94]:

P (g|V) =
1

ZV

exp

(
|R|

∑
ν∈N

ρνV
T
νFν(g)

)
(2)

where ZV is the normalizing factor (depending on the potentials V = [Vν : ν ∈ N]

for a chosen system of neighborhoods N); ρν = |Cν |
|R| is the relative size of the clique

family with respect to the lattice cardinality |R|, and

Fν(g) = [fν(∆|g) = |Cν:∆(g)|
|Cν | ;

∑
∆∈D fν(∆|D) = 1] is the vector of relative
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Figure 18. Central-symmetric second-order 2D neighborhood system.

frequencies, or empirical probabilities of absolute signal differences ∆ ∈ D in the

cliques from the family Cν for an image g. The subfamily Cν:∆(g) contains all the

cliques of this family, such that |g(x, y)− g(x′, y′)| = ∆.

The central-symmetric pixel neighborhood nν embraces all pixel pairs such

that the coordinate offsets between any pixel (x, y) and its neighbor (x′, y′) belong

to an indexed semi-open interval (dν,min, dν,max); ν ∈ N ⊂ {1, 2, 3, . . .} of the

inter-pixel distances. Figure 18 illustrates the neighborhoods for the distance ranges

dν,min = ν − 0.5 and dν,max = ν + 0.5; ν ∈ N = {1, . . . , 4}. Each neighborhood nν

has the same potential function Vν of the absolute intensity difference

∆ = |g(x, y)− g(x′, y′)| between the neighboring pixel pairs: Vν = (Vν(∆) : ∆ ∈ D).

The pixel-wise potential Vpix = (Vpix(q) : q ∈ Q) depends on the pixel intensities.

To estimate the potentials of the MGRF, we use the analytical maximum

likelihood approach proposed by El-Baz et al. [95–97]. Unlike more traditional ones,

like e.g. in [99], learning MGRF models of the whole object appearance, we propose

to learn the current appearance of each control point of the deformable model in

order to track it from one frame to another. The potentials are analytically

approximated just as in [95–97]: Vν(∆) = λ (fν(∆)− firf(∆)); ν ∈ N. Here, fν(∆) is

the empirical probability of the pairwise intensity difference ∆ for the pixel pairs
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corresponding to the neighborhood nν over the starting data set (i.e., the very first

image frame, where the contours are manually initialized) and firf(∆) denotes the

probability of the same difference ∆ for the independent random field of

equiprobable intensities, i.e., firf(∆) = 1
Q
if ∆ = 0 and firf(∆) = 2(Q−∆)

Q2 otherwise.

The common factor λ is also computed analytically, but below it is omitted (λ = 1)

because only relative potentials are used for computing relative energies Eν,rel of the

neighborhoods. The energy at location (x, y) in the image is given by:

EG(gx,y) = VT
pixFpix(gx,y) +

∑
ν∈N

ρνV
T
νFν(gx,y) (3)

2 First-Order Feature of Visual Appearance

In addition to the second-order visual appearance model, the 1D empirical

marginal grey level distributions inside and outside of an initial deformable

boundary are approximated with linear combinations of discrete Gaussians

(LCDG) [98, 100] in order to more accurately account for changes in the current

image appearance. In contrast to a conventional mixture of Gaussians, one per

region, the LCDG model approximates the mixed marginal intensity distribution for

the whole image more closely. Then, it can be easily partitioned into the like LCDG

submodels relating to each dominant mode in the mode in the mixture. The

discrete Gaussians are differences between successive values of a cumulative

Gaussian probability function Φθ with a shorthand notation θ = (µ, σ2) for the

mean, µ, and the variance, σ2:

ψ(q|θ) =


Φθ(0.5) for q = 0

Φθ(q +
1
2
)− Φθ(q − 1

2
) for q = 1, . . . , Q− 2

1− Φθ(Q− 1.5) for q = Q− 1

(4)

The LCDG, which takes account of tails of the continuous Gaussian densities, fits a

discrete empirical distribution better, than more conventional linear combinations of

40



the Gaussian densities (LCG) [99]. Moreover, the LCDG allows for on-line

unsupervised model learning to account for non-uniform intensity variations in

medical images acquired with different scanners and scanning parameters.

The estimated distributions allow for getting the marginal density for each

control point during the evolution of the deformable models. For the K dominant

modes of an empirical marginal distribution, which relate to the regions of interest

(in our particular case, K = 2), the LCDG model with Cp positive and Cn negative

components, such that Cp ≥ K, is defined as [98, 100]:

Pw,Θ(q) =

Cp∑
r=1

wp,rψ(q|θp,r)−
Cn∑
l=1

wn,lψ(q|θn,l) (5)

with the restricted non-negative weights w = [wp,., wn,.]:∑Cp

r=1wp,r −
∑Cn

l=1wn,l = 1.

In our experiments, the marginal intensity distributions of the images have

two dominant modes: one mode for the cavity and another mode for the LV wall.

Figure 19 illustrates the basic steps of building the LCDG models of both the modes

(more details are given in [98, 100]).

3 Tracking Control Points of Deformable Models

The proposed coupled deformable models are initialized manually by the user

in the first image frame of a given slice (see Fig. 22). Each control point, ϕ(τ), of the

deformable model is characterized by the feature vector representing five features,

namely, the grey level q, internal energy ξint(ϕ(τq)), marginal probability P (q), total

Gibbs energy EG, and coupling factor 1
dc(ϕi(τ),ϕo(τ))

, the latter being the inverse

minimum distance between the control point on the current (inner or outer) border

and the other border of the LV wall. The candidate control points of the current

(say, inner) contour that are closer to the other (outer) contour will be discarded as

they will result in a higher total energy. To rule out the possibility of increasing the
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(a) (b) (c)

(d) (e) (f)

Figure 19. Step-wise LCDG modeling of the marginal intensity distribution: (a)
LV wall borders found for a typical cine CMR image, (b) the estimated dominant
bi-modal Gaussian mixture, (c) the subordinate Gaussian mixture estimated for the
absolute deviations between the dominant mixture and empirical distribution, (d) the
found sign-alternate LCDG components, (e) the final refined LCDG, and (f) the final
estimated LCDGs for each dominant mode.
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Algorithm 1 Main segmentation steps for each slice:

1. Initialization:

• Define the initial contours by manually selecting a number of control points
around the LV wall from the first image frame of the current slice (see Step
#1 in Fig. 17).

2. Estimate the first-order features of visual appearance:

• Collect the empirical grey level distribution for the current image frame.

• Estimate the marginal intensities for the LV wall and background using
the LCDG model.

3. Estimate the second-order features of visual appearance using the
MGRF model defined in Eq. (3).

4. Construct the labeled image using the Bayesian classifier and the first- and
second-order features of visual appearance.

5. Tracking control points of the deformable models. For each control point
of the deformable contour on time frame tn:

• Estimate the internal energy using the first- and second-order derivatives
of the contour.

• Select from the nearest neighbors (i.e., the search space) of the current
control point, on time frame tn+1, those with the same label as the others
(white and green points, respectively, in Fig. 17).

• Calculate the distance between the selected and control points of the other
contour.

• Calculate the feature vectors of the candidate locations on time frame tn+1

and their Euclidean distances to the current control point.

• Find the correspondence of the current control point by the minimum
Euclidean distance.

6. Use the tracked points as the initial contour for the next image frame and repeat
Steps 2 through 5 for all frames of the current slice.
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wall size from our approach, the pixel is classified (Step 4 in Algorithm 1) before

estimating the energy (Step 5 in Algorithm 1). If the pixel and the wall differ by

their visual appearance(e.g., the point is outside the wall), it will be discarded at

Step 4 by the Bayesian classifier. The correspondence between each control point in

time frames tn and tn+1 is estimated by matching all the five features. Note that all

the features were normalized with respect to their maximum values and equally

weighted. Basic steps of the whole process of tracking the control points of the

deformable models are illustrated in Fig. 17 and detailed in Algorithm 1.

C Evaluation Tests for the Proposed Segmentation

Performance of our segmentation is evaluated by using two types of metrics:

a pixel-based similarity and a distance-based error. The pixel-based similarity

indicates the overlap between the segmented area and the ground truth. It is

important for studying areal measurements, e.g., the cavity area. The

distance-based error indicates how close edges of the segmented region are to the

ground truth. It is instrumental in studying linear measurements, e.g.,

wall-thickening. Both the evaluation metrics are detailed below.

1 Pixel-Based Similarity Metric

The segmentation accuracy is first evaluated using the Dice similarity

coefficient (DSC), characterizing the agreement between the segmented and ground

truth regions [101]:

DSC =
2× TP

2× TP + FP + FN
(6)

where TP, FP, and FN denote the true positive, false positive, and false negative

segmentation results, respectively (see Fig. 20). For a segmented region, S, and its

ground truth, G, TP = |S∩G| is their overlap area, i.e., the number of the common

points in S and G; FP = |S− S ∩G| is the number of the different points between
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S and TP, and FN = |G− S ∩G| is the number of different points between G and

TP. The closer the DSC to the unit value, the better the segmentation. To obtain

the ground truth in our experiments, an MRI expert delineated the LV borders.

Figure 20. 2-D diagram of errors used for calculating the Dice similarity coefficient
(DSC).

2 Distance-Based Error Metric

The distances between the ground truth, G, and segmentation, S, borders are

used as an additional metric to measure the accuracy of our approach. Measuring

the distances requires establishing accurate point-to-point correspondences between

the borders of G and S. Traditionally, these correspondences are co-allocated by

proceeding in the radial direction from one of the borders toward the other one.

However, such a straightforward procedure is not accurate enough and leads to

incorrect correspondences. Therefore, we use here a considerably more accurate

search for the point-to-point correspondences, or matches between the borders based

on solving the planar second-order partial differential Laplace equation [46]:
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∇2γ =
∂2γ

∂2x2
+
∂2γ

∂2y2
= 0 (7)

that defines a scalar field γ, called the harmonic function. The solution γ(x, y) of

Eq. (7) between two boundaries (see Fig. 21) results in intermediate equipotential

surfaces and streamlines (field lines), being everywhere orthogonal to all the

equipotential surfaces. The streamlines establish natural point-to-point

correspondences between the boundaries. Once the correspondences are established,

the distance-based error metric is defined as the average Euclidian distance between

the corresponding pairs of points. For better accuracy, all the points on the ground

truth contour and their corresponding points on the segmented contour were used to

calculate this metric.

Figure 21. 2-D diagram illustrating the measurement of the distance-based error along
the correspondences (black lines) between the ground truth, G, and automatically
segmented, S, regions.
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D Experimental Results

1 Clinical Data

The proposed approach has been tested on 15 independent cine CMR data

sets from patients enrolled in a stem cell therapy project. The patients were with

prior myocardial infarctions, by clinical indexes, and documented by viability MRI.

We obtained about ten image sections, with typically 25 temporal image frames, for

the complete coverage of the LV for each patient. Images were acquired using a

1.5T Espree system, Siemens Medical Solutions Inc., USA. Breath-hold cine

acquisitions were done using segmented TrueFISP contrast, with phased array

wrap-around reception coils. Typical parameters were as follows: TR – 4.16 ms; TE

– 1.5 ms; flip angle – 80◦, one average; 12 k-space lines per segment; typical in-plane

spatial resolution – 1.4× 3.1 mm2; and slice thickness – 8 mm. The patients were

part of an Institutional Review Board (IRB) approved study investigating a novel

myoregeneration therapy, and all the patients had given informed consent before

imaging.

2 Segmentation Results

Our segmentation was tested on the above cine CMR data sets, having been

collected from six independent patients. To initialize the deformable models, six

points were manually selected in the first image frame, for all experiments. Then, a

spline fit to get a smooth curvature was used for producing 20 equi-spaced points in

order to track them over the whole cardiac cycle. A step-wise segmentation of the

LV wall boundaries for one data set at different image sections is shown in Fig. 22.

Additional segmentation results for six independent data sets at different image

sections are demonstrated in Fig. 23. To evaluate the accuracy of the proposed

segmentation approach, we use the DSC [101] to determine the agreement between

our segmentation and the ground truth borders, as described in Section 1. Table 1
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summarizes the DSC statistics obtained for all data sets. The ground truth was

obtained by manual contouring of the LV borders by an MRI expert.

Figure 22. Steps of the proposed segmentation at different cross sections covering the
LV for one data set: (a) typical cine CMR images, (b) manually initialized deformable
contours, and (c) final segmentation based on tracking the control points of the initial
contours at different time points over the cardiac cycle.

To highlight the advantage of the proposed segmentation, we compare its

performance against the level set approach by Chan and Vese [102] (CV) and the

shape-based level set approach by Abdelmunim and Farag [103] (AF). The

comparative accuracy of the proposed approach versus the CV and AF on the

representative data for five subjects is shown in Fig. 24. Table 1 compares our

segmentation with the CV and AF methods versus the ground truth, based on the
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Figure 23. Reliable determination of the wall boundaries by the proposed segmenta-
tion at different image sections for six independent data sets. The inner and outer
contours of the LV wall are in red and green, respectively.

TABLE 1. Comparative accuracy of our segmentation versus the methods in [102, 103]
by the DSC on all the 15 data sets (AD and SD stand for average distance and
standard deviation, respectively).

DSC
Approach Mean ± SD P -value
Our 0.93 ± 0.02
CV [102] 0.89 ± 0.02 ≤ 10−4

AF [103] 0.90 ± 0.03 0.002
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DSC metric for all data sets. As documented in Table 1, our approach performs

notably better, according to its higher DSC value. Statistical significance of the

better performance with respect to the CV and AF methods is confirmed by the

paired t-tests between the DSC values for our and the compared methods. Table 1

shows that the advantage of our approach is statistically significant with respect to

the CV and AF methods, evidenced by the P -values less than 0.05.

In addition to the DSC metric, the performance of our segmentation with

respect to the CV [102] and AF [103] methods were evaluated using the

distance-based metric described in Section 2. In order to compute the distance

error, the point-to-point correspondences between the segmented borders and

ground truth (obtained by an MR imaging expert) were accurately estimated by

solving the Laplace equation and co-allocating the coincident points as described in

Section 2. Comparative results of the paired t-test statistical analysis on the average

distance (AD) values are summarized in Table 2. The performance analysis based

on the DSC and AD metrics show that our method outperforms the CV and AF

ones. The lower performance of the CV approach [102] could be caused by its

sensitivity to image noise and inhomogeneity in the LV wall, because this method

does not account for spatial pixel interactions in addition to the first-order intensity

information. On the other hand, the AF approach [103] improves the segmentation

accuracy by employing shape information. However, their shape prior, constructed

as a linear combination of signed vector level set functions, does not cover all the

variability that exists in the LV.

In order to test the sensitivity of our segmentation with respect to the ground

truth contours produced by different observers, 100 images from four different data

sets, at different sections of the heart, were manually segmented by using both

experienced intra- and inter-observers. The DSC values for our segmentation versus

the ground truth from these observers are summarized in Table 3. According to the

paired t-test performed to test these trials, the P -values of 0.50 (intra-observer),
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Figure 24. Comparative results for our approach (left column) and the traditional
CV [102] level set (middle column) and AF [103] vector level set (right column)
approaches with respect to the manual ground truth (yellow) from an expert for four
independent subjects. The inner and outer contours of the model segmentation are
in red and green, respectively.
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TABLE 2. Comparative accuracy of the proposed segmentation versus the CV [102]
and AF [103] methods in terms of the distance metric on all 15 data sets (IC, OC,
AD, and SD stand for inner contour, outer contour, average distance, and standard
deviation, respectively).

Average distance, mm
IC OC Average

Approach AD±SD P -value AD±SD P -value AD±SD P -value
Our 2.4±0.6 1.88±0.49 2.2±0.6
CV [102] 8.8±4.9 10−3 2.6±0.9 0.01 5.7±4.7 10−3

AF [103] 3.4±1.3 0.013 2.29±1.17 0.22 2.9±1.4 0.013

and 0.32 and 0.75 (inter-observer) indicate that the differences are statistically

insignificant, which supports their strong agreement.

Furthermore, to test the sensitivity of our approach to the choice of the

control points that initialize the deformable boundaries, five different sets of the

initial control points were selected around the LV wall on the data sets for one

patient. The effect of these different initializations on the segmentation accuracy

was evaluated using the DSC metric and summarized in Table 4. Both the DSC and

P -values of the paired t-test confirm the proposed approach does not depend

significantly on the initial choice of the control points.

TABLE 3. Intra- and inter-observer performance of the automated segmentation
versus the ground truth using 100 images from different data sets and the DSC metric
(SD and OBi stand for standard deviation and observer i, respectively).

DSC
OB1 1st trial OB1 2nd trial OB2

1 2 3
Mean 0.932 0.929 0.933
SD 0.0245 0.0245 0.0250
P -value (1,2) : 0.50 (2,3) : 0.32 (1,3) : 0.74

Finally, that the proposed approach is not limited to the data collected by our

scanning protocol was demonstrated by testing on cardiac cine MRI data provided
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TABLE 4. Performance (in terms of the DSC metric) of our automated segmentation
versus the ground truth on one patient data set for different choices of the initial
control points of the deformable boundary (SD stands for standard deviation).

DSC
Initializing Trial Mean ± SD P -value
First 0.925 ± 0.027
Second 0.931 ± 0.021 0.176
Third 0.924 ± 0.026 0.873
Fourth 0.925 ± 0.022 0.963
Fifth 0.926 ± 0.025 0.867

by organizers of the MICCAI 2009 Cardiac MR LV Segmentation Challenge. The

data sets, scanning protocol, and evaluation criterion are fully described by Radau

et al. [104]. The performance of our approach was compared first with the

morphological segmentation by Lu et al. [105] and, secondly, with the related

coupled-surface segmentation, such as the ASM method by O’Brien et al. [106]. The

morphological segmentation was the most accurate among all the methods presented

at the aforementioned MICCAI 2009 contest. Table 5 compares our approach and

the morphological approach by Lu et al. [105] for three selected subjects with the

highest, moderate, and lowest segmentation accuracy as reported by Lu et al. [105].

The comparisons show that our results are better in terms of the higher DSC values

and lower average distances. In addition, O’Brien et al. [106] reported the lower

mean Dice values of 0.81 and 0.91 and higher mean AD values of 3.73 mm and 3.16

mm for the coupled-surface based segmentation of the endocardium and epicardium,

respectively. This highlights the advantages of our approach.

In addition, Table 6 shows the average execution time for each segmentation

approach. Being implemented on an Intel quad-core processor (3.2 GHz each; 16

GB memory) and a 1.5 TB hard drive with RAID technology using Matlab, our

approach takes 51.9±1.3 seconds for segmenting the wall border on a given time

series (25 temporal images) of a CMR dataset. It is clear that our approach is
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TABLE 5. Comparative segmentation accuracy (mean±SD) of the proposed segmen-
tation versus the morphological method [105] on the selected three MICCAI 2009
Challenge data sets (IC, OC, DSC, and AD stand for inner contour, outer contour,
Dice similarity coefficient, and average distance, respectively).

DSC AD (mm)
Algorithm IC OC IC OC

Proposed Approach 0.91±0.03 0.94±0.01 1.81±0.39 1.52±0.27
Morphology-based approach 0.88±0.05 0.94±0.04 2.03±0.58 1.96±1.15

slightly faster than the AF approach [103] and significantly faster than the CV

approach [102]. In part this is because our deformable models are initialized closer

to the object borders and thus need no extra time to reach the actual contour, in

contrast to the level-set methods, which are intrinsically iterative and take longer

time to reach the borders.

TABLE 6. Comparative processing times of the proposed segmentation versus the
Cv [102] and AF [103] methods for the wall border segmentation on a given time
series (25 temporal images) of a CMR dataset (SD stands for standard deviation).

Processing time
Approach Mean ± SD
Our Approach 51.9 ± 1.3
CV Approach [102] 418.0 ± 110.4
SB Approach [103] 72.0 ± 6.7

3 Clinical Applications

The proposed segmentation is directly applicable to estimation of

quantitative global indexes, such as wall mass, end-systolic volume (ESV),

end-diastolic volume (EDV), and ejection fraction (EF), as well as local indexes,

such as wall thickening and functional strain. These functional indexes help

cardiologists to accurately quantify the heart status. This chapter uses the EF as a
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clinically relevant and well-documented global indicator of the LV function in terms

of the total cavity volume (the LV volume variation over time):

EF =
EDV − ESV

EDV
= 1− ESV

EDV
(8)

where ESV and EDV are the end systolic (the smallest cavity area) and the end

diastolic (the greatest cavity area) volumes, respectively.

To estimate the EF, we use the LV cavity volume-time data at each image

slice. Following the delineation of the cavity contour at each time point (image

frame) of the cardiac cycle, the corresponding cavity areas are computed and a

curve representing the physiology over the cardiac cycle is constructed. Then, the

Simpson’s rule is used to estimate the total LV volume by summing the

contributions of enclosed areas from the individual image slices. From the total

ventricular function curve, we can automatically extract the EDV and ESV (see

Fig. 25) and hence calculate the EF.

The clinical benefit and applications of the proposed approach are

highlighted by testing the ability of our framework to facilitate the follow-up

treatment, using the EF metric. A typical example of the EF values estimated with

our approach for the pre-and post-treatment of one patient enrolled in the stem cell

therapy project is shown in Fig. 26. Table 7 summarizes the EF values for the pre-

and post-treatment of five patients. These results show the improvement after

therapy, which was also documented using other clinical indexes (e.g., by total

reduction in infarct area using MRI viability [107]).

The accuracy of estimating the global functional indexes is validated by

measuring the degree of agreement between the global functional parameters (EDV,

ESV, and EF) obtained by our approach and the ground truth. The Bland-Altman

analysis [108], calculating the bias (mean difference) and the 95% limits of

agreement, i.e. ± 1.96 SD (standard deviation), around the bias, shows good

agreement between our measurements and the ground truth as demonstrated in
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Figure 25. Ventricular function curve (obtained by summing the cavity areas over
the heart) over the cardiac cycle, being used to estimate the EF.

TABLE 7. EF results, being used to follow up after the one year treatment for
five patients enrolled in the stem cell therapy study. Larger EF values indicate an
enhancement in the myocardial wall function.

Ejection Fraction (EF%)
Pre Post

Subject 1 31 46
Subject 2 20 28
Subject 3 35 44
Subject 4 20 25
Subject 5 25 28
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(a)

(b)

Figure 26. Ventricular function curves (a) before and (b) after one year treatment for
one patient enrolled in the stem cell therapy study.
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Fig. 27. The results show 10 ml maximum errors of estimating EDV and ESV

values (less than 5% of the heart volume) and less than 4% error in the estimation

of EF values, which is clinically acceptable.

Finally, since the proposed approach can accurately track the LV wall border

points, our future work will be dedicated to ultimately estimating the wall

thickening contractile function and using the cine CMR images to estimate the

strain. Traditionally, the functional strain is estimated by using the tagged images

that lead to errors between the estimated indexes due to the inter-slice variability

between the different image modalities. We expect that our approach can precisely

estimate more correlated global and local functional indexes to completely

characterize the heart status.

E Summary

In total, a 3D (2D + time) novel, fast, robust, bi-directional coupled

parametric deformable models that are capable of segmenting LV wall borders is

presented. These models use first- and second-order visual appearance features.

First-order visual appearance of the cine CMR signals (inside and outside the

bound- ary of the deformable model) is modeled with an adaptive linear

combination of discrete Gaussians (LCDG). Second-order visual appearance of the

LV wall is accurately modeled with a translational and rotation-invariant second

order Markov-Gibbs random field (MGRF). The LCDG parameters are estimated

using a modified EM algorithm, and the potentials of rotationally invariant MGRF

are computed analytically. First, the initial contours are defined by manually

selecting a number of control points around the LV wall from the first image frame

of the current slice. Second, first- and second-order visual appearance features are

estimated using the LCDG and the MGRF respectively and a labeled image is

constructed using the Bayesian classifier and the first– and second–order features of

visual appearance. Control points of the deformable modelsare then being tracked
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(a)

(b)

(c)

Figure 27. Bland-Altman plots for the global function parameters: (a) EDV, (b)
ESV, and (c) EF, showing the difference between our segmentation and the ground
truth (y-axis) versus their average (x-axis). For a good agreement, the data points
should fall within the 95% limits of agreement, i.e., ± 1.96 SD around the bias.

59



till the last time fram. The results suggest that the proposed approach can precisely

segment C-CMR images. In addition, the results confirm the robustness of the

proposed methods against the shape variations of the LV and the anatomical

structures that have noise and inhomogeneity problems. The work presented in this

chapter has been published in Medical Physics [109], the IEEE International

Conference on Image Processing (ICIP13) [110] and the International Symposium

on Computational Models for Life Science (CMLS13) [111].
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CHAPTER IV

MYOCARDIUM FUNCTION ASSESSMENT USING

CINE MR IMAGES

A Introduction

Quantification of cardiac performance is crucial for the diagnosis and

management of patients with cardiac diseases. A number of important indicators

have been employed for quantifying the cardiac performance, e.g., wall thickness,

wall thickening, and functional strain [112]. Currently, a number of different medical

image modalities have been used for estimating these indicators. For example,

tagged MRI or ultrasound are the traditional medical image modalities for

estimating the functional strain, whereas cine CMR is the traditional technique for

estimating wall thickening. in this dissertation, we aim to develop a framework for

estimating different performance indexes of the heart (e.g., functional strain and

wall thickening) from the same image modality (i.e., cine CMR) in a way that

avoids the inconsistency between different estimated indexes. This inconsistency

results from the inter-slice variability and different image resolutions of the different

image modalities. Next, we will overview the current methods for estimating the

wall thickening and the functional strain as well as their limitations.

B Wall Thickness Analysis

Wall thickening is an important indicator for myocardium dysfunction, which

is more accurate than wall motion analysis [113–116]. It is typically assessed by

visual inspection, which is preferred clinically for practical purposes [117].However,

61



this is obviously a time consuming process and is prone to considerable intra- and

inter-observer variability which is a drawback [113, 118–120]. To overcome this, local

myocardial wall thickness is derived, automatically or semiautomatically, after

tracing the endocardial and epicardial boundaries in all short-axis images. Prasad et

al. [121] proposed to measure the myocardial thickening in CMR more reliably by

solving a partial differential Laplace equation. However, to reduce the effects of

segmentation errors in the wall thickness estimation, a further step of manual

adjustment was performed by a clinical expert. Recently, Khalifa et al. [67]

proposed an automated framework for analyzing the wall thickness and thickening

function by solving the 2D Laplace equation, However, their method is based on 2D

analysis and did not take into account the 3D motion of the cardiac wall (i.e.,

out-of-plane motion). Therefore, there is a need for developing more methods for

more accurate wall thickness analysis.

C Functional Strain Analysis

Functional strain is another important indicator of the cardiac condition that

can be used for detection of local cardiac diseases (such as coronary atherosclerosis)

and global conditions (such as heart failure and diabetes) [55, 122]. In the literature,

functional strain is estimated based on nonrigid registration using ultrasound

images [123, 124] or motion analysis using tagged MRI [125–129]. Unfortunately,

ultrasound images are low contrast. Also, the registration is computationally

expensive and involve voxel/pixel errors. On the other hand, methods that are

based on tagged MRI analysis are more common. However, these methods failed in

cases of a high-rate motion between successive frames, a through plane motion, or

boundary points [130]. Recent trends estimate the strain from cine CMR (e.g.,

[131–134]). Most of these methods depend on the texture features to track

predefined points on the epicardium and endocardium contours of the LV wall.

Thus, they are not sufficient to accurately track the LV points due to the lack of
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texture information inside the wall. Therefore, there is a need for developing new

methods for more accurate function strain estimation.

Figure 28. The proposed framework for estimating the performance indexes of the
heart using cine CMR.

D Limitations of Existing Works

In summary, the above-mentioned frameworks for analyzing the regional

function (i.e., wall thickening and functional strain) are not sufficiently accurate and

63



Figure 29. Schematic illustration of the 2-nearest voxels.
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reliable for several reasons: (i) current tagged MRI strain estimation methods fail in

cases of a high-rate motion between successive frames, a through plane motion, or

boundary points [130], (ii) current tracking-based strain estimation methods are

based on image features, such as the pixels’ intensity and their spatial features, so

they are not sufficient to accurately track the LV points due to the lack of texture

information inside the wall, (iii) the derived indexes from cine (e.g., wall thickening)

and tagged (e.g., functional strain) CMR suffer from inter-slice variability since they

are driven from different cross-sections and different modalities with different

resolutions, and (iv) current 2D methods for wall thickening estimation lead to

inaccurate measurements because they do not take into account the 3D motion of

the heart (i.e., out-of-plane motion).

To overcome the aforementioned limitations, we propose a novel PDE-based

method to estimate the strain and wall thickening from 4D cine CMR based on

tracking the LV wall geometry. To achieve this goal, we develop a 4D (3D+time)

approach to track the LV wall points based on solving the 3D Laplace equation

between each two successive surfaces over the cardiac cycle. To preserve the

anatomy of the heart wall, the initially tracked surface points are iteratively refined

through an energy minimization cost function using a generalized Gauss-Markov

random field (GGMRF) image model. Since we use the same image modality (i.e.,

cine CMR) to estimate both wall thickening and functional strains, more correlated

and accurate indexes can be obtained, which have the ability to quantify meaningful

effects in treatment and physiological studies.

E Methods

The proposed framework for estimating different performance indexes of the

heart (e.g., functional strain and wall thickening) from cine CMR is schematized in

Fig. 28. The segmentation of the LV wall borders can be obtained using any

segmentation technique, e.g., using the method in [67]. In this chapter, we focus on
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the tracking of the LV wall points and the assessment of the myocardial function.

Details of the proposed framework are described below.

1 4D Tracking of the LV Wall Points

Initial tracking using the solution of the 3D Laplace equation

In order to estimate the heart performance indexes, the surface points of the

myocardium should be tracked over the cardiac cycle. In this work, we propose a

geometrically motivated approach to track the surface points on the LV wall

through the cardiac cycle. Our method tracks the LV surfaces’ points by solving the

Laplace equation between each two successive surfaces (we denote one as the

reference surface and the other one as the target surface). The Laplace equation is a

second-order linear PDE, which takes the form:

∇2Ψ =
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2
= 0 (9)

where Ψ(x, y, z) is the estimated electric field between the surfaces. The

solution Ψ between two surfaces results in intermediate equipotential surfaces and

streamlines (field lines), being everywhere orthogonal to all equipotential surfaces

and establishing natural voxel-to-voxel correspondences between the surfaces. In

order to estimate Ψ(x, y, z), we used a second order central differences method and

the iterative Jacobi approach:

Ψi+1(x, y, z) =
1

6

{
Ψi(x+ θx, y, z) + Ψi(x− θx, y, z)

+ Ψi(x, y + θy, z) + Ψi(x, y − θy, z)

+ Ψi(x, y, z + θz) + Ψi(x, y, z − θz)

}
(10)

where Ψi(x, y, z) is the estimated electric field at (x, y, z) during the ith

iteration; and θx, θy, and θz are the step length or resolution in x, y and z
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directions, respectively. Basic steps of the proposed Laplace-based tracking

methodology are summarized in Algorithm 2.

Algorithm 2 Solution of the 3D Laplace Equation Between Two Surfaces

1 Find the 3D edges of both LV wall surfaces.
2 Initial condition: Set the maximum and minimum potential Ψ at the target and
reference surfaces, respectively.

3 Estimate Ψ between both surfaces using Eq. (10).
4 Iterate Step 3 until convergence is achieved (i.e., there is no change in estimated Ψ
values between iterations).
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GGMRF-based refinement

In order to avoid any anatomical distortions that result from solving the

Laplace equation, we employ a smoothness constraint to preserve the LV wall

anatomy. The introduced constraint preserves the relative position between the

neighboring voxels on the target LV wall surface through iterative energy

minimization using a GGMRF image model [135] on the initially tracked points.

Each tracked point on the target is iteratively refined by a GGMRF image

model [135] using the voxels neighborhood system (N -nearest neighbors, Fig. 29).

Given the N -nearest neighbors of each point on the target surface, the

location of each point is refined using its maximum A posteriori (MAP)

estimates [135] and voxel-wise stochastic relaxation (iterative conditional mode

(ICM)) that jointly optimize x, y, and z spatial coordinates using [136]:

p̂s = arg min
p̃s=(x̃s,ỹs,z̃s)

{
|xs − x̃s|α + ραλβ

∑
r∈N

ηs,r |x̃s − xr|β

+ |ys − ỹs|α + ραλβ
∑
r∈N

ηs,r |ỹs − yr|β + |zs − z̃s|α

+ ραλβ
∑
r∈N

ηs,r |z̃s − zr|β
}

(11)

where ps = (xs,ys, zs) and p̃s = (x̃s, ỹs, z̃s) denote the tracked points’

original locations and their expected estimates; N is the number of nearest

neighbors (Fig. 29); ηs,r is the GGMRF potential, and ρ and λ are scaling factors.

In addition to N , the parameter β ∈ [1.01, 2.0] controls the refinement level (e.g.,

β = 2 for smooth vs. β = 1.01 for relatively abrupt edges). The parameter

α ∈ {1, 2} determines the Gaussian, α = 2, or Laplace, α = 1, prior distribution of

the estimator. Our experiments below were conducted with ρ = 1, λ = 5, β = 1.01,

α = 2, and ηs,r =
√
2 for all directions.
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2 Assessment Metrics

Strain Estimation

The estimation of strain is based on the Lagrangian strain calculation. For a

3D element with spatial dimensions x, y, and z (see Fig. 30), the strain is defined

as [137]:

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 =


∆x
x

∆x
y

∆x
z

∆y
x

∆y
y

∆y
z

∆z
x

∆z
y

∆z
z

 (12)

where εxx, εyy , εzz denote the normal strain components in the cartesian

coordinates x, y, and z respectively; εxy, εyz, εxz, εzx, εyz, and εzy denote the shear

strain components in 3D; and ∆x, ∆y, and ∆z denote the change in the 3D element

dimensions between the current frame and the inital (reference) frame. As shown in

Fig. 30, each strain component is estimated as the change on the length between the

two frames with respect to the initial length at the reference frame. In this

dissertation, we focus on estimating the normal components for the endocardium

circumferential strain. To estimate these components, we use Algorithm 3.

Wall Thickness Analysis

The estimation of the wall thickening, i.e., the changes in the wall thickness

during systole of the cardiac cycle, is obtained by accurate co-allocation of the

corresponding points, or matches, between the inner and outer surfaces of the LV

wall by solving the 3D Laplace equation. We use the geodesic distances between

corresponding points to estimate the wall thickness and thickening. A typical

example of finding the point-wise correspondences between the inner and outer

surfaces of the heart wall using the solution of the 3D Laplace equation is shown in

Fig. 31.
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Figure 30. Schematic illustration for the estimation of the strain components on a
3D element (red). Left: 3D element at the reference frame and Right: changes in the
element dimensions in the current frame.

Algorithm 3 Strain Estimation Algorithm

1 Segment the LV wall from cine CMR (e.g., by the approach in [67]).
2 For each two successive volumes, solve the Laplace equation between their respec-
tive inner borders to track the surface points throughout the cardiac cycle.

3 Iteratively refine the initially tracked points through energy minimization using the
3D GGMRF image model (Eq. 11).

4 Estimate the circumferential strains by tracking the change in distance between
tracked points on the endocardium border using Eq. 12, see Fig. 30.
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Figure 31. Coallocation of corresponding LV wall points for a patient data using the
proposed method. The inner and outer LV wall surfaces are shown in pink and green
respectively.

F EXPERIMENTAL RESULTS

The proposed framework has been tested on 15 independent cine CMR data

sets collected from six infarction patients who undergo a stem-cell myoregeneration

therapy. Short-axis images were obtained using a 1.5 T Espree system, Siemens

Medical Solutions, USA Inc., with phased array wrap-around reception coils.

Breath-hold cine imaging was done using segmented True-FISP contrast. Typical

parameters were: TR: 4.16 ms; TE: 1.5 ms; flip angle: 80o, 1 average; k-space lines

per segment: 12; isotropic in plane resolution: 1 × 1 mm2; and slice thickness: 1

mm. Typically, 25 temporal image frames were obtained for each slice.
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1 In vivo Validation

In order to validate our method, we compare the estimated values of the wall

thickening and strain curves to the ground truth (GT) values, which were estimated

using a set of landmark points that were traced by a radiologist through out the

cardiac cycle. Comparison results between our method and the GT for estimating

wall thickening and functional strain are presented in Table 8. As demonstrated,

our estimation is close to the GT as documented by the statistical paired t-test with

P values greater than 0.05, which indicate non-significant difference.

To highlight the advantage of the proposed 3D method for estimating the

wall thickening, we compare our method with the 2D method proposed by Khalifa

et al. [67]. Unlike our method, the 2D analysis [67] shows a significant difference

from the GT (the paired t-test P -value is less than 0.05, see Table 8). This is due to

the fact that 2D methods do not take into account the 3D heart motion (e.g.,

out-of-plane motion). So our method can provide more accurate results. These

results highlight the advantages of the proposed framework.

TABLE 8. Comparison results for mean thickening and mean endocardium strain
over the cardiac cycle using our method versus the ground truth, estimated using
12 selected landmarks. Our thickening analysis is compared to the 2D thickening
analysis proposed in [67].

Metric 1: Wall Thickening
Mean Standard Deviation

GT 5.74 mm 2.24 mm P -value
Our 5.66 mm 1.94 mm 0.9439

2D [67] 1.42 mm 0.98 mm 0.0005
Metric 2: Functional Stain
Mean Standard Deviation

GT 0.11 0.15 P -value
Our 0.086 0.17 0.2312
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2 Clinical Applications

To emphasize the potential of using the wall thickening and strain to

document changes with treatment, we have tested our method in research

participants with chronic ischemic heart disease and heart damage who underwent a

stem-cell myogeneration therapy. Figure 32 exemplified the circumferential strain

results for one participant. As shown in the figure, the proposed method was able to

detect the enhancement in strain after treatment, manifested with higher strain

slopes. For visual assessment of the wall thickening (δ) functional parameter, we use

a voxel-wise parametric (color-coded) map. To derive these functional maps, each δ

value is normalized by relating it to the maximum value measured in the whole

volume for the pre- or post-treatments, for the given subject. Fig. 33 presents the

parametric maps for the δ values over multiple cross-sections for pre- and

post-therapy of one subject. As shown in the figure, our 4D method can better

detect the variability of the wall thickening than the 2D method proposed by

Khalifa et al. [67]. These results introduce the potential of using the wall thickening

and strain to document changes with treatment that were consistent with

improvements in patient condition, as documented by clinical indexes. To emphasize

the potential of using the wall thickening and strain to document changes with

treatment, we have tested our method in research participants with chronic ischemic

heart disease and heart damage who underwent a stem-cell myogeneration therapy

treatment. In this section we present more results for the in vivo participants.

Figure 34 and Fig. 35 exemplified the circumferential strain results and the

parametric wall thickening maps over multiple cross-sections for pre- and

post-therapy of two more participants enrolled in this study. As shown in the

figures, the proposed method was able to detect the enhancements in strain and

wall thickening after treatment that were consistent with improvements in patient

condition documented by clinical indexes. This was manifested with higher strain

slopes and larger-values of wall thickening color maps. This lends encouragement for
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Figure 32. Pre- and post-strain analysis for a patient enrolled in this study, projected
on 2D basal, mid-cavity, and apical cross-sections for illustration.

the proposed framework to detect and quantify meaningful effects in treatment and

physiological studies. In addition, it is worth mentioning that all of the derived

metrics are estimated from cine CMR. This avoids the need for additional tagged

images and thus overcomes the inter-slice variability problem between different

image modalities.

3 Comparison Results With HARP Method for Strain Estimation

Since the strain can be estimated using different methods, we used the

commercial HARP diagnosoft package, version 2.6 (http://www.diagnosoft.com/) to

estimate the strain on tagged data for the same six subjects enrolled in this study

and compare it with our results. Tagged images were acquired by breath hold 1-1

SPAMM imaging in the cardiac short axis plane at basal, mid, and apical levels
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Figure 33. Pre- and post-thickening analysis using the 2D method proposed in [67]
and our proposed method for a patient enrolled in this study. The results are projected
on 2D basal, mid-cavity, and apical cross-sections for illustration.
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(a)

(b)

Figure 34. Pre and post (a) thickening and (b) strain results using our proposed
method for a sample patient, illustrated on 2D basal, mid-cavity, and apical cross-
sections.
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(a)

(b)

Figure 35. Pre and post (a) thickening and (b) strain results using our proposed
method for a second sample patient, illustrated on 2D basal, mid-cavity, and apical
cross-sections.
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using a 1.5-T Siemens Espree scanner and phased-array cardiac coil reception with

the maximum gradient amplitude of 33 mT
m

and maximum slew rate of 100 mT.m−1

s
.

An ECG-triggered segmented k-space fast gradient echo sequence was performed

with typical grid tag spacing of 10 mm; echo time of 4.0 ms; repetition time of 44.0

ms; flip angle of 14 degrees; voxel size of 1.48 x 1.48 x 10 mm; bandwidth of 184

Hz
voxel

; 12-20 cardiac cycle frames, and typical total acquisition time of 15-20 seconds

(the breath held imaging).

Our initial experiments report a higher mean correlation coefficient (r=0.97)

between our estimated strain curves and the global ventricular volume curves

(GVVCs) of the participating subjects enrolled in this study than between the

strain curves estimated using the HARP method (r=0.87) and the GVVCs of the

same subjects. Fig. 36 exemplified the comparison results for one patient enrolled in

this study. These results highlight the ability of the proposed method to provide

more correlated heart indexes since all of the derived metrics are estimated from

cine CMR. This avoids the need for additional tagged images and thus overcomes

the inter-slice variability problem associated with estimating the functional

assessment metrics from different image modalities with different image resolution.

G Summary

A novel framework for thickening and strain estimation from cine CMR

images is presented. The LV wall points are tracked throughout the cardiac cycle by

applying a PDE method to track the LV points by solving the Laplace equation in

3D between the LV wall borders. The main advantage of the proposed tracking

method over traditional texture-based methods is its ability to track the movement

and rotation of the LV wall based on tracking the geometric features of the inner,

mid-, and outer walls of the LV. This overcomes noise sources that come from

scanner and heart motion. Moreover, the proposed method will allow an accurate

estimation of the correlation coefficients between the strain index and other
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Figure 36. Comparison results between our estimation and HARP based estimation
of the endocardium circumferential strain curve of a sample patient enrolled in this
study. Arrows indicate the correlation coefficient between the estimated strain curves
and the global ventricular volume curve (GVVC).

performance indexes derived from cine images, such as global (e.g., ejection fraction)

and local (e.g., wall thickening) indexes. This will avoid the inter-slice variability

problem since all indexes will be derived from cine CMR data.
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CHAPTER V

CONCLUSION

Efficient and robust determination of ventricular measurements requires

accurate delineation of the myocardial boundaries. However, accurate segmentation

of the left ventricle (LV) wall borders is still a challenge. In this dissertation, we

propose a novel 3D (2D + time) approach for the segmentation of the LV wall

borders from cine cardiac magnetic resonance (CMR) images using coupled

bi-directional parametric deformable models. The control points of the deformable

models are tracked using a new external force that incorporates first– and

second–order visual appearance features of the cine images in addition to the

traditional contour internal force. The incorporation of these new features leads to

an accurate segmentation, as evidenced by both the Dice similarity coefficient

(DSC) and a distance metric on a cohort of 15 cine CMR data. For setting the size

of the tracking search space (i.e., the size of the nearest neighbors’ matrix), the

effect of the temporal changes in the position/orientation of this 2D slice during

imaging has been studied. For a typical temporal resolution of 25 image frames over

the cardiac cycle (the typical case in this study), a search space of 3x3 pixels is

necessary for tracking any control point to account for the temporal changes

between the image frames. Note that for a higher spatial resolution (i.e., lower

number of time frames over the cardiac cycle), one may expect the necessity to

increase the tracking search space in order to cover the higher temporal changes

between the temporal image frames.

In terms of practicality of computations, the present Matlab implementation

on the Intel quad-core processor (3.2 GHz each; 16 GB memory) and a 1.5 TB hard
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drive with RAID technology takes 51.9± 1.3 seconds for the wall border

segmentation on a given time series (25 temporal images) of the CMR dataset.

In terms of the clinical benefits of our approach, the proposed method allows

us to accurately estimate the ejection fraction (EF) as a representative of the global

performance indexes of the heart. The proposed approach is not limited to the

segmentation of the LV wall borders from short-axis cine CMR images, but can be

used for other modalities and medical structures.

A novel 4D (3D+time) tracking approach for accurate assessment of

myocardium function using cine CMR is presented. The experimental results on in

vivo data demonstrated the ability of the proposed approach for detecting the

out-of-plane heart motion which leads to accurate estimation of both 3D strain and

wall thickening assessment metrics. The main advantage of estimating 3D functional

strain from cine CMR is that it allows an accurate calculation of the correlation

coefficients between the 3D strain index and other performance indexes derived from

cine images, such as wall thickening and other global and local indexes. Therefore,

the proposed approach can stand alone without the need for extra tagged images.

Our future work includes testing the generality of our segmentation approach

in segmenting other medical structures from other modalities, since it shows

promising results in the segmentation of the LV wall borders. In addition, our

future work will also include the extension of the current 3D implementation (2D +

time) to 4D (3D + time), thanks to the technological progress in rapid MR

acquisition of image sequences having sufficient spatial and temporal resolutions.

We also plan to ultimately test our framework to characterize pre- and

post-treatment wall function status, and to investigate other types of correlation

between local and global indexes for patients with ischemic heart diseases who are

undergoing a myoregneration stem cell therapy.

81



REFERENCES

[1] Dr. Carl Bianco, “How your Heart Works,”

http://science.howstuffworks.com/life/human-biology/heart.htm

[2] http://www.webmd.com/heart-disease/heart-failure/

heart-failure-overview

[3] http://commons.wikimedia.org/wiki/File:

Diagram_of_the_human_heart_(cropped).svg

[4] http://www.nhlbi.nih.gov/health/health-topics/topics/hhw/

[5] http://www.medicalnewstoday.com/articles/237191.php

[6] Centers for Disease Control and Prevention. State Specific Mortality from

Sudden Cardiac Death: United States, 1999. MMWR. 2002;51(6):123126.

[7] http://www.nlm.nih.gov/medlineplus/heartdiseases.html

[8] http://www.who.int/mediacentre/factsheets/fs310/en/

[9] A. Schllhuber , “Fully automatic segmentation of the myocardium in cardiac

perfusion MRI,” Engineering in Medicine, 2008.

[10] J. C. Velos, “A review of cardiac imaging modalities,” In Nurse practitioner

forum, vol. 2, no. 4, pp. 231–238, 1991

[11] J. B. Garrison, W. L. Ebert, R. E. Jenkins, S. M. Yionoulis, H. Malcom, G. A.

Heyler, A. A. Shoukas, W. L. Maughan, and K. Sagawa, “Measurement of

threedimensional positions and motions of large numbers of spherical

radiopaque markers from biplane cineradiograms,” Computers and Biomedical

Research, vol. 15, no. 1, pp. 76–96, 1982.

82



[12] A. Flotats, J. Knuuti, M. Gutberlet, C. Marcassa, F. M. Bengel, P. A.

Kaufmann, M. R. Rees, and B. Hesse, “Hybrid cardiac imaging: SPECT/CT

and PET/CT,” A joint position statement by the European Association of

Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR)

and the European Council of Nuclear Cardiology (ECNC). European journal of

nuclear medicine and molecular imaging, vol. 38, no. 1, pp.201–212, 2011.

[13] B. J. King,“Current Cardiology Diagnostic Modalities and Patient Dosimetry,”

http:

//nuclearcardiologyseminars.com/articles/Cardiology-Dosimetry.pdf

[14] “Role of Ultrasound”

http://mustikamax.blogspot.com/2012/07/role-of-ultrasound.html

[15] “Echocardiography,” http://en.wikipedia.org/wiki/Echocardiography

[16] A. S. Celebi, H. Yalcin, and F. Yalcin, “Current cardiac imaging techniques for

detection of left ventricular mass,” Cardiovascular Ultrasound, vol. 8, no. 1,

pp.8:19, 2010.

[17] “CT of the heart: Principles, advances, clinical uses,” Cleveland Clinic journal

of medicine, vol. 72, no. 2, pp. 127–138, 2005.

[18] http:

//imaging.cancer.gov/patientsandproviders/cancerimaging/ctscans

[19] S. S. Halliburton, “Recent technologic advances in multi-detector row cardiac

CT,”Cardiology clinics, vol. 27, no. 4, pp. 655-664, 2009.

[20] A. P.Dhawan, H. K. Huang, and D.-S. Kim, “Principles and advanced methods

in medical imaging and image analysis”. World Scientific, 2008.

[21] http://www.imaging.sbes.vt.edu/research/cardiac-ct/

83



[22] http://en.wikipedia.org/wiki/File:Nl_mpi2.jpg

[23] http://radiology.med.nyu.edu/about-us/specialities/cardiac-imaging

[24] W. A. Kalender, “Computed tomography,” (2001): 1610.

[25] http://mustikamax.blogspot.com/2012/07/

[26] T. Gyrke, “Nuclear Medicine,”

http://oftankonyv.reak.bme.hu/tartalom/eng/nm_eng_gyt.pdf

[27] F. M. Bengel, T. Higuchi, M. S. Javadi, R.Lautamki, “Cardiac Positron

Emission Tomography,” Journal of the American College of Cardiology, vol. 54,

no. 1, pp. 1–15, 2009.

[28] E. C. Lin, “Cardiac MRI, Technical Aspects Primer,”

http://emedicine.medscape.com/article/352250-overview#showall

[29] Piotr Kozlowski, “Chapter 8. Magnetic Resonance Imaging,” John Wiley &

Sons, Inc., DOI: 10.1002/9780470451816.ch8, 2009.

[30] http://www.nuclearcardiologyseminars.net/di.htm

[31] H. Wang and A. A. Amini, “Chapter 11. MRI of Myocardial

Deformations:Imaging and Modeling,” CRC Press, Print ISBN:

978-1-4398-7102-7, eBook ISBN: 978-1-4398-7103-4, DOI: 10.1201/b12939-12,

pp. 1-38, 2012.

[32] A. Frangi, W. Niessen, and M. A. Viergever, “Three-Dimensional Modeling for

Functional Analysis of Cardiac Images: A Review,” TMI.,IEEE, vol. 20, no. 1,

pp. 2-25, 2001.

[33] A. K. Attili, A. Schuster, E. Nagel, J. H. C. Reiber, R. J. van der Geest,

“Quantification in cardiac MRI: advances in image acquisition and processing,”

Int J Cardiovasc Imaging, vol. 26, no. 1, pp. 2740, 2010.

84



[34] http://en.wikipedia.org/wiki/MRI

[35] http:

//www.insideradiology.com.au/pages/view.php?T_id=53&ref_info#17

[36] J. M. Groen, P. A. van der Vleuten, M. J. W. Greuter, F. Zijlstra, M. Oudkerk,

“Comparison of MRI, 64-slice MDCT and DSCT in assessing functional cardiac

parameters of a moving heart phantom,” European radiology, vol. 19, no. 3, pp.

577–583, 2009.

[37] F. H. Epstein, “MRI of left ventricular function,” J Nucl Cardiol., vol. 14, no.

5, pp. 729-44, 2007.

[38] Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP., “Human heart:

tagging with MR imaginga method for noninvasive assessment of myocardial

motion,” Radiology, vol. 169, no. 5963, 1988.

[39] Rademakers FE, Buchalter MB, Rogers WJ, Zerhouni EA, Weisfeldt ML, Weiss

JL, Shapiro EP, “Dissociation between left ventricular untwisting and filling

Accentuation by catecholamines,” Circulation, vol. 85, no. 4, pp. 1572-81, 1992.

[40] D. J. Pennell, U. P. Sechtem, C. B. Higgins, W. J. Manning, G. M. Pohost, F.

E. Rademakers, A. C. van Rossum, L. J. Shaw, E. K. Yucel, “Clinical

indications for cardiovascular magnetic resonance (CMR): Consensus Panel

reportq,” European Heart Journal, vol. 25, no. 21, pp. 19401965, 2004.

[41] Ernesto Castillo, Joao A. C. Lima, David A. Bluemke, “Regional Myocardial

Function: Advances in MR Imaging and Analysis,” Radiographics, vol. 23, no.

S127-40, 2003.

[42] V. Dilsizian, and G. M. Pohost, “Cardiac CT, PET and MR,” John Wiley &

Sons, 2011.

85



[43] P. Shi , H. Liu, “ tochastic finite element framework for simultaneous

estimation of cardiac kinematic functions and material parameters,” Medical

Image Analysis, vol. 7, no. 4, pp. 445-464, 2003.

[44] X. Papademetris, and J. S. Duncan, “Cardiac image analysis: Motion and

deformation,” Handbook of Medical Imaging, vol. 2, pp. 675–710, 2000.

[45] H. Michaely, K. Herrmann, K. Nael, N. Oesingmann, M. Reiser, and S.

Schoenberg, “Functional renal imaging: Nonvascular renal disease,” Abdominal

Imaging, vol. 32, no. 1, pp. 1-16, 2007.

[46] F. Khalifa, A. El-Baz, G. Gimelfarb, and M. Abu El-Ghar, “Non-invasive

image-based approach for early detection of acute renal rejection,” Medical

Image Computing and Computer-Assisted InterventionMICCAI, pp. 10-18,

Springer Berlin Heidelberg, 2010.

[47] A. Elnakib, “DEVELOPING ADVANCED MATHEMATICAL MODELS FOR

DETECTING ABNORMALITIES IN 2D/3D MEDICAL STRUCTURES,”

PhD Thesis, University of Louisville, Louisvilee, KY, USA, 2013.

[48] R. J. Kim, E. Wu, A. Rafael, E.-L. Chen, M. A. Parker, O. Simonetti, F. J.

Klocke, R. O. Bonow, and R. M. Judd, “The use of contrast-enhanced

magnetic resonance imaging to identify reversible myocardial dysfunction,” The

New England Journal of Medicine, vol. 43, no. 20, pp. 1445-1453, 2000.

[49] V. S. Lee, D. Resnick, S. S. Tiu, “MR imaging evaluation of myocardial

viability in the setting of equivocal SPECT results with 99mTc sestamibi,”

Radiology, vol. 230, no. 1, pp. 191197, 2004.

[50] J. Vogel-Claussen, C. E. Rochitte, K.C. Wu, I. R. Kamel, T. K. Foo, J. A.

Lima, D. A. Bluemke, “Delayed enhancement MR imaging: utility in

myocardial assessment,” Radiographics, vol. 26, no. 3, pp. 79, 2006

86



[51] N. Al-Saadi, E. Nagel, M. Gross, A. Bornstedt, B. Schnackenburg, and C. E. A.

Klein, “Noninvasive Detection of Myocardial Ischemia From Perfusion Reserve

Based on Cardiovascular Magnetic Resonance,” Circulation, vol. 101, no. 12,

pp. 1379-1383, 2000

[52] S. D. Wolff, J. Schwitter, R. Coulden, M. Friedrich, D. Bluemke, R. Biederman,

E. Martin, A. Lansky, F. Kashanian, T. Foo, P. Licato, and C. Comeau,

“Myocardial First-Pass Perfusion Magnetic Resonance Imaging,” Circulation,

vol. 110, no. 6, pp. 732-737, 2004

[53] S. Busch, T. R. C. Johnson, B. J. Wintersperger, N. Minaifar, A. Bhargava, C.

Rist, M. F. Reiser, C. Becker, K. Nikolaou, “Quantitative assessment of left

ventricular function with dual-source CT in comparison to cardiac magnetic

resonance imaging: initial findings,” European radiology, vol. 18, no. 3, pp.

570–575, 2008.

[54] M. Prasad, A. Ramesh, P. Kavanagh, B. K. Tamarappoo, R. Nakazato, J.

Gerlach, V. Cheng, L. E. J. Thomson, D. S. Berman, G. Germano, and P.J.

Slomka, “Automated quantification of 3D regional myocardial wall thickening

from gated Magnetic Resonance images,” Journal of Magnetic Resonance

Imaging, vol. 31, no. 2, pp. 317327, 2010

[55] M. Y. Henein (Editor), Heart failure in clinical practice, Springer-Verlag:

London, 2010.

[56] E. C. Barbier, L. Johansson, L. Lind, H. Ahlstrom, and T. Bjerner, “The

exactness of left ventricular segmentation in cine magnetic resonance imaging

and its impact on systolic function values,” Journal of Acta Radiologica,

vol. 48, no. 3 pp. 285–91, 2007.

[57] B. Sievers, S. Kirchberg, A. Bakan, U. Franken, and H.-J. Trappe, “Impact of

papillary muscles in ventricular volume and ejection fraction assessment by

87



cardiovascular magnetic resonance,” Journal of Cardiovascular Magnetic

Resonance, vol. 6, no. 1, pp. 9–16, 2004.

[58] P. Thunberg, K. Emilsson, P. Rask, and A. Kahari, “Estimation of ejection

fraction and stroke volume using single- and biplane magnetic resonance

imaging of the left cardiac ventricle,” Journal of Acta Radiologica, vol. 49,

no. 9, pp. 1016–23, 2008.

[59] I. Ben Ayed, S. Li, and I. Ross, “Embedding overlap priors in variational left

ventricle tracking,” IEEE Transaction on Medical Imaging, vol. 28, no. 12,

pp. 1902–13, 2009.

[60] I. Ben Ayed, Y. Lu, S. Li, and I. Ross, “Left ventricle tracking using overlap

priors,” Proceedings of Medical Image Computing and Computer-Assisted

Intervention, vol. 11, no. 1, pp. 1025–33, 2008.

[61] C. Li, X. Jia and Y. Sun, “Improved semi-automated segmentation of cardiac

CT and MR images,” IEEE International Symposium on Biomedical Imaging,

vol. 11, no. 6, pp. 25–28, 2009.

[62] W. Feng, H. Nagaraj, H. Gupta, S. G. Lloyd, I. Aban, G. J. Perry, D. A.

Calhoun, L. J. Dell’Italia and T. S. Denney Jr, “A dual propagation contours

technique for semi-automated assessment of systolic and diastolic cardiac

function by CMR,” Journal of Cardiovascular Magnetic Resonance, vol. 11,

no. 1, pp. 30, 2009.

[63] T. Chen, J. Babb, P. Kellman, L. Axel, and D. Kim, “Semiautomated

segmentation of myocardial contours for fast strain analysis in cine

displacement-encoded MRI,” IEEE Transactions on Medical Imaging, vol. 27,

no. 8, pp. 1084–94, 2008.

[64] A. Pednekar, U. Kurkure, R. Muthupillai, S. Flamm, and I. A. Kakadiaris,

88



“Automated left ventricular segmentation in cardiac MRI,” IEEE Transactions

on Biomedical Engineering, vol. 53, no. 7, pp. 1425–8, 2006.

[65] M. Uzumcu, R. van der Geest, C. Swingen, J. Reiber and B. Lelieveldt, “Time

continuous tracking and segmentation of cardiovascular magnetic resonance

images using multidimensional dynamic programming,” Investigative Radiology,

vol. 41, no. 1, pp. 52–62, 2006.

[66] C. Petitjean and J.-N. Dacher, “A review of segmentation methods in short axis

cardiac MR images,” Medical Image Analysis, vol. 15, no. 2, pp. 169–184, 2011.

[67] F. Khalifa, G. M. Beache, G. Gimel’farb, G. A. Giridharan, and A. El- Baz,

“Accurate automatic analysis of cardiac cine images,” IEEE Transactions on

Biomedical Engineering, vol. 59, no. 2, pp. 445–55, 2012.

[68] F. Khalifa, G. M. Beache, M. Nitzken, G. Gimel’farb, G. Giridharan, A.

El-Baz, “Automatic analysis of left ventricle wall thicknessusing short-axis cine

CMR images,” IEEE International Symposium on Biomedical Imaging,

pp. 1306–9, 2011.

[69] F. Khalifa, G. M. Beache, A. El-Baz, G. Gimel’farb, “Deformable model guided

by stochastic speed with application in cine images segmentation,” IEEE

International Conference on Image Processing, pp. 1725–8, 2010.

[70] S. P. O’Brien, O. Ghita, and P. F.Whelan, “A Novel Model-Based 3-D+ Time

Left Ventricular Segmentation Technique,” IEEE Transactions on Medical

Imaging, vol. 30, no. 21, pp. 461–474,2011.

[71] J. Cousty, L. Najman, M. Couprie, S. Clément-Guinaudeau, T. Goissen, and J.

Garot, “4D cardiac MRI: Automated method based on spatio-temporal

watershed cuts,” Image and Vision Computing, vol. 28, no. 8, pp. 1229–1243

,2010.

89



[72] H. Zhang, A. Wahle, R. K. Johnson, T. D. Scholz, and M. Sonka, “4-D cardiac

MR image analysis: left and right ventricular morphology and function,” IEEE

Transactions on Medical Imaging, vol. 29, no. 2, pp. 350–64, 2010.

[73] A. Andreopoulos, and J. K.Tsotsos, “Efficient and generalizable statistical

models of shape and appearance for analysis of cardiac MRI,” Medical Image

Analysis, vol. 12, no. 3, pp. 335–357 ,2008.

[74] M. Jolly, H. Xue, L. Grady, and J. Guehring “Combining registration and

minimum surfaces for the segmentation of the left ventricle in cardiac cine MR

images,” Proceedings of Medical Image Computing and Computer-Assisted

Intervention, vol. 12, no. 2, pp. 910–8, 2009.

[75] U. Kurkure, A. Pednekar, R. Muthupillai, S. D. Flamm, and I. A. Kakadiaris,

“Localization and segmentation of left ventricle in cardiac cine-MR images,”

IEEE Transactions on Biomedical Engineering, vol. 56, no. 5, pp. 1360–70,

2009.

[76] C. A. Cocosco, W. J. Niessen, T. Netsch, E. P. A. Vonken, G. Lund, A. Stork,

and M. A. Viergever, “Automatic image-driven segmentation of the ventricles

in cardiac cine MRI,” Journal of Magnetic Resonance Imaging, vol. 28, no. 2,

pp. 366–74, 2008.

[77] M. Lynch, O. Ghita, and P. F. Whelan, “Segmentation of the left ventricle of

the heart in 3-D+t MRI data using an optimized nonrigid temporal model,”

IEEE Transactions on Medical Imaging, vol. 27, no. 2, pp. 195–203, 2008.

[78] J. Liang, G. Ding, and Y. Wu, “Segmentation of the left ventricle from cardiac

MR images based on radial GVF snake,” Proceedings of the International

Conference on Biomedical Engineering Informatics, vol. 2, pp. 238-42, 2008.

[79] X. Han, C. Xu, and J. L. Prince, “A topology preserving level set method for

90



geometric deformable models,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 25, no. 6, pp. 61–79, 2009.

[80] X. Zhuang, D. J. Hawkes, W. R. Crum, R. Boubertakh, S. Uribe, D. Atkinson,

P. Batchelor, T. Schaeffter, R. Razavi, and D. L. G. Hill, “Robust registration

between cardiac MRI images and atlas for segmentation propagation,”

Proceedings of SPEI on Medical Imaging, vol. 6914, pp. 7., 2007

[81] S. Zambal, J. Hladvka, and K. Bhler, “Improving segmentation of the left

ventricle using a two-component statistical model,” Proceedings of Medical

Image Computing and Computer-Assisted Intervention, vol. 9, pp. 151–8, 2006.

[82] M. Lynch, O. Ghita, and P. Whelan, “Left-ventricle myocardium segmentation

using a coupled level-set with a priori knowledge,” Computerized Medical

Imaging and Graphics, vol. 30, no. 4, pp. 255–62, 2006.

[83] A. Katouzian, A. Prakash, and E. Konofagou, “A new automated technique for

left- and right-ventricular segmentation in magnetic resonance imaging,”

Proceedings of Engineering in Medicine and Biology Society, pp. 3074–7, 2006.

[84] M. Jolly, “Automatic segmentation of the left ventricle in cardiac MR and CT

images,” International Journal of Computer Vision, vol. 70, no. 2, pp. 151–63,

2006.

[85] M. Jolly, N. Duta, and G. Funka-Lea, “Segmentation of the left ventricle in

cardiac MR images,” Proceedings. Eighth IEEE International Conference on

Computer Vision, vol. 1, pp. 501–8, 2001.

[86] M. Lynch, O. Ghita, and P. Whelan, “Automatic segmentation of the left

ventricle cavity and myocardium in MRI data,” Computers in Biology and

Medicine, vol. 6, no. 4, pp. 389–407, 2006.

91



[87] B. F. Lelieveldt, M. Uzumcu, R. J. van der Geest, J. C. Reiber, and M. Sonka,

“Multi-view active appearance models for consistent segmentation of multiple

standard views: Application to long- and short-axis cardiac MR images,”

Proceedings of the 17th International Congress and Exhibition Computer

Assisted Radiology and Surgery, vol. 1256, pp. 1141–6, June 2003.

[88] J.C. Fu, J.W. Chai, Stephen T.C. Wong, “Wavelet-based enhancement for

detection of left ventricular myocardial boundaries in magnetic resonance

images,” Magnetic Resonance Imaging, vol. 18, no. 1, pp. 1135–41 ,2000.

[89] P. Yan, A. Sinusas, and J. S. Duncan, “Boundary element method based

regularization for recovering of LV deformation,” Medical Image Analysis,

vol. 11, no. 6, pp. 540–54, 2007.

[90] A. Lalande, L. Legrand, P. M. Walker, F. Guy, Y. Cottin, S. Roy, F. Brunotte,

“Automatic detection of left ventricular contours from cardiac cine magnetic

resonance imaging using fuzzy logic,” Investigative Radiology, vol. 34, no. 3, pp.

211–7, 1999.

[91] N. Paragios, “A variational approach for the segmentation of the left ventricle

in cardiac image analysis,” International Journal of Computer Vision, vol. 50,

no. 3, pp. 345–362,2002.

[92] Q. Song and J. Bai and M. K. Garvin and M. Sonka and J. M. Buatti and X.

Wu, “Optimal Multiple Surface Segmentation With Shape and Context

Priors,” IEEE Trans. Med. Imaging, vol. 32, no. 2, pp. 376–386 ,2013.

[93] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,”

International Journal of Computer Vision, vol. 1, pp. 321–31, 1988.

[94] A. Farag, A. El-Baz, and G. Gimel’farb, “Precise segmentation of multimodal

images,” IEEE Transactions on Image Processing, vol. 15, no. 4, pp. 952–68,

2006.

92



[95] A. El-Baz, A. Soliman, P. McClure, G. Gimel’farb, M. A. El-Ghar, “Early

assessment of malignant lung nodules based on the spatial analysis of detected

lung nodules,” IEEE International Symposium on Biomedical Imaging,

pp. 1463–6, 2012.

[96] El-Baz, Ayman and Gimel’farb, Georgy and Abou El-Ghar, Mohamed and

Falk, Robert, “Appearance-Based Diagnostic System for Early Assessment of

Malignant Lung Nodules,” Proceedings of IEEE International Conference on

Image Processing, (ICIP’12), pp. 533–536, 2012.

[97] A. A. Farag, A. El-Baz, G. Gimelfarb, R. Falk, M. A. El-Ghar, T. Eldiasty, and

S. Elshazly , “Appearance models for robust segmentation of pulmonary

nodules in 3D LDCT chest images,” In: Proc. International Conference on

Medical Image Computing and Computer-Assisted Intervention (MICCAI’06),

pp. 1662–1670, 2012.

[98] A. El-Baz, A. Elnakib, F. Khalifa, M. Abou El-Ghar, P. McClure, A. Soliman,

and G. Gimel’farb, “Precise segmentation of 3-D magnetic resonance

angiography,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 7,

pp. 2019–29, 2012.

[99] A. El-Baz, “Novel stochastic models for medical image analysis,” PhD Thesis,

University of Louisville, Louisvilee, KY, USA, 2006.

[100] A. El-Baz, and G. Gimel’farb, “EM–Based Approximation of Empirical

Distributions with Linear Combinations of Discrete Gaussians,” Proceedings of

IEEE International Conference on Image Processing, (ICIP’07),vol. 4, pp.

372–376, 2007.

[101] L. R. Dice, “Measures of the amount of ecologic association between species,”

Ecological Society of America, vol. 26, no. 3, pp. 297–302, 1945.

93



[102] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE

Transaction on Medical Imaging, vol. 10, pp. 266–77, 2001.

[103] Abd El Munim, H. E. and Farag, Aly A., “Curve/Surface representation and

evolution using vector level sets with application to the shape-based

segmentation problem,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 29, no. 6, pp. 945–58, 2007.

[104] P. Radau and Y. Lu and K. Connelly and G. Paul and A. J. Dick and G. A.

Wright, “Evaluation framework for algorithms segmenting short axis cardiac

MRI,” MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge, ,

2009.

[105] Y. Lu and P. Radau and K. Connelly and A. Dick and G. Wright,

“Segmentation of Left Ventricle in Cardiac Cine MRI: An Automatic

Image-Driven Method,” Functional Imaging and Modeling of the Heart, pp.

339–347, 2009.

[106] S. O’Brien, O. Ghita, and P. F. Whelan, “Segmenting the Left Ventricle in 3D

Using a Coupled ASM and a Learned Non-Rigid Spatial Model,” The MIDAS

Journal – Cardiac MR Left Ventricle Segmentation Challenge,

http://hdl.handle.net/10380/3110, 2009.

[107] A. Elnakib, G. M. Beache, G. Gimel’farb, and A. El-Baz, “New automated

Markov-Gibbs random field based framework for myocardial wall viability

quantification on agent enhanced cardiac magnetic resonance images,” Int J

Cardiovasc Imaging, vol. 28, no. 7, pp. 1683-1698, 2012.

[108] J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement

between two methods of clinical measurement,” Lancet, vol. 1, pp. 307–10, 1986.

[109] H. Sliman, F. Khalifa, A. Elnakib, A. Soliman, A. El-Baz, G. M. Beache, A.

Elmaghraby, and G Gimel’farb, “Myocardial borders segmentation from cine

94



MR images using bidirectional coupled parametric deformable models,” Medical

Physics, vol. 40, no. 9, 2013.

[110] H. Sliman, F. Khalifa, A. Elnakib, A. Soliman, A. El-Baz, G. M. Beache, A.

Elmaghraby, “A NEW SEGMENTATION-BASED TRACKING

FRAMEWORK FOR EXTRACTING THE LEFT VENTRICLE CAVITY

FROM CINE CARDIAC MRI,” IEEE International Conference on Image

Processing, (ICIP’13), http://2013.ieeeicip.org/proc/pdfs/0000685.pdf,

2013.

[111] H. Sliman, F. Khalifa, A. Elnakib, A. Soliman, G. M. Beache, G. Gimel’farb,

A. Emam, A. Elmaghraby, and A. El-Baz, “Accurate Segmentation Framework

for the Left Ventricle Wall from Cardiac Cine MRI,” the International

Symposium on Computational Models for Life Sciences (CMLS 2013), 2013.

[112] G. M. Beache, V. Wedeen, and R. Dinsmore, “Magnetic resonance imaging

evaluation of left ventricular dimensions and function and pericardial and

myocardial disease,” Coronary Artery Disease, vol. 4, no. 4, pp. 328-333, 1993.

[113] E. R. Holman, H. W. Vliegen, R. J. van der Geest, J. H. C. Reiber, P. R. van

Dijkman, A. van der Laarse, A. de Roos, and E. E. van der Wall, “Quantitative

analysis of regional left ventricular function after myocardial infarction in the

pig assessed with cine magnetic resonance imaging,” Magnetic Resonance in

Medicine, vol. 34, no. 2, pp. 161–169, 1995.

[114] S. Sasayama, D. Franklin, J. Ross Jr, W. S. Kemper, and D. McKown,

“Dynamic changes in left ventricular wall thickness and their use in analyzing

cardiac function in the conscious dog: A study based on a modified ultrasonic

technique,” The American Journal of Cardiology, vol. 38, pp. 870-879, 1976.

[115] F. H. Sheehan, E. L. Bolson, H. T. Dodge, D. G. Mathey, J. Schofer, and H.

W. Woo, “Advantages and applications of the centerline method for

95



characterizing regional ventricular function,” Circulation, vol. 74, pp. 293-305,

1986.

[116] H. Azhari, S. Sideman, J. L. Weiss, E. P. Shapiro, M. L. Weisfeldt, W. L.

Graves, W. J. Rogers, and R. Beyar. “Three-dimensional mapping of acute

ischemic regions using MRI: Wall thickening versus motion analysis,” American

Journal of Physiology-Heart and Circulatory Physiology, vol. 259, no. 5, pp.

H1492-H1503, 1990.

[117] S. Pujadas, G. P. Reddy, O. Weber, J. J. Lee, C. B. Higgins, “MR Imaging

Assessment of Cardiac Function,” Journal of Magnetic Resonance Imaging, vol.

19, pp. 789-799, 2004.

[118] C. D. von Land, S. R. Rao, and J. H. C. Reiber, “Development of an

improved centerline wall motion model,” IEEE Proceedings of Computers in

Cardiology, pp. 687-690, 1990.

[119] R. J. van der Geest, A. de Roos, E. E. van der Wall, J. H. C. Reiber,

“Quantitative analysis of cardiovascular MR images,” The International

Journal of Cardiac Imaging, vol. 13, pp. 247-258, 1997.

[120] N. Beohar, J. D. Flaherty, C. J. Davidson, M. I. Vidovich, A. Brodsky, D. C.

Lee, E. Wu, E. L. Bolson, R. O. Bonow, and F. H. Sheehan, “Quantitative

assessment of regional left ventricular function with cardiac MRI:

Threedimensional centersurface method,” Catheterization Cardiovasc. Interv.,

vol. 69, no. 5, pp. 721728, 2007.

[121] M. Prasad, A. Ramesh, P. Kavanagh, J. Gerlach, G. Germano, D. S. Berman,

and P. J. Slomka, “Myocardial wall thickening from gated magnetic resonance

images using Laplaces equation,” in Proc. SPIE2009, vol. 72602I, Lake Buena

Vista, FL, Feb. 10, pp. 18.

96



[122] A. Elnakib, G. M. Beache, G. Gimel’farb, T. Inanc, and A. El-Baz,

“Validating a new methodology for strain estimation from cardiac cine MRI,”

Proc. Int. Symp. Computational Models for Life Sciences, vol. 1559, no. 1, pp.

277-286, 2013.

[123] M. J. Ledesma-Carbayo, J. Kybic, M. Desco, A. Santos, M. Suhling, P.

Hunziker, and M. Unser, “Spatio-temporal nonrigid registration for ultrasound

cardiac motion estimation,” IEEE Trans. Medical Imaging, vol. 24, no. 9, pp.

1113-1126, 2005.

[124] A. Elen, H. F. Choi, D. Loeckx, H. Gao, P. Claus, P. Suetens, F. Maes, and J.

D’hooge, “Three-dimensional cardiac strain estimation using spatiotemporal

elastic registration of ultrasound images: A feasibility study,” IEEE Trans.

Medical Imaging, vol. 27, no. 11, pp. 1580-1591, 2008.

[125] T. S. Denney, Jr. and J. L. Prince, “Reconstruction of 3-D left ventricular

motion from planar tagged cardiac MR images: An estimation theoretic

approach,” IEEE Transactions on Medical Imaging, vol. 14, no. 4, pp. 625–635,

1995.

[126] W. S. Kerwin and J. L. Prince, “Cardiac material markers from tagged MR

images,” Med Image Anal, pp. 339–353, 1998.

[127] N. F. Osman and J. L. Prince, “Visualizing myocardial function using HARP

MRI,” Phys Med Biol, pp. 1665–1682, 2000.

[128] N. F. Osman, E. R. McVeigh, and J. L. Prince, “Imaging heart motion using

harmonic phase MRI,” IEEE Transactions on Medical Imaging, vol. 19, no. 3,

pp. 186–202, 2000.

[129] W. G. O’Dell, C. C. Moore, W. C. Hunter, E. A. Zerhouni, and E. R.

McVeigh, “Three-dimensional myocardial deformations: Calculation with

97



displacement field fitting to tagged MR images,” Radiology, vol. 195, pp.

829–835, 1995.

[130] X. Liu and J. L. Prince, “Shortest path refinement for motion estimation from

tagged MR images,” IEEE Transactions on Medical Imaging, vol. 29, no. 8, pp.

1560–1572, 2010.

[131] E. Maret, T. Todt, L. Brudin, E. Nylander, E. Swahn, J. L. Ohlsson, and J. E.

Engvall, “Functional measurements based on feature tracking of cine magnetic

resonance images identify left ventricular segments with myocardial scar,”

Cardiovascular Ultrasound, vol. 7, no. 53, 2009, doi:10.1186/1476-7120-7-53.

[132] K. N. Hor, W. M. Gottliebson, C. Carson, E. Wash, J. Cnota, R. Fleck, J.

Wansapura, P. Klimeczek, H. R. Al-Khalidi, E. S. Chung, W. Benson, and W.

Mazur, “Comparison of magnetic resonance feature tracking for strain

calculation with harmonic phase imaging analysis,” JACC: Cardiovascular

Imaging, vol. 3, no. 3, pp. 144–151, 2010.

[133] K. N. Hor, R. Baumann, G. Pedrizzetti, G. Tonti, W. M. Gottliebson, M.

Taylor, W. Benson, and W. Mazur, “Magnetic resonance derived myocardial

strain assessment using feature tracking,” Journal of Visualized Experiments,

vol. 48, 2011, doi: 10.3791/2356.

[134] A. Schuster, S. Kutty, A. Padiyath, V. Parish, P. Gribben, D. A. Danford, M.

R. Makowski, B. Bigalke, P. Beerbaum, and E. Nage, “Cardiovascular magnetic

resonance myocardial feature tracking detects quantitative wall motion during

dobutamine stress,” Journal of Cardiovascular Magnetic Resonance, vol. 13,

no. 58, 2011.

[135] C. Bouman and K. Sauer, “A generalized Gaussian image model for

edge-preserving MAP estimation,” IEEE Transactions on Medical Imaging, vol.

2, no. 3, pp. 296–310, 1993.

98



[136] J. Besag, “On the statistical analysis of dirty pictures,” Journal of the Royal

Statistical Society. Series B, vol. 48, no. 3, pp. 259–302, 1986.

[137] J. Bonet and R. D. Wood, Nonlinear continuum mechanics for finite element

analysis, Cambridge University Press, 1997.

99



CURRICULUM VITAE

NAME: Hisham Z. Sliman

ADDRESS:

Department of Computer Engineering and Computer Science

University of Louisville

Louisville, KY 40292

EDUCATION:

• Ph.D. Computer Science Engineering, University of Louisville,

Louisville, KY 2014

• M.S. Electrical and Computer Engineering, Purdue School of

Engineering and Technology, Indianapolis, IN 2006

• B.S. Electrical and Computer Engineering, AinShams Univ., Faculty of

Engineering , Cairo, Egypt, 2004

Thesis/Dissertation:

• Ph.D. Dissertation: Image Based Approach for Early Assessment of Heart

Failure

• M.S. Thesis: Enhancements for the VC-1 Video Coding Standard

TEACHING:

• Digital Signal Processing

• Power Electronics

• Data structures using C++

100



AWARDS AND RECOGNITION:

• The 1st place winner in the annual Research!Louisville 2013, Student

Engineering Collaboration category

• The Best Paper Runner-up for CMLS-13. “Accurate Segmentation Framework

for the Left Ventricle Wall from Cardiac Cine MRI,”

(http://cmls-conf.org/2013/index.php?page=prizes)

• Top 10% recognition for ICIP 2013, which places the paper within the top

4.5% of all submissions to ICIP 2013. “A New Segmentation-based Tracking

Framework for Extracting the Left Ventricle Cavity from Cine Cardiac MRI”

• A two-year fellowship, 2009-2011, from the University of Louisville

• Partial tuition remission for the MSECE

• Best IUPUI’s student for the year 2007-2008

• Graduated 4th/200 with distinct and honor from AinShams Univ., Cairo,

Egypt 2004

HONOR SOCIETIES:

• Member of the ’International Golden Key Honor Society’ since Oct. 2009

• Member of the ’Cambridge Who’s Who Honor Society’ since Oct. 2009

COURSE WORK:

• Data Mining, Artificial Intelligence, Pattern Recognition, Machine Learning,

Data Analysis, Predictive Modeling, E-commerce and Web Data Mining,

Combinatorial Optimization, Medical Image Analysis

• Image and Video Processing, Multimedia Applications, Digital Signal

Processing, Algorithm Techniques, Voice Over IP, Statistics

101



• Analog/Digital Circuits, Basic Communications, Energy Conversion,

Programmable Logic Controllers

LANGUAGES:

• English

• Arabic

SKILLS:

• Good understanding of Physics and Mathematics

• Excellent in data manipulation, troubleshooting and problem-solving skills

• Knowledge of Machine Learning, Image Processing, Predictive modeling, and

Data Analysis

• Knowledge of Matlab, Python, C/C++, R, Relational algebra, SQL, and

Microsoft Office tools.

PUBLICATIONS:

• H. Sliman, F. Khalifa, A. Elnakib, A. Soliman, G. M. Beache, A. Elmaghraby,

G. Gimel’farb, and A. El-Baz “Myocardial Borders Segmentation from Cine

MR Images Using Bi-Directional Coupled Parametric Deformable Models,” in

Medical Physics, vol. 40, no. 9, pp. 1-13, 2013.

Doi=“http://dx.doi.org/10.1118/1.4817478”

• H. Sliman, F. Khalifa, A. Elnakib, A. Soliman, G. M. Beache, G. Gimel’farb,

A. Emam, A. Elmaghraby and A. El-Baz “Accurate Segmentation Framework

for the Left Ventricle Wall from Cardiac Cine MRI,” in the International

Symposium on Computational Models for Life Sciences (CMLS 2013), Sydney,

Australia, November 27-29, 2013

102



• H. Sliman, F. Khalifa, A. Elnakib, A. Soliman, G. M. Beache, A. Elmaghraby,

and A. El-Baz “A New Segmentation-based Tracking Framework for

Extracting the Left Ventricle Cavity from Cine Cardiac MRI,” Proceedings of

the IEEE International Conference on Image Processing (ICIP 2013),

Melbourne, Australia, September 15-18, 2013, (selected for oral

presentation)

• A. Elnakib, G. Beache, H. Sliman, G. Gimel’farb, T. Inanc, and A. El-Baz, “A

Novel Laplace-Based Method to Estimate the Strain from Cine Cardiac

Magnetic Resonance Images,” Proceedings of the IEEE ICIP’13, Melbourne,

Australia, September 15-18, pp. 690-694, 2013, (selected for oral

presentation)

• F. Khalifa, G. M. Beache, A. Elnakib, H. Sliman, G. Gimel’farb, K. C. Welch,

and A. El-Baz, “A new shape-based Framework for the left ventricle wall

segmentation from cardiac first-pass perfusion MRI,” Proceedings of the IEEE

International Symposium on Biomedical Imaging: From Nano to Macro

(ISBI’13), San Francisco, CA, April 7-11, 2013, pp. 41-44

• H. Sliman, M. El-Sharkawy, P. Salama and M. Rizkalla, “All-zero Block

Detection in VC-1,” IEEE Midwest Symposium on Circuits and Systems,

August 2-5, 2009, Cancun, Mexico

• H. Sliman, M. El-Sharkawy, M. Rizkalla and P. Salama, “Improving VC-1 In

Loop Deblocking Filter,” International Conference on Image Processing,

Computer Vision, and Pattern Recognition (IPCV’09 : WORDCOM09), July

13-16, 2009, Las Vegas, USA

• M. J. Tammen, M. El-Sharkawy, H. Sliman and M. Rizkalla “Advanced

Motion Estimation Techniques for VC-1,” IEEE International Symposium on

Signal Processing and Information Technology, 2007 , pp. 240-245. IEEE, 2007

103



• M. Tammen, M. El-Sharkawy, H. Sliman, M. Rizkalla, “Fast Implementation

of VC-1 with Modified Motion Estimation and Adaptive Block Transform,”

Circuits and Systems, vol.1 no.1, July 2010, pp. 12-17.

Doi=“10.4236/cs.2010.11003”

104


	Image based approach for early assessment of heart failure.
	Recommended Citation

	tmp.1423685735.pdf.iwHdv

