551 research outputs found

    Hyperspectral Analysis of Oil and Oil-Impacted Soils for Remote Sensing Purposes

    Get PDF
    While conventional multispectral sensors record the radiometric signal only at a handful of wavelengths, hyperspectral sensors measure the reflected solar signal at hundreds contiguous and narrow wavelength bands, spanning from the visible to the infrared. Hyperspectral images provide ample spectral information to identify and distinguish between spectrally similar (but unique) materials, providing the ability to make proper distinctions among materials with only subtle signature differences. Hyperspectral images show hence potentiality for proper discrimination between oil slicks and other natural phenomena (look-alike); and even for proper distinctions between oil types. Additionally they can give indications on oil volume. At present, many airborne hyperspectral sensors are available to collect data, but only two civil spaceborn hyperspectral sensors exist as technology demonstrator: the Hyperion sensor on NASA’s EO-1 satellite and the CHRIS sensor on the European Space Agency’s PROBA satellite. Consequently, the concrete opportunity to use spaceborn hyperspectral remote sensing for operational oil spill monitoring is yet not available. Nevertheless, it is clear that the future of satellite hyperspectral remote sensing of oil pollution in the marine/coastal environment is very promising. In order to correctly interpret the hyperspectral data, the retrieved spectral signatures must be correlated to specific materials. Therefore specific spectral libraries, containing the spectral signature of the materials to be detected, must be built up. This requires that highly accurate reflected light measurements of samples of the investigated material must be performed in the lab or in the field. Accurate measurements of the spectral reflectance of several samples of oil-contaminated soils have been performed in the laboratory, in the 400-2500 nm wavelength range. Samples of the oils spilt from the Erika and the Prestige tankers during the major accidents of 1999 and 2002 were also collected and analyzed in the same spectral range, using a portable spectrophotometer. All measurements showed the typical absorption features of hydrocarbon-bearing substances: the two absorption peaks centered at 1732 and 2310 nm.JRC.G.3-Agricultur

    Regional scale dryland vegetation classification with an integrated lidar-hyperspectral approach

    Get PDF
    The sparse canopy cover and large contribution of bright background soil, along with the heterogeneous vegetation types in close proximity, are common challenges for mapping dryland vegetation with remote sensing. Consequently, the results of a single classification algorithm or one type of sensor to characterize dryland vegetation typically show low accuracy and lack robustness. In our study, we improved classification accuracy in a semi-arid ecosystem based on the use of vegetation optical (hyperspectral) and structural (lidar) information combined with the environmental characteristics of the landscape. To accomplish this goal, we used both spectral angle mapper (SAM) and multiple endmember spectral mixture analysis (MESMA) for optical vegetation classification. Lidar-derived maximum vegetation height and delineated riparian zones were then used to modify the optical classification. Incorporating the lidar information into the classification scheme increased the overall accuracy from 60% to 89%. Canopy structure can have a strong influence on spectral variability and the lidar provided complementary information for SAM’s sensitivity to shape but not magnitude of the spectra. Similar approaches to map large regions of drylands with low uncertainty may be readily implemented with unmixing algorithms applied to upcoming space-based imaging spectroscopy and lidar. This study advances our understanding of the nuances associated with mapping xeric and mesic regions, and highlights the importance of incorporating complementary algorithms and sensors to accurately characterize the heterogeneity of dryland ecosystems

    Regional Scale Dryland Vegetation Classification with an Integrated Lidar-Hyperspectral Approach

    Get PDF
    The sparse canopy cover and large contribution of bright background soil, along with the heterogeneous vegetation types in close proximity, are common challenges for mapping dryland vegetation with remote sensing. Consequently, the results of a single classification algorithm or one type of sensor to characterize dryland vegetation typically show low accuracy and lack robustness. In our study, we improved classification accuracy in a semi-arid ecosystem based on the use of vegetation optical (hyperspectral) and structural (lidar) information combined with the environmental characteristics of the landscape. To accomplish this goal, we used both spectral angle mapper (SAM) and multiple endmember spectral mixture analysis (MESMA) for optical vegetation classification. Lidar-derived maximum vegetation height and delineated riparian zones were then used to modify the optical classification. Incorporating the lidar information into the classification scheme increased the overall accuracy from 60% to 89%. Canopy structure can have a strong influence on spectral variability and the lidar provided complementary information for SAM’s sensitivity to shape but not magnitude of the spectra. Similar approaches to map large regions of drylands with low uncertainty may be readily implemented with unmixing algorithms applied to upcoming space-based imaging spectroscopy and lidar. This study advances our understanding of the nuances associated with mapping xeric and mesic regions, and highlights the importance of incorporating complementary algorithms and sensors to accurately characterize the heterogeneity of dryland ecosystems

    Multi-scalar remote sensing of the northern mixed prairie vegetation

    Get PDF
    Optimal scale of study and scaling are fundamental to ecological research, and have been made easier with remotely sensed (RS) data. With access to RS data at multiple scales, it is important to identify how they compare and how effectively information at a specific scale will potentially transfer between scales. Therefore, my research compared the spatial, spectral, and temporal aspects of scale of RS data to study biophysical properties and spatio-temporal dynamics of the northern mixed prairie vegetation. I collected ground cover, dominant species, aboveground biomass, and leaf area index (LAI) from 41 sites and along 3 transects in the West Block of Grasslands National Park of Canada (GNPC; +49°, -107°) between June-July of 2006 and 2007. Narrowband (VIn) and broadband vegetation indices (VIb) were derived from RS data at multiple scales acquired through field spectroradiometry (1 m) and satellite imagery (10, 20, 30 m). VIs were upscaled from their native scales to coarser scales for spatial comparison, and time-series imagery at ~5-year intervals was used for temporal comparison. Results showed VIn, VIb, and LAI captured the spatial variation of plant biophysical properties along topographical gradients and their spatial scales ranged from 35-200 m. Among the scales compared, RS data at finer scales showed stronger ability than coarser scales to estimate ground vegetation. VIn were found to be better predictors than VIb in estimating LAI. Upscaling at all spatial scales showed similar weakening trends for LAI prediction using VIb, however spatial regression methods were necessary to minimize spatial effects in the RS data sets and to improve the prediction results. Multiple endmember spectral mixture analysis (MESMA) successfully captured the spatial heterogeneity of vegetation and effective modeling of sub-pixel spectral variability to produce improved vegetation maps. However, the efficiency of spectral unmixing was found to be highly dependent on the identification of optimal type and number of region-specific endmembers, and comparison of spectral unmixing on imagery at different scales showed spectral resolution to be important over spatial resolution. With the development of a comprehensive endmember library, MESMA may be used as a standard tool for identifying spatio-temporal changes in time-series imagery. Climatic variables were found to affect the success of unmixing, with lower success for years of climatic extremes. Change-detection analysis showed the success of biodiversity conservation practices of GNPC since establishment of the park and suggests that its management strategies are effective in maintaining vegetation heterogeneity in the region. Overall, my research has advanced the understanding of RS of the northern mixed prairie vegetation, especially in the context of effects of scale and scaling. From an eco-management perspective, this research has provided cost- and time-effective methods for vegetation mapping and monitoring. Data and techniques tested in this study will be even more useful with hyperspectral imagery should they become available for the northern mixed prairie

    Target Decomposition of Quad-Polarimetric SAR Images as an Unmixing Problem

    Get PDF
    Classic target decomposition methods use scattering space in their approaches. However, the goal for this project is to investigate whether a different approach to retrieve accurate and reliable estimates on the earth composition is possible when using the feature space with covariance matrix-based features. The approach consists of four steps. Generating multidimensional feature space data from sea ice scenes, extracting endmembers, finding the optimal number of endmembers in the scene and finding the contribution for the endmembers to each of the polarimetric feature pixels in the scene. In order to validate the performance of the approach several validation steps where conducted. Classification of the endmembers, calculating the average reconstruction error, classification of the scene and studding the abundance coefficients were some of these steps. Also, generation of synthetic data was conducted as an additional review of the approach. The system in this approach does not take in to account the variability of the polarimetric feature values in the different classes. It also assumes that the pixels are linearly mixed, something they probably not are. As a consequence, the approach is not able to retrieve accurate and reliable estimates on the earth composition for scenes consisting of sea ice. However, the approach gave good results on the synthetic datasets. Further work and investigation on the approach would include adapting the approach to consider the variability all sea ice data suffers from. Further, the methods considering linear mixing should then be replaced with methods considering nonlinear mixing

    SFSDAF: an enhanced FSDAF that incorporates sub-pixel class fraction change information for spatio-temporal image fusion

    Get PDF
    Spatio-temporal image fusion methods have become a popular means to produce remotely sensed data sets that have both fine spatial and temporal resolution. Accurate prediction of reflectance change is difficult, especially when the change is caused by both phenological change and land cover class changes. Although several spatio-temporal fusion methods such as the Flexible Spatiotemporal DAta Fusion (FSDAF) directly derive land cover phenological change information (such as endmember change) at different dates, the direct derivation of land cover class change information is challenging. In this paper, an enhanced FSDAF that incorporates sub-pixel class fraction change information (SFSDAF) is proposed. By directly deriving the sub-pixel land cover class fraction change information the proposed method allows accurate prediction even for heterogeneous regions that undergo a land cover class change. In particular, SFSDAF directly derives fine spatial resolution endmember change and class fraction change at the date of the observed image pair and the date of prediction, which can help identify image reflectance change resulting from different sources. SFSDAF predicts a fine resolution image at the time of acquisition of coarse resolution images using only one prior coarse and fine resolution image pair, and accommodates variations in reflectance due to both natural fluctuations in class spectral response (e.g. due to phenology) and land cover class change. The method is illustrated using degraded and real images and compared against three established spatio-temporal methods. The results show that the SFSDAF produced the least blurred images and the most accurate predictions of fine resolution reflectance values, especially for regions of heterogeneous landscape and regions that undergo some land cover class change. Consequently, the SFSDAF has considerable potential in monitoring Earth surface dynamics

    LINKING MULTIVARIATE OBSERVATIONS OF THE LAND SURFACE TO VEGETATION PROPERTIES AND ECOSYSTEM PROCESSES

    Get PDF
    Remotely sensed images from satellites and aircrafts, as well as regional networks and monitoring stations such as eddy flux towers, are collecting large volumes of multivariate data that contain information about the land surface and ecosystem processes. To derive from these systems information and knowledge relevant to how the Earth system functions and how it is changing, we need tools that to filter and mine the large data streams currently being acquired at different spatial and temporal scales. A challenge for Earth System Science lies in accurately identifying and portraying the relationships between the measurements at the sensor and quantity o f interest (i.e. ecosystem process or land surface property)
    • …
    corecore