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Abstract

In recent years, adaptive beamformers have been researched more extens-
ively, to be able to use it in the application of medical ultrasound imaging.
The adaptive beamformers can provide a higher resolution and better con-
trasts in the resulting images than non-adaptive, and most commonly used,
delay-and-sum beamformer. The difficulties of applying adaptive beam-
formers to ultrasound imaging can e.g. be numerical complexity, stability
of statistics, coherent sources, or the robustness of the beamformer. Meth-
ods to handle these types of difficulties have been researched and success-
fully applied to utilize the performance advantages provided by adaptive
beamformers.

Why is it important to prevent these types of errors? The beamformer
is used in the image formation stage, and errors that occur at this stage are
difficult to get rid of even for the most sophisticated imaging software. We
have in this thesis investigated methods that attempt to force the estimate
of the covariance matrix to become a Toeplitz matrix. A Toeplitz matrix
has equal elements along its diagonals, and has several useful properties
that are desirable in array processing. Assuming the Toeplitz structure can
be achieved, this is because of the spatial stationarity in the received data,
it can be applied in medical ultrasound imaging. Three different methods
are proposed to reach the desired Toeplitz structure in this thesis; IAA-
APES, Adaptive Spatial Averaging and Spatial Convolution. The three
methods for making the covariance matrix Toeplitz will be compared and
analyzed to other known adaptive beamformers to detect their strengths
and weaknesses.

Firstly, this thesis introduces the field of adaptive beamformers.
Starting with the basic operations of array processing to build a general
understanding of the topic, and continuing with more advanced methods
for improving the performance of the array processing.

The second part explains and motivates our Toeplitz constrained
methods, and introduces the performance metrics that will be used for
comparing and benchmarking the beamformers.

Lastly, we explore the results and discuss the outcome, comparing the
Toeplitz constrained methods with other beamformers to benchmark the
performance. We apply the Toeplitz constrained methods to the application
of medical ultrasound imaging.
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Chapter 1

Background

1.1 Technology Development

The technology development has been driven by the curiosity of exploring
beyond mankind’s limitations. The great astronomer Galileo Galilei is an
example of eminent exploration beyond what had been done. He made
improvements on the telescope and explored the moons around Jupiter,
and he was not stopped by the limitations of the human eye. To be
able to exceed mankind’s limitations, scientists have studied and copied
nature to gain greater understanding. This is also the case for digital signal
processing; natural sensors have been studied to enhance the performance
of artificial sensor systems. Humanity is equipped with natural sensors
such as eyes and ears. With our eyes we are able to detect electromagnetic
radiation in the approximate frequency region 400- 750 THz, which is the
color spectra or also called visible light. For humans, hearing is normally
limited in frequencies between 20- 20 000 Hz, however these limits are not
definite, and the upper limit declines with age. We are all band limited with
our natural sensors, which has caused creativity to explore beyond these
limitations. We are now able to "see" with sound, by using sound waves to
create images because of curiosity of scientists. With sound waves we can
penetrate including the human body to create images from the inside of the
body without the risks of medical surgery. To be able to use sound waves
as eyes, we copy the processing chain of the natural sensors. Our natural
sensors are able to detect and filter signals, and the signals are sent to our
processing unit, the brain, for interpretation. The brain is able to respond
fast and make the right decision. These unique processes have saved
many lives from dangerous situations throughout the world’s history.
We can proudly mention that digital signal processing has already saved
lives, within medical, communication, and defense applications. Digital
signal processing is based on the same techniques as our natural sensors,
throughout this thesis we will do sampling, filtering, and interpretation
of signals. To make this possible many of the greatest scientists have
contributed to the art of digital signal processing with mathematical
tools and understanding of the fundamental physical processes. Heinrich
Hertz is one of them; he was the first that demonstrated the existence of
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electromagnetic waves, by building an aperture that could produce and
detect radio waves. This demonstration can be seen as a new generation of
applications that can go beyond the limitations of the natural sensors. As a
result of digital signal processing we have wireless communication, remote
sensing, medical imaging, and other digital signal applications. These
exploit wave technology, with advantages such as; speed of propagation,
penetration and distance, as information carriers.

1.2 Wave Propagation

Electromagnetic (EM) and pressure (acoustic and seismic) waves are
information carriers of the modern world. We are surrounded by these
waves every day, due to the modern world technologies. It was the Scottish
physicist and mathematician James Clerk Maxwell that described the EM
waves mathematically and speeded up the technology development. He
derived the Maxwell equations, which relate the electric field and the
magnetic field, and how they together form a propagating wave. The
wave equation can be derived from Maxwell’s equation, and the resulting
equation is a second order linear partial differential equation;

∇2s =
∂2s
∂x2 +

∂2s
∂y2 +

∂2s
∂y2 =

1
c

∂2s
∂t2 (1.1)

With this partial differential equation we are able to describe the propaga-
tion of all types of waves in different spatial environments, whether it is
electromagnetic or pressure waves. To use waves as information carriers
we need to have a-priori knowledge about the environmental conditions.
The environmental conditions will affect the wave’s propagation, whether
it is physical obstacles or changes in the speed of propagation, c. The suc-
cess criterion relies on how accurate the characteristics of the environment
are being measured. If the environment model is made close to perfect,
we are able to extract the desired information from the traveling waves
without difficulties.

1.3 Signals

A simple narrowband signal can be described as;

s(t) = A cos(2π fct) (1.2)

where fc is the center frequency, t defines the time and A is the amplitude of
the signal. The signal is often represented in a complex and compact form
called the Euler formulation;

s(t) = Aej2π fct = A cos(2π fct) + Aj sin(2π fct) (1.3)

To generate an "A" tone, we set the frequency to fc = 440Hz with a
given time duration t as arguments. The signal will create disturbance
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in the environment in terms of pressure waves that propagates outward
from the signal source. The same effect can be illustrated as a stone
tossed in calm water where the surface waves will propagate outward
from the source of disturbance, and make multiple circles in the water.
Now we have illustrated a signal that propagates in space, which will
introduce the third dimension space, in addition to what we already have,
time and frequency. To describe a propagating signal in space domain we
include spatial coordinate ~x = (x, y, z), and spatial frequency/wavenumber
~k = (kx, ky, kz);

s(~x, t) = Aej(2π fct−~k~x) (1.4)

~k’s magnitude represents the number of waves per meter k = |~k| = 2π
λ ,

and its normalized vector give us the direction of propagation. A signal
propagating through space with a frequency fc at a speed of c will give us
the wavelenght λ = c

fc
. Thus, ~x and~k are dual variables in the same sense

that t and 2π fc are in one dimension.

1.3.1 Wave Front

Disturbance generated by a source make periodes radiate circularly
outward from the source, whether it is surface or spatial waves depending
on the substance the wave is propagating in. As the wave propagates with
a distance r, the wavefront size will increase. When sampling the wave, the
interesting feature of the wave is the shape of the wavefront, because the
calculation can be simplified if the wavefront is known. The wavefronts
are classified into two different categories, curved and plane wavefront.
The two different wavefronts are related to the traveling distance r, and the
size of sampling area D. It is often separated into near and far field, or the
approximations called Fresnel and Fraunhofer.

Near field

Near/Far Transition D2

λ

Far field

D

r

Figure 1.1: Near/Far-field transition

The simplest form of wavefront is a wave that can be interpreted as
a plane wave, which occurs in the far field. For a plane wave the phase
difference is linear, and easy to calculate because it only moves only along
one axis. The term plane wave arises when the spatial plane ~x has the same
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value at any arbitrary time t. The threshold where a spherical wave can be
interpreted as a plane wave is called the near/far field transition D2

λ . D is
the size of samplings area or aperture, and λ = c

f is the wavelength, which
describes the spatial period a wave use to repeat itself. A plane wave is be
formulated as

s(~x, t) = Aej(2π f t−~k~x) (1.5)

The plane wave is simpler than spherical wave front, but there are several
important benefits of working in the near field instead with spherically
wave fronts. In the near field is it possible to detect both the distance and
direction of a source. In applications such as medical imaging, location is
essential to get the correct position of different areas of interests, such as
a cyst. When formulating the spherical wave equation, it is convenient to
change to spherical coordinates, given by r, φ, θ. For spherically symmetric
problems, the spherical wave equation is not depended on the angles φ and
θ, and becomes

1
r2

∂

∂r

(
r2 ∂s

∂r

)
=

1
c2

∂2s
∂t2 (1.6)

One solution to the general spherical wave equation is the monochromatic
one:

s(r, t) =
A
r

ej(2π f t−~kr) (1.7)

The spherical wave is propagating outwards from the origin,and r is the
distance the wave has traveled.

1.3.2 Wave Fields

This thesis concentrate on signals in the field received by several sensors.
The energy in the wave field is converted by sensors into digital form, such
that signals that propagates in the environment can be recorded. To record
the observations from a specific location in the wave field f (~x, t), we simply
put a sensor at same location of interest. By placing M sensors out in the
field { f (xm, t)}M−1

m=0 we cover a larger area of the field. Where xm describing
the position of the sensor m, and t is the time when the field is passing
the sensor. We aim to sample the field, and extract wanted information
gathered by the sensors. Each sensor makes an output sample y(xm, t) of
the field for the given sensor position xm and every tn. The sensor outputs
made out of the field consists of an additive combination of signals and noise.
When the wave field is converted from analog to digital representation
at each sensor, some disturbance is being applied to the measured field.
Disturbance such as thermal noise or noise from surrounded electronics
are found in the digital representation. This noise is a stochastic sequence,
usually stationary, zero-mean Gaussian, and is statistically independent of
the field’s signals. Uncorrelated noise is easy to remove from the signal,
and in some applications desired. The desirable form of noise is a signal
with zero-mean and with flat power spectrum is called white noise (1.2),
because it is stationary and uncorrelated with the signals. The noise is
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randomly generated and has no information, and can interrupt the desired
signal if the noise level is high.

Figure 1.2: Randomly generated noise

The stationary assumption means that the noise has the same statically
characteristics on every sensor output, and are constant over time. Any
cross-correlation between the sensor outputs relies on the distance between
the sensors, which might make the signals difficult to separate. Noise can
also arise when we have interference of other signals that are not of interest.

These signals are called jammers or interfering signals. Interference is a
phenomenon that occurs when two or more signals overlap in the same
region of space. Interfering signals that propagate toward our sensors can
disturb our algorithms, by focusing the beam in the undesirable direction.
In many implementations of array processing the signals are assumed to be
narrowband. Resulting in a baseband sensor output at location m’th, and
can be expressed as a linear combination of desired signal stationary noise and
interfering signals.

y(xm, tn) =
N−1

∑
n=0

wanted︷ ︸︸ ︷
s(xm, tn) +

unwanted noise︷ ︸︸ ︷
(i(xm, tn) + pm(tn)) (1.8)

This equation gives the output on the m’th sensor before any kind of
preprocessing. With our sensors spread correctly1 out in the field. When
combining outputs from several sensors we are able to do filtering in spatial
domain. The sum of the total array of M elements is defined as;

z[n] =
1
M

M

∑
m=0

~y(xm, tn) n = 1, · · · , N (1.9)

Given the opportunity of filtering in the spatial domain, it is possible to
find the direction of a source. The direction can be calculated with the time
delay or the phase different between the sensors perceiving the incoming
wave from the radiating source.

A useful statistics tool for measuring the field is the correlation function
on the sensors outputs. The resulting correlation matrix play a key role

1Nyquist-shannon sampling theorem
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when implementing the beamformers. Correlation is a statistical concept
that describes the degree of relationship between two random variables.
In array processing it is used the check the relation between the sensors,
they should sense the same but not at same time or place, assumed that
the array is statically positioned. We denote the true correlation matrix
as R, and denote our estimation of R as R̂ = E{~y [n]~y [n]H} which will
appear throughout this thesis. The field we sample almost always contains
artifacts that affect the estimate of the correlation matrix. The artifact is
coherent signals. Coherence is an effect that causes correlation between
the desired signal and one or more inferring signals. If interference and
desired signals are uncorrelated, the beamformer are able to attenuate
the interference to a minimum. Otherwise, when sources are coherent it
may lead to signal cancellation or a portion cancellation of the signal of
interest. The coherence appears when plane waves have common phase
reference. This phenomena is well known for the minimum variance
beamformer, and other optimization beamformers. Looking at signal
statistics of an array, we may analyze the spatial covariance to make
simplified assumptions of the wave field. Coherence can arise due to
multi-path propagation, when the desired signal and the inference signal
are equal but arrive from different angle. Coherent interference signal
has the same source as the desired signal, but has arrived through a
different path. When waves are propagating through a room the walls
will reflect the waves, and the original and reflected wave will then have
the same signal content but arrive from different angles when the sensor
measures it. This is an example of coherent interference. The cross

s1(t)

s2(t)

s3(t)

Figure 1.3: Illustration of multi-path propagation

correlation between coherent interference created by multi-path and the
desired signal is nonzero since the phase relation stays constant. Because
of this, the directionally constrained beamformer minimize the power and
will interpret these two waves as one. If the interfered signal is fully
correlated to the desired signal it will result in signal cancellation. When
we only have partial correlation the beamformer will only cancel portions
of the desired signal that correlates with the interfered signal. To get rid
of the artifact of correlated sources we can decorrelate our estimates with
subarray averaging or filtering of the covariance matrix. These methods
will be described in detail later in the thesis.
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1.4 System Setup

In this section we will briefly describe each component and the procedure
to be able to form beams. This include the basic operation describing the
beamformer system mathematically and the different assumption we have
to consider.

1.4.1 Sensor

We have two different types of sensors, directional and omnidirectional.
A parabolic radar dish is an example of a directional sensor, because it
only receives signals from one direction. The geometrical design of a
parabolic dish is beneficial due to pre-focusing of the incoming waves for
the sensor, to change the direction/focus we have to physically move the
parabolic dish. In contrast to geometrical pre-focused sensors, we have
omni-directional sensors that are emitting the wave field power uniformly
in every direction. With an omnidirectional sensor it is not possible to
decide the direction of the incoming wave.

An aperture is used to sample the wave field, the aperture is described
by its spatial shape and extent. The aperture shall convert energy
from the field f ( ~xm, t) at the sensor location ~xm into energy that can be
interpreted on a computer, like a transducer. To gather the particular field
energy the aperture spatially integrates the energy over the apertures w(~x)
spatial extent. The aperture is the sensor, and to describe our sensors
mathematically we use the aperture smoothing function;

W(~k) =
∫

w(~x)ej~k~xd~x (1.10)

The surface of the sensor is continuous and described by the aperture
function, with integration we can calculate the aperture surface. A sensor
can have geometric extent in all three dimensions, (x, y, z). A perfect
aperture smoothing function is the three-dimensional impulse function
W(~k) = δ(~k), this is not feasible to obtain, because we can not achieve a
sensor with unlimited extent in space. The task of the sensor is to emit
signals, the sensor itself can not determine the range or direction. In
general an aperture w(~x) with a large spatial extent has a narrow aperture
smoothing function W(~k). The spatial extent of an aperture determines the
angle between two sources this is normally called resolution. The larger the
aperture the more focused the aperture can be in any specific direction.

A common measurement of an aperture performance is directivity.
Directivity is the ratio between the estimated power in the desired direction
P(θd, φd) divided by the power estimate for all possible directions of arrival.
In general term directivity is given by;

DIR2D =
P(θd, φd)

1
4π

∫ π
0 dθ

∫ 2π
0 dφ sin(θ) · P(θ, φ)

(1.11)

In our case we shall focus on sensor elements placed on one axis, then φ
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dimension is disregarded.

DIR1D =
P(θd)

1
2

∫ π
0 P(θ)sin(θ)dθ

(1.12)

1.4.2 Array

The word array has its origin from the old French word areer, which means
“ to put in order”. An array consists of a group of sensors, directional or
not, combined to form a single output. The array samples the environment
spatially, so the sampling theorem 2 has to be followed to avoid aliasing.
There is not much difference between the time-frequency response and the
spatial frequency response. In time-frequency signal processing the filter
commonly used is stated as;

H(ejωT) =
M−1

∑
m=0

hme−jωTm (1.13)

The filter above is a linear shift-invariant filter, weighted with impulse
response hm and sampled with spacing equal to T. The array pattern is
formulated

W(~k) =
M−1

∑
m=0

wmej~k· ~xm (1.14)

The array pattern describes m = 0, 1, ..M − 1 sensor outputs, and stacks
them together to form one output. The wm are the complex weights of each
sensor, each sensor can either be weighted equally or have individually
weighting. ~k is the wavenumber that describes the steering direction. ~xm
is the position of the m’th sensor. If we have ten equally spaced sensors
in a linear grid, the array pattern can be calculated. Using more than one
sensor has the advantage that the noise can easily be removed, because the
noise is unique at each sensor. When we arrange sensors in a geometrical
structure to form an array, we can then steer to the focus direction due to
the beamforming. The direction of arrival of a single point source is found
by directing a spatial filter towards the signal of interest. When we have
calculated aperture smoothing function for one sensor we can calculate the
array pattern to place sensors in the spatial domain. Calculation of the
array pattern can be done separately using point sources instead of the
aperture function for the sensors. After calculating the aperture function
and the array pattern, we combine them to obtain the array response;

Wtotal = Wsensor ·Warray (1.15)

When we use several sensors we have more control over the noise, and
are then able to accept some errors/noise since other sensors can smooth
out the error so that the noise is reduced. When placing sensors in the
spatial domain, all sensor position {xm}M−1

m=0 are relative to the phase center.
For a uniform linear array (ULA) is it normal to have the phase center in

2Nyquist-shannon sampling theorem
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the middle of the array. The phase center is the "center" of the array,
not necessary be at the origin. The delay between signal registrations is
calculated relative to the phase center of the array, and this can be used
to calculate the angle of arrival. The sensors in the array can be arranged
in many different geometrical structures depending on the system needs.
The array structure can be varied and more complex, but when working
in the far-field with plane waves, its is relative simple to calculate the
steering weights compared to near-field. Curved wavefront will increase
the complexity and requires more calculation. To use this advantage of
having more than one sensor, we have to align the gathered signals with
the sensors so they can be summed. This method is called delay and sum.

1.4.3 Uniform Linear Array

A uniform linear array (ULA) is the simplest array due to its geometrical
structure. The array elements are placed along one axis with uniform
spacing d. The center of the array is placed at the origin of the coordinate
system, for computational and notational convenience. This center is also
denoted as the phase center and will be used throughout the text. To
sample the field correctly with our ULA we have to fulfill Shannon-Nyquist
sampling theorem. The minimum spacing between the sensor elements are
determined to avoid under-sampling3 of the signal with a given frequency
is defined as;

f =

{
λ/2 d ≤ λ
d/2 d > λ

(1.16)

where λ is the wavelength of the signals of interest. With array elements
placed along one axis it is possible to detect sources in the θ angle. The
visible region to our array will be − 2π

λ ≤ kx ≤ 2π
λ . When sampling the

field uniformly with an ULA it can be compared to regular sampling in
time-domain, and apply the same techniques to process the data. When
increasing the dimensional extent of the array is it possible to detect
sources in θ, φ and r. We divide array geometries into three categories
linear,planer,and volumetric (3D) arrays. Within each category the field can
be sampled; uniformly,non-uniformly, and random according to the sensor
positions. In our case we concentrate on a uniform linear array.

1.5 Beamforming and Spatial Filter

Beamforming is the name given to array processing algorithms, where the
task is to steer and focus the beam to capture or transmit energy from one
specific location. A beam is formed toward a user-selected "look-direction"
by the beamformer. The concept of beamforming is to accentuating or
attenuating signals from specific directions to help distinguish between
signals of interest and interfering signals from unwanted directions. It
is desired to gain the ratio between the desired direction and undesired
directions. An array of sensors sampled the wave field as a function of time

3aliasing
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Figure 1.4: Uniform linear array setup, with a plane wave arriving.

(a) Steered response (b) Polar steered response

Figure 1.5: Steered response, with a source in 0◦.

and spatial domain, is necessary because of the discrete spatial extent of the
array, makes it able to do filtering in the spatial domain. Spatial filtering can
separate signals with overlapping frequency that originate the array from
different angles. To make a temporal filter it requires processing of data
collected over a temporal aperture. Similarly, for making a spatial filter it
requires processing of data collected over a spatial aperture. After filtering,
the mainlobe is pointing in the direction of interest, and the thickness of
the mainlobe decides the resolution. The sidelobes are energy that are
suppressed and can be refereed as noise level.

1.5.1 The Estimated Covariance Matrix

The covariance matrix describes the statistical relationship between two
random variables in a vector, and indicates how the two variables change
together

Cov(X, Y) = E{(X− E{X})(Y− E{Y}} (1.17)
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Figure 1.6: Beampattern expalnation

Where E{X} is the expected value of X. By simplifying the equation (1.17)
by using of the linearity property of expectations, we have then;

Cov(X, Y) = E{XY} − E{X}E{Y} (1.18)

The sampled covariance matrix is commonly used in array processing
algorithms to get the statistical relation between every sensor output.
It is derived from the power estimate of the sensor outputs under the
assumption of zero-mean.

P =
1
N

N

∑
n=0
|~ym [n] |2 =

1
N

N

∑
n=0

~ym [n]~ym [n]H = E{|~ym [n] |2} = R̂ (1.19)

The notation {·}H defines complex conjugate and transpose, the combina-
tion of the two operations are often referred as Hermitian. The estimation
of the covariance matrix R̂ depend on the data quality, and it is essential
for the accuracy. The statistics is not reliable with few data samples. When
R̂ is defined we have the opportunity to manipulate the array outputs by
filtering, to improve the performance of the beamformer.

1.5.2 Delay and Sum

The method delay and sum (DAS) is done by delaying the sensor output,
the signals is then aligned so that they can be summed. This is done in
relation to the direction we want to steer. The delay ∆m aligns the incoming
signals for the m‘th sensor. For a monochromatic wave the delay is a
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linear function. Delay and sum is the simplest beamformer and also the
most commonly used, sometimes under the names "back projection" or
"conventional beamformer". It is most used because of the computationally
simplicity and very robust. The algorithm sums up all of the sensors,
for every possible angle of arrival. If we correctly sample a narrowband
signal at two different locations in space the phase will change during its
propagation. This is the concept behind phased array antennas. Instead of
having a system mechanically sweeping the directions through space, the
antenna can vary the phase electronically and produce a moving pattern
without any moving parts. Adjusting the delay with the phase instead
of the time gives us high angle resolution even though we only have a
few time samples. The weights for the delay and sum beamformer are
also predetermined so any further calculation is not needed. The weights
for delay and sum beamformer can be used to increase the ratio between
signal and noise at the expense of resolution. Many other beamformers are
extensions of delay and sum, which is sometimes called the conventional
beamformer. Applications of the simplest bearmformer, delay and sum,
include radar,sonar,seismology,wireless communications and speakers. As
more powerful computers are developed, other methods are going to
replace the DAS beamformer. Delay and sum beamformer can be described
mathematically as sum over all sensor inputs.

~z [n] =
M

∑
m

wH
m~ym [tn − ∆m] (1.20)

where ym are the sensor output and each sensor has it own sensor delay
∆m. The weights wH

m consist of complex and transpose (hermitian) weights,
with these weights we can manipulate the sensor outputs. When we choose
to steer our array of sensors, we change the phase according to the delay for
each sensor. This is done to stack all signals together, to form one output. To
find the power spectrum from the beamformer output we use the following
equation P = 1

N ∑N
n=1 |~z [n] |2 = E{|~z [n] |2}

E{|~z[n]|2} = E{|wH
m~y[n]|2} = E{wH

m~y[n](w
H
m~y[n])

H}
= E{wH

m~y[n]~y
H [n]wm} = wH

m E{~y[n]~yH [n]}wm = wH
m R̂wm

R̂ was introduced in the equation above, referring to the estimated
correlation matrix. Delay and sum uses predetermined weights, may be
applied to reduce the numerical complexity. When filtering the amplitudes
with a predefined filter wm, this permits trading of mainlobe width
against the sidelobes levels to form the response into a desired shape.
Beamforming is all about forming beams, by gaining the desired direction
of arrival and suppress the rest. This classical beamforming are the weights
independent from the received data, and often we assume that signal is
narrowband, and can be compared to typical Finite Impulse Response (FIR)
filtering.

Many different standard filters exits, and in general filters are chosen
with the criteria of;
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• How wide and how much ripples is accepted in the pass-band?

• How steep is the transition-band?

• How much ripples are accepted in the stop-band?

A
m

p

Pass
band

Transition
band

ffc

Stop
band

0 Low-pass filter

Figure 1.7: Components of filtering

In terms of beamforming, filters that gradually decrease towards the
edges of the aperture are being used to suppress the sidelobes, a typical
Hamming filter. For maximum penetration we use a rectangular filter in
the aperture to gain greater depth. Hours of testing need to be done to be
sure that the best filter for the specific application is chosen. This type of
testing is time consuming, and a better solution is to use adaptable weights
and let the beamformer optimize the weights for you for given criteria. The
next step leads us to the following section, where we should take a look on
how these weights can be chosen with respect to the recorded data.

1.6 Adaptive Spatial Filter

Adaptive beamformers take advantage of the sensor output, and adapt
their computations to the observed characteristics. An adaptive method
modifies the sensor output weights, and delays the signal according to
the observations. Aspects such as signal frequency content, spatial and
temporal noise, and signal number are some of the observations taken
into account. The weights are custom made to suit the environment,
although the environment may change rapidly. Fulfillment of the statistical
criteria for optimality is used to find the adaptive weights. When enough
observations are available, these kinds of algorithms outperform the DAS
beamformer when it comes to performance metrics such as; resolution and
signal-to-noise ratio. A disadvantaged is that adaptive algorithms are more
sensitive to sensor calibration errors, and that the calculation time is far
longer than DAS beamformer.
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1.6.1 Minimum Variance Distortionless Response

The minimum variance distortionless response (MVDR) beamformer is an
adaptive algorithm based on a statistical criterion. The given criterion for
MVDR is to minimize the variance while keeping a unit gain in the steering
direction, which corresponds to the propagation vector ~d.

wmvdr = min
~w

VAR{z [n]} = min
~w

~wHRp~w (1.21)

subject to ~wH~d = 1 (1.22)

The weights can be found by using Lagrange multipliers to solve (1.21)
with the constraint (1.22), demonstrated in [30]. The result of the weight
calculation is;

~wmvdr =
R−1

p
~d

~dHR−1
p ~d

(1.23)

The numerator minimizes the minimum variance, while the denominator
normalize the response with respect to the propagation vector ~d. The
calculations are done by assuming zero-mean data vectors, and that we
have the true noise spectral matrices Rp.

To illustrate the basic ideas of MVDR we consider a spectral noise
matrix Rp consisting of a single interference signal together with white
noise.

Rp = σ2I + A2
1~v1~v1

H (1.24)

A1 is the amplitude of the interference with its propagation vector ~v1. σ2

is the magnitude of the white noise,multiplied with a identity matrix I. By
using the matrix inversion lemma we have;

R−1
p =

1
σ2

(
I +

A2
1

σ2 + MA2
1
~v1~v1

H
)

(1.25)

Inserting (1.25) into (1.21) will give the following equation

wmvdr =

1
σ2

(
I + A2

1
σ2+MA2

1
~v1~v1

H
)
~d

~dH
(

1
σ2

(
I + A2

1
σ2+MA2

1
~v1~v1

H
))

~d
(1.26)

By rewriting the equation 1.26

wmvdr =

M
σ2

(
~d
M − ρ

MA2
1

σ2+MA2
1
· ~v1

M

)
M
σ2

(
1− MA2

1
σ2+MA2

1
|ρ|2
) (1.27)

The resulting weights is generated by two DAS beamformers, one corres-
ponds to the desired signal and the other to the interfering signal. The
value ρ is defined as the spatial correlation coefficient between the desired
and the interfered signal.

ρ =
~v1

H~d
M

(1.28)
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Figure 1.8: Beampatten of MVDR, the beamformer is steered toward
0◦,with an interference in 20◦ degree.

As mentioned ρ indicates how much the respective signals, correlates with
each other spatially. If they are fully spatial correlated ρ = 1, it will be
impossible to separate the interfered and the desired signal, because they
overlap in space. Otherwise when the spatially correlation factor ρ has a
value 0 ≤ ρ < 1 then the interference is suppressed. When ρ = 0 the
interference is totally cancelled. The ρ factor combining the desired and
interference signal optimally and provide suppression of interference. As
illustrated in figure (1.8) we can see that the interfering source arriving from
an angle of 20◦ degrees is totally suppressed.

Minimum Power Distortionless Response (MPDR) is a beamformer with
another statistical criteria of optimization, it minimizes the expected power
of the beamformers output while keeping a distortionless propagation
vector ~d:

min
~w

E{|~z [n] |2} = min
~w

~wHR~w (1.29)

subject to ~wH~d = 1 (1.30)

Again the weights are found by using Lagrange multipliers. The difference
from MVDR weights is merely that we now uses the full R = |A|2~d~dH +Rp
in the calculations instead of Rp.

~wmpdr =
R−1~d

~dHR−1~d
(1.31)

In an ideal scenario the two beamformer methods are equal, reasoned that
the name "MVDR beamformer" is used for both methods. We emphasize
that it is only valid for the ideal scenarios, with non-ideal scenarios it
has been shown that the MVDR is more robust, because its weights are
based on the noise term only. Any wrong assumptions about element
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positioning or propagation vector ~d are disregarded in the calculation of
the MVDR weights. The MVDR covariance matrix is based on the noise
term and exclude everything form the signal and avoids wrong assumption
of the signals in the estimates. In both beamformers we are depending on
knowing the exact value of R or Rp, which is often not the case. Since we
do not have the true values of either the noise spectral matrix or the data
spectral matrix, we estimate R from the available recorded data. When an
estimated covariance matrix is used in the beamformer calculation we call
it the Capon beamformer, after the work done by J. Capon[6]. The sample
covariance matrix R̂ is estimated from the recorded data ~y [n]:

R̂ =
1
N

N−1

∑
n=0

~y [n]~y [n]H (1.32)

, and inserted into equation (1.31) instead of R

~wcapon =
R̂−1~d

~dHR̂−1~d
(1.33)

Since the sample covariance matrix is a statitical estimator it requires
enough recorded data samples to be trustworthy, otherwise the Capon
beamformer will perform poorly. The number of time samples has to at
least fulfill the criterion N ≥ M for R̂ to be invertible. The number of
time samples that is recommended is N > 2M [30] to give satisfactory
performance from the beamformer. Another issue concerning the Capon
beamformer is that it can be sensitive to model errors since it is an adaptive
beamformer. This may result in severely degraded performance of the
beamformer. A critical scenario is if one of the sensors is disabled, and
the sensor output gives 0. It is critical because Capon optimize the sensor
output by finding the minimum variance, which will be the disable sensor
that always gives 0. Model errors can be compensated with robustness
techniques that will be discussed in the section of pre-processing (1.7). It is
done to ensure we have an inverse matrix R̂−1.

1.6.2 Amplitude and Phase Estimation

The Amplitude and Phase EStimation (APES) was first introduced by Li
and Stoica [16] and was used outside the beamformer context as the
approximate of the maximum likelihood (ML). It is now used as the estimate
of the complex amplitude (amplitude and phase) of a narrowband signal.
The problem of interest was to estimate the amplitude from the recorded
data vector, and improve the performance compared with FFT-based
amplitude estimation methods. The solution was the APES algorithm.
It is an adaptive finite impulse response (FIR) that yields significantly
reduction in the sidelobes combined with a higher resolution compared
with DAS beamformer. It was derived from a single snapshot,N=1,
divided into subarrays under the assumption that the noise vectors are
all independently and identically distributed zero-mean Gaussian random
vectors. The assumption about independently data vectors is wrong, due
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to the overlapping subarrays. So APES algorithm is a complex-amplitude,
and a ML estimator only in an approximate sense, as the authors points out
in [16], due to dependency of the overlapping vectors. The ML derivation
[16] was the first and the original derivation, two other derivations have
been made [22, 23] by the same researchers. Let ~yk [n] denote the spatial
smoothing vector related to the K subarrays, and ~w ∈ CM×1 be the vector
of filter coefficients. Together they form the filter output ~wH~y [k]. The
deterministic joint problem for APES will then be4:

(Âapes, ~wapes) = arg min
A,~w

1
K

∣∣∣~wH~yk [n]− Aej 2π
λ sin(θ)δk

∣∣∣2 (1.34)

subject to ~wH~d = 1 (1.35)

With equation (1.34) the filter output will try to get as close as possible to
the sinusoid Aej 2π

λ sin(θ)δk . Minimizing 1.34 with respect to A will give:

Âapes = ~wH 1
K

K−1

∑
k=0

~yk [n] e−j 2π
λ sin(θ)δk (1.36)

Using the results of the estimated A, and insert it into (1.34) will give the
minimization problem:

min
~w

~wHRp~w subject to ~wH~d = 1 (1.37)

R̂p = R̂−
(

1
K

K−1

∑
k=0

~yk [n] e−j 2π
λ sin(θ)δk

)(
1
K

K−1

∑
k=0

~yk [n] e−j 2π
λ sin(θ)δk

)H

(1.38)

The optimization problem (1.37) is almost the same as the MVDR beam-
former, and the weights are found in the same way (1.22):

~wapes =
R̂−1

p
~d

~dHR̂−1
p ~d

(1.39)

The APES algorithm finds its weights based on statistics from the
interfering signals and noise, by forming a covariance matrix R̂p and by
subtracting the signal term from the estimated covariance matrix R̂. Since
the estimated covariance matrix does not include the desired signal in
the optimization problem, by then avoid that the desired signal is being
accidentally suppressed. The APES is an accurate and robust beamformer,
with better resolution than DAS beamformers, but lower resolution than
the Capon beamformer.

1.7 Pre-processing Techniques on the Covariance
Matrix

In this section we present techniques that are applied to the sample
covariance matrix to improve the estimates, and make the estimates more

4We follow the derivation presented in [22]
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robust. Adaptive beamformers are sensitive to model errors; therefore we
need to apply techniques that will reduce these model errors such as;

• sensors location

• mismatch in sensor calibrations

• speed of propagation

• wrong steering vector

• correlated interfering signals

We know that the MVDR beamformer will, without the distortionless
response constraint, force all power to a minimum, which implies that if
we have any error in our steering vector or in the model, the consequence
could be that it suppresses the signal of interest. The APES beamformer
is more robust because it does not include the signal of interest in the
optimization. The pre-processing techniques we present here will ensure
that an inverse exists, they will decorrelate signal from the interference,
and increase the number of data samples.

1.7.1 Diagonal Loading

When calculating array weights for adaptive beamformers an inverse of R,
denoted as R−1, is often needed. In terms of linear algebra an m×m matrix
is invertible if it exist a matrix R−1, such that

RR−1 = R−1R = IM (1.40)

where IM is an identity matrix of dimension M × M with ones along the
main diagonal. A square matrix that is not invertible is called a singular
matrix and can cause serious errors. A singular matrix rarely exist if a
randomly matrix is picked it, but to be sure that the randomness never
occurs we can force R to a be non-singular. This is done by diagonal loading;

R̂ = R + δIM (1.41)

The diagonal loading factor ,δ, increases the robustness against model
errors when we are forming the adaptive weights. By adding δ to the
matrix diagonal it introduce some fixed noise/error in the estimation of
R. This noise is desirable to be at a minimum, for the case of Capon
beamformer with diagonal loading it will converge toward a Delay and
Sum beamformer if δ is large [20].

lim
δ→∞

(R + δIM)−1~d
~dH(R + δIM)−1~d

=
1
M

~d (1.42)

Problems associated with inadequate estimation of the covariance matrix
R can be resolved by diagonal loading, but we have to be aware of
desensitizing effect when the loading factor increases. There are many
different ways to load the diagonal, but we chose the simplest.
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1.7.2 Subarray Averaging

Subarray averaging is used to decorrelate sources [28], we are then able
to avoid signal cancellation of the correlated sources. Coherence appears
when the phase relation between the desired and the interference signal
stays constant. Spatial moving the array can eliminate phase relation;
the phase relation becomes then randomized. Moving the array give the
effect that each element of the wave phases changes differently according
to their direction of arrival. Measuring the cross correlation at several
locations makes it possible to gradually nullified the cross correlation terms
with subarray averaging [28]. Instead of physically move the array, the
cross correlation can be suppressed by spatial averaging. The concept of
spatial averaging is to divide the array in K subarrays with the length L.
The subarrays are partially overlapping each other, which implies that the
number of elements in the array can not exceed the number of a full array
(M > L). The subarray formulation is presented as

zsa(n) =
1
K

K

∑
k=1

L−1

∑
l=0

~wH
k ~yk+l (1.43)

where M is the number of elements in the array, L is the subarray length
and K = M − L + 1 is number of subarrays. wk represents the weighting
and yk+l contains the output data. The averaging is illustrated with total
elements of M = 5, subarray length L = 3, resulting in K = 3 subarrays.

x0 x1 x2 x3 x4

1
2

3

The advantage of having longer subarray length L, is that close sources
can be differentiated. Subarray averaging can be interpreted as a bandpass
filter, where a large L gives a narrow band filter, and gives fewer weights.
With fewer weights you have less degree of freedom to mitigate the
inferring signals and noise. When two sources are properly resolved such
that only one source is within the bandpass with length K, then is signal
cancellation is avoided, otherwise they may cancel each other. When we
are using subarray averaging the size of the correlation matrix are reduced
from M × M to K × K, where K is number of subarrays. The length of
the subarray L must be equal or less than number of subarrays K. The
correlation matrix of the K’th subarray is denoted as R̂k

R̂k = E{~yk [n]~yk [n]
H} (k = 1, . . . , K) (1.44)

R̂sa =
K

∑
k=1

vkR̂k (1.45)

where ~vk is averaging weights for the k’th subarray.

K

∑
k=1

~vk = 1 (1.46)
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Beamformers may take use of subarray averaging, and enhance perform-
ance and robustness with regards to signal cancellation. Subarray aver-
aging is also been used to make an estimate of R when the calculations are
based on only a single, or only a few, temporal samples. This technique is
used in medical ultrasound imaging where the transmitted pulses are short
and non stationary enviroment [25].

1.7.3 Forward-backward Averaging

Forward-backward averaging is a technique used to increase the number
of data samples by a factor two and decorrelate the estimates. In the
previous section (1.7.2) we introduced the subarray averaging, this was
the forward implementation used to decorrelate signals in the estimates.
A backward implementation uses the same technique but with the data
samples conjugated and flipped [30].

Rsa·B = JR∗sa·FJ (1.47)

With the use of the complex conjugate {·}∗ and use of the exchange matrix
J ∈ CM×M the data vectors are flipped:

J =


0 . . . 0 1
0 . . . 1 0
...

. . .
...

...
1 . . . 0 0

 (1.48)

To make it possible to flip the matrix and use the conjugate operator
without loosing information the array has to be centrosymmetric such as
an ULA. The symmetric requirement in the array geometry is the same for
every element located in xm, there must be an identical element at−xm[30].
Many different array structures exists that will satisfy this requirement,
but we will concentrate on uniform linear arrays. The new estimate of the
covariance matrix with forward-backward averaging is then given by

Rsa·F/B =
Rsa·F + Rsa·B

2
(1.49)

1.7.4 Filtering the Covariance Matrix

Filtering the covariance matrix is another approach to decorrelate the
coherent signals in the estimated covariance matrix R̂ [15]. The method
preforms a linear two-dimensional filter operation, and it does not modify
the signals angle of arrival, which is important to maintain when making
beamformers. What the filter does modify is the cross-correlation between
the signals in the covariance matrix. With the right choice of filter
coefficients the signals can be totally decorrelated. The principle of spatial
smoothing of the covariance matrix is to divide the matrix into sub-
matrices, which are then filtered. Now the modulated matrix should
be free of correlation between the desired and interfering signals if we
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have chosen the right filter. Originally we have M sensor elements
~y[n] = [y1[n], y2[n], ..., yM[n]], that form the spatial covariance matrix R =

E{~y [n]~y [n]H}, consisting of M × M relations. The filter kernel is defined
as a Q× Q a complex valued matrix G. Q defines the size of the filter G,
and have to be smaller than M (Q < M). The operation that preforms the
filtering and gives us R′ can be mathematically described as;

R′ =
L

∑
i=1

L

∑
j=1

GijR̂i+l−1,j+m−1 (1.50)

l, m = 1, 2, ..., K (1.51)

K = M− L+ 1 describes the dimension of the filtered covariance matrix R′.
By doing this type of filtering on the covariance matrix the effective number
of array elements are reduced from M to K. This is because R′ is used
instead of the original matrix R̂ for the calculations of beamformers. The
filter operation described in (1.51) can be formulated as two dimensional
convolution

R′ = R̂ ∗G (1.52)

The filter G can have different size and structure, depending on the
intention of the filter. For our purpose the filter G main intention is to
decorrelate the correlation matrix R̂ without loosing the estimates of the
arriving waves. To fulfill this criterion five important properties are being
made [15];

• The structure after filtering is given by R′ = R̂ ∗ G = AkS′A∗k +
W ∗ G, where Ak is a K × X matrix and X describes the number of
coherent waves. Preservation of the signal information is important
such that the new estimate of R̂ can be used for calculation of the
adaptive beamformers.

• The filtered signal component S′ is related to the original signal
correlation matrix S by the equation S′ = [AT

L GA∗L] ◦ S. AL is a L× X
matrix whose columns are L × 1 arrival of array vectors. X is the
number of signals with identical center frequencies impinge upon the
array. S is then element-wise factorized with [AT

L GA∗L] to achieve S′.

• The filter G must satisfy the following statement to be able to
decorrelate X coherent sources completely. AT

L GA∗L = IX. IX defines
the identity matrix of size X. With this statement satisfied we are
guaranteed that S′ is a diagonal matrix and the signal information
is preserved in S′.

• By consider that the noise correlation matrix W as a Toeplitz matrix,
then W ∗ G also is a Toeplitz matrix for any filter G. The filter G
have two useful and interesting constraints, first G = GH states
that the filter is a Hermitian matrix, and second the Trace(G, q) =
δq q = 0, 1, ..., Q − 1 states that the sum of of element across the
main diagonal is 1 and 0.
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• R′ is positive definite as long as G is chosen in a prescribed way and
the dimension of G, L , exceeds a threshold.

Describing spatial smoothening with this filter approach is a straight
forward task. The weights on the diagonal shall be fixed, and each
element shall be equally weighted. The filter is made of an identity matrix
I with the filter size Q, then the matrix is factorized by the averaging
coefficient 1

Q . This is how the approach of spatial smoothing with subarrays
approach can be interpreted on a two dimension filter term, with the filter
G = 1

Q IQ. Instead of having fixed weights on the main diagonal of
G = diag(g1, g2, ..., gQ), each parameter gq can be chosen differently and
are adjustable.

R′ =
Q

∑
q=1

gqR̂q (1.53)

Rq is a cutout from the original covariance matrix R. This type of filter
matrices are used in optimization problems, such as adaptive spatial
averaging that we will look closer into in a later chapter.

1.8 Beamformer Application

Many similarities exists in the different types of beamforming applications,
the key difference are the operating frequency on the transmitted signal
and the speed variation of the propagation due to physical conditions.
The theories behind the active systems have a lot in common,whether its
space,earth or ocean the application operates. The fundamental difference
is that the propagation of acoustics energy in ocean/body is significantly
more complicated than the propagation of electromagnetic energy in the
atmosphere. These propagation characteristics have a major influence
in the design of acoustics waves for the ocean/body [30]. In recent
decades adaptive beamformer weights has been applied to the field of
array processing such as wireless communication, radar, sonar and medical
ultrasound imaging [25, 17, 16]. In this section we will give an insight in
the application of medical ultrasound imaging with the use of adaptive
weights.

1.8.1 Medical Ultrasound Imaging

Medical imaging is a technique used to create images of the internal body,
which are studied to detect abnormalities inside the body without medic-
ally surgery. The images are created by transmitting high frequency sound
or ultrasound waves into the body followed by reception, processing, and
interpreting the returning echos from structures and tissues. Ultrasound
is sound waves with frequencies greater than the upper limit of human
hearing (∼ 20kHz <), with its purpose to penetrate the body and measure
the reflected signal. The reflection signatures reveal details about the inner
structure of the body, which may have high medical interest. The medical
ultrasound system relies on the fact the biological tissues scatters or reflects
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incident sound. Scattering refers to interaction of between the transmitted
sound wave and particles that is smaller than the sound’s wavelength λ,
while reflection is the echos from particles larger than λ [1]. The propaga-
tion characteristics of a material are related to its sound speed, significant
discontinuities in the characteristics of a material will reflected or scatter
the sound strongly. In medical ultrasound a probe is used to transmit and
record the ultrasound echos. The probe consists of an array that generates
a focused pulse that is being transmitted into some portion of the body.
The pulse will propagate in the body and is reflected back to the probe by
inhomogeneities in the tissue. These reflections are analyzed with respect
to strengths of the reflection and the propagation time. The strength of the
echo is used to estimate density of the medium, and with the propagation
time we can locate the location. When arranging the estimates in time we
got an image line, and by repeating this process by sending out focused
pulses in adjacent direction will complete the sector image.

Specialties in medical ultrasound imaging are that we can always oper-
ate in the near field. The speed of the propagation c is significantly lower
than the speed of light and the multi-path propagation phenomena is usu-
ally a problem. There exist many similarities between medical ultrasound
imaging and sonar imaging, because of the operating environment has
many of the same effects.

1.8.2 Related Work

In the last couple of years it has been an increased focused on applying
adaptive beamformers to medical ultrasound systems. The increased focus
has resulted in higher resolution and better contrast in the medically
images. To apply the adaptive beamformers to the application medical
ultrasound imaging, the methods have been simplified and more compact
to fit the hardware limitations. The most common approach are based on
minimum variance, which was derived by Capon[6].

The improvements of the adaptive beamformers come at expenses of in-
creased computational complexity, which makes the adaptive beamformers
less attractive in spite of their performance advantaged. Low-complexity
adaptive beamformers such as Synnevag et al. [26] have been successively
applied to medically ultrasound systems to overcome the hardware limit-
ations. They use several predefined windows and use the minimum vari-
ance optimization criterion to decide which window to use at a specific
point in the image. Nilsen and Hafizovic [19] have investigated the applic-
ation of a beamspace adaptive beamformer for medical ultrasound ima-
ging, which can be used to achieve reduced complexity with performance
comparable to that of the Capon beamformer. Other methods have been
proposed to reduce the complexity, such as reducing the number of ele-
ments, hence directly reducing the complexity[31].

Other issues to apply adaptive beamformers to medical ultrasound is
that the adaptivity is highly sensitive to errors in the steering vector, and
the observations are naturally correlated because the backscattered echoes
is composed of replicas of the same transmitted waveform. The data has
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to be decorrelated to avoid effects as signal cancellation of the desired
signal. The causes of steering vector errors are usually incorrect sound
estimate. The speed estimates varies with the different characteristics
of the tissue in the human body, and to deal with these types of errors
robustness methods such as variants of diagonal loading, spatial averaging,
and forward-backward estimation has been suggested [25, 10, 2]. Wang et
al. [33] has contributed with a synthetic aperture approach together with
a robust Capon beamformer and showed increased resolution and contrast
in the context of medical ultrasound imaging.

Viola and Walker [32] presented a series of adaptive beamformers in
the field of medical ultrasound imaging and compared their performance
to data independent beamforming techniques.

The conducted studies have given broader knowledge and understand-
ing of the varieties in the medical imaging application, which again has
lead to more advanced beamformer designs that more suitable for the med-
ical ultrasound purpose.
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Part II

The Project
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Chapter 2

Planning the Project

2.1 Motivation

When making beamformer algorithms that are based on estimates of the
covariance matrix R̂, it is fundamental to get a good estimate. A good
estimate is close to the true R, and should not introduce new artifacts or
errors. The aim is to make an estimate that is as close as possible to the
true value preferably without significantly increasing the computational
cost. Several factors influence the result and therefore why a perfect R̂ is
not obtained, such as destructive errors and model deviations. Destructive
errors occur in the model, as model deviations. Typically model deviations
are physical errors such as wrong sensor position or mismatched sensors.
Errors that occur in the field are also destructive for the estimation; field
errors can be coherent signals that arise due to multi-path propagation
or when "smart" jammers deliberately induce coherent interference. The
estimates can also fail due to a finite number of samples; with only a
few samples the underlying statistics will return wrong parameters, the
estimates are then based on these wrong parameters which result in an
unsatisfactory R̂ matrix.

To emphasize the importance of a good estimate, the covariance matrix
R̂ is used in many optimization problems and poor estimates will causes
errors and inaccuracy. So if the estimates are insufficient, all other
products of the estimate will be bad too, and the beamformer will probably
not succeed if it is based on a poorly estimated covariance matrix. It
is especially critical for the case of the Capon, which is an aggressive
beamformer method that tries to force everything to zero except for the
constraint. For this method an inaccurate covariance matrix may result in
fatal errors, the method can force wrong angle of arrival to a minimum due
to a wrong estimate of the desired signal.

This begs the question: What is the actual true value of R? In
general we do not have any kind of prior knowledge about the field
we are trying to sense with the array. The knowledge that might have
helped, is the numbers of interfering sources with their directions of
arrival. But this information is not available in the general case; the
only thing we can be sure about is the intended array structure or some
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superficial knowledge about the nature of the noise. In many practical
applications this information is known, which can and should be taken
into consideration when determining the formulation of the estimation
of statistics. For our case we have chosen to use a uniform linear array,
which for a perfect model will result in a covariance matrix that has a
Toeplitz structure, which is constant along the diagonals. The Toeplitz
matrix model the covariance of a random vector obtained by sampling
a spatially stationary wave field with a uniform linear array. Since this
is the only definite knowledge we have about the true covariance matrix
we suggest that it should be taken into consideration when we are doing
estimations of our covariance matrix. To show how the true R would look
like for a simple example with one desired source, one interfering source
and with stationary noise. We then have the following equation for R;

R = E{~y [n]~y [n]H} = |Ad|2~vd~vH
d + |Ai|2~vi~vH

i + σ2
nI (2.1)

The power of the signal is described by the power of the amplitude A,and~v
is the propagation vector. The noise term is described by the noise variance
σ2

n , and multiplied by the identity matrix which spans the entire space.
Since each of the terms in Eq. (2.1) are on a Toeplitz form, the sum of
them will also have a Toeplitz structure. Exploitation of Toeplitz structured
covariance matrices was demonstrated by Gray [9] and Fuhrmann [7]. The
constrained Toeplitz structured covariance matrix were researched early
by Burg, Luenberger and Wenger[5], and afterwards by Miller and Snyder
[18], and Tourtier and Scharf [29].

An advantage of working with Toeplitz matrices is that we always
can be sure that an inverse exists. With the structure of a Toeplitz matrix
we can reduce the arithmetic operations that is need to invert the matrix,
which again reduces the inverting time. It may not reduce the total time
since it may cost some time to convert the matrix into a Toeplitz matrix.
The representation and storage of the matrix can be reduced to one or
two vectors, depending on if it is symmetric or not, but this effect is not
important in our case.

The effect of forcing the estimate to a Toeplitz structure will be
investigated through testing beamformers with metrics that are essential
for a beamformer. Would the Toeplified matrix be closer to the real R?
With a Toeplitz covariance matrix would the Capon performance increase?
What is the best method to make a Toeplitz matrix without loosing
fundamental information? The purpose of this thesis is to examine the
possible performance improvements obtained by incorporating Toeplitz
estimation into adaptive beamformers.

2.1.1 Toeplitz

For adaptive beamformers, based on output minimization, performance is
best when the spatial covariance matrix is diagonal, due to avoided signal
cancellation of the desired signal. Such diagonal matrix is a Toeplitz matrix
where all diagonals are constants, which is to say that any M×M matrix
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A on the form

A =



a0 a−1 a−2 . . . . . . a−M+1

a1 a0 a−1
. . .

...

a2 a1
. . . . . . . . .

...
...

. . . . . . . . . a−1 a−2
...

. . . a1 a0 a−1
aM−1 . . . . . . a2 a1 a0


(2.2)

is a Toeplitz matrix. Exploiting the Toeplitz structure has shown that
these techniques has led to a significant performance improvement for
beamformers that require the inverse of the estimates R̂−1 [7]. The variety
of problems solving equations containing the Toeplitz matrix, has led to
many efficient algorithms for solving these equations. The structure of a
Toeplitz matrix makes it possible to represent the matrix with two vectors
if it is symmetric. Systems of Ax = b can be solved in O(M2) arithmetic
operations, with Levinson-Durbin algorithm. Another positive effect of
working with a Toeplitz matrix; is that the inverse always exist. If the
Toepliz matrix in addition is a circulant matrix the equation can be solved
quickly with fast Fourier transform (fft), and requires only O(M log(M))
operations.

2.1.2 The Frobenius Norm

The Frobenius norm is a matrix norm that is defined as the square root of
the absolute sum of every element squared;

|A|F =
√

∑
m

∑
n
|am,n|2 (2.3)

This norm can be used as a measurement of how much the estimated
covariance matrix R̂ deviates from the true R by finding the total deviation
across all matrix elements.

|R− R̂|F =
√

∑
m

∑
n
|rm,n − r̂m,n|2 (2.4)

The measurement can be used as an indication of how good the estimates
are, or possibly give us a threshold how much the estimates can deviate
before it becomes useless.

2.2 Toepliz structured covariance matrix

In this section we will describe the methods that turn our estimates of the
covariance matrix into Toeplitz structured matrices.

31



2.2.1 Spatial Convolution

Synnevåg and Jensen suggested the spatial convolution method in [27],
which will be described in detail in this section. Assume a uniform
linear array and a single snapshot (N = 1), with a single snapshot of
the wave field the time dimension is discarded. Instead we introduce a
location dependence to derive an alternative approach for the optimization.
Expressing the single snapshot of the sensor outputs can be written as;

z0 =
M−1

∑
m=0

wH
m ym (2.5)

This summation (2.5) can be interpreted as a windowed convolution of the
weights w−m and the sensor outputs ym. Using the Fourier transform to
convert into a function of wavenumber k = 2π

λ sin(θ) that describe the
angle of arrival. One of the Fourier property is stated as

w[m] ∗ y[m]
F⇐⇒W(k)Y(k) (2.6)

where W(k) and Y(k) are the discrete-time Fourier transforms of w[m] and
y[m]. Using Parseval’s relation on our single snapshot (2.5) gives us;

z0 =
1

2π

∫ π

−π
W∗(k)Y(k)dk (2.7)

The equation integrates the sample space from −π ≤ k ≤ π. The power
estimate or the variance of z0 can then be consider as;

|z0|2 =

∣∣∣∣ 1
2π

∫ π

−π
W∗(k)Y(k)dk

∣∣∣∣2 (2.8)

From this equation the optimization with the constraint yields

min
w

∣∣∣∣ 1
2π

∫ π

−π
W∗(k)Y(k)dk

∣∣∣∣2
subject to W∗(kd) = 1 (2.9)

The constraint ensures that we have unit gain in the look direction kd.
The problem with this equation is that if there is more than one source
in the wave field, it can lead to signal cancellation. The signal cancellation
takes place when an unwanted signal has a solution W∗(k1)Y(k1), which
has opposite sign of the desired direction W∗(kd)Y(kd), and then cancels
the signal of interest although the constraint is satisfied. This problem is
well known for optimization beamformer such as Capon, when the signals
are coherent[34]. The problem herein is that the optimization criterion
stated in (2.9) enables the product W∗(k)Y(k) to have both negative and
positive contributions, and therefore lead to signal cancellation. To avoid
the problem we can ensure only positive contribution to the cost function.
Instead of using the optimization (2.9) criterion we rather use;

min
w

1
2π

∫ π

−π
|W∗(k)Y(k)dk|2

subject to W∗(kd) = 1 (2.10)
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The square is moved inside the integral and assures a positive contribution
for every wavenumber k. The remaining part is to convert the optimization
criterion back to the spatial domain by using the Fourier transform (2.6).
The optimization criterion in the spatial domain after the Fourier transform
becomes;

min
w

M−1

∑
m=−M+1

|~wH
m~ym|2

subject to ~wH~d = 1 (2.11)

We now have a minimization that deviates from the original approach
(1.31);

min
w

~wHR̂sc~w

subject to ~wH~d = 1 (2.12)

To solve this minimization we have to construct the spatial convolution
estimated covariance matrix R̂sc. The matrix R̂sc is constructed by the
original sensor outputs that are padded by M − 1 zeroes on both sides of
the data sequence~y[n], resulting in a total length of the zero-padded vector
of 3M− 2.

~̂y[n] = [0, 0, . . . , 0, y0[n], y1[n], . . . , yM−1[n], 0, . . . , 0, 0]T (2.13)

The vector ~̂y[n] is then divided into subarrays of length M to calculate the
spatial convolution matrix using subarray averaging. The zero-padded
vector ,~̂y[n], is only used for the calculations of the weights, provided by
forming the spatial covariance matrix. However, after this calculations
the weights are applied to the original data vector ~y[n]. The difference
between the standard subarray averaging method and spatial convolution
is how every single sensor output is involved. With the spatial convolution
method every single sensor output contributes equally to the covariance
matrix. With the standard subarray averaging the sensors at the edges of
the array contributes only one time in the averaging, and the sensors in the
middle of the array contributes more to the averaging.

2.2.2 IAA - APES

The iterative adaptive approach is used in amplitude and phase estimation
(IAA- APES). It is a data-dependent,non-parametric algorithm based
on weighted least squares approach, and it resembles from the APES
algorithm [16, 22, 23]. It is a non-parametric algorithm that attempts to
compute the signal estimate without using a priori information or making
any explicit assumption about the signal model. This result tends to be
more robust than the parametric alternatives. The construction of the
covariance matrix R̂p in IAA-APES is made iterative, and differs from the
original approach of APES. In the original approach the APES covariance
matrix is based on subarray averaging, and is constructed by subtracting
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the desired signal from the estimates of the covariance matrix, so that only
the noise and inferring signal are remaining in the estimates. This ensures
that we do not make any wrong assumption of the signal of interest,
which can cause poor performance for the beamformer. The number of
signals is usually unknown so we make it more robust by making a grid
of interest. Let G be the number of scanning points/angles in the region.
The IAA-APES method makes an overkill assumption about the number
of interfering signals in the region by interpretation of every scan-line as
a potential interfering source. When representing the grid the IAA-APES
makes an angle matrix A = [~a(θ0),~a(θ1), . . . ,~a(θG)] where each column
vector~a(θg) represent one scan-line in the grid. To construct the estimated
covariance matrix R̂apes IAA-APES uses the signal power P̂ as weights;

R̂apes =
G−1

∑
g=0

P̂ga(θg)a(θg)
H = Adiag(P̂prev)AH (2.14)

The function diag places the power estimate along the main diagonal and
else where there is zeros, the resulting matrix has a dimension of G × G.
As mentioned, IAA-APES is an iterative method, so the previous signal
power P̂prev is used to obtain the current signal power. Since the algorithm
is iterative it implies that we require an initialization. The initialization
is done by a standard delay-and-sum beamformer method. The power
estimate P̂ is used to make a diagonal matrix. It contains the power at
each angle of the scanning grid and the number of scan lines determines
the dimension. The diagonal structure diag(P̂prev) is used to update R̂apes
and makes the algorithm work properly even for low numbers of time
samples and coherent sources. The resulting matrix has a Toeplitz structure,
because every Pga(θg)a(θg)H are Toeplitz will the sum be Toeplitz as well.
When using the signal power estimate as weights we are able to detect
every interfering source and the adaptivity will be used to suppress the
inference. An advantage with IAA-APES method is that the beamformer
can be applied to arbitrary array geometries, due to the iterative solution.
The method is summarized in table (2.1).

The IAA-APES methods does not provide significant improvements in
performance after about only 15 iterations [36], this is illustrated in figure
(2.1) where we steer towards 0◦ together with an interfering source in 40◦,
and a SNR value at 30 dB.

2.2.3 Adaptive Spatial Averaging of R̂

We use the method subarray averaging to decorrelate the coherent signals
in the estimation of the covariance matrix R̂, but with subarray averaging
such as we introduced in section (1.7.2) the subarrays are uniformly
combined in Eq. (1.46). We now want to implement this method and
start with the same basis as for regular subarray averaging. The adaptive
spatial averaging method that is suggested in [28] does not use uniformly
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Table 2.1: Pseudocode of IAA-APES

% Initialization by DAS
for all θ do

P̂ = 1
N ∑N

n=1 |~wH~y [n] |2
end for
% IAA-APES convergence
while convergence do

R̂apes = A(θ)diag(P̂)A(θ)H

for all θ do
sg(n) =

a(θg)HR̂−1
apes~y[n]

a(θg)HR̂−1
apesa(θg)

n = 1, · · · , N

P̂g = 1
N ∑N

n=1 |sg(n)|2
end for

end while

Figure 2.1: Convergence of IAA-APES method, shows the difference
between previous and current power estimate, P.

distributed weights, but it chooses adaptive weights for vk.

R̂sa =
K

∑
k=1

vkR̂k (2.15)

The weights vk are selected based on the knowledge that if we have a
covariance matrix without cross correlations between the desired and the
interference signals, we should have a R matrix with a Toeplitz structure.
This is only valid under the assumption of identical array elements. With
only subarray averaging over the element inputs and uniformly weights,
the interference signal is not being suppressed completely. This is due
to the constraints of the covariance matrix, which cannot be made a
Toeplitz matrix with only simple averaging. Since we know it should
be a Toeplitz matrix we can therefore force it to become the wanted
form by using adaptive weights vk. These weights can equalize the
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elements on the diagonals so that the matrix can be close to Toeplitz. To
determine the weights we start by defining a quantity ε, this quantity
defines the deviation between our estimated matrix and a Toeplitz matrix.
As mentioned earlier each element along the diagonal in a Toeplitz matrix
has equal constant value. To fulfill this statement we do an averaging over
each diagonal and use it to equalize the diagonal. The deviation quantity ε
is defined as

ε =
L−2

∑
i=0

L−i

∑
l=1
|r̂l+i,l − r̂(i)|2 (2.16)

The averaging over the i‘th diagonal is described with r̂(i) and rl+i,l is one
specific element in R on the i‘th diagonal. The Eq. (2.16) can be written on
a more compact linear algebra form [28];

ε = ~vTRee~v (2.17)

where
~v = [v1, v2, ..., vK]

T (2.18)

Ree =
L−2

∑
i=0

L−i

∑
l=1

Re
{

el+i,l · eH
l+i,l

}
(2.19)

el+i,l = [el+i,l·1, ..., el+i,l·K]
T (2.20)

el+i,l·k = rl+i,l·k −
1

L− i

L−i

∑
l=1

rl+i,l·k

(i = 0, ..., L− 2; l = 1, ..., L− i; k = 1, .., K)

Re{·}denotes the real part and the number of interest. el+i,l·k is the
deviation from the element value at (l + i, l) in Rsa·k and the average on
the i‘th diagonal. This is a standard optimization problem, and our task is
to minimize the following formulation;

min
~v

(ε = ~vTRee~v) (2.21)

subject to ~vT~1 = 1 (2.22)

The unity vector~1 consists of only of ones and has the length K. This form
for minimization is the same as we used when we found the weights for the
Capon beamformer in (1.21). The optimum value of ~v is then determined
and is given as;

~v =
R−1

ee
~1

~1TR−1
ee ~1

(2.23)

These optimal weights are determined given the assumption that it exist
an inverse of Ree. The Rsa with adaptive weights can be used for DAS
beamformers as well as Capon beamformer. It is only the covariance matrix
that is modified in the different cases, a pre-processing method is used
in the modification and can by applied to several beamformers. When
reducing the size of the covariance matrix from M×M to K × K, we also
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reduce the degrees of freedom. Less degrees of freedom result in fewer
adaptive weights that can suppress unwanted terms. This is a limitation
that manifests itself for adaptive spatial averaging, this restricts how many
coherent signals we are be able to suppress. The size of the full array
is sacrificed in order to decorrelate the incoming waves. The degrees of
freedom for a subarray averaged matrix Rsa·k is related to each independent
term in Ree. The degrees of freedom is calculated by the number of terms
corresponding to the length of the main diagonal of Rsa·k, minus one is
preserved as a reference r̂(0). The number of degrees of freedom for each
subarray will then be L− 1. So assume that we have the desired signal and
J coherent signals we have then J + 1 signals incident on the array. Each
element in the covariance matrix will consist of J + 1 autocorrelation terms
that should be preserved, and the J(J + 1)/2 cross correlation should be
suppressed. A simplified example is when we assume that we have one
desired and one inference signal, and the noise is neglected. The total array
output can be expressed in terms of the desired signal s and interference i.

~y =~s +~i (2.24)

R is expressed as follows:

R = E{~y~yH} = (~s +~i)(~s +~i)H =

auto correlation︷ ︸︸ ︷
~s~sH +~i~iH +

cross correlation︷︸︸︷
2~s~i (2.25)

For this example we will have two auto correlation terms, and one cross
correlation term. We then consider the cross correlation terms as complex
numbers, so that the numbers to suppress is J(J + 1). The total degrees of
freedom for a R̂sa·k is then (L− 1)2, which gives us the inequality;

(L− 1)2 ≥ J(J + 1) (2.26)

Solving the equation with the knowledge that L and J are positive integers,
it can be simplified to

L ≥ J + 2 (2.27)

This inequality is valid for each subarray with a size of L. The next step that
is considered is the number of subarrays. The available degrees of freedom
are the number of weights K minus one, it is important that this is used as
reference or constraint. Resulting in K− 1 weights, and a still complex cross
correlation that shall be suppressed and eventually vanished. The relation
between K and J is expressed as;

K− 1 ≥ J(J + 1)
K ≥ J(J + 1) + 1 (2.28)

For one coherent interference signal the size of the subarray must be L ≥ 3,
and we must have K ≥ 3 subarrays.

37



2.3 Performance Metrics for Beamformers

To be able to compare our different Toeplifeid beamformers we have chosen
to investigate different metrics that should be of importance when choosing
the beamformers. The requirements associated with the application will
determine which beamformer that should be applied. There will be some
beamformers that perform very well with respect to some metrics but is not
chosen because they do not perform adequate with respect to other metrics.
We have chosen to study the following metrics in greater detail;

• Signal to Noise Ratio (SNR) / Root Mean Square Error (RMSE)

• Array gain

• Error in Direction of Arrival

• Resolution

• Numerical complexity

2.3.1 Signal to Noise Ratio and Root Mean Square Error

Since we working with beamformers with a constraint to keep the unit gain
in the steering direction, the signal-to-noise ratio and root mean square
error will be the inverse of each other. Both metrics are taken under
consideration since they will give different results for beamformers that
are constrained different.

Signal to Noise to Ratio (SNR) is a metric that compares the level of
desired signal to the level of background noise. The definition is stated
as the ratio between signal power and noise power. Given by;

SNR =
Psignal

Pnoise
(2.29)

It is desirable to have a significant higher signal power than noise power
to be able to extract the information. A ratio higher than 1 indicates more
signal than noise, and in many cases we want to maximize this ratio. Low
signal-to- noise ratios are among the many challenges that array processing
system frequently face.

Root Mean Square Error (RMSE) is a good measurement of accuracy, and
it gives us the differences between the true value and the estimated or
received value. RMSE is a kind of generalized standard deviation. RMSE
is given as;

RMSE =
√
|A− Â|2 (2.30)

where A is the actual value amplitude and Â is estimated amplitude.
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2.3.2 Array Gain

The array gain is defined as the ratio between the SNR beamformer output,
and the SNR from one sensor from the array. The metric reflects the
improvement in SNR obtained by using a beamformer. It is defined as;

AG =
SNRout

SNRsensor
(2.31)

An array gain between 0 < AG ≤ 1 indicates that the beamformer has
decreased in performance with respect to SNR. It is desirable to have the
highest possible value of AG, which shows the improvement done by the
beamformer. For an array consisting of M elements in a field of spatially
white noise the array gain will be proportional to the number of elements
M.

2.3.3 Error in Direction of Arrival (DOA)

To estimate the directions of arrival, the region of interest are scanned
and the point with highest value also called the peak, is estimated
as the direction of arrival. When estimating the direction of arrival
the result can be imprecise because the peak deviates from the actual
direction, it is desirable to know how much the estimate deviates from
the actual direction of arrival. The estimated direction of arrival can
deviate significantly from the true direction when the covariance matrix
is poorly estimated. A result of this type of error can be significantly
worse when using Capon beamformer, which then turns out to be more
unfavorable than the standard DAS beamformer [17]. In applications
where the direction of a source is critical it is important to be aware of
the errors in the DOA estimates. Applications can operate with an error
threshold that specify the acceptable error in the direction estimates. To
measure this metric we have used the knowledge of the actual position to
the source and compared it with the estimated value.

2.3.4 Resolution

Resolution is the one of the most common metrics used when comparing
beamformers. Resolution is a measurement on how close to sources can
be before it is impossible to separate them from each other. Two sources
are separated if the distance between the two is bigger than the resolution
threshold ∆r.

|s2 − s1| ≥ ∆r (2.32)

The resolution of the DAS beamformer is defined by the width of the main-
lobe, which can be measured by two different methods. One of the methods
to measure the width is to calculate the difference on the x-axis from the
peak of the mainlobe to the first zero crossing point. The latter method
is to start on the top of the main-lobe and move down the main-lobe
until the difference between the top and the current point is a predefined
threshold value. Usually,the threshold is estimated to be −3 dB. How the
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resolution should by measured is application and system dependent. A
beamformer with poor resolution is not able to detect small artifacts in
the environment. For some applications, the beamformer is used to make
images, the beamformer resolution is therefore crucial for the resolution
of the final product. An illustration of the concept of resolution regarding
beamformers a steered response is made were the blue scenario has not
resolved the two source, while the red case has managed the to separate the
two sources in −5◦ and 5◦ degrees. The reason that the red case managed
to separate the two sources, is because its array has twice the size of the
blue case. With a larger array the amount of data increases, which leads to
more data to process. To measure the resolution for our beamformers we

Figure 2.2: Resolution example

have used the −3 dB threshold, by finding the minimum spacing between
two sources that gives a −3 dB dip between the sources.

2.3.5 Numerical Complexity

Numerical complexity determines which beamformer that can be used for
which application when time and hardware resources represent critical
factors. If the application shall serve close to real-time then the beamformer
algorithm has to be fast. We chose to measure this metric with how many
arithmetic operations are required for the specific beamforming algorithm.
We analyze each beamformer with the standard Big O-notation, which tell
us the dependence of the complexity on the size of the data. The analysis
covers the required costs related to constructing a Toeplified structure and
then inverting the matrix, versus the inversion alone. A distinct advantage
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of having a symmetric positive definite Toeplitz-structured matrix R̂ with
size M×M is that its inverse can be calculated in O(M2) [8], while standard
Gaussian and Cholesky factorization techniques require O(M3) arithmetic
operations. The fast O(M2) algorithm is the Levinson-Durbin recursion
which was first introduced by Norman Levinson in 1947, later improved
by J. Durbin in 1960, and subsequently by W.F Trench and S. Zohar. Since
we investigate the Toeplitz constrained covariance matrices, we will benefit
from the short inversion time. But as mention earlier, the cost of the
constraint for the estimate must be calculated.
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Results and Discussion
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Chapter 3

Results

3.1 Problem Formulation

We have made a general model that covers several scenarios for different
beamformer applications. Many of the scenarios will have adjustable
parameters when applied in computer simulation. Since the general field
is a random field, we do not have any kind of information about how
many signals that will propagate or the level of noise that will be in the
field. Other effects that affect the performance of the beamformer may
be present in the field, such as coherence. Errors in the physical setup
of the model, typically wrong positioning of a sensor or uncalibrated
sensors, may cause problems for the beamformer. In some applications
we do have some knowledge about the field, which can be applied to
improve the performance of the beamformers. Our program will try
to cover all these specialties, and will be used to determine weaknesses
and strengths of the different beamformers. The wave field generator is
included in the appendix, while all the tested methods are being referred to
its original source. The default setup is a uniform linear array (ULA) with
ten sensor elements that samples the field perfectly without any aliasing
effects. Everywhere where the diagonal loading is used to increase the
robustness, is the same small diagonal loading factor used. In this thesis
we concentrate on narrowband signals to be able to use the phase difference
between the sensors to calculate the delay according to the steering vector.
This makes us independent of time samples when we are making delays
for each sensor weight. With the knowledge that a broadband signal can
be divided into several narrowband signals, we are then able to generalize
our results to broadband signals as well.

3.2 Results from the IAA-APES Beamformer

3.2.1 Resolution

As mentioned earlier the IAA-APES beamformer has a better resolution
than a DAS beamformer with uniform weights, as illustrated in the figure
(3.1). The illustration shows the DAS steered response, and it is not affected

45



by the field’s two sources that are separated with the resolution threshold
for the IAA-APES beamformer. We consider a uniform linear array of ten
elements; we then achieve a resolution of 3.83◦ degrees with IAA-APES,
compared to 16.9◦ degrees for the simplest DAS beamformer in presence of
coherent sources. This results in a resolution advantage for the IAA-APES
with a factor of 4.41 compared to the standard DAS beamformer. Implying
that the standard DAS beamformer must have approximately 44 elements
in the array to achieve the same resolution. Consequently it will increase
the data amount needed to obtain the same resolution as the IAA-APES.

Figure 3.1: IAA-APES resolution compared to a DAS beamformer with
uniform weights.

By comparing the resolution of IAA-APES with the Capon beamformer,
which is known for having a good resolution, will give an indication of how
good the IAA-APES performance is. When we make the comparison with
the Capon beamformer we use subarray averaging and diagonal loading to
obtain the maximum resolution while still being able to suppress coherent
sources without signal cancellation. The choice of subarray length L is
a trade-off between resolution or number of degrees of freedom and the
ability to decorrelate. A short subarray, e.g. L = 2, has low resolution
and only one degree of freedom and ability to decorrelate. When using
a small subarray the ability to decorrelate sources increase and the signal
cancellation effect is reduced, since number of subarray that are averaged
increases, K = M − L + 1. The full array Capon ,L = 10, used on a field
of coherent sources, shows the bad ability to decorrelate. The resolution of
Capon with full array in presence of coherent sources perform worse than
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the DAS beamformer (3.2). The IAA-APES algorithm achieves the same
resolution, with or without coherent sources, while the Capon beamformer
has two different results of resolution for the two cases of coherence. The
Capon with subarray averaging perform better when there is no coherence
between the sources. Figure (3.2) illustrates the two cases of coherence, and
shows that IAA-APES has a better resolution than the Capon beamformer
in presence of coherent sources. When Capon utilize the full array and the
sources are incoherent, it has a better resolution performance than IAA-
APES. It is common and reasonable to choose the subarray length to be
half of the full array L = M/2 [16], the choice is because of the tradeoff
between spatial extent/resolution and the degrees of freedom. In addition
it will give full rank of the estimated covariance matrix.

Overall will IAA-APES perform better than the Capon beamformer
with subarray averaging, IAA-APES is able to decorrelate coherent sources
without sacrificing the resolution or the number of degrees of freedom, and
it deliver a stable resolution performance whether the sources are coherent
or incoherent.

Figure 3.2: IAA-APES resolution compared to a Capon beamformer with
subarray averaging.

3.2.2 Error in Direction of Arrival

To determine the direction of arrival we extract the maximum value or the
peak in the region of interest. The peak can be misleading and give the
wrong estimate of the direction, due to errors in the steering vector ~d, or if
there are sources close to the signal of interest. In the case of the IAA-APES
beamformer, the illustration (3.3) shows that if one interfering source is

47



close to the desired source, the estimation of direction of arrival gets worse.
Interfering sources that is closer to the desired signal than the resolution
threshold will never be interpreted as two sources, but will be interpreted
as noise that disrupts the estimation of angle of arrival.

The illustration (3.3) shows that the estimation of direction of arrival
improves as the interference moves further away from the source of
interest. For coherent sources the estimated direction is significantly poorer
than for the incoherent case. It is approximately one degree difference
between the two different cases of coherence, when the interfering source
is close to the desired. When the interference is about twelve degrees away
from the desired, the angle deviation becomes 0, and the inference is not
affecting the desired mainlobe anymore.

Figure 3.3: Error in direction of arrival presented with one other other
source

When the inference is close to the desired source will the direction
estimate deviate from the actual direction, the sources will although be
resolved since the dip between them is −3dB. This effect is illustrated
in the figure (3.3), where the desired signal arrives from 0◦ and the
interference source 5◦ degree. The interference deform the the desired
source’s mainlobe, because of leakage from the interference that affect the
direction estimate. As seen in the figure (3.4) the peak of the mainlobe is
misleading, it is not placed in the direction of the desired source, which
causes an inaccurate estimate of direction of arrival. One thing to notice
is that if the DOA estimate is wrong, will the estimated covariance matrix
R̂iaa−apes also have the same error because it uses the power estimate as
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weights, which can lead to incorrect placement of the zeros.

Figure 3.4: Example of estimation error of direction of arrival

3.2.3 Numerical Complexity

By analyzing the algorithm of the IAA-APES beamformer, we will
determine how many arithmetic operations that are required for the
beamformer design calculations. It gives an indication of how fast the
different beamformer methods will operate, and in addition it will give
benchmark for how fast it is compared to other methods.

Initial Stage

The initial stage of the IAA-APES method uses a standard DAS beam-
former with non-adaptive weights. The DAS beamformer consists of a data
matrix with M×N data inputs and the data matrix is multiplied with a uni-
form weight vector ~wH. The operation requires M× N multiplications for
every scan-line, g = 1, . . . , G. We assume that the number of time samples,
N ,and number of scan-lines, G, are the same for every tested beamformers
so they can be excluded in the initial stage. As a result, the numerical com-
plexity of the initial stage using the DAS beamformer with predetermined
weights, is proportional to the number of elements in the array, O(M) [3].

Main Iteration

The core of the IAA-APES method is an iterate update of the estimate of
the sample covariance matrix R̂iaa−apes by using the angle matrix A(θ) =
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[~a(θ1),~a(θ2), . . .~a(θG)], weighted by the power estimates P̂g. Construction
of the sample covariance matrix is defined as;

R̂iaa−apes = A(θ)diag(P̂)A(θ)H (3.1)

where diag function places the power estimates along the main diagonal,
resulting in a G × G matrix. The total number of arithmetic operations
performed in the making of the covariance matrix estimate is M2 × G ×
I. The next estimate of P̂ can be calculated, and ready for the next
iteration. Since the matrix is diagonal constructed with the power estimate
as weights, will the resulting matrix has Toeplitz structure, which can be
utilized when inverting the estimated covariance matrix R̂iaa−apes. I defines
the number of iterations it takes to converge the estimates to a satisfactory
estimate. P̂ requires the inversion of R̂iaa−apes, which again is multiplied by
a propagation vector for every angle θg.

z =
a(θg)HRiaa−apes

−1~y[n]
a(θg)HRiaa−apes

−1a(θg)
(3.2)

Inversion of R̂iaa−apes is done in O(M2) arithmetic operations using
Levinson- Durbin (LD) recursion. The LD recursion method is utilized
due to the advantage it has when applied on a positive definite Toeplitz
matrix. It is necessary to do the inversion on every estimate of the
covariance matrix R̂iaa−apes, inverting is a time consuming task and has
to be done for every iteration. For other adaptive beamformer methods
the inversion only has to be done once or twice during the beamforming.
The number of iterations I is important for the IAA-APES beamformer,
and it has a key value for the numerical complexity. As mentioned have
empirical tests shown that after 15 iterations (I = 15) [36] the improvement
of the performance does not change significantly. The total number of
multiplications for making a new power estimate is then O(M× N × G×
I).

Total Arithmetics Operations

Algorithms with combined subset of operations, will the the highest order
of operations dominate. The dominating highest order will in the case
of IAA-APES be to construct the new estimate of the power P̂. The
number of data samples N will be lager than the number of elements
in the array N > M, as the rule of thump states that the number of
data samples should be N ≥ 2M [30]. Because of this we can say
that the construction and inversion of R̂iaa−apes has a lower amount of
operations, than constructing the new power estimate P̂. As in the
initial stage the numerical complexity is proportional to the number of
sensor elements M. We can therefore conclude that the resulting numerical
complexity for the IAA-APES beamformer is O(M× N×G× I). The IAA-
APES iterates to find the weights, every iteration can be seen as a any
other adaptive beamformer calculation, which includes inversion of the
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Table 3.1: Numerical complexity of IAA-APES

% Initialization by DAS
for all θ do

P̂ = 1
N ∑N

n=1 |wH
m y(n)|2 O(M)

end for

% IAA-APES convergence
while convergence do

Riaa−apes = A(θ)P̂A(θ)H O(M2 × G)

Riaa−apes
−1 = inv(Riaa−apes) O(M2)

for all θ do
z =

a(θg)HRiaa−apes
−1y(n)

a(θg)HRiaa−apes
−1a(θg)

n = 1, · · · , N

P̂ = 1
N ∑N

n=1 |z|2 O(M× N)
end for

end while

estimated covariance matrix required to calculate the weights, and the final
calculation of the power estimate.

The IAA-APES method can be programmed so that the different
operations can be solved on parallel hardware for instance a GPU (Graphic
Processing Unit), this is achievable due to each scanned line θg can be
computed separately [36]. By taking advantage of this application the
computational time can be decreased by distributing the computational
tasks, so each scan line can run in parallel.

3.2.4 SNR Related Metrics

All SNR related metrics, SNR, RMSE, and array gain are gather in one sec-
tion. The results have turned out to that they all three metrics are directly
related, because of the distortionless response constraint. Comparing the
results with a full array DAS, and Capon using subarray averaging and
diagonal loading will give us an indication of the performance. In the illus-
tration (3.5) the choice of subarray length for Capon is put to L = M/2 = 5.
It seems that IAA-APES and DAS have a better array gain (3.5a) for low
SNR values than Capon (subbarr.avg L=M/2), this is an effect caused by
the number of elements in the array, where IAA-APES and DAS uses a full
array, while Capon only uses L = M/2. Assuming spatially white noise,
the SNR related metrics are all proportional to the array length. Imme-
diately after the signal power is stronger then the noise power (SNR > 1)
the Capon beamformer deviates from the DAS beamformer. Without the
array length disadvantage the Capon beamformer will converge towards
the DAS beamformers for low SNR values, this was proved in (1.42). The
performance of the SNR related metrics is basically depending on two para-
meters; coherence and the separation between the desired and the interfer-
ing signal. We will cover both cases to give a good impression and compre-
hension of the SNR related performance for the IAA-APES method. It will
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attain a better performance than DAS in all SNR related metrics, but does
not carry out the great performance to Capon with subarrays, in presence
of incoherent sources that are properly resolved.

Since the sampled field is random it is natural to test for coherent
sources. The result shows that IAA-APES has a strong and significant
performance in presence of coherence in the wave field (3.6). It attains the
Capon performance and even exceeds Capon for high SNR values.

When the Capon method is applied on coherent sources it does not
reach the same gain as in the incoherent case, this indicates that the Capon
is somewhat weaker with coherence. The IAA-APES on the other hand
does perform better than Capon in case of coherence and SNR values
higher than 40 dB. We have now presented the two cases, incoherent and
coherent sources that are properly resolved. Testing how the performance
will change when we are decreasing the spacing between the desired and
the interfering source is the next thing we need to study in more detail.
We set a fixed SNR value at 30 dB and then vary the direction of arrival of
the interfering source. As mentioned the IAA-APES beamformer performs
better, and is more stable and robust than the two other beamformers,
Capon and DAS. We examine the case of coherence, and it shows that the
IAA-APES method has a better and more stable estimate of the amplitude
(3.7b) as expected. The variations in gain is significantly lower for IAA-
APES than for the other beamformers (3.7), and it is also more independent
whether the source are coherent or not, which makes IAA-APES a more
stable beamformer.

The difference between the incoherent and coherent cases for a fixed
value of SNR together with changing direction for the interfering source, is
that Capon performs poorer in the case of coherent sources. This difference
is illustrated (3.8) with the SNR metric for both cases of coherence.

3.2.5 Coherent versus Incoherent Signals

The IAA-APES method manages the two cases of signal coherence well.
The resolution is the same in both cases, and the SNR related metrics are
not remarkably affected. The initial stage of IAA - APES in presence of
coherence starts a bit further away from the convergence point, this is
triggered by coherence and closely spaced interfering sources, illustrated
in (3.9). Although the initial power estimate P̂ is further away from the
convergence threshold, will the coherent case use approximately the same
number of iterations to reach the convergence threshold as the incoherent
case.

3.2.6 Number of Time Samples

For Capon beamformer we usually have to estimate the second-order
statistics from a finite amount of data, which makes the estimates of
covariance matrix dependent on the number of data samples N [30]. This
is not the case for the IAA-APES where the construction of the covariance
matrix is done iteratively with the signal power as weights. The initial
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(a) Array gain

(b) RMSE

(c) SNR

Figure 3.5: SNR related metrics in presence of incoherence and properly
separated sources (40 degrees).
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(a) Array gain

(b) RMSE

(c) SNR

Figure 3.6: SNR related metrics in presence of coherence and properly
separated sources (40 degrees).
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(a) Array gain

(b) RMSE

(c) SNR

Figure 3.7: SNR related metrics in presence of coherence between the
sources, fixed SNR value 30 dB, and vary the direction of arrival.
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(a) SNR incoherent sources (b) SNR coherent sources

Figure 3.8: Comparison between incoherence and coherence for fixed SNR
and one interfering source

Figure 3.9: Convergence comparison of both of cases coherence

stages of IAA-APES is depended on the number of samples N, to construct
the initial power estimate P̂. Is the rest of the IAA-APES method dependent
of the number of time samples N? We know that IAA-APES is dependent
on angle resolution, or the number of scan lines, to be able to construct
the estimated covariance matrix. To investigate the dependency of the
number of time samples N a plot of the SNR value is made. On x-axis
is the time samples N, and on the y-axis is the direction of the interfering
source. As illustrated (3.10) the SNR performance increase in the interval of
[N=1,2,...,20]. For N > 20 the performance does not improve significantly,
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and will consume meaningless data power without benefits. The blue area
in the middle of the image indicates the resolution of IAA-APES.

Figure 3.10: Using the SNR metric to show IAA-APES dependency of time
sample N.The SNR values are showed in dB scale.

3.2.7 Attenuation Properties

All beamformers task is to preserve the desired signal and attenuate
other interfering signals. We investigate how the beampattern will handle
different scenarios. Our simulated field consist of signals that are coherent
with the desired signal, signals that are coherent but not with the desired,
and signals that are incoherent. By varying the number of sources,
and theirs angle of arrival can give an impression of of the attenuation
properties. Comparing the attenuation performance with the Capon with
subarray length L = 5, since L = 5, it will have only 4 degrees of freedom to
suppress unwanted signals. Whereas IAA-APES uses a full array, and then
have more freedom degrees to place zeros to suppress unwanted signal.
The term degrees of freedom means the number of weights that can be used
to suppress interference. When only one interference is present in the field
the IAA-APES has a narrow mainlobe compared to Capon with subarray
averaging. The IAA-APES allows the sidelobe increase above the response
in the steering direction 0◦, since it knows that there is low energy, or no
sources in that sidelobe area. The figure (3.11) shows two illustrations; one
interference approaches the mainlobe and one interference in the sidelobes.

When the interference approaches the main lobe, there are mainly two
effects;
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(a) Interference approaching the mainlobe of IAA-APES

(b) Interference in the sidelobe region

Figure 3.11: Beampattern of IAA-APES with one interfering source
compared with Capon with subarray averaging.

1. The mainlobe is shifted away from the steering direction, and its
heights is larger than unity.

2. The height of the sidelobes closest to the steering direction increases.

The beampattern allows the mainlobe peak to be shifted away from the
steering direction to another direction where there is no signal, and rather
concentrate to fulfill the distortionless response criteria, ~wH~d = 1.

When the interference is inside of the mainlobe, the beamformer splits
the mainlobe into two "sidelobes" where the heights are higher than the
signal direction heights. The peak of the pattern is no longer in the steering
direction.

The figure (3.12) shows that the IAA-APES is able to suppress coherent
sources (green) as well as incoherent (black). The magenta colored sources
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are coherent with each other but not with the signal of interest in 0◦.
The figure shows that both beamformers have preserved the distortionless
response, by keeping unit gain in the steering direction ~wh~d = 1, (db(1) =
0). The Capon with sub-averaging suppresses the interference more than
IAA-APES, but both beamformers put the zeros in close to the direction of
the interference.

Figure 3.12: The beampattern of a IAA-APES in presence of five sources in
the field.

3.2.8 IAA-APES Summary

The IAA-APES method has an overall suitable performance, and performs
well in both cases of coherence, which gives the IAA-APES an advantage
on Capon with subarray averaging. The resolution is the same for both
cases of coherence, and the SNR related metrics do not vary as much as
Capon with subarray averaging. An advantage of using IAA-APES is its
high resolution performance, together with a largest number of degrees of
freedom that is available. The IAA-APES is an iterative method, which
requires repeated calculation for the adaptive weights, which makes the
numerical complexity high. We can make the conclusion that IAA-APES is
a stable and robust method, with a large number of degree of freedom to
suppress unwanted signals, but has high numerical complexity.
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3.3 Results of Adaptive Spatial Averaging

3.3.1 Resolution

The adaptive spatial subarray averaging provides a resolution that is
better then the DAS beamformer, it is derived from the standard subarray
averaging, but makes the structure of covariance matrix R̂ close to Toeplitz
by applying adaptive weights. How does the adaptive weights that are
applied to the estimated covariance matrix affect the resolution? The
adaptive spatial averaging provides a high resolution, and has improved
resolution compared the resolution performance of the Capon with
standard subarray averaging. Another competitive advantage of adaptive
spatial averaging is that the method is not affected by coherence, such as
standard subarray average that operates with two results of resolution. The
illustration (3.13) shows results of different lengths of subarray, L, and it
shows that the adaptive spatial averaging obtain a better resolution the
Capon with subarray averaging. The adaptive spatial averaging method
is constrained so that the measured peaks are approximately equal in
gain. This was done to avoid one peak dominating the other completely.
This may be the reason why the adaptive spatial act strange for subarray
length L = 6, 7, 8, 9. Without the peak constraint the adaptive spatial
averaging has the same structure of the curve as the incoherent case of
standard subarray averaging. The adaptive spatial averaging uses a two-
layer optimization, that makes this method more sensitive compared to
other single optimization methods.

Figure 3.13: Resolution of the adaptive spatial averaging
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Determination of subarray length is a compromise between achieving
high resolution or higher degrees of freedom to suppress unwanted sources
and ability to decorrelate, as mention earlier.

3.3.2 Error in Direction of Arrival

Investigating the accuracy of the measured direction of arrival can decide
how much we can rely on the estimated direction of arrival. The deviation
between the measured and the actual direction of arrival is desirable
to keep low as possible. To measure the direction of arrival error an
interference is varied from 1◦ to 45◦, and then calculate the deviation
between the measured and the actual direction. Figure (3.14) shows
the interference close to the desired source in 0◦, it will then affects the
mainlobe resulting in a larger error in the estimate. The beamformer will
not perceive two source until the interference has passed the resolution
threshold, only disrupt the direction estimate. The coherent interference
will have a higher deviation after exceeding the resolution threshold than
the incoherent interference, which may lead to incorrect estimates of the
direction of arrival. When the interference angle exceeds 15◦, the deviation
is zero for both cases of coherence, and the interference is not manipulating
the desired mainlobe.

Figure 3.14: Error in direction of arrival for the adaptive spatial averaging
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3.3.3 Numerical Complexity

The numerical complexity of the adaptive spatial averaging has similarities
to the original subarray averaging. Every k sample covariance matrix
is first constructed so that we can find R̂sa·k. The number of arithmetic
operations to construct these matrices is O(N × L2 + K − 1), due to the
overlapping subarrays. The term K − 1 is so small that it can be ignored,
and we get O(N × L2) arithmetic operations for constructing R̂sa·k. To
construct the adaptive weights for the estimated covariance matrix R̂sa·k, is
it the deviation matrix required, where each element in the matrix describes
how much that the element deviates from the mean value of its diagonal.
Looping through the matrix to acquire the deviation matrix, requires
O(K × L2) operations. The adaptive weights vk that are applied to Rsa·k is
found by constructing the error matrix R̂ee that again will need O(K × L2)
operations. The inverse of R̂ee is need to calculate the adaptive weights, the
matrix has a dimension of K × K, and does not have an optimal structure
for inversion resulting in O(K3) operations. Having the inverse of R̂ee the
weights can be calculated straight forward with O(2K2 + K + 1), ignoring
the small quantities we end up with only O(K2) operations. The remaining
operations involve applying the weights to the subarray averaged matrix
R̂sa·k. The calculation is then dependent on how large the subarray length
L is, which again determines the size of the matrix R̂sa. The number of
multiplications required to multiply a scalar with a matrix is O(L2). The
new adaptive estimated covariance matrix is constructed, the matrix is
close to being a Toeplitz matrix, but will still require O(L3) operations
for inversion. The adaptive spatial averaging method involves several
calculations compared to the standard subarray averaging, as mentioned
earlier the choice of using adaptive weights increases operative time, it is
often a trade-off between time and performance. The most time consuming
task is O(L3) or O(K3) depending on the size of the subarray. The adaptive
spatial averaging demands two types of adaptive weights, one for finding
the weights vk that are applied the estimated covariance matrix R̂asa, and
one to find the adaptive weights ~wm that shall be applied to the array
output.

3.3.4 SNR Related Metrics

The adaptive spatial averaging provides good performance on the SNR
related metrics, SNR,RMSE and array gain. The figure (3.16) shows that the
adaptive spatial averaging provides a higher and more stable performance
in all SNR related metrics than the Capon with subarray averaging. The
direction of arrival of the interfering source does not influence the SNR
related metrics, as it does for the standard subarray averaging. The
adaptive spatial averaging have the same structure on the curves for both
cases of coherence, while the subarray averaging performance varies more
in case of coherence between the sources.

It reach the same level of performance for both cases of coherent and
incoherent sources.The only different is that the coherent sources initially

62



Table 3.2: Numerical complexity of Adaptive Spatial Averaging

%% Make covariance matrix
M % Number of elements
L % Subarray length
K = M-L+1 % Number of subarrays
for all K do

R̂sa·k = ~yk ∗~yH
k % O(N × L2)

end for

% Make the deviation matrix
ε = ∑L−2

i=0 ∑L−i
l=1 |r̂l+i,k − r̂(i)|2 % O(K× L2)

% Find adaptiv weights
R̂ee = ∑L−2

i=0 ∑L−i
l=1 Re{el+i,l · eH

l+i,l} % O(K× L2)

R̂−1
ee = inv(R̂ee) % O(K3)

% Calculate weights
~vk =

R̂−1
ee 1

1TR̂−1
ee 1

% O(K2)

% Apply the weights on the subarray averaged matrix
R̂asa = ~vkR̂sa·k % O(K× L)

% Inverting R̂sc
R̂−1

asa = inv(R̂asa) % O(L3)

63



(a) Array Gain

(b) RMSE

(c) SNR

Figure 3.15: SNR related metrics for fixed SNR value (30 dB) and different
direction of arrival of a incoherent interfering source.
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has a better gain when the interfering source is close to the desired source.

3.3.5 Number of Time Samples

Often the number of time samples ,N, is critical to make a reliable estimate
of the covariance matrix, because of the credibility to the statistics increases
with the number of time samples. On the other hand we want to figure
out which beamformer that has a satisfactory performance with a low
number of time samples, due to real time applications and non-stationarity
in the observed field. To investigate the performance depending on
N, the SNR metric is chosen. While increasing the number of time
samples N and changing the direction of arrival of the interference, the
performance can be studied. The figure (3.17) shows that the adaptive
spatial averaging needs more time samples than Capon with subarray
averaging to stabilize its performance. The SNR performance of both cases
stabilizes its performance before N = 20, and other remarkable notice is
that adaptive spatial averaging has a more unstable performance when the
source is close to the desired source. The blue area in the middle of both
figures indicates the resolution, with the desired signal in the middle at 0◦

degree.

3.3.6 Attenuation Properties

The adaptive spatial averaging has a similar beampattern as the the Capon
with subarray averaging, but the adaptive spatial averaging method has
a lower gain overall. Although, the adaptive spatial averaging allows
greater control to the side of the mainlobe, while the distortionless response
constraint is preserved. The figure (3.18) shows the similarities, and shows
that the adaptive spatial averaging method is able to suppress coherent
sources (green) as well as incoherent (black). The two sources marked with
magenta are coherent with each other, but not with the desired source in
0◦. Both compared beamformers perform equally on the placement of the
zeros in the direction of the interference.

3.3.7 Adaptive Spatial Averaging Summary

The adaptive spatial averaging has high resolution combined with good
performance in the SNR related metrics. The numerically complexity has a
higher number of operations than Capon with subarray averaging, because
of the adaptive weights that are applied to the estimate of the covariance
matrix. The double adaptivity for constructing both weights, increases
the numerically complexity, the matrix is not also being totally Toeplitz,
so the inversion of the matrix is O(L3). However, the adaptive weights
have a positive impact on the performance that exceeds the performance of
standard subarray averaging.
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(a) Array Gain

(b) RMSE

(c) SNR

Figure 3.16: SNR related metrics for fixed SNR value (30 dB) and different
direction of arrival of a coherent interfering source.
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(a) Capon (adaptive spatial averaging, L=
M/2)

(b) Capon (subarray averaging, L=M/2)

Figure 3.17: Measuring the SNR for different time-samples and different
angle of arrival for one interfering source

Figure 3.18: Adaptive spatial averaging beampattern compared with the
standard Capon subarray averaging.

3.4 Results of the Spatial Convolution

3.4.1 Resolution

When using spatial convolution to make an estimate of the covariance
matrix R̂sc, the estimate provides better resolution than a DAS beamformer.
But as mentioned, the Capon full array beamformer outperforms spatial
convolution method when it comes to resolution. The figure (3.19) The
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spatial convolution method results in two different resolutions in presence
of both cases of coherence, just as the Capon method (3.19). Comparing
the resolution of the spatial convolution method with the resolution
performance of the Capon method with a common subarray length of
L = M/2 = 5, the result shows that the spatial convolution method has
a marginally advantage in the case of coherent sources. Remember that
the Capon beamformer have reduced the number of degrees of freedom
down to four when using a subarray length of L=5. However, the spatial
convolution method, on the other hand has not reduced the degree of
freedom and have all remaining nine degrees of freedom.

When we have incoherent sources a Capon beamformer with a subarray
length of five, will Capon achieve a better resolution than with the
spatial convolution method. The difference between the two beamformers
resolution performance is greater when the sources are incoherent. The
spatial convolution method has a resolution advantage of 0.14◦ degrees
compared to the Capon with a length L = M/2 when the sources are
coherent. While when the sources are incoherent the Capon method gain
an advantaged on 1.94◦ degrees.

Figure 3.19: The resolution of spatial convolution and subarray averaging
with Capon weights

3.4.2 Error in Direction of Arrival

To illustrate the error of arrival we measured the difference between the
estimated and the actual direction of arrival. The figure (3.20) illustrate how
the bias in the direction change when a interfering source moves outward
from the desired source located in 0◦ degree. The dashed vertical lines
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indicate the resolution thresholds, the coherent scenario are marked with
blue and the incoherent scenario is marked red. The interfering sources
will not be separated if it is located before the resolution threshold, it will
only disrupt the desired mainlobe. The figure (3.20) illustrate both cases
of coherence, and shows that the spatial convolution method has a larger
bias when working with coherent sources. In addition the coherent case
have greater variation in the curves, while the incoherent case have smaller
variations. When the interfering source moves outward from the desired
source the variations in the angle bias tends to degrade. But still the case
of coherent sources has a bias in the angle estimate, which can be up to
1◦ degree wrong. In the article [11] it is shown that redundancy averaging,
which has the same effect on the estimate of the covariance matrix as spatial
convolution, will lead to a biased DOA estimate. This effect can explain the
poor performance of the DOA.

Figure 3.20: Error in the estimated direction of arrival for the spatial
convolution method

3.4.3 Numerical Complexity

The numerical complexity of the spatial convolution method can be
compared to the standard Capon method with subarray averaging. The
difference between the two methods is the zero-padded vector ~̂y is used
to make the estimate of the covariance matrix, instead of the original
data vector ~y[n]. As a result we have an increase in vector size from
the original size M to Mzp = 3M − 2. We use the same procedure as
the standard subarray averaging when we are making the estimate of
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Table 3.3: Numerical complexity of Spatial Convolution

%% Make covariance matrix
M % Number of elements
L % Subarray length
K = Mzp − L + 1 % Number of subarrays

% Constructing the zero-padded vector.
~̂y[n] = [0, 0, . . . , 0, y0[n], y1[n], . . . , yM−1[n], 0, . . . , 0, 0]T

for all K do
R̂sc = R̂sc + ~̂yk ∗ ~̂yH

k /K % O(N × L)
end for

% Inverting R̂sc
R̂−1

sc = inv(R̂sc) % O(L2)

covariance matrix, but with the zero-padded vector. Applying the zero-
padded vector with the new size Mzp = 3M− 2, to the subarray averaging
method with a subarray length, L, equal to the number of sensor elements,
M (L = M). The resulting number of subarray that is averaged is K =
Mzp − L + 1 which in our general case with ten elements in an array will
give K = 19. When the subarrays are overlapping it reduce the number of
multiplications that is required. The first subarray has L multiplications,
and then the remaining K− 1 subarrays have only one new multiplication
for each subarray, because of the overlapping subarrays. The total number
of arithmetic operations for constructing the covariance matrix R̂sc with the
spatial convolution method is expressed as O(N× L+K− 1). The last term
is negligible and can be removed, the total operations for constructing the
R̂sc, is O(N × L) when utilizing the overlapping subarray.

To calculate the weights, the inverse of the estimated covariance matrix
is needed,R̂−1

sc . The spatial convolution method makes the covariance
matrix Toeplitz, which will be utilized so the inversion can be done
with O(L2) operations, by the Levinson-Durbin algorithm. The method
is chosen because of the Toeplitz structure of the covariance matrix.
The standard subarray averaging needs O(L3) operation to determine its
inverse. The subarray length L determines the dimension of the resulting
matrix. In the case of the spatial convolution, L is equal to the number of
elements M in the array. The remaining rest of the beamformer is similar to
a standard Capon beamformer. For that reason, the main part of interest is
the construction and calculation of the weights, where the most heaviest
operation is the inversion of the covariance matrix R̂sc, which describe
the numerically complexity of the the spatial convolution, with its O(L2)
operations.

70



3.4.4 SNR Related Metrics

An investigation of the spatial convolution method with respect to SNR
related metrics, will give a deeper understanding of the beamformers
performance. The metrics we have focused on is SNR, RMSE and array
gain. First we will illustrate the performance by setting a fixed SNR
value (30 dB), and test it for incoherent sources with different direction
of arrival. It reveals that the spatial convolution beamformer have the
same pattern as the DAS beamformer, but in comparison the pattern are
shifted due to a narrower mainlobe compared to the DAS beamformer. The
mainlobe is narrower due to the mentioned resolution advantage spatial
convolution has, compared to DAS. This can lead to better performance
for some directions of arrival for the DAS beamformer, which happens
when the interfering source arrives from 37◦ degrees, shown in the figures
(3.21). The Capon beamformer with subarray averaging have a significant
higher performance and the results have a smoother variation, than
the spatial convolution and the DAS beamformer. The performance of
coherent sources (3.22), we observe that the spatial convolution method
does not improve the SNR related metrics compared to Capon with
subarray averaging. It does not either exceed the performance of the DAS
beamformer, but stays at the same level. It will almost give the same result
as in the incoherence case.

3.4.5 Number of Time Samples

Finite data samples are a common and known problem in construction
of beamformers. When dealing with non- stationarties or varying
characteristics of the statistics, will errors in the estimates occur. To be
completely sure that the statistics always are correct we need an infinity
number of data samples. But due to the problem of having infinity data
samples, and because of the motivation of real-time processing we do not
always have enough samples available. To figure out how dependent the
spatial convolution method is to the number of time samples, we have
studied the behavior of SNR metrics while changing N. We have made a
wave field that consists of one desired source in angle 0◦, and a coherent
source that is varied from −45◦ to 45◦. To study the dependency of the
number of time samples we have tested for N = 1 up to N = 100, which is
ten times bigger than the spatial sampling size M. The SNR value is set to
zero. We have chosen to compare the result with a Capon beamformer with
subarray averaging, with a subarray length equal to L = M/2. The figure
(3.23) shows that the Capon with subarray averaging has a more stable high
SNR gain, and the spatial convolution varies more with its sidelobes.

The figure (3.23) shows that the spatial convolution method needs more
time samples to reach a stable performance of SNR, compared to the Capon
beamformer. The blue area in the middle indicates the mainlobe, which is
steered towards 0◦.
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(a) Array Gain

(b) RMSE

(c) SNR

Figure 3.21: SNR related metrics for fixed SNR value (30 dB) and different
direction of arrival of a incoherent interfering source.
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(a) Array Gain

(b) RMSE

(c) SNR

Figure 3.22: SNR related metrics for fixed SNR value (30 dB) and different
direction of arrival of a coherent interfering source.
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(a) Capon (subarr. avg. L = M/2)

(b) Spatial convolution

Figure 3.23: Measuring the SNR (dB) for different time samples and
different angle of interference

3.4.6 Attenuation Properties

We investigate the spatial convolution method attenuation properties by
comparing it to Capon with subarray averaging. It shows that the spatial
convolution method has a weaker performance than the Capon method
when it comes to the ability to place zeros in the directions of interference.
The Capon method is also better to attenuate the interference source in
terms of gain.

Although, the spatial convolution method has a large number of
degrees of freedom than the Capon method, since it uses a subarray length
of L = M. The figure (3.24) illustrates a field with one coherent source
and a desired signal. The coherent source is marked with green. Two
sources in magenta is coherent with each other, but not with the desired
signal. The black source is incoherent with all other sources. We have
steered the beamformer towards 0◦, and we can read out form the plot
that the distortionless response constraint in the steering vector is met
for both methods. The illustration also shows the poor ability of the
spatial convolution to place the zeros in direction of the interference. As
mentioned, the spatial convolution method has a bias in the estimate
direction of arrival, because the averaging makes the estimates inconsistent
with the underlying signal model.
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Figure 3.24: Beampattern of a random field using the spatial convolution
method and Capon with subarray averaging.

3.4.7 Spatial Convolution Summary

The spatial convolution provides a good resolution better than DAS
beamformer, but does not exceed the Capon beamformer using subarray
averaging. The structure of the sidelobes of the spatial convolution
method has similarities to the conventional DAS beamformer. It has
a better resolution than the DAS, which causes a shift in the sidelobes
pattern compared to DAS sidelobes. The spatial convolution has a
weak performance when it comes to placing zeros in the direction of the
interference, which is also reflected to the bias of the DOA estimates [11].
The numerical complexity of this method makes it highly relevant, it is very
simple to implement, and the performance is better than the conventional
techniques when it comes to resolution and suppressing coherent sources.

3.5 Comparison of the Toeplifing Methods

3.5.1 Resolution

When investigating the resolution of the Toeplitz constrained methods,
we have made some assumptions that may affect the resolution. When
measuring the resolution we have let the dip between the two sources
grow by 3 dB for each measurement, this is one of the factors that may
affect the result. The adaptive spatial averaging is as mentioned also
constrained so the measured peaks has almost the same gain, otherwise
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it would be difficult to measure the peaks. Another effect that had affected
the resolution; is multiple sources in the wave field. We know that if several
sources were present in the field they would have affected the results,
but this applies to all of the tested beamformers. The resolution results

Beamformers
Resolution

Incoherent Coherent
DAS 13.29◦ 16.90◦

IAA-APES 3.83◦ 3.83◦

Capon (Adaptive spatial avg., L = M/2) 5.18◦ 5.18◦

Capon (Spatial convolution) 9.37◦ 10◦

Capon (Subarray avg., L = M/2) 7.43◦ 10.14◦

Capon 3.38◦ 17.8◦

Table 3.4: Result of resolution for all tested beamformers

is based on a uniform linear array with ten sensor elements, M = 10.
The table shows that the IAA-APES provides the overall best resolution
performance. The full array Capon has a better resolution in the case of
incoherence between the sources, but falls through in the case of coherence.
IAA-APES and the adaptive spatial averaging are not affected of coherence
and operate only with one resolution.

3.5.2 Direction of Arrival Error

For our Toeplified methods the performance of the estimate of the direction
of arrival varies with how close the interference is to the desired source,
and whether the signals are coherent or incoherent. As mention, the spatial
convolution method operates with two different resolutions, in presence of
coherent or incoherent sources. The two other methods, adaptive spatial
averaging and IAA-APES, operates with only one resolution. All three
methods have a bigger deviation in presence of coherent signals. The
method that has the smallest deviation closest to the resolution threshold is
the spatial convolution method, which has a deviation under one degree.
But the spatial convolution is the one that varies most in the coherent case,
the angle bias oscillate between 1◦ and 0◦ when the spacing between the
desired and interfering sources increases. IAA-APES and the adaptive
spatial averaging converge to a 0 in both cases of coherence. They converge
to the minimum at approximately the same distant between the resolution
threshold and the point where convergence threshold is reached. The
adaptive spatial averaging has the largest deviation close to the resolution
threshold in the case of coherent signals, it has an error up to 3◦ degrees.

3.5.3 Numerical Complexity

After analyzing our Toeplified methods we are able to rank the method
by the numerical complexity. The method that have the lowest numerical
complexity, and therefore perform best is the spatial convolution method,
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which is also the simplest to implement. By just implementing the zero-
padded the data vector ~y[n], and do a subarray averaging with subarray
length equal the array length, L = M. The most time consuming task for
the spatial convolution method is to invert the estimate of the covariance
matrix, which require O(L2) operations.

The second method is the adaptive spatial averaging, which has two
sets of weights to determine. The first weights vk to calculate are for the
estimate of the covariance matrix R̂sa·k, and the second set of weights, ~w,
are applied to the sensor data. Critical for this method is that we are
not able to use the advantage of having an exact Toeplitz, so the two
inversion have to be done in O(K3) and O(L3) operations, which are
the most heavy operations in the process. The IAA-APES scores poorly
on numerically complexity, as mentioned it is a iterative method and
each iteration do the same operations as the other adaptive beamformers,
including constructing the estimate of the covariance matrix, calculate the
weights, and apply the resulting weights to the sensor data. As mentioned,
the estimate that the IAA-APES method requires is about fifteen iterations
to have satisfactory performance, which makes the algorithm worst. The
result list is then presented;

1. Spatial convolution

2. Adaptiv spatial averaging

3. IAA-APES

3.5.4 SNR related metrics

The adaptive spatial averaging is the Toeplified method that perform best
on the SNR related metrics, it perform well for low SNR values, and
outperform the other Toeplified beamformers when we set the a fixed SNR
value for the simulated field to be 30 dB. The figure (3.25) shows the two
cases, one low SNR value 0, and a SNR value of 30 dB.

The IAA-APES perform well and have the same structure of the
curve as the spatial convolution for SNR value 0, but has a higher gain.
When the SNR is increased to 30 dB, the SNR performance of IAA-APES
has differentiated from the spatial convolution. The spatial convolution
performs similar to the DAS beamformer, but the sidelobes are shifted and
give a better resolution.

3.5.5 Number of Time Samples

IAA-APES and the spatial convolution method need more time samples
than the adaptive spatial averaging to reach its stable performance level.
Whereas the adaptive spatial averaging needs approximately N = 10 time
samples, the IAA-APES and the spatial convolution needs about N = 20.
The explanation for this may be the size of the array or subarray. The
desired stability is achieved when the number of time samples is twice as
large as the array size. Which may can indicate that the number of time
samples, N , is dependent on the size of the array, M, or subarray length L.
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(a) SNR value 0

(b) SNR value 30

Figure 3.25: SNR value 0 and 30, the interference moves away from the
desired signal in 0◦
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Figure 3.26: Comparison of the Toeplitz methods ability to place zeros in
direction of the interference

3.5.6 Attenuation Properties

The first thing to notice is that both IAA-APES and spatial convolution has
more degrees of freedom or more weights to suppress interfering sources
than the adaptive spatial averaging method. Using the common subarray
length L = M/2 the adaptive spatial averaging methods has L− 1 degrees
of freedom, while the two other Toeplitz methods have M − 1 degrees
of freedom. The adaptive spatial averaging has deeper suppression of
the interference than IAA-APES and the spatial convolution method. The
spatial convolution has the worst direction determination of interference,
the zeros is not placed in the direction of the interfering source. The figure
(3.26) is an example of the poor ability of the spatial convolution method to
place zeros in the direction of the interference. It is the bias in the estimate
of the covariance matrix R̂sc, that makes the spatial convolution method is
poor to determining the direction of the sources.

The sidelobes of the adaptive spatial averaging has a significant lower
gain than IAA- APES and the spatial convolution.

3.5.7 The Frobenius Norm for the Toeplified Matrices

The Frobenius norm tells us how much the estimated structured Toeplitz
matrix R̂ deviates from the real covariance matrix R. The metric gives
a benchmark for comparing the different Toeplified matrices, which then
can be analyzed. Investigating the Forbenius norm metrics for given
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scenarios; changing the number of time samples N, and the SNR value
of the wave fields. The tested case is steered towards 0◦, and with a
coherent interfering source in 40◦ degree. Since the curves are presented
(3.27) in dB scale it means that if the two matrix are identical the dB value
is minus infinity, db(0) = −in f . The figure (3.27) shows that the IAA-
APES covariance matrix is not affected by the number of time samples,
it perform approximately equal for every N that is investigated. The IAA-
APES becomes closer to the true value of R when the SNR value of the wave
fields increases, it is the beamformer that change the most. The spatial
convolution is the method that is the most stable when it comes to the
Forbenius norm, when N = 1 the estimated covariance matrix R̂sc moving
towards the true value of R when the SNR increase. Otherwise, when
N = 10 and N = 20 the estimate of the covariance matrix R̂sc deviates
from the true covariance matrix R. The behavior of the adaptive spatial
averaging converges towards a dB value of 0 when the SNR increase. It
is difficult to conclude anything from this results, but it shows that all
methods converge towards the same result for every tested N. None of the
beamformers is near the true covariance matrix.

3.5.8 Recent Work

Asl and Mahloojifar published an article [3] within the same field of
utilizing the Toeplitz structure of the estimated covariance matrix during
the work of the thesis.They motivated the usage of the Toeplitz structure,
due to the reduction of numerically complexity when inverting the
covariance matrix. The structured matrix reduce the complexity of the
inversion from O(L3) to O(L2), where L is the size of the subarray.
The proposed method is to use standard subarray averaging to create
an estimate of the covariance matrix ,R̂, which is then Toeplified by
equalizing each subdiagonal with its averaged value. The results shows
that the proposed method of Toeplified the estimates does not improve the
performance, only reduces the numerically complexity of the inversion.
It shows that the topic of this thesis is highly relevant, especially when
adaptive weights shall be implemented in application such as in medically
ultrasound imaging.

3.6 Applying Toeplitz Covariance Matrix Estimation
to Ultrasound Imaging

In order to test the Toeplified methods in the application of medically
ultrasound imaging, we have made some simulations in the program Field
II. Field II is a program for simulating ultrasound transducer fields and
ultrasound imaging using linear acoustics [12, 13]. The simulation is done
to verify the results, and show the performance of beamformers used in an
application.
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(a) N=1

(b) N=10

(c) N=100

Figure 3.27: Forbenius norm, the curves are normalized with the Forbenius
norm of the true R. The beam is steer towards 0◦, and a coherent inference
in 40◦.The illustration is in dB scale. 81



Figure 3.28: Images of point scatterers. Left: DAS. Right: Capon.

3.6.1 Point Scatterer

We did a comparison of the performance of IAA-APES, adaptive spatial
averaging, and spatial convolution for separating point scatterers in
ultrasound imaging system. We used an array of 64 elements, with a center
frequency of 2.5MHz, and λ/2 element spacing. We placed 5 pairs of point
scatterers at different depths, with an angular spacing of 0.7◦ between the
scatterers.

The DAS image is shown on the left-hand side of the figure (3.28). The
system is not able to resolve the point scatterers, and they appear as single
scatterers. The Capon image is shown on the right-hand side of the figure
(3.28), shows that all points are resolved.

A cross section of the point scatterers is shown in the figure (3.29),
with the cross section of the point scatters the performance can easier be
analyzed and compared. Here, we have also plotted the cross sections
of IAA-APES, spatial convolution, and adaptive spatial averaging. It is
clear that although Capon fully resolves the two points, but the method
significantly underestimates the magnitude. In comparison, all the three
suggested Toeplified methods yield better magnitude estimates, while still
resolving the two sources. For the case of spatial convolution, the full 3 dB
"dip" resolution is, strictly speaking, not achieved, but at least the points
are separated.

3.6.2 “Generalized Diagonal Loading” From Spatial Convolution

Dynamic diagonal loading in ultrasound imaging is done as

R̂ + δtrace{R̂}/LI, (3.3)

The trace{·} function gives the sum of the main diagonal which is averaged
by the number of inputs, L , on the diagonal. The identity matrix I ensures
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Figure 3.29: Cross section of point scatterers.

that the matrix always is invertible, and δ scales the identity matrix. As the
scaling factor δ is increased, the solution of the Capon problem approaches
DAS. The problem with this kind of robustification is that DAS is not an
attractive solution performance-wise, except for its robustness. It is only
natural to ask whether the dynamic diagonal loading principle can be
generalized; can we add some scaled mean to each diagonal to increase
the robustness? In other words; is there a Toeplitz matrix that can be added
to R̂ to this end?

From [11], we can conclude that adding the mean of each subdiagonal
will have little effect, because this matrix has been shown to yield similar
Capon-weights as R̂ itself. However, we propose to make the Toeplitz
structure by replacing each element in the subdiagonal with its subdiagonal
summed and divided with the number of elements, M, i.e. the matrix used
by spatial convolution, might work. The result is shown in figure (3.30),
where we see that this form of generalized loading yields slightly better
point separation than diagonal loading, while the attenuation on either side
of scatterers is significantly worse. The sidelobe levels are about the same.

The contrast achievement is illustrated (3.31) with ultrasound image
of a cyst, the DAS (3.31a) beamformer lets the speckle into the cyst (dark
area), while the spatial convolution (3.31b) has reduced the leakage into
the cyst. The Capon (3.31c) is the beamformer that perform best on speckle
reduction inside the cyst, and it provide better edge detection of the cyst.
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Figure 3.30: Cross section of point scatterers with generalized loading.
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(a) DAS

(b) Spatial Convolution

(c) Capon

Figure 3.31: A simulated cyst in a medical ultrasound image, illustrat-
ing the contrast and edge detection achievement with the different beam-
formers; DAS, Spatial Convolution, and Capon.
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Chapter 4

Discussion and Conclusion

During the investigation of the Toeplified beamformers has it been difficult
to find a default scenario that does not favor one of the methods. More
discussion of the number of interfering sources, its angle of arrival, the
SNR value, number of time samples, coherent or incoherent signals, where
to focus the beamformer, etc. is needed if searching for a single default
scenario. However, while the testing in this thesis was performed using
different parameters aiming to uncover discrepancies in the results, due to
the randomness of wave fields no single default scenario should be able to
cover all correctly.

The results of our Toeplified methods shows that they all contain good
and less good aspects, which emphasizes that the choice is application
oriented. The results show consistently that high performance comes at
the expense of high numerical complexity. The highest resolution comes at
the expense of the numerical complexity, which can make the investigated
IAA-APES less attractive even though this method can be optimally
implemented with parallel computing. The adaptive spatial averaging has
a weakness because it is a semi-parametric beamformer that limits how
many sources it is able to suppress. A semi-parametric beamformer need
to know some priori knowledge about the field to work properly, as the
adaptive spatial averaging have a constraint of the number of sources
in the field. While the adaptive spatial averaging is the beamformer
that preserves the underlying signal model best, both IAA-APES and
spatial convolution have an inconsistent signal model in the estimate of
covariance matrix. The effect is worse for the spatial convolution method
where the inconsistent signal model leads to a bias in the DOA estimates,
while the IAA-APES solves the bias problem with its iterations. The
spatial convolution and the IAA-APES preserves its full array, while the
adaptive spatial averaging reduces its size implying a reduction in the
number of weights that can be used to suppress interference. The spatial
convolution and IAA-APES are robust beamformers, while the adaptive
spatial averaging is less robust due to the fact that the spatial convolution
and IAA-APES always being Toeplitz, while the adaptive spatial averaging
is only close to Toeplitz. The adaptive spatial averaging is not Toeplified
because the method will preserve the underlying signal model. The
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beamformer that has the simplest numerical complexity is the spatial
convolution, and the robustness of spatial convolution can be compared
to the DAS beamformer, which makes it attractive. Concluding of the
preferred beamformer is difficult; what we can say is that all of them are
dependent on the application.

As we discuss, the choice of beamformer is often a question between
two different strengths. Is there a possibility of creating a beamformer
combining two or several beamformers into one? The same principe as
proposed in [26], the different is to choose adaptive weights instead of
predetermined weights. The suggestion is to calculate two sets of weights,
for example the standard APES and the spatial convolution weights. Both
methods must eliminate the signal cancellation completely; otherwise it
will cancel the desired signal.

~wapes = min
~w

~wHR̂apes~w

~wsc = min
~w

~wHR̂sc~w

P = min(|~wH
sa~y[n]|2,|~wH

sc~y[n]|2)

The minimum of the two power estimates can be chosen because of the
knowledge of distortionless response constraint, keeping unit gain in the
steering direction, ~wH~d = 1. The idea of combining several beamformers’
output is to improve the performance by choosing the best from the two
methods. It is known that the spatial convolution method has a bias of
the estimate of the direction of arrival, and the other beamformer could
correct the bias. It is desirable that all beamformers shall complement
each other, to gain the best result. The numerical complexity will increase,
since it requires calculations for each adaptive weight. A solution to this
problem is to choose one adaptive beamformer and one beamformer with
predetermined weights, where the predetermined weights shall work as
a safety net, so that the performance does not worsen. This is especially
useful for methods such as spatial convolution, where the covariance
matrix used in the minimization differs from the actual data. It is
interesting to look further into which combination of beamformers will
work best together?

There are several methods for making the covariance matrix Toeplitz,
but we concentrated only on three due to the time constraints of the thesis.
It could be interesting to compare other Toeplitz constrained to our results
in order to improve understanding and get a broader picture of the Toeplitz
constrained methods. The EM-algorithm or Expectation Maximization [18]
is an example of a method that provides a Toeplitz constrained covariance
matrix – the algorithm has a high numerical complexity. We know
that redundancy averaging, where the elements on each subdiagonal are
replaced with the mean value of its subdiagonal, for the complete M×M
matrix, has similarities to the spatial convolution method. Therefore, how
does the redundancy averaging perform on other metrics, such as SNR and
resolution?

Another thing that can be investigated is how the IAA-APES and the
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spatial convolution are related. After the first iteration of IAA-APES the
result has similarities to spatial convolution, which is an interesting topic
to look further into.
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Appendix A

Wave fields generator

function [d,k,x,A,s,noise,amp_vec] = signalgenerator_dynamic(beamformerConfig)
%
% Generate 2 signals in noise according to page 73 of
% H. Krim, M. Viberg, "Two decades of array signal processing research
% − The parametric approach," IEEE Signal Processing Magazine, pp.67−94,
% July 1996.
%
% Note that definition of direction of arrival (DOA) is different from that
% of Krim and Viberg in that 0 degrees is normal incidence
%
% Written by:
% S. Holm, Department of Informatics, University of Oslo
% 31. Oct 1997 First version
% 21. Nov 1997 Corrected for noise in imaginary part 21. November 1997
% 12. Dec 1997 Added random phase noise to signals to better ensure incoherence
% 3. May 2011 James Trotter: updated setting of seed for random generator
% for Matlab 7

% Modified Michael Pettersson: Can generate multiple signals

M = beamformerConfig.M;
N = beamformerConfig.N;
direction_vec = beamformerConfig.source_direction;
SNR_vec = beamformerConfig.snr_signal;
element_positions = (−(M−1)/2:(M−1)/2); % element postion Uniform linear array

gamma = 45; % degrees, phase shift between sources
d = 0.5; % element spacing in array
k = 2*pi; % normalized wavenumber
T = 0.5; % sampling interval
omega1 = 2*pi; % normalized frequency
omega2 = 2*pi;

% randn('seed',0); % replaced 2011 for Matlab 7:
RandStream.getDefaultStream.reset(); % make sure the same noise

% sequence is generated each time
noise = randn(M,N) + 1i*randn(M,N); % Gaussian noise, variance = 1.0

% for real and imag part, i.e.
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% variance of noise = 2
amp_vec = zeros(size(direction_vec));
phi_vec = zeros(size(direction_vec));
a = zeros(M,length(direction_vec));
phase_vec = zeros(N,length(direction_vec));
all_signal = zeros(N,length(direction_vec));
clean_signal = zeros(N,length(direction_vec));

for ii = 1:length(direction_vec),

amp_vec(ii) = sqrt(2)*10^(SNR_vec(ii)/20);
phi_vec(ii) = −k*d*sind(direction_vec(ii));

a(:,ii) = exp(1i*phi_vec(ii)).^element_positions';

phase_vec(:,ii) = 1i*2*pi*rand(N,1);

% Coherent or Non−Coherent
if (beamformerConfig.coherent == 1) && (ii > 1)

phase_vec(:,ii) = phase_vec(:,1);
end
all_signal(:,ii) = amp_vec(ii)*exp(1i*gamma*pi/180)*exp(phase_vec(:,ii))...

.*exp(1i*omega1*T).^(0:N−1)';

clean_signal(:,ii) = exp(1i*gamma*pi/180)*exp(phase_vec(:,ii))...
.*exp(1i*omega1*T).^(0:N−1)';

if ii == 1
s = all_signal(:,ii);
A = a(:,ii);

else
A = [A a(:,ii)];
s = [s all_signal(:,ii)];

end

end
s = s/max(amp_vec);
noise = noise/max(amp_vec);

s = s';

x = A*s + noise;
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