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ABSTRACT 

 

Optimal scale of study and scaling are fundamental to ecological research, and have been made 

easier with remotely sensed (RS) data. With access to RS data at multiple scales, it is important 

to identify how they compare and how effectively information at a specific scale will potentially 

transfer between scales. Therefore, my research compared the spatial, spectral, and temporal 

aspects of scale of RS data to study biophysical properties and spatio-temporal dynamics of the 

northern mixed prairie vegetation. 

I collected ground cover, dominant species, aboveground biomass, and leaf area index (LAI) 

from 41 sites and along 3 transects in the West Block of Grasslands National Park of Canada 

(GNPC; +49°, -107°) between June-July of 2006 and 2007. Narrowband (VIn) and broadband 

vegetation indices (VIb) were derived from RS data at multiple scales acquired through field 

spectroradiometry (1 m) and satellite imagery (10, 20, 30 m). VIs were upscaled from their 

native scales to coarser scales for spatial comparison, and time-series imagery at ~5-year 

intervals was used for temporal comparison. 

Results showed VIn, VIb, and LAI captured the spatial variation of plant biophysical properties 

along topographical gradients and their spatial scales ranged from 35-200 m. Among the scales 

compared, RS data at finer scales showed stronger ability than coarser scales to estimate ground 

vegetation. VIn were found to be better predictors than VIb in estimating LAI. Upscaling at all 

spatial scales showed similar weakening trends for LAI prediction using VIb, however spatial 

regression methods were necessary to minimize spatial effects in the RS data sets and to improve 

the prediction results. Multiple endmember spectral mixture analysis (MESMA) successfully 

captured the spatial heterogeneity of vegetation and effective modeling of sub-pixel spectral 

variability to produce improved vegetation maps. However, the efficiency of spectral unmixing 

was found to be highly dependent on the identification of optimal type and number of region-

specific endmembers, and comparison of spectral unmixing on imagery at different scales 

showed spectral resolution to be important over spatial resolution. With the development of a 

comprehensive endmember library, MESMA may be used as a standard tool for identifying 

spatio-temporal changes in time-series imagery. Climatic variables were found to affect the 

success of unmixing, with lower success for years of climatic extremes. Change-detection 

analysis showed the success of biodiversity conservation practices of GNPC since establishment 

of the park and suggests that its management strategies are effective in maintaining vegetation 

heterogeneity in the region. 

Overall, my research has advanced the understanding of RS of the northern mixed prairie 

vegetation, especially in the context of effects of scale and scaling. From an eco-management 

perspective, this research has provided cost- and time-effective methods for vegetation mapping 

and monitoring. Data and techniques tested in this study will be even more useful with 

hyperspectral imagery should they become available for the northern mixed prairie.
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CHAPTER 1 

1.1 INTRODUCTION 

 

Effective ecosystem management requires proper understanding of ecosystem processes and 

patterns at multiple spatial and temporal scales. Scientists often require information on: (i) the 

scale of variation of processes and patterns, (ii) how effectively data at a specific scale will 

potentially transfer between scales (scaling), (iii) the implications of scaling, or (iv) how 

processes or factors at different scales may be linked, i.e. how data at dissimilar scales may be 

integrated for analysis and decision-making. Ecological data is often collected at large-scales 

(smaller area; point- or landscape-level) using field-based methods at fixed sampling intervals 

and extrapolated for small-scale (larger area; regional- or ecosystem-level) predictions, decision-

making, and management action. Observations and measurements can be taken only with some 

degree of generalization at coarser scales, however may be obtained with higher detail at finer 

scales. A dense sampling interval may include many observations effected by the same spatial 

process, while sparse sampling interval may select observations with no detectable spatial 

dependence (Miller et al., 2007). Hence, the conclusions derived at one scale cannot be expected 

to be relevant at another scale (Wiens, 1989; Wu, 1999). Therefore, these differences of scale at 

the collection, integration, or extrapolation stages pose problems and lead to implications if the 

selection of scale of study is based on convenience rather than relevance (Wessman, 1992). 

To circumvent issues with scale, studies recommend that ecosystem patterns and processes are 

ideally examined at their optimum scale (O'Neill et al., 1986). However, it is challenging to 

identify the optimum scale of study due to the non-linear and multi-factorial ecological 

complexities (Hay et al., 2003). Therefore, a multi-scale approach (Hay et al. 2001, 2003) might 

be useful to understand the limitations of the selection of an arbitrary scale, identify the domains 

of scale, analyze scales at which patterns or processes change, or help link ecosystem processes 

occurring at varying scales. Realizing these challenges, ecologists are increasingly resorting to 

methods such as remote sensing (RS), aerial photography, and light detection and ranging 

(LiDAR) for their ability to provide multi-scalar data that are readily integrated with field data 

and analyzed at multiple scales using geographic information systems (GIS). 
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RS is the technique of remotely acquiring information about ground features, processes, or 

phenomena using sensors mounted on platforms (satellite, aircraft, unmanned aerial vehicles, and 

field instruments). RS has proved to be an invaluable source of vegetation, ecological, and earth-

observation data at multiple spatial, spectral, and temporal scales. RS is used to study and 

monitor vegetation (land cover) in terrestrial ecosystems for their ability to provide data in non-

destructive, repeatable, and cost-effective ways (Kerr and Ostrovsky, 2003; Cohen and Goward , 

2004; Wulder et al., 2008; Roy et al., 2014). RS can provide diverse qualitative and quantitative 

information on plant cover, biomass, leaf area index (LAI), and plant pigment and moisture 

content that are useful to understand vegetation distribution and dynamics, plant productivity, or 

even predicting natural disasters (fire, drought). Also, RS data being in the digital format can be 

manipulated by resampling, classifying, or transforming into categorical and continuous data sets 

such as thematic maps, vegetation index (VI) maps, biophysical maps, or modeled information, 

georeferenced, and integrated with raster, vector, and terrain geospatial layers in GIS for multi-

criteria analysis and decision-making. Currently, there are remote sensors with spatial scales 

ranging from sub-meter to several kilometers, spectral scales ranging from one band to several 

bands, and temporal scales ranging from daily to weekly. Scalar details of popular environmental 

monitoring satellites are given in Jensen (2000), Rogan and Chen (2004), and Kerr and 

Ostrovsky (2003). 

 

With RS data available at several scales, it is important to identify how they compare against 

each other and the advantages and limitations of the scales of specific RS data. More 

importantly, how effectively data at a specific scale will potentially transfer between scales. 

Therefore, my research compared multi-scalar RS data of different spatial, spectral, and temporal 

scales for understanding the biophysical properties, spatial patterns, and identifying the temporal 

dynamics of the northern mixed prairie vegetation. 

 

1.2 DEFINITIONS OF SCALE AND SCALING 

 

Ecosystem-processes, patterns and their causal factors operate at different scales. Therefore, 

scale of analysis can significantly affect the identification, interpretation, and conclusion of 

ecological processes and patterns. E.g., temperature and precipitation occur at regional- to 
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global-scales, while evapotranspiration and photosynthesis occur at plant canopy-scales. 

Similarly, microclimate and edaphic factors affect plant distribution at local-scales, while 

temperature and precipitation affect vegetation distribution at regional-scales. Uncertainties arise 

when arbitrarily upscaling information from finer to coarser scales without properly 

understanding the scales and the domains at which processes operate. Therefore, the choice of 

the scale of study and the effects of scaling have been fundamental topics of debate and active 

research in ecology (Turner, 1989; Urban, 2005; Wessman, 1992), geography (Atkinson and 

Tate, 2000), RS (Woodcock, 1987), and GIScience (Goodchild, 2001). Wessman (1992) and Hay 

et al. (2001, 2003) provides discussion on scale and scaling in ecology and RS. 

 

I adopt the following working definitions of scale throughout this dissertation. 

 

1.2.1 Scale 

Scale is defined as the window of perception; the filter or measuring tool through which the 

landscape may be observed or studied (Levin, 1992; Turner et al., 1989). Scale can have spatial 

or temporal dimension, i.e. the size of an area or the length of time under consideration when 

analyzing an ecological problem (Turner et al., 1989). Scale may imply: 1) the representation of 

the size and shape of the observation, 2) the size and shape of the study area, 3) the 

characterization of agents or factors, or 4) the process area. Scaling refers to the transfer of 

information between scales (spatial or temporal), and may be from a finer to a coarser scale 

(upscaling or bottom-up approach), or from a coarser to a finer scale (downscaling or top-down 

approach). Scale and scaling are important in ecology as new patterns and processes emerge as 

the scale changes. Wu et al. (2006) and Dungan et al. (2002) provide discussion on scale and 

types of scale. 

 

1.2.2 Scale as in ecology and geography 

Scale can be divided into cartographic scale and ecological scale, and these differ fundamentally. 

Cartographic (map) scale denotes the ratio of the distance on the map product to the actual 

ground distance. Large-scale implies patterns and processes that occur and operate over a smaller 

area (point, patch, landscape), while small-scale implies processes and patterns that occur and 

operate over a larger area (regional, biome, global). Ecological scale is defined in terms of grain 
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and extent. Grain refers to the resolution or the sample unit size of the study, and extent refers to 

the areal or temporal expanse of interest. Scale can also be coarse, medium, or fine. Fine scale 

refers to minute resolution or smaller study area, while coarse scale refers to broad resolution or 

larger study area. 

Scale is further classified into intrinsic, measurement, or modeling. Intrinsic scale is the scale at 

which the pattern, process, or phenomenon actually operates and has a fixed extent (e.g. 

photosynthesis rate of a leaf). Measurement scale is the scale at which observations or sampling 

is taken and can be varied (e.g. size of a sampling plot or transect). Modeling scale is the scale at 

which the analysis is performed. Preferably, effective scale detection requires the analysis scale 

to match with the intrinsic scale of the pattern, process, or phenomenon under study (Wu et al., 

2006). Since the latter is unknown a priori, different observations at multiple scales are ideal for 

an effective study. 

 

1.2.3 Scale as in remote sensing 

Scale is used in RS and GIScience to classify remote sensors and their data into spatial (ground 

coverage) and temporal (frequency of acquisition) scales. Marceau and Hay (1999) suggest scale 

as a function of the instantaneous field of view (IFOV) of the remote sensor, i.e. indicating the 

ground area imaged by the sensor at a given instant of time. Spatial resolution denotes the spatial 

scale; the smallest object that can be resolved to a pixel by the remote sensor. Spatial resolution 

signifies the grain and IFOV denotes the extent. In GIScience, scale-detection is the 

determination of the appropriate resolution of the spatial data. Woodcock (1987) suggests that 

the appropriate scale for RS observations is a function of the type of environment and the kind of 

information desired out of the analysis. Ideally, the resolution of predictor variables should 

match the ecological scale at which they are associated with the response variable. See Section 

1.3.2 for implications of scale in remote sensing, especially in heterogenous environments. 

However, compromises to selection of data scale are often made due to data availability, costs, 

computational limits, or decided by the coarsest dataset used in the study. Common methods for 

scale detection in RS include graphs of local variance (Woodcock, 1987), semivariogram 

analysis (Rahman, 2003; Davidson, 2002; Zhang, 2007; Govind, current study), power spectrum 

and wavelet analysis (He, 2007), and image segmentation (Karl and Maurer, 2010; Hay et al., 

2001, 2003). 
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1.3 REMOTE SENSING OF VEGETATION: STATE OF SCIENCE 

 

RS for earth observation and land use-land cover change monitoring became popular since the 

launch of the Landsat satellite in 1972 (Rouse et al., 1974; Tucker, 1979; Cohen and Goward, 

2004; Williams et al., 2006; Wulder et al., 2008, 2012; Roy et al., 2014). Several RS platforms, 

both in the optical (passive) and microwave (active) region, with increased spatial, spectral, and 

temporal resolutions have become available and proven to be highly useful in vegetation studies 

involving mapping, analysis, and monitoring. The major use of RS is its ability to provide time-

series data sets to identify environmental and land use-land cover changes due to natural, 

anthropogenic-, environmental-, or climate-induced factors. 

 

The Landsat program offer medium-resolution multispectral sensors such as the MSS 

(Multispectral Scanner), TM (Thematic Mapper), and ETM+ (Enhanced Thematic Mapper Plus). 

Similarly, the SPOT (Système Probatoire d'Observation de la Terre) instruments such as 

Vegetation, HRVIR (High Resolution Visible Infra Red) and HRG (High Resolution 

Geometrical), and the IRS (Indian Remote Sensing) sensors such as LISS (Linear Imaging Self 

Scanner), ResourceSat, and Cartosat have been used in small- and large-scale vegetation studies. 

Coarse-resolution satellites such as the NOAA AVHRR (Advanced Very High Resolution 

Radiometer), Terra MODIS (Moderate Resolution Imaging Spectroradiometer), and ASTER 

(Advanced Spaceborne Thermal Emission and Reflection Radiometer) have been successfully 

exploited for global remote sensing of vegetation and earth-observation. Also worth noting are 

opportunities for regional studies with DMC (Disaster Monitoring Constellation) and CBERS 

(China Brazil Earth Resources Satellite) satellites. Fine-resolution satellites such as GeoEye, 

WorldView, Pleaides, QuickBird, IKONOS, and RapidEye are useful for local vegetation 

studies. Vegetation-specific sensors are being developed; incorporation of the red-edge band in 

RapidEye and WorldView. Jensen (2000) provides acronyms and details of popular satellites, 

their sensors, and scope of applications. 

 

Hyperspectral RS is a recent technology with immense potential for ecosystem studies due to 

hundreds of narrow spectral bands as opposed to few broad bands for multispectral RS (Ustin et 
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al., 2004; Kokaly et al., 2009). Hyperspectral sensors include AVIRIS (Airborne Visible/Infrared 

Imaging Spectrometer), AISA (Airborne Imaging Spectrometer for Applications), HYDICE 

(HYperspectral Digital Imagery Collection Experiment), CHRIS (Compact High Resolution 

Imaging Spectrometer), CASI (Compact Airborne Spectrographic Imager), HyMap, EnMap, and 

the Hyperion and ALI (Advanced Land Imager) sensors on EO-1 (Earth Observing). LiDAR is a 

complementary RS technology that is useful for obtaining canopy structure, canopy height, plant 

cover, leaf area index (LAI), and aboveground plant biomass (Lefsky, 2002). Hyperspectral RS 

and LiDAR are rapidly finding applications in ecology, forestry, and precision agriculture. 

Milton et al. (2007), Schaepman et al. (2009), and Goetz (2009) provide reviews on progress in 

hyperspectral RS and its applications in earth science. Usefulness of the fusion of LiDAR with 

hyperspectral, multispectral, or microwave RS data is being explored. 

 

Remote sensors acquire spectral data along five major portions (regions) of the electromagnetic 

radiation (EMR) spectrum: (i) visible (VIS) (blue (B; 0.45-0.52 µm); green (G; 0.52-0.60 µm), 

red (R; 0.62-0.69 µm)), (ii) near infrared (NIR; 0.70-0.90 µm), (iii) shortwave infrared (SWIR; 

0.9-2.5 µm), (iv) thermal infrared (TIR; 6.0-15.0 µm), and (v) microwave (MW; 0.10-100 cm). 

Spectral responses of different types of vegetation, soil, and water have been researched 

extensively. Green plant canopies absorb B and R due to chlorophyll pigments but reflect in the 

G and NIR region due to moisture content and internal leaf structure (Blackburn, 1998; Sims and 

Gamon, 2002; Homolova´, 2013). Spectral vegetation indices (SVI), combinations of reflectance 

in two more wavelengths (bands) have been developed to transform spectral data into 

biologically meaningful variables. SVI are computed as differences, ratios, or linear 

combinations of reflectance to represent biophysical, biochemical, or physiological 

characteristics (Sims and Gamon, 2002). SVI such as normalized difference vegetation index 

(NDVI) and simple ratio (SR) have been shown to have a strong relationship to aboveground 

cover, biomass, net primary productivity (NPP), pigment concentration, moisture content, and 

leaf area index (LAI) (Thenkabail et al., 2000). Broadband VI (VIb) are generally used to 

represent “greenness” and vegetation “health”. Narrowband VI (VIn) are specifically used to 

denote content of leaf pigment and moisture (Kokaly et al., 2009; Sims and Gamon, 2002). 

Haboudane (2004), Ollinger (2011), and Hatfield (2008) provide exhaustive list of SVI 

commonly used in vegetation studies. 
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1.3.1 Applications of multi-scalar RS data products 

The common RS derivatives include true or false color composite maps, classification maps for 

land use-land cover, SVI maps, modeled maps for biomass, LAI, NPP, and fraction of 

photosynthetically active radiation (fPAR). These maps have been derived for local-, regional-, 

or global-level to understand vegetation distribution, patterns, and dynamics. Fine resolution 

imagery are used to identify and count the number of tree in an area, estimate acreage of 

wetlands and crop fields, or point-pattern analysis. Spectral resolution of imagery is useful to 

identify intra- and inter-species differences in spectral signatures and infer biophysical 

characteristics. Temporal resolution helps to identify plant phenological differences arising due 

to seasonal or environmental variability. Spectral patterns at the leaf- and canopy-level have been 

explored for types and concentration of plant pigment, moisture content, and phenology and how 

they translate into spectral response functions (Hatfield et al., 2008; Ollinger, 2011; Pinter et al., 

2003). Hyperspectral RS is useful to understand plant biophysical properties such as foliar 

pigment and water content, photosynthetic ability, phenological changes, and physiological 

stress (Blackburn, 1998; Ustin et al., 2004; Goetz, 2009; Schaepman et al., 2009). Applications 

of hyperspectral imagery in precision agriculture include identification of crop productivity, 

nutrient deficiency, pest and disease damage, and environmental or physiological stress. Hatfield 

(2008) and Pinter et al. (2003) provide reviews on RS applications in precision agriculture. 

 

1.3.2 Implications of scale in remote sensing 

Often, the scale of study is decided by the data, the analysis scale, or by the coarsest data scale 

used in the analysis. Studies are frequently attempted with a single data scale for the sake of 

convenience and logistical- or cost-constraints. Therefore, problems may arise when an arbitrary 

RS data scale is chosen to study ecosystem properties and patterns as it introduces incongruence 

between scales at RS imaging and field sampling, i.e. mismatch between the sampling scale of 

ground measurements to the data scale of the RS data. Information may be masked if the 

intrinsic scale is finer than the measurement scale, or inferences may be incorrect if the data 

scale is finer than the intrinsic scale (Miller et al., 2007). Often, the selection of spatial scale may 

depend on the capability of the image to resolve ground objects. Coarser-scale data might 

spatially aggregate the ground variance, thereby reducing spatial heterogeneity and masking finer 
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spatial variations. Finer-scale data might have high spatial autocorrelation (SA; i.e. similarity in 

pairs of the values of nearby locations; Tobler, 1970), costly, or simply difficult to acquire, 

process, or store. Therefore, observations made by the imposition of an arbitrary scale has a 

“smoothening or coarsening effect” on the patterns and processes being studied and their ability 

to give the ideal inference. This further affects the types of patterns that can be observed, limits 

the scales within which the observations can occur (scale domains), or restricts ability for scaling 

information (scaling threshold). RS data also suffers from the modifiable areal unit problem 

(MAUP; Hay et al. 2001) whereby the scale of data analysis influences the outcome when the 

same analysis is applied to the same data but at different aggregation shemes. MAUP effect can 

be either due to scale (aggregation) or zone (grouping). In the former, different results may be 

obtained when the same data analysis is applied on different aggregation units (changes in scale). 

Scale can be problematic during imaging. The spectral information from ground features is 

recorded by the remote sensor into pixels that are arranged into a spatial matrix. Ideally, spectral 

information from a single feature is recorded into a single pixel (a pure pixel) that can be 

spatially referenced to the ground. In highly heterogeneous environments, the reflectance from 

background materials combine with the reflectance from green vegetation to form a composite 

(mixed) spectra that is recorded by the sensor. Thus, spectral information from several ground 

features are non-linearly mixed (Somers et al., 2011) and imaged into a single pixel (a mixed 

pixel). „Mixed pixels‟ are an issue with coarse-scale imagery and the spectral variability on the 

landscape is not effectively captured into image pixels. These mixed pixels do not correspond to 

actual ground cover and the values recorded for the space represented by that pixel are not solely 

determined by what is on the ground in that discrete space, unless the cover fractions are 

separated within the mixed pixel. Therefore, with coarser resolution, the ability of the remote 

sensor to resolve ground objects is compromised and pixels do not adequately represent the 

optimal scales of boundaries of natural patterns and processes. When fine resolution sensors are 

used, they record the same land cover into multiple pixels (i.e. more noise and less variance). 

Thereby, problems of spatial autocorrelation (SA; Ji and Peters, 2004) are introduced, which 

violate the conditions of predictive global regression models. Statistical assumptions of 

correlation and regression (e.g. independence of observations) are not met when data shows SA, 

thus requiring „corrections‟ to incorporate and adjust for spatial effects in the prediction models. 
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Hence, studying ecosystem processes and patterns only at finest scales limits our ability to 

generalize patterns or processes at coarser RS scales. Further, comparison of results is difficult if 

studies employ different scales that have been selected based on convenience rather than 

relevance. With the current availability of RS data from various platforms and at multiple spatial 

scales, researchers are faced with the challenge of selecting appropriate RS data scale to answer 

specific research objectives. A multi-scalar study allows for the understanding of the effects and 

implications of scale and upscaling observations. 

 

1.4 ECOLOGICAL CONTEXT – PRAIRIE CONSERVATION AND MANAGEMENT 

 

Grasslands, referred as the „Great Plains‟, are ecosystems dominated > 90% in land cover by 

grasses. Grasslands occur in all continents except Antarctica and dominate the land cover in the 

interior of the North America (Coupland, 1950). The major types of grasslands in North America 

are the tall grass prairie, the mixed grass prairie, and the short grass prairie (Briggs et al., 2008). 

Within the Great Plains, the tall grass prairie extends from Canada and Minnesota south to 

Texas, the mixed grass prairie from Saskatchewan and Alberta and eastern North Dakota south 

to Texas, and the short grass prairie extends from western Texas and New Mexico north to 

eastern Montana (Samson and Knopf, 1994). Fig. 1.1 shows the geographic extents of the three 

major grassland types in North America. The mixed grass prairie is the largest grassland type in 

North America and is further divided into the northern and the southern mixed prairie. 
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Fig. 1.1 Types and distribution of grasslands within North America (Adapted from: Li and Guo, 

2014). 

 

The North American grasslands are recognized as one of the most diverse terrestrial ecosystems 

on Earth, with a rich geological and paleontological history and habitat to several endangered 

and threatened species (Gauthier et al., 2003; Dolan, 1999). The original extent of the grasslands 

is estimated at ~25-40% (~162 million hectares) of the Earth‟s land surface, however their area 

has declined to currently occupy ~20% (Samson and Knopf, 1994). In Canada, significant 

decline of the mixed prairie have been reported for Saskatchewan (SK), Alberta (AB), and 

Manitoba (MB), with >80-90% reduction in SK and AB (Samson and Knopf, 1994). Grasslands 

are significant carbon sinks, highly agriculturally productive, and rich sources of natural 

resources (Gauthier et al., 2003). Economically, the grasslands have a 500-year history of 

intensive human exploitation for grain- and forage-cultivation, ranching, and livestock grazing 

(Lauenroth et al., 1999). Oil and mineral exploration are the recent human-induced pressures. 
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Climate, topography, soil, fire, and grazing are the main factors responsible for the origin, 

maintenance, and structure of the grasslands. Climatic gradients are the primary factor for the 

distribution of the grassland types, with a latitudinal temperature gradient, and a moisture 

(precipitation) gradient due to topography from the west to the east (Coupland, 1950). 

Vegetation growth in the mixed prairie is largely dependent on the availability of soil moisture, 

and therefore future temperature and precipitation trends are highly important. Besides human 

disturbances, climate change is believed to be the biggest long-term threat in this ecosystem. 

Among the terrestrial ecosystems, the Great Plains are predicted to be the worst hit by global 

climate change, and scientists forecast a temperature increase of 0.5-1°C per decade (Samson 

and Knopf, 1996). A few of the predicted impacts include warming, changes in vegetation type, 

composition and structure, and invasion of exotic plants. 

Considering the necessity for grassland restoration and conservation (see Samson and Knopf 

(1994)) and the need for methods that are small-scale, cost-effective, continuous, and 

sustainable, RS seems to be the most promising approach. Several RS data sets are now available 

at multiple spatial, and temporal scales that permit inventorying, management, and monitoring of 

grasslands. 

 

1.4.1 Synthesis of remote sensing research in the northern mixed prairie 

Many of the previous vegetation RS studies have focused on forestry or agricultural applications. 

Grasslands have been given less importance even though they are ecologically and economically 

important. Previous research in the northern mixed prairie has explored RS for studying plant 

biophysical characteristics (Guo, 2000; He, 2008; Li et al., 2014), modeling plant productivity 

(Davidson, 2002; Mitchell, 2003), identifying suitable indices to characterize vegetation (He at 

al., 2006; Li and Guo, 2010), estimating photosynthetic rates (Black, 2007), quantifying dead 

plant component (Yang and Guo, 2011; Xu et al., 2014), studying vegetation heterogeneity (Guo 

et al., 2004; Zhang, 2008), understanding effects of grazing (Li and Guo, 2010; Yang and Guo, 

2011; Yang et al., 2012; Virk, 2012; Virk and Mitchell, 2014), predicting plant water content 

(Davidson et al., 2006), vegetation mapping using pixel-based and neural network classifiers 

(Zhou, 2008), and identifying vegetation changes due to climate (Mitchell and Csillag, 2001; 

Mitchell, 2003; Li and Guo, 2012; Li and Guo, 2014). 
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These researchers report that RS of the northern mixed prairie is challenging due to several 

reasons. Vegetation, even though sparse, occurs in several layers (Coupland, 1950). Vegetation 

growth in the region is highly limited by temperature and availability of soil moisture, which 

leads to short-term differences in phenology (Li and Guo, 2012). The dominant native prairie 

grasses are perennials with very quick but short vegetative growth period (~170 days), however 

shrubs and a few invasive grasses are perennial. The northern mixed prairie is dominated by 

grasses of different photosynthetic pathways and different phenology. Similar to other semi-arid 

ecosystems (Okin et al., 2001), non-linear mixing is an issue in the mixed prairie as vegetation 

cover is generally sparse and predominantly occurs with large amount of non-photosynthetic 

vegetation (NPV), litter, and soil. SVIs, such as the soil-adjusted VI (SAVI) have been 

recommended to minimize background effects (Qi et al., 1994), especially improved versions 

such as the adjusted-transformed (ATSAVI) and the litter-corrected ATSAVI (L-ATSAVI; He et 

al., 2006; Li and Guo, 2010). Yang and Guo (2011; 2014) and Xu et al. (2014) used RS 

approaches to study the dead plant component in northern mixed prairie. 

 

1.5 STUDY AREA 

 

1.5.1 History and land use 

This research was conducted at the Grasslands National Park of Canada (GNPC; Parks Canada), 

situated at the Saskatchewan-Montana border (49° N, 107° W). GNPC covers 906 km
2 

and is 

composed of the East Block and the West Block (Fig. 1.2). GNPC established in 1984 is the first 

and the only park in Canada with a strong mandate for grassland conservation and preservation 

of the remnant native prairie. Prior to the first land acquisition by the Park in 1984, agriculture, 

livestock and ranching were widely practiced in the region. Though the Park is protected from 

human disturbances since its establishment, prairie eco-restoration strategies such as prescribed 

burning and natural grazing by bison (introduced in 2006) are followed. This region is home to 

several endangered and species-at-risk, and this region has therefore been adopted for 

biodiversity conservation and long-term ecosystem monitoring and research (LTER). The Park 

also provides palaeological evidence of dinosaur fossils, heritage of First Nations and history of 

ranching and homesteading by European settlers. Ranching and agriculture are still practiced 
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around the GNPC area and Parks Canada is actively pursuing acquisition of private lands for 

conservation. 

 

 

Fig. 1.2 Map showing the location of Grasslands National Park of Canada (GNPC), its East and 

West Blocks, and the vegetation landscape units (VLU; Michalsky and Ellis, 1994). 

 

1.5.2 Climate, topography, soil and physical features 

The northern mixed prairie has the continental semi-arid type of climate with great extremes of 

temperature between winter and summer seasons, and low annual precipitation. The mean annual 

temperature is 3.8°C and annual precipitation <325 mm, with the majority of the precipitation is 

between May to September. The predominant soils are primarily of glacial origin and the 

common soil types include chernozems, solonetzs, and regosols (Saskatchewan Institute of 

Pedology, 1992). Chernozems are the most dominant soil and followed by solonetz as the second 

major. The region has a rolling topography and the average elevation is ~800 m. Topography 

directly controls water and soil erosion and determines the spatial distribution and patterns of 

vegetation. Also, topography along with elevation determines local climatic conditions. 

Important rivers flowing in the GNPC area are the North and the South Saskatchewan River. The 
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Frenchman River, flowing from the north-west to the south-east, is the major waterbody in the 

GNPC area and is part of the Missouri river watershed. 

 

1.5.3 Vegetation types and distribution 

The northern mixed prairie is dominated 85% by grasses and consists of a mixture of mid-height 

and short grasses. They differ in their photosynthetic pathway types and peak season of growth 

and maturity. Coupland (1950, 1961, 1992) and Singh et al. (1983) have elaborately discussed 

the ecology and vegetation of the northern mixed prairie. The dominant vegetation communities 

in the northern mixed prairie include Stipa-Agropyron, Stipa-Bouteloua, Stipa-Bouteloua-

Agropyron, Agropyron-Koeleria, and Bouteloua-Agropyron (Coupland, 1992). Michalsky and 

Ellis (1994) completed a vegetation inventory within the GNPC and broadly classified the 

vegetation on the basis of elevation and degree of slope into upland, sloped, and lowland 

grassland (Fig. 1.2). The dominant grasses include western wheat grass (Agropyron smithii), 

northern wheat grass, and blue grama (Bouteloua gracilis). Shrubs, forbs, and microphytic 

vegetation such as moss and lichens also occur and limited by topography and availability of soil 

moisture. Forbs, shrubs, and sedges are of lower coverage and mostly seen in the sloped land and 

lowlands. Low precipitation, high summer temperatures, and warm, dry, high winds make soil 

moisture the limiting factor for plant growth. Localized variations in soil moisture created by 

topography determine the composition and density of vegetation. Coupland (1950) discusses the 

distribution of vegetation communities in the northern mixed prairie based on soil type, 

topography, and soil moisture. Specifically in the GNPC area, the dominant grasses include 

needle and thread (Hesperostipa comata), blue grama (Bouteloua gracilis), northern wheat grass 

(Elymus lanceolatus), western wheat grass (Pascopyrum smithii), june grass (Koeleria 

macrantha). Common shrubs in the region consists of sagebrush (Artemisia cana), buckbrush 

(Symphoricarpos occidentalis), winterfat (Krascheninnikovia lanata), thorny buffaloberry 

(Shepherdia argentea), wood rose (Rosa woodsii), creeping juniper (Juniperus horizontalis), 

rabbit brush (Chrysothamnus nauseosus), and willow (Salix sp.). The common forbs include 

prairie sage (Artemisia ludoviciana), pasture sage (Artemisia frigida), moss phlox (Phlox hoodii), 

spike moss (Selaginella densa), and prickly pear (Opuntia polycantha). Invasive species such as 

crested wheat grass (Agropyron cristatum) and smooth brome (Bromus inermis), introduced 

through human activities, are of high management priority. Plant names are adapted from Harms 
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(2006). Vegetative growth for most grasses begins in late March to early April, and the quick and 

short vegetative growth is completed by late June, with senescence in August or September. 

 

1.6 KNOWLEDGE GAPS 

 

My research aims to fill some of the important knowledge gaps in the context of RS of the 

northern mixed prairie vegetation. Previous vegetation RS studies have focused solely on the 

upland prairie, arguing it to be the important vegetation in the northern mixed prairie. However, 

ecologists and conservationists now agree that preserving and managing vegetation in the 

lowland prairie might be the best strategy for conserving the endangered and species-at-risk 

fauna and for maintaining the ecological integrity of the prairies. The lowland prairie has the 

shrubs which have been recognized as critical habitat for several endangered fauna. There is lack 

of knowledge of the biophysical properties and spectral characteristics of the lowland prairie. 

Further, most previous RS studies have used RS data at a single or few spatial scales, i.e. studies 

have not attempted a multi-scalar approach and compared how effectively data at specific scales 

will potentially transfer between scales. RS data at multiple scales are currently available, 

therefore it is important to compare the effects of scale for RS of vegetation and how patterns, 

interpretations, or inferences vary with change in data scales. Performance of vegetation indices 

have been tested at one or two scales, however there is lack of information on over what range of 

scales they are effective. High spatial heterogeneity of the northern mixed prairie vegetation has 

been acknowledged (Zhang, 2008), however none of the previous studies have attempted 

methods to incorporate sub-pixel spectral variability. Though the issue of mixed pixels and linear 

mixing of the vegetation spectrum has been recognized in these semi-arid ecosystems, none of 

the past studies has explicitly attempted to address this problem. None of the previous studies has 

accounted for the effects of sub-pixel spectral variability of the mixed prairie vegetation or how 

they might be incorporated in image classification for land cover mapping. Though studies have 

used NDVI images from coarse-resolution sensors such as AVHRR (250 m) to identify changes, 

however research (He et al (2007) has shown that the optimum sampling scale for vegetation 

studies is between 10-50 m. Hence, spatio-temporal changes need to be re-examined using 

medium-resolution data sets such as Landsat. 
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1.7 RESEARCH QUESTION 

 

My fundamental hypothesis was that multi-scalar RS information of vegetation can be 

successfully exploited to reveal important spatial patterns, biophysical characteristics, and 

dynamics of the northern mixed prairie vegetation. The general question that motivated this 

study was to identify the spatial data scale of RS data product that is most effective in studying 

the patterns and the dynamics of vegetation in the northern mixed prairie, and whether the 

identified patterns are comparable irrespective of the scale of the RS data product used in the 

study. Grasslands National Park of Canada (GNPC) was selected as a representative area for the 

northern mixed prairie, and all my experiments were based in this study area. 

 

1.8 THESIS STRUCTURE 

 

This thesis is divided into five chapters. Though each chapter focuses on specific research 

objectives, they are intended to build upon each other in a logical progression to accomplish the 

main research hypothesis. Each manuscript has an abstract, literature review and background 

research, discussion of materials and methods, results and findings, discussion and conclusions, 

and list of references cited. 

 

The introductory chapter provides working definitions of scale and scaling and how they are 

conceptualized and applied in ecology, geography, and remote sensing. The different views and 

classifications of scales as used in ecology and geography, and also how the concept of scale 

applies in ecology, geography, RS, and GIScience are discussed. I further provide brief 

introduction to the state of science of vegetation RS and include a synthesis of the RS research in 

the northern mixed prairie along with the research gaps that motivated the current study. The 

importance of grasslands and the need for their conservation and restoration are also described to 

justify my research. 

 

In Chapter 2, I discuss the spatial scales and spatial variation of plant biophysical properties 

along topographical gradients in the northern mixed prairie. SVI derived from RS data at four 
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data scales: 1, 10, 20, and 30 m were compared with field estimates. Semivariogram analysis was 

used on RS estimates to identify the spatial scales of variation of plant biophysical properties. 

 

In Chapter 3, I discuss spatial scale and effects of upscaling RS information for studying the 

northern mixed prairie vegetation. RS data sets were upscaled from their native scales to 

common coarser scales of 40, 50 and 60 m to understand the effects of upscaling and how they 

compare. Analysis integrated spatial regression methods to account for spatial effects. 

 

In Chapter 4, I used multiple endmember spectral mixture analysis (MESMA) and tested its 

feasibility for vegetation mapping in the northern mixed prairie. Comprehensive region-specific 

endmember spectral libraries for green vegetation (GV), non-photosynthetic vegetation (NPV), 

and soil were developed and used to create 2- and 3-endmember models. These endmember 

models were used to unmix three multispectral images of differing spatial scales (10, 20, and 30 

m) to estimate sub-pixel fractions of GV, NPV, and soil in the study area. 

 

In Chapter 5, I further tested MESMA for spatio-temporal change-detection on time-series 

Landsat-5 TM imagery. 2-endmember models were developed using endmember spectra for GV, 

NPV, and soil for unmixing seven Landsat-5 TM scenes at phenologically comparable time-

points. Time-series NDVI images were also derived to compare with the MESMA images. Bi-

temporal change differencing was performed by subtracting each historical year from the base 

year to identify the spatio-temporal changes to land cover in the study area. 

 

In Chapter 6, I provide summary and conclusions from my study and outline possible future 

research opportunities. 
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CHAPTER 2 

 

MULTI-SCALAR COMPARISON OF PLANT BIOPHYSICAL PROPERTIES ALONG 

TOPOGRAPHICAL GRADIENTS IN A MIXED PRAIRIE 

 

ABSTRACT 

 

Multi-scale approaches have been suggested to optimally study ecosystem patterns and 

processes. Remotely sensed (RS) data being available at multiple scales could be utilized to 

detect spatial scales of plant biophysical properties and identify optimum scales of imagery. In 

this study, canopy reflectance, plant cover, and leaf area index (LAI) were collected from 41 

sites and along three transects in the Grasslands National Park of Canada in 2006 and 2007. 

Spectral reflectance from field spectroradiometer and three satellite images were used to derive  

narrowband VI (VIn) and broadband VI (VIb) vegetation indices at four spatial data scales (1, 10, 

20, and 30 m). Regression analyses were run at four scales to compare the ability of VIn or VIb to 

estimate plant cover and LAI, and semivariograms were used to estimate spatial scales of LAI, 

VIn, and VIb. Results show that RS data at all data scales successfully captured the spatial 

variation of biophysical properties along topographical gradients. An inverse relationship was 

observed for plant cover, LAI, and VI to topographic gradients. VI at all spatial scales showed 

significant relationships to plant cover and LAI, however VI at finer scales showed the strongest 

relationship. The spatial scales of variation were different for VIn, VIb, and LAI and ranged 

between 35 and 200 m, and imagery scale finer than 20 m is recommended as ideal for studying 

the mixed prairie vegetation. Ecologists need to be cautious that an arbitrary scale selection for 

their study and scalar analysis using a single biophysical property may have implications to their 

study. 
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2.1 INTRODUCTION 

 

Identification and selection of the appropriate scale to study any ecosystem process or pattern is 

one of the fundamental and challenging problems in ecology and geography (Levin, 1992; 

Turner et al., 1989; Goodchild, 1997). Marceau (1999) defined scale as the spatial dimensions at 

which entities, patterns, or processes are observed or characterized. Turner et al. (1989) defined 

scale as having two dimensions: spatial (areal extent of an object) or temporal (time interval of 

process). Since ecosystem processes and patterns and their causal factors are scale-dependent, 

they are ideally examined at the appropriate scale (Denny et al., 2004; Parsons et al., 2004) or 

within their domains of scale (Wiens and Milne, 1989) to correctly analyze ecosystem- and 

landscape-level processes. Seldom are the patterns and processes studied at the optimum scale. 

As discussed by Dungan et al. (2002), often the scale of study is arbitrarily fixed by the sampling 

process or measurement unit (measurement scale), decided by the method used for data 

collection (sampling scale), limited by the scale of the study data sets (data scale), or defaulted to 

the coarsest data used in the analysis (analysis scale). Often, there is a requirement to extrapolate 

information for predicting processes or patterns at alternate scales (Turner et al., 1989). 

Localized or broad-scale factors may interact across spatial scales, creating problems when 

information at a specific scale is arbitrarily upscaled (Urban et al., 1987; Royer and Minshall, 

2003; Dalgaard et al., 2003; Turner, 1990). Wiens and Milne (1989) suggested that landscape 

structures are best defined in ways that are relevant to the organism and should be independent of 

the measurement scale used. By considering multiple scale selections that are relevant to the 

pattern or the process, the biases and errors that arise due to the imposition of an arbitrary scale 

are reduced. By identifying the appropriate scale, it might be possible to infer how the organism 

perceives the environment at different scales and allows insight into how scales affect the 

organism‟s response over the landscape (Milne et al., 1989). Milne (1989) suggested that the 

differences in landscape heterogeneity might be apparent only when the same landscape is 

analyzed at different scales. Therefore, by adopting a multi-scalar conceptualization of 

landscapes and by conducting multi-scalar studies it might be possible to define the domains of 

scale that apply to specific patterns, processes, or phenomena (Weins and Milne, 1989). Further, 

problems arise when data at finer- or coarser- spatial scales are used to study ecosystem 
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properties and patterns (Miller et al., 2007). Finer-scale data might have high spatial 

autocorrelation, be costly, or simply be difficult to acquire, process, and store. Coarser-scale data 

might spatially aggregate the ground variance, thereby reducing spatial heterogeneity and 

masking finer spatial variations. Observations and measurements can be taken only with some 

level or degree of generalization at coarser scales, but may be obtained with higher detail at finer 

scales. To address the above scale issues, ecologists have advocated a multi-scalar approach 

which provides the advantages of integrating the complexity of patterns while permitting a 

simultaneous consideration of the ecosystem patterns and their scalar variations. 

Remotely sensed (RS) data are increasingly being used by ecologists due to their cost-

effectiveness and synoptic ability to provide a variety of ecological information at multiple 

spatial data scales ranging from sub-meter to few kilometers. RS-derived data products such as 

classified thematic maps, vegetation index (VI) maps, and land use-land cover maps can be 

readily integrated with other geospatial layers in geographic information systems (GIS) for 

comprehensive, multi-criteria ecosystem analysis and for effective decision-making. RS data of 

finer spatial resolution are now commercially available: 0.4 m (GeoEye), 0.5 m (WorldView, 

QuickBird), 1 m (IKONOS), 2.5-20 m (SPOT), 5 m (RapidEye), and 22 m (DMC; Disaster 

Monitoring Constellation). However, these data sources are costly, image only smaller areas, or 

have limited availability. Publically available RS data such as Landsat, NOAA AVHRR, and 

Terra MODIS, though with coarser spatial resolution (30 m or more) are more cost-effective, 

image larger areas, and readily available. Hence, given the wide variety of RS data currently 

available, ecologists are faced with the challenge of selecting RS data with spatial scales that are 

appropriate for their study-at-hand and with high benefit-cost ratio. See Marceau (1999) for 

review on the effects of scale and scaling in the context of remote sensing. 

Vegetation indices (VI), transformed from spectral reflectance of ground features imaged by 

remote sensors, have proven to be useful as indirect indicators of plant abundance, greenness, 

photosynthetic pigment content, aboveground biomass, green-leaf area, photosynthetically active 

radiation, productivity, and vegetation health (Thenkabail et al., 2000; Blackburn, 2007; 

Ollinger, 2011). VIs are useful to understand the spatial patterns of vegetation arising due to 

gradients of environment, moisture, topography, soil fertility, or land management. Therefore, VI 

as key indicators of plant biophysical properties can be exploited for estimating spatial scales and 
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further used for designing field sampling and data collection, selecting optimum pixel size of 

imagery, and for developing future remote sensors. 

Continued and regular monitoring of ecosystems with high priority for conservation, such as the 

northern mixed prairie, is important and requires access to cost-effective RS data at multiple 

spatial and temporal scales. RS has been utilized in the northern mixed prairie for studying 

vegetation heterogeneity (Zhang, 2008), modeling primary productivity (Davidson, 2002; 

Mitchell, 2003; He, 2008), and understanding effects of grazing (Li and Guo, 2010; Yang and 

Guo, 2011). However, very few studies have attempted the use of multi-scale RS data in tandem; 

most studies have used one or two data scales (Zhang and Guo, 2007; Davidson, 2001). This 

limits our understanding of upscaling information from the plot-level to the landscape-level. 

With the availability of several RS data sets, park managers, conservationists, and ecologists are 

interested in how RS data sets can be effectively exploited for monitoring the northern mixed 

prairie vegetation. Thus, there is incongruence between spatial scales, i.e. traditional field 

collection and RS imaging (i.e. mismatch between the sampling scale of ground measurements to 

the scale of RS imagery). Hence, studying ecosystem processes and patterns only at finest scales 

limits our ability to generalize patterns or processes at coarser scales. Therefore, multi-scalar 

studies allows for the understanding of the effects and implications of upscaling observations, 

and the current availability of RS data at several spatial scales allows the adoption of a multi-

scalar study approach. 

 

2.1.1 Research questions 

The research objectives in the study are: 

(i) To describe the spatial variation of plant biophysical variables along topographical 

gradients in the northern mixed prairie; 

(ii) How effectively do VIs derived from RS data of varying spatial data scales compare 

against field estimates of vegetation? 

(iii) Is there a dominant spatial scale for plant biophysical variables in the northern mixed 

prairie that can be identified through RS data sets? 
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2.2 DATA AND METHODS 

 

2.2.1 Study area 

The West Block of Grasslands National Park of Canada (GNPC; 49
° 
12‟ N, 107

°
24‟ W) in 

Southern Saskatchewan was chosen as the study area (Fig. 2.1). GNPC falls within the northern 

mixed prairie of the North American Great Plains and was established in 1984 to conserve 

remnant native mixed prairie within Canada. GNPC experiences a continental, semi-arid climate 

with mean annual temperature of 3.8 
°
C and total yearly precipitation ~325 mm. The region is 

characterized by rolling topography consisting of upland, sloped land, and lowland prairie, 

thereby making the vegetation growth in the area largely dependent on topography and soil 

moisture. ~85% of the vegetation in the GNPC is dominated by native prairie grasses, and the 

remainder is comprised of forbs, low and tall shrubs, and exotic grasses (Michalsky and Ellis, 

1994). Upland prairie is dominated by grasses such as needle and thread (Hesperostipa comata), 

western wheat grass (Pascopyrum smithii), blue grama (Bouteloua gracilis), and northern wheat 

grass (Elymus lanceolatus). Lowlands are dominated by western wheat grass, shrubs such as 

sagebrush (Artemisia cana), buckbrush (Symphoricarpos occidentalis), willows (Salix sp.), and 

exotic grasses such as crested wheat grass (Agropyron cristatum) and smooth brome (Bromus 

inermis) (plant names adapted from Harms (2006)). The peak plant growth occurs in June and 

July (Zhang and Guo, 2007) and the average plant growing season is ~170 days (Csillag et al., 

2001).



 

 

 

3
0
 

 

 

Fig. 2.1 Map of the study area, sampling sites, and transects (2.1a). The inset map shows the West and East blocks of GNPC 

(proposed boundary of GNPC and its holdings as of 2006; Parks Canada pers comm), ortho aerial imagery (Source: SGIC; 

Saskatchewan Geospatial Imagery Collaborative), and North American Parks (Source: ArcGIS Online, ESRI). Zoomed-in map shows 

the sampling design for plots and transects (2.1b).
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2.2.2 Sites, sampling methods, and field data 

Field data were collected within a two-week period in mid-June 2006 and early-July 2007 from 

41 randomly distributed sites and along three transects (Fig. 2.1a and 2.1b). These sites were 

selected based on a stratified sampling scheme and represented a wide variety of vegetation 

communities and topographic positions (Fig. 2.1-2.2). Site data were used to understand spatial 

variation at smaller scales (larger area) and transect data were used to understand spatial 

variation at smaller scales (smaller area). At each site (of size 100 m*100 m), a quadrat of 50 cm 

x 50 cm dimension was laid out at 10 m sampling intervals in the N-S and E-W directions (Fig. 

2.1b). Transects were laid out from the lowland to the upland prairie and were ~400-650 m long 

(Fig. 2.1b and 2.2b). Plant cover, leaf area index (LAI), and canopy spectral reflectance were 

collected at each quadrat using the methods outlined below. 

 

 

Fig. 2.2 Spatial heterogeneity in the study area (2.2a) - lowland (front), sloped land (middle), and 

upland prairie (back) can been seen in the photo. Overview of the study area and one of the 

sampling transects (2.2b). 

 

Plant cover was visually estimated using the Daubenmire method (Daubenmire, 1959) in which 

cover was classified into seven groups: graminoids, shrubs, forbs, cacti, lichens and moss, rock, 

and bare ground. The individual cover values were expressed in percentages and summed to 

obtain the total cover for a single vegetation layer within a quadrat (maximum 100% cover). 
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Leaf area index (LAI) was used to calculate plant area index and is an index of canopy density 

that relates surface area of the canopy to the ground area below the canopy (Ross, 1981). LAI 

measurements were taken using a LiCOR
®
 LAI-2000 Plant Canopy Analyzer in 2006 and with a 

Decagon
®
 Accupar (Lincoln, Nebraska) in 2007; both these instruments work on the same 

principle and provide similar estimates (see Hyer and Goetz, 2004). LAI-2000 and Accupar 

measure LAI as the ratio (therefore unitless) of the amount of light intercepted by the canopy and 

then falling on the sensor (below canopy) to the amount of light (photosynthetically active 

radiation; PAR) falling directly on the sensor (above canopy). LAI was measured with the 

LiCOR LAI-2000 by using the shadow method (see He et al., 2007). In the shadow method, the 

shadow of the person is used to avoid sunlight falling directly on the sensor, or that the below 

canopy readings do not include any sunlight that is reflected or transmitted by the foliage, or 

minimize changing sky conditions. LAI values at each corner of the quadrat were averaged. 

Comparison of the working and measurements estimated with LAI-2000 and Accupar 

instruments can be seen in Hyer and Goetz (2004). 

Aboveground biomass was collected by clipping the vegetation within a 50 cm x 20 cm quadrat 

(a GNPC stipulation) at the ground-level. The clipped vegetation was stored in air-sealed bags 

and immediately weighed in the field to estimate fresh (wet) biomass. Fresh biomass was sorted 

in the lab into different groups (grass, shrubs, forbs, and standing dead) and sorted-biomass was 

oven-dried until a constant weight at a temperature of 60
o 
C for 48 hours was reached to estimate 

the dry weight for each respective group. Dominant species and species composition in each 

quadrat were visually identified. Additionally, mean plant height and litter depth were measured 

by averaging the height or depth values at each quadrat corner. 

 

2.2.3 Remote sensing at multiple scales 

Reflectance data were collected for sites and transects using field RS and satellite RS to calculate 

three types of VI (Table 2.1) at four data scales (1, 10, 20, 30 m) to describe the spatial patterns 

of vegetation and to estimate the spatial scale of variation of plant biophysical properties. 

Narrowband VI (VIn) were derived from field RS to use at the finest spatial scale, and broadband 

VI (VIb) calculated from satellite RS were used at the coarsest scale. It was of interest to identify 

the RS platform that could best capture the spatial variation of plant biophysical properties at 

both fine and coarse scales. Also of interest was to identify whether the trends of spatial variation 
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of plant biophysical properties obtained from different RS platforms corresponded with the 

vegetation patterns observed through field work. 

 

Field remote sensing 

Canopy spectral reflectance measurements were collected using an ASD
®
 FieldSpec FR Pro 

spectroradiometer (Analytical Spectral Devices, Boulder, Colorado) with a spectral resolution of 

3 nm in the 350-1000 nm and 10 nm in the 1000-2500 nm region. Spectra were collected 

perpendicular to the quadrat at a height of 1 m with a 25
o
 field of view probe (corresponding to a 

pixel size ~1 m
2
 on the ground) and under low wind and stable atmospheric conditions. All 

canopy reflectance measurements were collected between 10:00 and 14:00 hours and calibrated 

to a Spectralon reference panel (Labsphere, New Hampshire) before every measurement. 

 

Satellite remote sensing 

Satellite images at three data scales (native pixel size and date of acquisition are given in 

parentheses): SPOT-5 HRG1 (10 m; 27 July 2006), SPOT-4 HRVIR1 (20 m; 28 June 2006), and 

Landsat-5 TM (30 m; 17 July 2006) were acquired for the study area. Using ENVI 4.7 (ITTVIS 

Inc., Boulder, Colorado), the images were individually georeferenced using a high-resolution 

SPOT-5 HRG1 PAN (5 m; 28 June 2007) image, orthorectified, projected to UTM 13N-NAD83 

and resampled using the nearest neighbour scheme to their native pixel size. Further, the 

Landsat-5 and SPOT-4 images were co-registered to the SPOT-5 HRG1 image as it had the 

highest ground accuracy. Further, images were processed from raw digital numbers (DN) to 

surface reflectance values after the Fast Line-of-Sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH; Anderson et al., 1999) atmospheric correction. 

 

2.2.4 Auxiliary data  

A digital elevation model (DEM; Source: www.geobase.ca) with 20 m resolution was used to 

extract elevation, slope, and aspect for all sampling points in the study area. Additionally, maps 
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of species richness, soil cover (Saskatchewan Institute of Pedology, 1992), and vegetation cover 

(Michalsky and Ellis, 1994) were used. 

 

2.2.5 Data processing and analyses 

Processing of spectral reflectance and calculation of vegetation indices 

VI are combinations of surface reflectance in two or more wavelengths and used to highlight 

specific plant biophysical properties (Haboudane, 2004). Three VIn and VIb (Table 2.1) were 

computed: Normalized Difference Vegetation Index (NDVI), Normalized Difference Wetness 

Index (NDWI), and Adjusted Transformed Soil Adjusted Vegetation Index (ATSAVI).VIn were 

computed using reflectance (ρ) in the 670, 800, 860, and 1240 nm wavelengths. Comparable VIb 

were calculated for each satellite image using spectral reflectance (ρ) in the red (R), near-infrared 

(NIR), and shortwave infrared (SWIR) bands. NDVI is commonly used to represent “greenness” 

(vegetation abundance) and as an indirect estimate of LAI. NDWI is used to represent “wetness” 

(canopy moisture). Though several VI are mentioned in the literature (Hattfield, 2008; 

Thenkabail et al., 2000), previous research (He et al., 2006) showed ATSAVI as the most 

effective VI for representing plant biophysical properties in the northern mixed prairie, therefore 

ATSAVI was also calculated. The locations of field measurements were converted to point 

vectors in ESRI
®
 ArcGIS 9.3.1 (ESRI, California) and used to spatially extract VIb from 

corresponding pixels in each satellite image.
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Table 2.1 Vegetation index (VI) used in the study, formulae, references, and major use.

 Vegetation index Formula Reference Usefulness 

VIn 

NDVIn 

670800

670800








 Rouse (1974) 

Greenness, leaf area index, vegetation 

abundance 

NDWIn 

1240860

1240860








 Gao (1996) Canopy moisture content 

ATSAVIn 
)1(

)(
2

670800

670800

aXaba

baa








 Baret and Guyot (1991) Minimizes soil background effects 

VIb 

NDVIb 
RNIR

RNIR








 Rouse (1974) 

Greenness, leaf area index, vegetation 

abundance 

NDWIb 

SWIRNIR

SWIRNIR








 Gao (1996) Canopy moisture content 

ATSAVIb 2

1.219 (  - 1.219  -0.029)

1.219   -1.219 0.029  0.08 (1  1.219 )

NIR R

NIR R

 

 

 

     
 Baret and Guyot (1992) Minimizes soil background effects 

Note: NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Vegetation Index), and ATSAVI (Adjusted Transformed Soil Adjusted 

Vegetation Index). ρ (Spectral reflectance). Narrowband VI (VIn) and broadband VI (VIb). Satellite bands: R (Red), NIR (Near infrared), and SWIR (Shortwave 

infrared). Values for a (Gain) = 1.22, b (Offset) = 0.03, and L (Canopy background adjustment factor) = 0.5 were obtained from He et al. (2006).
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Relationship of RS-derived estimates to field estimates 

Plant cover, LAI, and VI were organized on the basis of elevation and slope into three 

topographic groups: upland, sloped land, and lowland. Upland had elevation >900 m above sea 

level (ASL) and slope <5%; sloped land 785-900 m and >3%; and lowland <785 m and <5%. 

Prior to all analyses, vegetation data were analyzed for outliers based on LAI and all outliers 

were removed from the data set. Note that a few lowland plots fell on the Frenchman River or its 

creeks in very dense shrub lowlands where LAI >5 or in sparse uplands where LAI <0.5, and 

these plots were either not sampled or removed from the analysis. Linear stepwise regression 

was used to determine the relationships between VIn or VIb to LAI and plant cover at different 

data scales. Linear stepwise regressions were also run between each VIn to its corresponding VIb. 

Note that only non-spatial regressions were used in this study. All statistical analyses were 

completed using SPSS 17.0 (Statistical Product for Social Sciences, SPSS Inc., Chicago, USA). 

Also, analysis for presence of spatial autocorrelation (SA) was tested using Moran‟s I 

(Goodchild, 1986) for examining the similarity between values at pairs of sample locations as a 

function of spatial distance. Moran‟s I value ranges from -1 to +1 through 0 (values of -1, 0, and 

+1 indicating dispersed, random, and clustered pattern, respectively). SA analysis was performed 

on the plot-level data using the Spatial Statistics Tools in ESRI
® 

ArcGIS. If Moran‟s I was found 

significant, the field and satellite measurements were upscaled to the site-level by averaging all 

the plot measurements within a site to see if it reduced the amount of SA. Linear regressions 

were re-run using the upscaled data to see if the trends were similar to those obtained at the 

original data scale. 

 

Estimation of spatial scales 

Methods to estimate spatial scale include semivariogram analysis, wavelet transformation, and 

geostatistics, among which semivariograms are the most popular. To identify the dominant 

spatial scale of plant biophysical variables, semivariogram analysis (Meisel and Turner, 1998; 

Legendre and Fortin, 1989) was performed on VIn, VIb, and LAI at data scales of 1, 10, 20, and 

30 m. 
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In semivariogram analysis, the semivariance )(h of a biophysical property between any pair of 

sampling points (quadrat locations or pixels) at a lag distance (h) can be expressed as: 

2)]()([
2

1
)( hxzxzh 

          (2.1)  

where z(x) is the biophysical value at a location with coordinate vector (x). Similarly, if there are 

n(h) pairs of plant biophysical measurements within the study area that are separated by a lag h, 

their semivariance is given by: 





n

i

ii hxzxz
n

h
1

2)]()([
2

1
)(

         (2.2)
 

where Γ(h) is an unbiased estimate of the population variance. Semivariance is a useful measure 

of dissimilarity between spatially distributed, regionalized biophysical variables (Rahman et al., 

2003), i.e. dissimilar biophysical values with higher semivariance. The relationship between 

semivariance (Γ) and lag vectors (h) provides a semivariogram for the biophysical variable. A 

semivariogram graphically represents the spatial variability of any variable. In a semivariogram, 

semivariance increases with distance, and the specific lag distance (sill) at which the 

semivariance starts to flatten is called the range. Range shows the distance within which the 

biophysical variable is spatially dependent and is used to determine the spatial scale of that 

biophysical property. 

Since the objective was to estimate spatial scales for plant biophysical variables for the entire 

study area rather than just for the sampling sites, semivariogram analysis was performed using 

the site and the transect data pooled together. The former represents a wide variety of vegetation 

communities but at a smaller scale (larger area), and the latter represents lesser vegetation 

communities but at a larger scale (smaller area). The hypothesis here is that the dominant spatial 

scale identified for any biophysical property (variable) should be comparable irrespective of the 

data scale that is used to estimate it. 

Semivariograms were modeled with ordinary kriging and a spherical model (see Rahman et al. 

(2003) for detailed descriptions) in ESRI
® 

ArcGIS Geostatistical Analyst. The spherical model is 

most commonly used in ecological studies. A lag size of 10 m was chosen to match the field 

sampling grid interval (ArcGIS Desktop 9.3 Help). To account for directional influences to 

spatial pattern (anisotropy), anisotropical semivariograms were estimated for different angles. 
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Parameters such as sill, range, and nugget were identified from each semivariogram. The range 

value estimated from each semivariogram gave the dominant spatial scale for a particular plant 

biophysical property extracted from the RS data for a specific data scale. 

 

2.3 RESULTS AND DISCUSSION 

 

2.3.1 Spatial variation of vegetation and plant biophysical variables 

Note that the description of vegetation and their distribution trends are provided here only to give 

the reader an idea about the sampling sites; our field observations were consistent with existing 

knowledge and those reported by previous researchers (Zhang, 2006; He, 2010). 

 

Spatial variation at a smaller scale 

Plant cover, LAI, VIn, and VIb from the 41 sites were analyzed to understand the spatial variation 

of vegetation along topographical gradients at a smaller scale (larger area) (Table 2.2 and Fig. 

2.3). 

Table 2.2 Mean values for plant cover, LAI, and three VIn at three topographic groups. LAI, 

NDVI, NDWI, and ATSAVI are unitless. 

Topographic 

group 

Elevation (m) Green plant 

cover (%) 

LAI Spectroradiometer (1 m) 

NDVIn NDWIn ATSAVIn 

       

Upland 913.2 49.50 0.695 0.39235 -0.13808 0.19678 

Sloped 818.7 65.67 1.291 0.55150 -0.07384 0.32831 

Lowland 773.5 60.12 2.263 0.67648 -0.04691 0.41774 

Mean 785.5 60.79 2.050 0.64634 -0.05427 0.39565 

S.D. 31.3 23.56 1.210 0.19973 +0.08083 0.16711 

 

Analysis of plant cover showed that the cover of grasses and shrubs was greatest in the lowlands 

and forbs covered majority of the sloped land. Overall, the green plant cover (sum of grass, 
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shrub, and forbs) decreased with elevation, and the cover of litter, lichens, and rocks increased 

with elevation. Similarly, biomass decreased with elevation: the average fresh biomass was 

177.95, 158.96, and 119.8 gm
-2

 in the lowland, sloped land, and upland, respectively. Shrubs 

contributed the major component of fresh biomass in the lowlands while grasses contributed the 

most in the uplands. These field observations are consistent with Zhang (2008). 

Flanagan and Johnson (2005) suggested that the availability of soil moisture determines 

vegetation abundance and growth in semi-arid grasslands. In our study site, uplands with drier 

and medium- to coarse-textured soils had a higher cover of native prairie grasses and lower cover 

of forbs. Sloped lands had a higher cover of native grasses and forbs and moderate to low cover 

of shrubs, while lowlands with heavier and moister soils had a higher cover of shrubs and 

invasive grasses. Coupland (1950) has reported that the lowland plants favor larger, less-variable 

water resources, while the drier upland sites support drought-tolerant plants and adapted to 

utilize light summer showers. Similarly, Zhang et al. (2006) noticed higher backscatter for 

lowlands in radar imagery that are positively correlated with higher soil moisture and higher 

plant water content. Our field observations also confirmed that soil moisture has a major 

influence on vegetation cover. 

Similar to Thorpe (2005) and Zhang and Guo (2007), plant height for grasses and shrubs 

decreased with elevation, whereas forb height was highest in the sloped lands. The plant height 

was 5.5-38 cm in the valley land (except in lowland sites dominated by tall shrubs where plant 

height was sometimes >1 m), 26-30 cm in the slope lands, 10-26 cm in the uplands. In general, 

height for grasses ranged from 26-38 cm, shrubs 10-36 cm, and forbs 5-27 cm over the entire 

study area. Species richness was higher in the uplands, while lower in the lowlands. Species 

richness of grasses were highest in the sloped lands, for shrubs highest in the lowlands, and 

highest for forbs in the uplands. 

Spectral reflectance of vegetation is dependent on the amount of chlorophyll and water in the 

foliage, canopy architecture, LAI, and background effects (Asner, 1998; Asner et al., 1998). 

Therefore, the amount of NIR and R in the spectral reflectance is an indirect indication of the 

amount of plant chlorophyll or moisture content. Studies have shown the effectiveness of VI as 

indicators of structural and physiological vegetation properties such as LAI, aboveground 

biomass, absorbed PAR, and plant productivity (Thenkabail et al., 2000; Blackburn, 2007). 
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Therefore, the trends for the spatial variation of LAI, VIn, and VIb were similar to the variation of 

plant cover and biomass. Comparison of three topographic groups showed that the biophysical 

values decreased with elevation (Table 2.2), and this trend occurs for all plant biophysical 

variables at all spatial data scales (Fig. 2.3). We obtained a higher mean LAI of 2.05 (± 1.22) for 

the study area (Table 2.2) than those reported by previous studies (LAI = 1.09 in He et al. 

(2006); 1.05 in Black and Guo (2007)). This is because most of our sampling points were in the 

dense lowland shrub habitats. Shrubs showed higher LAI values than native prairie grasses or 

forbs and the lowland grasses had higher LAI than the upland grasses (Govind unpublished 

data). 

 

 

Fig. 2.3 Spatial variation of plant biophysical properties at three topographic groups (upland, 

sloped, lowland) across four spatial data scales (1, 10, 20, 30 m). Mean values (unitless) for VI 

(NDVI, NDWI, ATSAVI) are given on the y-axis, and x-axis shows the spatial data scale of the 

remote sensor: field and satellite (SPOT-5, SPOT-4, Landsat-5). Standard error bars are shown. 
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Spatial variation at a larger scale 

Transect data was analyzed to understand the spatial variation of vegetation at a larger scale 

(smaller area). Significant negative correlations (r > 0.5, p = 0.01) were obtained between LAI 

and VI to elevation and soil moisture. Analysis of plant cover from the three transects showed 

similar trends as those discussed (section 3.1.1) with higher cover of grasses and shrubs in the 

lowlands, but higher forb cover in the uplands. Green plant cover increased from the upland to 

the lowland and varied from 83.7-96.3% for transect 1, 76.3-93.0% for transect 2, and 54.4-

84.0% for transect 3. Dead and litter cover increased from the lowland to the upland. 

Generally, height for grasses, shrubs, and forbs decreased from the lowland to the upland. Height 

for grasses ranged from 14.1-52.9 cm, for shrubs 15.0-71.4 cm, and for forbs 12.9-20.0 cm, with 

lower values in the uplands. Species composition and species richness was lower in the lowlands. 

This might be due to the competitive ability of some plants in the lowlands such as smooth 

brome and crested wheat which prevents other plants from surviving (Csillag et al., 2001). 

LAI and VI along transects decreased with elevation indicating that topographical variations 

even at larger scales, influence the spatial heterogeneity of vegetation in the northern mixed 

prairie. Strong relationships between topographic attributes influencing VI at several scales have 

been reported for other natural ecosystems such as the Mediterranean region of California (Deng 

et al., 2007). 

 

2.3.2 Relationship between remotely sensed estimates and field estimates of vegetation 

Significant relationships were found between VI and LAI at all spatial data scales (Table 2.3), 

indicating that VI can be used as indirect measure of biophysical properties such as vegetation 

greenness or wetness. VIn were more effective than VIb in estimating LAI (Table 2.3a and 2.3b), 

where the r
2
 adjusted value for LAI-NDVIn is 0.48 (p < 0.01) while for LAI-NDVIb (SPOT-5) it 

is only 0.23 (p < 0.01). Also, the relationship between LAI to VI was weaker than the 

relationship between VIn to its corresponding VIb. E.g. for SPOT-5 (Table 2.3b), LAI-NDVI (r
2
 

adj. = 0.23, p < 0.01) and LAI-ATSAVI (r
2
 adj. = 0.22, p < 0.01) are lower than NDVIn-NDVIb 

(r
2
 adj. = 0.38, p < 0.01) or ATSAVIn-ATSAVIb (r

2
 adj. = 0.37). However, NDWI is an 

exception; NDWIb at all data scales underestimated NDWIn (r
2
 adj. only 0.19-0.22). The 

northern mixed prairie has large amounts of standing dead and plant litter that can lead to higher 
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LAI values but does not necessarily signify high amount of greenness and higher VI (Zhang and 

Guo, 2007). Regression analyses between VIb to VIn (Table 2.3b) indicate that the VIb at their 

native data resolution inadequately capture the spatial variability of the vegetation on the 

landscape. The relationships were significant, however VIb could explain only to a maximum of 

37% (NDVIn - NDVIb) of the variability of VIn (Table 2.3b). This may be attributed to high 

background noise from standing dead, litter, or bare soil, or non-linear mixing seen in the 

northern mixed prairie (Davidson and Csillag, 2001; Yang and Guo, 2014). The satellite sensor 

(even at 10 m data scale) is imaging a „mixed pixel‟ with spectral reflectance of several surface 

materials combined into a single pixel. This spatial aggregation leads to imaging mixed spectral 

signal and consequently any VIb (based on NIR and R bands) will have less correspondence to 

their VIn. This explains the low efficiency of VI in the northern mixed prairie and indicates the 

need to develop more robust VI for semi-arid regions.
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Table 2.3 Abilities of VIb to estimate LAI and VIn at four spatial data scales (1, 10, 20, 30 m) using the original unscaled plot-level 

data (n = 686). Note: Criterion variables are given in the first column, and r
2
 adjusted values are given. All relationships were 

significant at p < 0.01. 

 

(a) Field remote sensing (1 m): 

Biophysical 

variable 

Spectroradiometer (1 m) 

NDVIn NDWIn ATSAVIn 

LAI 0.48 0.36 0.47 

 

(b) Satellite remote sensing (10, 20, 30 m): 

Biophysical 

variable 

SPOT-5 (10 m) SPOT-4 (20 m) Landsat-5 (30 m) 

NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb 

F
ie

ld
 

LAI 0.23 0.21 0.23 0.25 0.25 0.25 0.25 0.25 0.25 

NDVIn 0.38 
  

0.38 
  

0.36 
  

NDWIn 
 

0.22 
  

0.19 
  

0.21 
 

ATSAVIn 
  

0.37 
  

0.35 
  

0.34 
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Further, the plot-level data was upscaled to the site-level to account for SA (section 2.2.5). With 

upscaling, Moran‟s I value for SA decreased from +0.34 (Z = 30.19) to +0.01 (Z = 0.89). Table 

2.4 shows that the upscaled plot-level data showed better relationships to the field estimates: 

Table 2.4a and 2.4b shows stronger relationships: LAI-NDVIn (r
2
 adj. = 0.66, p < 0.01) and LAI-

NDVIb (SPOT-5) (r
2
 adj. = 0.44, p < 0.01). Upscaling showed that the VIb can now explain to a 

maximum of 74% (ATSAVIn-ATSAVIb) of the variability of VIn. He et al. (2009) reported better 

relationship of ATSAVI over NDVI, however we did not obtain stronger relationships even after 

upscaling the plot-level data; this also agrees with Yang and Guo (2014). This may be attributed 

to LAI saturation at high NDVI values and typical of lowlands with dense shrub vegetation. It is 

interesting to note that the ability of VIb to estimate VIn (e.g. NDVIn and ATSAVIn) decreased 

with increasing spatial data scales - the coefficient of determination for ATSAVI at 10, 20, and 

30 m data scales are 0.74, 0.69, and 0.67, respectively (Table 2.4b). Note that we were successful 

in obtaining better relationships with local regression modeling by effectively incorporating 

spatial heterogeneity (see Chapter 3) instead of global regressions used in this study. 

Relationships between LAI-VI or between VIb -VIn for transect-data (Table 2.5) showed better 

relationships than site-data (Table 2.3). This was expected as each transect, unlike the sites, 

covered smaller areas with relatively homogeneous vegetation. Though data from three transects 

were available, we report only the results of regression analyses of a single transect (Transect 1) 

for the sake of clarity.
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Table 2.4 Abilities of VIb to estimate LAI and VIn at four spatial data scales (1, 10, 20, 30 m) using the scaled site-level data (n = 37). 

Note: Criterion variables given in the first column and r
2
 adjusted values are given. All relationships were significant at p < 0.01. 

 

(a) Field remote sensing (1 m): 

Biophysical 

variable 

Spectroradiometer (1 m) 

NDVIn NDWIn ATSAVIn 

LAI 
0.66 0.61 0.65 

 

(b) Satellite remote sensing (10, 20, 30 m): 

Biophysical 

variable 

SPOT-5 (10 m) SPOT-4 (20 m) Landsat-5 (30 m) 

NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb 

F
ie

ld
 

LAI 0.44 0.39 0.44 0.43 0.46 0.44 0.45 0.42 0.44 

NDVIn 0.72 
  

0.70 
  

0.68 
  

NDWIn 
 

0.55 
  

0.49 
  

0.51 
 

ATSAVIn 
  

0.74 
  

0.69 
  

0.67 
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Table 2.5 Abilities of VIb to estimate LAI and VIn at four spatial data scales (1, 10, 20, 30 m) using the transect data. Note: Criterion 

variables are given in the first column, and r
2
 adjusted values are given. All relationships were significant at p < 0.01. 

 

(a) Field remote sensing (1 m): 

Biophysical 

variable 

Spectroradiometer (1 m) 

NDVIn NDWIn ATSAVIn 

LAI 0.57 0.37 0.63 

 

(b) Satellite remote sensing (10, 20, 30 m): 

 
Data scale 

SPOT-5 (10 m) SPOT-4 (20 m) Landsat-5 (30 m) 

 NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb 

F
ie

ld
 

LAI 0.45 0.43 0.45 0.38 0.46 0.38 0.42 0.51 0.42 

NDVIn 0.63 
  

0.44 
  

0.52 
  

NDWIn 
 

0.50 
  

0.50 
  

0.53 
 

ATSAVIn 
  

0.64 
  

0.48 
  

0.57 
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2.3.3 Spatial scales for plant biophysical properties 

We found a strong relationship between VI and LAI, signifying their usefulness for estimating 

spatial scales of plant biophysical properties. Semivariograms were plotted for LAI, VIn, and VIb 

at four data scales: 1, 10, 20, and 30 m (Fig. 2.4a to 2.4e) using original unscaled plot-level data 

(n = 686). 

 

Fig. 2.4 Semivariograms for plant biophysical properties (LAI, VIn, VIb) at four spatial data 

scales (1, 10, 20, 30 m). a) Leaf area index (LAI), b) Field 1 m, c) SPOT-5 10 m, d) SPOT-4 20 

m, e) Landsat-5 30 m. Lag is in meters (m). Note that only the fit of the spherical model (lines) 

for each semivariogram are shown, and the binned points (dots) are not shown for the sake of 

clarity. 
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Note that the semivariograms fitted for NDVI, NDWI, and ATSAVI at a specific data scale are 

plotted into a single graph, and plotted separately for LAI. In a semivariogram, the semivariance 

data pairs are shown by dots and the spherical model fit is shown by a solid line (see Fig. 2.5). 

The range value where each specific plant biophysical variable attained its sill was used to 

determine its spatial scale. The range values estimated across four data scales are summarized in 

Table 2.6. 

Results show that the plant biophysical properties exhibit different spatial scales as indicated by 

their wide range values (35-115 m). Among the VIn (Table 2.6a), lower spatial scales of 35 m 

were estimated for NDVIn and ATSAVIn than for NDWIn (46 m) or LAI (62 m). This same trend 

is seen in Table 2.6b at the 10 m (SPOT-5) data scale. It is interesting to note that the ranges 

estimated from VIn were lower than that for LAI. The range values increase with increase in 

spatial data scales; spatial scales estimated from VIn showed lower spatial scales (35-46 m) than 

those obtained from VIb (66-105 m). E.g. in Table 2.6, the spatial scales estimated for NDVI at 

1, 10, and 20 m are 35, 66, and 105 m, respectively. Similar range values of 55 m (for Landsat 

NDVIb) and 66 m (for NDVIn) have been obtained by Zhang and Guo (2007). For data scales 

beyond 20 m (SPOT-4), the estimated range values remain similar (Table 2.6b). The variances 

for VIb are also lower than for LAI or VIn. Therefore, it is clear from the semivariograms that 

spatial aggregation or a decrease in variance is evident with increasing spatial data scale. The 

semivariograms for LAI or VIn always show some nugget variance (Fig. 2.4a, 2.4b, 2.5) and may 

be attributed to measurement errors, varying field of view, sun angle, or sky conditions (Rahman 

et al., 2003) that can change over several days of field work and also within a single field day. 

Interestingly, the semivariograms modeled for VIb show almost zero nugget values. This might 

be because the satellite remote sensor is imaging a large area on the landscape in an 

instantaneous manner and therefore the measurement errors are minimal.



 

 

 

4
9
 

 

Fig. 2.5 Semivariograms for LAI (2.5a), NDVIn (2.5b), NDWIn (2.5c), ATSAVIn (2.5d) showing their binned points (dots) and 

spherical model fit (lines). Semivariance is given in y-axis and lag (distance) is shown in x-axis.
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Table 2.6 Spatial scales (range) estimated from semivariograms for LAI, VIn, VIb at different data scales (1, 10, 20, 30 m) using 

original unscaled plot-level data (n = 686). Range values (spatial scales) are in meters. 

 

(a) Field remote sensing (1 m): 

Data scale 

 

Field (1 m) 

LAI NDVIn NDWIn ATSAVIn 

Range 
62 35 46 35 

 

(b) Satellite remote sensing (10, 20, 30 m): 

 

Data scale 

  

SPOT-5 (10 m) SPOT-4 (20 m) Landsat-5 (30 m) 

NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb 

Range 
66 80 67 105 105 105 105 105 105 
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Table 2.7 shows the scales estimated for each plant biophysical variable from the pooled transect 

data (n = 1540). In general, the spatial scales from the transect data were higher than those from 

the site data (Table 2.6). This was expected since transects crossed terrains with relatively lower 

vegetation heterogeneity. Yet, the estimated spatial scales of 66 to 200 m fall within the range 

reported by Zhang and Guo (2007). In a semivariogram, the data pairs for the variable located 

close together on the semivariogram cloud have similar semivariance values (Fig. 2.5). It was 

seen that the data pairs with high semivariance for the plant biophysical variables were located in 

the sloped lands, indicating that high vegetation heterogeneity typically occurs on the sloped 

lands and therefore leading to significantly different biophysical values. This is further supported 

by our field observations. Rahman et al. (2003) suggests that grasslands have higher spatial 

scales as they are relatively homogeneous when compared to the patchy shrub vegetation. 

Therefore, it is possible to obtain higher range values in the uplands dominated by grasses than 

the sloped lands.
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Table 2.7 Spatial scales (range) estimated from semivariograms for LAI, VIn, VIb at different data scales (1, 10, 20, 30 m) using 

transect data (n = 1540). Range values (spatial scales) are in meters. 

 

(a) Field remote sensing (1 m): 

Data scale 

 

Field (1 m) 

LAI NDVIn NDWIn ATSAVIn 

Range 
66 66 66 66 

 

(b) Satellite remote sensing (10, 20, 30 m): 

Data scale 

  

SPOT-5 (10 m) SPOT-4 (20 m) Landsat-5 (30 m) 

NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb 

Range 
108 66 106 200 114 200 81 66 80 
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2.4 CONCLUSIONS 

 

This study was successful in identifying the relationships between RS estimates and field 

estimates of vegetation. It also identified the effectiveness of VIn and VIb across several data 

scales and with upscaling to characterize the spatial heterogeneity of vegetation along 

topographical gradients. RS data at all spatial scales effectively captured the spatial 

heterogeneity of vegetation in the northern mixed prairie, however RS data at finer spatial data 

scales were more effective in estimating ground vegetation cover. Similar results have been 

reported by Davidson et al. (2006), who found that vegetation water content was better predicted 

at finer spatial scales than at coarser scales. The variations of LAI and VI along topographical 

gradients corresponded to the observed variation of vegetation cover and aboveground biomass. 

Higher values for LAI and VI seen at lower elevations in the study area leads to conclude that 

topography and soil moisture are the major driving factors determining plant growth in the 

northern mixed prairie. Coupland (1950) suggested that the soil moisture variation in the mixed 

prairie is mainly caused by topography and soil texture. Since soil moisture variations are 

indirectly the effect of topography, it can be concluded that topography is the main factor 

controlling plant growth and determining the spatial patterns of vegetation in the northern mixed 

prairie. 

Semivariograms were useful in estimating the spatial scales of plant biophysical properties and 

showed different ranges (35-200 m) for VIn, VIb, and LAI. Spatial scales and spatial variation of 

plant biophysical properties estimated through RS and their comparison at multiple data scales is 

an important outcome of this study. 

Contrary to He et al. (2006) but agreeing with Zhang (2008) and Yang and Guo (2014), our 

analyses did not suggest ATSAVI to be superior to NDVI for LAI estimation in the northern 

mixed prairie. ATSAVI was developed specifically to account for the background noise from 

soil and plant litter, and this may not be a major problem in lowlands. Most of our sampling sites 

were in the dense, lowland sites and therefore ATSAVI might still be more effective in the 

uplands. 
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The peak vegetative growth for the northern mixed prairie vegetation is between June and July, 

therefore our data set has some limitations as the satellite images tested are not for the exact 

month, i.e. not at exact phenological time points. Therefore, it is possible that the VI estimated 

by different remote sensors could be slightly affected by vegetation phenology. However, 

atmospheric-correction and transformation of spectral reflectance to VI should account for this 

issue. 

Rahman et al. (2003) suggest that the optimum pixel sizes to study any ecosystem processes is 

half of the range value (spatial scale) of a biophysical property. Accordingly, based on the spatial 

scales estimated through this study, the optimum pixel size recommended for studying plant 

biophysical properties such as greenness and wetness in the northern mixed prairie would range 

from 20 m or finer to a maximum of 100 m. Pixel sizes coarser than 20 m would spatially 

aggregate the information on the landscape into a single pixel, thereby reducing the variance. 

The range values of biophysical variables can help researchers to identify spatial variability of 

different vegetation properties, with field or research design, or sampling protocols. Field 

sampling at scales coarser than the scale of vegetation properties will result in inefficient capture 

of the properties and characteristics on the landscape. Field sampling finer than the scale of 

vegetation properties may be unnecessary and waste of sampling resources. 

A wide variety of RS data are currently available at varying spatial resolutions and costs, 

therefore park managers, ecologists, and decision makers must exercise caution in selecting the 

optimum data resolution while conducting ecological studies. Field RS can give significant 

insight into many important structural and physiological properties of vegetation. Though 

hyperspectral RS imagery is currently unavailable for the northern mixed prairie, our results 

demonstrate that narrowband RS data sets can significantly improve our understanding of the 

scales and vegetation properties in the northern mixed prairie. This continues to be a motivation 

for our future research. 
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CHAPTER 3 

 

REMOTE SENSING OF VEGETATION IN THE NORTHERN MIXED PRAIRIE: 

Spatial scale and effects of upscaling 

 

ABSTRACT 

 

With the availability of remotely sensed (RS) data at multiple spatial scales for ecological and 

earth-observation studies, it is critical to understand the limitations of scale and scaling as an 

arbitrary data scale selection can affect the patterns and predictions inferred from them. 

In this study, RS data at spatial scales of 1 m (field spectroradiometer), 10 m (SPOT-5), 20 m 

(SPOT-4), and 30 m (Landsat-5) were acquired for a northern mixed prairie study area for June 

2006 and July 2007. Spectroradiometer data was transformed to a set of narrowband vegetation 

indices (VIn) and their corresponding broadband vegetation indices (VIb) were derived from 

satellite imagery; both at original scales and at upscaled uniform scales of 40, 50, and 60 m. 

Multiple regression models were tested at original and upscaled scales using VIb and terrain 

variables (elevation, slope, aspect, and wetness index) as the independent variables to predict VIn 

and leaf area index (LAI). 

Pearson‟s correlation analysis revealed that VIn, VIb, and LAI showed positive relationship with 

elevation and slope. Among the spatial scales tested, RS data at finer scales showed the strongest 

ability than coarser scales to estimate ground vegetation. VIn were found to be better predictors 

than VIb in estimating LAI, and upscaling at all spatial scales showed similar weakening trends 

for VIb to predict LAI. Spatial autocorrelation was present in the data sets that violated the 

conditions of global regression models. However, the use of spatial regression models in-lieu of 

global regression models accounted for spatial- autocorrelation and dependency in the RS data 

and significantly improved the prediction results. Augmenting narrower field-based narrowband 

data with coarser space-borne broadband data is an ideal approach to understand vegetation 

heterogeneity in the northern mixed prairie. RS data scale selection based on convenience rather 

than relevance may lead to improper interpretations or conclusions. 

 



 

61 

 

3. 1 INTRODUCTION 

 

Ecosystem processes and patterns in natural environments occur and function at different spatial 

and temporal scales, and are therefore ideally studied at their optimal scales or within their 

domains of scale. Ecological modeling exercises often require data to be scaled (upscaled or 

downscaled). Hence, a multi-scalar study approach is useful to identify the scaling trends, or the 

limitations with an arbitrary scale selection. A multi-scale study approach offers advantages to 

identify optimal study scale, understand the limitations of data sets for scaling, decide 

appropriate study scale, or design better sampling schemes. 

The significance of vegetation data for ecosystem studies and analysis is well acknowledged and 

ecologists are interested in identifying rapid, reliable, and efficient ways of vegetation 

estimation. Traditional in-situ methods though efficient in terms of cost, time and equipment, 

however are destructive, laborious, and difficult to standardize with regard to scaling (Bonham et 

al., 2004, Kercher et al., 2003; Sykes et al., 1983). Field data are often collected at single, finer 

spatial scales (smaller areas) and therefore upscaling to coarser spatial scales (larger areas) can 

propagate error in the data. It is difficult to establish standard measurement or scaling protocols 

for multiple scales when using traditional field methods. Taking into account the scalar 

limitations, ecologists face challenges in identifying methods that are consistent, robust 

(repeatable), and yet efficient to adequately estimate vegetation at multiple spatial scales. 

Modern vegetation estimation methods such as digital photoplots, aerial photography, remote 

sensing (Kerr and Ostrovsky, 2003), and light detection and ranging (LiDAR; Lefsky et al., 

2002) are becoming popular because of their ability to provide multi-scalar data. 

 

3.1.1 Remote sensing of vegetation 

Remote sensing (RS) is increasingly used by ecologists as it permits repeated monitoring of large 

areas in an instantaneous and non-destructive manner that is suitable for a variety of ecosystem- 

and landscape-analyses (Kerr and Ostrovsky, 2003; Turner et al., 2003). RS data from multiple 

sources (field, aerial, satellite) of varying spatial scales are now available: unmanned aerial 

vehicles (UAVs; 0.1 m), field spectroradiometer (~1 m), WorldView (0.5 m), RapidEye (5 m), 

DMC (22 m), SPOT (5-20 m), ASTER (15 m), Landsat (30 m), MODIS (250 m), and NOAA-

AVHRR (1.1 km). RS has been successfully used in numerous studies for vegetation distribution 
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and mapping, estimating cover and plant biophysical parameters, and monitoring and predicting 

ecosystem change. RS data can be used to derive simple quantitative estimates such as 

vegetation indices (VI) using spectral reflectance along different bands of the electromagnetic 

spectrum. Several biophysical and biochemical VI have been developed that are used for 

vegetation analyses such as estimating structural, biophysical and biochemical parameters, 

assessing aboveground biomass, modeling biophysical and physiological states, and studying 

plant stresses (Haboudane, 2004). 

 

3.1.2 Scale limitations in remote sensing 

With RS data available from multiple sources at multiple spatial scales, ecologists are faced with 

the challenge of selecting appropriate RS data to answer specific research objectives. Often, the 

study scale is decided on the basis of the spatial (data) scale, the analysis scale, or by the coarsest 

data used in the analysis. For the sake of convenience, logistical or cost constraints, studies are 

frequently attempted with a single data scale. 

Often, spatial scale is dependent on the capability of the image to resolve ground objects, i.e. 

spatial resolution (pixel size). Remote sensors record reflectance of land cover into one or many 

“georeferenced” pixels that may or may not adequately represent the optimal scales of 

boundaries of natural patterns and processes. Therefore, it is important to understand whether the 

RS dataset has adequately captured the ground information as it affects the types of patterns that 

can be observed, limits the scales within which the observations can occur (scale domains), or 

restricts the ability to allow for scaling information to other scales (scaling threshold). 

Information may be masked if the scale of processes and patterns is finer than the scales of 

observation, and inferences might not be efficient if the data scale is finer than the scales of 

processes and patterns. Thus, observations made by the imposition of an arbitrary scale has a 

“smoothing or coarsening effect” on the patterns and processes being studied and their ability to 

give the ideal inference. Hence, it is difficult to compare results if studies employ different scales 

that have been selected based on convenience rather than relevance. 

Information captured by a remote sensor is constrained by its spatial resolution or by the ground 

area imaged (instantaneous field of view; IFOV). A coarse resolution sensor images a larger 

ground area and records spectral reflectance from multiple land cover into a single pixel (a 

„mixed pixel‟). Hence, if the ground cover is heterogeneous, the full spectral variability on the 
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landscape may not be effectively captured by a pixel. When fine resolution sensors are used, it 

records the same land cover into multiple pixels (i.e. more noise and less variance). This 

introduces problems of spatial autocorrelation (SA; similarity in pairs of values of nearby 

locations) (Tobler, 1970) when data are collected for smaller areas and violates the conditions of 

the predictive global regression models. Statistical assumptions of correlation and regression 

(e.g.  independence of observations) are not met when data shows SA (Ji and Peters, 2004) and 

therefore data requires „corrections‟ adjusting for spatial effects when regression modeling. 

 

3.1.3 Research questions 

Given that RS of multiple scales (spatial and spectral resolutions) are currently available at 

multiple scales and cost advantages, how does the user choose a RS data set that performs best or 

is most advantageous (use- and cost-wise) while maintaining reliable ecosystem predictions? It is 

important understand the spatial dependence of vegetation surrogates with upscaling for effective 

incorporation into environmental modeling studies. 

Therefore, this research explored the performance and compared the predictive capability of 

three satellite-based remote sensors (SPOT-5 HRG1, SPOT-4 HRVIR, and Landsat-5 TM) and a 

field remote sensor to estimate ground vegetation. We explored the implications of upscaling 

data from finer to coarser spatial scales, as well as how the predictive ability varied with 

upscaling (i.e. with coarsening of spatial scale). Specifically, we tested the following research 

questions: 

(i) How do RS data sets of different spatial scales compare in estimating ground vegetation? 

(ii) What are the effects of upscaling RS data from finer to coarser spatial scales? 

(iii) What are the effects of SA and how can it be accounted while upscaling RS data sets? 

(iv) How does the predictive ability of VIb to estimate ground vegetation vary with upscaling? 

 

3.2 DATA AND METHODS 

 

3.2.1 Study area 

The West Block of Grasslands National Park of Canada (GNPC, 49º12‟N and 107º24‟W) in 

Southern Saskatchewan was chosen for this study (Fig. 3.1). GNPC was established in 1984 to 
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conserve remnant mixed prairie in Canada and the park has since introduced management 

practices such as grazing to maintain vegetation heterogeneity in the region. The vegetation in 

the study area is primarily of native and mixed prairie grasses along with few shrubs, forbs, and 

invasive plants (Michalsky and Ellis, 1994). The main grasses include northern wheat grass 

(Elymus lanceolatus), and western wheat grass (Pascopyrum smithii), needle and thread 

(Hesperostipa comata), june grass (Koeleria macrantha), blue grama (Bouteloua gracilis), 

crested wheat grass (Agropyron cristatum), and smooth brome (Bromus inermis). Plant names 

are adapted from Harms (2006). Dense vegetation occurs along the Frenchman River valley 

lowlands, while short, sparse vegetation occurs in the uplands. GNPC has undulating topography 

characterized by knolls and valleys that control the movement and dynamics of surficial soil and 

water to ultimately determine the spatial patterns and variability of vegetation. The region has 

semi-continental arid climate with temperature extremes (monthly mean ranging from -12.4 to 

18.3 ºC) and very low precipitation (~35 cm yr
-1

).
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Fig. 3.1 Map showing the location of the study area (GNPC; Grasslands National Park of Canada), sampling sites, and topography of 

the region. Fig. 3.1a shows ortho aerial imagery (Source: SGIC; Saskatchewan Geospatial Imagery Collaborative) and North 

American Parks (Source: ArcGIS Online, ESRI), and Fig. 3.1b to 3.1c show SPOT-5 (27 July 2006), SPOT-4 (28 June 2006), and 

Landsat-5 (17 July 2006) image in standard false color, respectively.
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3.2.2 Site design and sampling points 

41 sites representing a variety of vegetation communities and three topographic positions 

(upland, sloped land, and lowland) were sampled in the summer of mid-June of 2006 and early 

July of 2007 corresponding to the peak vegetation growth period in the region (Fig. 3.1a). At 

each site, a cross-shaped design was established with transects of 100 m running in the cardinal 

N-S and E-W directions and intersecting at the site center. Sampling quadrats (50 cm*50 cm) 

were placed at 10 m intervals along each transect. Quadrat locations were converted to vector 

points (n = 686) in ESRI
®
 ArcGIS 9.3 (ESRI, California) and used to extract reflectance values 

for the corresponding pixel co-ordinates from each satellite imagery at a specific spatial scale 

(Fig. 3.1b to 3.1d). 

 

3.2.3 Field data and processing 

At each sampling point, leaf area index (LAI) and canopy spectral measurements were collected 

as follows: 

 

Leaf area index (LAI) 

LAI, essentially plant area index, was collected using a LiCOR
®
 LAI-2000 Plant Canopy 

Analyzer in 2006 and with a Decagon
®
 Accupar (Lincoln, Nebraska) in 2007. LAI was measured 

with the LiCOR using the shadow method (He et al., 2007) and averaging four LAI values at 

each quadrat corner. These instruments measure the amount of photosynthetically active 

radiation (PAR) available above and below the canopy to estimate LAI. Note that the LAI 

measured is the amount of radiation intercepted by the canopy; it does not necessarily denote 

only the green component but also includes the standing dead component such as dead or 

senesced vegetation. Chapter 2 provides discussion on the concept of LAI, instruments and their 

working, and its measurement. 

 

Narrowband vegetation indices (VIn) 

Canopy spectral reflectance measurements were collected above each quadrat using an ASD
®
 

FieldSpec FR Pro (Analytical Spectral Devices, Boulder, Colorado) spectroradiometer with a 
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spectral range of 350-2500 nm. Spectra were collected perpendicular to the canopy at a height of 

1 m and with a 25
o
 field of view probe; corresponding to an IFOV of ~1 m

2
 pixel size. Spectra 

were standardized to apparent reflectance using a Spectralon calibration panel (Labsphere Inc., 

New Hampshire). All spectral measurements were collected on clear days, within 2 hours of 

solar noon and under low wind conditions. Spectral reflectance (ρ) was transformed to three 

narrowband vegetation indices (VIn): normalized difference vegetation index (NDVIn), 

normalized difference wetness index (NDWIn), and adjusted transformed soil adjusted vegetation 

index (ATSAVIn) (Table 3.1).
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Table 3.1 Spectral vegetation indices used in the study, formulae, references, and their major use.

 Vegetation index Formula Reference Usefulness 

VIn 

NDVIn 

670800

670800








 Rouse (1974) 

Greenness, leaf area index, vegetation 

abundance 

NDWIn 
1240860

1240860








 Gao (1996) Canopy moisture content, wetness 

ATSAVIn 
)1(

)(
2

670800

670800

aXaba

baa








 Baret & Guyot (1991) Minimizes soil background effects 

VIb 

NDVIb 
RNIR

RNIR








 Rouse (1974) 

Greenness, leaf area index, vegetation 

abundance 

NDWIb 
SWIRNIR

SWIRNIR








 Gao (1996) Canopy moisture content, wetness 

ATSAVIb 2

1.219 (  - 1.219  -0.029)

1.219   -1.219 0.029  0.08 (1  1.219 )

NIR R

NIR R

 

 

 

     
 Baret & Guyot (1992) Minimizes soil background effects 

Note: NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Vegetation Index), and ATSAVI (Adjusted Transformed Soil Adjusted 

Vegetation Index). The values for a (Gain) = 1.22, b (Offset) = 0.03, and L (Canopy background adjustment factor) = 0.5 were obtained from He et al. (2006). ρ 

(Spectral reflectance), and satellite bands: R (Red); NIR (Near infrared); and SWIR (Short wave infrared).
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3.2.4 Satellite imagery and processing 

Three cloud-free satellite images with spatial resolutions of 10 m (SPOT-5), 20 m (SPOT-4), and 

30 m (Landsat-5) were acquired (Table 3.2) and processed using ENVI 4.7 (ITTVIS Inc.). The 

images were individually georeferenced using a high resolution SPOT-5 HRG1 PAN (5 m 

panchromatic) image (Source: www.geobase.ca) to UTM 13N-NAD83 projection, orthorectified 

and resampled using the nearest neighbor method to their native pixel sizes. The Landsat-5 and 

SPOT-4 images were further co-registered to the SPOT-5 image as this image had the highest 

location accuracy. Images were processed from raw digital numbers to surface reflectance 

following the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH; 

Anderson et al., 1999) atmospheric correction. To compare the three satellite images at common 

scales and to understand their trends with upscaling, the spatial scale of each image was resized 

using the pixel aggregation method from their native pixel sizes of 10, 20, 30 m to coarser spatial 

scales of 40, 50, and 60 m. 

 

Broadband vegetation indices (VIb) 

Similar to the calculation of VIn, using quadrat point vectors the ρ values of each image band 

were spatially extracted to calculate three comparable broadband vegetation indices (VIb): 

NDVIb, NDWIb, and ATSAVIb (Table 3.1) at original (10, 20, 30 m) and upscaled (40, 50, 60 m) 

coarser spatial scales (Table 3.2).
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Table 3.2 Satellite images used in the study along with their sensor details, date of acquisition, spatial scale (resolution/pixel size), 

scales tested and data source. 

Satellite image Date of 

acquisition 

Native spatial 

scale (m) 

Satellite bands used* Tested spatial 

scales (m) 

Data source 

SPOT-5 HRG1 27 July 2006 10 G, R, NIR, MIR (1234) 10, 40, 50, 60 www.geobase.ca 

SPOT-4 HRVIR1 28 June 2006 20 G, R, NIR, MIR (1234) 20, 40, 50, 60 www.geobase.ca 

Landsat-5 TM 17 July 2006 30 B, G, R, NIR, MIR, MIR (123457) 30, 40, 50, 60 www.usgs.gov 

* B - Blue, G - Green, R - Red, NIR - Near Infrared, MIR - Mid Infrared. Thermal band (6) of Landsat-5 TM image was excluded. 
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3.2.5 Additional data 

Terrain variables 

A digital elevation model (DEM) of 20 m spatial scale (Source: www.geobase.ca) for the study 

area was used to derive maps of percent slope, aspect, and wetness index (WI; Beven and 

Kirkby, 1979) using the ESRI
®
 ArcGIS Spatial Analyst Tools. WI, as a surrogate for soil 

moisture, was calculated using the following equation: 

 

WI = Ln (As/Tan B)          (3.1) 

 

where Ln is natural logarithm, As is the contributing catchment area (m
2
) and B is the slope 

(degrees). 

Pixel values for the terrain variables (TVs) were spatially extracted from the terrain maps and 

appended to quadrat point vector. Note that the terrain maps were not upscaled as with satellite 

imagery since the study objective was to identify how RS data at different spatial scales would 

compare to predict ground vegetation. 

 

3.2.6 Statistical and spatial analysis 

Regression variables 

Test of normality and outlier analysis were performed on the LAI data and the outliers (LAI <0.5 

or >5) were removed from further analysis. Our previous study (Chapter 2) showed topography 

and soil moisture influence vegetation abundance and distribution through elevation, topographic 

position, and soil moisture availability; hence TVs were used along with VIb or VIn to predict 

ground vegetation. Multiple regression analysis was performed with the field-measured variables 

(LAI and VIn) as the dependent variables, and the satellite-derived (VIb) and terrain variables as 

the independent variables (Table 3.3). Five prediction models were tested on the three images at 

four different scales - a total of 60 prediction models (see Table 3.2). 
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Table 3.3 Regression prediction models tested on each image of specific spatial scale. Total of 

60 prediction models were tested. Number of observations (n) = 686. 

Model Dependent variables Independent variables 

1 LAI NDVIb, WI, Elevation, Slope, Aspect 

2 LAI ATSAVIb, WI, Elevation, Slope, Aspect 

3 NDVIn NDVIb, WI, Elevation, Slope, Aspect 

4 NDWIn NDWIb, WI, Elevation, Slope, Aspect 

5 ATSAVIn ATSAVIb, WI, Elevation, Slope, Aspect 

 

It was also of interest to identify how effectively the VIn could predict LAI at the finest scale (1 

m), therefore the following regression models were additionally tested: 

 

LAI = NDVIn + WI + Elevation + Slope + Aspect      (3.2) 

LAI = NDVIb + WI + Elevation + Slope + Aspect      (3.3) 

 

Regression analysis 

The global regression model can be written as: 

 

y = β0 + β1x1 + β2x2 + β3x3 + ε        (3.4) 

 

where y is the dependent variable, β0 the intercept, x1 to x3 are three independent variables, β1 to 

β3 the estimated coefficients, and ε is the random error term. 

The global regression model assumes that the relationship under study is spatially constant, i.e. 

the observations are independent of one another and the estimated parameters remain constant 

over the study area. Another condition of the linear regression model is that the residuals are 

normally and independently distributed with a mean of zero and a constant variance, and such a 

model is usually fit using the ordinary least squares (OLS) regression. However, these 

assumptions of the global regression model are violated when the variables are spatially 

autocorrelated (i.e. similarity between any pair of observations at smaller distances than those 

farther away), spatially dependent (i.e. nearby locations having similar values), or with non-

stationarity (i.e. relationship between the variables varies over the geographical space, and 

therefore prediction estimates become unreliable over the entire study area. Spatial regression 
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(SR) methods have been developed to overcome these limitations with OLS, especially with 

spatial data sets, by accounting for two types of spatial autocorrelation (SA): spatial lag and 

spatial error (Anselin, 1988). The spatial error model is appropriate when there is dependency 

structure in the residual term, and the spatial lag model is suitable when a spatial structure is 

present in the model variables. 

 

Regression models 

Our first objective was to identify the effective predictor variables to estimate ground vegetation 

through regression modeling; therefore all variables of interest were checked for multi-

collinearity (i.e. high degree of correlation between the predictor variables) using the condition 

number and the variation inflation factor (VIF). Since SA is inherent in most ecological and RS 

data sets, the Moran‟s I statistic in ESRI
® 

ArcGIS was used to identify if the data sets showed 

any significant SA. If the data sets were found to be spatially dependent, SR were used to 

incorporate the spatial component in the regression models. Stepwise regressions were 

performed in SPSS 17 on the variables of interest to identify the best prediction models (Table 

3.3). The best predictor models identified from stepwise regression were further used in GeoDA 

0.9.5-i (Anselin, 2005) to run OLS regressions with diagnostic tests for non-normality, 

heteroskedasticity, and spatial dependence, in addition to being used to assess whether or not the 

consideration of the incorporation of the spatial component would improve the modeling results. 

OLS was followed by selecting the appropriate SR model: spatial lag or spatial error, suggested 

by the OLS diagnostic tests. 

Spatial weight files were created at 100 m threshold distances following Anselin (2002). GeoDA 

provides spatial diagnostics tests (Lagrange Multiplier (LM) test statistics: LM Lag or LM Error, 

and Robust LM Lag or Robust LM Error) to check if the data sets were spatially dependent and 

were further used to decide which exact SR model to be run, i.e. spatial lag or spatial error. For 

each satellite image, OLS and SR were run at the original spatial scale (10, 20, 30 m) and also at 

the resized coarser spatial scales (40, 50, 60 m). The regression prediction models at various 

spatial scales, including original and upscaled scales, were compared using the R
2
 value (R

2
adj.) 

and the corrected Akaike Information Criterion (AICc; see Fotheringham (2002)) for further 

details) values. AIC (Hurvich et al., 1998) is a measure of goodness of fit that can be used to 

compare different regression models. As a general rule, the lower the AICc value the closer the 
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approximation of the model to reality. Fotheringham (2002) recommends that the best model is 

the one with the lowest AICc and a real difference exists between the two regression models only 

if the AICc values differ by at least 3. Note that the same type and number of predictor variables 

(Table 3.3) and number of observations (n = 686) were used in each model and across its 

different image scales. 

 

3.3. RESULTS AND DISCUSSION 

 

3.3.1 Topographic variability of biophysical variables 

Descriptive statistics for LAI, green plant cover, and VIn (Table 3.4) showed that the average 

value for all the variables differed significantly in the lowland, the sloped land, and the upland 

prairie, indicating the effect of topography in affecting vegetation distribution and abundance. 

Topography affects the dynamics of water and run-off and ultimately influences the spatial 

patterns and variability of vegetation by effecting the availability of water and nutrients for plant 

growth. The effect of slope and aspect on vegetation patterns has been demonstrated in several 

ecological and remote sensing studies. 

Table 3.4 Mean values for plant cover, LAI, and VIn at three topographic groups. LAI, NDVIn, 

NDWIn, and ATSAVIn are unitless. 

Topographic 

group 

Elevation 

(m) 

Green plant 

cover (%) 

LAI NDVIn NDWIn ATSAVIn 

       

Upland 913.2 49.50 0.695 0.39235 -0.13808 0.19678 

Sloped 818.7 65.67 1.291 0.55150 -0.07384 0.32831 

Lowland 773.5 60.12 2.263 0.67648 -0.04691 0.41774 

Mean 785.5 60.79 2.050 0.64634 -0.05427 0.39565 

S.D. 31.3 23.56 1.210 0.19973 +0.08083 0.16711 

 

3.3.2 Comparison of biophysical variables 

Studies have demonstrated a strong relationship between LAI and VI (Thenkabail et al, 2000). 

Similarly, Pearson‟s correlation analysis showed that LAI and all VIn or VIb were positively 

correlated (Table 3.5); though NDVI and ATSAVI showed stronger relationship when compared 
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to NDWI. VIn were positively correlated to VIb (R = 0.47-0.61) demonstrating that both data 

sets, even though acquired at different spatial scales (canopy- or satellite-level) are comparable 

and represent similar vegetation properties of greenness and wetness. VIn (R = 0.60-0.69) 

showed stronger positive relationship to LAI when compared to VIb (R = 0.46-0.48). This is to 

be expected as spectral reflectance collected directly over the plant canopy has less interference 

due to atmospheric effects and minimal spectral contamination from background materials. 

Vegetation in the uplands and sloped lands have sparse cover, shorter with larger gaps in the 

canopy, and with relatively higher amount of standing dead or non-photosynthetic vegetation 

(NPV) component. Therefore, VIb derived from satellite spectral reflectance is likely 

contaminated by background materials that add higher amount of reflectance to the red spectral 

region and thereby reducing the efficiency of VI. Zhang and Guo (2007) have reported weak 

relationships between green biomass and VIb for the northern mixed prairie. 

Negative correlation was observed for elevation (R = - 0.18 to -0.31) and slope (R = -0.17 to -

0.24) to both VIn  and VIb, thereby further supporting the fact that topography controls the 

dynamics of surface water run-off and soil moisture variation to determine spatial patterns of 

vegetation. This trend was evident in our field observations as vegetation cover decreased with 

increase in elevation (Table 3.4). Pearson‟s correlation analysis revealed that VI showed similar 

trend to LAI, elevation, slope, aspect, and WI. VI and LAI showed positive relationship to 

elevation and slope, i.e. higher VI and LAI at lower elevation and slope. 
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Table 3.5 Matrix showing the relationship between LAI, VIn, VIb, and the terrain variables. Nature of the relationship (positive or 

negative), Pearson‟s correlation coefficients, and their level of significance are shown. Note that variables suffixed with a 
b
 were 

significant only at the 0.01 level. 

 Variable NDVIn NDWIn ATSAVIn LAI NDVIb NDWIb ATSAVIb Elevation Slope Aspect WI 

NDVIn 1                     

NDWIn 0.843
a
 1 

         
ATSAVIn 0.970

a
 0.852

a
 1                 

LAI 0.691
a
 0.602

a
 0.689

a
 1 

       
NDVIb 0.613

a
 0.480

a
 0.609

a
 0.481

a
 1             

NDWIb 0.569
a
 0.474

a
 0.569

a
 0.462

a
 0.953

a
 1 

     
ATSAVIb 0.611

a
 0.478

a
 0.607

a
 0.478

a
 1.000

a
 0.957

a
 1         

Elevation -0.263
a
 -0.176

a
 -0.240

a
 -0.308

a
 -0.257

a
 -0.203

a
 -0.246

a
 1 

   
Slope -0.170

a
 -0.180

a
 -0.180

a
 -0.170

a
 -0.229

a
 -0.241

a
 -0.234

a
 0.338

a
 1     

Aspect 0.001 -0.005 0.008 0.003 -0.083 -0.072 -0.083 0.156
a
 0.300

a
 1 

 
WI 0.028 0.029 0.047 0.101

b
 0.085 0.116

b
 0.087 0.039 0.034 0.386

a
 1 

a
Significant at the 0.001 level (2-tailed). 

b
Significant only at the 0.01 level (2-tailed).
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3.3.3 Predictive abilities of RS data at various scales 

He et al. (2006) found that ATSAVI or its modified version, L-ATSAVI (litter-corrected 

ATSAVI), improved estimation of LAI in the northern mixed prairie due to their usefulness in 

minimizing background (soil or litter) effects. However, our comparison of three VIb: NDVIb, 

NDWIb and ATSAVIb used in this study did not show ATSAVI to be more useful than NDVI or 

NDWI (Table 3.6b). Similar results were obtained when VIn were used to estimate LAI to further 

supporting this conclusion (Table 3.6a). Li and Guo (2010) also report NDVI to be performing 

better than L-ATSAVI for LAI estimation. However, majority of our sampling sites were in the 

lowland prairie, therefore ATSAVI or L-ATSAVI might be more useful in upland prairie or in 

sites with high soil or litter. Yet, Davidson and Csillag (2001) in upland prairie sites, compared 

broadband ratio-based and soil-adjusted VI calculated from plot-level spectroradiometer-derived 

spectral reflectance and upscaled to 0.5, 2.5, 10, and 50 m, and found that NDVI was comparable 

or only slightly less inferior to SAVI for predicting aboveground live biomass.
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Table 3.6 Predictive abilities of remotely sensed data at four spatial data scales (1, 10, 20, 30 m) to estimate LAI and VIn. Dependent 

variables are given in the first column, and r
2
 adjusted values are given. All relationships were significant at p < 0.01. 

 

(a) Field remote sensing (1 m): 

Data scale 
Spectroradiometer (1 m) 

NDVIn NDWIn ATSAVIn 

LAI 
0.48 0.36 0.47 

 

(b) Satellite remote sensing (10, 20, 30 m): 

Data scale 
SPOT-5 (10 m) SPOT-4 (20 m) Landsat-5 (30 m) 

NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb NDVIb NDWIb ATSAVIb 

LAI 0.23 0.21 0.23 0.25 0.25 0.25 0.25 0.25 0.25 

NDVIn 0.38 
  

0.38 
  

0.36 
  

NDWIn 
 

0.22 
  

0.19 
  

0.21 
 

ATSAVIn 
  

0.37 
  

0.35 
  

0.34 
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Moran‟s I statistics revealed that the data sets were spatially autocorrelated and thereby violated 

the conditions of the global regression model, making the OLS modeling results unreliable. The 

OLS diagnostic tests confirmed this and further suggested which SR model to be selected: spatial 

lag or spatial error. Results from OLS and SR modeling and their R
2
 and AICc values are shown 

in Table 3.7 and Table 3.8, respectively. The selection of the SR model over the OLS model was 

evident by significant reduction in AICc and improvement in R
2
 values. Note that the OLS results 

are shown only to compare with the SR and to demonstrate their inferiority over SR. Also, often 

the spatial error regression model was selected over the spatial lag, therefore only the results 

from the spatial error regressions are discussed.
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Table 3.7 Results of OLS (ordinary least squares) models for the SPOT-5 (S5), SPOT-4 (S4), Landsat-5 (L5) images. Shown are R
2
 

(top cell) and its AICc (bottom cell) values for each image scale for a specific model. TVs (Terrain variables). Note that OLS results 

are given only for comparing with SR (spatial regression) and to highlight their inferiority compared to SR. n = 686. 

 Scale (m) 
Model 1 (LAI = NDVIb + TVs) Model 2 (LAI = ATSAVIb + TVs) 

S5 S4 L5 S5 S4 L5 

10 
0.275 0.279 0.285 0.275 0.280 0.283 

1999.20 1996.14 1990.05 1999.92 1995.45 1992.27 

40 
0.309 0.277 0.294 0.308 0.277 0.292 

1966.61 1997.91 1981.12 1968.04 1997.43 1982.98 

50 
0.274 0.275 0.276 0.274 0.276 0.275 

2000.31 1999.82 1998.75 2000.77 1998.46 1999.27 

60 
0.281 0.273 0.276 0.279 0.274 0.275 

1993.83 2001.60 1998.34 1995.52 2000.92 1999.97 

 

 Scale (m) 
Model 3 (NDVIn = NDVIb + TVs) Model 4 (NDWIn = NDWIb + TVs) Model 5 (ATSAVIn = ATSAVIb + TVs) 

S5 S4 L5 S5 S4 L5 S5 S4 L5 

10 
0.395 0.393 0.378 0.238 0.203 0.221 0.384 0.371 0.362 

-597 -595 -578 -1680 -1649 -1664 -830 -815 -805 

40 
0.417 0.399 0.401 0.235 0.206 0.232 0.400 0.381 0.385 

-622 -602 -604 -1677 -1652 -1675 -847 -826 -830 

50 
0.386 0.402 0.385 0.211 0.207 0.218 0.378 0.384 0.376 

-587 -605 -586 -1656 -1652 -1662 -822 -829 -820 

60 
0.361 0.380 0.354 0.181 0.176 0.187 0.347 0.365 0.342 

-559 -580 -552 -1630 -1626 -1635 -789 -809 -783 
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Table 3.8 Results of SR (spatial regression) models for the SPOT-5 (S5), SPOT-4 (S4), Landsat-5 (L5) images. Shown are R
2
 (top 

cell) and its AICc (bottom cell) values for each image scale for a specific model. TVs (Terrain variables). n = 686. 

 Scale (m) 
Model 1 (LAI = NDVIb + TVs) Model 2 (LAI = ATSAVIb + TVs) 

S5 S4 L5 S5 S4 L5 

10 
0.444 0.447 0.450 0.443 0.447 0.450 

1848.73 1843.75 1839.67 1849.22 1844.00 1840.16 

40 
0.452 0.440 0.442 0.452 0.440 0.442 

1834.48 1851.00 1846.85 1835.34 1851.56 1847.53 

50 
0.424 0.430 0.428 0.424 0.430 0.428 

1869.76 1862.68 1864.59 1869.65 1862.25 1864.2 

60 
0.431 0.436 0.436 0.431 0.436 0.436 

1861.01 1855.98 1855.87 1861.01 1856.11 1855.86 

 

 Scale (m) 
Model 3 (NDVIn = NDVIb + TVs) Model 4 (NDWIn = NDWIb + TVs) Model 5 (ATSAVIn = ATSAVIb + TVs) 

S5 S4 L5 S5 S4 L5 S5 S4 L5 

10 
0.471 0.460 0.460 0.290 0.274 0.283 0.448 0.434 0.439 

-669 -657 -656 -1717 -1699 -1709 -887 -871 -875 

40 
0.469 0.456 0.458 0.286 0.272 0.281 0.444 0.432 0.435 

-673 -655 -657 -1713 -1699 -1709 -887 -871 -876 

50 
0.443 0.453 0.448 0.266 0.265 0.267 0.421 0.427 0.425 

-639 -652 -644 -1694 -1693 -1696 -860 -867 -864 

60 
0.418 0.436 0.423 0.238 0.251 0.249 0.399 0.413 0.404 

-609 -630 -613 -1668 -1678 -1678 -832 -850 -836 
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Fig. 3.2 shows the trends for R
2 

(Fig. 3.2) and AICc (Fig. 3.3) values from SR modeling for the 

three satellite images at original and upscaled scales. Comparison of R
2

 and AICc values for 

imagery showed that RS data at finer scales had the highest predictive ability to estimate ground 

vegetation (LAI or any of NDVIn, NDWIn, ATSAVIn) than upscaled coarser scales. At the 

original spatial scale (10, 20, 30 m), all three imagery were comparable in modeling ground 

estimates (Table 3.7 and Fig. 3.2); with Landsat being slightly better in the LAI prediction. E.g. 

for LAI-NDVIb, SPOT-5 (R
2

 = 0.44, AICc = 1848) and Landsat-5 (R
2

 = 0.45, AICc = 1839) 

performed similarly. A similar trend was observed in the case of LAI-ATSAVIb , SPOT-5 (R
2

 = 

0.44, AICc = 1849) and Landsat-5 (R
2

 = 0.45, AICc = 1840); considered significant as the AICc 

difference between the models is >3 (Fotheringham, 2002). However, SPOT-5 was better in the 

modeling of VIn with higher R
2
 and significant reduction in AICc for the models, e.g. for NDVIn-

NDVIb, SPOT-5 (R
2

 = 0.47, AICc = -597) and Landsat-5 (R
2

 = 0.46, AICc = -578), and in the case 

of ATSAVIn-ATSAVIb, SPOT-5 (R
2

 = 0.44, AICc = -830) and Landsat-5 (R
2

 = 0.43, AICc = -

805).
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Fig. 3.2 Graphs showing the trends for R
2
 values for the SPOT-5 (S5), SPOT-4 (S4), Landsat-5 (L5) images at original scale (10, 20 or 

30 m) and upscaled common scales (40, 50 and 60 m). Graphs are arranged in the order of Model 1 (LAI = NDVIb + TVs), Model 2 (LAI 

= ATSAVIb + TVs), Model 3 (NDVIn = NDVIb + TVs), Model 4 (NDWIn = NDWIb + TVs), and Model 5 (ATSAVIn = ATSAVIb + TVs), 

respectively. TVs (WI, Elevation, Slope, Aspect). Number of observations (n) = 686.
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Fig. 3.3 Graphs showing the trends for AICc values for the SPOT-5 (S5), SPOT-4 (S4), Landsat-5 (L5) images at original scale (10, 20 

or 30 m) and upscaled common scales (40, 50 and 60 m). Graphs are arranged in the order of Model 1 (LAI = NDVIb + TVs), Model 2 

(LAI = ATSAVIb + TVs), Model 3 (NDVIn = NDVIb + TVs), Model 4 (NDWIn = NDWIb + TVs), and Model 5 (ATSAVIn = ATSAVIb + TVs), 

respectively. TVs (WI, Elevation, Slope, Aspect). Number of observations (n) = 686.
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In Fig. 3.2 and Fig. 3.3, it is seen that all three images show a similar weakening trend with 

upscaling, i.e. decreasing R
2 

values or increasing AICc values as the images are upscaled from 

finer to coarser resolutions. This indicates the lack of correspondence of imagery-derived data to 

field data with successive upscaling. Further supporting this result, a better relationship was 

estimated through SR models than with OLS: LAI-NDVIn (R
2

 = 0.61, AICc = 1609) and LAI-

ATSAVIn (R
2

 = 0.61, AICc = 1606) than for LAI-NDVIb (R
2
= 0.44, AICc = 1849) and LAI-

ATSAVIb (R
2

 = 0.44, AICc = 1849). In both cases of prediction of LAI or VIn from VIb showed 

that at image scales beyond 50 m, there is a sudden change in the trend indicating that 50 m 

might be the threshold scale in these type of natural ecosystems. Consistent to this, our findings 

in the same study area showed spatial scale of plant biophysical variables to be between 35 and 

200 m (Chapter 2). 

VIn were found to be better predictors than VIb in estimating LAI. The comparison of data from 

four sensors at different spatial scales revealed that finer-resolution remote sensor had the best 

predictive ability to estimate ground vegetation. The superiority of finer spatial scales over 

coarser spatial scales suggests that the coarser remote sensors are disadvantaged when imaging 

heterogeneous land cover such as the mixed prairie. As the sensor resolution become coarser, 

spectral reflectance from different surface cover within the IFOV of the remote sensor are mixed 

into a single pixel and thereby weakening the relationship between VIn and VIb. This highlights 

the issues of spectral mixing and the problem of „mixed pixels‟ in these types of ecosystems. 

Small (2004) has discussed the effects of mixing of spectral signals, dimensionality of the 

spectral mixing space, and their consequence for spectral analysis with regard to Landsat ETM+ 

imagery. 

Studies in the northern mixed prairie have estimated the spatial scale of variation of NDVI as: 35 

m (Govind), 55 m (Zhang and Guo, 2007), 70 m (He et al., 2006), and that of LAI from 62 m, 70 

m, 76 m, respectively. Govind also found that the comparison of the range values of NDVI 

estimated from finer spatial scales had a lower range (35 m, VIn) than those estimated from 

coarser spatial scales (66 m, VIb). These range values for NDVI and LAI suggest that the spatial 

dependency of these biophysical variables is within 80 m. The spatial scale of RS data is 

sensitive to the heterogeneity of the land cover, and as the spatial scale of the sensor becomes 

coarser it tends to average the spectral reflectance of different surface materials and produce a 
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mixed (composite) spectra and thereby weakening the relationship between satellite- and ground-

estimates. 

Nevertheless, Landsat imagery performed only slightly less better when compared to the SPOT 

imagery suggesting that Landsat can be safely used to study vegetation and ecosystem processes 

in the northern mixed prairie despite its at coarser spatial resolution. Compared to the SPOT 

sensor, the Landsat sensor offers finer spectral resolution, larger image footprint, and 

significantly reduced costs. Note that the Landsat-7 ETM+ and Landsat-5 TM sensor have now 

failed and are out of operation, however USGS launched Landsat-8 in 2013 and continue to 

provide low-cost earth observation data as a part of the Landsat Data Continuity Mission 

(LDCM). 

 

3.4 CONCLUSIONS 

 

This study tested the effectiveness of RS data at various spatial scales to predict field estimates 

and how they compare at their original scales and when upscaled to coarser scales. In general, we 

found finer spatial scales to be more effective than coarser scales in estimating ground vegetation 

in the northern mixed prairie. As the spatial scale of the remote sensor became coarser, their 

ability to estimate ground vegetation decreased. This can be attributed to the fact the northern 

mixed prairie is heterogeneous, both spatially and spectrally. As the spatial scale becomes 

coarser, the IFOV of the remote sensor is imaging a larger ground area and therefore if the 

surface cover is heterogeneous, spectral reflectance from different materials are non-linearly 

mixed to create the problem of mixed pixels. Further, reflectance from non-green components 

such as dead plant material, litter, and soil add to the vegetation spectrum, thereby reducing the 

efficiency of VI which are based on the amount of reflectance in the red (R) and infrared (IR) 

region. 

With the increasing application of remote sensing in ecological applications, it is critical to 

choose remote sensors at the optimum scale for any ecosystem analysis. Rahman et al. (2003) 

estimated the spatial scale of variation of NDVI using semivariogram analysis and recommended 

that the optimum pixel size to study ecosystem processes should be roughly within half of the 

range value. Similarly, with the range values for the plant biophysical variables estimated 

through our study at <80 m (see Chapter 2), pixel sizes of 30 m or finer are recommended as 
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ideal for studying the northern mixed prairie. Vegetation in the northern mixed prairie is also 

spectrally unique showing spectral diversity, spatially and temporally. Therefore, the choice of 

spatial resolution over spectral resolution should not be the default choice as the identification 

and mapping of land cover may be affected by using imagery with high spatial resolution but of 

poor spectral resolution. 

The effects of SA in ecological and spatial data sets including RS data sets have been 

acknowledged in the past, however only recently have statistical or geostatistical methods to 

incorporate these spatial effects become prevalent. Spatial regression (SR) and geographically 

weighted regression (GWR) are now available in software packages such as ArcGIS, GeoDA, 

GWR (Geographically Weighted Regression), Surfer, SAGA (System for Automated 

Geoscientific Analyses), SpaceStat, R, SAM (Spatial Analysis for Macroecology; Rangel et al., 

2010) and PASSAGE (Pattern Analysis, Spatial Statistics and Geographic Exegesis; Rosenberg 

and Anderson, 2011) to incorporate the effects of spatial- autocorrelation and dependency. In this 

study, SA was present in the data sets at finer resolution and the use of SR methods in-lieu for 

global regression methods accounted for the spatial dependency in the vegetation data sets. 

Considering the violations to the conditions of the global regression model and significant 

improvement in prediction results, researchers are encouraged to consider adopting SR methods 

for modeling vegetation parameters. Much of the previous studies have ignored these spatial 

effects, and some researchers (Dale and Fortin, 2002) suggest that majority of the past research 

and their findings may be re-examined for effects of SA and how ecological predictions would 

differ if SA effects were accounted in the data sets. We believe that augmenting ground-based 

hyperspectral data with coarser space-borne satellite data is an ideal approach to understand the 

spatial heterogeneity of the northern mixed prairie vegetation. 
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CHAPTER 4 

 

VEGETATION MAPPING IN THE NORTHERN MIXED PRAIRIE USING SPECTRAL 

UNMIXING APPROACHES 

 

ABSTRACT 

 

Landscape-level vegetation mapping in semi-arid regions with sparse vegetative cover and high 

heterogeneity (spatial and spectral) pose challenges with „mixed pixels‟ and non-linear mixing 

when traditional whole pixel-based image classification approaches are used on medium-

resolution imagery. Spectral unmixing approaches such as the multiple endmember spectral 

mixture analysis (MESMA) have been suggested to overcome these limitations to a certain 

extent by improved modeling of sub-pixel variability. 

In this study, MESMA was used for vegetation mapping with three multispectral satellite 

images: SPOT-5 (10 m), SPOT-4 (20 m), and Landsat-5 (30 m) using 97 optimal endmembers 

(em) representing green vegetation (GV), non-photosynthetic vegetation (NPV), and soil 

identified for the West Block of Grasslands National Park of Canada. 

Results showed MESMA to be more effective than the simple SMA and produced improved 

vegetation maps compared to the whole pixel-based or object-oriented classifiers. MESMA 

successfully captured the spatial heterogeneity of vegetation and incorporated the spectral 

variability of land cover within the study area. By developing a comprehensive region-specific 

endmember library and identifying optimal endmembers, MESMA was useful in mapping the 

dominant vegetation types and estimating sub-pixel fractions of GV, NPV, and soil for the study 

area. The efficiency of spectral unmixing was found to be highly dependent on the identification 

of optimal endmembers, however not all endmembers were successfully modeled. Comparison 

of MESMA on the three images showed spectral resolution to be important over spatial 

resolution. 3-em models were found to be better suited than the 2-em models for modeling 

vegetation types in the study area, however the availability of only multispectral imagery limited 

the full unmixing capability. The methodology presented is more effectively used on 

hyperspectral imagery if it becomes available for the northern mixed prairie. Nevertheless, map 
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products derived from spectral unmixing are useful for monitoring and management of native 

and invasive vegetation, habitat- and fire-modeling, and effective park management. 

 

4.1 INTRODUCTION 

 

4.1.1 Northern mixed prairie 

The northern mixed prairie is ecologically significant and represents one of the most endangered 

habitats on Earth (Gauthier et al., 2003). In addition to the land use-land cover changes due to 

human activities such as agriculture, grazing, and oil and mineral exploration, studies have 

pointed that the effects of climate change in these ecosystems can be significant (Li and Guo, 

2014). Ecological and biodiversity conservation efforts in this ecoregion have suggested that the 

conservation and maintaining heterogeneity of the native prairie vegetation are the best ways to 

manage the population of the endangered fauna and to maintain the ecological integrity. 

Therefore, continued monitoring of these ecosystems is critical, and efficient monitoring 

warrants methods which are small-scale, long-term, continuous, and cost-effective (Fraser et al., 

2009; Wulder et al., 2008, 2012). 

Remote sensing (RS) has become increasingly popular in ecosystem studies due to its ability to 

provide multi-scalar, multi-spectral, and multi-temporal datasets at reasonable costs (Kerr and 

Ostrovsky, 2003; Cohen and Goward , 2004). Some popular methods of vegetation monitoring 

using RS are through image classification and mapping, change-detection, and image 

transformation (i.e. spectral vegetation indices (SVI). Among the vegetation mapping methods 

include field GPS-based mapping (Michalsky and Ellis, 1994), interpretation and mapping from 

aerial photographs (Penniket et al., 2004; Thorpe et al., 2005), and image classification of 

remotely sensed datasets using pixel-based, object-oriented, or neural network classifiers (He, 

2009; Zhou, 2007). However, many challenges exist for the efficient RS and vegetation mapping 

of semi-arid ecosystems such as the northern mixed prairie (Davidson, 2001; Okin et al., 2001). 

The northern mixed prairie is characterized by sparse vegetative cover, high surface 

heterogeneity, and high spatial and spectral variability at relatively small spatial and temporal 

scales (Zhang, 2008). High amounts of standing dead vegetation (Yang and Guo, 2014; Xu et al., 

2014) and bare soil add linear mixing to the reflected vegetation spectrum. Therefore, spectral 

mixture of endmembers due to multiple scattering by plant canopies and soil surfaces makes it 
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non-linear (Roberts et al., 1993; Ray and Murray, 1996). Similar to other arid environments, 

poor performance of SVI due to non-linear mixing and background noise from soil and litter has 

been reported in the northern mixed prairie. 

 

4.1.2 Spectral unmixing approaches, background, and relevance 

Traditional image classification methods (unsupervised, supervised, or object-oriented) are 

whole pixel-based and treat each image pixel as a homogenous land cover or as a single feature 

class (a „pure pixel‟). However, as the spatial heterogeneity of the land cover becomes complex 

(i.e. more spatially heterogeneous) or as the instantaneous field of view (IFOV) of the remote 

sensor becomes larger (i.e. towards coarser spatial scales), the surface reflectance spectra 

recorded by the remote sensor becomes „non-linearly mixed‟ (see Somers et al., 2011) with the 

individual reflectance spectra of several land cover combined into a single image pixel (a „mixed 

pixel‟). Thus, the whole-pixel approaches become less efficient and classification methods such 

as the spectral mixture analysis (SMA) that can effectively incorporate sub-pixel spectral 

variability become more relevant. 

The basic assumptions of SMA are: i) the landscape is composed of few endmembers that are 

distinctly spectrally variable; ii) the spectral signature of each endmember is constant and the 

entire remotely sensed scene (within the IFOV) can be modeled by using few spectrally-constant 

endmembers; and iii) the spectral signal of a pixel can be modeled as linear fractions of 

endmembers within the pixel. In SMA, the reflectance spectrum of a „mixed pixel‟ is modeled as 

the sum of pure ground component endmember spectra, each weighted by the fraction of an 

endmember  required to produce the mixture and multiplied by their fractional cover (Adams et 

al., 1993; Roberts et al., 1993; Somers et al., 2011). Hence, the reflectance of an image pixel 

(  ) can be written as: 

1

*
N

i i

i

f    


             (4.1) 

where i is the spectral reflectance of an endmember (i) for a specific band (λ), N is the number 

of endmembers, endmember fraction ( if ), and  is the residual error (Dennison and Roberts, 

2003). The fit of an endmember model to an image pixel for M bands can be estimated using 
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model residuals (  ) or the root mean square error (RMSE; Roberts et al., 1998). RMSE is 

calculated as: 

 
2

1

M

RMSE
M








          (4.2) 

SMA has advantage over the whole pixel-based approaches as it provides physically meaningful 

measures of land cover by accounting for sub-pixel mixing. Yet, SMA fails to account for the 

pixel-scale variability in spectral dimensionality, spectral degeneracy between materials and the 

variation in the natural spectral response of most materials (VIPER 1.5 Manual). SMA is limited 

as it models every image pixel using only a fixed number of endmembers and cannot fully 

account for the spectral variability of endmembers. As a result, simple SMA under-utilizes the 

potential of most RS datasets for discriminating surface materials while at the same time 

producing fractional errors due to the incorrect type or number of endmembers used to unmix a 

specific image pixel (VIPER 1.5 Manual, 2007). Inability to account for non-linear mixing is 

another acknowledged limitation of SMA (Adams et al., 1993). Non-linear mixing is significant 

in semi-arid environments, however in most cases the effects of multiple scattering are assumed 

to be negligible. 

 

Multiple endmember spectral mixture analysis (MESMA) is an improvement over simple SMA 

and allows the number and types of endmembers to vary on a per-pixel basis (Roberts et al., 

1998). MESMA overcomes the limitations of SMA by testing multiple unmixing models for 

each image pixel that provide the best-fit by requiring the model to meet specified minimum fit, 

fraction and residual constraints. MESMA is typically implemented by developing spectral 

libraries (field-collected or image-derived) which are used to unmix an image using every 

possible combination of endmembers. Using MESMA, materials can be mapped across an image 

while minimizing pixel-scale fraction errors by selecting the best-fit model for each pixel. The 

endmember fractions from SMA are typically interpreted as ground component fractions, and 

studies have shown that the quantitative comparisons of ground cover to unmixed fractions to be 

highly accurate over a diverse number of surfaces (Elmore et al., 2000; Painter et al., 2003; 

Powell et al., 2007). Further, SMA fractions have been suggested to be more robust than the 

traditional SVI and also strongly linked to the plant biophysical parameters (Dennison and 
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Roberts, 2003a). Applications of MESMA include improved LAI estimation in boreal forests 

(Sonnentag et al., 2007) and mapping of plant species (Roberts et al., 1998; Dennison and 

Roberts 2003a,b; Roberts et al., 2003), invasive plant species (Ustin, 2010), soil in arid 

environments (Okin et al., 2001), landforms (Ballantine et al., 2005), fire temperature (Dennison 

et al., 2006), snow cover (Painter et al., 1998; 2003), and urban environments (Rashed et al., 

2003; Powell et al., 2007; Franke, 2010). 

 

4.1.3 Research objectives 

SMA is usually performed using satellite or airborne hyperspectral imagery, and majority of the 

previous research have employed MESMA on hyperspectral imagery such as AVIRIS or 

HyMap. These data sets are often difficult to acquire due to financial or logistical constraints or 

simply unavailable for many study sites, including the northern mixed prairie. New and archived 

multispectral satellite imagery such as Landsat and SPOT are readily available at lower costs and 

at good temporal resolutions and therefore present opportunities for ecologists and decision-

makers to utilize them for small-scale, long-term, continuous, and cost-effective mapping and 

monitoring purposes. Few studies (Song, 2005; Powell, 2006, 2007; Quintano et al., 2013) have 

tested the feasibility of MESMA on medium-resolution multispectral satellite imagery. Hence, 

this study was interested in identifying the feasibility of applying MESMA for vegetation 

mapping in the northern mixed prairie. Also, comparison of spatial scale of RS data and its effect 

on efficiency of spectral unmixing have not been explored in any of the previous studies. 

Therefore, the objectives of this study were: 

(i) To explore the potential of spectral unmixing strategies for identifying and mapping the 

dominant vegetation types in the northern mixed prairie and for estimating their fractional 

endmember abundances; 

(ii) To identify and select the optimum endmembers for landscape-level vegetation mapping; 

(iii)To investigate the role of spatial scale of RS data in the performance of spectral unmxing for 

vegetation mapping. 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Study area 

Field data for this study was collected from the West Block of Grasslands National Park of 

Canada (GNPC; +49º12‟ and -107º24‟) in Southern Saskatchewan (Fig. 4.1). GNPC, situated in 

the northern mixed prairie region, was established in 1984 to conserve the remnant native mixed 

prairie in Canada and with a mandate for long-term ecological monitoring and research. The 

GNPC has been protected from human disturbances for over 25 years, however grazing by bison 

(introduced) and cattle and prescribed burning are practiced in the region to maintain the 

vegetation heterogeneity. The region experiences a semi-arid climate with mean monthly 

temperature ranging from -12.4
◦
C to 18.3

◦
C and low precipitation of 150 to 325 mm 

(Environment Canada, 2003). The region has an average elevation of ~860 m, high landscape 

diversity, with chernozem as the dominant soil order (Saskatchewan Institute of Pedology, 

1992). 

Two types of vegetation, cool- and warm-season, occur in the northern mixed prairie. The 

proportion of the cool-season type is higher, however this is dependent on climate, topography, 

and soil factors (Singh et al., 1983). The West Block of GNPC is mainly dominated by upland, 

sloped, and lowland grasslands in addition to the shrub, eroded, and disturbed range types (Blood 

and Ledingham, 1986). The major plant communities include Stipa-Bouteloua, Bouteloua-Stipa, 

and Stipa-Agropyron (Coupland, 1950). Shrubs are mostly seen along the Frenchman River 

valley areas with higher soil moisture (Looman and Best, 1987) and coarse textured soils 

(Coupland, 1950). Plant growing season is relatively short (~170 days) (Csillag et al., 2001) and 

the peak plant growth occurs between June and July (Zhang and Guo, 2007; Zhang, 2008). 
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Fig. 4.1 Map showing the study area: West Block of Grasslands National Park of Canada, 

sampling locations and the vegetation landscape units (VLU; Michalsky and Ellis, 1994). 

 

4.2.2 Sampling locations and methods 

The field sampling scheme was based on the vegetation inventory data sets of Michalsky and 

Ellis (1994), Thorpe et al. (2005), Penniket et al. (2005), and a soil cover map (Saskatchewan 

Institute of Pedology, 1992). 41 sites were sampled in the West Block of GNPC (Fig. 4.1) in 

June 2006 and July 2007 corresponding to the peak vegetative growth period in the region. These 

sites represented a variety of vegetation landscape units (VLU) and topographic groups 

(Michalsky and Ellis, 1994). At each site, one cross-shaped plot (1 ha size) was randomly set up 

by running transects of 100 m each in the north-south and east-west directions. Vegetation data 

and plant biophysical data were collected at 10 m sampling intervals along each of the 100 m 

plot-transect using the methods described below. Additionally, geographic coordinates and 

elevation information were collected using a GPS at each sampling point. 

 



 

98 

 

Ground estimates of vegetation 

Vegetation cover was estimated at each sampling plot using a visual method where surface cover 

within a quadrat of 50 cm*50 cm was classified into seven groups: graminoids, shrubs, forbs, 

cacti, lichen and moss, standing dead, rock, and bare ground. The individual cover values were 

estimated in percentages and summed to obtain the total cover estimate for a single vegetation 

layer (maximum 100% cover). The total cover was further separated into green cover and 

standing dead. Plants and their species composition occuring dominantly within a quadrat were 

visually identified and recorded. 

Leaf area index (LAI) was estimated using a LiCOR LAI-2000 Plant Canopy Analyzer in 2006 

and an Accupar
®
 (Decagon, Lincoln, Nebraska) in 2007. Both these instruments work on the 

same principle and measure the amount of photosynthetically active radiation (PAR) available 

above and below the canopy to estimate LAI. LAI was measured with the LAI-2000 by 

averaging four LAI values at each quadrat corner and using the shadow method (He et al., 2007). 

Aboveground fresh biomass was estimated by clipping the aboveground vegetation at the 

ground-level within a quadrat of size 50 cm*20 cm (a GNPC stipulation). The clipped vegetation 

was placed in air-sealed bags and weighed in the field to estimate the weight of fresh (wet) 

biomass. 

 

Field spectral measurements and processing 

Spectral reflectance measurements were collected at 10 m sampling intervals using a full range 

ASD
®
 FieldSpec FR Pro spectroradiometer (Analytical Spectral Devices Inc., Boulder, 

Colorado) at a spectral resolution of 3 nm in the 350-1000 nm and 10 nm in the 1000-2500 nm 

region. Spectra were collected perpendicular to the target (quadrat or plant canopy) at a height of 

1 m and with a 25
o
 field of view. All spectral measurements were calibrated to apparent 

reflectance using a Spectralon reference panel (Labsphere, New Hampshire). Spectra were 

collected within ±2 hours of solar noon and under low wind and stable atmospheric conditions. 

Additionally, reference (field) endmembers for green vegetation (GV), non-photosynthetic 

vegetation (NPV), and soil classes were collected at all possible site locations to be used for 

developing spectral libraries to use in the spectral unmixing (see section 4.2.3). As the purpose of 

the study was primarily for mapping vegetation, GV endmember spectra were collected 
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specifically for the major vegetation communities in the study area. It was ensured for reference 

GV endmembers that their dominant cover was >80% within the quadrat (see Fig. 4.2). In 

addition, photoplots for the quadrats were taken vertically that ensured that the post-processed 

spectra were allotted to the correct endmember spectral library group. Few vegetation 

endmembers (viz. lichens, cacti, moss) were excluded as the collection of their pure spectra is 

impossible in the field because they appear in sparse cover, multiple layers, or inter-mixed with 

other vegetation or soil or litter and produce mixed spectra. Nevertheless, these vegetation types 

are significant to the ecology of the area and provide significant challenges to their endmember 

collection in the field. Non-linear mixing and mixed pixels are an issue with these endmembers. 

 

 

Fig. 4.2 Examples of locations from where reference endmembers were collected: green 

vegetation endmembers (a-c, g-i), soil endmembers (d-f). Note that the quadrats were placed 

subsequent to spectra collection. 
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To understand the spectral differences among the land cover classes, spectral reflectance curves 

were plotted and analyzed in SAMS
©

 (Spectra Analysis and Management System, Univ. of 

California, Davis, http://sams.projects.atlas.ca.gov/) and ViewSpec Pro (Analytical Spectral 

Devices, Boulder, CO, USA) software. The primary water absorption regions ~1400 and ~1900 

nm were removed from the spectra before spectral analysis. 

 

4.2.3 Satellite imagery and pre-processing 

Three cloud-free satellite images of spatial scales of 10, 20 and 30 m (Table 4.1) and 

corresponding with the peak vegetative growth period were acquired for the GNPC area. The 

images were individually georeferenced using a high-resolution SPOT-5 HRG1 PAN image (5 m 

panchromatic; www.geobase.ca), orthorectified (UTM 13N-NAD83) and resampled using the 

nearest neighbor scheme to their native pixel sizes. Further the images were co-registered and 

transformed from raw digital numbers to surface reflectance values using the Moderate 

Resolution Transmittance (MODTRAN4) based Fast Line-of-sight Atmospheric Analysis of 

Spectral Hypercubes (FLAASH; Anderson et al., 1999) atmospheric correction method. All 

image bands except the Landsat thermal band were used in the atmospheric correction and 

subsequent image processing. Finally, the images were clipped to the park holding boundary of 

the West Block of the GNPC (Fig. 4.1). All satellite image processing was completed in ENVI 

4.8 (ITTVIS, Boulder, CO, USA). 

Table 4.1 Details of the satellite images used in the study. 

Satellite & sensor Date of 

acquisition 

Pixel size 

(m) 

Bands used 

(names and numbers)* 

Data source 

SPOT-5 HRG1 27 July 2006 10 G,R,NIR,SWIR (1234) www.geobase.ca 

SPOT-4 HRVIR1 28 June 2006 20 G,R,NIR,SWIR (1234) www.geobase.ca 

Landsat-5 TM 17 July 2006 30 B,G,R,NIR,MIR,MIR (123457) www.usgs.gov 

* B - Blue, G - Green, R - Red, NIR - Near Infrared, SWIR – Shortwave Infrared, MIR - Mid Infrared. Band 6 (Thermal) of Landsat-5 TM image 

was excluded.  

 

The images were individually unmixed to estimate fractions of GV, NPV, and soil in the study 

area. The images of varying scales were used to understand the effect of spatial scale of RS data 

on the efficiency of spectral unmixing. MESMA was implemented using VIPER Tools 
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(www.vipertools.org), an open-source add-on for ENVI, which permits the creation and 

management of spectral libraries and their metadata, selection and optimization of endmembers, 

building unmixing models, and provides methods and constraints for spectral unmixing (VIPER 

1.5 Manual). 

 

4.2.4 Development of region-specific spectral libraries 

To unmix the satellite images, region-specific spectral libraries were developed that are 

comprehensive and yet elaborate enough to effectively capture the spectral variability of the land 

cover (surface materials) in the study area. Reference (field) endmember spectra were imported 

to ENVI and organized using a hierarchical scheme into three spectral libraries: GV, NPV and 

soil (Table 4.2). Acronyms used for the GV land cover classes are a combination of the first two 

letters of their generic and species name of the vegetation, except for NPV and soil. The source 

of plant scientific names is Harms (2006). The GV library included spectral reflectance of major 

species of native prairie grasses, shrubs, forbs, and exotic grasses (smooth brome and crested 

wheat). NPV included dead grass, senesced grass, and dead branches or burnt stems of shrubs. 

The soil library consisted of spectra for bare soil, out-wash plains, and exposed rock or gravel. 

Therefore, the spectral libraries compiled were representative of the surface materials (cover) 

seen at the sampling sites. 

As the field endmembers do not scale-up to the reflectance spectra collected by the satellite 

sensor (Powell, 2006) or contain the same systematic errors from atmospheric correction as the 

image (Settle and Drake, 1993), a few image endmembers were additionally identified from the 

Landsat-5 TM image using the Pixel Purity Index (PPI; Boardman et al., 1995) algorithm. To 

reduce the spectral data dimensionality and to estimate the inherent noise in the satellite image, a 

minimum noise fraction (MNF; Green et al., 1998) procedure was performed which resulted in 

only the first three MNF fractions showing high eigenvalues and high spatial coherency. These 

first three MNF fractions were subsequently used for PPI mapping using a threshold level of 0.02 

and 35,000 iterations to identify the pure endmembers. The PPI threshold level was estimated by 

gradually increasing the numbers of iterations until no more spectrally pure pixels (those with the 

highest PPI values) were obtained. Using the n-D Visualizer tool in ENVI, the MNF data was 

rotated interactively and the image endmembers were identified in the feature space. The image 

endmembers were developed by exporting mean spectra from the regions of interest (ROI) and 
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compared with the reference endmembers in the spectral library. Finally, all spectral libraries 

(field-collected or image-derived) were separately convolved to the spectral regions of the 

SPOT-5 HRG, SPOT-4 HRVIR, and Landsat-5 TM sensors.
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Table 4.2 97 optimal endmembers identified to represent the land cover classes in the study area. 
No. Class Sub-class Land cover class Scientific name Acronym No. of spectra 

1 

GV 

Grass 

Needle and thread Hesperostipa comata stco 3 

2 Blue grama Bouteloua gracilis bogr 1 

3 Slender wheat grass Agropyron trachycaulum agtr 2 

4 Western wheat grass Pascopyrum smithii agsm 4 

5 Northern wheat grass Elymus lanceolatus agda 3 

6 June grass Koeleria macrantha kocr 0 

7 Kentucky blue grass Poa pratensis popr 1 

8 Sand drop seed Sporobolus cryptandrus spcr 2 

9 Nuttal‟s alkali grass Puccinellia nuttalliana punu 2 

10 Bluberg‟s sand grass Poa sandbergii posa 0 

11 Prairie muhly Muhlenbergia cuspidata mucu 4 

12 Smooth brome* Bromus inermis brin 3 

13 Crested wheat grass* Agropyron cristatum agcr 3 

14 

Shrub 

Buckbrush Symphoricarpos occidentalis syoc 6 

15 Sagebrush Artemisia cana arca 4 

16 Willow Salix canadensis saca 4 

17 Broad willow Salix sp. sasp 3 

18 Rabbit brush Chrysothamnus nauseosus chna 3 

19 Winter fat Krascheninnikovia lanata eula 2 

20 Thorny buffaloberry Shepherdia argentea shar 6 

21 Canada buffaloberry Sheperdia canadensis cash 2 

22 Goose berry Ribes oxycanthoides riox 3 

23 Wood rose Rosa woodsii rowo 5 

24 Creeping juniper Juniperus horizontalis juho 2 

25 

Forb 

Pasture sage Artemisia frigida arfr 4 

26 Prairie sage Artemisia ludoviciana arlu 3 

29 Forb Types of minor forbs forb 7 

35 Sedge Sedge Carex sp. sedge 2 

37 

NPV 

Grass Senesced/dead grass Standing dead (grass) dgrass 1 

38 Shrub Dead stem Standing dead (shrub) dshrub 3 

39 Shrub Burnt stem Result of natural/prescribed fire burnt 1 

40 

Soil 

 Bare soil Bad lands bsoil 2 

41  Exposed soil Result of soil erosion esoil 3 

42  Soil mixture Gravel, rock, soil mixture  msoil 2 
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4.2.5 Endmember selection and optimization 

The identification and selection of optimal (type and number) endmembers is a critical step for 

successful and efficient unmixing (Tompkins et al., 1997; Somers et al., 2011). The use of a high 

number of endmembers for image unmixing makes MESMA computationally demanding 

(Halligan, 2002) and also increases the confusion among the land cover types. VIPER Tools 

provides three endmember selection metrics: Count Based Endmember Selection (CoB; Roberts 

et al., 2003), Endmember Average RMSE (EAR; Dennison and Roberts, 2003), and Minimum 

Average Spectral Angle (MASA; Dennison et al., 2004) for identifying and selecting the 

optimum or representative endmembers within each class. For CoB metric, the selected optimal 

endmember is the one that models the highest number of endmembers within their class. CoB is 

used to rank endmembers based on maximizing the models selected within the correct class 

while minimizing confusion with other classes (Clark, 2005). For EAR, endmembers are selected 

that produce the lowest RMSE within a class (Dennison and Roberts, 2003), and with MASA 

those endmembers are selected that have the lowest intra-class average spectral angle (Dennison 

et al., 2004). 

Though initially a total of 1150 endmember spectra were compiled, the number of optimal 

endmembers was subsequently reduced to 85 GV, 5 NPV, and 7 soil endmembers (Table 4.2) by 

using a combination of EAR, MASA, and CoB metrics to make MESMA computationally viable 

and yet attain physically meaningful results. The optimal GV, NPV, and soil endmembers with 

the best desirable selection metric value were further used in VIPER Tools for creating 2- and 3-

endmember models (Table 4.3) and for unmixing each satellite image. 

 

4.2.6 Endmember models and spectral unmixing 

Powell et al. (2006) suggested that 2-endmember (2-em) models are best for modeling natural 

ecosystems, 3-em models for disturbed landscapes, and 4-em models for urban areas. 2-em 

models were created as combinations of a bright endmember (GV, NPV or soil) and shade, and 

are limited as they model only a single class within a pixel. Considering the large amount of 

NPV (dead or senesced vegetation and litter) and exposed soil in the study area, 3-em models 

(Table 4.3) were developed that would permit modeling more than one class (GV or NPV or 

soil) within a pixel (Okin, 2001).Therefore, MESMA was initially run with the simpler (2-em) 

models to understand the spatial distribution and trends of GV, NPV and soil classes in the study 
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area, and subsequently the successful endmembers were used to develop more complex (3-em) 

models. 

Table 4.3 Endmember models tested (type, combination, number, and spectra used). GV 

indicates green vegetation endmembers for grass, shrubs, forbs, and sedges. NV indicates non-

vegetation endmembers (dead or senesced plants, exposed or bare soil). Note: Only the 

endmembers found successful from the 2-em unmixing were further used for the 3-em model 

development and 3-em unmixing. 

Model type Model combination tested No. of models created 

(SPOT-5, SPOT-4, Landsat-5) 

No. of spectra used 

(GV, NPV, soil) 

2-em GV, NPV, soil + shade 97, 97, 97 85, 5, 7 

3-em GV + NV + shade 360, 517, 266 Depends on successful 2-em 

 

VIPER Tools provides options to constrain the unmixing based on fractions, RMSE, or residuals. 

Thus a partially constrained fit metric was adopted with a minimum allowable fraction of -0.5, 

maximum allowable fraction of 1.05, and maximum RMSE of 0.025 (Halligan, 2002; Roberts et 

al., 2003). From all the endmember models created, VIPER Tools selects the single best 

endmember model with the lowest RMSE for each image pixel and assigns the pixel class to the 

endmember with the highest fraction. The image pixel was unmodeled if the specified model 

constraints were not met. The outputs of MESMA are a spectral unmixing image which contains 

endmember fractions, shade fraction, RMSE of the unmixing model, and a metadata with the list 

of possible models, the endmembers comprising each model, and the proportion of the image 

modeled by each successful unmixing model. 

 

4.3 RESULTS AND DISCUSSION 

 

The field sampling plots (n = 686) were grouped on the basis of their elevation into three 

topographic groups: upland, sloped land, and lowland. Detailed description of the vegetation 

characteristics and the spatial variability of the plant biophysical properties observed at the 

sampling sites can be found in Chapter 2. The mean total plant cover, green-and standing dead 

cover, aboveground biomass, and LAI for the three topographic groups are summarized in Table 

4.4. 
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Table 4.4 Average total cover, LAI, and aboveground biomas at three topographic groups. 

Topographic 

group 

Elevation (m) Green cover 

(%) 

Standing dead 

cover (%) 

Aboveground 

biomass (g/m
2
) 

LAI 

Upland 913.2 49.50 7.25 119.80 0.695 

Sloped land 818.7 65.67 6.92 158.96 1.291 

Lowland 773.5 60.12 9.74 177.95 2.263 

 

Generally, higher plant cover, LAI, and aboveground biomass were seen in areas of lower 

elevation and higher soil moisture content (Table 4.4), i.e. along the Frenchman River Valley 

(Fig. 4.1). This indicates the presence of the spatial variability of vegetation characteristics and 

plant biophysical properties along topographic and moisture gradients. The major vegetation in 

the uplands included grasses such as blue grama (Bouteloua gracilis), needle and thread (Stipa 

comata), june grass (Koeleria macrantha), western wheat grass (Pascopyrum smithii), and 

northern wheat grass (Elymus lanceolatus). The lowland  riparian sites were dominated by tall- 

and low-shrubs such as buckbrush (Symphoricarpos occidentalis), buffaloberry (Shepherdia 

argentea), sagebrush (Artemisia cana), and willows (Salix sp.), and high cover of exotic grasses 

such as crested wheat grass (Agropyron cristatum) and smooth brome (Bromus inermis). Plant 

names adapted from Harms (2006). Uplands were characterized by low cover of native prairie 

grasses such as western wheat, blue grama, needle and thread. Similar vegetation distribution 

trends were observed in the standard false color composite (FCC) image where bright red tones 

of dense vegetation are along the river valley, light red tones of sparser vegetation appear in the 

uplands, and very bright tones of soil appear in the badlands. 

 

4.3.1 Spectral characteristics of reference endmembers (GV, NPV, and soil) 

This is the first study in the northern mixed prairie to explore the spectral reflectance 

characteristics of the major vegetation types, especially the lowland types. Reference (field) 

endmember spectra compiled for GV, NPV, and soil (Table 4.2) were averaged (except cases 

where only one spectra was available) to obtain mean spectral reflectance for a particular land 

cover class (Table 4.2). The mean spectra were visually analyzed for differences in their spectral 

reflectance across the 350-2500 nm region (Fig. 4.3). The different GV, NPV, and soil 

endmembers show varying spectral response in the visible (400-700 nm) and the near-infrared 

(NIR; 800-1400 nm) region corresponding to differences in plant pigment and water content. 
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Generally, the shrubs showed higher reflectance than the grasses (inter-specific variability), 

which may be attributed to the higher content of green chlorophyll pigments or higher amount of 

moisture in the canopy (Ollinger, 2010). Spectral responses were different even for the same 

plant species (intra-specific variability) growing at different locations, and this might be due to 

the influence of background materials, edaphic factors (soil: moisture, nutrients, or type), canopy 

architecture, or varying illumination conditions. Similar spectral reflectance trends were seen for 

the native prairie grasses: Pascopyrum smithii (agsm), Elymus lanceolatus (agda), Bouteloua 

gracilis (bogr), and Hesperostipa comata (stco). The spectral response for Agropyron 

trachycaulum was very similar to these grasses, but overall showed higher reflectance across all 

the spectral regions. These similarities in spectral trends might be a reason for the confusion 

among these cover types during image modeling and unmixing. These plants are of low cover 

and therefore the background noise from soil and litter materials might be adding to the spectral 

reflectance and preventing their spectral discrimination. 

Lichens or moss are often seen inter-mixed with native prairie grasses or do not appear in 

homogeneous stands to permit in-situ collection of spectrally-pure reference endmembers. 

Therefore, even if endmember spectra were obtained from other sources (viz. laboratory-based 

spectroscopy or publically available spectral libraries such as the USGS, JPL), these may not be 

adequately captured and will appear mixed with other materials in image pixels of 10, 20, or 30 

m. Some of the sub-dominant vegetation types such as forbs and sedges were not effective in the 

spectral unmixing. 
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Fig. 4.3 Average spectral reflectance of optimal GV, NPV, and soil endmembers (Table 4.2) 

used for image unmixing. Water absorption regions (~1400 and ~1900 nm) were removed from 

the full range (350-2500 nm) spectra. Acronyms of land cover classes: agcr (Agropyron 

cristatum), agda (Elymus lanceolatus), agsm (Pascopyrum smithii), agtr (Agropyron 

trachycaulum), arca (Artemisia cana), arfr (Artemisia frigida), arlu (Artemisia ludoviciana), bogr 

(Bouteloua gracilis), brin (Bromus inermis), bsoil (bare soil), burnt (fire burnt plant), cash 

(Sheperdia canadensis), chna (Chrysothamnus nauseosus), dgrass (dead grass), dshrub (dead 

shrub), esoil (eroded soil), eula (Krascheninnikovia lanata), forb (types of minor forbs), juho 

(Juniperus horizontalis), kocr (Koeleria macrantha), msoil (soil-rock mix), mucu (Muhlenbergia 

cuspidata), popr (Poa pratensis), posa (Poa sandbergii), punu (Puccinellia nuttalliana), riox 

(Ribes oxycanthoides), rowo (Rosa woodsii), saca (Salix canadensis), sasp (Salix sp.), sedge 

(Carex sp.), shar (Shepherdia argentea), spcr (Sporobolus cryptandrus), stco (Hesperostipa 

comata), syoc (Symphoricarpos occidentalis). 

 

4.3.2 Estimation of endmember fractions and mapping of vegetation types 

MESMA was successful in identifying and mapping the dominant vegetation types and 

estimating the endmember fractions of GV, NPV, and soil in the study area in contrast to the 

very broad land covers mapped by Zhou (2007) and He (2009). Fig. 4.4 shows the MESMA 

classification maps using 2-em unmixing on the SPOT-5 (4.4a), SPOT-4 (4.4b), and Landsat-5 

(4.4c) images. Note that classification maps from 3-em unmixing are not shown. The 

classification images, even with 2-em models, showed that the extent and the spatial variability 
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of the vegetation types clearly follows the distribution trends suggested by Michalsky and Ellis 

(1994) and He (2008). Visual comparison of the MESMA classification images with the 

vegetation maps from Michalsky and Ellis (1994) show that Michalsky and Ellis (1994) over-

estimated some of the vegetation types, especially the lowland riparian vegetation. This might be 

due to observer bias or over-estimation due to human error. It might also be due to the temporal 

change to these vegetation types; however this needs to be explored further. Generally the 

lowland grassland, shrubs and soil were mapped well using MESMA, however the upland and 

sloped grasslands were mapped with some confusion or misclassification. It might be that 

vegetation cover is very sparse in the uplands and the sloped lands, i.e. the dominant graminoid 

vegetation in these areas account for an average cover of only <30%. There was also high cover 

of standing dead, lichens, litter or bare ground (>15%). Therefore, the specific GV reference 

endmember spectra collected for these upland or sloped vegetation types are possibly 

contaminated by the reflectance from background soil and litter. 

Table 4.5 shows the model type and model combination tested for the three images using 2- and 

3-em models, number of successful endmember models, and the number of unmixing models 

required to model 99.9% of the image. 

Table 4.5 Number of successful endmember models and the number of unmixing models 

required to model 99.9% of the image using 2- and 3-em models. 

Model 

type 

Model combination 

tested 

No. of successful models No. of models required to model 

99.9% of the image 

SPOT-5 SPOT-4 Landsat-5 SPOT-5 SPOT-4 Landsat-5 

2-em GV, NPV, soil + shade 69 76 70 42 58 45 

3-em GV + NV + shade 289 512 262 189 458 221 

 

Unmixing with 2-endmember models 

In Table 4.5, it is seen that of the 97 2-em unmixing models tested (Table 3), the number of 

successful models on each of the three images were: 69 (SPOT-5), 76 (SPOT-4), and 70 

(Landsat-5), respectively. However, it is seen that lower numbers of models were required to 

model 99.9% of the images: 42 (SPOT-5), 58 (SPOT-4), and 45 (Landsat-5). The images were 

modeled with reasonable accuracy and the vegetation types were identified along the 
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topographical and moisture gradients; the riparian shrubs and invasive grasses were mapped 

along the Frenchman River Valley and the sparser native grasses were identified in the uplands. 

Thus, the optimal endmembers included in the spectral library were effective in capturing the 

spectral diversity of the surface materials in the study area. Few of the unmodeled pixels were 

water (the Frenchman River). High residuals were seen for the very bright pixels, i.e. the bad 

lands and areas with very dense vegetation. 

Unmixing with the 2-em models showed that the native prairie grasses (Elymus lanceolatus, 

Pascopyrum smithii, Agropyron trachycaulum, and Stipa comata), shrubs (Artemisia cana) and 

forbs (Artemisia frigida) as the dominant land cover (>80 % of the images); however this is 

slightly over-estimated (Fig. 5). This result agrees with Okin et al. (2001) who found that 

MESMA overestimates vegetation in semi-arid environments with sparse vegetative cover. Also 

taking into consideration that the soil or NPV classes are often seen mixed with GV, these 

estimates from 2-em unmixing are reasonable. Soil (esoil) was mapped as a dominant class only 

in the Landsat-5 image (5.5%), however the SPOT images did not successfully map them. 

However, analysis of the SPOT images showed that the badlands were actually classified (<1%, 

hence not shown) as exposed soil (esoil), bare soil (bsoil), or soil mixture (msoil). Sagebrush and 

smooth brome were the other types of vegetation that were identified. Shrubs commonly seen at 

field sites such as thorny buffalo berry and buckbrush were not modeled and this might be 

because these plants are often seen as isolated stands or occur in patches less than 10 m size and 

hence not resolved within an image pixel. 

As the same set of endmembers were used to model the three satellite images, the difference in 

the number of successful 2-em models between the three images (Table 4.5) may be attributed to 

the spectral variability arising due to plant phenology in the study area (Li and Guo, 2012) or due 

to the spectral resolution of the remote sensors. The Landsat-5 image was acquired in mid-July 

and the SPOT-5 image in late-July by which time most of the native grasses (except the invasive 

species which are perennial) should have begun their senescence stage. The Landsat-5 image, 

even with coarser spatial resolution, used slightly higher number of 2-em models, and this might 

be due to the better spectral resolution of the Landsat sensor when compared to that of the SPOT. 

The effect of plant phenology on endmember selection and its impact on vegetation mapping has 

been discussed by Dennison and Roberts (2003b).
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Fig. 4.4 Image outputs from MESMA: Class image (left column), endmember fraction (middle column), RMSE (right column) from 

2-em unmixing of SPOT-5 (4.4a), SPOT-4 (4.4b), and Landsat-5 (4.4c) images. In the RMSE image, darker pixels mean lower errors 

and brighter pixels mean higher error.
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Fig. 4.5 Percentage of the image SPOT-5, SPOT-4, or Landsat-5 modeled by 2-em models (1 

bright endmember+shade). Note: Only the dominant land cover that modeled >90% of each 

image is shown. Table 4.2 lists the acronyms for the land cover classes. 

 

Unmixing with 3-endmember models 

More than one plant species occur in most locations in the study area, therefore it is not 

appropriate to model an image pixel with a single bright endmember, and 3-em models were 

further tested. 3-em models should be preferable because in the majority of the study area GV is 

often seen mixed with NPV or soil, and also no single GV endmember completely dominates any 

pixel. 

It should be noted that unlike the unmixing using the 2-em models, different numbers of 3-em 

models (Table 4.3) were tested on the three images. Of the 360 models tested for the SPOT-5 

image, only 289 were found successful. Similarly for the SPOT-4 image, only 512 were 

successful out of 517 models tested. Only 262 were successful out of the 266 models tested for 

the Landsat-5 image. The number of 3-em models required to model 99.9% of the image were: 

189 (SPOT-5), 458 (SPOT-4) and 221 (Landsat-5), respectively. The high number of successful 

models gives an idea about the spectral variability of surface classes in the study area (Table 4.5) 

and points to the usefulness of hyperspectral data sets for these ecosystems. 
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Grasses were mapped as the dominant land cover in all three images (Fig. 4.7a, 4.7b, 4.7c), and 

the dominant vegetation types identified were: grasses (Elymus lanceolatus, Agropyron 

cristatum, Pascopyrum smithii, Agropyron trachycaulum, Hesperostipa comata, Bouteloua 

gracilis, Muhlenbergia cuspidata, Bromus inermis), shrubs (Artemisia cana and Juniperus 

horizontalis) and forbs (Artemisia frigida and Artemisia ludovicianus). An advantage of using 3-

em models is that they help to understand the association of different land covers. In Fig. 4.5, it 

is seen that the native grasses are associated with the soil (bsoil, esoil, msoil) or NPV (dshrub, 

dgrass) classes, and this is indicative of the type of land cover association commonly seen in the 

study area. Unmixing with the SPOT-4 image resulted in smaller percentage of land covers 

(<3%) when compared to the SPOT-5 or Landsat-5 images (Fig. 4.6). This is difficult to explain 

other than the effect of spectral variability arising due to vegetation phenology; further research 

will be needed to confirm this. Compared to the grasses, shrubs especially buckbrush and thorny 

buffaloberry were not effectively modeled in any of the images even though higher number of 

reference endmembers were used in the model building (Table 4.2). This indicates the 

incapability of multispectral RS datasets to successfully identify the shrub vegetation types 

within coarse and mixed image pixels. Future research may explore whether the shrub vegetation 

types can be effectively identified and mapped from hyperspectral imagery. 
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Fig. 4.6 Percentage of the image SPOT-5 (5a), SPOT-4 (5b), or Landsat-5 (5c) modeled by 3-em 

models (2 bright endmembers+shade). The top 20 dominant land covers modeled 74%, 34%, and 

56% of each image. Table 4.2 lists the acronyms for the land cover classes. 

 

Overall, MESMA successfully identified and mapped vegetation in the study area (Fig. 4.7a, 

4.7b, 4.7c). However, there was confusion in successfully delineating the exotic grass types. This 
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is mostly because in the lowlands the exotic grasses (except crested wheat grass) are often seen 

intermixed with shrubs such as buckbrush, buffaloberry or willows. In the uplands, the grass 

cover is often very sparse and mostly dominated by the native prairie grasses such as blue grama 

and northern wheat. Also, the high cover of soil adds linear mixing to the vegetation reflectance 

spectra and causing confusion. Peak vegetation growth in the northern mixed prairie is between 

June and July (Zhang, 2008), therefore plant phenology may have created some difficulty as the 

Landsat-5 and SPOT-5 images were acquired for mid- and late-July, respectively. Zhang (2008) 

and Li and Guo (2012) discuss vegetation phenology in the same study area.
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Fig. 4.7 Vegetation maps for the study area derived from MESMA for SPOT-5 (4.7a), SPOT-4 (4.7b), Landsat-5 (4.7c). Map of 

Michalsky and Ellis (1994) is given for comparison (4.7d).
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In general, the success of spectral unmixing was found to be dependent on the number and type 

of endmembers. Also prior knowledge of the vegetation communities and their associations from 

Michalsky and Ellis (1994) greatly helped to create and build comprehensive region-specific 

endmember spectral libraries (Roberts et al., 1997) for the study area. 

Vegetation in the three images, especially the native grasses, is in varying stages of phenology 

(maturity or senescence), except the shrubs and smooth brome which are perennial. The SPOT-5 

image (10 m) was acquired in late July which is in the later part of the peak vegetative growth, 

therefore the native prairie grasses were beginning senescence. For SPOT-4 and Landsat-5 

images, even though they were acquired during the peak vegetative growth period, the coarser 

spatial resolution (20 and 30 m, respectively) could have caused higher linear mixing when 

compared to the finer spatial resolution of the SPOT-5 image (10 m). 

Previous studies have tested maximum likelihood classifier (MLC) and object-oriented (He, 

2009), and artificial neural network (ANN) and MLC (Zhou, 2007) methods to classify land 

covers in the same study region in the context of modeling vegetation productivity or for crop 

insurance programs. Though they report overall classification accuracies of >80%, their image 

classification could map only six to eight very broad land cover / land use classes, therefore 

those classified map products are suitable only for small-scale (wider area) applications. 

 

4.3.3 Effect of spatial scale of RS data on the efficiency of spectral unmixing 

 

In Table 4.5, it is seen that the number of models required to model each image increased with 

decrease in the spatial scale of the image: the SPOT-5 image (10 m) only required 42 models 

(out of 69) to classify 99.9% of the image while Landsat-5 (30 m) required 58 models (out of 

70). This leads to conclude that as the spatial scale of the remotely sensed data becomes coarser, 

their image pixels are likely becoming more mixed (spatially aggregated), thus requiring higher 

numbers of unmixing models to effectively model them. However, the number of successful 

models selected for the three images were comparable: 69, 76, and 70 for SPOT-5, SPOT-4, and 

Landsat-5, respectively. The slightly higher number of successful models for the SPOT-4 image 

can be attributed to the vegetation phenology trends seen in the study area whereby the native 

prairie grasses complete most of their vegetative growth between June and July. The SPOT-4 

image was acquired in late June which coincides with the „green-up‟ period of most graminoids. 
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Though not very explicit, Landsat-5 image showed slightly higher number of successful models 

compared to the SPOT-5 image, and this is likely due to the higher spectral resolution of Landsat 

to that of SPOT. 

Even though higher numbers of shrub endmembers were used in the model-building (Table 4.2), 

all three satellite images failed to effectively identify them in their unmixing, both with 2- and 3-

em models. This concludes that RS imagery of higher spectral resolution is needed to identify 

them; SPOT only has 4 bands compared to the 6 bands of Landsat (thermal band excluded). 

However as the pixel size becomes coarser there is more aggregation as spectral reflectance from 

multiple surface materials at the landscape-level, or their ground cover are too sparse to be 

resolved at the 30 m pixel size of the Landsat image. 

 

4.4 CONCLUSIONS 

 

MESMA was successfully used in this study on medium-resolution images to identify and map 

the dominant vegetation types in the northern mixed prairie. In comparison to the pixel- or 

object-based or artificial neural network classifiers used in the previous studies, MESMA was 

more effective in identifying the dominant vegetation and their sub-pixel fractions. The success 

of MESMA also highlights the fact that simple SMA or traditional whole-pixel classification 

approaches are less effective for vegetation mapping in ecosystems with high spatial- and 

spectral-variability. 

Consistent to previous field-based (GPS) mapping (Michalsky and Ellis, 1994), MESMA 

correctly mapped the native prairie grasses as the dominant vegetation types. MESMA was more 

successful in mapping the vegetation in the uplands than in the lowlands, which indicates the 

limitations of multispectral datasets for spectral unmixing. Previous research has demonstrated 

that vegetation cover in the northern mixed prairie is dependent on topography and soil moisture 

conditions. Contrary to the recommendation of Powell (2006) that 2-em models are better suited 

for natural ecosystems, our study found that 3-em models are better suited for the northern mixed 

prairie. Even though 2-em models identified the spatial distribution and variability of the 

vegetation types, 3-em models were found to be more appropriate than the 2-em models in 

representing the association of land cover classes (i.e. GV mixed with NPV or soil). 
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Few vegetation types were not successfully mapped. This may be because these plant types are 

not dominant at the landscape-level, are seen inter-mixed with other vegetation types or litter or 

soil, or are too sparse in ground cover to be resolved at the satellite pixel-level. Future studies 

may try to include these types in the unmixing algorithms by expanding the spectral library 

database compiled in this study. This study also did not consider the vegetation phenology, 

especially of the native prairie grasses, the SPOT-5 image was acquired towards the end of July 

by which time most native grasses have begun senescence. However, this limitation was 

overcome to a certain extent in the current study by using reference endmembers collected 

throughout the peak vegetative growing period (June through July). One reason for the success 

of MESMA was that spectra of dominant vegetation types were acquired during their peak 

vegetative growth and this might have helped capture the intra-species spectral variability. 

Another reason for the success of this study was the dominant use of field endmember spectra 

and few image spectra. Image spectra have the disadvantage that they are already „mixed‟ with 

few or several surface materials within the IFOV combined into a single pixel. Nevertheless, the 

results from this study are promising in that even with multispectral datasets, vegetation types 

and their spatial distribution could be identified at the landscape-level and indicating that future 

research will benefit by using hyperspectral imagery to an even greater level of success. 

 

4.4.1 Research significance and challenges 

 

Significance 

Hyperspectral data sets are currently unavailable for the northern mixed prairie, nonetheless this 

study has shown that spectral unmixing methods may be effectively used even on multispectral 

data sets to reveal valuable information about the spatial variability and distribution of vegetation 

types and soil in semi-arid ecosystems such as the northern mixed prairie. A variety of useful 

map products can be derived that help to understand the spatial patterns and variability of 

vegetation and further the knowledge of habitat and forage availability to the fauna in the park. 

This study has proved that vegetation mapping in semi-arid regions can benefit from spectral 

unmixing approaches to reveal valuable information about the surface materials, map their 

abundances, and estimate their fractions. It is anticipated that this study will aid in developing 
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better spectral unmixing algorithms, specifically for semi-arid ecosystems. The performance of 

SPOT (10 m, 4 band) imagery suggests that imagery such as WorldView (0.5 m, 8 band) and 

RapidEye (5 m, 5 band) may be more effective for vegetation mapping in this ecosystem due to 

their finer spatial and spectral resolutions and also both having a vegetation-specific red-edge 

band. 

 

Challenges 

Spectral unmixing and MESAM are typically implemented using hyperspectral data sets such as 

AVIRIS, Hyperion, and HyMap with very high spectral resolution (hundreds of narrower 

spectral bands) and medium spatial resolution (< 30 m). Hyperspectral imageryare lacking for 

the northern mixed prairie, and therefore the coarser spatial and spectral resolution of 

multispectral images (4-7 bands) used in this study did have an effect on the efficiency 

ofvegetation mapping. Nevertheless, this study was successful in mapping the dominant 

vegetation for most of the study area. The three satellite images used in this study differ in their 

spatial and spectral resolution and also with respect to their dates of acquisition. Future research 

can explore how different imagery obtained at even closer phenological time points may perform 

for spectral unmixing. 

Reference endmembers collected for grasses were often mixed with other vegetation types, soil, 

standing dead or litter, thus making it difficult to collect their reference endmembers in the field. 

This limitation was critical with endmembers such as moss, cacti, and lichen which are 

ecological significant in this region, however they are seen in sparse cover and inter-mixed with 

other vegetation, soil, or litter and making it difficult to collect their reflectance in the field. This 

mixed nature of materials causes non-linear mixing. Publically available spectral libraries (i.e. 

USGS, JPL, ASTER) lack spectra for the mixed prairie vegetation, and therefore there are 

opportunities with sharing of spectral databases among researchers. 
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CHAPTER 5 

 

DETECTING SPATIO-TEMPORAL CHANGES TO THE NORTHERN MIXED 

PRAIRIE VEGETATION USING MULTIPLE ENDMEMBER SPECTRAL MIXTURE 

ANALYSIS 

 

ABSTRACT 

 

Spatio-temporal change-detection in terrestrial ecosystems has become readily possible with 

open access to time-series Landsat imagery, thereby permitting researchers to utilize historical 

imagery for studies on ecosystem monitoring and environmental change. 

This study used multiple endmember spectral mixture analysis (MESMA) and NDVI image 

differencing on seven time-series Landsat-5 TM imagery for a 27-year period (1984-2011) to 

identify the spatio-temporal changes to the northern mixed prairie vegetation. A comprehensive 

region-specific endmember spectral library comprising 1150 reference endmember spectra of 

green vegetation, non-photosynthetic vegetation, and soils was collected through intensive field 

sampling at 41 sites in the West Block of the Grasslands National Park of Canada (GNPC). 97 

optimal endmembers were identified using endmember selection metrics to create 2-endmember 

models and used in image unmixing to map the dominant vegetation types and estimate sub-pixel 

fractions of land cover in each historical image. Spatio-temporal change-detection was 

performed by image-differencing each image in the time-series from the base (1984) image. 

Results showed that MESMA can be used as a standard tool for identifying spatio-temporal 

changes on time-series imagery. MESMA was effective in mapping the dominant vegetation 

types and produced comparable mapping results for each image in the time-series. Climatic 

variables of temperature and precipitation were found to affect the number of successful image 

unmixing models, with lesser number of models for years of climatic extremes. Change-

detection showed the effectiveness of biodiversity conservation practices of GNPC since 

establishment and suggests that its conservation strategies are effective in maintaining 

heterogeneityin the park region. The methodology presented can be continued to be used to 

monitor spatio-temporal changes in the northern mixed prairie, and may be tested in other 

ecosystems to gain valuable insight into their dynamics. 
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5.1 INTRODUCTION 

 

5.1.1 Significance of the northern mixed prairie and need for monitoring 

The North American grasslands are among the world‟s most productive and diverse terrestrial 

ecosystems. These grasslands have been subjected to over 500 years of human settlement, 

intensive agriculture, ranching, and livestock activities (Gauthier et al., 2003). Only a very small 

portion of the native prairie vegetation is remnant (Samson and Knopf, 1994; 1996), making the 

grasslands one of the most endangered habitats in the world. Grasslands provide critical habitats 

for many endangered fauna or species at-risk, hence it is important to effectively manage and 

conserve their endangered habitats to sustain diminishing populations (Fraser et al., 2009). 

Factors for land use-land cover change in the northern mixed prairie include agriculture, grazing 

by livestock, oil and mineral exploration, invasion by exotic plant species. Apart from human 

pressures, climate change is projected to have significant effects on the grasslands. There is lack 

of understanding regarding how the mixed prairie will react to climate change and its effects. 

Vegetation growth in the northern mixed prairie is limited primarily by the availability of 

moisture, and therefore any fluctuations in temperature and precipitation will have direct and 

pronounced impact on the vegetation productivity and plant phenology in the region. 

Researchers predict that the effects of climate change in the grasslands may include ecological 

succession, changes to vegetation zones and their conversion to shrublands, or even shift of the 

dominant photosynthetic types to the sub-dominant type (Davidson and Csillag, 2001). 

Therefore, it is of utmost priority for long-term ecological- or ecosystem-monitoring to conserve 

the native prairie and maintain their vegetation heterogeneity. The northern mixed prairie 

warrants high conservation priority both in Canada and the United States. Parks Canada has 

envisioned a long-term mandate for preserving ecological integrity (Fraser et al., 2009) and for 

restoring and conserving the native prairie vegetation by establishing its first and only national 

park solely devoted to grassland conservation, the Grasslands National Park of Canada (GNPC), 

and adopting an adaptive management strategy for maintaining vegetation heterogeneity by 

introducing natural disturbances such as burning and grazing. Long-term ecological monitoring 

and research (LTER) remains the primary goal for GNPC as they are helpful to measure the 

success of any biodiversity conservation efforts or restoration programs. Michalsky and Ellis 
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(1994) suggest that systematic vegetation inventory and mapping in this region is important for: 

a) management of native vegetation communities; b) management of rare plant species and 

communities; c) maintenance of non-native plant species; d) restoration of modified or disturbed 

lands; and e) proper vegetation and ecosystem management. 

 

5.1.2 Review of change-detection methods 

Ecosystems are dynamic and ecologists are often interested in identifying and monitoring 

ecosystem changes due to land use-land cover modifications, changes to vegetation type, and 

impacts of natural- or human-induced disturbances. Remote sensing (RS), using aerial 

photography or with satellites, provides invaluable primary data sets for ecosystem studies due to 

their ability to detect, identify, and monitor ecosystem- or environmental dynamics in non-

destructive and cost-effective ways. Change-detection involves the quantification of any 

phenomena or process over space and time (spatio-temporal) using multi-date RS imagery 

(Coppin et al., 2004; Fraser et al., 2009). Aerial photography and air photo interpretation were 

widely used in the past, however their main drawbacks include one-time acquisition, high costs, 

problems related to data acquisition (optimum flying conditions), data issues (shadows, limited 

spectral range), and most importantly being large scale (covering smaller area). In contrast, 

satellite RS offers repetitive, small-scale (larger area), and cost-effective way of monitoring 

ecosystems and their dynamics using a multi-scalar (multi- spatial, spectral, and temporal) 

approach. In addition, variety of maps of land cover, vegetation indices (VI), and biomass can be 

derived from RS data sets. Due to these advantages, ecologists are increasingly using satellite 

imagery or information or products derived from them for ecosystem monitoring. 

Several change-detection methods using RS data exist, and these can be grouped into three main 

categories: algebra, transformation, and classification and post-classification (Lu et al., 2004), 

though a few other types also exist. These three categories include methods such as VI 

differencing, principal component analysis (PCA), minimum noise fraction (MNF), and spectral 

mixture analysis (SMA) as examples. Coppin et al. (2004), Lu et al. (2004), and Singh (1989) 

provide comprehensive reviews on the change-detection methods used in ecosystem monitoring 

along with their strengths and weaknesses. 

RS data sets used for change-detection analysis require special considerations (refer to Coppin et 

al., 2004; Lu et al., 2004). Change-detection is usually performed at the pixel-level with time-
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series RS imager, and therefore the images must be co-registered. Ideally, the RS data sets used 

for change-detection should ideally be acquired by the same remote sensor (for similar image 

characteristics) and also maintain consistency in their resolution (spectral range and spatial 

scale). Importantly, results from change-detection may be affected if the phenological time 

points of dominant vegetation are not comparable as even the same vegetation type can have 

different spectral response at various phenological stages. Further, the data sets used for change-

detection should be processed and corrected for variations in atmospheric conditions and solar 

position during image acquisition. This is typically achieved by using robust atmospheric 

correction models, radiometric calibration, and processing images to surface reflectance values 

for „spectral similarity‟ and „phenological stability‟ as suggested by Coppin et al. (2004). 

Archived time-series Landsat imagery from sensors Multi Spectral Scanner (MSS; available 

since 1972), Thematic Mapper (TM; from 1984), and Enhanced Thematic Mapper (ETM+; since 

1999) from the United States Geological Survey (USGS) are ideal for change-detection analysis 

since they are already geometrically- and radiometrically-corrected and at suitable spatial (30 m) 

and temporal (16 days) resolutions. 

Change-detection has its limitations. Studies suggest that currently no single standard 

methodology exists for change-detection analysis, and often based on the study area or the RS 

data sets. Therefore, researchers report different results and success by using various change-

detection techniques and making the comparison challenging. Changes between spectrally-

similar land covers are difficult to detect if their spectral reflectance are comparable; this is a 

common problem in semi-arid regions such as the northern mixed prairie where several grass 

types have similar reflectance patterns (Chapter 4). 

Past studies such as Zhang (2006), He (2008), and Li and Guo (2012) have employed normalized 

difference vegetation index (NDVI) time-series or maximum value composites (MVC) to 

identify the short- and long-term changes to the northern mixed prairie vegetation. Successfully 

used at smaller (regional- or biome-level) scales, the main limitation with time-series NDVI is 

that they only provide trends of NDVI-change, however there is no information about the actual 

change (modification or conversion) of the vegetation type or of any ecological succession, 

which is often of main interest to ecologists and Park managers. Further, VI such as NDVI have 

been shown to have relatively low correlation to vegetation properties in the mixed prairie due to 

high background noise and non-linear mixing from litter and exposed soil (He et al., 2006; Li 
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and Guo, 2010). Additionally, high vegetation heterogeneity has also been reported for the 

northern mixed prairie (Zhang, 2008), therefore the reflectance signal recorded by the remote 

sensor or the NDVI calculated for an image pixel is a spatial aggregate of the reflectance from 

dissimilar ground cover. Hence, image classifiers based on the homogeneous whole (pure) pixel 

concept do not perform efficiently, and therefore spectral unmixing approaches become more 

appropriate as they can account for the spectral variability of surface materials and also extract 

sub-pixel cover fractions. 

 

5.1.3 Research questions 

The hypothesis used in the study was that a comprehensive (spatial and temporal) endmember 

spectral library can be effectively used for classifying time-series imagery. The objectives of the 

study were: 

(i) To test the performance and robustness of multiple endmember spectral mixture analysis 

(MESMA) on time-series satellite imagery; 

(ii) To identify spatio-temporal change to vegetation in a representative area in the northern 

mixed prairie over a 27-year period (1984-2011); 

(iii) To detect areas of significant change, if any, in the study area and identify the vegetation 

types that might have changed in their extent. 

 

5.2 MATERIALS AND METHODS 

 

 5.2.1 Study area 

The Grasslands National Park of Canada (GNPC), located at the Saskatchewan-Montana border 

(Fig. 5.1), was selected as a representative area to identify and detect any significant vegetation 

changes to the northern mixed prairie. GNPC is comprised of the West Block and the East Block 

and covers ~900 km
2
. GNPC was established by Parks Canada in 1981 to conserve remaining 

native mixed prairie in Canada. Since its establishment, the park has been protected from 

agriculture, ranching, and livestock grazing (excluding cattle introduced for grazing 

experiments), however plains bison were re-introduced to the West Block in 2006 as an 

ecosystem management strategy to restore the native prairie vegetation through natural grazing. 
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In addition, GNPC follows its own research activities of prescribed-burning and re-seeding of 

native prairie grasses for prairie restoration. Crop and forage cultivation, livestock grazing, oil 

and mineral exploration are still practiced around the park and pose threats to the biodiversity 

conservation in the region (Fraser et al., 2009; Gauthier et al., 2003). 

 

 

Fig. 5.1 Location map showing the East and West Block of the Grasslands National Park of 

Canada (GNPC) and GNPC‟s context in the North American grasslands ecoregion. 

 

The region experiences a continental semi-arid climate with wide variation in mean monthly 

temperature (-12.4
◦
C to 18.3

◦
C) and low precipitation (150 to 325 mm) (Environment Canada, 

2003). The region has an average elevation of ~860 m and high landscape diversity. This creates 

a moisture-limited environment for plant growth with a very short plant growing season of ~170 

days and peak vegetative growth occurring between June and July. Chernozems is the dominant 

soil order, and the other important soils include regosols and solonetzs (Saskatchewan Institute 

of Pedology, 1992). The vegetation in the northern mixed prairie is highly heterogeneous 

(Zhang, 2006; Zhang, 2008) and the GNPC vegetation can be broadly classed into upland, sloped 

land, and lowland grasslands. The dominant vegetation types include native prairie grasses such 
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as western wheat grass (Agropyron smithii), northern wheat grass (Elymus lanceolatus), blue 

grama (Bouteloua gracilis), needle and thread (Hesperostipa comata), and june grass (Koeleria 

macrantha). In addition, forbs such as prairie sage (Artemisia ludovicianus) and pasture sage 

(Artemisia frigida), and shrubs such as sagebrush (Artemisia cana), willow (Salix sp.), thorny 

buffaloberry (Shepherdia argentea), buckbrush (Symphoricarpos occidentalis), rabbitbrush 

(Chrysothamnus nauseosus), and creeping juniper (Juniperus horizontalis) also occur. Eroded 

and exposed surfaces (badlands) from soil and water erosion are also widely seen in the study 

area along with microphytic communities of lichen (Xanthoparmelia sp.) and moss (Phlox 

hoodii, Selaginella densa). Plant names are adapted from Harms (2006). 

 

5.2.2 Data and processing 

Satellite imagery and processing 

Processed Landsat data since 1974 have become freely and publically available and therefore 

provide tremendous opportunities for researchers to exploit time-series imagery to identify and 

monitor environmental- or ecosystem-changes in terrestrial ecosystems. Archived multispectral 

Landsat-5 TM imagery (L1T; standard terrain corrected product) from the USGS were obtained 

for the study area (path: 37, row: 26) for a 27-year period (1984-2011) at approximately 5-year 

intervals (Table 5.1). Even though other Landsat sensor (MSS and ETM+) data were available, 

only Landsat-5 images were considered in this study as previous research (Chapter 4) showed 

that both spatial- and spectral-resolution of RS data have positive effect on the efficiency of 

unmixing and in the estimation of the type or class of land cover fractions and Landsat-5 imagery 

at 30 m is within the suitable spatial resolution. Regarding the timeframe used in this study, 1984 

was chosen as the starting point as it will give insight into the land use-land cover patterns due to 

disturbance events (or activities) immediately prior to the acquisition of the park in 1984. Also, 

the timeframe selected should give a good idea about the effectiveness of the biodiversity 

conservation or management practices since the establishment of the park. 

Seven cloud-free Landsat-5 TM images were identified that corresponded with the peak 

vegetative growth period (June to July) in the study area. The images were reprojected to UTM 

13N-NAD83 using the nearest neighbor resampling method and checked for co-registration. 

Further, the images were individually processed for radiometric calibration (Chander et al., 
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2009) and atmospheric correction using the Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH; Anderson et al., 1999) using the image metadata and scene parameters to 

convert radiance units to surface reflectance values for spectral unmixing. Additionally, all 

processed scenes were transformed to NDVI images (Fig. 5.2) using the surface reflectance 

values in the near-infrared (NIR) and red (R) bands. All images were subset to the Park boundary 

and image processing was completed using ENVI 4.8 (ITTVIS, Boulder, CO, USA) and VIPER 

Tools 1.5 (UCSB, Santa Barbara). 

Table 5.1 Time-series Landsat-5 TM imagery (L1T product) used in the study along with their 

scene ID, date of acquisition, and percent cloud cover (Source: United States Geological Survey; 

USGS). Only the imagery corresponding with the peak vegetative growth period and with <1% 

cloud cover were used in the study. 

Scene ID 
Date of 

acquisition 

Cloud 

cover 

Sun 

azimuth 

Sun 

elevation 

Acquisition 

time 

LT50370261984202PAC00 20 July 1984 0 133.31 54.47 17:28:31 

LT50370261989183XXX02 02 July 1989 0 131.28 56.65 17:27:17 

LT50370261994181PAC03 30 June 1994 1 128.13 55.67 17:18:11 

LT50370261999195PAC01 14 July 1999 0 135.58 56.53 17:37:20 

LT50370262005195PAC01 14 July 2005 0 139.44 57.57 17:47:23 

LT50370262006198PAC01 17 July 2006 0 148.82 57.72 17:52:43 

LT50370262011196PAC01 15 July 2011 0 139.99 57.63 17:48:45 
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Fig. 5.2 NDVI images for the Landsat time-series (1984, 1989, 1994, 1999, 2005, 2011). Bright 

tones indicate higher NDVI values (higher vegetation), and darker tones indicate lower NDVI 

values (lower vegetation). 
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Field spectral measurements and processing 

In-situ spectral reflectance for green vegetation (GV; grasses, shrubs, and forbs) and non-

photosynthetic vegetation (NPV; dead or senesced plants, exposed or bare soil) were collected at 

10 m sampling interval from 41 random sites (each site 100 m*100 m) in the West Block of 

GNPC in the summer of 2006 and 2007. 

Spectra were collected using an ASD
®
 FieldSpec FR Pro spectroradiometer (Analytical Spectral 

Devices Inc., Boulder, Colorado) at a spectral resolution of 3 nm in the 350-1000 nm and 10 nm 

in the 1000-2500 nm region. The spectroradiometer was held at a height of 1 m perpendicular to 

the target and fitted with a sensor of 25
o
 field of view. The spectral measurements were 

standardized to apparent reflectance using a Spectralon reference panel (Labsphere, New 

Hampshire). All spectral measurements were completed between 10:00 to 14:00 hours and under 

low wind conditions. 

Additionally, reference (field) endmembers for GV, NPV and soil classes were collected at all 

possible site locations for developing spectral libraries to use in the spectral unmixing. As the 

purpose of the study was primarily for mapping dominant vegetation types, GV reference 

endmember spectra were also collected specifically for the major vegetation communities in the 

study area. While collecting GV endmembers, it was ensured that the dominant cover of the 

particular endmember was >80% on the ground. In addition, photoplots (vertical photos of 

quadrats) ensured that the post-processed spectra were allotted to the correct endmember spectral 

library group. A few non-dominant vegetation endmembers such as forbs, lichens, cacti, and 

moss were excluded as they would not be relevant at the landscape-level or are too sparse of 

cover to be resolved within the Landsat 30 m pixel. 

 

Multiple endmember spectral mixture analysis (MESMA) 

Multiple endmember spectral mixture analysis (MESMA), a modified form of spectral mixture 

analysis (SMA; Adams, 1993), permits endmembers to vary on a per-pixel basis and tests 

multiple unmixing models (combinations of endmembers) for each image pixel to estimate sub-

pixel endmember fractions (Roberts et al., 1998; Somers et al., 2011). MESMA is used to unmix 

a remotely-sensed image by developing and using region-specific spectral libraries comprising of 

reference (field-collected) or image (image-derived) endmembers and their every possible 
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combination. MESMA identifies the best-fit model by requiring an unmixing model to meet 

minimum fit, fraction, and residual constraints for any image pixel. Types of SMA include 

multiple endmember SMA (Roberts, 1998), variable endmember SMA (Garcia-Haro, 1998), 

relative SMA (Okin, 2001), hierarchical SMA (Franke, 2009), and Bayesian SMA (Song, 2005). 

However, MESMA was chosen for this study due to its ability to incorporate spectral diversity of 

specific endmember and due to the availability of VIPER Tools. 

Chapter 4 showed that MESMA is a successful and useful approach to identify and map the 

dominant vegetation types and their sub-pixel fractions in the northern mixed prairie. In that 

study, a total of 1150 endmembers representing GV (native prairie grasses, exotic grasses, shrubs 

and forbs), NPV (dead or senesced plants, burnt stems), and soil (exposed or bare soil) were 

obtained. Using a set of endmember selection metrics (Dennison et al., 2003a; 2003b), a 

comprehensive spectral library of 97 optimal endmembers representing 85 GV, 5 NPV, and 7 

soil classes were identified for the study area. This comprehensive spectral library was 

convolved to the spectral bands of the Landsat-5 TM sensor and used to create 97 2-em models 

(combinations of a bright endmember and photometric shade). These 2-em models were used in 

the MESMA to unmix the image pixels into endmember fractions in each of the time-series 

imagery to identify and map the major vegetation types. Only 2-em models were used for the 

unmixing as the study objective was to identify and map the dominant vegetation types, even 

though in a previous study 3-em models (GV, non-vegetation (NPV, soil) and shade) were found 

to be more appropriate for this study area. Detailed description of the endmembers, their 

selection and optimization using selection metrics, MESMA and its set-up, and unmixing 

parameters are provided in the previous study. The same set of endmembers, 2-em unmixing 

models, and endmember model-fit constraints were used on all seven Landsat imagery. Note that 

since the seven TM images have the same georeferencing procedure and similar registration 

accuracy, the pixel locations and their values (fractions or NDVI) are assumed to be spatially 

comparable if no change has occurred. To ensure that the selected historical time points were 

spectrally comparable, Landsat imagery were chosen for phenologically-similar periods, i.e. for 

the peak vegetative growth period in the study area (Table 5.1, column 2). 
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Change-detection analysis 

Change-detection analysis was performed on the MESMA fraction images and the NDVI images 

using a bi-temporal image-differencing approach, i.e. by subtracting each historical image from 

the 1984 image (base year) to produce change images, as our intent was to identify any areas 

showing consistent change over the 27-year period rather than to identify any small year-to-year 

change. The goal of bi-temporal image differencing was to identify the spatio-temporal changes 

to the land cover in the study area. Nine threshold classes (no change, < -0.75, -0.75 to -0.5, -0.5 

to -0.25, -0.25 to 0, 0 to +0.25, +0.25 to +0.5, +0.5 to +0.75, > +0.75) were created for the NDVI 

change-difference image and nine threshold classes (no change, <0.125, 0.125 to 0.25, 0.25 to 

0.375, 0.375 to 0.50, 0.50 to 0.625, 0.625 to 0.75, 0.75 to 0.875, > 0.875) created for the 

MESMA fraction change-difference image. These threshold classes were to identify areas of 

positive, no, or negative change and decided based on the descriptive statistics calculated for the 

seven TM images for the study area (Table 5.3). Areas of positive and negative change permitted 

us to identify the vegetation types that either increased or decreased in spatial extent over the 27-

year timeframe. The threshold classes in the change-difference images were converted to vector 

polygons and geoprocessing analysis was done to simplify the interpretation. 

 

Analysis of climate data 

As climatic events would be the main factor controlling vegetation dynamics in the study area, 

climatic data of mean temperature and total precipitation (snow and rain combined) were 

obtained (Fig. 5.3) for the closest weather station: Val Marie (+49.37° N, -107.85° W), 

Saskatchewan.



 

 

 

1
3
9
 

 

Fig. 5.3 Monthly (April-July) mean temperature (°C) and total precipitation (mm) in the study area for each selected historical year 

and the year preceding it. Data for Val Marie weather station (Source: Environment Canada) were compiled for the peak vegetative 

growth period (June-July) and 2-months prior to it. Note: Precipitation data unavailable for April, 1988.
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5.3 RESULTS AND DISCUSSION 

 

5.3.1 MESMA with 2-endmember models on historical imagery 

In Chapter 4, the performance and usefulness of image unmixing using MESMA with 2- and 3-

endmember models on a Landsat-5 TM image (acquired on 17 July 2006; Table 5.1) for the 

same study area has been described in detail. Using the same unmixing approach on the seven 

historical time-series Landsat-5 TM imagery, similar vegetation distribution trends as those 

reported by Michalsky and Ellis (1994) and He (2008) were observed over the study area (Fig. 

5.4). The mapped vegetation distribution patterns from spectral unmixing were similar in all the 

historical imagery. This is to be expected as all the images were acquired for phenologically 

comparable time points (June-July) and made spectrally comparable using radiometric 

calibration and atmospheric correction. Therefore, the optimal GV, NPV and soil endmembers 

used in MESMA were spatially and temporally representative of the land cover seen in the study 

area. The similarity of the vegetation mapping patterns in the historical images indicate that 

MESMA can be effectively used as a standard semi-automated approach by developing 

comprehensive region-specific spectral libraries to identify the major vegetation types and their 

spatial distribution. 
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Fig. 5.4 Land cover mapped in the Landsat-5 time-series imagery (1984, 1989, 1994, 1999, 

2005, 2011) using 2-em MESMA. Legend in each image shows the same 32 land cover classes. 

 

The 97 2-em unmixing models individually tested on each of the historical images showed 

similar numbers of successful 2-em models, except for the 1984 image (Table 5.2). The number 
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of successful models differed between the images and ranged from 49 models (1984 image) to 

84 models (2011 image). The numbers of successful models are comparable, except for the 1984 

(49 models) and the 2005 (64 models) images. The 2011 image had 84 successful models which 

is highest than all the other years, and this might be due to 2011 being a „wet year‟ and resulted 

in higher plant productivity and vegetation cover in the study area (Fig. 5.3). Similarly, NDVI 

values throughout the study area for 2011 were higher than the other years (Table 5.3). The 

similarity in the number of successful models further suggests that the compiled spectral library 

was effective in capturing the spectral variability on the landscape and representative of the 

materials in the images. 

The image dates range from 30th of June to 20th of July (Table 5.2), however as the same set of 

endmembers were used to model the seven images, the difference in the number of successful 2-

em unmixing models between the time-series images may be attributed to the spectral variability 

arising from plant phenology in the study area (Li and Guo, 2012). The effect of plant phenology 

on endmember selection and its impact on vegetation mapping have been discussed by Dennison 

and Roberts (2003b).The slight differences in the number of successful models may also be due 

to the variations in vegetation productivity associated with the trends in total precipitation or 

mean temperature (Fig. 5.3). This is clearly evident in the 2011 image when there is higher total 

precipitation leading to the development of sloughs and increased water levels in the creeks and 

streams and seen as unclassified pixels in the image. Research has indicated that soil moisture is 

the most important factor controlling plant growth in the study area, and vegetation productivity 

can increase under higher moisture availability. 

Table 5.2 The number of successful 2-endmember models out of 97 models tested for each 

selected Landsat imagery. 

Satellite image Date of 

acquisition 

Number of 

successful models 

Landsat-5 TM 20 July 1984 49 

Landsat-5 TM 02 July 1989 79 

Landsat-5 TM 30 June 1994 79 

Landsat-5 TM 14 July 1999 83 

Landsat-5 TM 14 July 2005 64 

Landsat-5 TM 17 July 2006 70 

Landsat-5 TM 15 July 2011 84 
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The average of mean monthly (April-July) temperature and total precipitation (Fig. 5.3) showed 

that 2005 and 2006 coincided with low rainfall (134 mm and 145.1 mm) and slightly higher 

temperatures (12 
◦
C and 13.8 

◦
C). 1984 had the lowest rainfall (80.2 mm) and highest 

temperature (13.2 
◦
C). Other than 1984, 2005 and 2006 showed the lowest NDVI values over the 

27-year period. Rainfall was highly variable over the 27-year period. Therefore, the analysis of 

climatic trends suggests that rainfall and temperature are the most influencing factors for 

vegetation growth, and also explains the success of only 49 out of 97 models for the 1984 image. 

 

Comparison of mean NDVI values (Table 5.3) for the study area against total precipitation 

revealed that higher NDVI values were seen for the years with higher precipitation (Fig. 5.3). 

Trends for NDVI are also positively related to the amount of precipitation received in the 

preceding year. This might be because the precipitation is stored as soil moisture and available 

for plant growth in the succeeding year. Analysis of mean NDVI values for the whole study area 

for the selected historical years (Table 5.3) revealed that NDVI values were lower in 1984, 2005, 

and 2006 (0.248, 0.360, 0.321, respectively). This trend further coincides with the number of 

successful 2-em models: 1984 showed the lowest number of successful models (49) when the 

mean NDVI in the study area was 0.248. Mean NDVI in 2011 was 0.518 and showed the highest 

number of 2-em models (84). 

Table 5.3 Descriptive statistics (mean, minimum, maximum, and standard deviation) for NDVI 

and cover fraction estimated for the West Block of GNPC in the Landsat-5 TM time-series 

imagery. 
Image date NDVI Fractional cover 

Min. Max. Mean S.D. Min. Max. Mean S.D. 

20 July 1984 0.040045 0.844039 0.248012 0.073289 0.000000 1.049999 0.566372 0.474717 

02 July 1989 0.073881 0.912966 0.380472 0.124053 0.000000 1.049999 0.555296 0.466955 

30 June 1994 0.002381 0.937477 0.435184 0.137156 0.000000 1.049998 0.533489 0.450910 

14 July 1999 0.09434 1.000000 0.431552 0.137763 0.000000 1.049999 0.533662 0.451473 

14 July 2005 0.091686 0.917435 0.360097 0.118682 0.000000 1.049999 0.541122 0.457112 

17 July 2006 0.087578 0.882840 0.321208 0.100141 0.000000 1.050000 0.546644 0.459510 

15 July 2011 0.004310 1.000000 0.518098 0.129769 0.000000 1.049994 0.499826 0.427292 
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5.3.2 Land cover mapped in the satellite images 

The major vegetation types and extent of dominant land cover were identified in each of the 

historical imagery (Fig. 5.4). The temporal variations in the proportion of land cover classes 

between images, if any, may be attributed to plant phenology, climatic events, natural- or 

anthropogenic-induced disturbances, or those arising due to the effects of climate change. 

Overall, the images were modeled with reasonable accuracy and the vegetation types were 

identified along the topographical and moisture gradients; the sparser native grasses were 

identified in the uplands and the riparian shrubs and invasive grasses were mapped along the 

river valley. Thus, the optimal endmembers included in the spectral library were effective in 

capturing the spectral diversity of the surface materials in the study area. A few of the 

unmodeled pixels were water (the Frenchman River). High residuals were seen for the very 

bright pixels, i.e. in the bad lands and densely vegetated areas. Unmixing with 2-em models 

showed that native prairie grasses, shrubs, and forbs as the dominant land cover (>80 % of the 

images); however this is slightly over-estimated and the bad lands are underestimated (Fig. 5.4). 

This result is similar to Okin et al. (2001) who found that MESMA overestimates vegetation in 

semi-arid environments with low vegetative cover. Nevertheless, these estimates from 2-em 

unmixing are reasonable taking into consideration that the soil or NPV classes are often seen 

mixed with GV. 

 

5.3.3 Spatio-temporal vegetation changes in the northern mixed prairie 

Change-detection analysis revealed that there were significant changes to the vegetation in the 

study area over the 27-year period. GNPC was acquired by Parks Canada in 1984 and since its 

acquisition, the Park has been actively following ecosystem management strategies such re-

seeding of native prairie grasses, prescribed burning, and introducing plains bison (since 2006) 

for restoring and maintaining the native prairie biodiversity. Change-detection using NDVI 

images (Fig. 5.5) revealed that the vegetation trends are relatively stable in the GNPC area –  see 

maps for image differencing of each historical NDVI image (Fig. 5.5a-5.5e) or land cover map 

(Fig. 5.6a-5.6e) from the 1984 NDVI image or land cover map. Of interest are the NDVI change-

images for 1989, 1994, and 2011 that correspond to unique climatic events (Fig. 5.3). 2011 was a 

wet year with abundant moisture available for plant growth, hence increased NDVI values are 

seen throughout the park. 
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Comparison of Fig. 5.5f and 5.6f shows that similar spatial trends are seen in the NDVI and 

MESMA difference images. Both NDVI and MESMA images clearly picked out bad lands as 

areas of no or very minor change, and this is to be expected due to very low vegetation cover. 

Overall, it appears that the vegetation inside the park is stable, however much of the change 

pressure is in the southern portion of the park. 
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Fig. 5.5 Change-detection using NDVI images. 1984-1989 (5.5a), 1984-1994 (5.5b), 1984-1999 

(5.5c), 1984-2005 (5.5d), 1984-2011 (5.5e). Areas (colored polygons) showing consistent NDVI 

change are shown in Fig. 5.5f. 
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Fig. 5.6 Change-detection using land cover maps from 2-em MESMA. 1984-1989 (5.6a), 1984-

1994 (5.6b), 1984-1999 (5.6c), 1984-2005 (5.6d), 1984-2011 (5.6e). Areas (colored polygons) 

showing consistent land cover change are shown in Fig. 5.6f. 
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5.4 CONCLUSIONS 

 

MESMA was found to be a reasonably effective technique for identifying spatio-temporal 

vegetation changes in the northern mixed prairie. Unlike the previous studies that have used 

NDVI-time series derived from Landsat, SPOT VEGETATION 10-day composites, or NOAA 

AVHRR maximum value composites (MVC), this study was more effective in identifying the 

vegetation change over the 27-year period. 

The development of a comprehensive region-specific endmember spectral library greatly helped 

to identify the land cover or vegetation types in the historical imagery. The consistent unmixing 

and the similarity of vegetation patterns identified and mapped across all seven TM images 

indicates that MESMA is an effective mapping technique to use with time-series imagery to 

monitor ecosystem changes. However, future research should consider the effects of vegetation 

phenology and account for extreme climatic events. 

The results obtained from unmixing and spatio-temporal change analysis can be used in 

identifying the success of biodiversity conservation efforts, identifying zones of major threat, and 

developing ecosystem prediction models. However, it should be stressed that the success of 

MESMA greatly depends on the selection of optimum number and type of endmembers which 

are region-specific and also those that take into account the spectral diversity on the landscape. 

Spectral variability is problematic in semi-arid regions and this can be overcome to a certain 

extent by collecting vegetation endmembers throughout the vegetation growth period. However, 

if the goal is to identify plants at the species-level, researchers should take into plant phenology 

and acquire imagery for time periods that will permit the greatest discrimination among the 

different vegetation types. 

Overall, this study was successful in using MESMA with medium-resolution multispectral 

imagery such as Landsat-5 TM. Archived Landsat imagery since 1972 from MSS, TM, and 

ETM+ sensors is openly available. Note that the Landsat-5 TM sensor failed in 2011 and the 

Landat-7 ETM+ sensor has striping issues since 2003. The Landsat program has provided 40 

years of imagery for earth observation and monitoring, Landsat-8 launched by USGS and NASA 

in February 2013 continue to provide free imagery as part of the Landsat data continuity mission 

(LDCM; Irons et al., 2012). Using a similar approach, future studies may employ MESMA on 

Landsat-8 imagery to other ecosystems or environments to identify ecosystem changes over 
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space and time. Data sources such as RapidEye and WorldView with finer temporal resolution 

and a vegetation specific red-edge band provide enhanced opportunities for ecosystem 

monitoring. 
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CHAPTER 6 

 

6.1 SUMMARY 

 

Scale and scaling are fundamental topics of interest and active research in ecology, remote 

sensing, and GIScience (Chave, 2013; Turner, 1989; Urban, 2005; Wessman, 1992; Goodchild, 

2001). Often, ecological data are collected at a single measurement scale or dependent on the 

sampling methods used, and the analysis scale is determined by the specific purpose of the study 

or by the data sets used in the study. Also, scientists frequently require upscaling or downscaling 

to obtain predictions or information at alternate scales. These situations introduce discrepancy 

between the scale at which data is collected or analyzed and the scale at which conclusions have 

to be derived for management action or decision-making. Several researchers have confirmed 

that conclusions and observed patterns change with scale and there are direct implications by 

selecting an arbitrary scale of study (Wiens, 1989; Wu, 1999; Wessman, 1992; Turner, 1989; 

Dungan et al., 2002; Urban, 2005; Wu et al., 2006). Therefore, a rational choice would be to 

adopt a multi-scalar approach thereby making it possible to identify the limitations of the specific 

scale used in the study or to identify the scales at which patterns, processes, or phenomena 

become relevant. 

Remotely sensed (RS) data sets are increasingly being used in ecological studies and ecosystem 

monitoring due to their ability to provide multi-scalar ecological and environmental information 

for large areas in an instantaneous and cost-effective manner. Thus, as the science and 

technology of RS advances, ecologists and scientists have access to wide selection of multi-

scalar RS data sets from different platforms (ground-, airborne-, or satellite). Hence, it is 

important to identify how they compare and which scales of RS data can provide relevant 

information while maintaining a high benefit-to-cost ratio. 

 

In this dissertation, I specifically examined the implications of scale of RS data for vegetation 

analysis in the northern mixed prairie. My research utilized RS data sets at different spatial, 

spectral, and temporal scales: plot-level spectroradiometer data to landscape-level satellite 

imagery with varying spatial and spectral resolutions and over a 27-year time frame. These RS 
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data sets were supplemented with field-collected vegetation data such as plant cover, 

aboveground biomass, leaf area index (LAI), dominant species, and plant height. 

The fundamental research hypothesis tested was that multi-scalar RS data can be useful and 

successfully exploited to reveal important spatial patterns, biophysical characteristics, and 

dynamics of the northern mixed prairie vegetation. Specifically, I tested the following 

hypotheses: 1) RS data sets can be used to identify the spatial variation and spatial scales of plant 

biophysical variables representing greenness and wetness; 2) a simultaneous comparison of RS 

data at different scales helps to identify the limitations of scale; 3) implications exist when 

upscaling RS data from finer to coarser spatial scales; 4) effects of spatial autocorrelation are 

evident in RS data sets acquired for the northern mixed prairie; 5) spectral unmixing approaches 

are better suited for incorporating the spatial- and spectral-heterogeneity of vegetation in the 

northern mixed prairie; and 6) developing a region-specific and comprehensive (spatial-

temporal) endmember library is useful for change-detection of vegetation. 

 

My research specifically focused on the lowland vegetation types that have been ignored in 

previous studies, but are considered ecologically significant by ecologists and conservationists, 

and therefore deserved detailed study. Fundamental biophysical and spectral characteristics of 

the lowland vegetation identified in this research are an important outcome of my study. Though 

previous research has tested the effects of scale to some extent, none has considered the 

implications of using RS data at multiple scales or by comparing them in tandem. The results 

from my study indicate that the spatial patterns of vegetation change with scale, thus a multi-

scalar approach can identify important characteristics about the mixed prairie vegetation. 

 

6.2 CONCLUSIONS 

 

My research as a whole has advanced the understanding of RS of the northern mixed prairie 

vegetation, especially in the context of effects of scale and scaling. From an eco-management 

perspective, this research has provided cost- and time-effective methods for vegetation 

monitoring. The following four sections summarize the major findings: 
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6.2.1 Multi-scalar comparison of plant biophysical properties along topographical 

gradients 

RS data at all data scales successfully captured the spatial variation of biophysical properties 

along topographical gradients. An inverse relationship was observed for plant cover, LAI, and VI 

to topographic gradients. VI at all spatial scales showed significant relationships to plant cover 

and LAI; however VI at finer scales showed the strongest relationship. The spatial scales of 

variation were different for VIn, VIb, and LAI and ranged between 35 and 200 m. Pixel size of 

imagery finer than 20 m is recommended as ideal for studying the biophysical properties of the 

mixed prairie vegetation. 

 

6.2.2 Spatial scale and effects of upscaling in the northern mixed prairie 

Comparison of RS data at different spatial scales from four remote sensors revealed that VIn, 

VIb, and LAI increased withelevation and slope. RS data at finer scales showed the strongest 

ability than coarser scales to estimate ground vegetation. VIn were found to be better predictors 

than VIb in estimating LAI, and upscaling from all four spatial scales showed similar weakening 

trends for VIb to predict LAI. Spatial autocorrelation was present in the data sets, violating the 

conditions of global regression models. However, the use of spatial regression models in-lieu of 

global regression models accounted for spatial- autocorrelation and dependency in the RS data 

and significantly improved the prediction results. 

 

6.2.3 Vegetation mapping using spectral unmixing approaches 

Compared to whole pixel-based and object-oriented classifiers, MESMA was found to be more 

effective than simple SMA and produced improved vegetation maps. MESMA successfully 

captured the spatial heterogeneity of vegetation and incorporated the spectral variability of land 

cover within the study area. By developing a comprehensive region-specific endmember library 

and identifying optimal endmembers, MESMA successfully mapped the dominant vegetation 

types and estimated sub-pixel fractions of GV, NPV, and soil for the study area. The efficiency 

of spectral unmixing was found to be highly dependent on the identification of optimal 

endmembers, however not all endmembers were successfully modeled. Comparison of MESMA 

on the three imagery types showed spectral resolution to be important over spatial resolution. 3-



 

159 

 

em models were found to be better suited than the 2-em models for modeling vegetation types in 

the study area, however the availability of only multispectral imagery limited the full unmixing 

capability. The methodology presented would be more effectively used on hyperspectral imagery 

if it becomes available for the northern mixed prairie. Nevertheless, map products derived from 

spectral unmixing are useful for monitoring and management of native and invasive vegetation, 

habitat- and fire-modeling, and effective park management. 

 

6.2.4 Spatio-temporal changes to the northern mixed prairie vegetation 

Image unmixing and change-detection analysis showed that MESMA can be used as a standard 

tool for identifying spatio-temporal changes on time-series imagery. MESMA was effective in 

mapping the dominant vegetation types and produced comparable mapping results for each 

image in the time-series. Climatic variables of temperature and precipitation were found to affect 

the number of successful image unmixing models, with fewer successful unmixing models for 

years of climatic extremes. Change-detection showed the effectiveness of biodiversity 

conservation practices of GNPC since establishment and suggests that its managementstrategies 

are effective in maintaining heterogeneity of vegetation in the park region. The methodology 

presented can be continued to be used to monitor spatio-temporal changes in the northern mixed 

prairie, and may be tested in other ecosystems to gain valuable insight into their dynamics. 

 

6.3 FUTURE RESEARCH AND OPPORTUNITIES 

 

My research utilized RS data at multiple scales (field- and satellite-level) and compared them for 

studying the northern mixed prairie vegetation. Though the methods were somewhat effective 

with multispectral imagery (10 m or coarser), future research should be able to achieve better 

success with the methods presented in this study using airborne or satellite hyperspectral 

imagery, should they become available for the northern mixed prairie. Regardless, the current 

availability of finer spatial and temporal resolution multispectral data sets such as WorldView-2 

(0.5 m, 8 bands), RapidEye (5 m, 5 bands), and Landsat-8 (30 m, 11 bands) with their 

vegetation-specific red-edge band offer immediate opportunities to re-test the methods used in 

this study. 
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The East Block of GNPC has slightly different vegetation types compared to the West Block, 

and therefore an elaborate and comprehensive spectral library development will be useful as the 

same mapping methodology can be applied for the East Block. Unmixing methods have been 

shown to be effective for mapping soils in semi-arid regions (Okin et al., 2001). Therefore, the 

incorporation of more soil endmembers might be helpful in the image unmixing as exposed soil 

(bad lands) is seen in some parts of the study area. This research focused only on the area within 

the GNPC, i.e. conserved lands. Future research could explore spatio-temporal dynamics outside 

the park, however this will require spectral reflectance data for the land cover and land use 

(cultivated crops and forage) outside the park. Therefore, understanding of the land use-land 

cover around the park and the development of spectral libraries specific to those cover classes 

may help to identify spatio-temporal changes beyond the park boundary. It might be useful to 

explore different field sampling approaches to identify their effects on scaling. 

 

The short vegetation growth period and the effect of plant phenology in the northern mixed 

prairie (Zhang, 2008; Li and Guo, 2012) should be considered while identifying and selecting 

imagery for any vegetation analysis and for spectral unmixing. Though the general plant 

phenological trends in the region are known at coarser temporal scales, future studies could 

research the differences in the spectral response arising due to phenology of the dominant grass 

vegetation with multiple field spectral acquisitions (spectroradiometry) throughout the vegetative 

growth period, i.e. at finer temporal scales. Ideally, green vegetation endmembers corresponding 

with the vegetative growth period should be incorporated into the unmixing models. Having 

knowledge of vegetation phenology, one might be able to select phenology-specific endmembers 

for a particular plant species and utilize in the endmember model building and spectral unmixing. 

The current study was interested in the general mapping of the dominant vegetation types, 

however any particular vegetation types of interest may be better identified by using imagery in 

the latter vegetation growth period (e.g., shrubs or smooth brome might be better mapped in the 

August or September imagery when the native prairie grasses have completely senescenced). 

 

This study used multispectral imagery and 2- and 3-em models for unmixing. Future research 

may utilize the spectral unmixing methodology with hyperspectral imagery with hundreds of 
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continuous narrow bands to an even greater level of success (Schaepman et al., 2009). With the 

availability of hyperspectral imagery, 3- or even 4-em models could be tested. Okin et al. (2001) 

found that even 4-em MESMA is deficient in reliably estimating vegetation fractions when plant 

cover is <30% and seen mixed with soil. Further research needs to be attempted in other semi-

arid regions to develop more robust spectral unmixing techniques that can account for non-linear 

mixing. However, this will require better understanding of the interaction of reflectance spectra 

of vegetation and background materials. In general, higher awareness about the processing and 

calibration of hyperspectral data sets is needed (Kokaly et al., 2009; Plaza et al., 2009). Increased 

education about the usefulness of hyperspectral data sets is also needed (Goetz, 2009). The free 

availability of hyperspectral data sets such as EO-1 ALI and Hyperion from USGS and AVIRIS 

from JPL are good initiatives. 

 

Hyperspectral imagery can give insight into important biophysical characteristics and 

biochemical properties, and also provide vegetation maps at the species-level. However with the 

use of hyperspectral imagery, consideration will need to be given for data redundancy, data 

reduction, and the identification of optimum bands for vegetation mapping, species 

identification, and also in the development of more robust VIn (i.e. those compensating for 

background effects) for studying specific vegetation properties. Integration of spectral and spatial 

information for image classification and object-identification and mapping seems to be the 

direction in the current state-of-research (Plaza et al., 2009). Integration of diverse data sets such 

as multispectral or hyperspectral data with LiDAR and improvements in object-oriented and 

knowledge-based classifiers are worth mentioning. 

 

Results showed that the field endmembers do not effectively upscale to those acquired through 

satellite RS. Further research may be undertaken with field spectroscopy to understand the 

degree or level of spectral mixing (pixel aggregation) by varying the field-of-view (FOV) of the 

remote sensor and how the contribution of background materials change with variation to FOV 

of the sensor. Milton et al. (2007) and Schaepman et al. (2009) provide comprehensive reviews 

on the advancements made in the field of field spectroscopy, especially in the context of earth 

science applications. 
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Spectral unmixing with hyperspectral imagery has been used in several applications, however 

unmixing with multispectral imagery has not been greatly exploited. This study showed that it is 

possible to derive landscape-level vegetation maps that are useful for multiple applications with 

the development of comprehensive endmember spectral libraries. Unlike the huge costs for 

objected-oriented classifier tools and their specificity, the availability of open-source tools such 

as VIPER (Roberts et al., 2007) and VMESMA (Garcia-Haro, 1998) allow unmixing and 

mapping using hyperspectral and multispectral images. Also worth mentioning are free tools 

such as SPRING and OTB. 

 

Many of the publically-available spectral library databases (USGS, JPL) lack endmember spectra 

for native prairie vegetation. Therefore, by developing and sharing comprehensive spectral 

libraries for the prairie vegetation, researchers working in other similar ecosystems (such as 

steppes in Eurasia and pampas in South America) may benefit by utilizing the same approach for 

vegetation mapping, analysis, and monitoring. Obviously, spectral library standardization and 

metadata procedures will also need to be improved. Efforts such as SPECNET (Spectral 

Network; Gamon et al., 2006), SPECCHIO (Spectral Input/Output; Bojinski et al., 2003), and 

open-source spectral library initiatives should be encouraged (Hueni et al., 2009). 

 

Grasslands are significant carbon sinks. Future research may use spectral unmixing methods to 

identify the effects of grazing by natural- and introduced-herbivores to understand how grazing 

affects the carbon sequestration process in grasslands (see Yang and Guo (2011) and Yang et al. 

(2012)). Mapping of standing dead biomass (non-photosynthetic vegetation) through spectral 

unmixing may be attempted as it might help in the prediction and management of natural fires in 

the region. 

 

Scaling is an on-going topic of research in RS. Though the general spectral reflectance behavior 

of vegetation, soil, and water is understood at the leaf-level (Jacquemond et al., 2000), robust 

scaling laws and algorithms need to be developed at canopy scales. Scientists believe that the 

uncertainties with scaling relationships or processes from leaf-to-canopy-to-ecosystem may be 

better understood by using imaging spectroscopy (Kokaly et al., 2009; Blackburn, 2007; 

Schaepman et al., 2009). 
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The Landsat project since 1972 has become the longest imaging program for terrestrial or earth-

observation data (Wulder et al., 2008; Wulder et al., 2012 Roy et al., 2014). Therefore, earth 

observation and vegetation monitoring should be more readily feasible with the availability of 

RS data sets such as Landsat-8 from the LDCM (Irons et al., 2012) and Sentinel missions. 

Leimgruber et al. (2005) has discussed the impact of Landsat for conservation biology. Perhaps, 

there needs to be more collaborative and inter-disciplinary studies among ecologists and RS 

scientists so that these archived time-series data sets are utilized more readily and effectively. 

Availability of DMC and RapidEye data sets at very fine temporal resolution provides better 

opportunities for monitoring. Though the approaches described in this study can be readily 

replicated on Landsat-8 imagery, readers should be aware about the band changes to the imagery 

(Irons et al., 2012). 

 

Researchers have worked specifically on plant spectral signatures to identify important canopy 

traits and plant biophysical characteristics (Blackburn, 2007; Ollinger, 201; Asner et al., 2009; 

Kokaly et al., 2009; Ustin and Gamon, 2010). Grasslands being important carbon fixers, RS may 

be attempted to explore as to how foliar pigment and water content, nutrient and forage quality 

may be estimated. Future imaging spectrometer missions such as the Hyperspectral Environment 

and Resource Observer (HERO), Environmental Mapping and Analysis Program (EnMAP; 

Blackburn, 2007), the Accelerated Canopy Chemistry Program (ACCP, 1994) of NASA 

(National Aeronautics and Space Administration), the European Global Monitoring for 

Environment and Security (GMES) program , and the HyspIRI (Hyperspectral Infrared Imager) 

projects may facilitate the development of a greater range of scientific and practical applications 

of hyperspectral vegetation analysis. 

 

Ecologists, as they are increasingly inclined to use finer spatial resolution RS data sets for large-

scale research, need to account for the spatial effects (spatial- autocorrelation and dependency) 

and how it may impact their results or predictions. Many software packages such as ArcGIS, 

GeoDA, GWR (Geographically Weighted Regression), QGIS, Surfer, SAGA (System for 

Automated Geoscientific Analyses), SpaceStat, R, SAM (Spatial Analysis for Macroecology; 
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Rangel et al., 2010), and PASSAGE (Pattern Analysis, Spatial Statistics and Geographic 

Exegesis; Rosenberg and Anderson, 2011) have tools to incorporate spatial effects. 

 

RS is increasingly gaining popularity as data sources for ecological and environmental studies 

for its non-destructive, synoptic, repetitive, and cost-effective advantages. Optics and sensor 

technology and data processing methods are developing at a rapid pace. As the science and 

technology of RS grows, there will be enhanced availability of RS data from multiple sources at 

multiple resolutions that will open tremendous opportunities for multi-scalar studies on 

ecosystem analysis and environmental monitoring. That being said, serious consideration needs 

to be given to the selection, analysis, and conclusions of scale of study as it can directly impact 

the information derived from them. 
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