75 research outputs found

    Symmetric Interconnection Networks from Cubic Crystal Lattices

    Full text link
    Torus networks of moderate degree have been widely used in the supercomputer industry. Tori are superb when used for executing applications that require near-neighbor communications. Nevertheless, they are not so good when dealing with global communications. Hence, typical 3D implementations have evolved to 5D networks, among other reasons, to reduce network distances. Most of these big systems are mixed-radix tori which are not the best option for minimizing distances and efficiently using network resources. This paper is focused on improving the topological properties of these networks. By using integral matrices to deal with Cayley graphs over Abelian groups, we have been able to propose and analyze a family of high-dimensional grid-based interconnection networks. As they are built over nn-dimensional grids that induce a regular tiling of the space, these topologies have been denoted \textsl{lattice graphs}. We will focus on cubic crystal lattices for modeling symmetric 3D networks. Other higher dimensional networks can be composed over these graphs, as illustrated in this research. Easy network partitioning can also take advantage of this network composition operation. Minimal routing algorithms are also provided for these new topologies. Finally, some practical issues such as implementability and preliminary performance evaluations have been addressed

    On the Properties of Next Generation Wireless Backhaul

    Get PDF
    With the advent of 5G, cellular networks require a high number of base stations, possibly interconnected with wireless links, an evolution introduced in the last revision of 5G as the Integrated Access and Backhaul (IAB). Researchers are now working to optimize the complex topologies of the backhaul network, using synthetic models for the underlying visibility graph, i.e., the graph of possible connections between the base stations. The goal of this paper is to provide a novel methodology to generate visibility graphs starting from real data (and the data sets themselves together with the source code for their manipulation), in order to base the IAB design and optimization on assumptions that are as close as possible to reality. We introduce a GPU-based method to create visibility graphs from open data, we analyze the properties of the realistic visibility graphs, and we show that different geographic areas produce very different graphs. We run state-of-the-art algorithms to create wireless backhaul networks on top of visibility graphs, and we show that the results that exploit synthetic models are far from those that use our realistic graphs. Our conclusion is that the data-based approach we propose is essential to design mobile networks that work in a variety of real-world situations

    A contribution to the evaluation and optimization of networks reliability

    Get PDF
    L’évaluation de la fiabilité des réseaux est un problème combinatoire très complexe qui nécessite des moyens de calcul très puissants. Plusieurs méthodes ont été proposées dans la littérature pour apporter des solutions. Certaines ont été programmées dont notamment les méthodes d’énumération des ensembles minimaux et la factorisation, et d’autres sont restées à l’état de simples théories. Cette thèse traite le cas de l’évaluation et l’optimisation de la fiabilité des réseaux. Plusieurs problèmes ont été abordés dont notamment la mise au point d’une méthodologie pour la modélisation des réseaux en vue de l’évaluation de leur fiabilités. Cette méthodologie a été validée dans le cadre d’un réseau de radio communication étendu implanté récemment pour couvrir les besoins de toute la province québécoise. Plusieurs algorithmes ont aussi été établis pour générer les chemins et les coupes minimales pour un réseau donné. La génération des chemins et des coupes constitue une contribution importante dans le processus d’évaluation et d’optimisation de la fiabilité. Ces algorithmes ont permis de traiter de manière rapide et efficace plusieurs réseaux tests ainsi que le réseau de radio communication provincial. Ils ont été par la suite exploités pour évaluer la fiabilité grâce à une méthode basée sur les diagrammes de décision binaire. Plusieurs contributions théoriques ont aussi permis de mettre en place une solution exacte de la fiabilité des réseaux stochastiques imparfaits dans le cadre des méthodes de factorisation. A partir de cette recherche plusieurs outils ont été programmés pour évaluer et optimiser la fiabilité des réseaux. Les résultats obtenus montrent clairement un gain significatif en temps d’exécution et en espace de mémoire utilisé par rapport à beaucoup d’autres implémentations. Mots-clés: Fiabilité, réseaux, optimisation, diagrammes de décision binaire, ensembles des chemins et coupes minimales, algorithmes, indicateur de Birnbaum, systèmes de radio télécommunication, programmes.Efficient computation of systems reliability is required in many sensitive networks. Despite the increased efficiency of computers and the proliferation of algorithms, the problem of finding good and quickly solutions in the case of large systems remains open. Recently, efficient computation techniques have been recognized as significant advances to solve the problem during a reasonable period of time. However, they are applicable to a special category of networks and more efforts still necessary to generalize a unified method giving exact solution. Assessing the reliability of networks is a very complex combinatorial problem which requires powerful computing resources. Several methods have been proposed in the literature. Some have been implemented including minimal sets enumeration and factoring methods, and others remained as simple theories. This thesis treats the case of networks reliability evaluation and optimization. Several issues were discussed including the development of a methodology for modeling networks and evaluating their reliabilities. This methodology was validated as part of a radio communication network project. In this work, some algorithms have been developed to generate minimal paths and cuts for a given network. The generation of paths and cuts is an important contribution in the process of networks reliability and optimization. These algorithms have been subsequently used to assess reliability by a method based on binary decision diagrams. Several theoretical contributions have been proposed and helped to establish an exact solution of the stochastic networks reliability in which edges and nodes are subject to failure using factoring decomposition theorem. From this research activity, several tools have been implemented and results clearly show a significant gain in time execution and memory space used by comparison to many other implementations. Key-words: Reliability, Networks, optimization, binary decision diagrams, minimal paths set and cuts set, algorithms, Birnbaum performance index, Networks, radio-telecommunication systems, programs

    Computational Topology Methods for Shape Modelling Applications

    Get PDF
    This thesis deals with computational topology, a recent branch of research that involves both mathematics and computer science, and tackles the problem of discretizing the Morse theory to functions defined on a triangle mesh. The application context of Morse theory in general, and Reeb graphs in particular, deals with the analysis of geometric shapes and the extraction of skeletal structures that synthetically represents shape, preserving the topological properties and the main morphological characteristics. Regarding Computer Graphics, shapes, that is a one-, two- or higher- dimensional connected, compact space having a visual appearance, are typically approximated by digital models. Since topology focuses on the qualitative properties of spaces, such as the connectedness and how many and what type of holes it has, topology is the best tool to describe the shape of a mathematical model at a high level of abstraction. Geometry, conversely, is mainly related to the quantitative characteristics of a shape. Thus, the combination of topology and geometry creates a new generation of tools that provide a computational description of the most representative features of the shape along with their relationship. Extracting qualitative information, that is the information related to semantic of the shape and its morphological structure, from discrete models is a central goal in shape modeling. In this thesis a conceptual model is proposed which represents a given surface based on topological coding that defines a sketch of the surface, discarding irrelevant details and classifying its topological type. The approach is based on Morse theory and Reeb graphs, which provide a very useful shape abstraction method for the analysis and structuring of the information contained in the geometry of the discrete shape model. To fully develop the method, both theoretical and computational aspects have been considered, related to the definition and the extension of the Reeb graph to the discrete domain. For the definition and automatic construction of the conceptual model, a new method has been developed that analyzes and characterizes a triangle mesh with respect to the behavior of a real and at least continuous function defined on the mesh. The proposed solution handles also degenerate critical points, such as non-isolated critical points. To do that, the surface model is characterized using a contour-based strategy, recognizing critical areas instead of critical points and coding the evolution of the contour levels in a graph-like structure, named Extended Reeb Graph, (ERG), which is a high-level abstract model suitable for representing and manipulating piece-wise linear surfaces. The descriptive power of the (ERG) has been also augmented with the introduction of geometric information together with the topological ones, and it has been also studied the relation between the extracted topological and morphological features with respect to the real characteristics of the surface, giving and evaluation of the dimension of the discarded details. Finally, the effectiveness of our description framework has been evaluated in several application contexts

    Doctor of Philosophy

    Get PDF
    dissertationA broad range of applications capture dynamic data at an unprecedented scale. Independent of the application area, finding intuitive ways to understand the dynamic aspects of these increasingly large data sets remains an interesting and, to some extent, unsolved research problem. Generically, dynamic data sets can be described by some, often hierarchical, notion of feature of interest that exists at each moment in time, and those features evolve across time. Consequently, exploring the evolution of these features is considered to be one natural way of studying these data sets. Usually, this process entails the ability to: 1) define and extract features from each time step in the data set; 2) find their correspondences over time; and 3) analyze their evolution across time. However, due to the large data sizes, visualizing the evolution of features in a comprehensible manner and performing interactive changes are challenging. Furthermore, feature evolution details are often unmanageably large and complex, making it difficult to identify the temporal trends in the underlying data. Additionally, many existing approaches develop these components in a specialized and standalone manner, thus failing to address the general task of understanding feature evolution across time. This dissertation demonstrates that interactive exploration of feature evolution can be achieved in a non-domain-specific manner so that it can be applied across a wide variety of application domains. In particular, a novel generic visualization and analysis environment that couples a multiresolution unified spatiotemporal representation of features with progressive layout and visualization strategies for studying the feature evolution across time is introduced. This flexible framework enables on-the-fly changes to feature definitions, their correspondences, and other arbitrary attributes while providing an interactive view of the resulting feature evolution details. Furthermore, to reduce the visual complexity within the feature evolution details, several subselection-based and localized, per-feature parameter value-based strategies are also enabled. The utility and generality of this framework is demonstrated by using several large-scale dynamic data sets

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    • …
    corecore