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Preface

This volume contains abstracts of the papers presented at the 21st Furopean Workshop on Compu-
tational Geometry, held at TU Eindhoven (the Netherlands) on March 9-11, 2005. There were 53
papers presented at the Workshop, covering a wide range of topics. This record number shows that
the field of computational geometry is very much alive in Europe. We wish to thank all the authors
who submitted papers and presented their work at the workshop. We believe that this has lead to a
collection of very interesting abstracts that are both enjoyable and informative for the reader.
Finally, we are grateful to TU Eindhoven for their support in organizing the workshop and to the
Netherlands Organisation for Scientific Research (NWO) for sponsoring the workshop.
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A Unified Algorithm for Adaptive Spacetime Meshing
with Nonlocal Cone Constraints

Shripad Thite*

1 Introduction

Motivation Wave propagation is modeled by hyper-
bolic partial differential equations (PDEs) in both
space and time variables, e.g., the wave equation
Ut —w? gy = 01in 1D space x time. A solution to the
PDE is a function u(z,t) that satisfies the equation
and the given initial and boundary conditions. The
wave velocity w, the velocity at which changes in phys-
ical parameters at a point (x,t) propagate to other
points in the domain, may be a function of z and ¢ as
well as of w and its derivatives. The spacetime discon-
tinuous Galerkin (SDG) finite element method is a nu-
merical method to approximate the exact solution to
the PDE. The SDG method approximates the solution
within each spacetime element of a mesh of the space-
time domain as a linear combination of simple basis
functions. The SDG method allows basis functions
to be discontinuous across adjacent elements, which
means that the mesh can even be nonconforming. A
mesh constructed by standard techniques, such as a
Delaunay triangulation, cannot be solved efficiently in
general. Points in spacetime, and spacetime elements,
are partially ordered by causal dependence—a point
P influences another point @ if and only if changing
the solution at P could possibly change the solution
at Q. Spacetime elements must be solved in an order
that respects this partial order. The efficiency of the
solution technique depends on the number of elements
that must be solved together because they depend on
each other and are therefore coupled. In a Delaunay
mesh, there is no guarantee on the size of a coupled
system; we, on the other hand, construct an efficient
mesh where this size is bounded.

Previous work Ungér and Sheffer [6] gave the first
advancing front algorithm, TentPitcher, for meshing
directly in 2DxTime given an initial acute triangu-
lation of the space domain M. TentPitcher advances
the solution over a piecewise linear triangulated front,
a terrain over M ; the initial front corresponds tot = 0
everywhere in space. The front at any step is causal
which means that points on the front depend only
on points in the past. At each step, the algorithm
greedily advances in time a local neighborhood of a
causal front T to get a new causal front 7/ and a set

*Department of Computer Science, University of Illinois at
Urbana-Champaign; thite@cs.uiuc.edu

of new spacetime tetrahedra; causality of 7 and 7’
implies that the solution over the spacetime volume
between 7 and 7' can be computed immediately. Dif-
ferent parts of the front advance at different rates,
depending on the local geometry, unlike with uniform
time-stepping schemes. The result is a tetrahedral un-
structured mesh Q of M x [0,T] for any target time
T. Erickson et al. [2] extended this algorithm to arbi-
trary spatial domains and higher dimensions, by im-
posing additional gradient constraints called progress
constraints on each front.

Abedi et al. [1] gave an algorithm to adapt the
size and—because of the causality constraint—also
the duration of future spacetime elements to a pos-
teriori estimates of numerical error. If the elements
created at any step are too coarse, they are rejected
and the front is refined by repeated bisection; the re-
sulting smaller triangles lead to smaller spacetime ele-
ments. Coarsening or derefinement is performed when
allowed by the error indicator.

Previous algorithms assumed a fixed upper bound
on the wavespeed everywhere in spacetime or that the
wavespeed function was Lipschitz. When the PDE
is nonlinear, the wavespeed is not constant and also
depends on the solution; the wavespeed at a given
point in space can change discontinuously with time.
Anisotropy of the medium means that waves propa-
gate asymmetrically, with different speeds in different
directions. This author [4] gave an algorithm that
works even when the wavespeed increases discontin-
uously and in the presence of anisotropy. However,
this algorithm did not adapt the spatial diameter of
spacetime elements to numerical error estimates.

New results In this paper, we prove bounds on the
worst-case temporal aspect ratio of spacetime tetrahe-
dra constructed by TentPitcher; this ratio, together
with the spatial aspect ratio, is likely to be correlated
with the quality of the numerical solution. We also
prove bounds on the size of the final mesh relative to
a size optimal mesh.

Additionally, we give a unified algorithm that
adapts the size of spacetime elements to error esti-
mates while simultaneously adapting their duration
to changing wavespeeds. This new algorithm meshes
a given spacetime volume with many fewer tetrahe-
dra in general than either of the previous two algo-
rithms [1, 4].
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2 Temporal aspect ratio and mesh size

The initial front corresponds to time ¢t = 0 every-
where in the space domain M C E2?. Imagine time
increasing upwards. At each step, TentPitcher lifts
up a local minimum vertex P of a causal front 7 to
the vertex P’ on a new causal front 7/. For every
front triangle PQR incident on P, this creates a new
spacetime tetrahedron P/ PQR in the volume between
7 and 7/, with a causal inflow facet PQR on 7 and
a causal outflow facet P’QR on 7’. The volume be-
tween 7 and 7’ is called a tent and PP’ is the tentpole.
Causality implies that the solution everywhere in the
tent can be computed immediately. The number of
new spacetime tetrahedra is equal to the degree of
P; these tetrahedra are coupled because they share
non-causal facets. Only elements in a single tent are
coupled; tents pitched at different local minima of 7
are independent and are solved in parallel.

Suppose the wavespeed everywhere in spacetime
is constant, equal to w; let o denote the slope, i.e.,
o0 = 1/w. Causality means that the slope of PQR and
of P’QR must be less than o. To guarantee nondegen-
eracy of tetrahedra, the front at each step must also
satisfy so-called progress constraints. The causality
and progress constraints limit the amount of progress
made by the front at each step of the algorithm, i.e.,
the height of each tentpole; these constraints are func-
tions of the slope o and the shape of the local trian-
gulation. The progress constraint that each front 7
must satisfy depends on the causal slope encountered
by the new front 7/ in the mext step which, in this
case, is the same slope o.

The duration of a spacetime element is the length of
the shortest time interval that contains it. The height
of a spacetime element is the length of the longest
time interval contained in it. Our algorithms max-
imize the height of each spacetime element subject
to causality and progress constraints. The progress
guarantee of Erickson et al. [2] can be rephrased as
follows: the height of each spacetime tetrahedra in
the tent pitched at P is at least eocw, where ¢ € (0, 3]
is a fixed parameter and w, denotes the distance of
p from the boundary of the kernel of link(p) in the
spatial projection. Thus, the height of the tentpole at
P is bounded from below by a positive function of ¢,
the slope o, and the shape of the triangles in star(p).

Temporal aspect ratio The temporal aspect ratio of a
spacetime element is the ratio of the height of the ele-
ment to its duration; this ratio is always in the range
(0, 1] with a larger value corresponding to a “better”
element. The duration of the tetrahedron P'PQR
can be at most 20w, because both facets PQR and
P'QR are causal. Together with the lower bound on
the height of the tetrahedron, this implies the follow-
ing theorem.

Theorem 1 The temporal aspect ratio of any tetra-
hedron in ) is at least /2.

On size optimality TentPitcher constructs groups of
coupled tetrahedra inside each tent such that the
boundary of the tent is causal. This guarantees con-
vergence of the DG solution [3]. Each tetrahedron
constructed by TentPitcher has both a causal inflow
facet and a causal outflow facet; additionally, the spa-
tial projection of each tetrahedron P’ PQR is the tri-
angle pgr in the original space mesh. Given a triangu-
lation M of the space domain and a target time T, we
say that a tetrahedral spacetime mesh of M x [0, 7] is
valid if (i) each tetrahedron has both a causal inflow
facet and a causal outflow facet; and (ii) for every
point = in the spatial projection A of each tetrahe-
dron, the diameter of A does not exceed the diameter
of the triangle of M containing x.

Fix an arbitrary point x in space. The size of a
spacetime mesh of M x [0, T'] is the maximum over z €
M of the number of spacetime elements that intersect
the temporal segment x x [0, 7.

Theorem 2 The size of the mesh constructed by
TentPitcher is O(1/&?) times the minimum size of any
valid mesh of the spacetime volume M x [0,T].

Proof. Let D and p denote the diameter and inradius
respectively of the triangle pgr of M containing x.
By causality, any temporal segment of duration 20D
must intersect at least two distinct tetrahedra in a
valid mesh; therefore, the number of spacetime tetra-
hedra in a valid mesh that intersect x x [0,7T] is at
least |T/(20D)].

Consider a minimal sequence of tent pitching steps,
called a superstep, in which each vertex of Apgr is
lifted at least once. When p is pitched, the amount
of progress made by x is proportional to dist(x, gr).
Since dist(z, gr') + dist(x, 7p) + dist(x, pgr*) > p, the
amount of progress made by = during a superstep is
at least eoyp, where v € (0, 1] denotes the minimum
of wy,/dist(p, @r), w,/dist(q, 7p), and w, /dist(r, pq).
Hence, after at most [T'/(eoyp)] supersteps, the point
x achieves or exceeds the target time T'.

By causality, any two vertices of Apgr can advance
in fewer than 40D consecutive steps without also ad-
vancing the third vertex. Therefore, the number of
steps in each superstep is at most |(40D)/(sow)]
where w = min{w,, wy, w,}. It follows that the num-
ber of tetrahedra in the spacetime mesh constructed
by TentPitcher intersected by z x [0,7] is at most

[T/(eovp)] - |(40D)/(eow)].
The ratio of the upper bound to the lower bound

on the size isO(ilD—z) . O

2 v pw
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3 Nonlocal cone constraints

The cone of influence of a point P is the set of points
that depend on P. This cone has its apex at P and
its slope in any spatial direction is the reciprocal of
the wavespeed at P in that direction; fast waves cor-
respond to cones with smaller slope. A front 7 is
causal if and only if 7 lies below the cone of influ-
ence of every point P on 7; each such cone is a causal
cone constraint. When the medium is anisotropic,
the cones are asymmetric, e.g., with elliptical cross-
sections. When the PDE is nonlinear or when the
medium is anisotropic, a distant but fast wave, i.e., a
nonlocal cone, can overtake a slower wave and hence
limit the duration of new elements. Therefore, max-
imizing the progress of P, and thus the duration of
new tetrahedra, requires querying the lower hull of
the cones of influence. After the solution is computed
on the new front, we obtain a new set of cone con-
straints. Maintaining the entire arrangement of cones
of influence is expensive and unnecessary for our pur-
pose; it suffices to obtain a cone that bounds (tightly)
the actual cone of influence at P, i.e., to estimate a
lower bound &(P) on the actual slope o(P). We as-
sume the absence of focusing, which means that the
cone of influence of any point P is contained in the
cone of influence of every other point @ such that P
depends on Q. Thus, the slope o(P) at P is bounded
50 that 0 < omin < 0(P) < omax < 00.

When the wavespeed at a point in space can in-
crease discontinuously, cone constraints must be en-
forced on the front at every step that depend on the
front in the next step. We give an algorithm that looks
ahead k steps of the algorithm to estimate the slope
on future fronts. The lookahead parameter k& can be
fixed or chosen adaptively. When k = 0, we assume
that the minimum slope oy, occurs on the front in
the next step, so our estimate of future wavespeed is
0 = Omin- When k > 0, we can use the current esti-
mate to compute the next front and the actual slope
on this new front to refine our previous estimate. We
repeat this process either until subsequent iterations
fail to improve the estimate ¢ of future slope or un-
til sufficient progress has already been ensured by the
current estimate. (See [4] for the case k = 1.) To effi-
ciently query the arrangement of cones, we use a dis-
crete bounding cone hierarchy induced by a balanced
partition of the triangular front, similar to a bounding
volume hierarchy used in collision detection.

We will prove a minimum progress guarantee of
Tmin > 0, a function of the local shape of the trian-
gulation and the global minimum slope oin, similar
to that proved by Abedi et al. [1].

Definition 1 (k-progressive) Let AABC be a
given triangle with A as its lowest vertex. We in-
ductively define AABC' as k-progressive if

(1) AABC is causal;
(2) Let AA'BC denote the triangle after lifting A by
Tmin to A’. Then, AABC must satisfy progress con-
straint o(A’BC) and AA’BC must be max{0,k —1}-
progressive.

Base case k = 0: ANABC is 0-progressive iff it
satisfies progress constraint opjy.

4 Adaptive refinement and coarsening

Abedi et al. [1] gave an adaptive algorithm by
strengthening the progress constraints due to Erick-
son et al. [2]. (This author later [5] corrected an
oversight in their proofs, also slightly improving Tent-
Pitcher.) The adaptive algorithm refines a triangle
on the front using newest-vertex bisection; repeated
bisection of a single triangle gives rise to at most 8
predictable homothetic shapes of front triangles. The
front is coarsened by undoing previous refinement.
The adaptive algorithm enforces a progress constraint
on APQR at every step that anticipates all the dif-
ferent shapes that can be obtained from Apgr by re-
finement. However, the algorithm of Abedi et al. [1]
does not anticipate changes in the slope and assumes
the minimum slope at every step.

The crucial observation we make here is that a cone
of influence that limits the progress of APQR may
not limit the progress of a smaller triangle AABC,
a descendant of APQR by refinement. (The con-
verse is also true.) Specifically, we observe that
c(ABC) > ¢(PQR). We obtain a unified algorithm
by relaxing the progress constraints of Abedi et al.
to allow a child triangle after by newest-vertex bisec-
tion to satisfy a potentially weaker progress constraint
than its larger parent triangle. A potential drawback
is that coarsening two sibling triangles coplanar on a
front may require both triangles to satisfy a progress
constraint stricter than their individual progress con-
straints. This can make coarsening requests harder to
satisfy in practice; however, refinement can always be
performed when necessary.

A key property we use in deriving the new progress
constraint is that the boundary of a cone is a ruled
surface; if any triangle AABC intersects a given cone
this intersection is a line segment in the plane of
AABC. Therefore, if the bisector edge AD inter-
sects a cone of influence then so do at least two of the
edges of AABC (Figure 1). Therefore, if a fast wave-
speed in the future intersects AD but not an edge of
AABC, then it can do so only if AABC has been
bisected at least once.

Fix ¢, p such that 0 < e < ¢ < (1 +¢)/2 < 1. For
any triangle Aabc with newest-vertex a, we define the
diminished width of Aabe, denoted by w(abe), as the

minimum of (1—e¢)dist(a, be), (1—) dist(b, ac), and
>
(1 — @) dist(c, ab).
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Figure 1: Aabc after newest-vertex bisection.

Definition 2 (Progress constraint o) A triangle
AABC (Figure 1) satisfies progress constraint o
if and only if the applicable constraint from the
following list is satisfied:

If a is the lowest vertex: |t(b) — t(c)| < 4w(fda)o

If b is the lowest vertex: |t(a) — t(c)] < 2w(dab)o

If ¢ is the lowest vertex: |t(a) — t(b)| < 2w(dca)o
Definition 3 ((k,!)-progressive) We inductively

define a triangle APQR as (k,l)-progressive if
it is k-progressive (Definition 1) and any child
ANABC obtained by newest-vertex bisection is
(k,max{0,l — 1})-progressive.

Base case | = 0: APQR is (k,0)-progressive
if an arbitrary descendant AABC obtained by
newest-vertex bisections satisfies progress constraint
o(PQR).

A front is progressive if every triangle on the front
is (k,l)-progressive for some k,I > 0. Our unified
algorithm greedily maximizes the progress such that
each front is (k, l)-progressive for some choice of k and
[. The algorithm can be as complicated as desired.
Definition 3 stresses the fact that our algorithm can
optimize the choice of k and [, likely doing better than
the theoretical guarantee; however, a simple choice of
k =1 =1 may suffice in practice.

Lemma 3 (1) If a front 7 is progressive, then the
front after bisecting a triangle of T is also progressive.
(2) If a front T is progressive, then for any local min-
imum vertex P the front 7/, obtained from T by ad-
vancing P in time by Ty, is progressive.

Proof. (1) By Definition 3, if a triangle PQR of
the front 7 is (k,l)-progressive, then either of the
two smaller triangles after bisecting APQR is (k,l')-
progressive for I’ = max{l — 1,0}.

(2) This part was essentially proven by Abedi et
al. (see [5]) when each triangle PQR on the front
satisfies progress constraint o(P’QR). Our algorithm
ensures APQR satisfies progress constraint 6(PQR),
where 6(PQR) < o(P'QR). Because the progress
constraint is monotonic in the slope o, APQR auto-
matically satisfies progress constraint o(P'QR). The
algebraic details are straightforward [5] and are omit-
ted here for lack of space, to appear in a forthcoming
paper. (I

By induction on the number of tent pitching and
refinement steps, we have the following theorem.

Theorem 4 Given a triangular mesh M € E? and
a target time value T, our algorithm builds a finite
tetrahedral mesh of the spacetime domain M x [0, T,
provided each triangle is refined only a finite number
of times.

5 Conclusion and open problems

We gave an advancing front spacetime meshing algo-
rithm that unifies previous algorithms [1, 5, 4] which
tackled nonlinearity and adaptivity separately. The
unified algorithm constructs a 2D xTime mesh with
provable guarantees, for the efficient solution of non-
linear and anisotropic problems. We will report ex-
perimental results in the near future.

We would like to extend adaptivity to 3D and
higher dimensions. The space domain often changes
with time; for instance, in the simulation of rocket
fuel combustion, the shape of the residual fuel changes
with time. We propose to include other front modi-
fication operations, such as edge flips, in addition to
pitching inclined tentpoles, into a new meshing al-
gorithm. The new algorithm will track features in
spacetime, such as phase and domain boundaries and
shock fronts, by aligning mesh facets along such fea-
tures. The SDG method accurately captures the dis-
continuous solution when mesh facets align exactly
with such singular surfaces.

Acknowledgments The author thanks the other
members of the CPSD spacetime group, especially Jeff
Erickson and Robert Haber.
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Quality Triangulations Made Smaller

Alper Ungor*

Abstract

We study alternative types of Steiner points (to circum-
centers) for computing quality guaranteed Delaunay tri-
angulations in three dimensions. We show through exper-
iments that their effective use results in smaller (in the
number of tetrahedra) triangulations than the output of
the traditional circumcenter refinement methods.

1 Introduction

We consider the following optimization problem:
Compute the smallest size triangulation of a given do-
main such that all the simplices in the triangulation
are of good quality. Quality constraint is motivated
by the numerical methods used in many engineering
applications. A simplex is said to be good if its radius-
edge ratio (circumradius over shortest edge length) is
bounded from above. Under the quality constraint,
our objective is to make the triangulation size as small
as possible for their efficient use in the applications.
There has been quite a few solutions for this problem
[1, 2, 6, 8, 9]. Earliest algorithms that provide both
size optimality (within a constant factor) and quality
guarantee used balanced quadtrees to generate first
a nicely spread point set and then the Delaunay tri-
angulation of these points [1]. Subsequently, Delau-
nay refinement techniques are developed based on an
incremental point insertion strategy and provide the
same theoretical guarantees [8]. Delaunay refinement
has become much more popular than the quadtree-
based algorithms mostly due to its superior perfor-
mance in generating smaller triangulations. Due to
its importance in a wide range of applications, this
problem is frequently revisited and several versions of
the Delaunay refinement is suggested [2, 6, 8, 9].
Delaunay refinement method involves first com-
puting an initial Delaunay triangulation of the in-
put domain, and then iteratively adding points called
Steiner points to improve the quality of the triangula-
tion. Traditionally, circumcenters of bad simplices are
used as Steiner points [8, 9]. We recently introduced a
new type of Steiner points, called off-centers, as an al-
ternative to circumcenters and propose a new variant
of the Delaunay refinement algorithm in two dimen-
sions [11]. We showed that the off-center insertion al-

*Dept. of Computer & Information Science & Engineering,
University of Florida, ungor@cise.ufl.edu

gorithm generates size-optimal quality-guaranteed tri-
angulations. Moreover, experimental study indicates
that our refinement algorithm with off-centers inserts
fewer Steiner points than the circumcenter insertion
algorithms and results in smaller triangulations. This
implies substantial reduction not only in triangulation
time, but also in the running time of the subsequent
application algorithms. In this extended abstract, we
present recent research progress on off-center based
Delaunay refinement. We extend the off-center def-
inition to three dimensions and present preliminary
experimental results.

2 Quality Triangulations in 2D

Replacing the circumcenters with off-centers enabled
us to make progress both on theoretical and practical
fronts. In theory, using off-centers, we first improved
the earlier parallel complexity results [10], then de-
signed the first time-optimal Delanuay refinement al-
gorithm [5]. In practice, off-center insertion algorithm
results in significant reduction in the output size (see
Figure 1). It is now used in the popular Delaunay
refinement software Triangle®.

QAN

SENA
SORK

‘#
o\

Figure 1: Airfoil mesh. Smallest angle in both output trian-
gulations is 31°. Circumcenter insertion introduces 624 Steiner
points resulting a mesh with 1222 triangles (left). Off-center
insertion introduces only 359 Steiner points resulting a mesh
with 699 triangles (right).

Off-center, ¢, of a bad triangle pgr is defined as the
closest point to the circumcenter of pgr on the bisector
of the shortest edge, say pg, such that pgc is (barely)
a good triangle [11]. In our experiments we observed
that, a perturbation from this theoretical definition
gives the best results. We control the amount of per-
turbation by a parameter called o, which rescales the
distance between the off-center and the shortest edge.
While a; = 1 means that there is no perturbation,

I Available at http://www-2.cs.cmu.edu/~quake/triangle.html
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Figure 2: Impact of a1 on the output size for random point
(top) and airfoil (bottom) data sets.

ay < 1 perturb the off-center on the bisector towards
the shortest edge, and a; > 1 move it away.

While the best choice for o varies as we change the
radius-edge ratio threshold and the data set, there is
a clear pattern in the performance behavior. There
is a sudden large shift in the output size from small
to large as a; becomes larger than 1 (Figure 2). Best
performance is usually observed when «7 is in the
interval (0.95, 1). Note that with a perturbation we
not only make sure that the new triangle formed by
the shortest edge points and the off-center is of good
quality but also potentially fix more bad triangles at
the same iteration.

3 Quality Triangulations in 3D

An extension of the circumcenter insertion algorithm
to three dimensions is given by Shewchuk [9]. We
briefly review this algorithm below and refer to [3, 9]
for details.

3.1 Delaunay Refinement with Circumcenters

In three dimensions, a collection € of vertices, seg-
ments, and facets is called a piecewise linear complex
(PLC) if (i) all lower dimensional elements on the
boundary of an element in 2 also belong to €2, and
(ii) if any two elements intersect, then their intersec-
tion is a lower dimensional element in € [7]. We first
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compute the Delaunay triangulation of the set of ver-
tices of the input PLC €. Then, we add new points
(i) to recover the edges and facets that are not con-
formed by the Delaunay triangulation and (ii) to im-
prove the quality of the triangulation. A point is said
to encroach upon a simplex if it is inside the smallest
sphere that contains the simplex. A tetrahedron is
considered bad if its radius-edge ratio is larger than
a pre-specified constant 4 > 2. We maintain the De-
launay triangulation as we add new points using the
following rules.

1. If a segment is encroached upon, we add its mid-
point.

2. If a facet is encroached upon, we add its circum-
center unless Rule 1 applies.

3. If a tetrahedron is of bad quality, we add its cir-
cumcenter unless Rule 1 or 2 applies.

3.2 Delaunay Refinement with Off-centers

Here, we describe two new types of off-centers as
Steiner points for three dimensional refinement.

3.2.1 Off-center on triangle bisector

Let pgr be the face of pgrs with the smallest circum-
radius. Let a be the circumcenter of the triangle pqr,
and ¢ be the circumcenter of the tetrahedron pgrs.
We call the ray that starts from a and goes through
¢, the bisector of the triangle pgr. We define the
TyYPE I off-center to be the circumcenter of pgrs if
the radius-edge-ratio of pqrc is smaller than or equal
to . Otherwise, the TYPE I off-center is the point
on the bisector of pqr, which makes the radius-edge
ratio of the triangle based on p, ¢, r and the off-center
itself exactly G (shown as b in Figure 3 (a)).

Figure 3: Off-center on triangle and edge bisectors.

Let pg be the shortest edge of pgr and ¢ be the
circumradius of pgr. We compute the location of b by
rescaling the length of the vector ¢ — a to |ab|:

3

_ 262|pg|* — t* + 21/ B?|pq|? (B*|pa]* — t*)
|ab] = a

2
le —a
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where as < 1 is the perturbation factor, similar to
the one described in Section 2 for two dimensional
off-center insertion. The choice of ay = 1 means that
the tetrahedron pqrd is just good. Our experiments
show that a good choice for as is 0.9.

Note that we use this type of off-centers only if
B%pq|? > t2. Otherwise, the radius-edge ratio 3 can-
not be satisfied with the location of b.

3.2.2 Off-center on edge bisector

The line that goes through the midpoint of an edge of
a tetrahedron and its circumcenter is called the bisec-
tor of the edge. Given a bad tetrahedron pqrs, sup-
pose that its shortest edge is pq. Let ¢ denote the cir-
cumcenter of pqrs. We define the TYPE II off-center
to be the circumcenter of pgrs if the radius-edge-ratio
of pgc is smaller than or equal to 5. Otherwise, the
TYPE II off-centeris the point on the bisector (and in-
side the circumsphere), which makes the radius-edge
ratio of the triangle based on p, ¢ and the off-center
itself exactly 3 (shown as b in Figure 3 (b)). We com-
pute the length of ab as follows:

labl = ag (8 + /57— 1/4) [pa),

where ag is the perturbation factor.

When a3 < 1, diametral sphere of pgb has radius
Blpg|, hence tetrahedra formed by p, ¢, b, and a fourth
point z can be a good tetrahedron. As the value of
a3 approaches to 1, the chances of pgbx being a good
tetrahedron converges to 0. Experimentally, we found
that a good choice for a3 is 0.6. Note that the factor
multiplying |pg| above can be precomputed.

3.2.3 Algorithm

The structure of the Delaunay refinement algorithm
as presented in Section 3.1, remains the same. We
just replace the type of Steiner points used. The two
types of off-centers give us the opportunity to explore
several versions of the algorithm. We can use a single
(either) type of off-center, or both. We give a com-
parison of these three approaches in the next section.
When facets on the boundary are to be split, we use
the two-dimensional off-center insertion algorithm.

3.2.4 Experiments

We implemented the Delaunay refinement with off-
centers by replacing the circumcenter procedure in
the Pyramid software. Computing off-centers and cir-
cumcenters are very similar and take roughly the same
time. Hence, savings in the number of Steiner points
reflects the amount of savings in triangulation time.
It is known that the insertion order of the Steiner
points has an impact on the output mesh size. In this
study, for fairness of comparison, we use the same or-
dering strategy (larger radius-edge ratio first) for both

Oﬁ‘centérEdgé
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OffcenterTriangleEdge
ar Circumcenter B
o L i |
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2 3t |
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B
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Figure 4: Output size ratio with respect to radius-edge ratio
constraint for the tiny feature in the middle of a box (top) and
ten thousand points on an ellipsoid (bottom) data sets..

the circumcenter and the off-center insertion schemes.
We shall note that there is room for further improve-
ment by using a more appropriate ordering strategy
for the off-center insertion method.

Figure 4 presents a summary of our experiments on
two data sets. First data set consists of a tiny feature
(two vertices within a distance of 107%) located at
the center of a unit box. Second data set consists of
10,000 points randomly located on the surface of an
ellipsoid, which is contained inside a bounding box.
We report the ratio of the output size M./M,, where
M. and M, are the number of elements generated by
the circumcenter and the off-center insertion methods,
respectively. We ran experiments on various data sets.
In most cases, the difference in the output is visible
(see Figure 5). We summarize our observations as
follows:

e We get significant size improvements with the use
of off-centers, especially when there is grading in
the mesh (due to relatively small input features
with respect to the domain size).

e Use of both type of off-centers or the use of TYPE
IT off-centers alone outperforms the use of TYPE
I off-centers alone, which in turn outperforms the
use of circumcenters.
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Using circumcenters Using off-centers
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Figure 5: Input consists of 20 points and 6 facets. Largest
radius-edge ratio in both triangulations is 15. The Pyramid soft-
ware inserted 785 circumcenters resulting 1343 edges and 392
tetrahedra (left). Our algorithm inserted only 322 off-centers
resulting 797 edges and 219 tetrahedra (right).

e Output size ratio M./M, varies largely (more so
than in two dimensions) as we change data sets.

e Performance behavior with respect to radius-
edge ratio constraint (Figure 4) is somewhat dif-
ferent than that pattern in two dimensions [11],
where we got the best size improvements for the
smallest radius-edge ratio values.

4 Discussions

Our experimental study of the off-center insertion al-
gorithm in three dimensions is by no means complete.
Here, we described two types of off-centers as Steiner
points and present how effective off-center insertion
can be for computing small size quality-guaranteed
triangulations. We should note that, off-center in-

sertion do not always output smaller triangulations
than the output of circumcenter insertion, especially
when the perturbation factors a;, and a are not care-
fully chosen. We believe that it is worth to explore a
perturbation strategy based on the local point distri-
bution. In fact, our goal is to combine the off-center
insertion algorithm with the perturbation based sliver
removal approach presented in [4] to compute small
size sliver-free triangulations in three dimensions.
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The Relative Neighbourhood Graph is a part of every 30°—Triangulation

J. Mark Keil*

Abstract

We study sets of points in the two-dimensional Eu-
clidean plane. The relative neighbourhood graph
(RNG) of a point set is a straight line graph that
connects two points from the point set if and only
if there is no other point in the set that is closer to
both points than they are to each other. A triangu-
lation of a point set is a maximal set of nonintersect-
ing line segments (called edges) with vertices in the
point set. We introduce angular rectrictions in the
triangulations. Using the well-known method of ex-
clusion regions, we show that the relative neighbour-
hood graph is a part of every triangulation all of the
angles of which are greater than or equal to 30°.
Keywords: triangulation, relative neighbourhood
graph, angular restriction, exclusion region

1 Introduction and basic definitions

Definition 1 For a given planar set of points S, the
relative neighbourhood graph of S, denoted by
RNG(S) consists of all edges AB, where A,B € S,
such that there is no point from S that is closer to
both A and B than the distance AB.

This definition is equivalent to saying that the region
formed by the intersection of the circles with radii
|AB| centered at A and B is empty of points of S.
This region is known in the literature as a lune of the
edge AB. The lune is illustrated in Figure 1.

The relative neighbourhood graph has been exten-
sively studied with relation to optimal triangulations.
The RNG is a subsgraph of the Delaunay triangu-
lation and the Gabriel graph of a point set, and it
is a supergraph of the Minimum Spanning Tree of
the point set [1]. The RNG is therefore a connected
graph, with linear number of edges in n — the size of
the point set S. The RNG is a subgraph of the Min-
Max Length triangulation as shown in [5]. Another
interesting result there is that the RNG subdivides
the convex hull of the point set into simple polygons,
and each of these polygons contains at most one con-
vex hull edge. The connectivity is a very important
property of RNG as it automatically implies a polyno-
mial time computability of any optimal triangulation
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of which it is a part. To be more exact, this can be
done in O(n?®) time and O(n?) space by Klincesk’s
algorithm (dynamic programming) [4].

lune of AB

Figure 1: The lune of the edge AB

Definition 2 (a-triangulation) Given a planar
point set S and an angle « such that 0° < o < 60°,
a triangulation T of S is called a-triangulation if and
only if all the angles in the triangles of T are greater
than or equal to a.

Angular constraints are sometimes dicated by the ap-
plication. In general it is considered that ”fat” trian-
gulations, i.e. triangulation with no small angles are
more suitable for specific purposes as mesh genera-
tion, for example. Interesting experimental results on
angle-constrained triangulations are presented in [2].
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Definition 3 (Exclusion region) Given a planar
point set S and two points A and B of S, the exclu-
sion region of the edge AB is a closed planar region
with the property that its interior is empty of other
points of S when the edge AB is a part of a specific
(optimal) triangulation.

Thus, the exclusion region is defined with reference
to some quality measure or a specific property of the
triangulation. The boundary of the exclusion region
is usually a chain of line segments, circular arcs, etc.
One classical example is the diamond-shaped exclu-
sion region for the Minimum Weight Triangulation [3].
Conversely, we are interested in the property (which
originally gave the name) that if the named region for
an edge contains point(s) from the point set, the edge
can be excluded from consideration as it will not be
a part of any triangulation with the desired property.
Next we discuss the exclusion region that results from
introducing angular constraints, we call it a forbid-
den zone.

2 Angular constraints and forbidden zones

Vi Viz V;
3

33 Vis
Ve Va /4 Vi 3 S V2 Vg
\4
31 2 2 Vsa
Vu 1 Vis
A B

Figure 2: Construction of the i-th (for ¢ < 4) order
triangles for a = 20°

Definition 4 (Forbidden zone) Given a planar
point set S and an angle a such that 0° < a < 60° we
call an edge AB, A, B € S internal if there are points
from S on both sides of the line AB. For an inter-
nal edge AB we define the isosceles triangle NAV; B
with angles /V1AB = ZABV] = « as a first order
triangle with respect to the edge AB. We call the
point Vi a first order vertex with respect to the
edge AB. Similarly, we call the edges AV, and V1B
first order edges with respect to the edge AB. Note
that the point Vi might not be, and generally is not
a point from the set S. It is just a part of an aux-
iliary construction. Recursively, on each i-th order
edge we can build an isosceles triangle with base an-
gles of o and it will be (i + 1)-th order triangle with
respect to the original edge AB. As it is clear from
the construction method, for i > 1 there are multiple
i-th order triangles, edges and vertices. The vertices
in particular can be enumerated by double indexing
Vi meaning that V;, is the k-th vertex of i-th order,
where i = 2,3,...,k = 1,2,...,2'"'. The construc-
tion is illustrated in Figure 2. For each triangle of i-th
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order we can define its free wedge as the interior of
the angle opposite of its internal angle of 180° — 2a.
The union over all values of i, = 1,2,... of all free
wedges for all i-th order triangles of the edge AB is
the free zone of the edge AB. Note that some of
the i-th order triangles lie entirely in the free wedges
of triangles of lower order, thus not contributing to
the free zone. Also some of the wedges overlap. The
complement of the free zone of the edge AB is the
forbidden zone of the edge AB.

Lemma 1 If there is a point of the set S in the for-
bidden zone of the edge AB, then this edge is not a
part of any a-triangulation of S.

Figure 3: The forbidden zone of the edge AB, the
boundary line (red) up to 3*¢ order

Proof. In fact the forbidden zone was built so as to
ensure this property. To see that it is valid, consider
the location of a point X € S inside the forbidden
zone. Remember that by our assumption the edge
AB is in some a-triangulation of S. By construction
X is in the closure of some i-th order triangle of the
edge AB. Suppose i = 1, i.e. the point X is in the first
order triangle AAV;B. Then X is either connected
directly to the edge AB, which forms an illegal tri-
angle (both angles at A and B will be less than «),
or there is another edge of the a-triangulation that
intersects the interior of the triangle AAX B. In the
latter case, consider the ”closest” to AB edge with
this property, one of the points A or B has to be con-
nected to an endpoint of this edge, thus violating the
angular constraint. Therefore the first order trian-
gle AAV, B is empty of points of S. Let now i = 2
and assume that X is inside AV;VasB. X cannot be
connected directly to A as this will immediately vi-
olate the angular constraint. Thus there is an edge
intersecting the interior of AV Voo B. Similarly to the
previous case there will be an edge emanating form
B that either connects to X or to an endpoint of the
" closest” edge. However the edge AB is connected to
some point in the triangulation. Therefore we have
two edges emanating from B inside an angle of less
than 2a, and this violates the angular constraint. In-
ductively, by considering the edges of some triangu-
lation emanating from the points A and B, and their
intersection with the interiors of the triangles of order
up to ¢ we will be able to show that any triangulation
containing the edge AB contains angle(s) smaller than
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« which shows the validity of the argument.

In Figure 3 the boundary line of the forbidden zone
is shown in red (bold). The forbidden zone extends
on both sides of the edge AB, although in the con-
struction we implicitly referred only to one of the half-
planes defined by the line AB. O

Corollary 2 Suppose that the edge AB has length
2a, and that o = 30°. The forbidden zone of the edge
AB includes a rectangle with base AB and height
%. On top of this rectangle the forbidden zone in-
cludes two right triangles AV Vi Vi and AV Vi Vas
with bases of %" and angles of 30° at V1. Refer to

Figure 4.

Vi Vi
V32 Vi3
2a
Va 3 Vi V2
Vi Vi
a N
V3
2a
A B

Figure 4: Parameters of the forbidden zone of the
edge AB = 2a for a = 30°

3 Main result

We are going to show that the RNG is a part of
every 30°—triangulation by showing that the forbid-
den zones of all possible edges that could intersect a
given edge AB of the RNG contain at least one of
the points A or B in their interior. Thus, in an 30°—
triangulation, if such exists, the RNG edges cannot
be intersected by other legal edges.

Keeping the assumptions of the previous section, let
us denote the midpoint of the considered edge AB by
O. Further, let us place the edge AB on the z—axis
of a coordinate system with an origin in its midpoint
O. The points A and B have coordinates (—a,0) and
(a,0), respectively, where a is a positive real number.

Lemma 3 Let PQ be a segment that goes through
O and the points P and ) are on the boundary of
the lune of AB. Then the point B is in the forbidden
zone of the segment PQ).

Proof. Without loss of generality we can assume that
the point P lies in the I quadrant. Let P(z,y), denote
the orthogonal projection of the point B onto the seg-
ment PQ by Hp. The idea is to compute the distance
BHpg and the depth of the forbidden zone of PQ at
Hp and show that the first is less than or equal to the
second quantity, thus establishing the claim. It is easy
to see that Hp is a point that lies in the segment O P:

the angles of triangle AOBP are all acute and BHp
is an altitude in this triangle. Using the fact that P
lies on a circle centered at A with a radius of 2a, and

a
3a—2x

BHp = 4/ %(S;H-x) Denote the distance between

O and P by p, and the distance between O and Hp
by d. We can write the depth of the forbidden zone
B(d) as a function of d and p as follows:

-z and

the law of sines we obtain OHp =

(p+d)/V/3 for 0<d<p/2
V3(p—d) forp/2<d<2p/3 (1)
/3 for 2p/3<d<p

We have to verify, therefore, that BHp < B(d) for
all values of x and a. This is rather lengthy, but only
involves basic mathematics and is omitted here. The
result of this lemma was suggested by computational
experiments done by the first author using the soft-
ware package Cinderella (©. g

B(d) =

B(a,0)

Figure 5: Edges PQ and P’'Q’ intersecting the RNG
edge AB in Lemmas 3 and 5

11
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Corollary 4 If a segment P'Q’ properly contains an-
other segment P"()" then the forbidden zone of P'Q’
properly contains the forbidden zone of P"Q" .

Proof. From the analytical geometry approach taken
in the proof of Lemma 3, we can use Equation 1 which
is valid in general, i.e. it describes the (left) part of
the forbidden zone of a segment of length 2p with
respect to a point that is at a distance d from the
midpoint of that segment. Now, consider extension of
the segment to the left by a length of 2h. In analytical
form it corresponds to the substitution:

{p—=p—h,d—d—h}

It is now easily verified by Equation 1 that each point
that was in the forbidden zone of the original segment
is also in the forbidden zone of the extended segment.
Similarly, an extension of the segment to the right by
a length of 2h is equivalent to the substitution:

{p—p+h,d—d+h}

Again, Equation 1 verifies that any point that was in
the forbidden zone of the segment before its exten-
sion is still in the forbidden zone after the extension.
Figure 6 presents an illustration. O

pe o

Figure 6: Edges P'Q’ and P”Q" and their respective
forbidden zone boundaries

Further, we have to consider possible edges that cross
AB outside of its midpoint.

Lemma 5 Let P'QQ" be a segment such that the
points P’ and Q' are on the boundary of the lune
of AB. Let P'Q’ intersect AB at a point R such that
R is between O and B. Then the point B is in the
forbidden zone of the segment P'(Q)’.

Proof. Asin the proof of Lemma 3, assume that the
point P’ is in the I quadrant, further assume that
the edge PQ through O is parallel to the edge P'Q’.
The situation is illustrated in Figure 5. Construct
the segment BP, by construction and the properties
of the lune/circles, BP intersects P'Q’ in an internal
point, which we denote by P”. Similarly, if we con-
struct the segment BQ it will intersect P'Q)’ at an
internal point which we denote by Q”. By construc-
tion APBQ ~ AP"”BQ" because of the fact that PQ

12

and P”Q" are parallel. Because of the similarity of
the two triangles and the scaling property the fact
that B is in the forbidden zone of PQ, established
in Lemma 3, implies that B is also in the forbidden
zone of P”Q”. Thus, we have two segments, namely
P"Q" and P’Q’ that satisfy the premises of Corollary
4. We conclude that B is in the forbidden zone of the
edge P'Q’. Since any edge crossing AB is parallel to
an edge crossing AB and going through its midpoint,
the claim of this lemma is established. O

Theorem 6 The relative neighbourhood graph of a
planar set of points is part of every 30°—triangulation
of this set (if such a triangulation exists).

Proof. It is evident form Lemmas 3 and 5 that the
edges of the relative neighbourhood graph of a planar
point set S cannot be intersected by any other edge
in a 30°-triangulation, if such a triangulation exists.
Therefore, they must be in every 30°—triangulation, if
such a triangulation exists. O

4 Conclusion

The result presented in this paper is tight. In other
words, there is no guarantee that for an angle o < 30°
the relative neighbourhood graph will be part of every
(or any) a—triangulation. A four-point example can
be constructed that shows this. Consider a pair of
points A and B as per the notation used throughout
this paper, and two other points C' and D ”slightly”
outside the lune of AB, placed on the right side of
the perpendicular bisector of AB infinitesimally close
to it. Analysis shows that we can make the angles
/DCB and ZCDB as close to 30° as we want, while
keeping the point B outside of the forbidden zone of
the edge C'D.
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Bounds on Optimally Triangulating Connected Subsets
of the Minimum Weight Convex Partition

Magdalene Grantson

Abstract

Given a set S of n points, we show that the length of

1) the minimum weight triangulation (MWT) of the
minimum weight convex partition (MW CP) of S
(Tvwep) is at most ©(n) longer than the MWT
of S if collinearity of two or more edges is allowed
and O(logn) otherwise,

2) the MWT of the minimum spanning tree (M ST)
of the MW CP of S (T, se(mwepy) is at most ©(n)
longer than the MWT of S if collinearity of two or
more edges is allowed and O (logn) otherwise,

3) the MWT of any connected subset G of the
MWCP of S (Thywep(a)) is at most ©(n) longer
than the MWT of S if collinearity of two or more
edges is allowed.

1 Introduction

A triangulation of a set S of n points in the plane
is a maximal set of non-intersecting edges connect-
ing the points in S. The minimum weight triangula-
tion MWT of S is a triangulation of minimum total
edge length. It is unknown whether the MWT prob-
lem is NP-complete or solvable in polynomial time [2].

However, since the MWT of a simple polygon can
be found in O(n?) time [3], it sounds reasonable to
approximate the MWT of a point set by first con-
necting the set of points into a single component (a
polygon). If the polygon is convex and no three ver-
tices are collinear, a triangulation of weight O(logn)
times the polygon’s perimeter can be found by the
ring heuristic of repeatedly connecting every second
vertex [8]. Using this heuristic and a complicated
method to partition the input into convex polygons,
it was shown in [9] that a triangulation of O(logn)
times the MWT length can be achieved.

Notation: We use the following abbreviations:

MWCP: minimum weight convex partition

Tyuwcop: MWT of the MWCP
mst(MWCP): minimum spanning tree (MST)

of the MWCP
Tst(MwWCPY: MWT of mst(MWCP)
MWCP(G): a connected subset of the MW CP
TMWCP(G): MWT of the MWCP(G)

*Dept. of Computer Science, Lund University, Box 118, 221
Lund, Sweden {magdalene,christos}@cs.lth.se

Christos Lecvopoulos *

New Results:

1) The length of the Thywep of S is at most O(n)
greater than the MWT of S if collinearity of two
or more edges is allowed and O(logn) otherwise.

2) The length of the T}, s (aprwepy of S is at most ©(n)
greater than the MWT of S if collinearity of two
or more edges is allowed and O(logn) otherwise.

3) The length of the Tyswep(e) of S is at most ©(n)
greater than the MWT of S if collinearity of two
or more edges is allowed.

2 Tight Bounds on Ty, cp and MWT of S

Theorem 1 For any n > 9, there is a set S of n
points in the plane, such that the Tyywcop of S can
be ©(n) longer than the MWT of S if collinearity of
three or more vertices is allowed.

Proof. For the lower bound we consider the set S of
n points in Figure 1. S is symmetric and compressed
w.r.t. the y-axis by a larger factor than shown in Fig-
ure 1 s.t. each diagonal between the convex hull pieces
from v7 to v, and from v,41 to v, is of length at most
n%. The length of the diagonal connecting vs to vy
is 1 and the length of the diagonals between (v1,v3),
(v2,v3), (v4,v5), (va,v6) are L. Consequently, the di-
agonals between (v3,v7), (v3,Vst1), (Ui, vq), (Vg,05)
have a length of about % each for larger n.

The only single diagonal that can eliminate con-
cavity at vz and vy after the insertion of diagonals
between (v1,v3), (ve,vs), (v4,vs5), (v4,v6) is the diag-
onal from vz to vy. Let C be the convex hull piece
from v7 to vy, and C’ be the convex hull piece from
Vit1 10 Uy. (C and C are straight lines.) An alterna-
tive elimination of the concavity at vz (resp. vy) after
the insertion of the diagonals (v1,v3), (ve,vs) (resp.
(v4,v5), (v4,v6)) is to insert two diagonals, one from
vz (resp. vy) to a vertex on C, and the other from vg
(resp. v4) to a vertex on C'.

An MWCP algorithm will always choose the di-
agonal between (vs,vs) of length 1 and the diagonals
between (v1,v3), (ve,vs), (v4,v5), (v4,vs), since they
give the minimum edge length convex partition. In-
cluding the convex hull CH of length about 2. This
the total length of this convex partition is approxi-
mately 3+ %. Any alternative convex partition which
inserts two edges incident to vz and to vy results in
an edge length of (4+¢€) + 2.
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Figure 1: An approximate illustration of the set of
points which shows the lower bound.

Va1 Vn Figure 2: Approximate illustra-
tion of an optimal triangulation
vr Vs

of area bounded by C and C".

The Thywep of S includes the optimal triangu-
lation of the sub-polygon ¢ containing the vertices
(v1,v3, V4, U5, Vs, ...,v7) and its symmetric counter-
part ¢’ containing vertices (va, U3, V4, Ug, Upy « -« , Ust1)-
The sub-polygon ¢ is triangulated by adding edges be-
tween vs and vertices on C and/or edges between vy
and vertices on C. Each of these edges has a length of
approximately % For larger n there are about 5 ver-
tices on C (there are at least %" vertices on C, since
n > 9). Thus the total length of the edges needed to
triangulate ¢ is % - % = 7, and since ¢’ is symmetric
to g, the total length of the edges needed to triangu-
late both ¢ and ¢’ is 2% = 5. Adding the total edge
length 3+ % for the MW CP of S obtained above, we
have that the Thywep of S has a total edge length of
approximately 7, for larger n.

The MWT of S, however, includes the diago-
nals between the convex hull CH, (vy,v3), (va,vs3),
(U47 ’05)’ (7]45 UG)? (U37 U7)’ (U3v U*+1)’ (U*7 ’04)’ (U4v Un)
and diagonals going between C' and C’. The optimal
triangulation T' of the area bounded by C' and C" ap-
proaches zero for larger n, because each edge going
between C' and C’ in T has length at most # and
there are O(n) edges (see Figure 2). The MWT of S
thus has a total edge length of about 4 for larger n.

[Tvwer| o n
Hence W 5

For the upper bound, we draw on a result in [4],
where it was shown that for a point set S any trian-
gulation achieves a total edge length O(n) times the
MWT of P. Therefore the ©(n) bound is tight. O

Theorem 2 For any n, there is a set S of n points in
the plane, such that the Tyyweop of S can be ©(log n)
longer than the MWT of S if collinearity of three or
more vertices is disallowed.

Proof. To show the lower bound, we modify the set S
of points in Figure 1 such that (1) on the convex hull
piece C from v7 to v, the vertices lie on a circular arc
so that no three vertices are collinear, likewise on the
convex hull piece C’ from v.41 to vy; (2) each edge
between adjacent vertices on C' and C” has length %
C and C' are both of length about 0.3; (3) the dis-
tance from each v on C' (resp. C”) to the closest vertex
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Figure 3: An approximate illustration of a point set
S of points showing the lower bound.

on C' (resp. C) is at most -5; (4) the diagonals be-
tween (vs, v7), (Vs, Vst1), (Vs, v4), (Va,v,) have length
of about 0.35 each.

An MW CP algorithm always chooses the diagonal
between (vs, v4) of length 1 and the diagonals between
(v1,v3), (v1,v3), (va,05), (v4,v6), since they give the
minimum edge length convex partition (similar expla-
nation as in the proof of Theorem 1).

The Tywep of S includes the triangulation
of the convex sub-polygon ¢ containing vertices
(v1,v3, V4, U5, Vs, ...,v7) and its symmetric counter-
part ¢’ containing vertices (ve, vs, Uy, Vg, Uy -+ -, Vsc1)-
From [5, 6] we know that the greedy triangulation' of
a convex polygon P is an O(1) approximation of the
MWT of P. The greedy triangulation of the MW CP
of S adds the diagonals between (v, v.) and (vVit1, vy)
before the diagonals (vs,v7) and (vs,v.«q1) (resp.
(vs,v4) and (vg,vy)) in g (resp. ¢’). The sub-polygon
containing the circular arc C' (resp. C’) and the di-
agonal between (v, v7) (resp. (vst1,vn)) is referred
to as a semi-circular polygon in [7]. [7] showed that
the MW of such semi-circular polygons has length
O(logn) times its perimeter. Thus the triangulations
of such resulting sub-polygons have length ©(logn)
plus the length of the perimeters of the sub-polygons.
The length of the MWT of the two semi-circular poly-
gons of S is ©(logn) (since the greedy triangulation
of Pis O(1) of the MWT of P). Thus the total edge
length of the Thrwep of S is Q(logn).

A much shorter triangulation of S includes the diag-
onals between the vertices stated for the MWT in the
proof of Theorem 1, giving a total edge length of at
most O(1). Using results from [9, 8] it can be deduced
that given a set S (disallowing collinearity) partition-
ing the region of the plane enclosed by the CH of S
into convex polygons one can achieve an O(logn) ap-
proximation to the MWT by triangulating the convex
polygons. Therefore the ©(logn) bound is tight. O

3 Tight Bounds on T, ;(pvywepy and MWT of S

Theorem 3 For any n > 0, there exists a set S of
n points for which the length of the T,,s;(niwep) of
S can be O(n) times the length of the MWT of P if
collinearity of three or more vertices is allowed.

1The greedy triangulation is obtained by repeatedly adding
the shortest edge that does not lead to an intersection.
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Figure 4: An approximate illustration showing the
lower bound for the T}, s (vrwcpy and MWT ratio.

Proof. Consider the set S of n > 10 points in Fig-
ure 3 and let the distances between pairs of ver-
tices be d(vi,vs) = 1.2, d(va,vy,) = 1.2, d(v1,v,) =
2.4, d(vg,v4) = 1, d(’l)l,’l}g) = 2.3, d(vg,’l)g) > 1,
d(vs,vy) < n+s-2’ d(vp,vq) < n%H, d(vp,v3) < % We
observe that the MW CP includes the convex hull of
S and the edges (v1,v2), (v2,v4), since the total edge
length of this partition is minimum (concavity at vy
is removed, since vy, va, vy are collinear).

The mst(MWCP) includes all edges in the
MWCP of S except (vq,vy,) and (v1,v3). There are
at most n — 5 vertices between v,, and v4, and each
(including v,,) is connected to the vertex vy by an edge
of length about 1.2 in the T\, (vrwcp)-

However, the MW T includes edges (va,v,,), (v2, v3)
and edges from vz to each of the vertices from wvs
and v,. Each of the n — 5 edges from vz to vertices
(vs,vg, . .., vy) has length at most % The total length
of the MWT of S is O(1). Thus the ratio of the
lengths of the T,s¢(vwep)y and the MWT is Q(n).
This proves a lower bound for the above problem.

For the upper bound we know that every triangula-
tion has length O(n) times the optimum (MWT) [4,
1]. Therefore the ©(n) bound is tight. O

Theorem 4 For any n > 0, there exists a set S of
n points for which the length of the T, ss(prwepy of S
can be O(logn) times the length of the MWT of S if
collinearity of three or more vertices is disallowed.

Proof. We construct a set S of n points, n > 15,
which is sketched in Figure 4. We assume that S
is compressed w.r.t. the y-axis s.t. the y-coordinate of
each point is multiplied by # and S has the following
properties: (1) All vertices except vz and vy, 4o (which
lie on the x-axis) lie on the convex hull CH. (2) On
the C'H the vertices vy,14, Um+s,-..,0, lie on a cir-
cular arc. (3) Let 0(u,v) denote the vertical distance
between any two given vertices v and v, and d(u,v)
the distance between u and v. Then d(vi,v2) = 5-,
d(vi,vs) = 2, 6(v3,vn) = 0.2, 0(Un,Vmsa) = 0.1
5(U77L+47Um+2) = 0.7, d(vg,l}m+2) = 5(U37Um+2) =1
0(Umt2, Vmts) > 1, d(Vm+3,ms+1) = 2. The short-
est diagonal from any vertex on the convex hull piece
(Un,Umy4) to any vertex on the convex hull piece

(v4, Upn) is no longer than 1. (4) Let Ly (see Figure 4)
be the half-line extension of v, 11 to vy and Lo
the half-line extension of v,, 3 to v, 14. The vertices
Um44 t0 v, lie above the intersection of L; and Ls.

In any convex partition of S: The two diagonals
(Um42, Um41) and (U 42, Um43) must both be present
to remove the concavity at v,,42, because even adding
all remaining diagonals incident to v,,42 does not re-
move the concavity at v,,42 (this follows from prop-
erty 4 above). To remove the concavity at vs, if the
diagonal (vs,v,,12) is added, at least two other diag-
onals incident to vz are needed. However, if the diag-
onal (v3, Uy42) is not added, either (vy,v3) or (ve, vs)
together with at least two other diagonals are needed,
namely one incident to vs and going to the left of vg
and one incident to vs and going to the right of vs.

To find the MWCP of S, inserting the diagonal
(v3, Umt2) Temoves the concavity at v, 12 and requires
inserting either (vy,vs) and (ve, v3) to remove the con-
cavity at vg giving a total edge length of 1+ %. If we
do not, however, add the diagonal (v, vyt2), & pos-
sible solution is the insertion of either (v,42,vVmt4)
or (Uma2, Um) at vyae and (v, v3), (v3,v4) and either
(v1,v3) or (v2,vs3) to remove the concavity at vs giving
a total edge length of 0.74+0.2+0.2+ % We conclude
that the MW CP of S includes the convex hull of S
and edges (1)17’03), (v2,v3), (U37’Um+2)7 (Um+27vm+3)
and (Vp42, Umt1)-

An mst(MWCP) of S includes the edges in the
MWCP of S with the exception of (Vy+4,Vm+3),
(Urn, Vm+1) and either (vy,42, Vma1) OF (Vmt2, Umats)-

The greedy triangulation of any mst(MW CP) of S
includes the triangulation of the so-called semi-cir-
cular polygon [7] bounded by the convex hull piece C
from vy, t0 V14 and the edge (vy,, Vimaa), as well as its
symmetric counterpart the convex hull piece C’ from
v4 10 vy, and the edge (vq,vy,). In [7] it was shown
that the MWT of such regular semi-circular polygons
has length ©(logn) times its perimeter. Since the
greedy triangulation is an O(1) approximation of the
MWT for any convex polygon [5, 6], the total edge
length of the T, of S must be also Q(logn).

A shorter triangulation 7' of S includes the con-
vex hull of S, the edges (v1,v3), (v2,v3), (vs,va),
(v3,0n), (Vm42,Vmt4); (Vm+42,Vm);  (Vmg2, Vma),
(Um+42, Um41), and edges from the triangulation of the
area bounded by C, C’; (v4,vn), (Vmt4,Vm) (see Fig-
ure 2 for a similar triangulation). In all there is a lin-
ear number of edges going between the area bounded
by edges (v4,vy), (Umta,Vm), C and C’, each of which
has length at most O(-}) giving a total edge length
of O(+). Thus the total edge length in T is O(1).

The set S considered above has an even number of
points. For the case when n is odd we add a dummy
verter vq in the area bounded by the triangle with cor-
ners v, v2, and vs to maintain the symmetric nature
of S. The introduction of the dummy vertex gives the
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Figure 5: An sketch showing a modification of the
point set S in Figure 3. The point sets are symmetric
along the z-axis.The figure is not to scale.

same lower bound as shown for the even case since
the concavity at vg can be removed by inserting edges
from vy to vy, ve, and vs.

The ©(logn) bound is tight. We can show this
by starting with polygonal regions formed by combin-
ing the convex hull with the M ST of the point set,
and then computing the MWT of these regions us-
ing the ring heuristics proposed by Lingas [8]. The
ring heuristics achieves a O(logn) approximation to
the MWT of polygons. O

Generalization

Theorem 5 For any n, there exists a point set S for

. [Tuwer)l

Proof. We show that Theorem 5 holds by modifying
the point set .S in Figure 3 to be symmetric w.r.t. the
y-axis: the point ve lies on the y-axis, the points v3
to v, are at the same positions relative to vo, and
we add corresponding points v5 to v, at symmetric
positions (see Figure 5). Any connected subset G in
the MWCP of S includes either the edge (v5,vs) or
(v2,v3). Any of these two edges prevents us from get-
ting triangulation edges having length of at most %
as shown in the proof of Theorem 3. 1

Observations

Definition 1 A vertex of a polygon is strictly con-
vex if its internal angle is strictly less than 180 de-
grees. Every vertex of a strictly convex polygon is also
strictly convex. Similarly every polygon of a strictly
convex partition is also strictly convex.

Observation 1 For the case where strictly convex
partitions are required, the Ty, s (mwep) of S is of
length O(logn) times the length of the MWT of S
if collinearity of three or more vertices is allowed.
We can prove the Q(logn) lower bound part of the
©(logn) bound using the same proof as for Theorem 4
(for the non collinear case), since a strictly convex
partition means a strictly convex polygon, collinear-
ity of three or more vertices is not allowed in the con-
vex polygons formed from the strictly convex parti-
tions. To show the O(logn) upper bound part of the
©(logn) bound, the ring heuristics [9] can be used to
optimally triangulate all the strictly convex polygons
derived from the strict MW CP of S.
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Incremental Construction along Space-Filling Curves

Kevin Buchin™*

Abstract

For the incremental construction of a Delaunay tri-
angulation, we prove that inserting points in rounds
and walking along a space-filling curve in each round
yields an algorithm running in linear expected time
for uniformly distributed points. We complement this
result by a simpler incremental construction running
in linear expected time in any dimension.

1 Introduction

Motivation When devising an insertion order for the
incremental construction of the Delaunay triangula-
tion there are two seemingly conflicting goals: Insert-
ing points randomly from the data avoids creating ar-
tificial triangles during the construction. In contrast,
inserting points nearby allows taking advantage of ge-
ometric locality and locality of reference.

Randomized incremental construction follows the
first approach. It is asymptotically optimal but per-
forms poorly with modern memory hierarchies when
used for large data sets as observed by Amenta, Choi
and Rote [1]. They showed how randomness can be re-
duced without changing the asymptotic performance
by a biased randomized insertion order: Points are
randomly assigned to rounds of insertion of increas-
ing sizes, and within a round the order of insertion
can be chosen freely.

This allows us to use locality within the rounds by
traversing the points of a round in an order along a
space-filling curve [11]. We chose a space-filling curve
order because it combines locality of reference with
geometric locality by linearizing space, adapts well
to irregularities of the point distribution, is fast to
compute, is applicable in higher dimensions, and gives
a good bound on the length of the resulting tour.

Related Algorithms Some linear expected time al-
gorithms for constructing the Delaunay triangulation
of uniformly distributed points from a bounded con-
vex area in the plane are known [2, 6, 8]. Dwyer [6]
gives an algorithm running in linear expected time for
points from a sphere in any fixed dimension.

*Freie Universitdt Berlin, Institut fiir Informatik,
buchin@inf.fu-berlin.de. =~ This research was supported by
the Deutsche Forschungsgemeinschaft within the European
graduate program ‘Combinatorics, Geometry, and Computa-
tion’ (No. GRK 588/2).

Two incremental constructions running in linear
time in practice on uniformly distributed points are
known [9, 12]. In both cases, the analysis does
not treat the irregularities near the boundary. The
boundary case can be avoided by considering points
from a Poisson point process.

Inserting near the Boundary For algorithms based
on incremental construction, points near the bound-
ary seem difficult to handle, because long and thin tri-
angles slow down the point location. Figure 1 shows
a typical case of this: Near the boundary, triangles
with a large circumcircle are likely to occur in the tri-
angulation, because a large part of the circumcircle
may lie outside the region with points.

Figure 1: Delaunay triangulation of points in a square

Our main effort is to prove that the boundary case
does not change overall linearity. While the analysis
is done for our algorithm it seems possible to adapt
the analysis to treat the algorithms mentioned above.

Surprisingly, we found another simple incremental
construction which has no problems near the bound-
ary and constructs the Delaunay triangulation in lin-
ear expected time in any fixed dimension. We include
an analysis of this algorithm.

Contributions Our main contribution is to prove
that a biased randomized insertion order together
with a local insertion scheme runs in linear expected
time on uniform points in a bounded convex region.
This result complements the good practical perfor-
mance of biased randomized insertion orders and re-
solves an open problem posed by Amenta et al. [1]
This algorithm is the first completely analyzed linear
expected time incremental construction algorithm for
Delaunay triangulations.

The main technical contribution is the explicit anal-
ysis of point location near the boundary. Further-
more, we present an incremental construction running
in linear expected time in any fixed dimension.
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Figure 2: Assigning points to rounds

2 Walking along a Space-Filling Curve

Incremental Construction The basic concept of in-
cremental construction is simple to state: Insert the
points into the Delaunay triangulation one by one,
updating the data structure after each insertion step.
The time needed to insert a point consists of the time
needed for locating the point in the current triangu-
lation and the time for updating the triangulation. If
the points are inserted in random order the expected
total time needed for updating is in O(n) and for point
location is in O(nlogn).

Biased Randomized Insertion Orders The order of
insertion is allowed to deviate from a random order as
long as randomness dominates. Sufficient randomness
can be introduced to the insertion order by assigning
the points independently at random to rounds as illus-
trated in Figure 2: A point is independently assigned
to the last round with the probability of 1/2. Each
of the remaining points is assigned to the next to last
round with the probability of 1/2, and so on [1].

After a logarithmic number of rounds an expected
constant number of points remain, and we can stop
sampling and assign the remaining points to the first
round. The points are inserted round by round. In a
round points can be inserted in an arbitrary order.

Biased randomized insertion orders were originally
introduced to reduce random memory access. We
make use of the fact that they do not change the up-
date cost, which, in our case, is linear. Therefore we
can focus on the point location time.

Space-Filling Curves Within a round we construct
a short tour through the points by the space-filling
curve heuristic for the traveling salesman [10]. To see
how the tour is constructed, consider the first steps of
the geometric construction of the Hilbert Curve shown
in Figure 3. The space is successively subdivided. The
cells are ordered in such a way that consecutive cells
in the order are adjacent.

The limit of this process yields a space-filling curve,
i.e. a surjective mapping from the unit interval to the
unit square or, more generally, to the d-dimensional
unit cube. Formally, the space-filling curve heuristic
sorts the points by selecting a preimage for every point
and by sorting the points according to the preimages.
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Figure 3: First steps in the construction of the Hilbert
curve and a space-filling curve tour

In practice, the process can be stopped after a fi-
nite number of subdivisions. The maximal number of
subdivisions necessary is the number of bits of pre-
cision. In order to achieve an O(y/n) bound on the
tour length a subdivision with as many cells as points
is sufficient. Points within a cell can then be ordered
in an arbitrary order.

Walking We traverse the tour and insert the points
along the way. The next point is located by walk-
ing [5], i.e. by a local search starting at the current
point and traversing the triangles stabbed by the line
segment between the two points. This point location
scheme does not need a point location data structure.

The heuristic can be used not only for points in the
unit square but also in an arbitrary rectangle. The
bound on the tour length changes by a factor of the
length of the longer side. For points in a bounded
convex region a bounding rectangle is used.

3 Analysis

Space-Filling Curve Heuristic The heuristic con-
structs a tour through a given set of points in the unit
square by visiting them in the order of their preimages
under a space-filling curve . The order of preimages
is not unique since ¢ cannot be injective [11]. For the
heuristic to be effective the images of nearby points on
the side of the preimages should be near to each other
in space. For space-filling curves this follows from
their Lipschitz continuity of order 1/2, i.e. that for
any s, t in the unit interval [1(s) —1(t)| < cy|s —t|*/2.

The space-filling curve heuristic was popularized
by Platzman and Bartholdi [10]. A general treat-
ment and probabilistic analysis is given by Gao and
Steele [7]. We summarize the result we need in the
following lemma:

Lemma 1 For a space-filling curve that is Lipschitz
of order 1/2 and can be generated by subdivision, an
order on the points can be computed in linear time in
such a way that for any k-subset of points the length
of the tour through these points along the order is
bounded by O(k'/?).

For this lemma no assumption on the point distri-
bution is used. A stronger bound holds for points
distributed uniformly in the unit square [7]. In d di-
mensions the bound generalizes to O(n(?=1)/4),
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Counting Intersections To analyze the running time
it is sufficient to analyze the time required in the last
round using an induction. Assume m + n points dis-
tributed independently and uniformly at random in a
bounded convex region C' of area 1, where n points are
already inserted in the Delaunay triangulation. To in-
sert the m remaining points, a tour through the points
is constructed using the space-filling curve heuristic.
The points are located by traversing the triangula-
tion along the tour. Therefore, the time needed for
locating the points is proportional to the number of
intersections between the tour and the triangulation.
A bound on the expected number of intersections is
obtained by considering exclusion regions for possible
edges of the triangulations, i.e. if the region contains
points on both sides of the possible edges the edge
cannot be in the triangulation. For Delaunay trian-
gulations the disc with the edge as diameter is an ex-
clusion region. For uniformly distributed points the
edges of a triangulation with exclusion regions typi-
cally are expected to be either short or near to the
boundary. This can be strengthened to the following:

Lemma 2 (Devroye, Miicke and Zhu [5]) The
expected number of intersections between a Delaunay
triangulation of points distributed independently and
uniformly in a compact convex area C' and a fixed
line segment L that is at least distance co+/logn/n
from the boundary of C' is bounded by

¢1 + | L|v/n,

where cq is a constant, and ¢; and co depend only on
the geometrical properties of C.

The bound on the tour length and the bound on the
number of intersections together give a linear bound
for all line segments that have a distance of at least
co/logn/n from the boundary 9C. The expected
number of points near the boundary is bounded by
m’ = ¢g|0C|m+/logn/n and the number of line seg-
ments by 2m’, and therefore, by Jensen’s inequality
and Lemma 1, the total length of these line segments
by ¢v2m/ for suitable c.

To treat these segments we quantify what it means
that the edges of the triangulation are likely to be
short or near to the boundary:

Lemma 3 Let T' be the Delaunay triangulation of
n points distributed independently and uniformly in
a convex area C. Denote by D, the event that a
Delaunay edge with an endpoint with a distance of at
least w to the boundary of C' is longer than .
Forc>1andl > cw

Pr (Dw,l) < nZe—(n—2)'wlg/1—1/c2/2.

In particular, if | > 3w and wl > 6v/2log n/n, then
Pr(Dy;) € o(1/n).

boundary of C

Figure 4: Exclusion re- Figure 5: Area for end-
gion for a Delaunay edge points of Delaunay edges
that is contained in C' intersecting L

Proof. Consider the edge in Figure 4 with length
I > | and a vertex with a distance of more than
w to the boundary of C'. The two rectangular tri-
angles form an exclusion region for the edge that is
contained in C. The area of a triangle is bounded
by 1/2 - wVI? —w? > wl\/1 —1/c?/2. There are (})

possible edges and therefore

Pr(Dyy) < (’;)2<1sz>“
P O N =

O

This gives us a bound on the number of Delaunay
edges that can intersect the line segments of the tour:

Lemma 4 The expected number of intersections of a
Delaunay triangulation and a tour along a Lipschitz-
1/2 space-filling curve with a total number of N points
which are distributed independently and uniformly in
a convex area is linear in N.

Proof. Assume | > 3w and wl > 6v/2logn/n. With
high probability only edges with endpoints with dis-
tance of at most [ to one of the line segments, or with
distance at most w from the boundary can intersect.
For a single line segment this area is shown in Fig-
ure 5. The expected number of endpoints of edges
that intersect a line segment L is therefore bounded
by n(|0C|w + 7l +2I|L|) 4+ o(1). Because of planarity
there are at most three times that many edges inter-
secting L.

For k line segments of total length A\ this yields
a 3n(|0C|kw + 7%k + 2I\) + o(k) bound on the
number of intersecting edges. In our case, we have
kE = coloC|m+/logn/n and A = +k. Choosing
w = max (k~*\/logn/n, (logn/n)?>?) and [ :=
6v/2logn/(nw) the number of intersections can be
bounded by O(n'/#m?®/*1log”®n + n=1/5mlog™° n).
Adding up the bound for segments near the bound-
ary and far away from the boundary yields a linear
bound on the expected number of intersections. [
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Inserting Points We now extend the analysis to the
case where the triangulation changes during a tour
because points are inserted. The points of the trian-
gulation occur in two different roles in the analysis:
They may contribute to the number of intersections
as an endpoint of an intersecting edge but they may
also block other edges because they lie in their exclu-
sion region. The analysis can be extended by taking
all points as possible endpoints but only the points of
the original triangulation as blocking points.

For a fixed line segment of the tour the remaining
points of the tour are not independent of this seg-
ment but their density can be bounded if we use a
bi-measure preserving curve, which allows us to work
on uniform distributions on the preimage and the im-
age exchangeably [7]. The cost resulting from the fact
that the starting point of a line segment is a vertex of
the triangulation can be bounded by the update cost.
In total this yields the following theorem:

Theorem 5 Using a biased randomized insertion or-
der and, in each round, walking along a Lipschitz-
1/2, bi-measure preserving space-filling curve, the in-
cremental construction algorithm runs in linear ex-
pected time for points distributed independently and
uniformly in a bounded, convex area.

4 Seeking a Conflict with the Neighbor

The main problem in the average case analysis of in-
cremental constructions seems to be the boundary.
Here we give an algorithm for which this is not so.

The points are inserted in random order. The algo-
rithm maintains a dynamic bucketing scheme. This
allows us to find the nearest neighbor in the trian-
gulation for a new point in constant expected time
using spiral search [2]. Now a d-simplex incident to
the nearest neighbor is found which conflicts with this
point. From this triangle all conflicting d-simplices
are found as in the Bowyer-Watson algorithm.

Theorem 6 Seeking a Conflict with the Neighbor
constructs the Delaunay triangulation in linear ex-
pected time when the points are distributed inde-
pendently and uniformly in a d—dimensional bounded
convex open region for which the expected complexity
of the Delaunay triangulation is linear. In particular,
this is the case for the unit d—ball.

Proof. The expected time required for searching the
nearest neighbor and for updating the triangulation
is linear [2]. It remains to bound the expected num-
ber of d—simplices of the triangulation containing the
nearest neighbor of a new point. The difficulty is that
the nearest neighbor is not a random point of the tri-
angulation but a constant bound can be obtained by
using that the in-degree of the nearest neighbor graph
is bounded in any fixed dimension.
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The special case of the d-ball follows directly from
the linear expected complexity [6]. O

5 Discussion

We presented two incremental construction algo-
rithms for the Delaunay triangulation. The first algo-
rithm constructs a spatial order of the points. Ideally,
the Delaunay triangulation should be stored in the
same order to make use of the locality of reference. A
possible way to achieve this is presented by Blandford
et al. [3]. For this, it is important to use one ordering
for all points.

Two advantages of the first algorithm which we
have not addressed in the analysis are its good perfor-
mance on surface points and on large data sets. Fur-
thermore, the algorithm runs in higher dimensions.
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Region Counting Graphs

Jean Cardinal*

Abstract

A new family of proximity graphs, called region count-
ing graphs (RCG) is presented. The RCG for a finite
set of points in the plane uses the notion of region
counting distance introduced by Demaine et al. to
characterize the proximity between two points p and
q: the edge pq is in the RCG if and only if there
is less than or exactly k vertices in a given geomet-
ric neighborhood defined by a region. These graphs
generalize many common proximity graphs, such as
k-nearest neighbor graphs, (-skeletons or ©-graphs.
This paper concentrates on RCGs that are invariant
under translations, rotations and uniform scaling. For
k =0, we give conditions on regions R that define an
RCG to ensure a number of properties including pla-
narity, connectivity, triangle freeness, cycle freeness,
bipartiteness, and bounded degree. These conditions
take form of what we call tight regions: maximal or
minimal regions that a region R must contain or be
contained in to satisfy a given monotone property.

1 Introduction

We consider here prozimity graphs [12], also called
neighborhood graphs. Those graphs are defined on a
finite set V' of vertices in the plane and there exists
an edge between any two vertices if they are ”close”
in some sense. The proximity can be measured for
instance by the Euclidean distance between those ver-
tices, the distance to other vertices of the graph, or
the number of other vertices in a given neighbor-
hood. Those graphs are well-studied and have nu-
merous applications in computer graphics and classi-
fication; a survey of Jaromezyk and Toussaint [7] dis-
cusses many of them, such as Relative Neighborhood
Graphs [7, 11], Gabriel Graphs [5, 10], 5-skeletons [9],
Rectangular Influence graph [6], and ©-graphs [8, 14].

Previous work on proximity graphs traditionally
consisted in the introduction of one or more graphs,
followed by different contributions analyzing their
properties.  Surprisingly, the natural opposite ap-
proach does not seem to have been considered: to
start from a set of desired graph properties to con-
struct the definition of the proximity graph. For this,
we have to define a class of proximity graphs general
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enough to encompass many useful graphs, but simple
enough to be analyzed.

The simplest form of proximity graph is a distance
graph that connects a point p € V to every point in
V' whose distance to p is at most some specified value
D. Our class of graphs is a variant on this definition
using the discrete region counting distances defined by
Demaine, Tacono and Langerman [2]. These distance
functions are parameterized by the finite point set V'
and the distance between two points is the count of
items of V inside a region surrounding those points.
In a k-region counting graph or k-RCG (respectively
(< k)-RCG), two vertices are adjacent if and only if
the region counting distance between them is equal to
k (respectively at most k).

One of the motivations of our work was to design
proximity graphs that are invariant under transla-
tions, rotations and uniform scaling. It can be shown
that this property is satisfied if and only if the re-
gion defining the region counting distance between
two points is obtained by translating, rotating and
uniformly scaling a template region. In this paper,
we concentrate on the case k = 0, where two vertices
are adjacent if the region does not contain any other
point of the set. We further focus on symmetric and
convex regions and symmetric distances (undirected
graphs).

The properties of those graphs are determined by
the choice of the template region. More specifically,
we say that a given template region satisfies a prop-
erty when for all point sets V' the graph generated
using that region satisfies the property.

Graph properties that are monotone with respect
to either edge removal or addition are good candi-
dates for investigation, because monotone properties
that are satisfied by a template region are satisfied by
all template regions included in it in the case of edge
addition, or containing it in the case of edge removal.
This naturally raises the issue of template regions that
are extremal with respect to the inclusion partial or-
der. We show for instance that the lune, defined as
the intersection of two disks of radius ||pg|| and re-
spective centers p and g, is the unique maximal region
ensuring the connectivity of the graph. We call these
extremal regions tight regions. However, because the
inclusion relation is not a total order, tight regions
need not be unique. Tight regions can somehow be
seen as a deterministic geometric analogue to thresh-
olds for monotone properties studied in random graph
theory [4]. Table 1 summarizes our findings related to
tight regions and their uniqueness for various graph
properties.
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Region | Name Property
; no edge
R Plane (unless |V] < 3)
no chain *,
Mastercard 1o cycle (Thm 10)
_ no 3-cycle x (Thm 9),

connected * (Thm 12)

no 3-star x (Thm 8:

Pacman Py /3 Py i, for no k-star *)

Pacman Psr 5 | no 5-cycle (Thm 9)

no 4-star * (Thm 8),

Pacman P no 4-cycle x (Thm 9)

no cycle (Thm 10),

! Slab bipartite (Thm 13)

planar (Thm 11)

qu Ball

)t Truncated Slab | no 5-cycle (Thm 9)

Table 1: Regions which are tight for various proper-
ties. Unique tight regions are marked with a *.

In Section 2, we define the k- and (< k)-RCG and
prove several facts, including how to combine tight re-
gions for conjunction of properties. Section 3 is about
geometric properties, which depend on the position of
the vertices. We consider the planarity of the embed-
ding and prove that no region counting graph invari-
ant under translation, rotation and uniform scaling
can guarantee a constant spanning ratio. This is in-
teresting in light of known bounds on the spanning
ratio of ©-graphs [8], which are not rotation invari-
ant. In section 4 we study the property of not having
a given graph as subgraph, and how sets of tight re-
gions can be constructed for forbidden combinations
of graphs. Then we specifically consider the proper-
ties of not having a k-star or a k-cycle as subgraph.
Finally, section 5 presents tightness results for pla-
narity, cycle-freeness, connectivity and bipartiteness.

2 Region Counting Graphs

Definition 1 An influence region R is a function
mapping a pair (p,q) of points in R? to a subset of
R? such that inclusion in R(p,q) can be computed in
O(1) time.

Definition 2 An anchored region R is an influence
region parameterized by a triple (a,b, D), where a and
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b are points in R? and D is a subset of R? such that
inclusion in D can be computed in O(1) time. The
set R(p, q) is the subset of R? obtained by translating,
rotating and uniformly scaling D so that a maps to p
and b maps to q.

Definition 3 A region counting distance [2] dg =
d3(p,q) parameterized by a finite point set S C R?
and an influence region R, is defined by dg(p,q) =

S\ {p,qa}) N R(p, q)|-

Definition 4 A symmetric region counting distance
is a region counting distance satisfying dr(p,q) =
dr(g;p)-

For the region counting distances using an anchored
region as influence region, the symmetry of the re-
gion counting distance implies that the region R(p, q)
is symmetric with respect to the center of the line
segment pq.

Definition 5 A k-region counting graph
RCOGK(V) = (V,E) (respectively (< k)-region
counting graph RCGEk(V)) parameterized by an
influence region R and an integer k is a graph where
V is a finite subset of R? and

Vp,q €V :pg € E < dg(p,q) = k (respectively < k).

If the region counting distance is not symmetric, then
the graph is defined as a directed graph, and as an
undirected graph otherwise.

We denote by RCGRr(V) the 0-RCG using the in-
fluence region R, which is the region counting graph
where the edge pq exists if no other point is included
in the region R(p,q). Many previously known prox-
imity graphs such as nearest neighbor graphs [3], -
skeletons [9] and ©-graphs [8] can be defined as 0-
RCG.

2.1 Assumptions

In what follows, we are mainly concerned with 0-RCG,
and refer to them as region counting graphs or simply
RCG. We restrict ourselves to using anchored regions
parameterized by triples (a,b, D) where D is closed,
convex and symmetric with respect to segment ab.
Using only anchored regions is necessary and sufficient
to guarantee the invariance of the graph structure un-
der translation, rotation and uniform scaling of the set
of points. We further restrict ourselves to symmetric
region counting distances, hence undirected graphs.

The regions presented in Table 1 are of particular
interest. The pacman Pg(p, ¢) is bounded by the con-
vex hull of two pie-wedges of angle ©, with apex in p
and in ¢ facing each other, such that Py(p,q) is the
segment pq. The lune L(p, q) is defined as P /3(p, q),
while the mastercard M (p,q) is Por(p,q). The slab
S(p,q) is the infinite strip perpendicular to the line
segment pq.
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2.2 Properties

Lemma 1 Vk,G = RCG}%’“(V)’G/ — RCG%F(V) .
R(p,q) € R'(p.q) = G’ CG.

Definition 6 A graph property P on a family of
graphs G is a subset P C G. A graph G has prop-
erty P if G € P.

Definition 7 A graph property P is monotone with
respect to edge addition (respectively to edge re-
moval) if and only if VG = (V,E),G' = (V,E'),E C
E' (respectively ED E'):Ge€P = G €P.

Our definition of monotonicity is slightly different
from the one commonly used in graph theory. Usu-
ally, this is stated as follows: a property is monotone
if and only if it is closed upon taking subgraphs. We
add the symmetrical definition with properties mono-
tone upon taking supergraphs.

Definition 8 An anchored region R satisfies a graph
property P if and only if for all V. € R? finite,
RCGRr(V) eP.

Definition 9 An anchored region R is tight for a
graph property P monotone with respect to edge ad-
dition (respectively to edge removal) if and only if R
satisfies P and for all anchored region R' O R (re-
spectively R' C R), R’ does not satisfy P.

Note that the monotonicity of the property with re-
spect to edge removal implies that any region contain-
ing a tight region as subset satisfies the property as
well. On the other hand, for regions that are strictly
contained in a tight region, one can always find a set
of points generating a graph that does not have the
property. A similar observation holds the other way
around for properties that are monotone with respect
to edge addition. Another definition of a tight region
for a monotone property is a region that satisfies the
property and is extremal for the inclusion partial or-
der.

Knowing tight regions for useful properties is im-
portant in practice, because it allows to check quickly
if the properties we wish to obtain are satisfied or not.
The uniqueness of a tight region is even more impor-
tant, because knowing a single tight region R does
not, in general, give any information on the proper-
ties guaranteed by regions that simultaneously do not
contain R and are not contained in R. If the tight re-
gion R is unique, any region that does not contain R
does not satisfy the property, even if it is not strictly
included in R.

Lemma 2 Let P be a monotone property with re-
spect to edge removal and R be the unique tight re-
gion satisfying that property. Every region R' 2 R
does not satisfy P.

The same lemma holds for edge addition, where every
region R’ ¢ R does not satisfy P.

Now given a set of compatible properties we wish
to have on the graph, we can easily construct a region
guaranteeing these properties. In the case of convex
and symmetric regions and properties that are mono-
tone with respect to edge removal, this is achieved by
taking the convex hull of the union of the tight regions
for each property. In some cases, this region can be
proved to be extremal with respect to the inclusion
ordering among the considered type of regions.

Lemma 3 Let P and P’ be two monotone properties
with respect to edge removal, and R and R’ two re-
gions satistying P and P’ respectively. Then R U R’
satisfies P N P’. Furthermore, if R and R’ are the
unique tight regions for P and P’, then the convex
hull of RU R/ is tight and unique for P NP’.

A similar Lemma holds for properties that are mono-
tone with respect to edge addition as well.

In the class of all possible properties, we can iden-
tify various families. For instance the class of prop-
erties corresponding to graphs not containing any of
the graphs in a given set as subgraph. Another way
used to describe properties is to express them as a set
of forbidden minors.

Our study showed that there is not always a unique
tight region satisfying a property expressed as a set of
forbidden subgraphs, or as a set of forbidden minors.
However, we do not know whether every monotone
property can be expressed as a finite set of symmetric,
convex and closed tight regions.

3 Geometric Properties

Here we consider geometric properties, which are
properties depending on the position of the vertices.

The following theorem shows that the graph embed-
ding obtained by linking adjacent points by straight
line segments is planar if and only if the region con-
tains the ball of diameter pq.

Theorem 4 The ball B is the unique tight region
ensuring a planar embedding.

In the following, dg(u,v) is the minimum Euclidean
length of a path between u and v.

Definition 10 A graph G in the plane is a t-spanner
for t € [1,00), if and only if Yu,v € V
dg(u,v)/||luv|| < t, where t is called the spanning
ratio.

The spanning ratio is also called the dilation. We
say that the spanning ratio is unbounded whenever
it cannot be bounded by a constant independent of
n, i.e. it can be made arbitrarily large for sufficiently
large n.
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Theorem 5 For every convex anchored region R
with non-empty interior, there exists a real number
« > 0 such that we can find a set S of n vertices for
any n for which the spanning ratio of RCGRr(S) is

The proof uses recent results on the spanning ratio
of (-skeletons [1, 13]. When we introduced the region
counting distances, one of our motivations was to find
an anchored region such that the corresponding graph
would be a t-spanner not affected by rotations of the
set of points. The well-known ©-graph, which is not
invariant to rotations, exhibits a constant spanning
ratio. The theorem above shows that it is not possible
to find an anchored region corresponding to a constant
spanning ratio other than the segment or the empty
region if the anchored region is convex.

4 Forbidden Subgraphs

A property P defined by a forbidden subgraph F' is
a set of graphs not having any subgraph isomorphic
to F. We denote by F' C F’ the fact that F’ has a
subgraph isomorphic to F'. The union F'U F’ of two
graphs F = (V,E) and F' = (V/,E') with VNV’ =0
is(VUV' EUE").

Lemma 6 If the region R is tight for a forbidden
subgraph F and for a forbidden subgraph F' O F,
then it is tight for all forbidden subgraph G which
satisfies F C G C F".

Theorem 7 If R is the set of tight regions for a for-
bidden subgraph F and if R’ is the set of tight re-
gions for a forbidden subgraph F’, then the set of
tight regions for the forbidden subgraph F U F' is
{RERUR'WR e RUR': R 2 R'}.

We will now study properties which can be explained
as forbidden subgraphs.

Theorem 8 The pacman Py, is the unique tight
region forbidding a k-Star, which is equivalent to
bounding the maximum degree by k — 1.

There are many regions corresponding forbidding a
k-cycle, depending on the parameter k. The tight
regions for 3-cycle and 4-cycle are unique, while there
are at least two regions for k > 5.

Theorem 9 1. The Lune L is the unique tight re-
gion forbidding a 3-cycle.

2. The pacman P;. is the unique tight region forbid-
ding a 4-cycle.

3. There are at least two tight regions forbidding a
5-cycle: the truncated slab and Pg /5(p, q).

We show in the next sections that cycle freeness,
which corresponds to forbidding a k-cycle for every
k, has also two tight regions, and that the tight re-
gions for the 5-cycle are subregions of those for cycle
freeness.
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5 Other Properties

Properties discussed in theorems 10 and 11 corre-
spond to forbidding graph minors: cycle freeness cor-
responds to forbidding a triangle as minor; Kura-
towski’s theorem says that planarity corresponds to
forbidden minors K33 and Ks.

Theorem 10 There are at least two tight regions for
cycle freeness: the slab S and the mastercard M.

Theorem 11 The ball B is a tight region for pla-
narity.

Theorem 12 The lune L is the unique tight region
for connectivity.

Theorem 13 There are at least two tight regions for
bipartiteness: the slab S and the mastercard M.

References

(1] P.Bose, L. Devroye, W. Evans, and D. Kirkpatrick. On the
spanning ratio of gabriel graphs and beta-skeleton. Siam
Journal of Discrete Math, 2004. accepted.

[2] E. D. Demaine, J. Iacono, and S. Langerman. Proximate
point searching. In Proceedings of the 14th Canadian Con-
ference on Computational Geometry (CCCG), 2002.

(3] D. Eppstein, M. Paterson, and F. Yao. On nearest-
neighbor graphs. Discrete and Computational Geometry,
17:263-282, 1997.

E. Friedgut and G. Kalai. Every monotone graph property
has a sharp threshold. In Proceedings of the AMS, pages
2993-3002, 1996.

[6] K. Gabriel and R. Sokal. A new statistical approach to
geographic variation analysis. Systematic Zoology, 18:259—
278, 1969.

[6] M. Ichino and J. Sklansky. The relative neighborhood
graph for mixed feature variables. Pattern Recognition,
18:161-167, 1985.

. Jaromczyk an . Toussaint. elative neighborhoo

7 J.d k and G. T i Relati ighborhood
graphs and their relatives. Proceedings of the IEEE,
80(9):1502-1571, 1992.

J. Keil and C. Gutwin. Classes of graphs which approxi-
mate the complete euclidean graph. Discrete and Compu-
tational Geometry, 7(1):13-28, 1992.

9] D. Kirkpatrick and J. Radke. A framework for computa-
tional morphology. Computational Geometry, pages 217—
248, 1985.

[10] T. Su and R. Chang. The k-gabriel graphs and their ap-
plications. In Proceedings of the International Symposium
SIGAL’90, pages 66—75, 1990.

[11] T. Su and R. Chang. Computing the k-relative neigh-
borhood graphs in euclidean plane. Pattern Recognition,
24:231-239, 1991.

[12] G. Toussaint. Some unsolved problems on proximity
graphs. In Proceedings of the First Workshop on Proz-
imity Graphs, 1991.

[13] W. Wang, X. Li, K. Moaveninejad, Y. Wang, and W. Song.
The spanning ratio of beta-skeletons. In Proceedings of
the Canadian Conference on Computational Geometry
(CCCaG), 2003.

[14] A. Yao. On constructing minimum spanning trees in k-
dimensional spaces and related problems. SIAM Journal
on Computing, 11(4):721-736, 1982.

4

8



EWCG 2005, Eindhoven, March 9-11, 2005

Homotopic Spanners*

Sergio Cabellof

Abstract

We introduce the concept of homotopic spanners in
the plane with obstacles and show lower bounds on
the number of edges that they require. We also pro-
vide a construction based on ©-graphs for construct-
ing homotopic spanners.

1 Introduction

Spanners have become a basic tool for the design of
networks: they are graphs connecting a given set of
sites with the property that the distances between
sites along the graph is similar to the straight-line
distance between the sites. As a basic requirement,
spanners have to be sparse, that is, they need to have
few edges. Typically, we are interested on spanners
that have additional properties, such as bounded de-
gree, small total length, small spanning diameter, etc.

In applications like robot motion planning, we often
deal with the scenario where the sites are in the plane
and we also have a set of obstacles to be avoided. This
naturally leads to the problem of computing spanners
under the influence of polyhedral obstacles, already
considered by Clarkson [6] and Das [7].

We consider here the construction of spanners in
the plane with point-obstacles, but with the addi-
tional condition that between each pair of sites there
is a short path in the spanner which is homotopically
equivalent to the straight-line segment that joins the
sites. Although much work has been done on span-
ners with additional properties, we are not aware of
any research on constructing spanners with topologi-
cal properties.

In the next section we introduce the basic notation
and topological background; we also define precisely
the concept of homotopic spanners. In Section 3 we
show a modification of ©-graphs that can be used to
construct homotopic spanners. In Section 4 we discuss
the computational issues related to the construction.
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In Section 5 we present lower bounds on the number
of edges that any homotopic spanner needs.

2 Notions and problem statement

Topological background. A finite set of points I C
R? will be called point-obstacles. If x,y € R\ K, a
path from x to y is a continuous mapping « : [0, 1] —
R?\ K such that a(0) = z and a(1) = y. If 3 is a path
from y to z, then the concatenation a + 3 of paths «
and (3 is a path from z to z defined as (a + 3)(u) =
a(2u) if 0 < w < % and (a+ 3)(u) = B(2u — 1) if
% < wu < 1. Two paths «, 8 joining the same pair of
points in R? \ K are said to be homotopic, denoted
a ~p2\x B if the loop a — 3 (o concatenated with
the reverse of ) is a contractible curve in R? \ K.
The reader is referred to [8], where also the following
standard results can be found:

Lemma 1 Homotopy of paths has the following
properties:

1. The relation o ~g2\x (3 Is an equivalence rela-
tion.

2. If a ~pave B, @ ~pavie B, and o1) = (1) =
o/ (0) = '(0), then (a + ') ~p2vkc (B+ ).

3. If the paths «, 3 share endpoints and are contai-
ned in a convex subset of R?\ K, then o ~gr2\xk B

Homotopic Spanners. Let S be a point set in R?,
and let G = (S, E') be a graph on S. The graph is rep-
resented in the plane with each vertex represented by
the point itself and with straight-line edges. We use
ss’ to denote both, the edge of G and the straight-line
segment joining s and s’. We associate with each edge
ss’ € FE the length |ss’| of the straight-line segment
joining its vertices. The length of a path « in G is the
sum of the lengths of its edges; we denote it by |a|q.

Fort e R,t > 1, apathin G froms€ Stos €S
is a t-path if its length, is at most ¢ [ss’|. A graph G is
a t-spanner if, for each pair of points s,s’ € S, there
exists a t-path in G from s to s’. We consider the
following generalization.

Definition 1 Given a set of points S C R? and a set
of point-obstacles IC, a K-homotopic t-spanner of S is
a graph G = (S, E) such that, for any s, s’ € S, there
is a t-path « in G such that o and the segment ss'
are homotopic in R? \ K.
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We consider the following problem: given a fixed
number ¢t > 1, construct homotopic ¢-spanners as a
function of S and K such that the number of edges
is the spanner is not too large. We let n = |S| and
k = |K|. We assume that no obstacle in K is aligned
with two points of .S, as otherwise it may be that the
desired spanner does not exist.

3 Construction of homotopic spanners

The idea is to modify the construction of ©-spanners
introduced by Keil and Gutwin [9]. We use a nota-
tion similar to Arya, Mount, and Smid [2] and Bose,
Gudmundsson, and Morin [3]. Consider an angle
0 = 2% for some integer 7" > 8 such that it holds
ty = m < t. For a point s in S, consider the
set of rays Rs9 = {ray;(s) | j € {0,...,T — 1}} ,
where ray;(s) is the straight ray from s with angle j6
with a horizontal line, and R, x = {ray(s,o0) | o € K},
where ray(s,o) is the straight ray starting at s with
direction towards o. Let Ry = Ry U Ry ic.

All the rays in R, have s as starting point, and
therefore they divide the plane into a set of cones,
which we denote by Cs. Since t is a fixed constant,
also T is a constant. Hence, Cs consists of O(1 + k)
cones. Any cone C' € C, has angle at most 6 and it
contains no obstacles in its interior. For a cone C €
Cs, consider any ray r from s contained in C' and let
j be the largest value such that j6 is smaller than the
angle of r; we use ray(C') for the ray ray;(s) € Rs.o.
Observe that the angle between r and ray(C) is at
most 6.

Let the graph ©(S, K, T) be defined as follows:
e The set of vertices of ©(S, K, T) is S;

e For each point s € S, for each cone C' € C;s such
that CN(S\{s}) # 0, we put an edge connecting
s and a point s¢ in C NS\ {s} that has the
orthogonal projection onto ray(C) closest to s.
If there are more than one candidate for so, we
select one which is closest to ray(C).

Observe that ©(S, K, T) has O(nk) edges.

Theorem 2 The graph O(S,KC,T) is a K-homotopic
tg-spanner of S with O(nk) edges.

Proof. Consider two points s,s’ € S, and let C' be
the cone of C4 that contains s’. By construction, we
know that there is a point s. € C such that ss.
is an edge in O(S, /K, T). Using that ray(s,s’) and
ray(s, s.) form an angle at most 0, the same argument
that is used for the standard ©-graph [2] implies

to|scs'| < tglss’| —|ssel- (1)

We show by induction on the rank of the interpoint
distances that for any pair of points s, s’ € S thereis a
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ty-path in ©(S, K, T) that is homotopic to ss’. If the
pair s, s’ is a closest pair, then it holds that s. = s’
and therefore the segment ss’ is in ©(S, K, T).

Consider a pair of points s,s" € S. If s’ = s., then
the segment ss’ is in ©(S, K, T) and there is nothing
to show. Otherwise, s’ # s.. Because of (1), we have
|scs’| < |ss’|, and by induction hypothesis there is a
tg-path ain O(S, K, T) from s, to s’ that is homotopic
to the segment scs’ in R? \ K, that is o ~pa\xc scs’.
Let 8 = ss. + a. We have

Bla = Isse| + lala < [sscl +to |scs’| < to [ss'],

where the last inequality follows from equation (1).
This means that 3 is a tg-path from s to s’.

We next show that 3 ~g2\c ss’, which finishes the
proof. Since 8 = ss. + a and a ~g2\g Scs, we have
B ~r2\k 8Sc + Sc8 because of property 2 in Lemma 1.
Because the triangle Ass’s. is contained in the cone
C € Cs we have KN Ass’'s. = (), and by property 3 in
Lemma 1 we conclude that ss.+s5.5" ~g2\x s5'. Since
~ is an equivalence relation we get 3 ~g2\x s5’. [

For any value ¢ > 1 we can take a constant 7' € N
large enough such that ¢ > cos(QW/T)isin(Q'n'/T)’ and
we conclude that for any fixed ¢ we can construct a

KC-homotopic t-spanner with O(nk) edges.

4 Efficient construction

Consider a set of n sites S and k obstacles K. We
assume that k < n, as otherwise we can just consider
the complete graph as a spanner and we are within
the bound of O(nk) edges for a spanner that we are
aiming to. For a fixed value T', the graph ©(S,KC,T)
can be constructed in O(n?log k) time as follows:

1. for each site s € S

(a) split the sites S\ {s} into the cones of
Cs. This can be done by making a tree-like
structure for the boundary rays R, of Cs in
O(klog k) and locating each point of S\ {s}
in the appropriate cone in O(log k) time per
point. This takes O(klogk + nlogk) =
O(nlogk) time.

(b) for each cone C' € Cy, scan the points and
choose the one that s gets connected to, ac-
cording to the criteria in Section 3. This
takes O(n) time overall because each point
appears at most in two cones of Cs.

We discuss how the graph O(S, /K, T) can be con-
structed in a more efficient way. The idea is to con-
sider all the cones as range spaces and use the stan-
dard trade-offs for simplex range queries; see Ma-
tousek [10] or the survey by Agarwal and Erickson [1].
The main result to be used is the following (we use the
notation O(f(n)) = O(f(n)n) for any € > 0, where
the constant in O(f(n)) may depend on &).
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Lemma 3 For any set S of n points in the plane
and any value n < m < n? there is a family F(S) =
{F1,...,F,} of subsets of S and a data structure D(S)
such that

e p = O(m), that is, F(S) has O(m) members;
o X0_, [Fi| = O(m);

e for any triangle A in the plane, there is a group
F(A) of O(n/y/m) elements of F(S) such that
ANS= UFeF(A)F;

e D(S) has size O(m) and can be constructed in

O(m) time;
e for a query triangle A, the data structure D pro-
vides F(A) C F in O(n/\/m) time.

For a point set S and an angle « let Point(S, )
denote a point in S such that the line passing through
it with angle o 4+ 7/2 has all the points of S to its
right; that is, Point(S,«) is a point with minimum
xz-coordinate after rotating S with angle —a.

We extend the data structure of the previous lemma
as follows: for each set F' € F and each value j =
0,...,7 — 1 we store Point(F,jQT”). For any triangle
A we have

Point(SN A, j2%) € {Point(F, j%%) | F € F(A)},

and using the previous lemma we conclude that we
can find the point Point(S N A,jZ5) in O(n/\/m)
time per triangle A.

The augmented data structure can be constructed
by considering each j = 0,...,7 — 1 and scanning
each F' € F. Since we regard T as a constant,
and each F' € F is considered T times, we need
OTY perl|F|) = O(m) time to construct the aug-
mented data structure.

Consider the construction of ©(S,KC,T) given in
Section 3. For a cone C' with apex s, we have to
find a point in C with the orthogonal projection onto
ray(C) closest to s. Since ray(C) has an angle of the
form jc%” for some jo, it follows that this point is
Point(C' N S, jc2%). Since a cone is a special case
of a triangle, we can use the previous discussion to
conclude that we can find the edge that the cone C
contributes to (S, K, T) in O(n//m) time.

By setting m = n*3k?/3 we can find the edge
corresponding to a cone in O(n/Vni/3k2/3) =
O(n'/3k=1/3) time. This makes sense since we are
assuming k < n. The preprocessing of the data
structure for this case takes O(n*/3k?/3) time. Since
we have to consider O(nk) cones for the construc-
tion of O(S,/KC,T), we can find all the edges in time
O(nk) - O(n'/3k=1/3) = O(n*/3k?/3) time. We sum-

marize.

Theorem 4 Ifk < n, we can construct ©(S,KC,T) in
O(n*/3+¢k2/3) time, for any fixed ¢ > 0.

(n—1)

Figure 1: Lower bound for homotopic spanners when
k = O(n). The dots are sites and the squares are
obstacles.

This result improves the O(n? log k) time construc-
tion given above whenever k = O(n'~¢) for any fixed
e > 0.

5 Lower bounds

The homotopic spanner that we have constructed
above has O(nk) edges, where n is the number of
points and k is the number of point-obstacles. In con-
trast, the standard spanners have only O(n) edges. It
is natural to wonder if (nk) edges are indeed neces-
sary for constructing a homotopic spanner. We have
the following construction for the case k = ©(n).

Lemma 5 For any value of t, 1 < t < 3, and any
value of m, there is a set S of O(n) points and a set
K of O(n) point obstacles such that any K-homotopic
t-spanner of S needs Q(n?) edges.

3—t

Proof. Take e = 5> and consider the configuration

in Figure 1; we have sites
L={(0,je) | j €n]}, R={(1je)|j € [n]},

and obstacles

Ke=A{(.z+je)ljel-1}, (2
Ke={1-%5+ijo)lieh-1} (3
where we use the notation [n] = {1,...,n}. This

configuration has 2n points and 2n — 2 obstacles. It
remains to argue that any homotopic t-spanner has
Q(n?) edges.

The key observation is that any homotopic t-path
from asite [ € L to asite r € R has to use the segment
Ir. Note that if a path « from [ to r is homotopic to
Ir in R?\ (Kz UKRg) and only “crosses” from L to R
once, then the segment Ir has to be part of a.

Assume for the contrary that there is a (Kp Ug)-
homotopic t-spanner G of LU R that does not contain
the edge Ir for some | € L,r € R. Let o be the
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t-path in G from [ to r that is homotopic to Ir in
R2\ (KL UKR). Since a does not contain the segment
Ir, it has to “cross” from L to R (or vice versa) at
least three times. We conclude that |a|g > 3. Using
that |lr| <1+ ne it follows that |a|g/|lr| > t, and G
cannot be a (K U Kg)-homotopic t-spanner.

Since each segment from L to R has to be in a
homotopic t-spanner, then any homotopic t-spanner
has at least n? = Q(n?) edges. O

The above construction for the lower bound gener-
alizes for general values of n, k as Q(n+ min{n?, k*}).
Given n and k, if k& > n then we can take the con-
struction of the previous result and add k — n extra
obstacles; we need Q(n?) = Q(n +min{n?, k?}) edges
in any homotopic t-spanner. If k& < n then take the
construction above with n = k and add the extra
n — k sites far enough not to influence the construc-
tion; we need Q(k?) edges to make a t-spanner of
the first part, and we need n — k — 1 edges to con-
nect all the sites added afterwards, which adds to
Qk*+n —k) = Qk*+n) = Q(n + min{n? k?})
because k < n. We summarize:

Theorem 6 For any value t, 1 < t < 3, and any
values of n, k, there is a set S of O(n) points and a set
K of O(k) point obstacles such that any K-homotopic
t-spanner of S needs Q(n + min{n? k?}) edges.

6 Discussion

We have introduced the concept of homotopic span-
ners in the plane with point-obstacles. It is not clear
how this concept generalizes to higher dimensions,
where all paths are homotopic with respect to point-
obstacles, neither how it generalizes to polyhedral ob-
stacles, where a straight-line segment connecting two
sites may intersect obstacles.

For n sites and k point-obstacles, we have pre-
sented a construction for homotopic spanners that
uses O(nk) edges. However, we can only provide an
example showing that a homotopic spanner may need
Q(n + min{n?, k?}) edges. Our construction is based
on O-graphs. The most natural alternative to con-
sider is the Well Separated Pairs Decomposition of
Callahan and Kosaraju [5, 4], but it does not seems
easy to handle the homotopy classes induced by the
obstacles in a better way than with ©-graphs.

As with normal spanners, we can also be inter-
ested on homotopic spanners with additional prop-
erties, such as small maximum degree, small spanner
diameter, small total weight, etc. As for the maximum
degree D, the construction given above shows that in
the worst case D = Q(k), and so we cannot aim to get
bounded degree. Adapting the ordered ©-spanners of
Bose, Gudmundsson, and Morin [3] to handle point-
obstacles, it is possible to construct spanners with
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O(nk) edges and maximum degree O(klogn). As for
the spanner diameter, a randomized construction sim-
ilar to Arya, Mount, and Smid [2], where we keep all
the obstacles at each stage, will lead to randomized
algorithms for constructing homotopic spanners with
O(nk) edges and O(logn) spanner diameter.
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Finding the Best Shortcut in a Geometric Network *

Mohammad Farshif

Abstract

Given a Euclidean graph G in R? with n vertices
and m edges we consider the problem of adding a
shortcut such that the stretch factor of the resulting
graph is minimized. Currently, the fastest algorithm
for computing the stretch factor of a Euclidean graph
runs in O(mn + n?logn) time, resulting in a trivial
O(mn3 4+ n*logn) time algorithm for computing the
optimal shortcut. First, we show that a simple modifi-
cation yields the optimal solution in O(n*) time using
O(n?) space. To reduce the running times we consider
several approximation algorithms. Our main result is
a (2 + ¢)-approximation algorithm with running time
O(nm + n?(logn + 1/3%)) using O(n?) space.

1 Introduction

Consider a set V' of n points in R?. A network on V
can be modeled as an undirected graph G with vertex
set V and an edge set E of size m where every edge
e = (u,v) has a weight wt(e). A Euclidean network
is a geometric network where the weight of the edge
e = (u,v) is equal to the Euclidean distance between
its two endpoints u and v. Let t > 1 be a real number.
We say that G is a t-spanner for V| if for each pair of
points u,v € V, there exists a path in G of weight at
most ¢ times the Euclidean distance between u and v.
The minimum t such that G is a t-spanner for V is
called the stretch factor, or dilation, of G.

Complete graphs represent ideal communication
networks, but they are expensive to build; sparse
spanners represent low-cost alternatives. The weight
of the spanner network is a measure of its sparse-
ness; other sparseness measures include the num-
ber of edges, the maximum degree, and the number
of Steiner points. Spanners for complete Euclidean
graphs as well as for arbitrary weighted graphs find
applications in robotics, network topology design, dis-
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Apx. factor Time complexity ’ Space ‘ Sec. ‘
1 O(n*m +n*logn) O(n) 2
1 O(n*) O(n?) 2
3 O(nm 4 n®logn) O(n) 3
2+4¢ O(nm +n?*(logn + 1/£3%)) | O(n?) 4

Table 1: Complexity bounds for the algorithms pre-
sented in the paper.

tributed systems, design of parallel machines, and
many other areas and have been a subject of consid-
erable research. Recently spanners found interesting
practical applications in areas such as metric space
searching [6] and broadcasting in communication net-
works [1]. The problem of constructing spanners has
received considerable attention from a theoretical per-
spective, see the surveys [3, 7].

Most known algorithms either construct a spanner
given a point set or prunes a given graph, but in many
applications the geometric network is already given,
and the problem at hand is to extend the network
with an additional edge, or edges, while minimizing
the stretch factor of the resulting graph. Surprisingly
this problem has not been studied previously, to the
best of the authors’ knowledge. In this paper we study
the following problem:

Problem. Given a Euclidean graph G construct a
graph G’ by adding an edge to G such that the stretch
factor of G’ is minimized.

We present one exact algorithm and several approx-
imation algorithms. The results presented in this pa-
per are summarized in Table 1.

We will denote by |uv| the Euclidean distance be-
tween u and v, and d¢(u, v) denotes the shortest path
between u and v in G with length dg(u,v). Finally,
Gp will denote the optimal solution, while tp and ¢
denotes the stretch factor of Gp and G respectively.

2 Finding an optimal solution

We consider the problem of computing an optimal
solution Gp. That is, we are given a t-spanner G =
(V, E), and the aim is to compute a tp-spanner Gp =
(V,EU {e}).

A naive approach to decide which edge to add is
to test every possible candidate edge. The number of
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such edges is obviously (% — m) = O(n?). Test-
ing a candidate edge e entails computing the stretch
factor of the graph G’ = (V,E U {e}), therefore we
briefly consider the problem of computing the stretch
factor of a given Euclidean graph.

A trivial upper bound is obtained by computing
the All-Pairs-Shortest-Path for the given graph G.
Running Dijkstra’s algorithm — implemented using Fi-
bonacci heaps — gives the stretch factor of G in time
O(mn + n?logn) using linear space. This algorithm
is quite slow and we would like to be able to compute
the stretch factor more efficiently, but no faster algo-
rithm is known for any graphs except planar graphs,
paths, cycles and trees [4, 5].

Applying the above bounds for computing the exact
stretch factor of a Euclidean graph gives us that Gp
can be computed in time O(n®(m + nlogn))) using
linear space.

An improvement can be obtained by observing that
when an edge (u,v) is about to be tested we do not
have to check all possible shortest paths between two
vertices x,y € V again, it suffices to check if there
is a shorter path using the edge (u,v). That is, we
only have to check the length of the paths dg(z,u) +
|luv|+dc (v, y) and oG (z, v)+ |vu|+0G(u, y), which can
be done in constant time since dg(z,u) and dg(v,y)
already have been computed (provided that we store
this information). Hence by first computing all-pair-
shortest paths of G we obtain:

Lemma 1 Given a FEuclidean graph G, an optimal
solution Gp can be computed in time O(n*) using
O(n?) space.

3 Adding the bottleneck edge

In this section we study the approach of adding an
edge between a pair of vertices in G that decides the
stretch factor of G.

Consider an optimal solution Gp and denote by x
and y the two endpoints of the edge added to G to
obtain Gp. Assume that a pair of vertices deciding
the stretch factor of G is (u,v), i.e., the length of the
path between u and v in G is exactly ¢ - |uv|. We call
this edge a bottleneck edge of G. Let G be the graph
obtained from G by adding the bottleneck edge, and
let tz be the stretch factor of G.

Lemma 2 Given a Euclidean graph G in R? it holds
that tp < 3tp.

The main result of this section is:

Theorem 3 Given a Fuclidean graph G = (V, E)
one can in O(mn + n?logn) time, using O(n) space,
compute a tp-spanner G' = (V, E U {e}) where iz <
3tp.
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We end this section by giving a lower bound for the
bottleneck approach.

Figure 1: (a) The input graph G. (b) The bottleneck
solution compared to (c¢) the optimal solution.

Observation 1 There exists a Fuclidean graph G
such that, (2 —¢) -tp < tg, for any ¢ > 0.

Proof. Consider the graph G, as in Fig. 1(a). More
specifically, G is a graph with ten vertices p; = ((i—1)
mod 5, [i/5] - §), 1 <14 < 10, and nine edges (ps, p10)
and (pj,pjt1), for 1 < j < 4and 6 < j < 9. If
we assume that § is a very small positive real value
then (p1,pg) is the bottleneck in G and t5 = 4%5, see
Fig. 1(b).

In the case when edge (p2,p7) is added to G, as
shown in Fig. 1(c), the resulting graph has stretch fac-
tor (240)/6. Combining the upper and lower bounds
gives f—i > % = (2 — ¢), where the last inequality

follows if we set § = 12—_‘55 O

Hence, we have an upper bound of 3 and a lower
bound of (2 — ¢) when adding the bottleneck edge to
the input graph.

4 A (2+ ¢)-approximation

In this section we will present a fast approximation al-
gorithm which guarantees an approximation factor of
(24¢). The algorithm is similar to the algorithm pre-
sented in Section 2 in the sense that it tests candidate
edges. Testing a candidate edge entails computing
the stretch factor of the graph. The main difference
is that we will show, in Section 4.1, that only a lin-
ear number of candidate edges needs to be tested to
obtain a solution that gives a (2 + €)-approximation,
instead of a quadratic number of edges.

Moreover, Section 4.2 shows that the same approx-
imation bound can be achieved by performing only a
linear number of shortest path queries for each can-
didate edge. The candidate edges are selected by us-
ing the well-separated pair decomposition (WSPD)
defined by Callahan and Kosaraju (see [2]). They
showed that a WSPD of size m = O(s%n) can be
computed in O(s?n + nlogn) time (s is called the
separation constant of the WSPD).

4.1 Linear number of candidate edges

In this section we show how to obtain a (2 + ¢)-
approximation in cubic time.
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The approach is straight-forward. First the algo-
rithm computes the length of the shortest path in G
between every pair of points in V. The distances are
saved in a matrix M. Next, the well-separated pair
decomposition is computed. Note that, in Step 5,
the candidate edges will be chosen using the well-
separated pair decomposition. Finally, steps 4-9, each
candidate edge is tested by computing the stretch fac-
tor of the candidate graph.

Algorithm EXPANDGRAPH(G,¢)

Input: Euclidean graph G = (V, E) and a real con-
stant € > 0.

Output: Euclidean graph G’ = (V, E U {e}).

1. M <All-Pairs-Shortest-Path dist. matrix of G.

2. {(A;,B;)}f_; «<WSPD of V with s = 258

3.t —o0.

4. for i—1tok

5. Select a point a; € A; and a point b; € B;.

6. Gﬁ—GZ (V,Eu(al,b,))

7

8

9

1

t;«~STRETCHFACTOR(G;, M).
if t; < t
) then ¢ — t; and e < (a;,b;)
0. return G' = (V, EU {e}).

Lemma 4 Algorithm  EXPANDGRAPH
O(n?/e2?) time and O(n?) space.

requires

It remains to analyze the quality of the solu-
tion obtained from algorithm EXPANDGRAPH. Let
A(p,q) denote the set of point pairs in V' such that
u,v € V belongs to A(p,q) if and only if (p,q) €
dau{(p.q}(,v). That is, the set of point pairs for
which the shortest path between them in GU{(p, q)}
passes through (p, q).

Lemma 5 For any given constant 0 < A < 1, there
exists a point pair p,q € V such that for every pair
(u,v) € A(p,q) it holds that |uv| > %|pq|, and the
stretch factor of GU{(p, q)} is bounded by (2+ ) -tp.

Note that algorithm EXPANDGRAPH might not test
(p,q) stated in Lemma 5. However, in the follow-
ing lemma it will be shown that algorithm EXPAND-
GRAPH will test an edge (a,b) that is almost as good

as (p,q)-

Lemma 6 For any given constant 0 < € < 1 it holds
that the graph G’ returned by algorithm EXPAND-
GRAPH has stretch factor at most (2 + ¢) - tp.

Proof. According to Lemma 5 there exists an edge
(p, q) such that for every pair (u,v) € A(p, q) it holds
that [uv| > 3|pg|, and the stretch factor ty of H =
G U{(p,q)} is bounded by (2 + \) - tp. Let {4;, B;}
be the well-separated pair computed in step 2 of the
algorithm such that p € A; and g € B;. Next consider
the candidate edge (a;,b;) tested by the algorithm,

such that a;,p € A; and b;,q € B;. For simplicity
of writing we will use a and b to denote a; and b;
respectively.

Our claim is that the stretch factor ¢’ of G’ = G U
{(a,b)} is bounded by (1+¢/4)-ty. Thus setting A\ =
£/4 would then prove the lemma since (2 +¢/4)(1 +
e/4) < (2+¢), fore <1.

Figure 2: Illustrating the proof of Lemma 6.

Now we are ready to prove the claim. If for all pairs
x,y, (x,y) ¢ A(p, q) then the claim is obviously true,
thus we only have to consider the pairs z,y for which
it holds that (z,y) € A(p,q), see Fig 2. It holds that:

dg(a,p) =dg(a,p) and dg(b,q) =du(b,q). (1)

This follows from the fact that the closest pair z’,1’
for which it holds that (z/,y’) € A(p, ¢) has inter point
distance at least |2y’| > £|pg|, according to Lemma 5.
It holds that |ap| and |bg| are bounded by % Ipg| <
% Ipg| which is less than £ |pg| since e < 1. As a
consequence (p,q) ¢ du(a,p) and (p,q) ¢ du(b,q).
Hence, claim (1) holds, which we will need below.

Next, we consider the length of the path in G’ be-
tween z and y as illustrated in Fig. 2. Recall that =
and y are two arbitrary points of V' for which it holds
that (z,y) € A(p, q).

do/(v,y) < da(x,p)+da(p,a)+ |abl +dg(b,q)

+dG(Q7 y)
< da(z,p) +du(p,a) + labl + du (b, q)
+dc(q,v) (from (7))
< dg(z,p) + (L+4/s) - |pq| + dc(q,y)
4t
+TH - Ipq] (WSPD property)
4t
< dy(z,y) + GETH -y (Lemma b5)
€
= du(ey) + 5ty

The stretch factor of the path in G’ between x and y
is:

Ttalryl

dG/(IE7 y) dH (LU, y) €
<(1l+-)-
|yl — ( + 4) tu

lzyl = |wyl
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We may now conclude this section with the follow-
ing theorem.

Theorem 7 Given a Euclidean graph G = (V, E) in
R? one can in time O(n®/e2?), using O(n?) space,
compute a t'-spanner G' = (V,E U {e}), where t' <
(2+¢) - tp.

4.2 Speed-up the algorithm

In the previous section we showed that a (2 + ¢)-
approximate solution can be obtained by testing a
linear number of candidate edges. Testing each can-
didate edge entails O(n?) shortest path queries. One
way to speed up the computation is to compute the
approximate stretch factor. The problem of comput-
ing the approximate stretch factor was considered by
Narasimhan and Smid in [5]. They showed the fol-
lowing fact:

Fact 1 ([5]) Given a Euclidean graph G and a real
value ¢ > 0, a (1 + €)2-approximative stretch factor
of G can be computed by performing O(n/e?) many
(1 + v)-approximate distance queries, where ~y is a
positive constant smaller than ¢.

Their idea is to compute a well-separated pair de-
composition of size s = 4(1 4 ¢) /e, and then for each
well-separated pair {A4;, B;} select an arbitrary pair
a; € A; and b; € B;. They prove that these are the
only pairs for which the stretch factor needs to be
computed.

We will use their idea to speed up step 7 of the
algorithm from O(n?) to O(n/e?). There will be
two changes in the EXPANDGRAPH algorithm. First,
between steps 2 and 3, the following four lines are
inserted:

- {(Cj, Dj)}Yo, —WSPD of V with s’ = 4(1 +¢)/e.
-for j «—1to/

Select a point ¢; € C; and a point d; € D;.
-S = {(Cl,d1), ey (Cg7 d@)}

Then, in step 7 of EXPANDGRAPH we will instead
of computing the exact stretch factor of G; make a
call to APPROXIMATESTRETCHFACTOR, or ASF for
short, with parameters G;, (a;,b;), M, and S. Note
that the number of point pairs in § is bounded by
O(n/e?).

Algorithm ASF(G; e, M,S)

Input: Euclidean graph G(V, E), edge e = (a,b) € E,
distance matrix M and a set of point pairs S.

Output: A real value D;.

2. for each point pair (¢;j,d;) in S
3. dist «min{M|c;,d;], Mc;,a] + |ab] +

M[b, dj],M[Cj7b] + |bCL| + M[a,dj]}
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4. Dz <*IIlElJX{IDi7 diSt/|dej|}
5. return D;.

We denote the modified algorithm EXPAND-
GRAPH2.

Theorem 8 Given a Euclidean graph G = (V. E)
and a real constant € > 0 one can in O(nm+n?(log n+
1/€3%)) time, using O(n?) space, compute a t'-spanner
G' = (V,EU{e}) sucht' < (2+¢€)-tp.

5 Open problems and Acknowledgements

Several problems remain open.

1. Is there an exact algorithm with running time
o(n*) using linear space?

2. Can we achieve a (1 4 ¢)-approximation within
the same time bound as in Theorem 87

3. A natural extension is to allow more than one
edge to be added. Can we generalize our results
to this case?

The authors would like to thank René van Oostrum
for fruitful discussions during the early stages of this
work.
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An Exclusion Region for Minimum Dilation Triangulations

Christian Knauer*

Abstract

Given a planar graph G, the graph theoretic dilation
of G is defined as the maximum ratio of the shortest-
path distance and the Euclidean distance between any
two vertices of G. Given a planar point set S, a tri-
angulation of S that achieves minimum graph theo-
retic dilation is called a minimum dilation triangu-
lation of S. 1In this paper, we show that a simple
exclusion region for an edge e of the minimum dila-
tion triangulation is given by the disk of radius «le]
centered at the midpoint of e, where « is any constant
< 3cos(m/6)/(4m) =~ 0.2067.

1 Introduction

In this paper, we are going to consider minimum dila-
tion triangulations. The problem is as follows: Given
a set S of points in the Euclidean plane, find a trian-
gulation T' of S such that the maximum dilation be-
tween any pair of these points in 7" is minimal, where
the dilation between a pair of points (u,v) in S is de-
fined as the ratio between the shortest path distance
of w and v in T and the Euclidean distance |uv| (see
Section 2 for formal definitions of these terms). In
Figure 1, we can see an example of a planar point set
and two triangulations, one of which achieves a very
low maximum dilation, while the other triangulation
has a very high maximum dilation.

The maximum dilation between any pair of points
in S with respect to a triangulation T of S is called
the graph theoretic dilation of T, and the minimum
graph theoretic dilation that any triangulation of S
can achieve is called the graph theoretic dilation of S.

When considering optimal triangulations, it is in-
structive to look at local properties of the edges of
these triangulations, since local properties improve
our understanding of the structure of optimal trian-
gulations and sometimes lead to efficient algorithms
to compute them. One important class of local prop-
erties that has been studied for minimum weight tri-
angulations and greedy triangulations is constituted
by exclusion regions. Exclusion regions give us a nec-
essary condition for the inclusion of an edge into an
optimal triangulation: If u and v are two points in
a given planar point set S, then the edge e := wv
can only be contained in an optimal triangulation of

*Institut fiir Informatik, Freie Universitat Berlin, Germany,
{knauer, mulzer}@inf.fu-berlin.de

Wolfgang Mulzer*

Figure 1: Two triangulations of point set {a,b, ¢, d}.
In triangulation (a), the dilation between points a and
¢ is very high, whereas triangulation (b) achieves a
very low dilation. The bold dashed lines represent a
shortest path between a and ¢ in the respective trian-
gulation.

S if no other points of S lie in certain parts of the
exclusion region of S. For example, Das and Joseph
[3] proved that e can only be included in the mini-
mum weight triangulation of a point set 9, if at least
one of the two equilateral triangles with base e and
base angle  is empty (see Figure 2). This result was
improved by Drysdale et al. [5], who proved that the
base angle can be increased to 7/4.6 and that also
the disk of diameter |e|/v/2 centered at the midpoint
of e is an exclusion region for the minimum weight
triangulation. A similar result with slightly different
parameters also holds for the greedy triangulation [6].
In this paper, we are going to show that an analogous
result applies to the minimum dilation triangulation.
More specifically, we show that an edge e can only
be included in the minimum dilation triangulation
of S, if at least one of the two half circles with ra-
dius a|e| whose center is the center of e is empty (see
Figure 2). Here a denotes any constant such that
0 < a < 3cos(m/6) /(4m) ~ 0.2067.

Previous Work. Up to now, very little research
has been done on minimum dilation triangulations,
but there has been some work on estimating the di-
lation of certain types of triangulations that had al-
ready been studied in other contexts. Chew [2] shows
that the rectilinear Delaunay triangulation has dila-
tion at most v/10. A similar result for the Euclidean
Delaunay triangulation is given by Dobkin et al. [4].
They show that the dilation of the Euclidean De-
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(b) u®

£ |
N

Figure 2: (a) shows the standard exclusion region for
the minimum weight triangulation. (b) shows our ex-
clusion region for the minimum dilation triangulation.

launay triangulation can be bounded from above by
(1 + \/5) w/2 &~ 5.08. This bound was further im-
proved to 27 /(3 cos (7/6)) =~ 2.42 by Keil and Gutwin
[8], and we are going to use this bound as an essential
ingredient in our proof.

Das and Joseph [3] generalize these results by iden-
tifying two properties of planar graphs such that if A
is an algorithm that computes a planar graph from a
given set of points and if all the graphs constructed by
A meet these properties, then the dilation of all the
graphs constructed by A is bounded by a constant.

A more comprehensive survey of results on the
graph theoretic dilation of planar and general graphs
can be found in Eppstein’s survey [7].

Surprisingly, very few results are known about
the triangulations which actually achieve the opti-
mum graph theoretic dilation. In his master’s thesis,
Mulzer [9] investigates the structure of minimum dila-
tion triangulations for the regular n-gon, but beyond
that not much is known.

2 Preliminaries

Let S be a finite set of points in the Euclidean plane,
and let T" be a triangulation of S. For any two points
u,v € S, the ratio between the shortest path distance
71 (u,v) and the Euclidean distance |uv| is called the
(relative) dilation between u and v with respect to
T, which we shall denote by o7 (u,v). Formally, the
dilation is defined as follows:

def 17
(ST (u, U) = { 7w (u,v)

luv] 2

if u=nwv,
if u # v.

The convention to define 67 (v,v) = 1 for any v € S
is very natural, since from the definition it is imme-
diate that dp (u,v) > 1 for every u,v € S, as clearly
we have 7 (u,v) > |uv| for all u,v € S.
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Intuitively, the dilation is a measure for the quality
of the connection between u and v in T'. If the dilation
is large, this means that we have to travel a long way
along the edges in 7" in order to reach v from u even
though the direct route would be much shorter.

In order to get a measure for the quality of the
connection between any two vertices of T', it is natural
to take the maximum over all the dilations between
pairs of vertices in T'. This quantity is called the graph
theoretic dilation of T. We will denote it by ¢ (T).
The formal definition is this:

def
0(T) = ﬁzgg or (u,v) .

If T has the property that its graph theoretic dila-
tion is minimal among all triangulations of .S, we call
T a minimum dilation triangulation of S.

3 An Exclusion Region

Let 0 < a < 3cos(w/6)/(47w) be a constant, S a
planar point set, u,v € S two points in the plane,
and let D be the disk of radius a|uv| centered at the
midpoint of line segment e = ww. We are going to
show that D is an exclusion region for e.

The basic idea is very simple: Even though we do
not know much about the actual minimum dilation
triangulation of a planar point set .S, we know that the
graph theoretic dilation of the Delaunay triangulation
of S is bounded by the constant v = 27/(3 cos (7/6))
[8]. Furthermore, it is obvious that if we have an edge
e and two points that are quite close to the center of
e and that lie on opposite sides of e, then the dilation
between these two points is very large, because the
line segment e constitutes an obstacle that any path
between these two points needs to circumvent (see
Figure 1(a) for an example). Thus, all we need to
check is that the dilation between any pair of points in
the disk that lie on opposing sides of e is larger than ~,
and then we know that if such a pair of points exists,
then e cannot be contained in the minimum dilation
triangulation of S, since the Delaunay triangulation
would give us a better graph theoretic dilation than
any triangulation containing e.

Thus, we assume that there exist two points a,b € S
in D on opposite sides of e (see Figure 3). We need
to show that ér(a,b) > v for any triangulation T" of
S that contains line segment e. For this we need to
know the shortest path distance between a and b in
T, mr(a,b). Since the only thing we know about T
is that T contains e, the best thing we can do is to
lowerbound 77 (a,b) by min(|au| + |ub|, |av| + |vb]).

The first thing we observe is that we can assume
that the two points lie on the boundary of D, since
the dilation between the intersection points of the line
through a and b with the boundary of D is smaller
than the dilation between a and b.
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.U

Figure 3: The situation described in Observation 1.
The dilation between a’ and b’ is smaller than the
dilation between a and b. z is the intersection point
of ab and e.

Observation 1 Let a be a point in D to the right of
line segment e = uv, and let x be a point on e and in
D. For d > 0, let b(d) be the point to the left of line
segment e on the half line ax such that |xb(d)| = d.
Then the dilation §(d) between a and b(d) decreases
as d increases.

Proof. Due to the triangle inequality, the shortest
path between a and b cannot include e, and hence
0(d) is given by

min (|ual + |ub(d)], [va] + [vb(d)[)

od) = lax| +d

First, we are going to check that ¢(d) := (Jua| +
|ub(d)|)/(Jaz| + d) is monotonically decreasing. By
the law of cosines, the numerator can be written as
num(d) = |ua| + \/|uz|? + d? — 2|uz|cos §, where §
denotes the angle between uwx and zb(d). An easy
calculation shows num’(d) < 1. The derivative of
the denominator is 1. Therefore, by the mean value
theorem, it follows that ¢(d) is monotonically de-
creasing (note that the numerator is never smaller
than the denominator), and the observation follows,
since by a similar argument we can check that also
d — (lval 4+ |vb(d)|)/(Jax| + d) decreases monotoni-
cally, and hence §(d) decreases. O

Now we are left with the task of bounding the dila-
tion between two points on the boundary of D. First
of all, it is clear that dilation (2a)~! can be achieved
when a and b are infinitesimally close to the two inter-
section points of D and e, respectively. We are going
to show that this is already an optimal configuration.
For our calculations we need a propitious parameter-
ization. We proceed as follows: Let z be the center of
D. By symmetry, we may assume that ab lies to the
right of z. We describe the line segment ab by looking
at the angle = Zbza and the angle x = Zbzv — (3/2.
The angle = describes the rotation of ab with respect
to the position in which ab is perpendicular to e (see
Figure 4). By our assumptions, we have 8 € (0, 7]
and x € (—f3/2,3/2). Our parameterization is cho-
sen in such a way that the following equations can be

Ue

Figure 4: Our parameterization. The angle Zazb is
called 3. The offset & denotes the rotation of ab with
respect to the vertical position (dashed lines).

written in a symmetric manner, which simplifies some
of the calculations.

The angle Zbza is at most 7w, and hence the shortest
path between a and b passes v. Thus, the dilation
between a and b is given by

f(z) + f(==)

d(x,B) = 2asin(5/2)

where

f(x,8) = /0.25 + a2 — acos(B/2 + z).

Here, f(z) and f(—z) denote the length of line seg-
ment |vb| and |val, respectively.

First, we fix 8 € (0,7] and optimize x — d(x, 3).
An elementary yet tedious calculation yields the fol-
lowing observation:

Observation 2 Let 5 € (0, 7] be fixed. If we have
cos(3/2) < 2«, the function x +— §(x,3) is minimal
for cos(z) = (2a) "t cos(B/2). Otherwise, x +— &(z, 3)
is minimal for x = 0.

Now there are two cases to consider. If cos(3/2) >
2a, we need to look at §(0,5) = f(0)/(asin(5/2)).
Again, it turns out that this function is minimal if
cos(8/2) = 2a, for this value of 8 we get that the dila-
tion between a and b is exactly (2«0)~!. What happens
if cos(/2) < 2a? In this case, we need to consider
the value of d(x,3), where x has the property that
cosz = (2a)7!cos(3/2). By using this property and
by some trigonometric manipulations, we find that
§(x, B) = (2a) L. Tt follows that the dilation between
a and b exhibits quite a remarkable behavior. If ¢ and
b are diametrically opposed, the minimum configura-
tion with minimum dilation occurs when a and b are
infinitesimally close to the two intersection points be-
tween D and e. As the chord ab gets shorter, the
angle between e and ab in the optimal configuration
becomes larger, until e and ab are perpendicular. As
soon as this configuration is reached, the dilation be-
tween a and b increases as ab gets shorter.

Consequently, the minimum dilation between any
points @ and b in the two halves of D is (2a)~!, and
by our choice of o and the upper bound on the graph
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theoretic dilation of the Delaunay triangulation [8],
we can conclude with the following theorem:

Theorem 1 Let 0 < o < 3cos(n/6) /(47) be a con-
stant, and let a and b be two points in the plane. Then
the circle of radius a|ab| centered at the midpoint of
ab is an exclusion region for the minimum dilation
triangulation.

Note that this exclusion region can be enlarged a
little bit on the upper and lower boundary. For exam-
ple, the dilation between the north- and south-pole of
D is strictly less than v. However, this would give us
some curve of order 4 that is more difficult to handle
than a simple circle.

4 Conclusion

We have made some progress in the field of min-
imum dilation triangulations and have shown that
the concept of exclusion regions also makes sense for
the minimum dilation triangulation. Usually, exclu-
sion regions are applied as an initial filter of algo-
rithms that compute minimum weight triangulations
or greedy triangulations [1, 6]. It is easy to see that if
the point set S is drawn independently and uniformly
from a convex set C, then only an expected number of
O(n) edges pass the exclusion region test, so a large
amount of edges can be discarded. In the algorithms
for the other optimal triangulations, the remaining
edges are processed using the greedy property (for
the greedy triangulation) or some other local proper-
ties that give sufficient conditions for the inclusion of
an edge (for the minimum weight triangulation). For
the minimum dilation triangulation, however, it is not
yet clear what to do with the remaining edges, since
no other useful local properties are known that could
be used in further processing steps. Finding such local
properties remains an open problem.

It may also be interesting to look for configurations
of points that show how tight our exclusion region is
and whether it can be enlarged. At least it is clear
that the exclusion region cannot come arbitrarily close
to the endpoints of the edge, since otherwise the di-
lation between two points in the exclusion region can
be arbitrarily close to 1.
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Improved Lower Bound on the Geometric Dilation of Point Sets*

Adrian Dumitrescu®

Abstract

Let G be an embedded planar graph whose edges are
curves. The detour between two points p and ¢ (on
edges or vertices) of G is the length of a shortest path
connecting p and ¢ in G divided by their Euclidean
distance |pg|. The maximum detour over all pairs of
points is called the geometric dilation 6(G). Ebbers-
Baumann, Griine and Klein have shown that every
finite point set is contained in a planar graph whose
geometric dilation is at most 1.678, and some point
sets require graphs with dilation § > 7/2 =~ 1.57.
They conjectured that the lower bound is not tight.
We use new ideas, a disk packing result and arguments
from convex geometry, to prove this conjecture. The
lower bound is improved to (1 + 10~ !1)7/2.

1 Introduction

Consider a planar graph G embedded in R?, whose
edges are curves' that do not intersect. Such graphs
arise naturally in the study of transportation net-
works, like waterways, railroads or streets. For two
points, p and ¢ (on edges or vertices) of G, the detour
between p and ¢ in G is defined as

da (p,
da(pq) = (72(71;|q)

where dg(p,q) is the shortest path length in G be-
tween p and ¢ and |pq| denotes the Euclidean distance,
see Figure 1 for an example.

Good transportation networks should have small
detour values. In a railroad system, access is only
possible at stations, the vertices of the graph. Hence,
to measure its quality we can take the maximum de-
tour over all pairs of vertices. This results in the well-
known concept of graph-theoretic dilation studied ex-
tensively in the literature on spanners, see [7] for a
survey.

*There is a full version [3] of this paper available.

fComputer Science, University of Wisconsin-Milwaukee,
3200 N. Cramer Street, Milwaukee, WI 53211, USA;
ad@cs.uwm.edu

tUniversitdt Bonn, Institut fiir Informatik I, D-53117 Bonn,
Germany; gruene@cs.uni-bonn.de; partially supported by a
DAAD PhD-grant

8Freie Universitdt Berlin, Institut fiir Informatik, Taku-
strafie 9, D-14195 Berlin, Germany; rote@inf.fu-berlin.de

LFor simplicity we assume here that the curves are piecewise
continuously differentiable, but think that the proofs can be
extended to a broader class of curves.

Ansgar Griine

Giinter Rote?

Figure 1: A grid G of small dilation §(G) = da(p,q) =
da(p,q)/|pql < 1.678 introduced in [5]

However, if we consider a system of urban streets,
houses are usually spread everywhere along the
streets. Hence, we have to take into account not only
the vertices of the graph but all the points on its edges.
The resulting supremum value is the geometric dila-
tion

6(G) := sup d¢(p,q) = sup ds(p.9)

p,q€G p.g€G Ipq|
on which we concentrate in this article. Several pa-
pers [6, 13, 2] have shown how to efficiently compute
the geometric dilation of polygonal curves. Besides
this the geometric dilation was studied in differential
geometry and knot theory under the notion of distor-
tion, see e.g. [9, 12].

Ebbers-Baumann et al. [5] recently considered the
problem of constructing a graph of lowest possible ge-
ometric dilation containing a given finite point set on
its edges. Even for three given points this is a difficult
task. Therefore they started by providing an upper
and a lower bound on the dilation necessary to embed
any finite point set, i.e. on the value

A= sup (@) .

inf
PCR2, P finite GDP, G finite
They showed that a slightly perturbed version of the
grid in Figure 1 can be used to embed any finite point
set. Thereby they proved A < 1.678.
They also derived that A > 7/2, by showing that
a graph G has to contain a cycle to embed a cer-
tain point set P5; with low dilation, and by using that
the dilation of every closed curve? C is bounded by
i(C) > m/2.

2In this paper we use the notions “cycle” and “closed curve”
synonymously.
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They conjectured that this lower bound is not tight.
It is known that circles are the only cycles of dilation
7/2, see [4, Corollary 23], [1, Corollary 3.3], [12], [9].
And intuition suggests that one cannot embed com-
plicated point sets with small dilation if every face of
the graph has to be a circular disk. This idea would
have to be formalized and still does not rule out that
every point set could be embedded with dilation ar-
bitrarily close to /2. New ideas are needed to prove
A>m/2.

In Section 2 we show that cycles with dilation
close to w/2 are close to circles, in some well-defined
sense (Lemma 4). The lemma can be seen as an in-
stance of a stability result for the geometric inequality
0(C) > m/2, see [8] for a survey. Such results com-
plement geometric inequalities (like the isoperimetric
inequality between the area and the perimeter of a
planar region) with statements of the following kind:
When the inequality is fulfilled “almost” as an equa-
tion, the object under investigation is “close” to the
object or class of objects for which the inequality is
tight. An important idea in the proof of this stability
result is a decomposition of any closed curve C' into
the two cycles C* and M.

In Section 3 we use Lemma 4 to relate the dilation
problem to a certain problem of packing and covering
the plane by disks. By this we prove our main result
A>(1+10"1)7r/2.

2 Result for Closed Curves

We want to prove that a simple closed curve C of
low dilation is close to being a circle. We assume
that C'is given by an arc-length parameterization ¢(t),
0 <t < |CJ, where |C| denotes the length of C. Two
points p = ¢(t) and p = c(t £ %) on C' that divide
the length of C' in two equal parts form a halving
pair of C. The segment which connects them is a
halving chord, and its length is the halving distance.
We write h = h(C) and H = H(C) for the minimum
and maximum halving distance of C.

C*

Figure 2: An equilateral triangle C', a halving pair
(p,p) and the derived curves C* and M

To show that C is close to a circle, we consider
a decomposition into two curves, see Figure 2 for an
illustration. The midpoint cycle M is the cycle formed
by the midpoints of the halving chords of C, and is
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given by the parameterization

1
N 1C]
m(t) := ) (c(t) +e(t+ 5 )) .
The curve C* defined by

e*(t) 1= 5 (of) et + 1)

is the result of the halving pair transformation defined
in [4]. We get it by moving the midpoint of every
halving chord to the origin. By definition, ¢*(t) =
—c*(t + ‘%l), hence C* is centrally symmetric. On

the other hand, we have m(t) = m(t + |2£|), and thus,
M is traversed twice when C' and C* are traversed
once. We define |M| as the length of the curve M
corresponding to one traversal.

The curve C'* has the same set of halving distances
as C; thus, h(C*) = h(C) = h and H(C*) = H(C) =
H.

We have decomposed C' into two components, from

which it can be reconstructed:
e(t) = m(t) +*(t), ¢ (t+15) =m@)— 1) (1)

To show that C is close to a circle, we first show
that H/h is close to 1, i.e. C* is close to a circle.
Then, we prove that the length of the midpoint cycle
is small. Combining both statements will deliver the
desired result.

We use the following lemma to find an upper bound
on the ratio H/h. Ebbers-Baumann et al. [4] have
proved it for convex cycles using arguments from con-
vex geometry similar to the ones in [10] but it can
easily be extended to the non-convex case.

Lemma 1 The geometric dilation 6(C) of any closed
curve C' satisfies

50 wein (1) + [ (£) .

Note that the function g(x) = arcsinl/z + Va2 — 1
appearing on the right-hand side starts from g(1) =
m/2 and is increasing on [1,00). Approximating it
by its Taylor expansion, we can show that H/h <
14+0(3) if §(C) < (1 +¢)T.

We still need an upper bound on the length |M|
of the midpoint cycle. We use the following lemma,
which we think is of independent interest.

Lemma 2
AM|? +[C*? < |CP.

Proof. Using the linearity of the scalar product and
|¢(t)] = 1, we obtain from (1)

(m(t), ¢ (t)

_ i <é(t) it + 19, 6(t) — ot + @)>

(le? — lete + ) = S0~ 1) =0.

)
1
4
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This means that the derivative vectors ¢*(¢) and
m(t) are always orthogonal, thus | (t)|? + |¢*(t)]* =
|é(t)]? = 1. This implies

1€l

VIm()]2 +[e=(1)]? dt

tel 2 lel 2
</0 |m(t)|dt> +</0 |é*(t)|dt>

= VAMPE+|C]

The above inequality can be seen by a geometric
argument. The left integral is the length of the
curve y(s) := ([ [m(t)| dt, [y |¢*(¢)| dt) , while the
right expression equals the distance of its end-points
7(0) = (0,0) and v (|C]). O

C

Y

Lemma 3 If §(C) <
2e + g2,

(1 + ¢)%, then |M| <

Proof. Because the dilation of C is at least the de-
tour of a halving pair attaining minimum distance h,
we get (1+e)w/2 > 6(C) > |C|/2h, implying

C| < (1 +¢)mh. 2)

If |¢*(¢)| < h/2 held for any ¢, then, due to the central
symmetry of C*, the points ¢*(t) and —c*(t) would
form a halving pair of distance < h, a contradic-
tion. Hence, C* encircles but does not enter the open
disk By, /2(0) of radius h/2 centered at the origin 0. It
follows

|C*| > 7h. (3)

By plugging everything together, we get

Lemma 2 ]
M| < SVIOR o

(2),(3) h
< fwh\/ 1+¢)? = \/25+€2,
which concludes the proof of Lemma 3. ([

It should be intuitively clear (remember Figure 2)
that the upper bound on H/h from Lemma 1 and
the upper bound on |M| of Lemma 3 imply that the
curve C' is contained in a thin ring if its dilation is
close to 5. This is the idea behind the omitted proof
of the following lemma. We say that a cycle C is
enclosed in an (1 4 €)-ring if there is a radius r > 0
and a center ¢ € R? such that the open region R
bounded by C' satisfies B,.(c) € R C B14.),(c).

Lemma 4 Let C C R? be any simple closed curve
with dilation 6(C) < (1+¢)m/2 for ¢ < 0.0001. Then
C' can be enclosed in a (1 + 3./¢)-ring.

By a special cycle C' we can also show that this result
cannot be improved apart from the coefficient of \/e.
The lemma can be extended to a larger, more practi-
cal range of ¢, by increasing the coefficient of /e.

3 New Lower Bound

We will combine Lemma 4 with a disk packing result.
A (finite or infinite) set C of disks in the plane with
disjoint interiors is called a packing.

Theorem 5 (Kuperberg, Kuperberg, Matousek and
Valtr [11]) Let C be a packing in the plane with circu-
lar disks of radius at most 1. Consider the set of disks
C' in which each disk C' € C is enlarged by a factor
of 1.00001 from its center. Then C’ covers no square
with side length 4.

From Lemma 4 and Theorem 5 we deduce our main
result:

Theorem 6 The minimum geometric dilation A nec-
essary to embed any finite set of points in the plane
satisfies A > (1 +10711) 7 /2.

Proof. (Sketch) Consider the set P =
{(z,y) | z,y € {-9,-8,...,9} } of grid points with
integer coordinates in the square Q; := [-9,9]? C R2,
see Figure 3. We use a proof by contradiction and
assume that there exists a planar connected graph G
that contains P (as vertices or on its edges) and sat-
isfies §(G) < (14+107)7/2 < 2. In the full paper we

(99), 1 eeveernrnnsorsnss(®9)
P
(_9’_9):.................:(9’_9)
Figure 3: The point set P := {—9,—8,...,9}? and
the squares Q1 := [—9,9]? and Qs := [-8, §]?

show that if G attains such a low dilation, G contains
a collection M of cycles with disjoint interiors which
cover the smaller square QQ; := [—8,8]2. The length
of each cycle C € M is bounded by 87 implying
that every disk encircled by C' has a radius r < 4.
Additionally, the dilation of every C' € M is at most
§5(G) < (1 +107*Y71/2. Hence, Lemma 4 shows
that every C' has to be contained in an 1.00001-ring.
It follows that the inner disks of these rings are
disjoint and their 1.00001-enlargements cover ()s in
contradiction to Theorem 5 (situation scaled by 4).
We would like to use the cycles bounding the faces
of G for M. Indeed, 6(G) < 2 implies that they
cover (02 (analogous to Figure 4b). However, their
dilation could be bigger than the dilation §(G) of the
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(b) the same time, a strengthening of Theorem 5 with a
larger constant than 1.00001.

q

Figure 4: (a) The path £ is a shortcut for some points
of C. (b) Every & € @ is encircled by a cycle of
length < 12-6(G).

graph, see Figure 4a. G can offer shortcuts in the
exterior of C, i.e., the shortest path between p,q € C
does not necessarily use C.

Therefore, we have to find a different class of dis-
joint cycles covering Qo which do not allow shortcuts.
The idea is to consider for every point x in @y the
shortest cycle of G such that z is contained in the open
region bounded by the cycle. The regions of these cy-
cles cannot intersect partly, we have Rq N Ry = 0 or
Ry € Ry or Ry C Ry. If we define M to contain only
the cycles maximal with respect to inclusion of their
regions, it provides all the properties we need. Due to
space limitations we can not prove all of them here.

However, one argument is displayed in Figure 4b.
Every x € ()5 is contained in a square S of the integer
grid. A shortest path ¢ of G connecting neighbor
points p, g of P next to S cannot enter S because |(| <
0(Q)|pq| < 2. Hence, the concatenation of 12 such
shortest paths contains a cycle of length < 126(G) <
12(1 4+ 1077 /2 < 87 encircling . This shows that
the regions of M cover Q2 and that the length of every
C € M is bounded by |C| < 8. O

4 Conclusion

Our result looks like a very minor improvement over
the easier bound A > 7/2, but it settles the question
whether A > 7/2 and has required the introduction of
new techniques. Our approximations are not very far
from optimal, and we believe that new ideas are re-
quired to improve the lower bound to, say, 7/2+0.01.
An improvement of the constant 1.00001 in the disk
packing result of [11] (Theorem 5) would of course
immediately imply a better bound for the dilation.
We do not know whether the link between disk
packing and dilation that we have established works
in the opposite direction as well: Can one construct a
graph of small dilation from a “good” circle packing
(whose enlargement by a “small” factor covers a large
area)? If this were true (in some meaningful sense
which would have to be made precise) it would mean
that a substantial improvement of the lower bound
on dilation cannot be obtained without proving, at
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On Computing Fréchet Distance of Two Paths on a Convex Polyhedron

Anil Maheshwari

Abstract

We present a polynomial time algorithm for comput-
ing Fréchet distance between two simple paths on the
surface of a convex polyhedron.

1 Introduction

Distance measures used to match geometric patterns
include: Hausdorff-distance, Fréchet-distance, uni-
form distance, etc. Alt and Godau [1, 2] proposed that
Fréchet distance is one of the most fundamental mea-
sures to compute the similarity between two polyg-
onal curves. Fréchet distance is often referred to as
the dog-leash distance [1]. The unique property is its
sensitivity to the order along the two curves. Fréchet
distance is the minimum leash distance that can keep
the person and the dog walking on their own tracks
from the beginning to the end (without retracting).
Some issues on similarity related to Fréchet distance
have been considered, for example, find a curve that
is similar to a given curve [3, 4], and the application
of Fréchet distance on protein backbone matching.

This paper focuses on the following problem: Given
a convex polyhedron P consisting of n triangular
faces, and two simple paths Z and Z’ on the surface
of P, how can we use Fréchet distance to measure the
similarity of Z and Z’? For the sake of simplicity,
assume that each segment in these paths is an edge
of P, and Z consists of z segments and Z’ consists
of 2’ segments. Referring to the dog-leash distance,
the person is walking on the path Z and the dog is
walking on the path Z’. The leash defines a geodesic
path on the surface of P. Here, Fréchet distance is
measured using Euclidean shortest path distance on
the surface of P.

In this paper, we present a polynomial time algo-
rithm to compute Fréchet distance between the paths
Z and Z' on the surface of a convex polyhedron P.
To accomplish this we make use of two data struc-
tures: (i) a data structure of the visibility diagram
that encodes shortest path information for any pair
of points on a pair of edges (es, e;), where e; € Z and
e; € Z' and (ii) the data structure of the free space di-
agram proposed in [1] for paths in plane. The novelty
is in adapting the free space diagram with the aid of

*Research supported by NSERC. School of Computer
Science, Carleton University, Ottawa, Canada KI1S 5B6,
{anil, jyi}@scs.carleton.ca

*

Jiehua Yi

visibility diagrams for the problem discussed in this
paper. In the next section we discuss the visibility
diagram data structure and in Section 3 we present
an algorithm to compute Frechet distance for paths
on a convex polyhedron.

2 Visibility Diagram

The visibility diagram of a pair of edges, say e; and
e+, lying on the surface of P is a data structure that
concisely represents geodesic distances between any
pair of points p and ¢, where p € es and ¢ € ey.
(Due to the lack of space we cannot discuss the liter-
ature regarding the computation of geodesic paths on
a convex polyhedron. For detailed discussion on this
we refer the reader to [5, 6, 10].) We make use of the
algorithm of [6], and that in turn makes calls to the
algorithm of [5].

Algorithm 1 Visibility-Diagram

(1) Construct the edge sequence tree T of edge e, us-
ing the algorithm of [5].

(2) Identify those edge sequences in tree T which start
at es and end at the edge e;. Let the set of these
edge sequences be £.

(3) Unfold each of the edge sequence in £ and con-
struct the visibility polygon for each unfolding.
(4) Compute the overlay of the visibility polygons to
obtain the visibility diagram. Label each area in
the overlay with the corresponding edge sequence.

(5) Output the final visibility diagram.

Details of this algorithm are provided in [9]. This
algorithm uses the concept of edge sequence. Ac-
cording to the shortest path properties in [7, 8], a
shortest path II(p € es,q € e;) on P is identified
uniquely by its endpoints and the sequence of edges
{es,€1,€2,...,ex, e} that it crosses. This sequence of
edges is called an edge sequence of P (£(I1(p,q))). The
faces { f1, f2, ..., fx+1} that the shortest path traversed
can be unfolded to a plane, by rotating the face f; into
the coordinate system of f5 around the common edge
ey of f1 and fo, and then rotate f; and f5 to the coor-
dinate system of f3, and so on. Following these steps,
all of the faces can be located in the coordinate sys-
tem of fr11, and this forms a planar graph. Geodesic
paths in the unfolding map to straight line segments.
Refer to Figure 1(b).

Define the domain z = e; X e; as a unit square
and it is an affine mapping of the edges e; and e; on
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€t

()

Figure 1: (a): A sequence of edges and faces that a
shortest path from p € es to ¢ € e; passes through;
(b): The planar unfolding relative to the edge se-
quence; (c): The visibility diagram of es and e;. P
corresponds to the outer boundary of the unfolded
edge sequence in (b), which is a polygon. P/, corre-
sponds to another unfolded edge sequence.

[0,1], see Figure 1(c). The visibility diagram is de-
fined as the partition of the domain z, each partition
corresponds to an unfolded edge sequence starting at
es and ending at e;. (Mount [8] has shown that the
number of such edge sequences is O(n?).) In a par-
tition the pair of points are visible to one another in
their corresponding unfolded edge sequence. During
the construction of the visibility diagram, if the pair of
points in a partition can see each other in more than
one unfolded edge sequence, then this partition is fur-
ther subdivided, until each partition corresponds to
one unfolded edge sequence. It can be shown that the
boundary between each pair of partition in the visibil-
ity diagram is a hyperbolic curve, and each partition
is a polygon. Observe that geodesic path for any pair
of points in e; and e; can be computed from their
corresponding unfolded edge sequence in the visibil-
ity diagram. Thus, the visibility diagram for a pair
of edges can be computed by simultaneously overlay-
ing O(n?) visibility polygons corresponding to each
of the unfolded edge sequence; it can be computed in
O(n3logn) time.

3 Algorithm to compute Fréchet Distance

First we briefly outline Fréchet Diagram for two
polygonal curves Z and Z’ in plane as described in
[1]. They used affine mapping to represent a continu-
ous and piecewise linear curve. If the curve Z is a line
segment and similarly the curve Z’ is a line segment
then the set

Fo={(s,t) €[0,1]* [ d(Z(s),Z'(t)) < e} (1)

42

z z
) W 7
z

b/ . €

|
e —
z z {2 2)
> (0,0) Z
(@) ()

Figure 2: (a): Two segments Z and Z’' and their
free space diagram for a given e. (b): Two polygo-
nal curves Z and Z’ and their free space diagram for
a given e. A monotone path from (0,0) to (z,2’) in
the free space diagram.
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Figure 3: The boundary values of a unit cell in the
free space diagram that must be calculated

describes all of the pairs of points in the affine map-
ping of Z and Z’, whose Euclidean distance is at most
€. Figure 2(a) shows line segments Z and Z’, and a
distance € > 0; F. is the white area within the unit
square, which is an ellipse [1], subsequently called as
the free space diagram. Figure 2(b) shows polygonal
curves Z and Z' with z and 2z’ segments, respectively,
and their free space diagram F,. This is obtained by
combining the free space diagrams for each pair of
segments of Z and Z'.

Lemma 1 [I] For polygonal curves Z and Z' in
plane, their Fréchet distance, dp(Z,7Z') < €, only
if there exists a curve within the corresponding free
space diagram F, from (0,0) to (z,z") that is mono-
tone in both coordinates.

In order to ensure that there is a passage for the
path between neighboring cells in the diagram, Fig-
ure 3 illustrates certain boundary values that needs
to be calculated. These values correspond to the in-
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Figure 4: The trapezoidation of a free space after
union. (a) : The free space (white areas). (b) :
After trapezoidation and executing BFS (the dashed
line is one of the paths), the upper boundary value is
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tersections of the ellipse with the boundary of the
cell. Above lemma provides a mechanism to check
whether Fréchet distance is at most e. In [1] it is
shown that the exact value of the distance is deter-
mined by an € corresponding to one of the following
cases: (i) (0,0) € F. and (2,2') € F,, (ii) Lf; or
Bf ; becoming nonempty for some pair (4, j), or (iii)
ai; = by or ¢; ; = d;, for some 4,7, k. Therefore,
to determine the exact distance, one needs to apply
Lemma 1 for only the set of critical values of € as de-
termined by the above cases. It turns out that the
total number of critical values is O(222' + z2’%), and
hence Fréchet distance between two paths Z and Z’
in the plane can be computed in O(zz’ log(z2z')) time.

In the rest of this paper we sketch how we can adapt
the free space diagram with the aid of the visibil-
ity diagrams for the case of convex polyhedron. Let
Z : [0..2] and Z" : [0..2] be the two paths on the
boundary of convex polyhedron consisting of z and 2’
segments, respectively. Moreover, Z(i — 1)Z(i) and
Z'(j — 1)Z'(j), for 1 < i < 2,1 < j < 2, repre-
sents those segments. For a fixed €, we construct a
free space cell for a pair of edges Z(i — 1)Z(i) and
Z'(j —1)Z'(j). The outer boundary of the free space
cell is a unit square and it is exactly the same square
as the boundary of the visibility diagram of those two
edges. But the main difficulty arises due to the fact
that the polygons in the visibility diagram belong to
different unfolded edge sequences, and each unfolded
edge sequence has its own coordinate system in the
plane. Because of this, the free spaces of Z(i —1)Z (1)
and Z'(j—1)Z'(j) in the unfolded edge sequences are
different from one another. Thus, we compute the
intersection of the free space cell with the visibility
polygon, where both the cell and the polygon corre-
spond to the same unfolded edge sequence. For each
pair of points in the intersection area, their shortest
path distance is at most €. The free space diagram of
the unit cell of Z(i —1)Z(i) and Z'(j —1)Z'(j) is ob-
tained by taking the union of the free spaces for all the

Figure 5: (a)Placing boundary nodes in the trape-
zoidal map. (b)(c): Illustration of placing interior
nodes in the trapezoidal map. (d): Adding arcs be-
tween the nodes to form a directed graph. For sim-
plifying the figures, boundaries of the polygons are
drawn as straight line segments.

corresponding edge sequences. Refer to Figure 4(a).
The free space diagram for Z and Z’ for a fixed € is
obtained by applying the above computation steps on
each pair of segments.

Once we have the free space diagram for a specific
value of €, we need to test whether we have a mono-
tone path from (0,0) to (z,z’). Observe that if there
is a monotone path then each part of the path in
the corresponding cells must be monotone. The al-
gorithm starts from the first pair of edges including
(0,0), ends at the last pair of edges including (z, z’),
and computes the boundary values for each unit cell
in the free space diagram subject to the monotone
path restrictions. If (z,2’) can be reached, then this
particular choice of € results in a valid monotone path
in the corresponding free space diagram. The bound-
ary values for each cell are obtained by performing
breadth first search on a modified dual map of the
trapezoidal decomposition of each cell, refer to Fig-
ure 5. The computation of the boundary values for
a unit cell proceeds in three steps. First, we place
candidate nodes in the trapezoidal map from where a
monotone path could pass through. The nodes placed
on the boundary of the unit cell are candidates for
the boundary values, we use Psiqrt and Pyoq to mark
them (marked as “o” in Figure 5(a)), respectively.
The nodes placed in the interior of the free space cell
(marked as “ x ” in Figure 5(b)(c)) can be reached
monotonically from the neighboring nodes placed ear-
lier. Second, connect the neighboring nodes with the
directed arcs, the arcs must also be in the free space
area. Thus, a directed graph is formed in the free
space area of the unit cell. Third, by applying the
breadth first search in this directed graph, a mono-
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tone path (if it exists) from a starting point Psier¢ to
a point Py is identified (see Figure 4(b)). There is
a technical detail involved here, and this arises due
to the fact that the edges of the polygons in a unit
cell can be hyperbolic curves or elliptical arcs, refer to
Figure 4(a). Therefore, trapezoidation needs to take
this in account, as well as care must be taken while
placing the nodes to ensure that the directed arcs re-
side in the free space. We omit the details of this part
here.

Suppose that we have already computed the visi-
bility diagram for a pair of edges in O(n3logn) time.
For a fixed e, we can show that the union of the free
spaces in the unit cell for the pair of edges can be
computed in O(n?logn) time, since there are O(n?)
polygons in the visibility diagram; Computing the
boundary value of a unit cell takes O(n?logn) time,
which includes the trapezoidal map and the directed
acyclic graph construction, and performing breadth
first search. Therefore, in O(zz'n®logn) time, we
can determine whether Fréchet distance between the
paths Z and Z' is at most e. This is summarized
in the following lemma, and it can be viewed as the
analog of Lemma 1 for the case of convex polyhedron.

Lemma 2 For simple paths Z and Z' on the sur-
face of convex polyhedron, their Fréchet distance,
0r(Z,Z") < e, only if there exists a curve within the
corresponding free space diagram F. from (0,0) to
(z,2') that is monotone in both coordinates. More-
over this can be determined in O(zz'n3logn) time
where z and z' are the number of the segments in Z
and Z', and n is the number of faces on P.

Next we need to determine what are the critical
values of ¢, and then we can search among them to
determine Fréchet distance between the paths. The
three kinds of critical values of ¢, as in the planar
case, are also suitable for the convex polyhedron case.
But due to the complex nature of cells in this case,
we need to extend the third case; the main idea is
captured in the following observation. Assume that
the minimum value of € is not determined by the first
two cases. Then we claim that the minimum value of
€ that ensures that there is a monotone path in the
free space diagram will consists of a segment that is
parallel to one of the coordinate axes.

Recall that in the two dimensional case, the third
case corresponds to either a; j = by ; or ¢; ; = d; ), for
some 1, 7, k. In the light of the above observation, for
the convex polyhedron case this needs to be extended
to the case when a;; and by ; are located inside the
cells, if we use the same labels for the points inside
the cells as the labels for the boundary values; see Fig-
ure 3. Imagine that the black areas, corresponding to
non feasible regions, where a; j and b; 41 ; are located,
are moved inside the unit cell. These critical values
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can be computed from the free space diagrams, and
will require solving a degree four equation in € since
the boundaries of the corresponding polygons (elliptic
or hyperbolic) are defined by degree two equations.
We claim that there is an upper bound of O((222' +
zz’z)n4) on the number of critical values of €, since
each cell has O(n?) polygons and every two of them
need to be tested in the computation of the third kind
of critical values. In addition to this there are poten-
tially O(z2'n?) critical values for € as determined in
the first two cases. Sorting the critical values first,
then using the binary search, for each value of €, we
test whether we can obtain a monotone path in the
free space diagram. The smallest €, that results in
a monotone path located in the free space diagram,
is Fréchet distance between the paths Z and Z’. We
summarize the result in the following theorem.

Theorem 3 Fréchet-distance between two simple
paths Z and Z' on the surface of a convex polyhedron,
consisting of n triangular faces, can be computed in
O((222' 4 22"*)n*log(z2'n)) time, where Z consists of
z segments and Z' consists of z' segments.
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Semi-Computability of the Fréchet Distance Between Surfaces

Helmut Alt

Abstract

The Fréchet distance is a distance measure for pa-
rameterized curves or surfaces. Using a discrete ap-
proximation, we show that for triangulated surfaces it
is upper semi-computable, i.e., there is a non-halting
Turing machine which produces a monotone decreas-
ing sequence of rationals converging to the result. It
follows that the decision problem, whether the Fréchet
distance of two given surfaces lies below some speci-
fied value, is recursively enumerable.

1 Introduction

The Fréchet distance was first introduced by Fréchet
for curves [Fré06] and later for surfaces [Fré24]. The
idea of the Fréchet distance is to take into account
the “flow” of the curve or surface given by its param-
eterization. In some cases, the Fréchet distance is a
more suitable distance measure than the commonly
used Hausdorff distance (see [AG95]).

Formally the Fréchet distance is defined as follows.

Definition 1 Let f,g be parameterizations of k—
dimensional surfaces, i.e., continuous functions

fog:[0,1F = R? k<d.
Then their Fréchet distance is

5 =t
F(fag) 02[071]1’}'1—40,1]1“ té?oz?ﬁk

£ (&) = g(a(@®)]]-

where the reparameterization o ranges over all orien-
tation preserving homeomorphisms.

The norm ||| underlying the definition in this paper
can be the Li-, Ls-, or Lo-norm as long as it can be
computed or approximated by rational arithmetic.
For dimension k& = 1 of the parameter space, in
particular for polygonal curves, dr is known to be
computable in polynomial time [AG95]. For two-
dimensional surfaces, however, the computation of
the Fréchet distance surprisingly seems to be much
harder. In fact, Godau showed [God98] that com-
puting the Fréchet distance between triangulated sur-
faces even in two—dimensional space is NP-hard. It
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supported by the Deutsche Forschungsgemeinschaft within the
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Maike Buchin *

remained open, how hard the problem really is, not
even its computability could be shown.

In this paper, we present a partial result concern-
ing the computability. More specifically, we will show
that the Fréchet distance between triangulated sur-
faces is upper semi-computable, i.e., there is a non-
halting Turing machine which produces a monotone
decreasing sequence of rationals converging to the re-
sult. It follows that the decision problem whether the
Fréchet distance of two given surfaces lies below some
specified value is recursively enumerable.

The computationally hard part of computing the
Fréchet distance for dimensions k£ > 1 seems to be,
that according to the definition, the infimum over all
homeomorphisms of the parameter space has to be
taken. For dimension k = 1 the orientation-preserving
homeomorphisms on [0,1] are the continuous, onto,
monotone increasing functions on [0, 1]. For higher di-
mensions the homeomorphisms can be much “wilder”.

We tackle this problem by approximating the home-
omorphisms by discrete maps which are easier to
handle. We do this by first approximating arbi-
trary homeomorphisms by piecewise linear homeo-
morphisms which is a known result from topology.
The piecewise linear homeomorphisms are then ap-
proximated by mesh homeomorphisms, i.e., homeo-
morphisms that are compatible with certain subdivi-
sions of the original triangulations of the parameter
spaces. Finally, for mesh homeomorphisms on fine
subdivisions the distance between the surfaces can be
approximated by the distances at only a finite number
of points.

It remains open, whether the Fréchet distance be-
tween triangulated surfaces is a computable function
in the strong sense.

2 Model of computation, main results

We assume that the input to our algorithm are two tri-
angulated surfaces in space R% d > 2, which are rep-
resented as piecewise linear parameterizations f, g :
[0,1]2 — R9. For simplicity, we will denote the sur-
faces themselves by f and g, as well.

Piecewise linear means that the parameter spaces
of f and g are triangulated and on each triangle f
and ¢ are linear maps in the sense that for a triangle
A = (u,v,w) we have f(Aju+ A av+Azw) = A\ f(u) +
)\Qf(’l])-l-)\gf(w) for all )\1, /\2, )\3 with )\1 +)\2+)\3 =1
and ¢ has an analogous property.
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We denote the triangulated parameter spaces of f
and g by K and L. The vertices of the individual tri-
angles have rational coordinates, and the coeflicients
describing the linear maps are rational, as well. Thus,
a problem instance has a canonical finite representa-
tion which can be given as input to a Turing machine.

We will show that the Fréchet distance between tri-
angulated surfaces is computable in a weak sense ac-
cording to the following definition which has been con-
sidered in the complexity-of-real-functions community
(see, e.g., [WZ00]).

Definition 2 A function ¢ : N — R is called up-
per (lower) semi-computable if there is a Turing ma-
chine which on input x outputs an infinite, monotone
decreasing (increasing) sequence of rational numbers
converging to o(x).

Now we can formulate our main result:

Theorem 1 The Fréchet distance between two tri-
angulated surfaces in space R?, d > 2, is upper semi-
computable.

Theorem 1 immediately implies the following corol-
lary, where (f,g,a) denotes some standard encoding
of a triple consisting of two triangulated surfaces f
and ¢, and some rational a > 0.

Corollary 2 The set {(f,g,a) | 0r(f,9) < a}, ie.,
the decision problem for the Fréchet distance between
triangulated surfaces, is recursively enumerable.

In fact, consider the Turing machine producing a
monotone decreasing sequence converging to dp(f, g)
which exists by Theorem 1. Stop this Turing machine
as soon as it produces a value less than a. This algo-
rithm will eventually halt for all triples (f, g, a) in the
language and else will run forever.

The computability of Jz in the strong sense of com-
putability theory of real functions (see, e.g., [Wei00])
remains open, since the sequence produced by the al-
gorithm in the proof of Theorem 1 is not shown to
effectively converge to dr(f,g), i.e., we cannot give
any estimate on the rate of convergence.

Our proof can be modified to show a weaker form of
Theorem 1 for more general surfaces. More precisely,
if we just assume that the parameterizations f and g
are computable real functions, it is still correct that
there is an algorithm producing on input f, g (repre-
sented, say, by the Turing machines computing f and
¢) an infinite sequence of rational numbers converging
to dp(f,g). However, this sequence is not necessar-
ily monotone decreasing, and the corollary cannot be
deduced anymore.
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3 Approximating the homeomorphisms

In this section, we approximate homeomorphisms ar-
bitrarily closely by mesh homeomorphisms.

Let us first recall some standard definitions and no-
tations from topology. For a simplicial complex K,
a triangulation in our case, let K™ denote its m"
barycentric subdivision, where in one subdivision step
the barycenters of the previous simplices are taken
as vertices. Mesh(K ) denotes the maximal diameter
of simplices in K, again triangles in our case. The
underlying space of K, denoted by |K]|, is the set of
all points lying in simplices of K. In our case |K| is
always the unit square [0, 1]2.

We now define mesh homeomorphisms.

Definition 3 Given two triangulations K and L, a
piecewise linear homeomorphism h : |K™| — |L"| is
called a mesh homeomorphism if it maps the edges of
K™ to edge chains of L", i.e., polygonal chains made
up of edges of L™.

For approximating homeomorphisms arbitrarily
closely by mesh homeomorphisms, we need only a
weak form of closeness which is defined as follows.

Definition 4 Given two homeomorphisms
h,h' 1 |K| — |L| on triangulations K and L, let
N .— l
i (b, ) = e 31 ((A), ()

where A € K ranges over all triangles in K and dg
denotes the Hausdorfl distance.

Now we can approximate homeomorphisms by
mesh homeomorphisms.

Lemma 3 Let K and L be triangulations, o : |K| —
|L| a homeomorphism, m € N, and € > 0. Then there
exist n € N and a mesh homeomorphism h : |K™| —
|L™| such that dgm(o,h) < €.

Proof. We omit the details of this proof in this ex-
tended abstract but sketch the main idea.

By a theorem from topology (see, e.g., chapter 6
in [Moi77]), a homeomorphism can be approximated
arbitrarily closely by a piecewise linear homeomor-
phism. We use this as a first step, because piece-
wise linear homeomorphisms are easier to handle than
arbitrary homeomorphisms. For a piecewise linear
homeomorphism, we see that it can be approximated
arbitrarily closely (in the sense of Definition 4) by
a mesh homeomorphism. Together this proves the
lemma.

The idea of approximating piecewise linear home-
omorphisms by mesh homeomorphisms, is to subdi-
vide sufficiently using, e.g., barycentric subdivision.
Because of growing degrees of vertices and grow-
ing fineness of the triangulations, we can find mesh
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homeomorphisms arbitrarily close to a piecewise lin-
ear homeomorphism. A simple example is shown in
Figure 1.

h’ h
LIS JELLEN.
pwl mesh
homeom. homeom.

KO

Figure 1: Approximating a piecewise linear homeo-
morphism by a mesh homeomorphism.

O

4 Discrete Fréchet distance

In this section we define a discrete Fréchet distance
for surfaces and show that it is equal in value to the
Fréchet distance.

We define the discrete Fréchet distance of two sur-
faces by taking the infimum over all mesh homeomor-
phisms and for each mesh homeomorphism taking the
maximum over distances at vertices.

More formally, we define

Definition 5 Let f,g be parametrized, triangulated
two—dimensional surfaces in R%, d > 2, with underly-
ing triangulations K, L respectively, of the parameter
space, i.e.,

f:|K|=RY g:|L] - R?

are piecewise linear maps. Then their discrete Fréchet
distance is defined as

dar(frg)i= i max  max [|f(v)=g(w)]
h:|K™|—|L"| wEMP A,

where h ranges over all orientation preserving mesh
homeomorphisms, K7' is the set of triangles in K™,
Va are the vertices of A, and M[LL( A) is the set of
vertices of L™ that lie in h(A).

First we show that this definition yields a discrete
Fréchet distance not smaller than the Fréchet dis-
tance.

Lemma 4 6 < 4

Proof. Any mesh homeomorphism is, in particular,
a homeomorphism. Therefore, it suffices to show
that for a mesh homeomorphism h : |[K™| — |L"™| we
can bound the pointwise maximum by the maximum
taken at vertices, i.e.,

_ < — .
Dax, If ) —g(h@)]] < e max I[f(v)—g(w)|
weM}'L‘(A)

(1)

To see this, let ¢ € [0,1]? be arbitrary. Then ¢
lies in a triangle A of K™ and h(t) lies in a triangle
A" of h(A) C L™ Since f and g are piecewise lin-
ear and K" and L™ are refinements of the underly-
ing triangulations of the parameter spaces, f(A) and
g(A’) are triangles, as well. Since the maximum dis-
tance between points of two triangles is attained be-
tween two corners, we have that || f(t) — g(h(t))]| <
[|f(v) — g(w)|| for some v € A,w € A’. Taking the
maximum on both sides yields equation (1). O

Now we show that also the discrete Fréchet distance
is not larger than the Fréchet distance.

Lemma 5 For alle >0, dqrp <0p +e.

Proof. The idea is that for any homeomorphism
there is a mesh homeomorphism arbitrarily close and
for the mesh homeomorphism the distance computa-
tion at vertices comes arbitrarily close to the distance
computation on all parameter values by sufficient sub-
division of the domain complex.

Let o be a homeomorphism close to realizing dp,

ie, max |[f(t) —g(o(t))|| < dp + 1 for a small
te[0,1]2
g1 > 0.

By Lemma 1, for any €5 > 0 and any m € N there
is a mesh homeomorphism h : |[K™| — |L™| such that
de(O', h) < [SHI

Let A be some triangle in |[K™| and v one of its
vertices. Since dgm (o, h) < &g, for any w € h(A) C
L™ there is an z € o(A) with |Jw — z|| < e3. Using
t = o0~ !(z) and the Lipschitz-continuity of g we get
llg(w) — g(a(t))]| < ¢g - €2 for some t € A where ¢4
denotes the Lipschitz constant of g.

Since t and v lie in the same triangle A € K™,
we have [[v — t|| < mesh(K™) and [|f(v) — f(¥)|] <
¢y - mesh(K™) with ¢y the Lipschitz constant of f.

Putting everything together and using the triangle
inequality repeatedly we get

J < -
o Sy W)l
wEM}?(A)

< max max
AeKY veVa

z€o(A)

< oax, max |[f(H) —g(o®)ll +cg- 22

+cy - mesh(K™)
< dp+e1+cg-ea+cp-mesh(K™).

1f(v) = g(@)[| + ¢q - &2

Since €1, &9, and mesh(K™) can be made arbitrarily
small, this concludes the proof. O

Lemmas 2 and 3 yield the following corollary.

Corollary 6 6p = dyp
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5 Semi-Computability of the Fréchet distance

We can now give an algorithm showing the upper
semi-computability of the Fréchet distance between
triangulated surfaces as claimed in Theorem 1. This
algorithm will, on input f, g, run forever and produce
a monotone decreasing sequence of rational numbers
converging to 0p(f, g).

Algorithm CompFrec(f,g)

Input: Triangulated surfaces f, g, including triangu-
lations K, L of the parameter spaces, in a finite de-
scription as explained in Section 2.

1 D:= o
2 for all (m,n) € Nx N do

2.1 generate the barycentric subdivisions K" of
K and L" of L, let E = {ey,...,e;} be the
set of edges in K™;

2.2 for all k-tuples (71, ..., ) of simple polygo-
nal chains in L” do

2.2.1 assign the polygonal chain m; to the
edge e; for ¢ = 1,...,k and check
whether this assignment results in an
orientation preserving homeomorphic
image of K™, i.e., whether

2.2.1.1 the edges on the boundary of |K|
are mapped onto the boundary of
|L| preserving the orientation; and

2.2.1.2 if a set of edges in K™ share an end-
point, the corresponding chains do,
as well; and

2.2.1.3 other than that, there are no inter-
section points between two chains;

2.3 If the test in step 2.2.1 is passed, the chains
form a subdivision of |L| such that each tri-
angle A of K™ has a corresponding area
Ha C |L|

2.3.1 for each triangle A of K™ do
2.3.1.1 for all vertices v of A and all ver-
tices w of L™ lying in Ha do com-
pute ||f(v) = g(w)][;
2.3.2 M := the maximum of all the values
found in step 2.3.1.1;

2.3.3 D := min(D, M); output D;

In essence, algorithm CompFrec approximates the
discrete Fréchet distance which is, by Section 4 the
same as the Fréchet distance. Line 2 can be realized
by some standard enumeration method for pairs of
integers.

Observe, that the number of k-tuples of polygonal
chains of L™ checked in step 2.2 is finite. In fact, it

48

is bounded by (I!)¥ where [ is the number of edges
in L™, which itself is exponential in n, whereas k is
exponential in m. But efficiency is not the issue here.

In step 2.3.1.1 we assume that the norm ||.|| under-
lying the Fréchet distance can be evaluated by ratio-
nal operations. This is correct for, e.g., the L;- or
Loo-norm but not directly for L,. In that case, one
should rather operate with the square of the distance
in line 2.3.1.1 and output some suitable rational ap-
proximation of v/D (which is possible) in line 2.3.3.

Note that checking that the boundary of |K]| is
mapped orientation preserving onto the boundary of
|L| in step 2.2.1.1, entails that the mesh homeomor-
phism is orientation preserving also on the interior.

For each pair (m,n) € N x N all mesh homeomor-
phisms h : K™ — L™ are evaluated, i.e.,

o = e max 1) = g(w)]
wEIW;Z(A)

(see Definition 5) is computed®.

To see that the algorithm produces values arbitrar-
ily close to d4r(f,g), observe that any neighborhood
of 64r(f,g) must, by Definition 5, contain some value
of the form 0y, 1, . The algorithm will eventually en-
counter that pair (m,n) and the subdivision corre-
sponding to h and output 0y, s, p-

By line 2.3.3 the output sequence is monotone de-
creasing. Since for all triples (h, m,n) by Definition 5,
Shomn > 0ar(f,g), line 2.3.3 is justified.

Since by Corollary 6 dp = d4p, algorithm CompFrec
arbitrarily closely approximates 0z (f,g) which proves
Theorem 1.
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Matching Surfaces with Characteristic Points

Darko Dimitrov, Christian Knauer, Klaus Kriegel*

Abstract

We study approximation algorithms for a matching
problem that is motivated by medical applications.
Given a small set of points P C R? and a surface S,
the optimal matching of P with S is represented by a
rigid transformation which maps P as ‘close as possi-
ble’ to S. Previous solutions either require polynomial
runtime of high degree [2] or they make use of heuris-
tic techniques which could be trapped in some local
minimum. We propose a modification of the problem
setting by introducing subsets of characteristic points
P. C P and S. C S, and assuming that points from
P. must be matched with points from S.. We will
show that especially in the case |P.| > 2 this restric-
tion results in new fast and reliable algorithms for the
matching problem.

1 Introduction

Today an increasing number of surgeries is supported
by medical navigation systems. The basic task of such
a system is to transform real world data (positions in
the operating field) into a 3-dimensional model (CT
or MR) and to display the transformed position in the
model. Real world data are gaged by optical, electro-
magnetic or mechanical tracking systems. A common
technique for computing the transformation is based
on markers which are fixed on bones. The markers
have to be fixed already during the model acquisition.
Their positions in the model are computed using ap-
propriate image processing methods. Later, at the
beginning of the surgery, at least three markers must
be gaged with the tracking system. Since the total
number of markers is small, one could compute the
correct matching transformation even by brute force
techniques. A more advanced approach making use
of geometric hashing techniques is presented in [3].

There is strong need to develop algorithmic methods
for computing a transformation without using mark-
ers. The main reason for that is an anatomical one: in
many cases (e.g. spinal surgery) it would be very hard
or even impossible to fix markers before the surgery.
One solution is to gage a few points on the surface of
a bone and to compute the corresponding points in
the model. This point registration is a hard algorith-
mic problem, which cannot be solved by the following

*Institut fiir Informatik, Freie Universitdt Berlin,
darko/knauer/kriegel@inf.fu-berlin.de

standard approaches:

1) The gaged points could be anywhere on the model
surface and hence, a combinatorial search does not
work.

2) The number of gaged points is too small to ap-
ply surface reconstruction and surface matching algo-
rithms.

Moreover, the registration is part of the surgery and
thus real time algorithms are required. In contrast to
that, it is possible to spend more time for preprocess-
ing the model. Here, we try to retrieve some ideas of
the landmark approach to that new setting. The role
of markers could be played by so-called characteristic
points. Such points can be determined by the sur-
geon, based only on their anatomic properties, e.g.,
the root of the nose or of the thorn of a vertebra. If a
set of characteristic points is known in the model and
the surgeon can track at least three of them, the old
landmark registration algorithms can be applied. Our
main goal is to solve the registration problem if only
two characteristic points can be tracked. To compute
the transformation in that case, one must track some
more (non-characteristic) points on the surface.

In this paper we present our approach for solving
this problem and sketch some first results. In the next
section we introduce some notations and give a formal
definition of the problem. In section 3 we present the
basic algorithm and show how to use this method for
the approximation of the optimal matching.

2 Problem description

We consider two point sets P and S in R?. Usually we
assume that S is the (infinite) set of points on a trian-
gulated surface. The corresponding triangulation will
be denoted by S. However, this assumption is not
crucial. If S is a finite, dense sample of points on a
surface, the algorithms presented in the next sections,
can be applied with small changes.

Our main goal is to register P into a model S. The
quality of the registration will be evaluated by the
directed Hausdor[f distance. The distance between a
point a and a compact point set B in d-dimensional
space R? is defined as

dist(a, B) = min ||a — b||
beB
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where || - || is the Euclidean norm in R?. For two
compact sets A, B in the one-sided Hausdorff distance
from A to B is defined as

ﬁ(A, B) = maxdist(a, B) = maxmin ||a — bl|.
acA acA beB

The size of a problem instance (P, S) depends on two
parameters: k, the number of points in P, and n, the
number of triangles in S. We remark that in our ap-
plications k << n can be assumed. Moreover, we as-
sume that two subsets of characteristic points S. C S
and P. C P are given. In order to prepare a precise
analysis of our algorithms we introduce additional pa-
rameters k. = |P.| and n. = |S;|. Both parameters
should be seen as some reasonable constants. The
special role of characteristic points is expressed by
the additional requirement, that each p € P, must
be mapped onto (or close to) a characteristic point
q € Se.

To proceed to algorithmic solutions we have to clas-
sify several types of matchings.

Definition 1 Given two parameters pu,n > 0 a rigid
transformation t : R3 — R3 is called (u,n)-matching
if the following two conditions hold:

1. p(t) = HH(P\ P.),S) < p, and
2. (1) = H(t(P.), 5) <.

If € is an upper bound for u(t) and n(t) we denote
t as an e-matching. In line with the notations above,
we have €(t) = max(u(t),n(t)). The minimal €(t) is
denoted by €,p¢, and a corresponding matching is an
optimal matching. For a given \ > 1, a matching ¢ is
a A-approzimate matching, if €(t) < Aeop.

Furthermore, we introduce the notion of semiop-
timal matchings. To this end we fix a set S =
{51,82,..., 8k, } of predefined matching positions for
the characteristic points P. = {p1,pa,...,pk, }. Now
we restrict our attention to matchings ¢ with ¢(p;) = 5;
fori =1,...,k.. Let us denote this set of matchings
by Mg. We assume that P. and S are congruent,
because otherwise Mg = 0.

A matching t € Mg is a (u(t), 70)-matching, where

Ny = ﬁ(g, S¢) is a common value for all matchings
in Mg. A matching t € Mg is called semioptimal
matching (with respect to S) if u(t) is minimal.

A trivial case with [Mg| < 6 occurs, if P. con-
tains three or more non-collinear points. If addition-
ally the side lengths of the triangle spanned by the
three points are pairwise different, there is only one
matching in Mg. Thus, we will focus our attention
to matchings with two characteristic points. In a first
step we design an algorithm to compute semiopti-
mal matchings for a given set S. Then, based on
the semioptimal solution, we show how to compute a
A-approximate matching for any A > 1.
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3 The 2 point case

3.1 Semioptimal matching

Now, let us assume that the matching positions 57, 53
for the two characteristic points pi,ps are already
given (see figure 1). First, we present an algorithm
which reports (for any p) all transformations ¢ with
the given matching positions for p; and ps and with

u(t) < p.
Basic Algorithm (outline)

1. Fix arigid transformation ¢y : R?> — R3 such that
to(p1) = 51, to(p2) = 52. For all p; € P\{p1,p2}
let C; = C(p;) be the circle with the following
properties (see figure 1):

i) the center of C; is on the line defined by
p1 and pa,

ii) C; is lying in a hyperplane perpendicular
to DP1, P2, and

iii) p; is on C;.

2. Consider the transformed circle ¢o(C;) and let
the point pj(«) rotate along this circle starting
from to(p;), ie., pi(0) = to(p;). Compute sets
of intervals I; = {« | dist(pi(a),S) < p}, for
i=3,... .k

3. Compute I = N¥_,I;. For each a € I, 74(s,8') 0
to is a rigid transformation mapping P onto S,

where r,(s,s’) is the rotation around axis s, s’
with angle a.

Figure 1: Corresponding points and the rotation of
the point p}

A straightforward analysis shows that the algo-
rithm runs in O(knlogn) time.
We remark that this time bound can be improved by a
refined analysis under some assumption about the sur-
face representation. The main idea is a subdivision of
the bounding box of the surface S into v/n x v/nx /n
subboxes. The assumptions on the surface represen-
tation imply that each subbox intersects only a con-
stant number of surface triangles. Since each cycle
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intersects at most O(y/n) subboxes, one can compute
an interval set I; considering only O(y/n) triangles (if
 is not larger than the minimal subbox side length).
We will leave the details of this analysis to a full pa-
per.

The algorithm above can be used as a decision al-
gorithm answering the question whether for a given pu
there is some matching ¢ with ¢(p1) = s,t(p2) = s’ and
wu(t) < p for all other points of P. Thus, using binary
search one can approximate a semioptimal matching.
However, it is also possible to compute the precise
value p of a semioptimal matching by the following
modification of the basic algorithm. Instead of com-
puting the interval sets I; = {« | dist(p;(a),S) < u}
we compute the functions f;(a) := dist(p}(«),S).
This function is the lower envelope of the distance
functions of a rotating point to the surface triangles.
Thus, the description complexity of f; is O(nlogn),
see [5]. Then, instead of computing I = N¥_,I;, we
compute the upper envelope f of all functions f;. The
minimum of f is the p-value of a semioptimal match-
ing.

3.2 The approximation problem

There are two groups of standard approaches to this
Problem. The first group consists of simulated an-
nealing [6] and ICP variants [1], [4]. These meth-
ods have proved to be useful in many practical situa-
tions, but, they have the disadvantage that they could
be trapped in a local minimum, and thus it is hard
to prove something about the approximation ratio.
The second group consists of discretization patterns,
inducing the repeated computation of the semiopti-
mal solution for a dense discrete set of transforma-
tions. We will exploit this approach to compute a A-
approximation of the optimal matching, where \ > 1
is an arbitrary constant.

A common key problem of many approximation prob-
lems focusses on the fact the the value of an opti-
mal solution is unknown. Here we are able to derive
upper and lower bounds for €,,; from the results of
some semioptimal matchings. Since each pair (s, s’)
of characteristic points on S could constitute the ap-
proximated destination of (p1,p2) we apply this pro-
cedure for each such pair. More precisely, we com-
pute the semioptimal matching t; o mapping (p1, p2)
onto the point pair (37,3z2), where (57,5z2) forms the
same line and has the same center as (s,s’), but
[IsT — 32| = |lp1 — p2||. We denote the best value
obtained in this way by = min, geg,{e(ts,s )}
Furthermore, we introduce the radius rp and the rel-
ative radius Rp of the point set P with respect to the
center of the characteristic points as follows:

2
Rp: rp Tp

R maXHM*PH
P peEP 2 ’

lpr—pall ool
Lzl py — po]

1

Proposition 1 6 > €, > Rpia-

Given an approximation factor A > 1 we try to
improve the best value § obtained so far by small
changes of the predefined matching positions 57, 53.
The bounds above can be used to design a grid based
set of pertubed matching positions which is dense
enough to include a A-approximation of an optimal
matching.

Let us set two grids around points s and s’ in the
following manner. First, a 2-dimensional squared
grid, centered at the point s’, normal to segment
(s,s"), with size 2¢/30 and with size of the subsquares
%. Second, a 3 dimensional grid centered at
the point s, parallel to the 2-dimensional grid, with
%. Using these
grids for fixing a dense set of matching positions
(31,52), at least one of the semioptimal matchings
ls755 is a A-approximation of the optimal matching.
The number of the grid combinations, defin-
ing possible matching positions (57,52), s

2 3
(L0V3Re(Retl) | 4y (V3Re4D) | q)" This im-
plies the following estimation of the total run
time:

size 20 and size of subcubes

Lemma 2 The run time
the A-approximation

5
O(n? knlogn (/\in’i)a)

complexity of
presented above is

We remark that the factor n in this formula can be
improved in the same way as discussed in the anal-
ysis of the semioptimal matching. Moreover, in the
applications the ratio Rp can be regarded as a small
constant.
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Approximation Algorithms for the Earth Mover’s Distance Under
Transformations Using Reference Points

Oliver Klein*

1 Introduction

Reference points have been introduced in [2] and [1]
to construct approximation algorithms for matching
compact subsets of R? under a given class of transfor-
mations. Also a general discussion of reference point
methods for matching according to the Hausdorff-
distance has been given in [1]. Another distance mea-
sure used for shape matching is the Earth Mover’s
Distance (EMD) for weighted point sets ([7]). Here
we will extend the definition of reference points to
weighted point sets and get fast constant factor ap-
proximation algorithms for matching weighted point
sets under translations, rigid motions and similar-
ity operations with respect to the Earth Mover’s
Distance. A first iterative algorithm to solve this
problem has been given by Cohen ([3]). Thus we
want to find algorithms where EMD®**(A,B) <
eEM D°P*(A, B). Under this assumption ¢ is called
the loss factor of the approximation algorithm. Unless
stated otherwise, the results given in this paper are
independent of the distance measure on the ground
set, therefore the results are widely applicable. Addi-
tionally, all theorems hold in arbitrary dimension d.
For a full version of this extended abstract see [5].

2 Basic Definitions

In this chapter we provide all definitions required.

Definition 1 (Weighted Point Set) ([4]) Let A =
{ai1,as,...,a,} be a weighted point set such that a; =
(pi,a;) for i = 1,...,n, where p; is a point in R? and
a; € Rt U {0} its corresponding weight. Let W4 =
S, «; be the total weight of A. Let W be the
set of all weighted point sets in R* and W% be the
set of all weighted point sets in R? with total weight
G eRT.

In the following we will use transformations on
weighted point sets. By this we mean to transform
the point set and leave the weights unchanged.
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A point related to each weighted point set is the
center of mass. This point will play an important role
in our approximation algorithms. Note that this point
can be computed in linear time and therefore does not
affect the runtime of the presented algorithms.

Definition 2 (Center of Mass) The center of
mass of a weighted point set A = {(pi, i)i=1,..n} €
W is defined as

1 n
=1

Definition 3 (Reference Point) ([1]) Let K be a
subset of W® and § : K — R be a distance measure
on K. A mapping r : K — R? is called a §-reference
point for IC with respect to a set of transformations
T on K, if the following two conditions hold:

1. Equivariance with respect to 7: For all A € K
and T € T we have

r(T(A)) = T(r(A)).

2. Lipschitz-continuity: There is a constant ¢ > 0,
such that for all A, B € K,

Ir(A) = r(B)|| < c¢-6(A, B).
We call ¢ the quality of the reference point r.

Later, when we want to construct an approximation
algorithm for similarities, we will have to rescale at
least one of the weighted point sets. Unfortunately,
rescaling in a way that the diameters of the underlying
point sets are equal, does not work. Please note again
that we will keep the weights of the points unchanged.

The key for a working algorithm is to rescale in a
way that the normalized first moments with respect to
their reference points coincide. Here we give the def-
inition of the normalized first moment of a weighted
point set with respect to an arbitrary point p € R<.
Note that this point can be computed in linear time.

Definition 4 (Normalized First Moment) The
normalized first moment of a weighted point set
A = {(pi,i)i=1,..n} € W with respect to a point
p € R? is defined as

1 n
my(A) = WA Z%‘Hpi —pll.
i=1
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Next we will introduce the Earth Mover’s Distance
(EMD,[7]), a commonly known distance measure on
weighted point sets.

Definition 5 (Earth Mover’s Distance) Let A =
{(pisai)iz1,..n}t, B = {(gi,Bi)i=1,..m} € W? be
weighted point sets with total weights W4, WB. Let
D :R*xR? — R be a distance measure on the ground
set R?. The Earth Mover’s Distance between A and
B is defined as

minper Y,y ;1 fi;D(pi, q;)
min{WA4, WE}

EMD(A, B) =

where F' = {f;;} is a feasible flow, i.e.

1. fzj > O,Z = 1,...,n7j = 17 ey M
2. Z;n:1 fij <aji=1,...,n
3.3 fii <B5,i=1,..,m
43> fiy = min{ W4, W5}

For a detailed discussion of the EMD see [7], [3] and
[4]. In the following, the distance measure D used in
the definition of the EMD should be the same as the
one used in the defintion of the reference point. If D
is the Euclidean Distance, we will also use EEM D as
a notation for the Earth Mover’s Distance.

3 Approximation Algorithms Using Reference
Points

In this chapter we present approximation algorithms
using reference points. Since this would be useless if
there was no reference point, we provide the following
theorem:

Theorem 1 The center of mass is an EMD-reference
point for weighted point sets with equal total weights
with respect to affine transformations. Its quality is 1.

The proof of the Lipschitz-continuity was already
given in [7] as a proof for a lower bound for the EMD.
The equivariance of the center of mass is commonly
known.

The following three sections are organized as fol-
lows: In each section we consider a class of trans-
formations, construct an approximation algorithm for
matching under these transformations for general ref-
erence points and finally use the center of mass to get
a concrete algorithm.

For the whole chapter let A = {(p;, %)i=1,...n},
B = {(¢i, 3i)i=1....m} € W be two weighted point
sets in dimension d with positive equal total weight
G € RT. Please note that the following results do
not hold for weighted point sets with unequal to-
tal weights. For simplicity let m be O(n). Fur-
ther let r : W& — R? be an EMD-reference point
for weighted point sets with respect to the consid-
ered class of transformations with quality c. Let
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T (n) be the time to compute the reference point,
TEMP(p) and TFEMP(n) be the time to compute
the EMD and EEM D between two weighted point
sets and T7°%(n) be the time needed to find the opti-
mal rotation around a fixed point. An upper bound
on TEMP(p) and TEEMP (n) is O(n*logn) using a
strongly polynomial minimum cost flow algorithm by
Orlin ([6]). A in practice faster algorithm can be de-
veloped by solving the linear programming problem
using the simplex method.

3.1 Translations

Consider the following algorithm to get an approx-
imation on the problem of finding a translation
minimizing the EMD under translations:

Algorithm TranslationApzx:
1. Compute r(A) and r(B) and move B by r(A) —
r(B). Let B’ be the image of B.
2. Output B’ as an approximately optimal solution
and the approximate distance EM D(A, B').

Extending the proof in [1] to weighted point sets we
can prove the following:

Theorem 2 Algorithm TranslationApx finds an ap-
proximately optimal matching for translations with
loss factor ¢ + 1 in time O(T"¢/ (n) + TFMD (n)).

Corollary 3 Algorithm TranslationApx using the
center of mass as EMD-reference point induces an
approximation algorithm with approximation ratio 2.
Its runtime is O(TFMP (n)).

3.2 Rigid Motions

The following algorithm gives a first approximation
on the EMD under rigid motions, i.e. combinations
of translations and rotations:

Algorithm RigidMotionApz:

1. Compute 7(A) and r(B) and move B by r(A) —
r(B). Let B’ be the image of B.

2. Find an optimal matching of A and B’ under
rotations of B’ around r(A) = r(B’). Let B” be
the image of B’ under this rotation.

3. Output B” as an approximately optimal so-

lution together with the approximate distance
EMD(A, B").

Theorem 4 Algorithm RigidMotionApz finds an ap-
proximately optimal matching for rigid motions with
loss factor ¢+ 1 in O(T7¢f (n) +TEMP (n) + T7 (n)).

Since the position of the reference point as rota-
tion center is fixed, several degrees of freedom have
been eliminated and the problem is easier than the one
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finding the optimal rigid motion itself. Unfortunately,
even for this problem no efficient algorithm is known
so far. Therefore it would be nice to have at least an
approximation algorithm for this problem. We will
show one based on the following lemma. Please note
that this lemma is only proven if we take the Eu-
clidean distance on the ground set.

Lemma 5 Let p € R? be some point. Let Rot(p)
be the set of all rotations around p. Then there is a
rotation R’ € Rot(p) such that

EEMD(A,R(B)) <2-

min EEMD(A, R(B)),
R€E€Rot(p)

where R’ aligns p and at least one point of each set A
and B.

Therefore, given a fixed point p € R? we get a
2-approximation on the problem of finding an opti-
mal rotation of B around p by the following algorithm:

Algorithm RotationApx

1. Compute the minimum EFEM D over all possible
alignments of p and at least one point of each set
A and B.

The runtime of this algorithm is O(n?TFEMD ().
Using this algorithm combined with reference points
we now get an easy to implement and fast approxi-
mation algorithm for rigid motions. Unfortunately,
the increased efficiency must be paid by the increased
approximation ratio (2¢ + 2).

Algorithm RigidMotionApxUsingRotationApx

1. Compute r(A) and r(B) and move B by r(A) —
r(B). Let B’ be the image of B.

2. Find a best matching of A and B’ under rotations
of B around r(A) = r(B’) where r(A) and at
least one point in A and B’ are aligned. Let B”
be the image of B’ under this rotation.

3. Output B” as an approximately optimal so-

lution together with the approximate distance
EEMD(A, B").

Theorem 6 RigidMotionApxUsingRotationApz
finds an approximately optimal matching for
rigid motions with loss factor 2c¢ + 2 in time
O(T"¢! (n) + n*TFEMD(n)).  This holds for the
Euclidean distance on the ground set.

In the next two corollaries we apply the center of
mass to the last two theorems:

Corollary 7 RigidMotionApx using the center of
mass as EMD-reference point induces an approxima-
tion algorithm with approximation ratio 2 in time

O(T™ (n) + TFMP (n)).

Corollary 8 RigidMotionApxUsingRotationApzr us-
ing the center of mass as EMD-reference point induces
an approximation algorithm with approximation ra-
tio 4. Its runtime is O(n*TFEMP (n)). This holds for
the Euclidean distance on the ground set.

3.3 Similarities

In this section we present approximation algorithms
for matching two given weighted point sets under
similarity transformations, i.e.  combinations of
translations, rotations and scalings. More precisely,
we want to compute ming EM D(A, S(B)), where the
minimum is taken over all similarity operations S.
Note that exchanging A and B makes a difference.

Algorithm SimilarityApz:
1. Compute r(A) and r(B) and move B by r(A) —
r(B). Let B’ be the image of B.
2. Determine the normalized first moments
mpay(A) and m,py(B') and scale B’ by

% around the center r(A) = r(B’). Let

B” be the image of B’ under this scaling.

3. Find an optimal matching of A and B” under
rotations of B” around r(A) = r(B”). Let B"”
be the image of B” under this rotation.

4. Output B as an approximately optimal so-
lution together with the approximate distance
EMD(A, B™).

To show the correctness of this algorithm we use
the following two lemmata:

Lemma 9 Let A € W? be a weighted point set with
normalized first moment my(A) with respect to a
point p € R%. Let 71,75 be scalings with center p
and ratios 1 and 73, respectively. Then

EMD(71(A), 72(A)) < |(71 — v2)mp(A)].

The next lemma gives a new lower bound for the
EMD of two weighted point sets:

Lemma 10 Let A,B € W4 and r : W4 — R a
reference point with quality c¢. Then

[mir(a)(A) = me5)(B)| < (1+¢)EMD(A, B).

Using these lemmata we can prove the following:

Theorem 11 SimilarityApz finds an approximately
optimal matching for similarities with loss factor 2¢c+2
in time O(T"¢/ (n) + TEMP (n) + T (n)).

As for RigidMotionApz, SimilarityApz depends on
finding the optimal rotation, which is impractical.
Again, we make this algorithm practical and efficient
by using RotationApz and again we have to pay by a
worse approximation ratio:
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Algorithm SimilarityApxUsingRotationApz
1. Compute r(A) and r(B) and move B by r(A) —
r(B). Let B’ be the image of B.
2. Determine the mnormalized first moments
mpay(A) and m.gn(B’) and scale B’ by

% around the center r(A) = r(B’). Let

B” be the image of B’ under this scaling.

3. Find a best matching of A and B” under rota-
tions of B” around r(A) = r(B") where r(A)
and at least one point in each set A and B” are
aligned. Let B be the image of B” under this
rotation.

4. Output B as an approximately optimal solution
and the approximate distance EEM D(A, B").

Theorem 12 Algorithm  SimilarityApzUsingRota-
tionApx finds an approximately optimal matching
for similarities with loss factor 4c + 4 in time
O(T"¢f (n) + n?>TEPMD(n)).  This holds for the
Euclidean distance on the ground set.

Corollary 13 Algorithm SimilarityApx using the
center of mass as EMD-reference point induces an
approximation algorithm with approximation ratio 4.
Its runtime is O(TEMP (n) + T7°(n)).

Corollary 14 Algorithm  SimilarityApzUsingRota-
tionApx using the center of mass as EMD-reference
point induces an approximation algorithm with loss
factor 8. Its runtime is O(n*TFEMD (n)). This holds
for the Euclidean distance on the ground set.

3.4 Lower Bound for Algorithm TranslationApx

In Section 3.1 we presented the center of mass as an
EMD-reference point with quality 1, and thus induc-
ing an approximation algorithm for translations with
ratio 2. We now show that this bound is tight:

Theorem 15 There are sets where the upper bound
for algorithm TranslationApz is assumed.

Proof. Let A := {((0,0),1),((1,0),K)} and B :=
{((0,0),1),((0,1), K)}, where K € R is some con-
stant. Let EMDC(A,B) be the Earth Mover’s
Distance, where the center of masses coincide and

EMD°Pt(A, B) be the optimal distance under trans-
EMDC (A,B)
EMDOPT(A,B)
can be seen easily by using an upper bound for

EMD°Pt(A, B) by matching the two thick points.
O

lation. Then — 2 as K — oo. This

4 Conclusion

In this paper we introduced EMD-reference points for
weighted point sets and constructed efficient approxi-
mation algorithms for matching under various classes
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Figure 1: Matching according to center of mass

of transformations. Additionally, we presented the
center of mass as an EMD-reference point for weighted
point sets with equal total weights. Unfortunately,
the center of mass is no EMD-reference point if you
consider the set of all weighted point sets, including
those with different total weights. Even worse, we
show in [5] that there is no EMD-reference point for
all weighted point sets. A variation of the EMD is
the Proportional Transportation Distance (PTD), see
[4]. In [5] we also show, that the center of mass is a
PTD-reference point even for weighted point sets with
different total weight and all theorems and corollaries
mentioned in this paper carry over. But the PTD has
a couple of disadvantages against the EMD, for exam-
ple it is not suitable for partial matching applications.
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Matching Point Sets with respect to the Earth Mover’s Distance

Sergio Cabello*

Abstract

Let A and B be two sets of m resp. n weighted points
in the plane, with m < n. We present (1 + ¢) and
(24€)-approximation algorithms for the minimum Eu-
clidean Earth Mover’s Distance between A and B un-
der translations and rigid motions respectively. In the
general case where the sets have unequal total weights
the algorithms run in O((n®m/e*)log?(n/e)) time
for translations and O((n*m?2/e*)log?(n/e€)) time for
rigid motions. When the sets have equal total
weights, the respective running times decrease to
O((n?/e*)log?(n/e)) and O((n’m/e*)log?(n/e)). We
also show how to compute a (1 + €) and (2 + ¢)-
approximation of the minimum cost Euclidean bipar-
tite matching under translations and rigid motions in
O((n*?/€7/?)log” n) and O((n/e)"/?log®n) time re-
spectively.

1 Introduction

Let A = {ay,...,an} and B = {by,...,b,} be two
planar weighted point sets with m < n. A weighted
point a; € A is defined as a; = {(a;, Ya;), Wi}, 1 =
1,..,m, where (2,,,yq,) € R? and w; € R* U {0}
is its weight. A weighted point b; € B is defined
similarly as b; = {(2s,,¥,),u;},7 = 1,..,n. Let W =
Yoicyw; and U = 370 u; be the total weight, or
simply weight, of A and B respectively.

The Earth Mover’s Distance (EMD) is a similar-
ity measure for weighted point sets with applications
in colour-based image retrieval [7], shape matching
[7, 2, 1] and music score matching [9]. In a typi-
cal scenario, a pattern is reduced to a set of feature
weighted points; the larger the weight, the more im-
portant the point for the whole pattern. Informally,
a weighted point a; can be seen as an amount (sup-
ply) of earth or mass, equal to w; units, positioned at
(Za;, Ya;); alternatively it can be taken as an empty
hole (demand) of w; units of earth capacity. We as-
sign arbitrarily the role of the supplier to A and that
of the receiver/demander to B, setting, in this way, a
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direction of earth transportation. The Earth Mover’s
Distance (EMD) of A to B measures the minimum
amount of work needed to fill the holes with earth. A
formal definition of the EMD will be given shortly.

In order to measure the similarity of two sets A
and B independently of transformations, one wants
to find a transformed version of, say, A that attains
the minimum possible distance to B. In this paper
we are interested in transformations that change only
the position of the points, not their weights; in par-
ticular, we focus on translations and rigid motions —
sometimes referred to as isometries. We consider B
to be fixed, while A can be translated and/or rotated
relative to B. We assume some initial positions for
both sets, denoted simply by A and B. Let Z be
the set of all possible rigid motions in the plane. We
denote by Ry a rotation about the origin by some
angle 6 € [0,27) and by Ty a translation by some
t € R2. Any rigid motion I € Z can be uniquely de-
fined as a translation followed by a rotation, that is,
I = Iy, = Rg o Ty, for some 6 € [0,27) and t e R2.
In general, transformed versions of A are denoted by
A(t,0) = {a1(£,0),...,an(t,0)} for some I, € T.
For simplicity, translated only versions of A ‘are de-
noted by A(t) = {ai(1),...,am(®)}.

The EMD between A(t,60) and B, is a function
EMD : Z — R* U {0} defined as

Sty Yoy figdii (£,6)
min{W, U} ’

EMD(Z,0) = min
FeF(A,B)
where d;;(t,0) is the distance of a;(t,0) to b;, and
F = {fij} € F(A,B) with F(A, B) being the set
of all feasible flows between A and B defined by
the constraints: (i)f;; > 0,i = 1,....,m,j = 1,...,n,
()35 fij S wipi=1,..om, ()30, fij < ujj =
1,...,n,and (iv)>_1", Z?Zl fij = min{W,U}. In case
that ¢ or @ or both are constant, we simply write
EMD(#), EMD(#) and EMD respectively. The EMD
is a metric when d;; is a metric and W = U [7].
When W # U the EMD inherently performs partial
matching since a portion of the weight of the ‘heavier’
set remains unmatched. We deal with the Euclidean
EMD where d;; is given by the Ly-norm. For sim-
plicity, and without loss of generality, we assume that
min{W,U} = 1. We study the following problem:
Given two weighted point sets A, B compute a rigid
motion Iy o that minimizes EMD(Z, 6).
This problem was first studied by Cohen [7] who
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presented a Flow—Transformation iteration which al-
ternates between finding the optimum flow for a given
transformation, and the optimum transformation for
a given flow. They showed that this iterative pro-
cedure converges, but not neccessarily to the global
optimum. Computing the EMD for a given trans-
formation is actually the transportation problem, a
special minimum cost network flow problem for the
solution of which there is a variety of polynomial time
algorithms [3, 4]. However, as we discuss later on, the
task of finding the optimal transformation for a given
flow is not trivial. Cohen also gave simple algorithms
that compute the optimum translation for the special
case where W = U and d;; is the squared Euclidean
distance. This case is quite restrictive since, in gen-
eral, the sets need not have the same weight, and the
use of squared Euclidean distance is statistically less
robust than Euclidean distance [5]. Currently, no al-
gorithm that computes the optimal translation and/or
rotation is known for the Euclidean EMD.

Observe that the objective function is not linear in
t and 6 but it is still linear in F. Thus, the minimum
EMD occurs at some vertex of the convex polytope
F (A, B). This suggests the following straightforward
algorithm: for every vertex F' = {f;;} of F(A,B)
compute the optimal rigid motion, i.e., the one that
minimizes Y7 Y7, fijdi;(£,0). For translations,
the latter problem reduces to the Fermat — Weber
problem where one wants to find a point that mini-
mizes the sum of weighted distances to a set of given
points. No exact solution to this problem is known
even in the real RAM model of computation [5]. How-
ever, Bose et al. [5] gave a O(nlogn)-time (1 + €)-
approximation algorithm for any fixed dimension. Us-
ing their algorithm for every vertex of F(A, B) gives
only a (1 4 e)-approximation of the minimum EMD
under translations in exponential time.

In this paper, we give simple polynomial-time algo-
rithms that achieve a (1+4¢) and (2+¢)-approximation
for translations and rigid motions respectively.

2 Lower bounds and approximations of the EMD

First, we give two simple lower bounds on the EMD
that are vital for the approximation algorithms given
in the next sections. In these algorithms we need to
compute the EMD for a given transformation. Com-
puting the EMD exactly is expensive, and unecessary
since we opt for approximations of the minimum EMD
under transformations. We show how to get a (1 +¢)-
approximation of the EMD in almost quadratic time.

The following lower bound comes directly from the
definition of the EMD.

Observation 1 Given two weighted point sets A and
B, EMD > mini’j d”

o8

The next lower bound is due to Cohen [7]. The
center of mass C(A) of a planar weighted point set
A={(24;,Ya;),wi},i=1,...,mis defined as C(A) =
(Z?ll wi(xai ’ yai))/ ZZI Wi

Theorem 1 [7, Theorem 6] Let A and B be two
weighted point sets with equal weights. Then EMD >
|C(A) - C(B)].

Currently, the fastest strongly polynomial-time al-
gorithm for the minimum cost flow problem on a
graph G(V,E) is due to Orlin [3], and runs in
O((JE|og |[V)(JE| 4+ |V |1log [V])) time. Using the al-
gorithm of Callahan and Kosaraju [6], we can con-
struct, in O(nlogn + (n/e?)log1/e) time, a linear
size (1 + €)-spanner Gy, i.e., a graph G4(V, E’) with
|E'| = O(n/e) such that the shortest path between
any two points in Gy is at most (1 + ¢) times the
Euclidean distance of the points. Running the algo-
rithm of Orlin on G4 produces an approximate value
EMD; such that EMD < EMD, < (1 + ¢)EMD in
O((n?/€*)log®(n/e)) time; we refer to this procedure
as APXEMD(A, B, ).

Lemma 2 For any given € > 0, a value EMD, with
EMD < EMD; < (1 + ¢)EMD can be computed in
O((n?/€?)log?(n/e)) time.

Next, consider the case where |A| = |B| = n and w; =
u; = 1,2 =1,...,n,j = 1,...,n. The integer solutions
property of the minimum cost flow problem and the
fact that 0 < f;; < 1 imply that there is a minimum
cost flow on G that results in a (perfect) matching
between A and B. Hence, we can restrict ourselves to
finding a minimum cost matching—usually called the
assignment problem. Varadarajan and Agarwal [8]
presented an algorithm that finds a matching with
cost at most (1+¢) times that of an optimal matching
in O((n/e)*?1og” n) time; we refer to this algorithm
as APXMATCH(A, B, ¢).

3 Approximation algorithms for translations

We denote by tﬂiﬁj the translation which matches a;
and b;; we call such a translation a point-to-point
translation. Observation 1 implies that the point-
to-point translation that is closest to t_;pt gives a 2-
approximation of EMD(t_:)pt). Hence, we have the fol-
lowing:

Lemma 3 Given two weighted point sets A and B,
EMD (fp¢) < min; ; EMD(#;_;) < 2EMD (Z,p¢).

According to Observation 1, the point-to-point
translation which is closest to t_;pt can be at most
EMD(t_:jpt) away from t_;pt. This bound is crucial
for the (1 4+ €)-approximation algorithm given in Fig-
ure 1. Using a uniform square grid of suitable size



EWCG 2005, Eindhoven, March 9-11, 2005

we compute the EMD for a limited number of grid
translations within a small neighborhood — of size
EMD(f;pt) — of every point-to-point translation. Note
that we do not know EMD(t_;pt) but we can compute
min; ; EMD(t_;_)j) which, according to Lemma 3, ap-
proximates EMD(f,,;) well-enough. In order to save
time, rather than computing EMD exactly, we will
approximate it using the procedure ApPxEMD.

TRANSLATION(A, B, ¢):

1. Let a = min; jAPXEMD(A(fi—;), B, 1) and let G
be a uniform square grid of spacing cea, where

c=1//72.
2. For each pair of points a; € A and b; € B do:
(a) Place a disk D of radius o around Z; ;.
(b) For evgry\/grid point #, € D N G compute a
value EMD(ty) = APXEMD(A(ty), B,€¢/3).

3. Report the grid point fapz that minimizes
EMD(Z,).

Figure 1: Algorithm TRANSLATION(A, B, ¢).

Theorem 4 For any given € > 0, a translation t;w
such that EMD(t,,,) < (14 €)EMD (o) can be com-
puted in O((n*m/e*)log?(n/e)) time.

Next, consider the case of equal weight sets. Let
fC(A)_,C(B) be the translation that matches the cen-
ters of mass C(A) and C(B). Theorem 1 sug-
gests the following trivial 2-approximation algorithm:
compute EMD(EC(A)HC(B)). According to Theo-
rem 1, t_;pt is at most EMD(t_;pt) far away fr_(?m
toay—c(p)- Hence, we mneed to search for t,,
only within a small neighborhood of t_’C(A)HC(B).
We modify algorithm TRANSLATION(A, B,¢) as
follows:  First we compute C(A) and C(B).
Then, we run APXEMD(A(tc(a)—c(p)), B,1) and
set a to the wvalue returned. Next, we run
APXEMD(A(ty), B,¢/3) for all the grid points ¢,
which are at most o away from fc( A)—c(B)- The min-
imum over all these approximations gives the desired
approximation bound. Hence, we have managed to
save an nm term from the time bound of Theorem 4.

Theorem 5 If A and B have equal total weights
then, for any given € > 0, a translation t_;pm such that
EMD(#,.) < (1 + €)EMD(,,;) can be computed in
O((n?/e*)log?(n/e)) time.

For the assigment problem under translations, we can
use the above algorithm for equal weight sets , running
APXMATCH instead of APXEMD. This reduces the
running time further.

Theorem 6 For any given ¢ > 0, a (1 + ¢)-
approximation of the minimum cost assignment under
translations can be computed in O((n%/? /¢"/?)1og” n)
time.

Note that, the latter algorithm can be also applied to
equal weight sets with bounded integer point weights
by replacing each point by as many points as its
weight.

4 Approximation algorithms for rigid motions

We first give a (2+¢)-approximation algorithm for ro-
tations. Then, we combine this (2 + €)-approximation
algorithm with the (1 + €)-approximation algorithms
for translations to get (2 + €)-approximation algo-
rithms for rigid motions.

Rotations. Let a;0b; be the angle between the seg-
ments oa; and oTj such that 0 < a;0b; < 7. Also,
let 0;_,; be the rotation of a; by a;0b; that aligns the
origin o and points a; and b; such that both a; and
b; are on the same side of 0. Note that this is the ro-
tation that minimizes d;;(6); we call such a rotation
an alignment rotation. We have the following simple
lemma.

Lemma 7 Let a; and b; be two points in the plane
with a;0b; = ¢. If a; is rotated by an angle § < ¢,
then dij (0) < 2d”

Similarly to Lemma 3, and using Lemma 7, we can
prove that the alignment rotation that is closest to
Oopt gives a 2-approximation of EMD(6,,;). Hence,
we have the following:

Lemma 8 Given two weighted point sets A and B,
EMD(0p:) < min; ; EMD(6;_;) < 2EMD ().

By approximating EMD(f;_,;) with APX-
EMD or APXMATCH we can get a (2 + ¢)-
approximation of EMD(6,,;). We call this algorithm
ROTATION(A, B, €); from the context it will be always
clear whether APXEMD or APXMATCH is used.
Apart from the cost value, ROTATION returns the
corresponing rotation 6;_.; as well.

Lemma 9 For any given € > 0, a rotation 0,y, such
that EMD(0.,.) < (2+€)EMD(6,y¢) can be computed
in O((n*m/e®)log®(n/e)) time. For the minimum
cost assignment problem under rotations the same ap-
proximation can be computed in O((n/?/€3/?)1og” n)
time.

Rigid Motions. We can combine the algorithms im-
plied by Lemma 3 and Lemma 9 to get a (4 + ¢€)-
approximation of the minimum EMD under rigid mo-
tions in the following way: for each point-to-point
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translation f;éj, compute a (2 + €)-approximation
of the optimum EMD between A(f;—;) and B un-
der rotations about b;. The minimum over all these
approximations gives a 2(2 4 €)-approximation of
EMD (fopt, Oopt)-

Lemma 10 For any given ¢ > 0, a (4 + ¢)-
approximation of the minimum EMD under rigid
motions can be computed in O((n*m?/e?)log?(n/e))
time.

The (2 + €)-approximation algorithm for rigid mo-
tions is based on similar ideas. Accoring to Obser-
vation 1, there exist two points a;, b; whose distance
at I is at most EMD(ﬂ,pt,Hopt). We place a

FoptsOopt

grid of suitable size around each f;ﬂj. For each grid
point t_; that is at most EMD(ﬂ)pt,Hopt) away from
t;—.; we compute a (2 + e)_:approximation of the op-
timum EMD betwenn A(t;) and B under rotations
about b;. The minimum over all these approximations
is within a factor of (2 + €) of EMD(t_;pt, Oopt). Since
we do not know EMD(t_;pt, Oopt), we first compute a
(4-+¢)-approximation of it as shown above. Algorithm
RIGIDMOTION(A, B, €) is shown in Figure 2.

RIGIDMOTION(A, B, €):
1. For each pair of points a; € A and b; € B do:
(a) Set the center of rotation, i.e. the origin, to
be b; by translating B appropriately.
(b) Run ROTATION(A(fi—;), B,1) and let a;
the cost value returned.
Let o = miny; ovy.

2. Let G be a uniform grid of spacing cae, where c is
a suitable constant. For each pair of points a; € A
and b; € B do:

(a) Set the center of rotation, i.e. the origin, to
be b; by translating B appropriately.

(b) Place a disk D of radius a around #;_.;.

(c) For every grid point i, € D N G run
ROTATION(A(fy), B,¢/3) Let EMD(Z,) and
04, be the cost value and angle returned
respectively.

3. Report the grid point t_;pz that minimizes

EMD(#y), and the corresponding angle 6.

Figure 2: Algorithm RIGIDMOTION(A, B, ).

Theorem 11 For any given ¢ > 0, a rigid
motion I;mﬁm such that EMD(tapg,Oups) <
(2 4+ €EMD(fypt,00pt) can be
O((n*m?/e*)log®(n/e)) time.

computed  in

60

As in the case of translations, for equal weight sets
we need to search for the optimal translation only
around tﬂc(A)_C(B). We set the center of rota-
tion to be C(B). Computing the 6-approximation
of EMD(t_;pt,Hopt) can be done simply by running
ROTATION(A(tc(a)—c(p)), B,1). Similarly, we need
to run ROTATION(A(ty), B, ¢/3) only for grid points

—

t_; that are close to tc(a)—c(B)-

Theorem 12 If A and B have equal total weights,

then, for any given € > 0, a rigid motion I;am Bupe

such that EMD (fap, 0apr) < (2 4+ €)EMD (fopt, Oopt )
can be computed in O((n®m/e*)log®(n/e)) time. For
the minimum cost assignment problem under rigid
motions the same approximation can be computed in
O((n/e)"/?log® n) time.
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Abstract Order Type Extension and New Results
on the Rectilinear Crossing Number - Extended Abstract

Oswin Aichholzer*

Abstract

We provide a complete data base of all realizable order
types of 11 points in general position in the plane.
Moreover, we develop a novel and efficient method for
complete extension to (abstract) order types of size 12
and more. With our approach we have been able to
determine the exact rectilinear crossing number for
up to n = 17, and slightly improved the asymptotic
upper bound. We briefly discuss further applications
of this approach.

1 Introduction

A finite point set in the plane belongs to the most
common ingredients for computational and combi-
natorial geometry problems. For quite many, espe-
cially combinatorial problems, the exact metric prop-
erties are not relevant, but the combinatorial prop-
erties of the underlying point set play the main role.
More precisely, the crossing properties of the line seg-
ments spanned by the point set already determine
the problem. Triangulations, crossing numbers, con-
vexity problems are among other famous examples.
Order types provide a means to encode the combina-
torial properties of finite point sets. The order type
of a point set S = {p1,..,pn} is a mapping that as-
signs to each ordered triple (p;, p;,px) an orientation.
Throughout this work we assume that S is in general
position, that is, the orientation of each point triple is
either clockwise or counter-clockwise. Two point sets
S1, S5 are of the same order type if and only if there is
a bijection between S7 and Sy such that either all (or
none) corresponding triples are of equal orientation.

To achieve results for point sets of fixed size for the
problems mentioned above, it is sufficient to check one
instance of each order type instead of looking at all
(infinitely many) point sets. A data base containing
all order types of size up to 10 already exists [2] and
has been applied fruitfully to many problems in com-
putational and combinatorial geometry [6].

Order types have played a crucial role in gather-
ing knowledge about crossing numbers. The cross-
ing number of a graph G is the least number of edge
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crossings attained by a drawing of G in the plane. We
consider the problem of finding the rectilinear (edges
are required to be straight line segments) crossing
number ¢r(K,,) of the complete graph K, on n ver-
tices [12]. Determining ¢r(K,,) is commonly agreed to
be a difficult task, see [3] for references and details.
So far the exact values of ¢rF(K,,) have been known
for n <12 [2, 3]. In Section 4 we extend this range to
n < 17. Moreover, we also present an improvement
on the asymptotic upper bound of ¢r(K,). Our re-
sults are available on-line [1]. We close with a brief
discussion of further applications of our approach.

2  Order type data base for n=11

A complete data base of order types for sets with up
to 10 points has already been established [2]. We
present an extension to this data base for point sets
of size 11. Our approach is strongly related to [2] and
uses improved techniques to cover the following three
steps, cf. [2] for the necessary concepts and definitions.

1. Generating a complete candidate list of abstract
order types

2. Grouping abstract order types into projective
classes and deciding realizability

3. Realizing all realizable order types by point sets
with ”nice” coordinate representation

For the first step, we acquired 2 343 203 071 in-
equivalent abstract order types. We only stored one
representative of each projective class explicitly at
this time. This evaluates to 41 848 591 abstract pro-
jective order types of size n = 11, see Table 1.

The second step - deciding realizability - is the hard-
est part of the construction. The trouble is, that this
decision problem is known to be NP-hard [13] and
no practical algorithms are known, not even for small
sets, say of size 10 or 11. We tried to find realizations
and started by applying refined versions of the heuris-
tic methods from [2] for each projective order type
class. These worked for most of the abstract order
types in question. For classifying non-realizable order
types, we used a well-known practical algorithm for
a non-realizability proof developed by Bokowski and
Richter [9]. To our benefit, the heuristics for finding
realizations and proving non-realizability were suffi-
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cient to completely settle the case for n = 11, see
Table 1.

The main goal of the third step is to store the data
base in an application friendly way. To this end, we
provide two representations of the data base. An
explicit version of the data base contains one point
set for each planar order type, all in 16-bit integer
representation.

projective abstract o.t. 41 848 591
— thereof non-realizable 155 214
= projective order types 41 693 377
abstract order types 2 343 203 071
— thereof non-realizable 8 690 164
= order types 2 334 512 907

Table 1: Number of order types of cardinality n = 11.

Supporting the reliability in the construction of our
data base, all algorithms to generate the complete
data base of abstract order types are of purely com-
binatorial nature. The applied methods for deciding
realizability are heuristics, but the acquired results
can be checked in a deterministic way.

The vast storage and the lack of applicability are
the two main reasons - apart from calculation time
- that we do not have a complete data base of order
types with 12 or more points.

3 Complete abstract point extension

For several problems and conjectures the complete
order type data base of sets of up to 11 points has
been sufficient to give a final answer, cf. [3]. How-
ever, many problems tend to be harder and cannot
be settled just by checking all cases for size up to
11. Still it looks highly plausible to gain significantly
more insight with a few additional points, say 12 or
13 points. To evade these obstacles we make use of
well-known theoretical results. For many problems on
point sets there exist inductive restrictions, so-called
subset properties.

Definition 1 (Subset property) Let S, be an or-
der type consisting of n elements, n > 4, and consider
some property that is valid for S,,. Then this property
is called a subset property if and only if there exists
some S, _1 C S, of n—1 elements such that a similar
property holds for S, _1.

Our general idea is to exploit subset properties for
order type based problems to obtain results beyond
point sets of size 11. First, we are applying the order
type data base to completely determine the problem
for point sets of small size, that is, up to n = 11.
This gives a set of result order types of cardinality
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11, all realized by point sets. Next, we enumerate
all order types of size 12 that contain one of the 11-
point result order types as a subset. Applying the
subset property, we are able to filter these 12-point
order types. Ouly order types that fulfill the subset
property are kept. Then we repeat this procedure,
theoretically extending the set of result order types
to arbitrary n.

For this technique, we require an algorithm that
calculates for a given order type of cardinality n all
(n—+1)-point order types that contain the input order
type as a sub-order type. We call this step complete
point extension. It is well known that an extension
technique relying only on the geometric realizations
of the data base cannot guarantee completeness of
the extension, see Figure 1. For a specific n-point
realization of an order type we cannot derive all
required n + 1 order types just by adding a new point
to this realization. To achieve completeness of the
extension, we use an abstract extension method, that
is, applying a combinatorial extension technique. We
provide a one-element extension to an abstract order
type by adding a pseudoline to the dual pseudoline
arrangement in all combinatorially possible ways.

Figure 1: Two realizations of the order type of five
points in convex position. Only the right point set
can be extended in a way such that the resulting point
set has three points on its convex hull.

For specific applications with a subset property, we
define an order type extension graph. In this graph
each order type is represented by a node. For each
order type of size n + 1 (son), there is exactly one
connection by an edge to a predecessor sub-order type
of size n (father). By this definition we have that each
order type corresponds to a unique predecessor order
type by removal of a single point. On the other hand,
an extension process that only extends corresponding
to the edges of an order type extension graph (from
father to son) enumerates each extended order type
exactly once.

In general, the algorithm of complete abstract
point extension extends one input order type point
by point, then continuing on the remaining set of
order types. After extension with one abstract point,
we check if the created order type of size n + 1 (son)
has the initial order type of size n as its predecessor
order type (father) in the order type extension graph.
Only if this is the case we keep it as a candidate
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for the output. The very general approach with
the order type extension graph guarantees to avoid
duplicates in the construction process, thus it can
be used for recursive enumeration techniques, known
as reverse search, cf. Avis and Fukuda [7]. An
additional benefit of this technique is that it can be
applied iteratively, i.e., extending from n points to
n+ 1, n+ 2, and so on, without storing intermediate
results. In fact, only the order types corresponding
to a single path of the order type extension graph
have to be kept in memory, that is, the edges
describing the father-son relationship between order
types of size n, n + 1, n + 2, and so on. This allows
calculations which otherwise would not be possible
because of enormous storage requirements for inter-
mediate steps. In addition, applications based on
the order type extension graph are easily executed in
parallel. Thus, highly time intensive problems may
be settled through distributed computing approaches.

4 New Rectilinear Crossing Numbers

4.1 Subset Property for cr(K,)

The next two well-known lemmas (see e.g. Guy [11]
for references) provide the necessary relations to ob-
tain a subset property for er(K,).

Lemma 1 ¢r(K,) > [-2; eF(K,_1)]

n—4

Corollary 2 (Crossing number subset prop-
erty) For any drawing of K, with ¢ crossings there
exists at least one sub-drawing K,_1 with at most
| 2=4 ¢] crossings.

Lemma 3 Let n € N be odd. Consider a straight-
line drawing of K, with c crossings. Then: ¢ =
(%) (mod 2).

A drawing of K73 with 229 (or fewer) crossings con-
tains at least one sub-drawing Kio with | 229) =
158 (or fewer) crossings. Recursive application shows
that there exists a sub-drawing of size 11 with
L% 158] = 105 crossings. By the parity property we
can further reduce the number of crossings for the 11-
point subset to at most 104. Thus to achieve a data
base of all order types of size 13 with 229 (or fewer)
crossings, one can start with a complete data base of
order types of size 11 defining drawings of K,, with at
most 104 crossings, i.e., either 102 or 104 crossings.

4.2 Results on ¢r(K,,) for n > 12

Using the crossing number subset property, we were
able to calculate the rectilinear crossing numbers for
n =12,...,17, see Table 2.

12 13 14 15 16 17

n
cr(Ky,) | 153 229 324 447 603 798

dn, 1 4534 | 20 | 16 001 | 36 | > 37269
Table 2: ¢r(K,,) for n =12, ..., 17.

The numbers d,, of inequivalent drawings of K,
minimizing the number of crossings are given in the
last row of Table 2. To obtain these numbers we
had to perform the more challenging task of decid-
ing the realizability of the calculated abstract order
types. Our heuristics - see Section 2 - found realizing
point coordinates for all optimal abstract drawings for
n < 16. Thus, the calculated values are exact. Note
that the numbers of inequivalent optimal drawings
of K, follow a parity pattern. There are relatively
few drawings of K,, with ¢r(K,) crossings for even n
compared to the case of odd n. This property is the
main reason that allows complete abstract extension
to work so well, as the problem itself cuts down on
the number of interesting sets periodically.

In addition to new results on ¢r(K,) for constant n,
we also achieved an improvement on the asymptotic
upper bound. We constructed a set of 54 points with
115999 crossings such that with the strategy of lens re-
placement [3] we were able to prove the next theorem.
The previously best known bound was 7" < 0.38074,
whereas 7* > 0.37533 still holds as a lower bound [8].

Theorem 4 7* = lim,, . c7(K,)/(}) < 0.38058

5 Further Applications

5.1 Happy End Problem

Erdos and Szekeres asked in 1935 for the smallest
number ¢(k), such that each point set in the plane
with at least g(k) points contains a convex k-gon [10].
For k& > 5 this problem is still unsolved, where it is
known that g(6) < 37. The conjecture is that the
true value for g(6) is 17. To answer this conjecture
our plan is to apply our abstract extension technique
in order to obtain all sets without empty convex
hexagons for n < 17. If we cannot find a set for
n = 17 this will prove the conjecture to be true. The
subset property for this problem is obvious: any n—1
point subset of a set of n points to be considered
must not contain a convex hexagon.

5.2 Decomposition

Similar to the convex-decomposition problem of
decomposing a point set into convex polygons one
might allow the resulting faces to be either convex
polygons or pseudo-triangles [4]. When investigating
this problem it turned out to be important to know
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optimal decompositions of small sets. In this context
we asked for independent (disjoint) empty convex
polygons spanned by the set. Let us briefly mention
two results we got from the data base, see [4] for
details. First: Any set of 8 points contains either an
empty convex pentagon or two independent empty
convex quadrilaterals. And with a similar flavor:
Any set of 11 points contains either an empty convex
hexagon or an independent empty convex pentagon
and an empty convex quadrilateral. The mentioned
results directly lead to an upper bound of 7n/10 for
the number of convex or pseudotriangular faces used
to decompose a set of n points.

5.3 Counting Triangulations

Counting the number of triangulations of a set of
points in the plane is another interesting geometric
problem. Exact numbers, using our data base, are
known for all sets with n < 11 points. The best gen-
eral asymptotic lower bound for this problem is based
on these results for small sets [5]. To improve the
bound it will be useful to obtain a tight lower bound
for n = 12,13, .... As a subset property for this task
we can use the fact that adding an interior point to
a given set increases the number of triangulations by
some constant factor.

6 Open Problems

The next steps of our investigation will be to com-
pute ¢r(Kis). The possible range for @r(Kis)
is {1026,1027,1028,1029}, where our conjecture is
cr(Kys) = 1029. Using heavy distributed comput-
ing we consider this task to be realistic in the near
future.

An interesting open problem is whether there al-
ways exists at least one optimal drawing of K, which
contains an optimal sub-drawing of K, 1. A poten-
tial counter-example is n = 18, as all 17-point subsets
of the only known drawing of Kig with 1029 crossings
determine more than ¢7(K7) = 798 crossings.
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Quadrangulations and 2-Colorations

Carmen Cortés*¥ Alberto Marquez¥

Abstract

Any metric quadrangulation (made by segments of
straight line) of a point set in the plane determines a
2-coloration of the set, such that edges of the quadran-
gulation can only join points with different colors. In
this work we focus in 2-colorations and study whether
they admit a quadrangulation or not, and whether,
given two quadrangulations of the same 2-coloration,
it is possible to carry one into the other using some
local operations, called diagonal slides and diagonal
rotation. Although the answer is negative in gen-
eral, we can show a very wide family of 2-colorations,
called onions 2-coloration, that are quadrangulable
and which graph of quadrangulations is always con-
nected.

1 Introduction

Given a set S, either a polygon or a point set, a quad-
rangulation of S is a partition of the interior of S, if
S is a polygon, or of the convex hull of S, if S is a
point set, into quadrangles (quadrilaterals) obtained
by inserting edges between pairs of points (diagonals
between vertices of the polygon) such that the edges
intersect each other only at their end points. Not all
polygons or point sets admit quadrangulations, even
when the quadrangles are not required to be convex.
In the study of finite element methods and scattered
data interpolation, it has recently been shown that
quadrangulations of point sets may be more desirable
objects than triangulations [2]. The quadrangulations
of polygons have been also investigated in Computa-
tional Geometry, mostly in the context of guarding or
illumination problems.

From now on we call a polygon or point set quadran-
gulable if it admits a quadrangulation without adding
any additional point (Steiner point).

There are two different characterizations of quad-
rangulable point sets:
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e if and only if there exists a triangulation of the
set such that its dual graph contains a perfect
matching [5].

e if and only if it has an even number of points in
its convex hull [1].

A quadrangulation is constructed (with the addition
of a Steiner point to obtain an even number of points
in the convex hull, if necessary) in ©(nlogn).

For a more complete vision on quadrangulations we
recommend Toussaint’s survey [6].

Given a quadrangulation of a point set in the plane,
it determines a 2-coloration of the set, such that edges
of the quadrangulation can only join points with dif-
ferent colors. In this work we focus on 2-colorations
and study whether they admits a quadrangulation
or not (Section 2), and whether, given two quad-
rangulations of the same 2-coloration, it is possible
to carry one into the other using some local opera-
tions (Section 3). Finally, in Section 4 we present
a very wide family of 2-colorations, called onions 2-
coloration, that are quadrangulable and which graph
of quadrangulations is always connected.

2 2-colorations and quadrangulations

Suppose we have a 2-colorated point set S in the plane
and we want to know if it is possible to construct a
quadrangulation of its convex hull. A similar condi-
tion to the one given by [1] is, in this context, evident:

Lemma 1 A necessary condition for a 2-coloration
of a point set S to admit a quadrangulation (to be
quadrangulable) is that

1. the number of points of the convex hull of S is
even; and

2. consecutive points of the hull have different color.

But even when the conditions of Lemma 1 are
fulfilled, it is easy to find non-quadrangulable 2-
colorations, as the one at the left of Figure 1. In
order to construct a quadrangulation, point 1 cannot
be joined with ¢ because then b can be joined with
no black point but 1. So we draw an edge from 1 to
b. Now b cannot be joined either with 3 or with 4,
because then ¢ or 2, respectively, would be isolated,
and cannot be part of any quadrangulation. But if
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we join b with 2 the only way to complete a quadri-
lateral is to match 2 and d, that leaves 3 isolated.
It is important to remark that we are talking about
2-colorations instead sets of points. Thus, while the
2-coloration at the left of Figure 1 is not quadrangula-
ble, the underlying point set is, as we see in the right
picture.

Figure 1: The set is either quadrangulable or not de-
pending on the coloration.

Notice that in the right picture we have inter-
changed the colors of 2 and b, obtaining a set with
two convex layers, both of them made by points with
alternate colors. This is a interesting configuration
since, as we will see in Section 4, it is always quad-
rangulable.

3 Diagonal transformation in quadrangulations

Nakamoto [4], working with topological quadrangu-
lations on surfaces, defines two diagonal transforma-
tions; the diagonal slide and the diagonal rotation,
that are shown in Figure 2. Note that, while the di-
agonal slide does not modify the coloration of the set,
the diagonal rotation changes the color of the center
of rotation (because, in other case, points with the
same color are joined).

Since the same point set can have different col-
orations, it is not always possible to change any two
quadrangulations one into each other using only di-
agonal slides. In Figure 3 two colorations of the
same point set are shown; one with four black and
four white points, and another with five white and
three black points. Since diagonal slides preserve col-
orations, it is not possible to use them to transform
one quadrangulation into the other. However, it is
easy to see that this can be done using also diagonal
rotations.

Nakamoto [4] proved that in any closed surface it is
always possible to carry one topological quadrangula-
tion of a set into any other if

1. both diagonal slides and rotations are allowed; or
2. both quadrangulations have the same number of

points of each color by using only diagonal slides.
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Figure 2: Diagonal transformations on quadrangula-
tions.

Figure 3: Quadrangulations of the same set with dif-
ferent colorations.

This can be seen in terms of the connectivity of
the graph of quadrangulations. The graph of quad-
rangulations of a point set is the graph having all the
quadrangulations of the set as nodes, and with adja-
centcies corresponding to diagonal slides or diagonal
rotations. Similarly, the graph of quadrangulations of
a 2-coloration has as nodes the quadrangulations of
a given 2-coloration. Since diagonal rotations change
the 2-coloration, the adjacentcies are determined only
by diagonal slides.

Both graph of quadrangulations are, in general, not
connected. In Figure 4, it is shown a 2-coloration that
admits only two quadrangulations, being not possible
to perform any diagonal slide. If we also allow diago-
nal rotations it can be shown that it is not possible to
transform one quadrangulation into the other. This
gives rise to the following theorems:

Theorem 2 There are 2-colorations with discon-
nected graph of quadrangulations.

Theorem 3 There are point sets with disconnected
graph of quadrangulations.
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Figure 4: A set with disconnected graph of quadran-
gulations.

Our example has disconnected graph of quadran-
gulations both as a 2-coloration and as a point set.
An open problem is to determine if both things al-
ways come together, or if there exit point sets with
connected graph of quadrangulations that admit 2-
colorations which graph of quadrangulations is not.

In spite of the graph of quadrangulations of an arbi-
trary 2-coloration is, in general, not connected, in the
next section we present a wide family of 2-colorations
having this property.

4 Onion 2-colorations

If a set of sites have an even number of vertices in its
convex hull, then it is quadrangulable, and vice-versa
[1]. This is rewritten for 2-colorations in Lemma 1,
but only as a necessary condition, since we find non-
quadrangulable 2-colorations that fulfill it, as the one
we saw in Figure 1. But, what about if we extend
Lemma 1 to the interior of the set? If the convex hull
of the 2-coloration fulfill the lemma, we remove it and
examine the convex hull of the remaining points, and
so on. A 2-coloration with this property is quadrangu-
lable and its graph of quadrangulations is connected.

We call onion 2-coloration to a 2-coloration of a
point set such that all its convex layers have an even
number of points with alternate colors. An onion
layer of an onion 2-coloration is the set of edges that
are part of a convex layers of the set. We call O,
with ¢ = 0,...,[, to the onion layers of the onion
2-coloration, such that O; is inside the polygon de-
fined by O; if ¢ > j (Figure 5). Note that the poly-
gon defined by O; does not contain any point of the
onion 2-coloration and that Ogp, the convex hull, is al-
ways included in every quadrangulation of the onion
2-coloration. By definition, the points on every onion
layer satisfy Lemma 1, that implies the following re-
sult.

Proposition 4 Onion 2-colorations are quadrangu-
lable.

The main idea of the proof is to draw a triangula-
tion joining points between two consecutive onion lay-
ers. By deleting the edges matching points with the

Figure 5: An onion 2-coloration and its onion layers.

same color (Figure 6) we obtain a quadrangulation of
the onion 2-coloration. It should be note that we are
drawing quadrangulations of convex polygons with a
convex hole, being the general case, decide whether
a polygon with holes admits a quadrangulation, an
NP-complete problem [3].

Figure 6: By deleting the diagonals between points
with the same color we obtain quadrilaterals.

But onion 2-colorations are not the only quadran-
gulable 2-colorations, since there are quadrangulable
2-colorations with non alternate colors in some of its
convex layer (Figure 7) or with a odd number of points
on them.

Figure 7: The colors of the inner convex layer are not
alternate.

In addition to be quadrangulable, onion 2-
colorations have connected graph of quadrangula-
tions. The proof is based in the following lemmas:
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Lemma 5 Given two quadrangulations of an onion
2-coloration containing all their onion layers, we can
transform one into the other by only using diagonal
slides.

Lemma 6 Any quadrangulation of an onion 2-
coloration can be carried into another containing its
onion layers using diagonal slides.

From these lemmas it can be easily proved the
connectivity of the graph of quadrangulations of any
onion 2-coloration.

Theorem 7 The graph of quadrangulations of an
onion 2-coloration is non-empty and connected.

In particular, if the onion 2-coloration have only
one layer, we obtain the following result:

Corollary 8 The graph of quadrangulations of any
quadrangulable 2-coloration in convex position is con-
nected.

5 Conclusions and open problems

Two main ideas can be extracted from this work: to
be quadrangulable depends on the 2-coloration of the
set, and the graph of quadrangulations of both a 2-
coloration and a point set is, in general, not con-
nected. However, there exits a wide family of 2-
colorations, the onion 2-colorations, that are quad-
rangulable and which graph of quadrangulations is
connected.

There are several questions that appear all along
the present work. One is to explore new conditions
for a 2-coloration to be quadrangulable, searching for
new families of quadrangulable 2-colorations. Related
to the graph of quadrangulations, an interesting ap-
proach is to study the relationship, if it exits, between
the connectivity of the graph and the coloration of
the set. And, since the example presented (Figure 4)
of a set with disconnected graph of quadrangulations
have rows with until four collinear points, it would
be convenient to construct a new example in gen-
eral position. Probably this implies to work with sets
with greater cardinal and complexity. Finally, an-
other line for future works is, since they also admit
2-colorations, to extend this study from quadrangula-
tions to 2n-lations of point sets.
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Discrete Curvatures and Gauss Maps for Polyhedral Surfaces

Lyuba Alboul*

Abstract

The paper concerns the problem of correct curvatures
estimates directly from polygonal meshes. We present
a new algorithm that allows the construction of un-
ambiguous Gauss maps for a large class of polyhedral
surfaces, including surfaces of non-convex objects and
even non-manifold surfaces. The resulting Gauss map
provides shape recognition and curvature characteri-
sation of the polyhedral surface (polygonal mesh) and
can be used further for optimising the mesh or for de-
veloping subdivision schemes.

1 Introduction

In many applications a physical object is represented
by discrete data, obtained by some measurement sys-
tem. A polyhedral model (a triangular mesh, piece-
wise linear surface) is the easiest way to obtain a
preliminary sketch of the given object. A solid ob-
ject is represented by its boundary, i.e. by the sur-
face that bounds the object. Triangular or polygo-
nal meshes are commonly used in modern computer-
related applications to represent surfaces in three-
dimensional space. Therefore, there is a substantial
need for accurate estimates of geometric attributes
such as surface area, normal vectors, and curva-
tures directly from a mesh. A smooth surface S is
uniquely characterised and quantified by the metric
tensor and by the Weingarten map or the shape op-
erator [Kuhn02]. The shape operator is the second-
order invariant (in other words, curvature) that com-
pletely determines the shape of the surface S. In re-
cent years significant efforts have been made to de-
fine the analogues of differential geometry concepts
on meshes that imitate those of a smooth surface
([AIb96, Bor03, Dyn01, Malt02, Mey03]). Among
those concepts surface curvatures are most important.
Surface curvatures are basic measures to describe the
local shape of a smooth surface. However, a mesh
(a polyhedral surface) is not smooth, and there is
still no consensus about the most appropriate way
of estimating such geometric quantities as curvatures.
On the other hand, methods are being developed to
capture curvature information without referring to
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higher-order formulas of differential geometry. These
methods are based on the discrete curvature concepts
and are of growing interest for geometric modelling
[Malt02, Alb03, Dyn01, Mey03]. Discrete curvatures
can be computed directly from the polygonal mesh.
The principal difference to smooth surfaces is that
the curvatures in polyhedral surfaces are concentrated
around the vertices and along the edges.

If we think of a polyhedral surface as an approxima-
tion of a smooth surface, then, informally speaking,
curvatures of a domain of the underlying smooth sur-
face are ‘glued’ together in the corresponding domain
of a polyhedral surface.

Therefore, analogue measures of curvature in a piece-
wise linear setting should be analogues of integral for-
mulae for curvature in a ‘smooth’ setting and should
preserve integral relations for curvature, such as
the Gauss-Bonnet theorem ([Br79, Banch70, Alb96].
Such analogues exist and were introduced long ago
in the frames of the theory of non-regular surfaces
(see an overview in [Alb96]). These analogues were
discussed in detail in [Br79], where the authors also
compare discrete curvatures with their smooth coun-
terparts.

In the last five-six years the amount of papers that ex-
plore discrete curvatures in one or another context has
increased significantly. Much attention is paid to the
discrete Gaussian curvature, known also as the angle
deficit. The angle deficit is used to estimate the Gauss
curvature of smooth surfaces. In [Bor03] the problem
of the correct estimation of the Gauss curvature is in-
vestigated in detail, and they show that approaches
based on the use of normalized angular deficits are
often erroneous, and can be applied correctly only if
the geometry of meshes is precisely controlled. We
agree with them, and in this paper we highlight why
the angular deficit is neither sufficient to estimate the
Gaussian curvature of the underlying smooth surface
nor to capture the curvature information of a poly-
hedral surface. Loosely speaking, the reason is that
there are more curvatures for polyhedral surfaces than
for smooth ones [Br79, A1b96, Alb03]. This fact is still
not fully acknowledged in geometric applications, but
without addressing it, it is impossible to develop cor-
rect curvature estimates.

Besides the need to derive correct curvature estimates
directly from polygonal meshes, there is also a need
for visualisation of an object in order to explore com-
plex shapes and emphasize hidden details. We pro-
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pose an approach that addresses both needs, and
that empowers us to correctly and consistently de-
scribe and visualise complex 3D shapes based on cur-
vature properties. Our method to characterise sur-
face shape is based on constructing the Gauss map
directly from the polygonal mesh, an area of research
with still scarce and ambiguous results for non-convex
objects [Low02]. The resulting Gauss map provides a
description of the surface by determining its domains
with respect to incorporated curvatures. Each domain
can be split up into uniquely determined sub-domains;
therefore each surface can be associated with the in-
troduced Gauss map signature, abbreviated as GMS.
The GMS extracts convex, concave and saddle regions
in the underlying surface. These regions are often only
implicitly present in a polyhedral surface, and cannot
be determined by the sign of the angle deficit only.
The GMS method besides shape recognition and de-
scription can be used for optimisation of the underly-
ing model or for developing subdivision schemes. The
method provides also a better insight into the geomet-
ric structure of complex triangle meshes, by describing
various vertex types, some of them with a very com-
plex GMS. A good understanding of the geometry of
meshes is a step towards more robust mesh manipula-
tion algorithms. Finally, the proposed GMS method
is simple to compute, easy to view dynamically and
effective in visualising complex polyhedral surfaces.

2 Polyhedral Surfaces: Discrete curvatures and
Gauss map

By a polyhedral surface we understand a triangu-
lated polyhedral surface. Designating V as a finite
point set in three-dimensional space, V. = {V;,i =
1,...,n}, we denote by P(V) a polyhedral surface
with the vertex set V. The term polyhedron refers
to a closed polyhedral surface. In such a setting a
polyhedron is bounded, but might be non-simple, i.e.
non-homeomorphic to a sphere, as well as being multi-
connected and self-intersecting, and its interior vol-
ume is not necessarily part of the polyhedron. There-
fore, a polyhedron is not necessarily a solid body.
Given a polyhedron P(V), the set of its vertices is
denoted by V', the edges by F, and the faces by F.

Definition 1 The star Str(v) of a vertex v is the
union of all the faces and edges that contain the ver-
tex, and the link Lnk(v) of the star (the boundary of
the star) is the union of all those edges of the faces of
the star Str(v) that are not incident to v.

2.1 Discrete Curvatures

In this paper we are interested only in discrete curva-
tures related to the integral Gaussian curvature, i.e.
those that are supported on the vertices. The common
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expression for the integral Gaussian curvature of a do-
main U of a smooth surface S is [, KdA [Kuhn02].
Curvature w around vertex v is defined as:

w=21—10 (1)

where 6 = > «; is the total angle around vertex v,
and «; are those angles of the faces in the Str(v) that
are incident to v. Sometimes one refers to w simply as
the Gaussian curvature around the vertex, or discrete
Gaussian curvature. Obviously, expression 1 is valid
for any point x € P. For a domain U C P the total
curvature 2y is determined as Qp = Zuer,,. For
an oriented closed polyhedral surface P of genus g Qu
is equal to (1 — g)4m, so the discrete analogue of the
Gauss-Bonnet theorem is preserved.

Positive (extrinsic) curvature w™: The following
measure which we determine is an analogue of the to-
tal absolute curvature of a polyhedral domain. How-
ever, in Figure 1 we can see that in both polyhedra
all curvatures w, are positive and actually are equal
for every corresponding vertex.

Ve Vz Ve V;

Vs

Vel . W Vel W

Wi Vi Vi Vi

Figure 1: Two polyhedra

Therefore, we have:

QP) =) = Y wl= 3 | =dr. (2)

veP; veP;

The left polyhedron is non-convex, but the above
equation does not reflect this fact. For a closed non-
convex smooth surface S the total absolute curva-
ture Ky ps = fs |K|dA is greater than 4; therefore,
> vep lwy| is not an appropriate analogue of Kgps.
The problem is that the curvature w around a vertex
may consist of positive and negative ‘parts’ that are
‘glued’ together; and the task is to separate them. If
vertex v belongs to the boundary of the convex hull
of its star (i.e. the convex hull of v and all vertices in
its star), then we can single out another star Str* (v)
with v as the vertex and those edges of Str(v) that
belong to the boundary of the convex hull. The edges
of Str*(v) will determine the faces of Strt(r). We
refer to Str*(v) as the convex cone of vertex v. Then

wh =21 -0t (3)

where 07 is the total angle around v in Strt(v). w™
is equal to zero, if the vertex and all the vertices in its
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star lie in the same plane. If the convex cone around
v doesn’t exist, i.e. v lies inside the convex hull of
Str(v), then w™ is, by definition, equal to zero.
Negative (extrinsic) curvature w™: We can now
‘extract’ the negative part of w as follows

w=wt —w (4)

Absolute (extrinsic) curvature wqps:

Wabs = w +w™ (5)

On the basis of the types of curvatures around a
vertex one distinguishes three basic types of vertices
for an embedded polyhedral surface ([Br79, Alb96]):
convex vertices (w™ = w), saddle vertices (w™ = —w)
and mixed vertices (wh > 0,w™’ # w) (see Figure 2).

N

0 (i) (i)
Figure 2: Examples of convex (i), saddle (ii), and
mixed (iii) vertices

A mixed vertex, however, possesses always the convex

cone around its star. A mixed vertex and its corre-
spondent convex cone are shown in Figure 3.

(i)
Figure 3: Mixed vertex (i) and its convex cone (ii)

Total absolute extrinsic curvature €,,: is de-
fined as the sum of absolute extrinsic curvatures of
all the vertices of a polyhedral surface P:

Qavs = D wans(vi) = 3 [wF () + 07 ()] (6)

Qups takes different values on the polyhedra that are
depicted in Figure 1. It is equal to 47 on the right
polyhedron, as it represents a convex body, and is
greater than 47 on the left polyhedron.

2.2 Gauss map

Separation of the positive and negative parts of the
curvature for a mixed vertex can also be carried out
using the Gauss map. For a domain U of smooth
surface S the Gauss map N (U) may be thought of as

the map assigning to each point p € U the point on
the unit 2-sphere S? € R3, by ‘translating’ the unit
normal vector N(p) to the origin [Kuhn02]. The end-
points of normals, therefore, will cover a certain region
on S2. If a neigbourhood U (p) is small such that the
map N (U(p)) is one-to-one and orientation-preserving
(outward normals at corresponding points on S and
S? correspond), then the area N(U(p)) is considered
positive, and the corresponding region U(p) is said to
be strictly convexr and the Gaussian curvature at p
defined as |K(p)| = limgy (), %I%f)’)), is positive,
ie. K(p) > 0. If the map N(U(p)) is one-to-one
but orientation reversing, then the area N(U(p)) is
considered to be negative, p is a saddle point and
K(p) < 0. Of course, different regions of S can be
mapped to the same region on the unit sphere, which
results in multiplicities of the Gauss map.

To compute directly the image of the Gauss map of a
given vertex, we need to construct the outward vec-
tor normal for each of the facets around a vertex and
then draw geodesics arcs between the images of neigh-
bouring faces to obtain a graphic image. The union
of the Gauss maps for all vertices is the Gauss map
of a polyhedral surface.

An orientation of the contour around the vertex on
a polyhedral surface induces the orientation on the
boundary of the spherical polygon. Thus we can eval-
uate the curvature around the vertex by computing
the area of the spherical image with the sign + (plus)
in the case that the orientation is preserved, and with
the sign — (minus) otherwise.

3 Results

To characterise a polyhedral model we have developed
algorithms that have the following functionalities:

1. Determination of the Gauss Map for each of the
vertices in V; and

2. Curvature Visualisation, which displays a graph-
ical representation of the Gauss map.

We are able to divide the Gauss Map for a vertex into
different spherical polygons, determine the orienta-
tion of each polygon and thus its sign. Therefore, we
are able not only to separate w(v) for a vertex v into
positive and negative parts w™(v) and w™(v), but to
separate into subparts of the same sign. The number
of subparts together with their signs represents the
Gauss map signature of a vertex. Each subpart of the
negative sign represents a potential (hidden) saddle
region.

The main advantage of our method is that it al-
lows the determination of incorporated curvatures of
various types of vertices, including all the above-
mentioned ones and much more complex such as
the monkey saddle, or vertices with self-intersections,
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Showing vertex 1 Showing vertex 1

L

Figure 4: Pinch vertex and a reverse pinch vertex with
corresponding Gauss maps

which don’t fit exactly in the category ‘mixed’, de-
scribed in the previous section. Eventually, we can
determine the curvatures of a vertex of any type (of
an oriented polyhedral surface P). It is also possible
to display the Gauss Map for all the vertices of the ob-
ject simultaneously, or select only one of the vertices
for its Gauss Map to be shown exclusively (or, corre-
spondingly, to visualise the Gauss map of a region on
the surface). The method is interactive, and we can
visualise the regions of positive curvature separately
from the regions of negative curvature.

Examples of Gauss map visualisations are given be-
low. The display of the Gauss Map is done in two
different views, or scenes, and is implemented using
OpenGl. The left scene shows the model of the orig-
inal object and, in the right scene, the areas for the
Gauss Map are drawn on top of a sphere. Positive
areas are shown in red, while negative areas are dis-
played in blue (lighter and darker grey in the black-
white print). The corresponding areas on the object
are coloured in green and red respectively (dark and
light grey in the black-white print).

Figure 4 shows the Gauss map visualisation of two
complex vertices with self-intersections, which we call
a pinch vertex and a reverse pinch vertex. In order to
understand the difference between a pinch vertex and
a reverse pinch vertex, imagine a walk along the link
of the star of a vertex v. In the case of the pinch ver-
tex the walk makes two full turns around the vertex,
both turns have the same orientation (for example,
counter clockwise). In the case of the reverse pinch
point, the walk makes also two full turns, one is, for
example, in the counter clockwise direction, and the
second one - in the ‘reverse’ direction (i.e. clockwise).
The Gauss map of the pinch vertex has two overlap-
ping areas, each of positive sign. One area is equal to
the curvature of the convex star of the pinch vertex.
The Gauss map of the reverse pinch vertex has also
two areas of positive curvature, separated by the area
of negative curvature.

A more complex object and its Gauss map visualisa-
tion are presented in Figure 5.
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Showing vertex 53

Showing vertex 289 137.6 fps

Figure 5: Torso and its Gauss map visualisations

4  Future work

Current on-going research includes the visualisation of
the processes of mesh simplification and optimisation
by using the GMS method, as well as to use it for
developing subdivisions schemes based on curvature
estimations.
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On the Number of Facets of Three-Dimensional Dirichlet Stereohedra Ill:
Cubic Group

Pilar Sabariego *

Abstract

We prove that Dirichlet stereohedra for cubic crystal-
lographic groups cannot have more than 105 facets.
This improves a previous bound of 162 [3].

1 Introduction

A stereohedron is any bounded convex polyhedron
which tiles the space by the action of a crystallo-
graphic group. A particular case is the Voronoi region
of a point P in the Voronoi diagram of its orbit GP
under the action of a crystallographic group. These
stereohedra are called Dirichlet stereohedra and are
the object of study in this paper.

The study of the possible combinatorial types of
stereohedra and, in particular, of their maximum
number of facets, is related to Hilbert’s 18th prob-
lem [9]. The two main previous results are:

e The fundamental theorem of stereohedra (Delone,
1961 [5]) asserts that a stereohedron of dimen-
sion d for a crystallographic group G with a as-
pects cannot have more than 2¢(a+1) —2 facets,
where the number of aspects of G is the number
of translational lattices in which a generic orbit
of G’ decomposes. 3D crystallographic groups can
have a maximum of 48 aspects, so 3D stereohedra
cannot have more than 390 facets.

e P. Engel (see [6] and [7, p. 964]), using a
computer search, found in 1980 a 3-dimensional
Dirichlet stereohedron with 38 facets, for a cubic
group with 24 aspects. This is the stereohedron
with the maximum number of facets known.

In previous papers, the second author together with
D. Bochis has initiated an exhaustive study of the
number of facets of Dirichlet stereohedra for the dif-
ferent 3D crystallographic groups. They divided the
219 affine conjugacy clases of 3-dimensional crystallo-
graphic groups in three blocks, and gave upper bounds
for the number of facets of Dirichlet stereohedra in
them:
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TDepartamento de Matematicas, Estadistica y Com-
putacion, Universidad de Cantabria, Santander, Spain,
santosf@unican.es

Francisco Santos

e Within the 100 crystallographic groups which
contain reflection planes, the exact maximum
number of facets is 18 [1].

e Within the 97 non-cubic crystallographic groups
without reflection planes, there are Dirichlet
stereohedra with 32 facets and no Dirichlet stere-
ohedron can have more than 80 [2].

For cubic groups without reflection planes (there
are 22 of them), Bochis and Santos were only able to
prove an upper bound of 162 facets [3]. Here we im-
prove this bound, and hence the general upper bound
for the number of facets of 3D Dirichlet stereohedra,
to 105. More precisely, our bound goes “group by
group” and it lies below 38 except in the eight so-
called “quarter groups” [4]. Our bounds for these
eight groups are respectively 42, 43, 53, 66, 73, 74, 73
and 105. Curiously enough, the last (and biggest) one
is precisely for the crystallographic group that pro-
duces Engel’s Dirichlet stereohedron with 38 facets.

2 Outline of the method

The sketch of the method is as follows:

1. We choose a tessellation of the 3-dimensional
Fuclidean space “adapted” to the group G under
study. We call the tiles fundamental subdomains. By
“adapted” we mean that the tiles are in a finite (and
small) number of classes modulo the normalizer of G.
We choose one fundamental subdomain of each class,
and call them basic fundamental subdomains. If two
points lie in the same orbit of the normalizer of G then
the Dirichlet stereohedra based on them are affinely
equivalent. Hence, every Dirichlet stereohedra for G
is affinely equivalent to one with basis point in a basic
fundamental subdomain.

2. For each basic fundamental subdomain, say Dy,
we compute an extended Voronoi region, i.e., a region
that is guaranteed to contain the union of the Dirich-
let stereohedra generated by all the points in Dy. We
do this cutting out parts of space that are guaranteed
not to belong to any Voronoi region with basis in Dy
because of the presence of certain rotations or trans-
lations in (G. The precise method is the same used
in 2D in [2], except here we do it on the computer
because of the extra complexity of the problem.
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Of course, the extended Voronoi region is not
uniquely defined, and the smaller the one we get is,
the better the final bound will result.

3. The extended Voronoi region of a non-basic fun-
damental subdomain D is now trivial to compute:
Find the basic fundamental subdomain Dy related to
D = pDy by a motion p in the normalizer of G, and
apply p to the extended Voronoi region of Dy. We call
influence region of a basic subdomain Dy the union of
all the subdomains whose extended Voronoi regions
intersect the extended Voronoi region of Dy.

Theorem 1 For every p € Dy, the neighbors of p in
the Voronoi diagram of the orbit of p are contained in
the influence region of Dy.

Corollary 2 The number of facets of Dirichlet stere-
ohedra with base point in Dy is bounded above by the
number of fundamental subdomains in the influence
region of Dy “counted with multiplicity” (i.e., each
one counted as many times as the number, perhaps
zero, of transformations in G that send it to Dy. In
particular only those in the same class of Dy modulo
the action of G are counted).

All of the above actually follows the [Bochis-
Santos]’s approach, but with two new ingredients:

o [Bochis-Santos] compute 2-dimensional influence
regions for certain planar subgroups of G, and
take as 3D influence region the intersection of the
rectangular prisms over the 2D influence regions.
We bound directly in dimension 3, with the aid of
a computer program,resulting in a smaller region.

e Our understanding of cubic groups is greatly sim-
plified by a new classification of 3D crystallo-
graphic groups given by Thurston et al. [4].

Let us briefly describe this classification. Thurston
et al. first divide crystallographic groups into re-
ducible and irreducible, were irreducible groups are
those that do not have any invariant direction. They
coincide with the cubic groups.

For an irreducible subgroup G, they define its odd
subgroup as the one generated by the rotations of or-
der three, and they observe that there are only two
possible odd subgroups, that they denote T} and T5.
The odd subgroup T of a group G is normal, and so
G lies between T and its normalizer N (7). This is a
powerful property, because it reduces the enumeration
of irreducible space groups to the enumeration, up to
conjugacy, of subgroups of two finite groups N(71)/T1
and N(TQ)/TQ

Hence, we study the cubic groups in two blocks.
The 27 groups wi