44 research outputs found

    Monitoring Needle Biopsy of Sentinel Lymph Nodes Using Photoacoustic Image with Dynamic-FDMAS Beamformer

    Get PDF
    As a part of the diagnosis pathway for breast cancer, a needle biopsy of the sentinel lymph node (SLN) is taken for analysis. Photoacoustic imaging is a better approach for guiding a needle than ultrasound imaging. However, the photoacoustic image will be affected by clutter, phase aberration and artefact from the needle. In this study, a dynamic filter delay multiply and sum (D-FDMAS) beamformer was produced to reduce these effects and improve the SNR and contrast difference (CD) of imaging targets. The D-FDMAS beamformer with a sub-group of 16 elements (16 D-FDMAS) showed improvement in SNR of needle and inclusion (SLN) by 8.38 dB and 5.42 dB compared with the delay and sum (DAS) beamfomer. It also showed reduction in CD between the inclusion and needle by almost 12 dB compared with the filter delay multiply and sum (FDMAS) beamformer

    Real-Time Beamforming Using High-Speed FPGAs at the Allen Telescope Array

    Get PDF
    The Allen Telescope Array (ATA) at the Hat Creek Radio Observatory (HCRO) is a wide‐field panchromatic radio telescope currently consisting of 42 offset‐Gregorian antennas each with a 6 m aperture, with plans to expand the array to 350 antennas. Through unique back‐end hardware, the ATA performs real‐time wideband beamforming with independent subarray capabilities and customizable beam shaping. The beamformers enable science observations requiring the full gain of the array, time domain (nonintegrated) output, and interference excision or orthogonal beamsets. In this paper we report on the design of this beamformer, including architecture and experimental results. Furthermore, we address some practical considerations in large‐N wideband beamformers implemented on field programmable gate array platforms, including device utilization, methods of calibration and control, and interchip synchronization

    Development of a Real-time Ultra-wideband See Through Wall Imaging Radar System

    Get PDF
    Ultra-Wideband (UWB) See-Through-Wall (STW) technology has emerged as a musthave enabling technology by both the military and commercial sectors. As a pioneer in this area, we have led the research in addressing many of the fundamental STW questions. This dissertation is to investigate and resolve a few hurdles in advancing this technology, and produce a realizable high performance STW platform system, which will aid the STW community to find the ultimate answer through experimental and theoretical work. The architectures of a realizable STW imaging system are thoroughly examined and studied. We present both a conceptual system based on RF instruments and a standalone real-time system based on custom design, which utilize reconfigurable design architecture and allows scaling down/up to a desired UWB operating frequency with little difficulty. The systems will serve as a high performance platform for STW study and other related UWB applications. Along the way to a complete STW system, we have developed a simplified transmission line model for wall characteristic prediction; we have developed a scalable synthetic aperture array including both the RF part and the switch control/synchronization part; we have proposed a cost-effective and efficient UWB data acquisition method for real-time STW application based on equivalent-time sampling method. The measurement results reported here include static image formation and tracking moveable targets behind the wall. Even though digital signal processing to generate radar images is not the focus of this research, simple methods for image formation have been implemented and results are very encouraging

    Pathfinding Fast Radio Bursts Localizations using Very Long Baseline Interferometry

    Get PDF
    Fast radio bursts (FRBs) are millisecond-duration, bright radio transients of extragalactic origin. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope’s CHIME/FRB instrument and other radio telescopes across the globe have detected hundreds of FRBs. Their origins are a mystery. Precise localization within the host is critical to distinguish between progenitor models. This can be achieved through Very Long Baseline Interferometry (VLBI). Until now, VLBI localizations have only been carried out in targeted follow-up observations of some repeating sources which comprise a small fraction of the FRBs. For this work, an interferometric array of 6m dishes was constructed at the Green Bank Observatory as a pathfinder to develop the necessary systems, technology, and techniques to enable VLBI on FRBs. This array called TONE has 8 instrumented dishes and works as a VLBI outrigger for CHIME on a \SI{\sim3300}{\kilo\meter} baseline. This involved construction, commissioning, and integration of the custom analog chains and digital system. TONE is pointed to shadow a portion of the CHIME primary beam at a fixed declination of \SI{22}{\deg}. Upon detection of a single dispersed pulse such as an FRB or a giant pulse from the Crab pulsar, CHIME alerts TONE, triggering a recording of buffered data to disk. In addition to TONE, a single 10-m dish at Algonquin Radio Observatory (ARO10) is set up with a similar infrastructure. Together they form the pathfinders for conducting VLBI for FRBs. We used these VLBI pathfinders to localize FRB 20210603A at the time of detection. The baseband data from CHIME and TONE are used to synthesize single beams at each telescope. The single-beam data from TONE and data from ARO10 are each cross-correlated with the single beam data from CHIME. We use the Crab pulsar for astrometric calibration and additionally correct for clock errors. The calibrated and corrected cross-correlated data is sampled with a likelihood function of the sky location and ionospheric effects using a Markov Chain Monte Carlo method to estimate the Right Ascension and Declination of the FRB. We localize the burst to SDSS J004105.82+211331.9, an edge-on quiescent lenticular galaxy at redshift z 0.177\approx 0.177. The localization, dispersion measure, rotation measure (RM), and temporal broadening are consistent with an observed line-of-sight through the host galactic disk, suggesting a progenitor from a population coincident with the host galactic plane. The development of the TONE telescope has enabled the localization of the FRB within the host. This is a key stepping stone towards constraining the origins and host environments of FRBs

    Toeplitz Covariance Matrix Estimation for Adaptive Beamforming and Ultrasound Imaging

    Get PDF
    In recent years, adaptive beamformers have been researched more extensively, to be able to use it in the application of medical ultrasound imaging. The adaptive beamformers can provide a higher resolution and better contrasts in the resulting images than non-adaptive, and most commonly used, delay-and-sum beamformer. The difficulties of applying adaptive beamformers to ultrasound imaging can e.g. be numerical complexity, stability of statistics, coherent sources, or the robustness of the beamformer. Methods to handle these types of difficulties have been researched and successfully applied to utilize the performance advantages provided by adaptive beamformers. Why is it important to prevent these types of errors? The beamformer is used in the image formation stage, and errors that occur at this stage are difficult to get rid of even for the most sophisticated imaging software. We have in this thesis investigated methods that attempt to force the estimate of the covariance matrix to become a Toeplitz matrix. A Toeplitz matrix has equal elements along its diagonals, and has several useful properties that are desirable in array processing. Assuming the Toeplitz structure can be achieved, this is because of the spatial stationarity in the received data, it can be applied in medical ultrasound imaging. Three different methods are proposed to reach the desired Toeplitz structure in this thesis; IAAAPES, Adaptive Spatial Averaging and Spatial Convolution. The three methods for making the covariance matrix Toeplitz will be compared and analyzed to other known adaptive beamformers to detect their strengths and weaknesses

    Digital Signal Processor Based Real-Time Phased Array Radar Backend System and Optimization Algorithms

    Get PDF
    This dissertation presents an implementation of multifunctional large-scale phased array radar based on the scalable DSP platform. The challenge of building large-scale phased array radar backend is how to address the compute-intensive operations and high data throughput requirement in both front-end and backend in real-time. In most of the applications, FPGA or VLSI hardware are typically used to solve those difficulties. However, with the help of the fast development of IC industry, using a parallel set of high-performing programmable chips can be an alternative. We present a hybrid high-performance backend system by using DSP as the core computing device and MTCA as the system frame. Thus, the mapping techniques for the front and backend signal processing algorithm based on DSP are discussed in depth. Beside high-efficiency computing device, the system architecture would be a major factor influencing the reliability and performance of the backend system. The reliability requires the system must incorporate the redundancy both in hardware and software. In this dissertation, we propose a parallel modular system based on MTCA chassis, which can be reliable, scalable, and fault-tolerant. Finally, we present an example of high performance phased array radar backend, in which there is the number of 220 DSPs, achieving 7000 GFLOPS calculation from 768 channels. This example shows the potential of using the combination of DSP and MTCA as the computing platform for the future multi-functional large-scale phased array radar

    Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive View

    Full text link
    The next-generation wireless technologies, commonly referred to as the sixth generation (6G), are envisioned to support extreme communications capacity and in particular disruption in the network sensing capabilities. The terahertz (THz) band is one potential enabler for those due to the enormous unused frequency bands and the high spatial resolution enabled by both short wavelengths and bandwidths. Different from earlier surveys, this paper presents a comprehensive treatment and technology survey on THz communications and sensing in terms of the advantages, applications, propagation characterization, channel modeling, measurement campaigns, antennas, transceiver devices, beamforming, networking, the integration of communications and sensing, and experimental testbeds. Starting from the motivation and use cases, we survey the development and historical perspective of THz communications and sensing with the anticipated 6G requirements. We explore the radio propagation, channel modeling, and measurements for THz band. The transceiver requirements, architectures, technological challenges, and approaches together with means to compensate for the high propagation losses by appropriate antenna and beamforming solutions. We survey also several system technologies required by or beneficial for THz systems. The synergistic design of sensing and communications is explored with depth. Practical trials, demonstrations, and experiments are also summarized. The paper gives a holistic view of the current state of the art and highlights the issues and challenges that are open for further research towards 6G.Comment: 55 pages, 10 figures, 8 tables, submitted to IEEE Communications Surveys & Tutorial

    System design for the square kilometre array : new views of the universe

    Get PDF
    The Square Kilometre Array (SKA) radio telescope is being designed as a premier scientific instrument of the 21st century, using novel technologies to maximise its scientific capability. The SKA has an aggressive project timeline, dynamic and evolving scientific requirements, and a large design exploration space with many interdependent sub-systems. These complexities increase the difficulty in developing cost-effective design solutions that maximise the scientific capability of the telescope within construction and operations funding constraints.To gain insight into specific design challenges in this thesis, I have developed parametric models of the telescope system that relate cost to key performance metrics. I examine, as case studies, three aspects of the SKA design that have had little investigation compared to the rest of the telescope to date, but show considerable potential for discovering new astronomical phenomena.First, I present fast transient survey strategies for exploring high time resolution parameter space, and consider the system design implications of these strategies. To maximise the scientific return from limited processing capacity, I develop a new metric, ‘event rate per beam’, to measure the cost-effectiveness of the various search strategies. The most appropriate search strategy depends on the observed sky direction and the source population; for SKA Phase 1, low-frequency aperture arrays tend to be more effective for extragalactic searches, and dishes more effective for directions of increased scatter broadening, such as near the Galactic plane.Second, I compare the cost of two design solutions for low-frequency sparse aperture array observations (70–450 MHz) that achieve similar performance: a single-band implementation with a wideband antenna design; and a dual-band implementation, with each array observing approximately half the fractional bandwidth. Perhaps somewhat surprisingly, despite the dual-band array having twice the number of antenna elements, neither a representative single or dual-band implementation is cheaper a priori, although the uncertainties are currently high. In terms of the broader telescope system design, I show that the central processing, antenna deployment and site preparation costs are potentially significant cost drivers that have so far had insufficient attention.Third, the recent site decision gives rise to the question of how to cost-effectively provide data connectivity to widely separated antennas, to enable high angular resolution observations with the SKA dish array in Africa. To facilitate the design of such a data network, I parametrise the performance and cost of an exemplar network using three simple metrics: maximum baseline length; number of remote stations (grouped antennas) on long baselines; and the product of bandwidth and number of station beams. While all three metrics are cost drivers, limiting the beam–bandwidth product reduces cost without significantly impacting scientific performance.The complexities of the SKA design environment prevent straightforward analyses of cost-effective design solutions. However, the case studies in this thesis demonstrate the importance of parametric performance and cost modelling of the telescope system in determining cost-effective design solutions that are capable of revealing large regions of unexplored parameter space in the radio Universe. The analytical approach to requirements analysis and performance-cost modelling, combined with pragmatic choices to narrow the exploration space, yields new insights into cost-effective SKA designs. Continuation of this approach will be essential to successfully integrate the forthcoming results from various verifications systems into the SKA design over the next few years
    corecore